
A Study of Multidimensional Scaling Algorithms for Node

Localization in Sensor Networks

Performance Assessment of Iterative Majorization and Improvements Thereof

Diploma Thesis

By

Manolis Kou�dakis

Submitted to the Department of Electronic Engineering & Computer Engineering

Technical University of Crete

Advisor: Professor Sidiropoulos Nikolaos

Co-advisor: Associate Professor Liavas Athanasios

Co-advisor: Associate Professor Karystinos Georgios

CONTENTS

1. Abstract : 3

2. Introduction : 4

2.1 Sensor Localization Challenges . 6

3. FASTMAP-MDS algorithm : 8

4. Distributed Weighted Multidimensional Scaling : : : : : : : : : : : : : : : : : 15

4.1 Proposed DW-MDS initialization: Savarese's ABC algorithm 21

4.2 Proposed DW-MDS initialization: Capkun's SPA algorithm 24

4.3 Proposed DW-MDS initialization: FASTMAP algorithm 28

5. Proposed Modi�ed DW-MDS Algorithm : 31

6. Conclusions : 41

1. ABSTRACT

The problem of node localization from pairwise distance estimates has been of interest

in many scienti�c �elds, from psychometrics to signal processing and communications.

Given a matrix of pairwise distances the localization problem asks to determine the

relative node locations that generate these distances. Many di�erent algorithms have

been implemented in order to solve the localization problem without having to rely on

Global Positioning System (GPS) which is expensive to implement in each node and

requires Line of Sight (LOS) to three satellites. Sensor maps are useful for estimating

the spatial distribution of measured phenomena, and for routing purposes. In this work

we analyze, test and try to improve the distributed-weighted multidimensional scaling

algorithm (DW-MDS) Costa, Patwari and Hero) [1], [2]. Furthermore, we compare it to

the Fastmap-MDS algorithm (Latsoudas and Sidiropoulos) [3], pointing out the relative

strengths and weaknesses.

The DW-MDS algorithm adaptively emphasizes the most accurate range measurements

and naturally accounts for communication constraints within the sensor network. Each

node adaptively chooses a neighborhood of sensors, updates its position by minimizing a

local cost function and then passes this update to the neighboring sensors. On the other

hand, Fastmap-MDS is a two-stage algorithm that combines algebraic initialization and

gradient descent. An algebraic solution from the database literature is borrowed and it

is adapted to the sensor network context, using a speci�c choice of anchor/pivot nodes.

The resulting estimates are fed to a gradient descent iteration.

2. INTRODUCTION

Given a matrix of pairwise distance estimates between nodes, it is of interest to generate

a map of node locations. This problem is widely applicable in wireless sensor networks.

The initial knowledge of the distances can be obtained using Received Signal Strength

(RSS), or Time Of Arrival (TOA) measurements and a path loss model. In its general

form the above problem originates in the psychometrics �eld, and is known as Multi-

Dimensional Scaling (MDS).

Researching the �eld of localization, one can �nd numerous di�erent algorithms and so-

lutions for the above problem. In this research we analyze, test and compare Distributed-

Weighted Multidimensional Scaling algorithm (DW-MDS) Costa, Patwari and Hero [1]

and the Fastmap-MDS algorithm (Latsoudas and Sidiropoulos) [3].

The DW-MDS is a method based on a weighted version of multidimensional scaling

(MDS), which naturally incorporates local communication constraints within the sensor

network. In DW-MDS the estimation of all sensor coordinates can be achieved while only

a small fraction of sensors have a priori coordinate knowledge, and range measurements

between many pairs of neighboring sensors are available.

While angle measurements have also been used for sensor localization, in DW-MDS the

localization is based on range measurements. Its key features are:

1. a weighted cost function that ampli�es or degrades each nodes contribution depend-

ing on the accuracy of the distance measurement;

2. an adaptive neighbor selection method in order to avoid biasing e�ects of selecting

neighbors when working on a noisy environment and;

3. a majorization method that assures that each iteration improves the value of the

cost function.

On the other hand, the Fastmap-MDS algorithm incorporates both algebraic ini-

tialization and gradient descent. An algebraic method, borrowed from the database

literature, is used to produce initial position estimates, which are fed to a gradient de-

scent iteration. This sequence assures better performance and lower complexity than

other full-connectivity algorithms. What is more, its performance is relatively close to

the corresponding Cramer-Rao bound, especially for low values of range error variance.

The complexity of the hybrid algorithm is O(pmN2); p << N .

In their work, Costa, Patwari and Hero [1] propose ways of improving DW-MDS perfor-

mance, by using suitable initialization techniques, as opposed to random initialization.

In fact they propose the Savarese et al. [5] or the Capkun et al. [7] algorithm as two

possible options. After implementing both of these methods, we reached in the conclusion

that they cannot be used for initialization, as they often o�er complex valued coordinate

estimates when noise is present in the measurements 1.

As the previous methods do not work in our case, we use the Fastmap algorithm from

the database literature in order to initialize DW-MDS and the results show better perfor-

mance, both in terms of precision in position estimate and in terms of time consumption

in order to produce the �nal constellation2.

Furthermore, we propose a method of improving the performance of DW-MDS by chang-

ing the original algorithm and using a di�erent technique for aligning the �nal constel-

lation. More speci�cally, we now include both the unknown and anchor nodes in the

estimation procedure despite the fact that for the anchor nodes we have almost perfect

1 Sections 4.1 / 4.2
2 Section 4.3

5

a priori knowledge. After the convergence of the DW-MDS and the retrieval of the �nal

constellation, we use the alignment method proposed by Ji and Zha [9]. The Modi�ed

DW-MDS algorithm o�ers better performance in terms of estimation accuracy though it

requires more time to �nish the estimation process because of the extra computational

load.3.

2.1 Sensor Localization Challenges

For a large network (in the scale of thousands nodes) a centralized location estimation

seems a non-applicable approach. Having one central sensor to which all the peripheral

nodes send pair-wise distance estimates, and the sent back of the estimated coordinates

by the same node would overwhelm the usually low bandwidth capacity of the entire

network. In order to limit the communication and balance communication as well as

computational load across the sensors in the network, the use of decentralized algorithms

is necessary. Furthermore, when a sensor is in move, the ability to recalculate location

locally rather than globally will result in substantial energy savings.

Several tradeo�s are encountered during the e�ort to improve estimation of the sensors

positions. One of these is the tradeo� between energy cost and accuracy. For a given

channel between two nodes, the accuracy of the calculated pairwise distance can be

improved by increasing the SNR of the received signal through the increase of the transmit

power. Another tradeo� is the one between the device cost and range accuracy. This

is a �eld on which we will not refer to in the rest of the research, but it is worth to

be mentioned. Using ultrawideband (UWB) (Fleming and Kushner 1995; Correal et al.

2003, [12]) or hybrid ultrasound/RF techniques (Girod et al. 2002, [13]) can achieve

3 Section 5

6

accuracies on the order of centimeters, but at the expense of high device and energy

costs. Alternatively, inexpensive wireless devices can measure RF RSS just by listening

to the network packet tra�c. However, range estimates from RSS may cause signi�cant

errors due to channel fading.

Another factor to be taken into consideration is that all range measurements tend to

degrade in accuracy while distance between nodes is increasing.

7

3. FASTMAP-MDS ALGORITHM

In Latsoudas and Sidiropoulos [3] proposed Fastmap-MDS algorithm, the basic version

of node localization problem is revisited by proposing a two-stage algorithm which com-

bines algebraic initialization and gradient descent.

More speci�cally, the algebraic initialization is based on the Fastmap [4] algorithm, bor-

rowed from the database literature. The produced estimates are forwarded to a gradient

descent iteration. Fastmap is a linear-complexity tool. It is sensitive to range measure-

ment errors due to the fact that crude distance measurements are used for the mapping,

and because no weighting procedure is adopted in order to mitigate the possible errors

due to noise or other environmental interference. In a 3-D scenario and with one node

position already known, another node can de�ne its position on the surface of a sphere

having as semidiameter the measured distance from the �rst node. Distances as measured

values are invariant to rotation, re
ection and shift. Thus, there is a need to adopt at

least m + 1 anchor/pivot nodes (where m denotes the dimension of the working space)

whose position is accurately known in order to estimate the constellation correctly.

Since the estimated position of every node is based only on distances to the selected

anchors, there is no averaging and this makes the algorithm sensitive to coordinate align-

ment. However, this problem can be bypassed by choosing three(since 2-D) pivot nodes

to be on the outer edges of the network, forming an orthogonal triangle.

1. The FASTMAP algorithm

The basic element of Fastmap [4] is the projection of the objects on a properly

selected line, de�ned by two anchor nodes. De�ne these nodes to be Oa,Ob. A pair

of anchors is chosen for each of the m dimensions. In our research a 2-dimension

model is used. The coordinates of the objects can be found by employing the cosine

law. Thus, the �rst coordinate for object Oi is given by (3.1).

xi =
d2
ai + d2

ab − d2
bi

2dab
(3.1)

where dij is the measured distance between nodes i and j and a,b are the pivot

objects. After computing these coordinates for each node Oi, let us consider a

hyperplane which is orthogonal to the pivot line and project the objects on this

hyperplane. Repeat the previous process, this time using the new distance estimates

as they are re-computed (3.2) after the �rst estimation of the x-coordinate of each

unknown node.

d2
ij

′
= d2

ij − (xi − xj)
2; i; j = 1; :::; N (3.2)

As mentioned above, the estimated position of every node is based only on dis-

tances to the selected anchors and there is no averaging. As a result, the algorithm

is sensitive to coordinate alignment. By selecting the pivots to be on the outer edges

of the network, this problem can be overwhelmed. More speci�cally, the pivots are

placed wittingly in a way they an orthogonal triangle(Figure 3.1). In other words,

we use the pivots in order to simulate an orthogonal coordinates system. This

placement can provide a high-quality initialization to the gradient descent because

there are no alignment errors. Anchors #1 and #2 serve as pivots for determining

the coordinates in the �rst dimension, while anchors #2 and #3 are used as pivots

for the second dimension.

2. Two stage FASTMAP-MDS approach

9

•

•

•

•

•

• •

•
•

•

©
Anchor #1

©
Anchor #2

©Anchor #3

Nodes

Fig. 3.1: Pivot node placement for using FASTMAP in sensor network localization

The resulting estimates of the previously described algorithm can be used as initial-

ization for gradient descent. The steps that will be needed in this stage depend on

the quality of the initialization and each step costs O(N2). The two-stage algorithm

is shown in Table 3.1.

At this point, it is important to explain our notation.(xi; yi) denotes the estimated

position of node i. For the studied case, the stress function that is used is a common

one, described in (3.3).

stress2 =
∑
ij

(d̂ij − dij)
2 (3.3)

with d̂ij be the Euclidean distance between nodes Xi = (xi1; xi2; :::; xim) and Xj =

(xj1; xj2; :::; xjm)

d̂i;j =

√√√√ m∑
k=1

xik − xjk2: (3.4)

From the above equations, the partial derivative of the stress function can be com-

puted for every dimension of the studied space.

10

Input: D

1. Run Fastmap using as pivot the anchor nodes, which are placed on the three vertices

of the square distribution area. Let X be the vector which contains all the estimated

coordinates, which are returned by Fastmap.

2. Determine p, �

3. For i = 0 to p

begin

- evaluate ∇ stress at the point X

- X = X - �∇ stress

end

4. Output X

Tab. 3.1: The 2-D Hybrid Fastmap-MDS Algorithm

@stress

@xi
=

∑
j 6=i

(
√

(xi − xj)2 + (yi − yj)2 − dij)(xi − xj)√
(xi − xj)2 + (yi − yj)2

(3.5)

3. Implementation - Results

During the implementation of the described algorithm we consider that the network

has full connectivity (we have distance estimates for every pair of nodes). The

distance estimates are assumed to contain an error which is proportional to the

true distance between the nodes. Thus, the distance estimates are modeled to be

dij = pij + pijN(0; er); (3.6)

where pij is the true distance between nodes i and j and er is the range error vari-

ance. Network nodes are considered to be uniformly distributed in a square with

area equal to 1, i.e. the x and y coordinates of the sensor nodes are assumed uni-

formly distributed in [0; 1]. For aligning the estimated constellation, the technique

11

Algorithm Complexity

Fastmap O(mN)

Hybrid Fastmap-MDS O(pmN2); p << N

Tab. 3.2: Algorithm Complexities

described in section 3.1 is used. As an estimation performance metric we use the

root mean squared error described in (3.7).

RMSE =

∑N
i=1

√
(xri − xei)2 + (yri − yei)2

N
(3.7)

where xei; yei are the estimated coordinates, and xri; yri are the real ones. The com-

plexities of Fastmap and hybrid Fastmap-MDS are shown in table 3.2.

In �gures 3.2 and 3.3 we show the RMSE performance versus the range error

variance for the Fastmap and hybrid Fastmap-MDS algorithms. For a constella-

tion of 80 nodes and � = 0:01, we observe that the hybrid algorithm outperforms

FASTMAP in terms of accuracy. Moreover, this fact is also con�rmed for 200 node

groups and � set now at 0:005. While comparing the two graphs we reach to the

conclusion that the algorithms work good enough for both smaller and larger node

groups, o�ering similar results.

On the other hand, when more noise is added to the distance measurements, the

performance of the algorithms gets worse and inaccurate position estimates are

provided (�gure 3.4). Note that, for the noiseless case, both algorithms provide

completely accurate position estimates. In all cases, the results were averaged over

100 Monte-Carlo simulations for each range error value.

12

Fig. 3.2: Fastmap vs Fastmap-MDS Algorithm Performance for 80 Node Constellations

Fig. 3.3: Fastmap vs Fastmap-MDS Algorithm Performance for 200 Node Constellations

13

Fig. 3.4: Fastmap vs Fastmap-MDS Algorithm Performance for 80 Node Constellations - Di�er-

ent Range Error Scale

14

4. DISTRIBUTED WEIGHTED MULTIDIMENSIONAL SCALING

The goal of multidimensional scaling in the sensor localization problem is to �nd a

map representation of a group of sensors, so that the distances between nodes �t the best

possible way to a given set of measured pairwise dissimilarities1. These distances can be

obtained by using RSS or TOA technics.

The proposed by Costa-Patwari-Hero algorithm refers to a distributed MDS implementa-

tion which falls in the successive re�nement category of algorithms, and �nds a minimum

of a global cost function by minimizing local cost functions. The cost function that is

used avoids the complicated step of merging local maps and a majorization algorithm

ensures that each iteration decreases the global cost function.

The �rst step to sensor localization problem is to select neighborhoods for the range mea-

surements. As it is most common in real life applications, the measurements are done in a

noisy environment and this e�ects the neighbors-selection-process because some distances

may be misestimated. In order to solve this problem, Costa-Patwari-Hero algorithm pro-

poses a two-stage neighbor selection process that can be used to unbias location estimates

even in high-noise environments. However, we are not going to cope with this matter

profoundly in this work.

1. Problem Statement

A typical problem in sensor localization considers a network of N = n + m

1 ie. distances between nodes

D Dimensions of location estimates (D = 2 unless noted)

N = n+m Total number of sensors

n Sensors with imperfect or no a priori coordinate information

m Sensors with perfect a priori coordinate knowledge (anchor nodes)

xi Actual coordinate vector of sensor i, i = 1:::n +m

X Actual coordinate matrix, [x1; :::; xn+m]

dij; dij(X) Actual distance between sensors i and j in matrix X

�
(t)
ij Range measured at time t between sensors i and j

w
(t)
ij Weight given to the range measured at time t between sensors i and j

�
(t)
ij Weighted average measured range between sensors i and j

w
(t)
ij Weight given to the average measured range between sensors i and j

S Global objective function to be minimized

Si Local objective function to be minimized at sensor i = 1; :::; n

x
(k)
i Estimated coordinates of sensor i at iteration k

X(k) Estimated coordinate matrix at iteration k

Tab. 4.1: Symbols used in text and derivations

devices that live in a D-dimensional space (D < N). Let {xi}Ni=1, xi ∈ <D be the

actual vector coordinates of sensors and let us de�ne the matrix of coordinates

X = [x1; :::;xn;xn+1; :::;xN]. The �rst n sensors (i = 1; :::; n) have either no,

or some imperfect a priori coordinate knowledge and are called unknown-location

nodes. Imperfect a priori knowledge about sensor i ≤ n is described by parameters

ri and xi where with accuracy ri, xi is believed to be around xi. If no such knowledge

is available then ri = 0. The last m sensors (i = n + 1; :::; N) have perfect a priori

knowledge of their coordinates and are called anchor nodes.

The notation used in Costa-Patwari-Hero algorithm is summarized in Table 4.1.

16

Given the coordinates of the anchor nodes {xi}Ni=n+1,imperfect a-priori knowledge

{(ri;xi)}ni=1 and many pairwise range measurements, {ä(t)
ij } taken over time t =

1::K, the localization problem describes the estimation of the coordinates {xi}ni=1.

2. The DW-MDS Cost Function

The estimation of sensor positions is done by minimizing the following global cost

function (STRESS function [Cox and Cox 1994]):

S = 2
∑

1≤i≤n

∑
i≤j≤n+m

∑
1≤t≤K

w
(t)
ij (ä

(t)
ij − dij(X))2 +

∑
1≤i≤n

ri ‖xi − xi‖2 (4.1)

Where the actual Euclidean distance is given dij(X) by:

dij = d(xi;xj) = ‖xi − xj‖ =
√

(xi − xj)T (xi − xj) (4.2)

It is assumed that for each pair of (i; j) up to K dissimilarity measurements are

available. The weight w
(t)
ij (t = 1; :::; K) quanti�es the accuracy of measurement ä

(t)
ij .

If no measurement is available between i and j or its accuracy is zero then w
(t)
ij = 0.

Generally w
(t)
ij ≥ 0, w

(t)
ii = 0 and w

(t)
ij = w

(t)
ji .

As mentioned above the algorithm �nds a minimum of the global cost function

by minimizing local cost functions. Under this perspective S can be written as:

S =
n∑
i=1

Si + c; (4.3)

where one local cost function Si is de�ned for each unknown node.

Si =
n∑

j=1;j 6=i

wij(äij − dij(X))2 +
n+m∑
j=n+1

2wij(äij − dij(X))2 + ri ‖xi − xi‖2 ; (4.4)

and c is a constant independent of the nodes location. Since there are more than

one and less than K range measurements between nodes i and j we summarize these

measurements and the corresponding weights in a single quantity wij =
∑K

t=1 w
(t)
ij

17

and äij =
∑K

t=1 w
(t)
ij ä

(t)
ij =wij. As it is shown at (4.4), Si depends only on the available

measurements between i and the positions of the neighboring nodes, for which

wij > 0. Thus Si can be e�ectively used as a local cost function.

3. Minimizing the DW-MDS Cost Function

Since no closed form expression exists for the minimum of the cost function Si,

the problem is solved by minimizing Si(xi) iteratively, using quadratic majorizing

functions (as in SMACOF - Scaling by MAjorizing a COmplicated Function) [14].

This process assures a pure decreasing sequence of STRESS values. Since it is not

in the interest of this research, we do not present the whole minimization process,

but only the �nal equations that de�ne the nodes positions. The update for node's

i position is given by (4.5),

x
(k+1)
i = ai(rixi +X(k)b

(k)
i); (4.5)

where

a−1
i =

n∑
j=1;j 6=i

wij +
n+m∑
j=n+1

2wij + ri; (4.6)

and bki = [b1; :::; bn+m]T is a vector whose entries are given by the following formulas:

bj = wij[1− äij=dij(X
(k))] j ≤ n; j 6= i

bi =
n∑

j=1;j 6=i

wijäij=dij(X
(k)) +

n+m∑
j=n+1

2wijäij=dij(X
(k)) (4.7)

bj = 2wij[1− äij=dij(X
(k))] j > n

For nodes j not in the neighborhood of node i, the weights w
(t)
ij are zero. Thus,

the corresponding entries of vector b will be zero, and the update for xi will depend

only on its neighborhood, not in the whole constellation.

18

Input: {�(t)
ij }, {w

(t)
ij }, m, {ri}, {xi}, �, initial condition X(0)

Initialize: k=0, S(0), compute ai from equation 4.6

repeat

k ← k + 1

for i = 1 to n

compute b(k−1) from equation 4.7

x
(k)
i = ai(rixi +X(k−1)b

(k−1)
i)

compute S
(k)
i

S(k) ← S(k) − S
(k−1)
i + S

(k)
i

communicate x
(k)
i to neighbors of node i (i.e, nodes for which wij > 0)

communicate S(k) to node i + 1(mod(n))

end for

until S(k−1) − S(k) < �

Tab. 4.2: The DW-MDS Algorithm

4. Algorithm

The distributed weighed-multidimensional algorithm is shown at Table 4.2.

The computational complexity of the algorithm is O(nL) where L is the number

of iterations required until the algorithm converges. Although the majorization

approach used by the authors guarantees a non-increasing sequence of STRESS

values, the cost function may converge to a local minimum like any gradient descent

method. As a result, the algorithm may not provide satisfactory results in some

cases.

In order to improve the performance of the algorithm, a di�erent one than the

random initialization can be used. Costa-Patwari and Hero suggest the use of

the algorithms proposed in [Savarese et al. 2001 [5]] or [Capkun et al. 2001 [7]].

19

However, our research showed that these algorithms cannot be used for this purpose

since they may provide position estimates that are not real, but complex[Sections

4.1, 4.2].

5. Implementation - Results

The measurement that is used in order to authenticate the performance of the

studied algorithms is the Root Mean Square Error (RMSE), which is de�ned to

be RMSE =
∑

i=1

N

√
(xri−xei)2+(yri−yei)2

N
. Xri and Yri are the real coordinates of

each node and in correspondence Xei and Yei are the estimated ones. In �gure

4.1 the algorithm's performance for 80 nodes constellations and for various noise

environments is presented. The parameter that arranges the quantity of noise is

the range error variance and the parameter � is set to 0:01. In all cases, the

initialization of the algorithm was matrices with pairwise distances and a random

intial estimation of the coordinates of the nodes. No former knowledge on nodes

position is used except than the one of the anchor nodes. In addition, we consider

full-connectivity networks where every pair of nodes can establish communication.

The results were averaged over 100 Monte-Carlo simulations for each range error

value.

At this point, it is of use to point out that the algorithm cannot work e�ciently

without the existence of at least X+1 anchor nodes where X de�nes the dimension

in which we work. If no su�cient anchor nodes exist, then the estimated map may

not be aligned2 to the physical constellation even the relative positions between

nodes are estimated right.

For noiseless environments, the algorithm o�ers RMSE ≈ 10−3 and as noise is

added in the experiment, the performance becomes worse, as it should do. For range

2 For more information in the alignment �eld check chapter 5

20

errors between 0 and 0:2, the algorithm's performance does not change dramatically

and the RMSE balances around the value of 3:3 ∗ 10−3. While more noise is added

to the system and the range error variance increases, the algorithm's performance

becomes worse, and this re
ects in the rising swing of the RMSE. Thus, one can

conclude to the fact that DW-MDS is rather insensitive to noise, especially for high

SNR regions.

In order to give a more complete and actual view on what an RMSE value means

in terms of nodes positions, it is useful to take a look at �gures 4.2 and 4.3. Two

80-nodes complexes are presented in how they really are and how the algorithm

estimates them in various noise environments.

Fig. 4.1: DW-MDS Performance for 80 Node Constellations

4.1 Proposed DW-MDS initialization: Savarese's ABC algorithm

• Introduction

Through this research, Savareze, Rabaey and Beutel present the Assumption Based

21

Fig. 4.2: DW-MDS Performance for Range Error=0 and RMSE=0.0004

Fig. 4.3: DW-MDS Performance for Range Error=0.2 and RMSE=0.006

22

Coordinates (ABC) algorithm that tries to solve the following scenario: One node

with a known position, receives range measurements from a large number of neigh-

boring nodes with unknown positions and this information must be used in order

to solve the localization problem. The ABC algorithm determines the locations of

unknown nodes one at a time, in the order they establish communication, making

assumptions where necessary. Under this general rule, it is useful to check on how

it works for the �rst node n0.

• ABC Algorithm

The algorithm begins with the assumption that node n0 is located at (0; 0; 0). The

�rst node to establish communication with n0, n1, is assumed to be located at

(r01; 0; 0), where r01 is the geometrical distance between n0 and n1. The location

of the next node, n2, can then be found, given two assumptions: the argument of

the square root involved in �nding y2(4.8) is assumed to be a positive number, and

z2 is assumed to be 0. By xi, yi and zi we refer to the corresponding x,y and z

axis coordinate of node ni. At this point, we must remark that in our research a 2-

dimensional space is used, so the second assumption is not of concern. In addition,

in noisy environment the �rst assumption cannot be assured. However, it must be

mentioned in order to show the general concept of the algorithm. The coordinates

of n2 can easily be found by using the Pythagorean theorem as shown in (4.8).

x2 =
r2
01 + r2

02 − r2
12

2r01

y2 =
√
r2
02 − x2

2: (4.8)

The next node, n3, is handled like n2, except that only one assumption is made:

the square root involved in �nding z3(4.9) is positive. Still in noisy environment this

assumption cannot be assured. The new equations describing n3 are shown in (4.9).

23

x3 =
r201+r203−r

2
13

2r01

y3 =
r2
03 − r2

23 + x2
2 + y2

2 − 2x2x3

2y2

(4.9)

z3 =
√
r2
03 − x2

3 − y2
3

From this point, the equations needed to de�ne the coordinates of each new node

cannot be easily determined since the node needs to interact and adjust with four

others. Instead, the standard algorithm can be applied in order to build a local

coordinates system.

• Implementation - Results

After implementing in MATLAB script the above scenario, the results of the sim-

ulations showed that in noisy environments the ABC algorithm may give complex

position estimates and, of course, they cannot be used as an initial estimation for

the network topology. The problem originates in the assumptions made earlier,

concerning the estimation of y2 and z3, where the unknown quantity under the

square root is assumed to be positive. Thus, ABC algorithm cannot be used for the

initialization of the DW-MDS algorithm.

4.2 Proposed DW-MDS initialization: Capkun's SPA algorithm

• Introduction

The proposed from Capkun, Hamdi and Hubaux [7], algorithm is a GPS-free method

that uses the distances between nodes in order to build a relative coordinate system.

It is a distributed algorithm that enables the nodes to �nd their positions within

the network area using only their local information, and is referred as the Self

Positioning Algorithm (SPA). It uses range measurements between the nodes to

build a Network Coordinate System. The Time of Arrival (TOA) method is used

24

to estimate the range between two mobile devices. Examples of application where

this algorithm can be used include Location Aided Routing [15] and Geodesic Packet

Forwarding [16] both in ad hoc and sensor networks.

In our research we tried to apply the mentioned algorithm in order to take an initial

estimation of the topology of the examined network and use it in order to initialize

the DW-MDS algorithm. However, the results were not so encouraging. It is of

importance to explain �rst, how the SPA algorithm works in its initial steps that

are enough to understand why it cannot be used for DW-MDS initialization.

• Building Local Coordinate System using SPA

First of all, there are some assumptions which are made concerning the system

model.

1. The studied network is a network of mobile and wireless devices without any

speci�c structure.

2. All the devices (nodes) have the same technical characteristics.

3. All the wireless links between the nodes are bidirectional.

4. The nodes use omnidirectional antennas.

5. The maximum speed of the movement of nodes is limited to 20m/s.

In this section it is shown how every node builds its Local Coordinate System.

In a few words, the node becomes the center of its own coordinate system with the

position (0; 0) and the positions of its neighbors are computed accordingly.

If a node j can communicate directly (in one hop) with node i, j is called a one-hop

neighbor of i. In a network of N nodes, de�ne Ki to be the set of one-hop nodes

25

for ∀i ∈ N , and Di the set of distances between i and each node j ∈ Ki. For every

node i the following procedure is performed:

{ detect all one-hop neighbors (Ki),

{ measure the distances to one-hop neighbors (Di),

{ send the Ki and Di to all one-hop neighbors.

Thus every node knows its one and two-hop neighbors, all the distances between

its one-hop and some of the distances between its two-hop neighbors. A number

of distances cannot be obtained due to power limitations or obstacles between the

nodes.

As a plane is de�ned by three points not in the same line, in order to de�ne node's i

coordinate system, we need two more nodes. Let these nodes be p ∈ Ki and q ∈ Ki,

their distance be dpq and nodes i, p and q don't lie in the same line. In addition,

suppose that node p lies on the x-axis and node q has a positive qy coordinate.

Using this information, we can uniquely de�ne i's Local Coordinate System, and

the coordinates of nodes i, p, q are the ones shown in (4.10).

ix = 0; iy = 0

px = dip; py = 0 (4.10)

qx = diq cos
; qy = diq sin

where
 is the angle 6 (p; i; q) and is obtained by using the cosines rule for trian-

gles(4.11).

 = arccos
d2
iq + d2

ip − d2
pq

2dipdiq
(4.11)

The positions of the nodes j ∈ Ki; j 6= p; q, for which the distances dij; dqj and dpj

are known, are computed by triangulisation. Therefore, their coordinates can be

found using (4.12).

26

jx = dij cos aj

if �ij = |�j −
| ⇒ jy = dij sin�j (4.12)

else ⇒ jy = −dij sin�j

where �j is the angle 6 (p; i; j) and �j is the angle 6 (j; i; q).

By using the cosine rule the values of �j and �j are obtained from (4.13) and (4.14).

�j = arccos
d2
ij + d2

ip − d2
pj

2dijdip
(4.13)

�j = arccos
d2
iq + d2

ij − d2
qj

2dijdiq
(4.14)

Figure 4.4 shows the example of the above computation for node j. For every other

node m ∈ Ki, its position can be computed in the same way, only by knowing the

positions of node i, two other nodes and their pairwise distances.

Fig. 4.4: Example illustrating how to obtain the position of node j in the coordinate system of

node i

• Implementation - Results

After implementing the algorithm for the local coordinate system in Matlab script,

27

we noticed the existence of complex values in the estimation of the nodes' coordi-

nates. This origins from the fact that we compute the inverse cosine of an unknown

quantity -suppose x-, for which we don't have any restrictions or haven't made any

assumptions. We know from trigonometry rules that if |x| > 1 then arccos x gives a

complex solution. This value is furtherly used in the computation of cos (arccosx)

and sin (arccosx) which also gives a complex number since the argument is not

real. As a result, the coordinate estimates which are computed cannot be used as

initialization for DW-MDS, since we need real data.

4.3 Proposed DW-MDS initialization: FASTMAP algorithm

• Introduction

As described in chapter 3, the Fastmap algorithm is an algebraic method that can

be used in order to produce an initial estimate of the nodes location. We will

not currently explain the function of the algorithm but present the results of the

combination of DW-MDS algorithm with Fastmap initialization.

• Implementation - Results

The input of FASTMAP is a matrix of pairwise distances. The distances are a�ected

by noise proportional to the actual distance of the nodes. We assume that the nodes

are spread in a square and that three anchors are placed at three edges of this square.

The output is used as input for the DW-MDS.

The simulations have shown faster convergence for the hybrid algorithm than the

traditional DW-MDS, and better performance in terms of accuracy. The faster

convergence is justi�ed by the fact that the new initialization of Costa's algorithm

is not random anymore, but an algebraic estimation of the �nal map. So the

algorithm needs fewer iterations in order to converge. The same justi�cation also

28

counts for the accuracy part. In �gures 4.5, 4.6 and 4.7 the original DW-MDS

algorithm's performance is compared to the DW-MDS with Fastmap initialization.

The second o�ers better performance especially for low range error values. Due

to the fact that we actually use two algorithms for the localization process, it is

natural that the results are better and more close to reality. On the other hand,

in high-noise environments, the Fastmap algorithm o�ers rather poor localization

estimates which a�ect the Fastmap-DW-MDS overall performance.

Fig. 4.5: DW-MDS vs DW-MDS with Fastmap initialization Performance for 80 Nodes Constel-

lations

29

Fig. 4.6: DW-MDS vs DW-MDS with Fastmap initialization Performance for 80 Nodes Constel-

lations - Di�erent Rance Error Scale

Fig. 4.7: DW-MDS vs DW-MDS with Fastmap initialization Performance for 200 Nodes Con-

stellations

30

5. PROPOSED MODIFIED DW-MDS ALGORITHM

1. Introduction

Many of the available algorithms that solve the node localization problem require

the existence of some anchor nodes (in most of the cases at least three) for whom

we have almost perfect a-priori knowledge. They are essential in order to estimate

the constellation.

As we saw in chapter 3, the Fastmap algorithm needs at least one pair of pivots

for every dimension of the working space, in order to project the rest of the nodes

on the formed line. Unfortunately, Fastmap is very sensitive to coordinate align-

ment because the estimated position of every node is only based on distances to

the chosen pivots and thus there is no averaging. In order to minimize this problem

the pivots are chosen to be placed on the outer edges of the network, forming an

orthogonal triangle.

On the other hand, DW-MDS needs the anchor nodes in order to align the esti-

mated nodes coordinates to their physical positions, as the algorithm does not use

any special alignment procedure. The positions of the anchors are not re-estimated

-since they are already known- and the whole map is built around them.

2. Challenges in the precise estimate of the location of anchor nodes

We should now take into consideration the words of the ancient Greek philosopher

Socrates who said that : "`Åí ïßäá, üôé ïõäÝí ïßäá"'. In free translation this means

that: "'One thing I know is that I know nothing"'.

Thus taking for granted that we have perfect knowledge on something is not always

true. In our case, it is quite di�cult and sometimes not possible to have perfect

a-priori knowledge for a node location. In most of the proposed algorithms, the

location of anchor nodes is found through GPS, something which is not always

feasible [17].

• GPS cannot be used in indoors networks because its precision is very low, as

its jammed from many obstacles.

• GPS o�ers an accuracy of the order of 25m in the horizontal plane and 43m in

the vertical plane for custom civilian applications. Thus, GPS measurements

cannot be used in order to achieve reliable node position estimates in networks

where the distances between nodes are of the same or lower order of the o�ered

accuracy.

• GPS performance is a�ected by many factors, such as the changing in atmo-

spheric conditions as the GPS signals pass through the Earth's atmosphere

and ionosphere. In addition, GPS signals can be a�ected by multipath is-

sues, where the radio signals re
ect on the surrounding terrain, buildings,

hard ground, etc. These delayed signals can cause inaccuracy. Furthermore,

jamming of any radio navigation system, including satellite based navigation

is possible.

Under these conditions, the estimation of the position of a sensor network which

is located in a canyon, or in a battle�eld could be very tricky if the use of GPS is

demanded.

On the contrary, in cases that we can use the GPS e�ectively, or some other

method of acquiring the anchor nodes positions with an accepted accuracy, there

32

are still problems that may appear.

• The possible error in the calculation of the anchor node's position, is transfered

in the estimation of the rest of the constellation and if no separate alignment

procedure is used, then the output map may be well estimated in terms of

pairwise distances, but actually improperly aligned.

• In order to achieve greater accuracy, the use of expensive or complicated ma-

chines is possible. However, for the sake of cost and complexity reduction of

every node, we chose not to use them in the system.

From the hindrances described above, we reached to the conclusion that it is

better to use the knowledge for the anchors as much as we can, but it would be

wiser to use them carefully in order to align the �nal map to the physical positions.

Aligning procedure is very important for acquiring the best performance of the

localization algorithm used. Thus, constellation estimation and map alignment

should be treated separately if possible. The blind use of the anchor nodes positions

knowledge for aligning the map, could be treacherous.

3. Modi�ed DW-MDS algorithm

In the Modi�ed DW-MDS algorithm, node position estimation is treated sepa-

rately from the �nal coordinates alignment. The algorithm still uses its knowledge

of the anchor nodes position, and calculates the position of the rest of the nodes

according to them. However, the algorithm now re-estimates the position of the

anchor nodes as if they were unknown. The result of the estimation of the anchor

nodes can provide a hint about how well the algorithm worked. Now that DW-MDS

"loses" its anchors, the output map needs to be aligned to the physical positions.

We adopt the aligning algorithm, proposed by Ji and Zha [9] which is presented

33

Input: {�(t)
ij }, {w

(t)
ij }, m, {ri}, {xi}, �, initial condition X(0)

Initialize: k=0, S(0), compute ai from equation 4.6

repeat

k ← k + 1

for i = 1 to N

compute b(k−1) from equation 4.7

x
(k)
i = ai(rixi +X(k−1)b

(k−1)
i)

compute S
(k)
i

S(k) ← S(k) − S
(k−1)
i + S

(k)
i

communicate x
(k)
i to neighbors of node i (i.e, nodes for which wij > 0)

communicate S(k) to node i + 1(mod(n))

end for

until S(k−1) − S(k) < �

Run Alignment Algorithm described in section 5.4

Tab. 5.1: The modi�ed DW-MDS Algorithm

next. This method, needs the anchor nodes position to be re-estimated in order to

align them �rst, and then align the whole map according to the information taken

from the anchors alignment.

The new algorithm is very similar to DW-MDS and its di�erences are pointed out

in table 5.1.

4. Alignment algorithm

For a group of nodes, at least three anchors are needed in order to align the

estimated positions to the physical ones, in a 2-D case. The alignment procedure

includes three processes. Shift, rotation, and re
ection of coordinates.

34

Assume that, R = [rij]2∗n = (R1; R2; :::; Rn) denotes the relative positions of a set

of n nodes in a 2-dimensional space and that T = [tij]2∗n = (T1; T2; :::; Tn) denotes

the true positions of the same nodes. Also, nodes 1; 2; 3 are the anchors.

A vector Ri may be shifted to R
(1)
i by R

(1)
i = Ri + X. It may be rotated counter-

clockwise through an angle � to R
(2)
i = Q1Ri where Q1 is,

Q1 =

 cos� − sin�

sin� cos�

 (5.1)

It may also be re
ected across a line

S =

 cos �=2

sin �=2

 (5.2)

to R
(3)
i = Q2Ri, where

Q2 =

 cos � sin �

sin � − cos �

 (5.3)

Before alignment, we only know R and at least three anchor nodes physical positions

T1; T2; T3. Based on them, it is possible to compute T4; T5; :::; Tn, by using the above

described rules. First we have,

(T1 − T1; T2 − T1; T3 − T1) = Q1Q2(R1 −R1; R2 −R1; R3 −R1) (5.4)

and let's de�neQ to be the alignment factor equal toQ = Q1Q2. Then (T4; T5; :::; Tn)

can be calculated with

(T4 − T1; T5 − T1; :::; Tn − T1) = Q(R4 −R1; R5 −R1; :::; Rn −R1) (5.5)

35

and �nally

(T4; T5; :::; Tn) = Q(R4 −R1; R5 −R1; :::; Rn −R1) + (T1; T1; :::; T1) (5.6)

By the process described above, we achieve the alignment of the estimated map to

the physical positions.

5. Implementation - Results

Through the simulation of the Modi�ed DW-MDS algorithm, one observes that

the results that it o�ers are quite inviting in terms of accuracy in estimating the

nodes locations. Figures 5.1, 5.2 and 5.3 present the performance of Modi�ed DW-

MDS for 80 and 200 nodes constellations and for various noise environments, which

are described by the range error variance. In all cases, the results were averaged

over 100 Monte-Carlo simulations for each range error value.

More speci�cally, for the 80 node map, the algorithm o�ers almost perfect node posi-

tion estimation for a noiseless case (RMSE ≈ 10−5), and then the RMSE increases

non-linearly until the level of 10−2. The peaks that may appear in some RMSE

measurements are justi�ed by the fact that the algorithm is based on the original

DW-MDS, whose majorization approach may not converge to the global minimum

of the cost function but in a local one instead. Thus, this non-convergence can give

really bad results in the map estimation which e�ect on the overall experiment.

Furthermore, another important notice comes from the study of �gures 5.1 and 5.2.

In the 80 nodes case the mean square error varies in the range between [10−510−3],

though in the 200 nodes case in the [10−610−4] range. In other words, the algo-

rithm o�ers better accuracy in larger scale networks where more nodes/distance

measurements are included, and one node's position can be better averaged.

36

Fig. 5.1: Modi�ed DW-MDS Algorithm Performance for 80 node constellations

In order to have a more accurate view on the algorithms performance it is worth-

while seeing graphs 5.4, 5.5 and 5.6 which show the real and estimated nodes posi-

tions on the same surface. RMSE's in the range of 10−5 imply great position esti-

mation though RMSE's around 10−3 give rather inaccurate results. For RMSE's in

the area of 10−4 the result map is quite acceptable and close to reality.

37

Fig. 5.2: Modi�ed DW-MDS Algorithm Performance for 200 node constellations

Fig. 5.3: Modi�ed DW-MDS Algorithm Performance for 80 node constellations - di�erent range

error scale

38

Fig. 5.4: Real vs Estimated positions for Range Error=0 and RMSE=0.0000085

Fig. 5.5: Real vs Estimated positions for Range Error=0.2 and RMSE=0.00035

39

Fig. 5.6: Real vs Estimated positions for Range Error=2 and RMSE=0.0086

40

6. CONCLUSIONS

In the previous research, we explored various solutions in order to solve the problem

of localization in wireless networks. The use of the basic Multidimensional Scaling al-

gorithm as well as its variants is dominant in the sector and many proposed solutions

depend on them.

Distributed Weighted Multidimensional Scaling algorithm is one of the classical MDS

variations. We analyzed its functionality and checked the results that it o�ers in terms of

accuracy and complexity. At a second stage, we tested methods proposed by the authors

of the algorithm in order to change its initialization and achieve a better performance.

Both Savarese's ABC algorithm [Savarese et al. 2001 [5]] and Capkun's SPA algorithm

[Capkun et al. 2001 [7]], fail to initialize DW-MDS, as they may o�er complex position

estimates, while DW-MDS needs real ones. On the other hand, Fastmap algorithm can

be successfully used in their place in order to acquire a �rst estimate of the constella-

tion, and give it as input to the DW-MDS. The results of the DW-MDS with Fastmap

initialization, are better as far as the accuracy and time needed to converge is concerned,

compared to the original DW-MDS.

Furthermore, we studied and tested the proposed by Latsoudas, Sidiropoulos [3] FASTMAP-

MDS algorithm. Since Fastmap is an algebraic method, it is quite sensitive to noise and

in low SNR environments it does not work as e�ciently as in high SNR cases.

Finally, we proposed a new version of the DW-MDS algorithm. In this new case, the

position of the anchor nodes is re-estimated. However, now, in order to align the �nal

position estimates, to the physical positions of the nodes, a di�erent method for aligning

is used. We applied the method described by Ji and Zha [9].

The setup of the experiments included 80 or 200 nodes constellations, various noise envi-

ronments and full-connectivity networks. The initialization of the algorithms was either

matrices with pairwise distances and a random intial estimation of the coordinates of the

nodes, or an "early version" of the constellation, estimated using Fastmap. For DW-MDS

and Modi�ed DW-MDS, the � threshold was set at 0:01. The results were averaged over

100 Monte-Carlo simulations for each range error value. By taking a look in �gures

6.1, 6.2 and 6.3 we remark the signi�cantly better performance of Modi�ed DW-MDS

algorithm, in comparison to the original DW-MDS and Fastmap-MDS algorithms, from

the viewpoint of RMSE. On the other hand, for 200 node constellations Fastmap-MDS

o�ers better results than DW-MDS, but worse than Modi�ed DW-MDS. However, when

Fastmap initialization is used for DW-MDS algorithm, its performance is crucially im-

proved, and outmatches Fastmap-MDS.

If one compares the present results to the ones extracted from Latsoudas-Sidiropoulos [3]

research, may notice a di�erence in the performance of DW-MDS algorithm. This is due

to the use of a lower threshold which improves the o�ered RMSE, in expense of the time

needed for the algorithm to converge.

As future work, one could try to apply better technics for initializing DW-MDS in or-

der to achieve better performance, both on RMSE and time of convergence aspects. In

addition, more sophisticated methods for aligning could be developed.

42

Fig. 6.1: Performance Measurement of DW-MDS, Fastmap-MDS and Modi�ed DW-MDS, N=80

Fig. 6.2: Performance Measurement of DW-MDS, Fastmap-MDS and Modi�ed DW-MDS - Log-

arithmic y-scale, N=80

43

Fig. 6.3: Performance Measurement of DW-MDS with Fastmap Initialization, Fastmap-MDS

and Modi�ed DW-MDS with Fastmap Initialization, N=80

Fig. 6.4: Performance Measurement of DW-MDS, Fastmap-MDS and Modi�ed DW-MDS,

N=200

44

Fig. 6.5: Performance Measurement of DW-MDS, Fastmap-MDS and Modi�ed DW-MDS - Log-

arithmic y-scale, N=200

Fig. 6.6: Performance Measurement of DW-MDS with Fastmap Initialization, Fastmap-MDS

and Modi�ed DW-MDS with Fastmap Initialization, N=200

45

BIBLIOGRAPHY

[1] JOSE A. COSTA, NEAL PATWARI, and ALFRED O. HERO III, Distributed

Weighted-Multidimensional Scaling for Node Localization in Sensor Networks 2006,

University of Michigan.

[2] Jose A. Costa, Neal Patwari and Alfred O. Hero III, Adaptive Distributed Multidi-

mensional Scaling for Localization in Sensor Networks 2006.

[3] Georgios Latsoudas, Nicholas D. Sidiropoulos, A Two-Stage FASTMAP-MDS Ap-

proach for Node Localization in Sensor Networks, Technical University of Crete.

[4] Christos Faloutsos, King-Ip Lin , FastMap: A Fast Algorithm For Indexing, Data-

Mining and Visualization of Traditional and Multimedia Datasets.

[5] Chris Savarese, Jan M. Rabaey, Jan Beutel , Locationing in Distributed Ad-Hoc Wire-

less Sensor Networks.

[6] Leon Evers, Wouter Bach, Dennis Dam, Mischa Jonker, Hans Scholten, Paul Havinga,

An Iterative Quality-based Localization Algorithm for Ad Hoc Networks, University of

Twente, Department of Computer Science, Enschede, the Netherlands.

[7] Srdjan Capkun, Maher Hamdi, Jean Pierre Hubaux, GPS-free positioning in mobile

ad hoc networks.

[8] Yi Shang, Wheeler Ruml, Improved MDS-Based Localization, University of Missouri-

Columbia.

[9] Xiang Ji, Hongyuan Zha, Sensor Positioning in Wireless Ad-hoc Sensor Networks

Using Multidimensional Scaling, The Pennsylvania State University.

[10] Ying Zhang, Qingfeng Huang and Juan Liu, Sequential Localization Algorithm for

Active Sensor Network Deployment.

[11] Neal Patwari, Alfred O. Hero, Matt Perkins, Neiyer S. Correal, Robert J. O'Dea,

Relative Location Estimation in Wireless Sensor Networks.

[12] FLEMING, R. AND KUSHNER, Low-power, miniature, distributed position location

and communication devices using ultra-wideband, nonsinusoidal communication tech-

nology, Tech. rep.,Aetherwire Inc, Semi-Annual Technical Report, ARPA Contract

J-FBI-94-058(July 1995).

[13] GIROD, L., BYCHKOVSKIY, V., ELSON, J., AND ESTRIN, Locating tiny sensors

in time and space: a case study, In IEEE International Conference on Computer

Design. 214-219, 2002.

[14] GROENEN, The majorization approach to multidimensional scaling: Some problems

and extensions, DSWO Press, 1993.

[15] Y.B. Ko and N.H Vaidya, Location aided routing in ad-hoc networks, MOBICOM,

1998.

[16] Lj. Blazevic, S. Giordano and J. Y. Le Boudec, Self Organizing Wide-Area routing,

SCI 2000 / ISAS 2000, Orlando, July 2000.

[17] Global Positioning System, http://en.wikipedia.org/wiki/GPS

47

