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Abstract 

 

Wireless sensor networks (WSNs) have gained world-wide attention in recent years and are 

expected to find wide applicability and increasing deployment in the near future. These networks 

are consisted of small sensors, with limited processing and computing resources. Thus, the 

considerable cost of deploying and maintaining large-scale WSNs for experimental purposes 

makes simulation a necessary phase of the application development cycle. Sensor node actions 

are triggered by the information they sense, measure and gather from the environment. 

Therefore, physical process modeling and simulation is an integral part of a realistic application 

simulation. Though, sensing is usually neglected in WSN simulators. The usual practice is to 

feed random numbers to nodes or each node to have a static value. The purpose of this master 

thesis is to introduce VectorL, a high-level domain-specific language designed to serve the need 

for an effective and simple way to model and simulate external environment in order to produce 

realistic sensor readings. Another great advantage of VectorL is that it can be used, not only 

during simulation phase, but also during wsn testing phase, inside the motes.      
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Chapter 1 Introduction 
 

1.1 Wireless Sensor Networks 
 

In recent years, Wireless Sensor Networks (WSNs) have been an area of significant research. 

These networks are formed by a large number of networked sensing nodes. These nodes are 

small, with limited processing and computing capabilities. They can sense, measure, and gather 

information from the environment and, based on some local decision process, they can transmit 

the sensed data to the user. 

A typical node in such networks consists of processing capability (one or more microcontrollers), 

may contain multiple types of memory, have a radio-frequency (RF) transceiver, have a power 

source (batteries, solar cells, etc.) and accommodate various sensors and actuators. A variety of 

mechanical, thermal, biological, chemical, optical, and magnetic sensors may be attached to the 

sensor node to measure properties of the environment. Since sensor nodes have limited memory 

and are typically deployed in difficult-to-access locations, a radio is implemented for wireless 

communication to transfer data to a base station (eg. a laptop, a personal handheld device, or an 

access point to a fixed infrastructure). Battery is the main power source in a sensor node. 

Secondary power supply that harvests power from the environment such as solar panels may be 

added to the node depending on the appropriateness of the environment where the sensor will be 

deployed. 

A complete wireless sensor network usually consists of one or more base stations (or gateway), a 

number of sensor nodes and the end user. Sensor nodes measure physical quantities and their 

output is wirelessly transmitted to the base station for data collection, analysis and logging. End 

users may also be able to receive and manage the data from the sensor via a website from long-

distance or applications in console terminal. 

There are two types of WSNs: structured and unstructured. An unstructured WSN is one that 

contains a dense collection of sensor nodes. Once deployed, the network is left unattended to 

perform monitoring and reporting functions. In an unstructured WSN, network maintenance such 

as managing connectivity and detecting failures is difficult since there are so many nodes. In a 
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structured WSN, all or some of the sensor nodes are deployed in a pre-planned manner. The 

advantage of structured network is that fewer nodes can be deployed with lower network 

maintenance and management cost.  

WSNs have great potential for many applications in scenarios such as military target tracking 

and surveillance, natural disaster relief, biomedical health monitoring and hazardous 

environment exploration and seismic sensing.  

 

FIGURE 1: A TYPICAL WIRELESS SENSOR NETWORK 

1.2 Problem statement 
 

Development of WSN applications with performance guarantees is a very challenging task. The 

small form factor of sensor nodes imposes severe constraints on the availability of resources such 

as power, memory, communication range, and sensing capability. The difficulty of providing 

performance predictions makes it imperative for developers to test applications thoroughly, 

preferably by using different sets of parameters in a realistic environment at all phases of the 

application development cycle.  
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Simulation is a cost-effective choice for prototyping and testing such WSN applications, as the 

cost, time and complexity involved in deploying and constantly changing actual large-scale 

WSNs for experimental purposes are prohibitively high.  

WSN applications feature tight integration of computation, communication and interaction with 

the physical environment. Thus, the validity and effectiveness of simulation results depends 

heavily on how accurately the environment and the sensing process are modeled. 

Despite its important role during the simulation phase, sensing is usually neglected in WSN 

simulators. Issues like sensing device noise or bias are rarely taken into account. The usual 

practice to sensed data-generation is to feed random numbers to nodes, or each node to have a 

static value, or at the best case feed the nodes with traces of sensed data. The last case is indeed 

realistic if we are concerned with a very specific physical process but the data traces rarely lend 

themselves to every kind of physical process simulation. For early phase algorithm design we 

need physical process models that are flexible enough yet have some correspondence to real 

processes (eg. spatial correlation of data, variability over time). 

However, this problem is not met only during the simulation phase, but also during WSN testing 

phase. Fidelity of a simulation cannot always match the physical devices; a field experiment is an 

ultimate test of operation of a sensor network. Currently, the mostly used approaches record spot 

measurements and play them back during testing. So imagine how one could test a fire detection 

WSN‟s effectiveness. 

1.3 Introducing VectorL 
 

This thesis tries to go a couple of steps further than the usual practice and introduces VectorL, a 

Domain Specific Language (DSL) that is meant to aid the programmer to model and fully 

simulate the external environment. 

VectorL is a small but powerful domain-specific language for creating simple numerical 

simulations. VectorL programs are executed inside network simulations, but do not interact 

directly with the sensors or gateways of the system. Instead, a VectorL program is supposed to 

simulate some natural or artificial system (weather, pollution, car traffic, fires, etc) independent 

of the WSN network. However, it is possible for VectorL programs to receive input from the 
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nodes, if the latter are equipped with actuators that may affect the environment (eg. lock and 

unlock doors, turn signal lights on/off, etc). 

A design choice for VectorL was to avoid looping constructs and data types that are not needed 

for simulation. By omitting loops from the language, VectorL programs are much easier to debug 

and execute safely inside a simulation. On the other hand, loops are important computational 

components. Therefore, in order to avoid explicit loops, VectorL provides a very powerful 

syntax for handling arrays, similar to the syntax of mathematical software, such as Octave, 

Yorick or Python NumPy. 

Another impact of the design choices, under which VectorL was constructed, is the possibility of 

executing VectorL simulation code during application‟s field testing process, inside the mote. 

1.4 WSN-DPCM Project 
 

All the tools presented in this thesis were created in order to contribute to the WSN-DPCM 

project. WSN-DPCM is a cooperation project of several technical universities and companies 

from Spain, Italy and Greece. The project is funded by the ARTEMIS Joint Undertaking (the 

European technology platform representing the field of advanced research and technology for 

embedded intelligence and systems), national authorities and European partner companies. 

WSN-DPCM aim is to develop a full platform to address the main Wireless Sensor Network 

(WSN) challenges for smart environments that includes the middleware for heterogeneous 

wireless technologies and an integrated engineering toolset for Development, Planning, 

Commissioning and Maintenance activities for expert and non-expert users. 

This project offers a real end-to-end integrated tool-chain solution to promote a true model-

driven architecture in all design and operational views of a system: 

 The Development view, which promotes reusability of software components and 

guarantees the functional and behavioral portability among different hardware 

platforms and vendors. 
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 The Planning view, which assists the network deployment to shorten the deployment 

time by minimizing the number of the trial-and-error iterations, while at the same 

time reducing the number of nodes 

 The Commissioning and operational Maintenance view, which helps put the whole 

smart environment into operation and assist the users that will operate and maintain it. 

VectorL was created as a part of the Development tool, and specifically of the Network 

Simulation component.  
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Chapter 2 Related Work 
 

2.1 Wireless Sensor Network Simulators 
 

In this section we will do a survey on the existing WSN simulators and on how they treat 

physical process modeling and simulation. 

TOSSIM 

TOSSIM is a discrete event simulator developed to simulate entire TinyOS applications and 

works by replacing components with simulation implementations. The greatest feature of 

TOSSIM is that the same high-level source code can work in both real sensor network testbed 

and TOSSIM.  

TOSSIM does not provide a way to model and simulate the environment of a wireless sensor 

network. The process of sensing is handled by the application itself; TinyOS 1.x applications 

used the ADC and ADCControl interfaces to collect sensor data. In TinyOS 2.0, applications use 

standard data acquisition interfaces Read, ReadStream or Read Now for collecting sensor data. 

Components written in nesC (like ConstantSensorC – which just returns a constant value as a 

reading) are responsible for providing those interfaces and feeding the sensors with data. 

SIMX    

SimX is an integrated simulation and evaluation environment. It is built upon TOSSIM and 

provides a set of visualized network manipulation and evaluation tools, such as topology 

manipulation, timing control, variable watch and conditional breakpoints and sensor data input. 

SimX allows user to simulate a sensor‟s data input by various sources, like a local file or math 

functions. Moreover, it can also simulate different sampling rates in different nodes.  

NS-2 

NS-2 is a discrete event simulator developed in C++. In NS-2 a network is consisted of sensor 

nodes which are connected with a data channel for communication with other network stations 

and with a phenomenon channel for detecting some physical phenomenon. Once a sensor detects 
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a “ping” of a phenomenon in the phenomenon channel, it acts according to the sensor application 

defined by the NS-2 user. This application defines how a sensor will react once it detects its 

target phenomenon.  

The presence of phenomena in NS-2 is modeled with broadcast packets which are transmitted 

from the phenomenon nodes through the phenomenon channel. There are specific phenomenon 

node types that user can use: carbon monoxide, heavy seismic activity, light seismic activity, 

audible sound and some generic phenomenon. 

SENS 

Sens is a discrete event simulator implemented in C++. SENS utilizes a simplified sensor model 

with three layers (application, network and physical) plus an additional combined environment 

and radio layer. NesC code can be used directly on it. 

Sens claims that it provides a mechanism for modeling physical environments but in terms of 

wave propagation. An environment is simulated as a 2-dimensional grid of interchangeable 

square tiles. This generally models sensors on the ground outdoors. Tiles use experimentally 

measured parameters for how radio and sound waves propagate. Sens provides tiles to simulate 

grass, concrete sidewalks and walls. 

Castalia 

 Castalia is a simulator for Wireless Sensor Networks (WSN), Body Area Networks (BAN) and 

generally networks of low-power embedded devices. It is based on the OMNET++ platform and 

can be used by researchers and developers who want to test their distributed algorithms and/or 

protocols in realistic wireless channel and radio models, with a realistic node behavior especially 

relating to access of the radio. 

Castalia offers a generic physical process model to feed the sensing devices of the nodes with 

data. The model is based on an arbitrary number of point sources whose “influence” is diffused 

over space. The equation that determines the value of the physical process at a certain location 

and at a certain time is: 

𝑉 𝑝, 𝑡 =   
𝑉𝑖 𝑡 

 𝐾 ∗ 𝑑𝑖 𝑝, 𝑡 + 1 𝑎
𝑎𝑙𝑙  𝑠𝑜𝑢𝑟𝑐𝑒𝑠  𝑖

+  𝑁(0, 𝜎) 
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Where: V(p,t) denotes the value of the physical process at point p, at time t 

Vi(t) denotes the value of the i
th

 source at time t 

di(p,t) denotes the distance of point p from the i
th

 source at time t 

K,a are parameters that determine how is the value from a source diffused 

N(0,σ) is a zero-mean Gaussian random variable with standard deviation σ 

 

From the survey done, it is concluded that, to our knowledge, no other simulator supports a full 

environment model simulation feature like the simulator of DPCM platform does with the 

VectorL feature. 

2.2 Wireless System Networks testing 

 

Despite simulators‟ usefulness, fidelity of a simulation cannot always match the physical 

devices. To increase simulation fidelity, hardware in the loop simulators execute some of the 

functions on real sensor nodes. A popular approach to achieve high fidelity in experiments is to 

use a sensor testbed. Apart from prior to deployment testing, in-field testing of nodes after 

deployment is crucial in order to maintain a reliable network. In this chapter we will investigate 

what practices are followed regarding sensor readings during a wireless sensor network testing 

phase. 

In (Beutel, Plessl, & Wohrle, Mar.2007) a wsn application test framework was presented. This 

framework aimed at a test approach that would allow the same test cases to be used in 

simulation, on the testbed and in real-world. In this framework, a test driver implements the 

inputs, so called stimuli that are applied to the software under test during the execution of the 

test. Each stimulus is characterized by its value (or type) and the time when it is applied to the 

software under test (SUT). The sequence of stimuli generated by the test driver can be arbitrarily 

complex. Static drivers apply a single event to SUT or stimulate the application with a 

predefined sequence of events. 

In (Clouser, Thomas, & Nesterenko, 2007) Emuli is described – a method meant to increase the 

capability of sensor testbeds and other deployments to experiment with environment sensing and 

monitoring. Emuli emulates sensor stimuli of sensors using pre-loaded data to the mote before 
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the experiment. For example, for light sensor emulation, a simple light-sensor data collection 

application was created and used to collect light sensor data. On the basis of the experimental 

data readings, a model (personality) was created for each mote. The probability that Emuli 

reports a certain value x was made proportional to the number of times x was reported in the 

actual experiment. Then, for each individual mote the light sensor component was replaced with 

an Emuli component configured with a unique personality and run experiments on this model.    

In (Jia, Krogh, & Wong, 2005) TOSHILT is described, a tool that allows the application to 

replay previously recorded or synthetic sensor readings. The readings are loaded in advance and 

stored in sensor node‟s EEPROM memory. This approach, is enhanced in (Luo, He, Zhou, Gu, 

Abdelzaher, & Stakovic, 2006) by allowing the program using annotations inside his code, to 

specify which particular data points need to be recorded and then replayed. 

Based on the existing work it is obvious that VectorL introduces a new way for wsn testing, by 

providing a way to fully simulate sensing process, inside the mote.  
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Chapter 3 WSN-DPCM Network Simulation Overview 
 

3.1 Network Simulation in WSN-DPCM 
 

VectorL language was developed as a part of the NetSim (Network Simulation) system, 

component of the WSN-DPCM Development Tool, used to execute network simulations. A 

network simulation is an event-driven simulation of the whole WSN application, whose purpose 

is to help the developer examine the behavior of the application as a whole, both in terms of the 

hardware and software as well as in terms of the response of the application under different 

conditions. 

In order to execute a network simulation, the NetSim system requires from user to define a 

Network Simulation Descriptor (NSD). An NSD is a file into which all aspects that determine a 

network simulation are defined; these aspects can be categorized to the following groups: 

 Network description. This is the most crucial part of the simulation as here resides 

the description of the network to be simulated. This description consists of 

information such as sensor network topology, the types of sensor and gateways nodes 

and the application being run. 

 Hardware in the loop simulation. In this part of the NSD user specifies whether he 

wishes to perform hardware in the loop simulation (HIL), and if so, he provides the 

NSD with the identities of the hardware nodes, in order to coordinate the hardware 

and the software simulations. 

 Simulation Parameters. In this part of the NSD parameters regarding simulation 

process (e.g. maximum simulation time) are adjusted. 

 Environment Simulation. This is where VectorL comes into play. In this part of the 

NSD user can specify a simulation of the environment in the VectorL language. This 

environment simulation will produce values that will feed the sensors and gateways 

during the simulation process. 

 Data analysis and visualization. In this part of the NSD user specifies the ways he 

wishes to visualize the output of the simulation. The NSD contains a set of definitions 
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for simple analytic operations, such as filtering, aggregation and transformation. The 

original data and the data that were produced from these analytic operations can be 

plotted and visualized in different ways. 

In order to ease user during the NSD creation and maintenance phases, a graphical user interface 

which provides an NSD Editor was developed.  

3.2 The NSD Editor  
 

The NSD Editor is an online tool meant to aid DPCM platform users define, access and 

manipulate NSD files. In this editor there is a place for each one of the five parts of an NSD file 

mentioned above where user can easily provide the information needed. 

In this chapter, NSD Editor graphic user interface is presented. 

Defining a Network Simulation Descriptor 

 

In the NSD Editor, user can easily create a new Network Simulation Descriptor by providing a 

name for it and by specifying the project under which this NSD file will be created. WSN-

DPCM projects are created in the Planning Tool of the DPCM platform and NSD Editor fetches 

them through DPCM Project Repository. 

 

FIGURE 2 CREATING NEW NSD FOR MADRID-UPM PARKING PROJECT 
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So, let‟s say we want to create a simulation for the project Madrid-UPM parking. Actually, this 

project is a demonstrator application which is built using exclusively the DPCM platform. This 

WSN application will be an outdoor parking where a WSN will detect free parking slots in the 

parking area and guide drivers to reach them, park their car and enter automatically in a system 

all relevant information. 

Once user has successfully created a Network Simulator Descriptor, the NSD is immediately 

opened for further processing. User can see now the five above mentioned categories that need to 

be filled in order to define completely and correctly a network simulation. We will examine 

those sections one by one, starting from the Network section. 

 

FIGURE 3 THE FIVE CATEGORIES THAT FORM A NSD 

 

The Network section 

 

As already mentioned, this is the most crucial part of the NSD file. In order to define a 

simulation for a Wireless Sensor Network it is obvious that we have to specify the network itself, 

such as what types of sensor and gateways nodes are going to be used, the topology of the 

network, the application being run, etc. 

User has already specified this information during planning phase and using the Planning Tool. 

The DPCM Planning tool produces a file that contains the types and locations of the sensor and 
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gateway nodes to be used as well as any results of previous Radio Frequency (RF) and Topology 

simulations. So all user has to do at this step is to provide to the NSD Editor the plan that 

contains the above data. The NSD Editor provides a list of the different plans that were created 

under the Madrid-UPM parking project, so all user has to do in this step is to select the plan he 

wishes to be used in this simulation. 

 

FIGURE 4 SELECTING PLAN FOR THE SIMULATION 

 

Once a plan is selected in the Network section, user is able to see the information contained in 

this file, in JSON format. This capability is very important, as it can help user through making 

choices in the next sections (for example user has access to node specifications so he can easily 

choose which nodes are going to participate in Hardware in the Loop simulation).  

The application to be simulated is created during the coding phase, using the Development Tool 

and is specified to the network simulator directly, not to an NSD file through the NSD Editor.  
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FIGURE 5 SELECTED PLAN DETAILS 

 

The Hardware in the Loop (HIL) section 

 

Hardware-in-the-loop (HIL) simulation is a technique that is used in the development and test of 

complex real-time embedded systems. During HIL simulation a mixture of live and simulated 

network nodes are operating in real time in order to produce highly accurate test data, providing 

the ability to scale the network size. This approach enables user to test the under development 

WSN application on real hardware without having to fully live field test the application which is 

impractical. 

DPCM platform supports HIL simulation and user can specify whether he wishes to enable this 

feature in the HIL section of the NSD Editor.  
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FIGURE 6 ENABLING HIL SIMULATION 

In case user wishes to perform HIL simulation, the NSD must contain the identities of the 

hardware nodes that will participate to the simulation, in order to coordinate the hardware and 

the software simulations. NSD Editor takes the list of the node ids that participate to the selected 

plan and provides them to the user for selection. User can check his selected plan data in the 

Network section in order to choose the right node ids that will participate to HIL simulation.  

 

FIGURE 7 SELECTING NODES TO PARTICIPATE IN HIL SIMULATION 
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The Parameters section 

 

In this section of the NSD file user can provide values for parameters related to the simulation 

process. Currently, the parameters taken into account in netSim system are the simulation time 

limit, the simulation time scale and the cpu time limit. 

 

FIGURE 8 ADJUSTING SIMULATION PARAMETERS 

 

The Environment section 

  

In a network application, the correct execution of a WSN application is monitored and the 

validity of the simulation results depend heavily on how much accurate the sensed data are. In 

order to produce realistic sensor readings, the physical environment needs to be, as much 

possible, accurately modeled and simulated. 

So in this section user can choose the model to be used for the environment simulation. 

Environment simulation will feed the sensor nodes with realistic values, fact that will lead to the 

production of more interesting and accurate results. 
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The user can choose, either a default module implementation from Castalia library, or to write 

his own models using VectorL domain specific language. NSD Editor provides a separate 

graphic user interface for VectorL module editing, as VectorL modules are created separately 

from NSD files and can be attached to them at a later time. This graphic user interface, called 

VectorL Editor will be presented in a following section, while VectorL syntax and language 

characteristics will follow on the next chapter. 

 

FIGURE 9 SELECTING ENVIRONMENT MODEL 

 

Once user has selected an environment model written in VectorL, this model gets instantly 

validated (compiled). If the compilation of the VectorL code fails, user gets notified and a link is 

provided to him that opens VectorL Editor and the corresponding model for further processing. 

If VectorL code is compiled successfully, user is now able to map the sensors used in the 

application to the VectorL variables that will feed them.  

For example, in our parking application motes will contain, among others, proximity sensors that 

can tell whether a parking spot is free or occupied. So user has to specify the array from his 

VectorL code that will hold the values produced by the environment simulation and that will 
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represent each proximity sensor‟s value. This array in our example is the `spotTaken` array 

which actually keeps the state of each parking spot over time.  

 

FIGURE 10 MAPPING SENSORS TO VECTORL VARIABLES 

The Output section 

 

In this section of the NSD Editor, the user can specify the processing that he wishes to be made 

over the data produced by the simulation, as well as define custom ways to visualize these data. 

Specifically, through the NSD Editor the user can create views and plots which will generate 

statistics and graphs, accordingly, after the simulation is finished. 

Views can be thought of as two dimensional tables where each row represents a single value of a 

statistic. There is a predefined view called `dataTable` which represents the initial data produced 

from the simulation. This view cannot be altered or deleted but can be used as a base for defining 

other views or plots. DataTable view is consisted of the following columns: 

 Node: the id of the corresponding node 

 Name: the name of the statistic 

 Module: the name of the module that this statistic belongs to 

 Label: the name of a statistic that is dependent on “name” 
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 N_index: the id of the node that this statistic is originating from (eg. node 2 sends a 

packet to node 5 so node 5 will receive a packet with n_index 2) 

 Data: the actual value of the statistic. 

 

FIGURE 11 OUTPUT SECTION 

The user can further process (aggregate, filter, etc.) the original simulation data by creating new 

views. For example, let‟s say that there is a statistic with the name `ConsumedEnergy` produced 

by the simulation, whose value denotes the energy consumed by each node during the simulation 

process, and that the user wants to calculate the total energy consumed by all nodes during the 

simulation. 

All the user has to do, is to create a new view and firstly specify the dataset(s) that this view is 

going to be based on. Here, this dataset is the `dataTable` table. Then, user defines the columns 

that the currently created view is going to have. In our example it will have only one column 

whose data will be given by the aggregate `SUM(dataTable.data)`. Of course we do not want all 

the data rows of `dataTable` to be aggregated, just those that are related to the statistic 

`ConsumedEnergy` so the user has to specify this filtering expression to his view too. In Figure 
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12 creating new views, the final state of the newly created view with the name `TotalEnergy` is 

depicted. 

 

FIGURE 12 CREATING NEW VIEWS 

Views are closely related to SQL views, actually they are SQL views. The window depicted in 

Figure 12 creating new views is just a nice way to help the user form an SQL view without the 

need of actually knowing anything about SQL. The information the user entered in the view 

`TotalEnergy` will be translated to the following SQL statement: 

CREATE VIEW TotalEnergy AS 

SELECT SUM(dataTable.data) AS data 

FROM dataTable 

WHERE name= “ConsumedEnergy” 

Had the user selected the `Group by` checkbox, a GROUP BY statement would have been added 

for the corresponding column. 

Apart from processing original simulation data, user can define plots using the NSD Editor. 

These plots will produce graphs depicting the selected quantities after the simulation is finished. 

Plots are created in the context of the view they will get their data from. Following our 
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`TotalEnergy` example, once user has successfully created his view, he can now create a new 

plot for this view. 

There are three graph types that can be generated: 

 Plot 

 Node parameter (will generate values for a specific statistic for every node) 

 Network parameter (will generate a statistic that has a network wide meaning) 

 Node2Node parameter 

In our example, we want to create a Network parameter graph, as for the Total Energy statistic 

calculation the whole network participates. 

 

FIGURE 13 CREATING A PLOT 

 

After specifying the graph type, the user can give a title to his plot, choose the y‟ axis data (x‟ 

axis in the case of a network parameter will be all nodes), provide optionally a select statement 

over the selected data and the unit of the statistic. User can select his y‟axis data among the 

columns of the view, in the context of which this plot is created. In our example, there is only 

one column (`data`) specified in `TotalEnergy` view which corresponds to the SUM aggregation 

of `ConsumedEnergy` statistic. 
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The data that are required to be entered are different for each graph type, but this is out of the 

scope of this thesis as this chapter‟s purpose is to give a general impression of how NetSim 

system works, what an NSD is and how it is constructed, rather than to provide a user manual of 

the NSD Editor. 

In Figure 14, the graph produced for the `Total Energy Consumed` plot is depicted. 

 

FIGURE 14 NETWORK PARAMETER GRAPH EXAMPLE 

 

NSD Validation 

 

A network simulation contains a lot of information and depends on a large number of 

parameters. It is not difficult for errors or omissions to enter into the provided data. Although the 

DPCM framework tries its best to assure that such problems do not arise, it is not feasible to 

foresee all the possibilities. 
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Therefore, once a user has edited an NSD to his wishes, he can proceed and check its validity. If 

there are errors in the NSD file user will be notified. If no problems are found by the validator, 

the newly created NSD can be used to run successful simulations.    

 

FIGURE 15 NSD VALIDATION OUTPUT 

 

3.3 The VectorL Editor 
 

The VectorL Editor is a part of the NSD Editor graphic user interface and is used to create 

VectorL modules which will later be attached to NSDs and will provide environment models for 

the network simulations. 

In the NSD Editor, user can easily create a new VectorL module by providing a name for it and 

by specifying the project under which this module will be created. Once user creates a new 

VectorL module, it is immediately opened in the VectorL Editor for further processing. 

Following parking demonstrator application, let‟s create a VectorL module in order to model the 

car parking environment. 
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FIGURE 16 CREATING A NEW VECTORL MODULE 

In the VectorL Editor there is a code editor where user can write his VectorL code. 

 

FIGURE 17 VECTORL EDITOR 

At any time the user can compile his code. Under the hood, the code is lexically and syntactically 

analyzed and checked for errors and, in case everything is correct, various code generators come 

into play. From a single VectorL module will be produced both the C++ code needed by 



 

 

33 

 

OMNET++ to execute the simulation and the nesC (TinyOS) code that will run inside the real 

motes during the testing phase. More technical details will follow on subsequent chapters.  

 

FIGURE 18 COMPILING VECTORL 

 

FIGURE 19 EXECUTING VECTORL 

 

User can also execute his VectorL code for a specific time or for a specific number of steps. Note 

that for this execution no generated code is used. Instead, as soon as the Abstract Syntax Tree is 
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constructed right after the syntactical analysis, the model is compiled (translated) into a simple 

stack machine program and gets executed.  

The standard output produced by a successful execution of the VectorL code is displayed to the 

user. In Figure 19 executing vectorl, the output of a successful execution of the parking model is 

depicted. 

This chapter was an overview of how Network Simulation is treated in the DPCM platform. It 

introduced NSD notion and demonstrated the role that VectorL plays in it. Now, it is time to take 

a thorough look at VectorL language, its syntax and the concepts behind it. 
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Chapter 4 VectorL Language 
 

4.1  Hello VectorL! 
 

Probably the best way to start learning a programming language is by writing a program. And as 

in every other language, let‟s introduce VectorL to the world. 

 

FIGURE 20 HELLO WORLD! 

Each VectorL program consists and is consisted of modules. A module is a collection of import 

statements, which are used to import other modules into the current module so as to add 

functionality to it, and declarations of variables, events, actions and named expressions. 

So, this program consists a module whose name is `hello_world`. This module‟s name was 

declared during module‟s creation in the VectorLEditor. `hello_world` module is consisted of the 

import of `sys` module and the declaration of `Init` action. 

`Init` is a name imported from module `sys` and it is a special event that is declared in `sys` 

module. This special event is emitted at the beginning of the execution of the program. Once an 

event is emitted in VectorL, the declared actions that handle this event are called. We can see 

such an action declaration in line 3 of our program. `on Init` is an action, an event handler for the 

special event `Init`. 

So, `Init` event will be emitted (triggered) at the beginning of the execution of the program and 

its event handler (aka action - from now on, terms `action` and `event handler` will be used 

interchangeably) will be executed. This is a quite simple event handler that just prints the `Hello, 
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World! This is VectorL!` message to the standard output file. We can see the output of the 

execution of this program in the right side of Figure 20. Once action `on Init` prints the greeting, 

it finishes its execution. As long as there are no more events to process, the program‟s execution 

will end too. 

That was a quite simple example, which introduced the notions of module, module import and 

action. Yet, we have not seen anything about how we declare events and how they are emitted in 

VectorL. Let‟s say that we want to observe the world for a while first, for like 3 seconds, and 

then say hello to it. Figure 21 shows how we will accomplish this. 

 

FIGURE 21 DECLARING EVENTS 

Let‟s examine our new program. At line 1, import statement was a little bit changed as we do not 

want to import only `Init` event from module `sys` but its whole functionality (in line 6 we use 

built-in function `now` from this module). 

At line 3, we have our first event declaration. We declare an event named `greeting` which takes 

no arguments. At line 5, there is an action declaration. This action will handle `greeting` event 

and will print the time at which the action is executed and then the `Hello, World` message. 

So, till now we have declared one event and the action that will handle it. Now, let‟s see how 

events are emitted. At line 11, we can see how an emit statement looks like. The syntax of the 

emit statement has two parts: the event (and its parameters) to be emitted, which looks like a 

function call but is very different from a function call, and an `after` clause. In the `after` clause 

we specify a delay. This delay is what makes event emission different from function calls.  
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By specifying the delay, we are introducing into our simulation the concept of time. Indeed, 

events are processed in order, based on the time of emission, and the `after` clause specifies that 

the time of emission is 3 time units from now.  

So returning to our program the emit statement at line 11, tells `Init` event handler to emit the 

`greeting` event after 3 seconds (in DPCM simulations time is always measured in seconds). In 

the right half of Figure 21 we can see the output of the execution of this VectorL program. As 

output denotes, 2 events were processed: the Init event at first and the greeting event later. Init 

event handler scheduled greeting event to be emitted after 3 seconds. Once the greeting event 

was emitted at time 3.0 (simulation time), greeting event handler was executed and said `Hello` 

to world. 

As already was mentioned at the introduction of the VectorL language in Chapter 1, there are no 

loops in VectorL. So let‟s write a last simple program that will help us start thinking in the 

VectorL way about writing iterative code. Following our “Hello, world” program, let‟s say that 

we met a few (10) nice people out there and we want to say hello to each one of them. Since 

there are no loops in VectorL how are we going to do this? Hard-coding 10 messages is a viable 

solution but a really bad practice in programming – what if we had met 1000 nice people? In 

Figure 22 we can see how we can iterate in VectorL using events. 

 

FIGURE 22 ITERATIONS IN VECTORL 
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There are not much changed to our new program. The only difference is that greeting event now 

accepts the integer parameter count. In greeting event handler we check this parameter‟s value 

and if it is greater than 0 we print the greeting and emit a new greeting event after 1 second. 

When emitting the first greeting event we initialize count parameter to 10. Every subsequent 

greeting event will be called with count parameter reduced by 1. So in this way the program will 

iteratively print the `Hello` greeting 10 times. 

Once we saw a few examples of programs written in VectorL that demonstrated us the basic 

concepts of VectorL let‟s take a thorough look to VectorL‟s syntax.  

 

4.2 VectorL Syntax 
 

The syntax of the VectorL is described below in EBNF code. Terminal symbols are represented 

in bold. 

Module                  =  ( Import | Declaration) 

A module is the top level block of any program in VectorL language. Each program written in 

VectorL consists a module is consisted of: 

 Import statements that import other modules 

 Declarations 

 

Import                  =  (import  ID) | (from ID import ID {, ID } “;”)  

As we can see, an import statement can be declared in two ways: 

 In the first form import statement imports the module with name ID and allows access to 

its namespace via the dot notation (remember sys.now()) 

 An import of the second form binds the provided names from the selected module into 

current namespace  
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Declaration             =  DefExpr | DefFunc | Event | Variable | Action 

The declarations allowed in the body of a VectorL program, are the following 

 Declarations of named expressions 

 Declarations of full-body named expression 

 Event declarations 

 Variable declarations 

 Action declarations 

 

DefExpr                 =  (const | def) Typename ID “=” Expression “;” 

This is the syntax of a named expression declaration. We can have two types of named 

expressions: 

 Def  named expressions (e.g. def isquare = i*i) which will be handled by the pre-

processor 

 Compile time constants (e.g. const pi = 3.14) 

 

DefFunc                 = def Typename ID (ParamList)  “{” DefExpr* Expression “}”   

This is the syntax of a full-body named expression. These named expressions are defined in a 

block manner and in their body locally defined named expressions are used in computations.  

e.g. def int isquare (int i) { 

    … 

} 

 

Event                   =  event  ID “(” ParamList “)” “;” 

We have already seen in the previous section how an event is declared. Its declaration is 

consisted of the event‟s name and an optional parameter list 

e.g. event greeting(int count); 
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Variable                =  var Typename Id “=” Expression “;”  

This is a simple variable declaration. Each variable has a type, a symbolic name and is assigned a 

value. 

e.g. var int test = 1;  

 

Action                  =  on QualId  Statement  

We have already seen in our example, in the previous section, how actions are declared. They 

must declare the name of the event they handle and a block of statements that will be executed 

after the event‟s emission.  

e.g. on greeting { 

   print(“Hello there!”); 

} 

 

 

Statement               =  ConcatExpression “:=” ConcatExpression “;” 

                               |    print“(” Arguments “)” “;”   

                               |    if “(” Expression “)” Statement { else Statement} 

                               |    “{” (DefExpr | Statement)* “}” 

                               |    emit QualID “(” Arguments “)” after Expression “;” 

From the grammar above we can figure out that the statements supported in VectorL are: 

 Concatenation Expressions  

 Print statements 

 If statements 

 Blocks that contain named expression declarations or other statement declarations 

 Emit statements 

 

QualID                  = { ID “.” } ID 

This rule stands for qualified names. 
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ConcatExpression        =  Expression { “,” Expression }* 

The concatenation expression provides array concatenation. 

 

Expression                   =  UnaryOp Expression 

                                     |   Expression BinaryOp Expression 

                                     |   “[” Expression { , Expression }* “]” 

                                     |   “(” Typename “)” Expression 

                                     |   Expression “?” Expression “:” Expression 

                                     |   QualID “(” Arguments “)” 

                                     |   Expression “[” IndexOp “]” 

                                     |   “(” Concat Expression “)” 

                                     |   Literal 

                      

This is a classic grammar for Expressions. As it can be seen, VectorL expressions are 

syntactically similar to C++ expressions. The above grammar denotes that VectorL supports: 

 Unary operator (single operand) expressions 

 Binary operator expressions  

 Array definition expressions 

 Type cast expressions 

 Ternary operator expressions 

 Full-body named expression call expressions 

 Array indexing expressions 

 Parenthesis 

 Literals 

 

Typename                  =  int | bool | real | time 

The data types that are supported by VectorL are integers, boolean, real and time types. Time is 

just a subtype of the floating-point type real. Note that VectorL does not support string constants. 

String constants can be used only in print statements and nowhere else. 
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ParamList                  =  [ Typename ID { “,” Typename ID }* ] 

This is a typical parameter list grammar. When declaring a parameter list on an event or a full-

body named expression declaration, we have to define each parameter‟s type and name. 

 

Arguments                  =  [ Expression { “,” Expression }* ] 

This is a typical argument list grammar consisted of comma-separated expressions. 

 

4.3 VectorL Semantics 
 

Modules 

 

As already has been mentioned, each VectorL program consists a module (the base module) and 

is consisted of imported modules. Module it is the top level block of each program and is a 

collection of declarations of variables, events, actions and named expressions. User can import 

other modules to his program using the import statement and by doing so he adds the imported 

module‟s functionality to the current module. 

The set of the included modules in a program is defined as the set of modules (transitively) 

imported by the base module (base module is included itself). Cyclical importation (module A 

imports module B while module B imports module A) is not allowed and will cause a compile-

time error. 

The inclusion order is determined by a depth-first traversal of the import graph. The order of 

inclusion is determined according to the following rules: 

 If module A imports module B, then module B is included in the program before module 

A. 

 If some module imports module A and then module B in its text, and including A does 

not cause B to be included, then A will be included before B. 
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In VectorL there is a special built-in module named `sys` which must always be included in any 

program as it contains (among others) the special Init event which actually initializes model‟s 

execution. `Sys` module is always first in the inclusion order. 

 Events and Actions 

 

Simulation process is triggered by events which are emitted uisng the emit statement. An action 

is a statement that is executed when the corresponding event is emitted. Note that the event and 

the action name must be the same and that user cannot declare an action for a non-existent event.  

Any number of actions can be declared for an event and in any module. When an event is 

triggered, all of its actions are executed. The order of execution is fixed and corresponds to the 

import relationship between the modules in which the actions are defined. The rules for the 

action order execution are the following: 

 If two actions are defined in the same module, then they are triggered in the order they 

are defined. 

 If module A is included in the program before module B, then any action defined in A is 

executed before any action defined in B. 

However, practically, it is not a good practice to depend too much on the execution order of 

action. Instead, actions should be logically independent.  

The statement of an action is interpreted inside the scope of the module it is defined in. Though, 

it does not have direct access to any of the declared expressions or variables of its parent module. 

We can pass values to the action‟s statement scope through the parameters of the processed 

event. As a consequence, in case these parameters have the same name with any declarations of 

the parent module, parameters will override them inside action statement‟s scope.  

At this moment it is worth to be mentioned that events are objects that can take only scalar 

parameters. So it is a bad idea to think of events as objects that can carry data to their actions. 

What event parameters should carry is only information about which data to process. 
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Named expressions 

 

Named expressions can be thought of as macros in C/C++. A macro is a fragment of code which 

has been given a name. Whenever the name is used, it is replaced by the contents of the macro. 

Named expressions in VectorL are constructed with the keywords def or const and they declare 

a simple identifier which will be replaced by a code fragment. They are most commonly used to 

give symbolic names to numeric constants. Additionally in VectorL, named expressions can be 

declared in a function-like manner – they can accept arguments and have a full body. Note that 

const keyword can be used only to named expressions that do not have parameters. A const is 

semantically identical to a def; constants will be handled by the compiler during compile-time.  

 

FIGURE 23 NAMED EXPRESSION EXAMPLES 

Expressions 

 

The characteristic of VectorL language is that all its values are array values. Each value has a 

shape which is determined at compile time. Array shape is a sequence of positive integers; its 

length denotes the number of the array dimensions and each tuple‟s value accords to the length 

of the corresponding dimension. Those values whose shape is the empty list are called scalars.  

In VectorL language there are no loops so in order to ease computations, all operators operate 

their operands in a point-wise manner. Two operands need not have identical shape in order for 

an operation between them to make a perfect sense. However, the shapes of the two operands 

have to be conformable. Two shapes are conformable if their first dimensions match, their 

second dimensions match, and so on up to the number of dimensions in the array with the fewer 

dimensions. 
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Two array dimensions match if either of the following is met: 

 The dimensions have the same length 

 One of the dimensions has unit length (1 element) 

Unit length or missing dimensions are broadcast (by copying the single value) to the length of 

the corresponding dimension of the other operand. The result of the operation will have the 

number of dimensions of the higher rank operand, and the length of each dimension is the longer 

of the lengths in the two operands. 

For example, a shape (3,4) is broadcastable with the following shapes: (4), (2, 3, 4), (3, 1), and 

(). Though, it is not broadcastable with the shapes (3), (2, 4) or (4, 3). Scalars are broadcastable 

to any shape. 

In an expression if operands are not of the same shape nor are they broadcastable, a compile 

error will occur. 

The operators supported from VectorL are the standard C/C++ operators except for the following 

three newly introduced array-specific operators:  

Array definition expressions 

 

The expression “[ E1, E2, …, En ]”, where Ei are all broadcastable to shape s, is a new array 

with shape equal to prepending n to s. This operator is the standard array constructor. 

So, for example, [1, 2, 3] is an array of shape (3), while [1, [1, 2], [3, 4]] is an array of shape (3, 

2). 

Array concatenation expressions 

 

The concatenation of n arrays is written as “(E1, E2, …, En)”. The shapes of the operands have 

to be compatible in every dimension except the first. Then, the concatenation operator 

concatenates the operands on the first dimension. 

For example, ([1, 2], [3, 4]) concatenation will result to the array [1, 2, 3, 4], while ([[1, 2], [3, 

4]] , [[5, 6], [7, 8], [9, 10]]) will result in [[1,2], [3, 4], [5,6], [7,8], [9,10]].  
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Array indexing expressions  

 

The indexing operator is a powerful way to both alter the shape of an array and obtain a subset of 

its values. We shall start with a few examples, where we assume that A is a (5, 4) – shaped array. 

A[2]  is a (4)-shaped array containing row 2 of A 

A[4,3]  contains the bottom-right element of array A 

A[0:3, 2] is a (3)-shaped array containing the first 3 elements of the second column 

A[:,:]  is the array A itself 

A[…, _] is a (5,4,1)-shaped array, with contents equal to A 

Formally, x[index1, index2, …, indexN] forms a subarray of the array x. Each index corresponds 

to one dimension of the x array – the only exception is when the index operator is the ellipsis 

“…” which matches a number of dimensions.  

Possibilities of indexI are: 

 i: where i is scalar – this index operator selects the corresponding element of the 

corresponding dimension and deletes the dimension from the result‟s shape. 

 start:end:step : where start, step, end are scalars – this index operator defines a slice of the 

array on the corresponding dimension. The step may be negative but not zero. An omitted 

step defaults to 1. If step is not omitted but start and end are, the start defaults to 0 and 

end to the dimension‟s length if the step is positive. In the same case, if the step is 

negative then start defaults to the dimension‟s length – 1,while the end defaults to -1. So 

in case A is (5)-shaped array: 

o A[::2] is equal to A[0:5:2] 

o A[::-2] is equal to A[4:-1:-2] 

o A[1:3] is equal to A[1:3:1] 

 _: this is the pseudo-index operator which inserts a unit length dimension in the result. 

This dimension was not present in the original array. 

 …: the ellipsis operator forms the rubber-index which matches zero or more dimensions 

of x. This operator is particularly useful when we are indexing arrays whose shape is 

unknown. 
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In some rare cases, the compiler may signal an error to a syntactically legal indexing operator. 

This happens if the compiler cannot infer the size of the indexing expression for some 

dimension. For example, A[i,j] where i and j are variables, is syntactically legal, but the compiler 

cannot infer the shape of the result at compile time. However, A[i: i+4] has a well defined shape 

that the compiler will infer. 

Statements 

 

Emit statement 

 

An emit statement emits a new event, which will be triggered (and as a consequence its actions 

will be executed) with a desired delay, in terms of simulation time. The time specified in the 

after clause of the emit statement is the trigger delay, that is, the delay after which the event will 

be dispatched, and must be a scalar value. 

In case we want the event to be dispatched immediately, zero or a negative value can be 

provided.   

Assignment statements 

 

Assignments in VectorL are similar in concept to assignments in other languages. However, the 

array semantics of VectorL make assignments more powerful. 

As in other imperative programming languages, an assignment statement assigns the value of the 

right hand-operand to the storage location named by the left-hand operand. Therefore, the left-

hand operand of an assignment must be a modifiable l-value (l-value is a value which points to a 

place of storage, potentially allowing new values to be assigned).  

In VectorL, an l-value is defined as follows: 

 A named variable (defined in any module) is an l-value. 

 If A is an l-value and I = [ I1, I2, …, In] is any indexing operator, then the expression A[ 

I1, I2, …, In ] is an l-value. 
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 If A1, A2, …, An are l-values with equal (not just broadcastable) shapes, then the 

concatenation expression (A1, A2, …, An) is an l-value. 

In other words, the left-hand operand of an assignment must not be an array or a named 

expression. 

Of course, the right hide side of an assignment must be of the same (or castable) type and of the 

same (or broadcastable) shape, or a compile-error will occur. 

If statement 

 

The if statement takes a scalar value in the parenthesis and, similar to C or C++ evaluates 

whether it is true or not by comparing in to zero. Each if statement can be optionally followed by 

the else keyword and another statement. This way user can form easily if … else if … else 

statements. 

Print statement 

 

The print statement is used to output information to the “standard output file”. It can accept an 

arbitrary number of operands. Operands can be arrays of any type and shape or they can be string 

literals. 

When we were examining the data types supported by VectorL we noticed that character strings 

were not included in them. String literals may only appear as arguments in print statements. 

Block statement 

 

A block statement is a possibly empty list of statements and named expression declarations. As 

in other programming languages, named expressions defined in a block statement are only valid 

in the scope of the block statement. 
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4.4 Parking environment model full example 
 

Now that we have examined both the syntax and the semantics of VectorL language it is time to 

write an environment model for the parking demonstrator application and simulate its operation. 

To keep things simple we will assume that our parking has only two spots which will be visited 

by a few cars. The expected result of this simulation is to acquire an array that will hold the 

measurements of the two sensor nodes (one for each spot) over time. 

Let‟s start by defining the events that can take place in an application like this one. The events 

that affect our sensor readings are the event of a car entering the parking and the event of a car 

leaving the parking. So, let‟s declare those events and the corresponding actions (event handlers).  

 

FIGURE 24 PARKING EVENTS DECLARATION 

In order to simulate our parking environment we need some input: some cars! For this purpose 

we will define 3 arrays. The size of these arrays will be 4, equal to the number of the cars that we 

want to visit our parking. The first array will provide us with the time of arrival of each car, the 

second with the time of departure of each car, while the last one will hold the number of the 

parking slot occupied by the specified car.  
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FIGURE 25 PARKING INPUT DATA 

In Figure 25 we can see those arrays defined, so now we know that the first car came into the 

parking at time 9, left the parking at time 10.10 and occupied the spot 0, etc. Note that these 

arrays are declared as const named expressions. This tells to the compiler that the corresponding 

names are not variables but constant named expressions. 

Now we have to define the variable that will hold for each sensor its readings at each time. This 

variable will be mapped to a sensor and will feed this sensor with values during the simulation 

(remember The Environment section of NSD Editor in Chapter 3). Back to our example, this 

variable will be a Boolean array of size 2 (one position for each sensor). 

 

FIGURE 26 OUTPUT VARIABLE SPOTTAKEN 

spotTaken[0] and spotTaken[1] are false denoting that spots 0 and 1 are currently not occupied. 

In VectorL, as we already have seen, there is no need to declare the size of the array nor do we 

need to declare that spotTaken is an array type; remember that everything in VectorL is an array.  

So let‟s schedule in Init action our first car arrival! To do this we need to let carIn action know 

which car has arrived. For this purpose we will alter carIn event a little and make it to accept a 

parameter that will correspond to the number of the arrival currently processed (i.e. the index of 
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our input arrays to be processed).  A global variable named `arrival` that will count the processed 

events (car arrivals) so far will help us on this. 

 

FIGURE 27 

In order to schedule our first event we need to change Init action and write an emit event in it 

which will trigger the carIn event when the first car arrives. This delay corresponds to the car 

arrival time minus current simulation time.  

  

FIGURE 28 

As we can see in the output (Figure 28), the carIn event was triggered the expected time of the 

first car‟s arrival.  

But now let‟s complete carIn action‟s functionality. When a car arrives at the parking, we want 

to check to which slot it went, and update the corresponding sensor‟s reading. Also we want to 

schedule this car‟s departure event, as well as the arrival of the next car (if there are more cars to 

arrive). 
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FIGURE 29 COMPLETED CARIN ACTION 

Notice, that in line 13 we added the non-constant named expression `now` which replaces 

`sys.now()` expression  throughout the code. Also, note at line 26 the use of `shapeOf` function. 

This function is a built-in function provided by the `sys` module, which accepts an array and 

returns its shape (the sizes of each dimension). 

To complete our parking model, we need to implement the carOut action. When a car leaves our 

parking we want to check which spot it was parked into and update the corresponding sensor‟s 

reading. 

 

FIGURE 30 COMPLETED CAROUT ACTION 

 

In Figure 31 the output of the parking model code execution is shown, and as we can see all the 

events were executed in the right order. 
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FIGURE 31 PARKING MODEL EXECUTION OUTPUT 
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Chapter 5 Implementation 
 

In this thesis, VectorL domain specific language was developed. The development of a domain 

specific language typically involves the following steps: 

 Analysis 

o Identify the problem domain 

o Gather all relevant knowledge in this domain 

o Design a DSL that concisely describes applications in the domain. 

 Implementation 

o Design and implement a compiler that translates DSL programs into another 

desired programming language. 

 Usage 

o Write DSL programs for all desired applications and compile them. 

In the previous chapters we thoroughly analyzed VectorL‟s significance, its syntax, its semantics 

and demonstrated a few examples of VectorL being used in practice. In this chapter we will 

focus on how VectorL‟s compiler (vlc) was implemented.  

5.1 Compilation process 
 

Conceptually, a compiler operates in phases, each of which transforms the source program from 

one representation to another. 

The lexical analysis is the first phase of a compiler. Its main task is to read input characters and 

produce as output a sequence of tokens that the parser uses for the next phase, the syntax 

analysis. 

Every programming language has rules that prescribe the syntactic structure of well-formed 

programs. We examined VectorL‟s syntactic rules in section 4.2. During syntax analysis (or 

parsing) phase the tokens of the source program that were produced from the lexical analysis are 

grouped into grammatical phrases. Those grammatical phrases formulate the syntax tree or the 
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abstract syntax tree (AST) which is a tree representation of the syntactic structure of the source 

code. Each node of the tree denotes a construct occurring in the source code. 

After the construction of the AST, semantic analysis is performed. During this phase the 

compiler adds semantic information to the parse tree and performs semantic checks, such as type 

checking, rejecting incorrect programs or issuing warnings. 

The last phase of the compilation process is that of code generation during which the above 

intermediate representation of the source code is converted to into a form that can be readily 

executed by a machine. 

 

FIGURE 32 COMPILATION PROCESS 
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5.2 VectorL Lexical, Syntactic and Semantic Analysis 
 

For the lexical and syntactic analysis of VectorL PLY library was used. PLY is a Python 

implementation of the popular compiler construction tools lex and yacc. 

In order the lexical analysis to be performed, lex‟s lexer must be provided a list of tokens that 

defines all of the possible token names that can be produced by the lexer. These tokens are 

described using regular expressions.   

So during the lexical analysis, lex initially tokenizes the source code. So, for example the 

following input string: x = 3 + 43 will be splitted into the following individual tokens: „x‟, „=‟, 

„3‟, „+‟, „43‟. Next, lex tries to match those tokens to the regular expression rules we defined so 

that it can give meaningful names to them. So, the result we be „ID‟, „EQUALS‟, „INTEGER‟, 

„PLUS‟, „INTEGER‟. 

 

FIGURE 33 LEXER RULES EXAMPLE 

 

Next, yacc parser comes into play. Yacc parser accepts lexer‟s output and a set of grammar rules 

along with actions which denote what is needed to be done if a particular grammar rule is 

recognized. Yacc uses LR-parsing which is a bottom up technique that tries to recognize the 

right-hand-side of various grammar rules. Whenever a valid right-hand-side is found in the input, 
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the appropriate action code is triggered and the grammar symbols are replaced by the grammar 

symbol on the left-hand-side. 

 

FIGURE 34 GRAMMAR RULES AND ACTIONS EXAMPLES 

Yacc parser returns a list of Abstract Syntax Tree (AST) nodes which contain the clauses that 

were found during parsing. By default, yacc parser does not return an AST, this is something we 

formulated through rule‟s actions. To better understand yacc‟s output, let‟s see it in practice.  

If we parse the simple const declaration const int generation = 10; the following AST 

will be produced: AstNode('const', 'generation', 'int', AstNode('literal', 

10):1):1 which means that we have a root syntax tree node which is a declaration (AST top-

level node will always be either import statements or declarations) whose type is „const‟, its 

VectorL data type is int, its name is „generation‟, we meet it at line 1 and its value is given from 

another AstNode. 

Once the syntactic analysis is completed, semantic analysis is initiated. The produced AST is 

parsed in a depth-first manner. For each AST node an equivalent Python object (model) is 

constructed which contains all the information that will be needed for the program to be executed 

and by the code generators in order to produce target code. During AST to Model transformation 

semantic checks, such as type checks, array dimension conformability checks, same variable 

declaration in a single scope checks, take place. If those semantic checks fail, then the 

compilation process is terminated and informative messages about these failures are returned. 
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5.3 Code generation 
 

Once the VectorL code is validated and its Model representation is ready, the compiler may 

proceed to code generation. One model can be translated to several target languages, for each 

one of which we need to have the corresponding code generator implemented.  

VectorL can generate both C++ and nesC code. C++ code will be used in OMNET++ 

simulations using Castalia WSN simulator, while nesC code can be used for both simulations 

using TinyOS‟s simulator TOSSIM (or any other simulator that can simulate TinyOS 

applications) and for running into the motes during field testing. 

C++ and nesC differ as languages but the code produced by VectorL compiler is very similar for 

both of them. The idea is that each module that participates in a VectorL model is represented by 

a struct both in C++ and nesC.  This struct‟s members are the variables declared on the 

corresponding module. The actions of a module are declared as functions inside the 

corresponding struct. But let‟s make it more clear with an example.  

Let‟s say that we have a program in VectorL called Rabbits which calculates Fibonacci numbers:  

 

FIGURE 35 RABBITS PROGRAM 

This program‟s representation in both languages will look like the following code: 
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FIGURE 36 RABBITS GENERATED CODE 

Figure 37 explains how this code can be used inside a TinyOS application, in order to feed a 

node with measurements (this sensor will count rabbits!) during field testing. 

 

FIGURE 37 TINYOS EXAMPLE 
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5.4 VectorL Interpreter 
 

As already has been mentioned, when user chooses to run the VectorL code he wrote in VectorL 

Editor, the output he sees is not the output of a real simulation. His VectorL code is not yet 

translated to C++ or nesC so no simulator (Castalia/Tossim) is used for its execution. 

In order to facilitate user check his program correct execution prior to simulation phase, an 

interpreter was developed for VectorL. This interpreter accepts the intermediate Model that was 

constructed by the compiler, compiles it into a stack machine program. 

That program will be later loaded and executed by the implemented stack machine. The stack 

machine holds an operation and a data stack, as well as an event queue. The event queue is a 

priority queue where priority is the time at which an event must be executed. 

First, `sys.Init` event is emitted and added in the event queue. From that point, the stack machine 

starts to iterate over the queue and to process the events in it. When an event is processed its 

event handler‟s program instructions are loaded on the operation stack and the stack machine 

starts to execute them. Any program instructions that correspond to emit statements will add 

events to the event queue and they will be processed when they become the top events in the 

priority queue, the stack machine will execute their handler‟s code and so on. 

5.5 Executing VectorL compiler 
 

VectorL‟s compiler vlc can be used, of course, standalone, outside of DPCM platform‟s context. 

User can compile any VectorL program by using ./vlc [options] src command where 

src is the file path of VectorL‟s source code. The valid options supported by vlc compiler are 

the following: 

--path / -p 
With this option user can provide a list of directories separated by “:”. Compiler will 

search in these directories for VectorL files.  

--until / -u Provide the simulation time at which the simulation will end. The default is „no limit‟ 
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--steps / -s 
Provide the maximum number of steps (events) to be processed during simulation. 

The default is „no limit‟. 

--compile / -c Only compile the given file, do not run it. 

--gen /-g 
Provide the generator to be used. Compiler will generate code from VectorL model, 

but it will not run it. 
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Chapter 6 Conclusion 
 

6.1 Results 
 

In this thesis, VectorL was introduced, a Domain Specific Language that provides a way to 

easily and safely model physical processes for WSN applications. Environment modeling is of 

crucial importance during a WSN‟s simulation as it contributes to the production of more 

realistic and accurate simulation results. Despite its significance, physical process modeling is 

neglected by other WSN simulators.  

VectorL design choices, such as avoiding looping constructs and data types that are not needed 

for simulation, make VectorL programs much easier to debug and execute safely inside a 

simulation. 

After the specification of VectorL‟s syntax and semantics, a compiler was developed that 

validates and translates VectorL programs into Models which will consist later the input of the 

code generators. Two code generators were implemented for VectorL: the first one generates 

C++ code to be used for network simulations by the Castalia simulator and the second one 

generates NesC code which can be used for network simulations using TOSSIM and for running 

inside the motes during field testing (in case of course TinyOS platform is used for the 

application‟s development).  

6.2 Future work 
 

There are several extensions that can be applied to the existing work that will raise VectorL‟s 

effectiveness. On the one hand, more code generators can be written in order to support more 

simulators (other than Castalia) and other platforms (other than TinyOS). 

One the other hand, in the case of field testing, where the VectorL code runs inside the motes, it 

would be extremely effective if each mote contained only the code fragments and values that 

contribute to its own sensor reading production. For example, let‟s say that we execute a VectorL 

program and the sensor readings produced are stored in array A of shape (5). A[0] contains the 
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reading of node 0 at that time, A[1] contains the reading of node 1 at that time and so on. And 

let‟s say that this array was constructed by the point-wise addition of arrays B[5] and C[5] (this 

is a quite simple example). Wouldn‟t it be extremely effective if during field testing each node 

contained only the data from B and C that contribute to the production of its own reading? So in 

case of mote 0, instead of having a program that defines two arrays B and C of shape (5), adds 

them and returns an array A from which node 0 will use only A[0] value, to have a program that 

defines two arrays B and C of shape () (scalars) and produce only the reading for the specific 

sensor. In such a scenario, a lot of memory usage would have been saved which is extremely 

critical when we are talking about wireless sensor networks. 
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