
 

 

 

Employing Binocular Eye Tracking for the Control of a 

Custom-made Immersive Multimedia User Interface 

(MUI) in Unity3D. 

 

 

 

Nikolaos Sidorakis 

 

 

 

 

 

 

 

 

  

 

 

Thesis submitted for the degree of 
Bachelor of Science in Electronic and Computer Engineering 

 
Department of Electronic and Computer Engineering 

Laboratory of Distributed Multimedia Information Systems and Applications - MUSIC 
Technical University of Crete, Greece 

CHANIA 2015 



Acknowledgments 

   2 
 

Acknowledgments 
 

Θα ήθελα να εκφράσω τις ιδιαίτερες ευχαριστίες μου στην επιβλέπουσα καθηγήτρια μου κ. 

Μανιά Αικατερίνη που με εμπιστεύτηκε και μου έδωσε την ευκαιρία να ασχοληθώ με το 

συγκεκριμένο θέμα και υλικό. 

Ένα τεράστιο ευχαριστώ στον Γιώργο Κουλίερη για την αμέριστη υπομονή και βοήθεια από 

μεριάς. Αναπολώ τις στιγμές που περάσαμε στο γραφείο από νωρίς το πρωί μέχρι και τα 

ξημερώματα για να προλάβουμε deadlines. Ο καλύτερος συνάδελφος, συνεργάτης και 

φίλος. 

Επίσης θα ήθελα να ευχαριστήσω τους καθηγητές κ. Χριστοδουλάκη Σταύρο και κ. Μπάλα 

Κωνσταντίνο, για το χρόνο που θα αφιερώσουν στην ανάγνωση του κειμένου. Θα ήθελα να 

ευχαριστήσω επίσης όλους όσους συμμετείχαν στην διαδικασία των πειραμάτων τόσο των 

τελικών αλλά και κυρίως των αρχικών που βοήθησαν με παρατηρήσεις και αξιολογήσεις για 

την βελτίωση της διεπαφής. 

Ένα μεγάλο ευχαριστώ στην οικογένεια μου για την αμέριστη και απόλυτη υποστήριξη που 

μου παρείχε και συνεχίζει να μου παρέχει καθώς και στους ανθρώπους εκείνους που νιώθω 

κοντά μου, για την κατανόηση, αγάπη, υπομονή και έμπνευση που μου δίνουν τόσο στις 

καλές όσο και στις δύσκολες στιγμές. Ευχαριστώ τους Θανάση, Χρόνη, Μητσάρα, 

Μανωλάκη, Βασιλάκη, Βουτσάκο, Στελάκη, Πιαλόγλου, Στέλιο, Γιάννη, Φαίη και Τιφανούλα, 

και όλους όσους ήταν δίπλα μου! 

  



Abstract 

   3 
 

Abstract 
 

In this thesis, we present an innovative approach to design a gaze controlled Multimedia 

User Interface for modern, immersive headsets. The wide-spread availability of consumer 

grade Virtual Reality Head Mounted Displays such as the Oculus RiftTM transformed VR to a 

commodity available for everyday use. However, Virtual Environments require new 

paradigms of User Interfaces, since standard 2D interfaces are designed to be viewed from a 

static vantage point only, e.g. the computer screen. Additionally, traditional input methods 

such as the keyboard and mouse are hard to manipulate when the user wears a Head 

Mounted Display. We present a 3D Multimedia User Interface based on eye-tracking and 

develop six applications which cover commonly operated actions of everyday computing 

such as mail composing and multimedia viewing. We perform a user study to evaluate our 

system by acquiring both quantitative and qualitative data. The study indicated that users 

make less type errors while operating the eye-controlled interface compared to using the 

standard keyboard during immersive viewing. Subjects stated that they enjoyed the eye-

tracking 3D interface more than the keyboard/mouse combination.  
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Chapter 1 – Introduction 
 

1.1 Purpose 
 

Virtual Reality (VR) is soon to become ubiquitous. The widespread availability of consumer 

grade VR Head Mounted Displays (HMDs) such as the Oculus RiftTM [8] transformed VR to a 

commodity available for everyday use. VR applications are now abundantly designed for 

recreation, work and communication. VR has a wide range of applications which range from 

gaming and entertainment through to medicine, engineering, military training, scientific 

visualization and business. But as with any new technology there are issues degrading the 

usability of this system. Interacting with VR setups requires new paradigms of User 

Interfaces (UIs), since traditional 2D UIs are designed to be viewed from a static vantage 

point only, e.g. the computer screen [2]. However, user interaction in a 3D spatial context 

introduces constraints due to the multiple degrees of motion freedom, requiring novel 

interaction metaphors such as “fly” and “zoom”. These metaphors are not applicable in a 

standard 2D interface [1, 2]. Adding to this, traditional input methods such as a keyboard 

and mouse are hard to manipulate when the user wears a HMD. Using a keyboard and a 

mouse while immersed in a VR HMD is an erroneous extension of the desktop paradigm to 

VR, constituting a fundamental challenge that needs to be addressed [2].  

There have been attempts of employing eye-tracking methods as an input device to interact 

with a Virtual Environment (VE). Eye trackers have existed for a number of years, but their 

use has largely been confined to laboratory experiments. The equipment is gradually 

becoming sufficiently robust and inexpensive to consider use in real user-computer 

interfaces. Recently, various companies (e.g. SensoMotoric InstrumentsTM, [10]) announced 

an eye-tracking add-on to the Oculus Rift Development Kit 2 (DK2) HMD. What is now 

needed is research in appropriate interaction techniques, in our incorporate eye movements 

into the user-computer dialogue in a convenient and natural way. It has been used in the 

past as an input device to interact with a 2D UI [2, 5, 12], but never for an immersive 3D UI. 

By moving their eyes, users can manipulate an onscreen cursor to point virtual items on the 

interface and then activate them via prolonged fixations or blinking. Previous research 

investigated eye-tracker based interfaces for disabled users [4, 5, 12]. Physically disabled 

users can benefit the most from VR technology since they usually greatly depend on 

computer aid for recreation or basic communication. In this sense, VR can be viewed as a 

form of HCI in which information flows and interacts between the user and the technology. 

The simplest solution would be to substitute an eye tracker directly for a mouse. In simple 

words, install an eye tracker and use its x, y output stream in place of that of the mouse. 

Changes in the user’s line of gaze, where he “looks”, would directly cause the mouse cursor 

to move.  
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In this thesis, we present an innovative approach to design an immersive gaze-controlled 

Multimedia User Interface (MUI) [11] for an eye-tracked headset. We focused on a 

Multimedia Interface and not a simple UI since we anticipate that VR will allow users to 

experience VR in everyday environments such as their own home or office. Multimedia 

applications such as mail composing, picture viewing and gaming that are very coming 

during everyday usage. Thus, the presented interface covers five commonly daily operated 

actions; picture viewing, listening to music, mail composing, text editing and gaming; a tiles 

game and a 3D rendition of the classic flappy bird game [3]. 

 

1.2 Thesis Structure 
 

This thesis is organized to provide a continual narrative to be followed. There are seven 

chapters that are set out as follows. 

After this Introduction, the 2nd Chapter acts as a prologue and introduces the reader to the 

fields that this thesis is seated and relevant. Fields like VE’s, the human eye’s anatomy and 

eye/head-tracking. 

The 3rd Chapter introduces the software, API’s and Tools, used to for the implementation 

and design of the Gaze Controlled Multimedia User Interface (MUI). Those are the Eye-

Tracking and Head-Tracking Software and the game engine Unity3D. 

In the 4th and 5th Chapter the implementation of the Multimedia User Interface (MUI) as 

presented to the users wearing the HMD is described. The steps taken to create the 3D 

scenes, and in general all the adjustments that where made within Unity and the API’s and 

tools which were used, are presented. Also, all technical issues that occurred are explained 

as well as decisions taken to address them. Some basic examples and code sources are 

demonstrated. 

The 6th Chapter describes the tests that were made in order to check the accuracy and the 

results of the project. Explains what changes and adjustments were made after tests with 

users; changes in code, parameters, data, MUI components and design. 

The 7th Chapter draws the conclusions from the work done for this thesis as also some 

comments of potential future work and the 8th Chapter is the Bibliography. 
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Chapter 2 – Background 
 

2.1 Human Computer Interaction  
  

Human Computer Interaction (HCI) involves the study, planning and design of the interfaces 

between a user or people and computers or electronic devices. It is a discipline concerned 

with the design, evaluation and implementation of interactive computing systems for human 

use and with the study of phenomena surrounding them. The study of HCI focus on creating 

systems that minimize the barrier between the human’s mental model of what we want to 

accomplish and the computer’s support of the user’s task. HCI is becoming more important 

everyday as computer systems become more integrated into everyday life. It is often an 

underestimated aspect of programing or system architecture that can have significant 

impact on how a system is used by the majority of users.  

 

Figure 1: Human Computer Interaction was not considered 

 

2.2 Virtual Reality 
 

VR is a computer-generated simulation of an environment that is interacted with a physical 

or seemingly real way by a person using special electronic equipment. Equipment such as a 

helmet with a screen inside or gloves fitted with sensors allow that person to become part of 

this virtual world and whilst there allow him to manipulate objects or perform series of 

actions. The concepts behind VR are based upon theories about a long held human desire to 

escape the boundaries of the ‘real world’ by embracing cyberspace. Once there we can 

interact with this VE in a more naturalistic manner which will generate new forms of HCI. 

VR allows one to get full blast of information to the senses and hence can allow us to enjoy 

the world and satiate our senses at a fraction of the cost in terms of energy and resources. 

Most current VR environments are primarily empirical experiences, displayed either on a 

computer screen or with special stereoscopic displays, and some regulated simulations 

include additional sensory information and emphasize real sound through speakers or 
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headphones targeted towards witnesses. Many newer environments include touch or force 

feedback through a haptic device such as a ‘data glove’ which further enhances the 

experience. 

VR allows someone to walk around a three-dimensional building, perform a virtual 

operation, play a multi-user game, take part in a theatre of war, interact with an artwork 

and much more! Plus the fact that they can do this in a 3D environment means that they 

replicate an experience similar to that in the real world but without many of the dangers and 

is much more preferable to trying to simulate these experiences in a two-dimensional 

setting, e.g. a computer desktop. 

Virtual interfaces and the information environments they produce provide new alternatives 

for communicating information to users and considered to have beneficial impact in the field 

of medicine, for example surgery simulations or in dentistry, but also in education, sports, 

gaming, architecture and the military.  

 

Figure 2: Real Image Display vs. Virtual Image Display 

A virtual display leads to a different visual experience than viewing an image using a 

standard computer monitor. Instead of viewing directly one physical display screen, it is 

projected into the eyes by optical lenses and mirrors (HMD) so that the original image 

appears to be a large picture or full scale three-dimensional scene suspended in the world 

[7]. The aim is to move beyond standard forms of interaction such as the keyboard and 

mouse which most people work with on a daily basis. This is seen as an unnatural way of 

working which forces people to adapt to the demands of the technology rather than the 

other way around. But a VE does the opposite. It allows someone to fully immerse 

themselves in a highly visual world which they explore by means of their senses. This natural 

form of interaction within this world often results in new forms of communication and 

understanding. 

 

 



Chapter 2 – Background 

   14 
 

2.3 Virtual Reality Systems 
 

The systems used to present and interact with a VE can vary widely. The system hardware 

often consists of a number of input devices and one or more displays, along with the central 

processing units.  

There are many different types of VR systems but they all share the same characteristics, 

such as the ability to allow the person to view three-dimensional image. However the main 

concern regards the VE’s content and form. These images appear life-sized to the person. 

Plus, they change as the person moves around the environment which corresponds with the 

change in their field of vision. The aim is for a seamless join between the person’s head and 

eye movements and the appropriate response, e.g. change in perception. This ensures that 

the VE is both realistic and enjoyable. A VE should provide the appropriate responses – in 

real time- as the person explores their surroundings. The problems arise when there is a 

delay between the person’s actions and system response or latency which then disrupts 

their experience. The person becomes aware that they are in an artificial environment and 

adjusts their behavior accordingly which results in a stilted, mechanical form of interaction. 

The aim is for a natural, free-flowing form of interaction which will result in a memorable 

experience. 

 

2.3.1. Immersion  
 

Immersion is the user’s experience of feeling as if being a part of the virtual world. It is a 

description of a technology that describes the extent to which the computer displays are 

capable of delivering an inclusive, extensive surrounding or a vivid illusion of the reality to 

the senses of a participant. It is basically a unique experience that is connected with the 

world of VR. When we say that a user is effectively immersed into a VR we simply mean that 

his senses create the illusion of being in the real world and becomes unaware of his real 

surrounding. 

The level of immersion provided by a system is determined by the following “constraints”: 

the ability of the technology, the ability of the senses, and perception, which is made 

through interpretation. Two are the main components of virtual reality immersion, depth of 

and breadth of information. The depth of information is the amount and quality of data the 

user is given during interacting with the virtual environment. This can refer to the display 

resolution, the complexity of graphics, and the clarity of audio output. Breadth of 

information is the number of sensory dimensions that are presented.  To have a wide 

breadth of information, the virtual reality immersion must stimulates all the senses. Virtual 

reality immersion experiences prioritize audio and visual components over the other sensory 

factors. Scientists and engineers are studying ways to incorporate the sense of touch into 
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virtual reality immersion. Known as haptic systems, they provide users feedback and touch 

interaction. 

The most out of immersion is gained when the user explores life-size VR environments and 

thus forgets about his real world scenario, forgets his present identity, situation and life and 

immerses him in a world of imagination, adventure and exploration. He gets more focused 

about his newly created identity inside the VR world. 

2.3.2. Stereoscopy 
 

Stereoscopy is a technique for creating or enhancing the illusion of depth in an image by 

means of stereopsis for binocular vision. Most stereoscopic methods present two offset 

images separately to the left and right eye of the viewer. These two-dimensional images are 

then combined in the brain to give the perception of 3D depth. This technique is 

distinguished from 3D displays that display an image in three full dimensions, allowing the 

observer to increase information about the 3-dimensional objects being displayed by head 

and eye movements. It is important to note that since all points in the image focus at the 

same plane regardless of their depth in the original scene, the second cue, focus, is still not 

duplicated and therefore the illusion of depth is incomplete. There are also primarily two 

effects of stereoscopy that are unnatural for the human vision: first, the mismatch between 

convergence and accommodation, caused by the difference between an object's perceived 

position in front of or behind the display or screen and the real origin of that light and 

second, possible crosstalk between the eyes, caused by imperfect image separation by some 

methods. 

In chapter 2.4.3 we will give more emphasis on what stereoscopy is. 

 

2.3.3. Virtual Reality Gear - Head Mounted Displays 
 

In this paragraph we will describe the input devices that are used in VEs. As an input device 

or sensor we refer to those devices that capture the participant’s actions and send this 

information to the computer/system which is in charge of the interactive simulation. An 

input device is considered as a virtual input device or VR gear when they use the paradigm of 

the implicit interaction or they give 3D input to the system. So, we refer to the devices, 

clothing or equipment, which are worn by the user that engages in VR. 

Such devices are the Virtual glasses or goggles, data gloves, HMDs, data suits, workbenches, 

joysticks, keyboards, but also haptic devices which enable the sense of touch when 

manipulating an object the VE. Since this project was based on a HMD we will show 

emphasis only on that VR input device.                                                                                                                                                                                    
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A HMD is generally a display of computer that one wears on his head. It is a display device, 

worn on the head as a part of a helmet that has a small optic display on one (monocular 

HMD) or both eyes (binocular HMD). Mostly all HMDs consist of a screen for individual eye 

and that is what creates a sense any images the user looks at has some depth [7]. It appears 

to be highly three dimensional or real-life like sized. HMDs also contain a tracking device to 

make sure that wherever the user points his head at and see wherever direction he feels like 

the monitor will remain in front of his eyes all the time. This also changes their point of view. 

A typical HMD has either one or two small displays with lenses and semi-transparent mirrors 

embedded in a helmet, eyeglasses (also known as data glasses) or visor. The display units are 

miniaturized and may include CRT, LCDs, Liquid crystal on silicon (LCos), or OLED. Some 

vendors employ multiple micro-displays to increase total resolution and Field of View (FoV). 

Some HMDs include speakers or headphones. This is included to make sure both audio and 

video output is received. Most HMDs are attached to the CPU of the VR systems through 

cables but also there are wireless systems. However wireless systems do not have the 

eligibility to avoid lag.  

 

 

Figure 3: The NVisorTM SX111 HMD used in this thesis 

 

The Head Mounted Display (HMD) used in these experiments is the NVIS SX111 . One of its 

significant characteristics is the wide field-of-view of a total 102o
 for both eyes. A 3-degrees 

of freedom (rotational) head-tracker was attached to this HMD acquiring the user’s head 

rotational direction. The HMD makes use of partial overlap stereoscopic method in order to 

produce stereoscopic vision 

2.4. The Human Eye 
 

“The eye is the window of the soul... The eye is the window of the human body through which 

it feels its way and enjoys the beauty of the world.” (Da Vinci, 1452-1519) 
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It is obvious that our visual system is an essential human factor to be taken into account 

when designing VR hardware and software. The Eye has been called the most complex organ 

in our body. It accommodates to changing lighting conditions and focuses light rays 

originating from various distances from the eye. Light is converted to impulses and conveyed 

to the brain where an image is perceived. 

 

2.4.1. Anatomy of the Eye 
 

In order to understand how eye tracking works, we must understand the human eye’s 

anatomy, its components and operation. The eye is made up of three coats, enclosing three 

transparent structures. The outermost layer, known as the fibrous tunic, is composed of the 

cornea and sclera. The middle layer, known as the vascular tunic or uvea, consists of the 

choroid, ciliary body, and iris. The innermost is the retina, which gets its circulation from the 

vessels of the choroid as well as the retinal vessels, which can be seen in an 

ophthalmoscope. 

Within these coats are the aqueous humor, the vitreous body, and the flexible lens. The 

aqueous humor is a clear fluid that is contained in two areas: the anterior chamber between 

the cornea and the iris, and the posterior chamber between the iris and the lens. The lens is 

suspended to the ciliary body by the suspensory ligament (zonule), made up of fine 

transparent fibers. The vitreous body is a clear jelly that is much larger than the aqueous 

humor present behind the lens, and the rest is bordered by the sclera, zonule, and lens. They 

are connected via the pupil. 

 

Figure 4: The Basic Anatomy of the Human Eye 
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Below, the basic front layer parts of the eye are listed and described. 

The cornea, is the transparent, outer "window" and primary focusing element of the eye. 

The outer layer of the cornea is known as epithelium. Its main job is to protect the eye. The 

epithelium is made up of transparent cells that have the ability to regenerate quickly. The 

inner layers of the cornea are also made up of transparent tissue, which allows light to pass. 

The pupil is the dark opening in the center of the colored iris that controls how much light 

enters the eye. The colored iris functions like the iris of a camera, opening and closing, to 

control the amount of light entering through the pupil. 

The part of the eye immediately behind the iris that performs delicate focusing of light rays 

upon the retina, is called the lens. In persons under 40, the lens is soft and pliable, allowing 

for fine focusing from a wide variety of distances. For individuals over 40, the lens begins to 

become less pliable, making focusing upon objects near to the eye more difficult. This is 

known as presbyopia. 

Retina is the membrane lining the back of the eye that contains photoreceptor cells. These 

photoreceptor nerve cells react to the presence and intensity of light by sending an impulse 

to the brain via the optic nerve. In the brain, the multitude of nerve impulses received from 

the photoreceptor cells in the retina are assimilated into an image. 

The fovea is the most central part of the retina. This area is responsible for the clearest 

vision with sharpest colors and details.  

 

2.4.2. Vision: The Eye’s Functionality  
  

The human eye works much like a digital camera. Light rays reflected off an object enter the 

eye through a transparent layer of tissue known as the cornea. As the eye’s main focusing 

element, the cornea takes widely diverging rays of light and bens them through the pupil, 

the dark, round opening in the center of the colored iris. 

The lens of the eye is located immediately behind the pupil. The purpose of the lens is to 

make the delicate adjustments in the path of the light rays in order to bring the light into 

focus upon the retina, the membrane containing photoreceptor nerve cells that lines the 

inside back wall of the eye. The central part of the retina is named the macula and the most 

central part of the macula is the fovea. The fovea is the area at which we have the sharpest 

vision. When looking directly at an object, the light form it is projected onto the fovea. 

Although light is admitted through the pupil it is attenuated by the iris, which controls the 

level of light falling on the retina. The lens of the eye changes its shape to focus the light it 

passes through towards the retina. The outer, white part, of the eye is the sclera. The 
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photoreceptor nerve cells of the retina change light rays into electrical impulses and send 

them through the optic nerve to the brain where an image is perceived. 

 

 

Figure 5: How Each Part of the Eye Interacts and Adjusts to the Incoming Light/Image Display 

 

The entire eye is rotated by six muscles allowing it to move (up, down, side to side, rotate) 

with great flexibility. An inner muscle, the Medial Rectus, an outer, the Lateral Rectus, an 

upper, the Superior Rectus, a lower, the Inferior Rectus, an upper and running obliquely, the 

Superior Oblique, and a lower and running obliquely , the Inferior Oblique. 

 

 

Figure 6: The Human’s Eye Muscle Anatomy 
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2.4.3. Vision Types 
 

There are two types of vision, binocular and monocular vision. Binocular is the vision in 

which both eyes are used together and on the other hand, monocular vision, is the vision in 

which each eye is used separately. 

Humans have a maximum horizontal FoV of approximately 180-190 degrees with both eyes, 

120 degrees that make the binocular FoV (seen by both eyes) flanked by two monocular 

fields (seen by only one eye) of 40 degrees. One basic advantage of binocular vision is that it 

gives stereopsis; in which binocular disparity (or parallax) provided by the two eyes’ 

different positions on the head precise depth perception. As for the vertical FoV, it is 

approximately 120-130 degrees. 

 

 

Figure 7: (a) Horizontal Field of View   (b) Vertical Field of View 

 

Stereopsis is used to refer to the perception of depth and 3-dimensional structure obtained 

on the basis of visual information deriving from two eyes by individuals with normally 

developed binocular vision. Binocular vision results in two slightly different images projected 

to the retinas of the eyes because of the different lateral positions the eyes are located on 

the head. These positional differences are referred as binocular disparities. These disparities 

are processed by the brain to yield depth perception. While binocular disparities are 

naturally present when viewing a real 3-dimensional scene with two eyes, they can also be 

simulated by artificially presenting two different images separately to each eye using the 

method of stereoscopy. 
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Figure 8: Binocular vs. Monocular Vision 

 

On the other hand using the eyes separately, monocular vision, the FoV is increased while 

depth perception is limited. Monocular vision implies that only one eye is receiving optical 

information, the other one is closed. The perception of depth and 3-dimensional structure is, 

however, possible with information visible from one eye alone, such as differences in object 

size and motion parallax (differences in the object over time with observer movement), 

though the impression of depth in these cases is often not as vivid as the obtained from 

binocular disparities. 

 

Figure 9: Perception of a plane object in monocular vision 

 

Therefore, the term stereopsis can refer specifically to the unique impression of depth 

associated with binocular vision; what is colloquially referred to as “seeing in 3D”. 

 

2.4.4. Eye Movement and Control 
 

As eye movement both voluntary and involuntary movement of the eyes that help acquiring, 

fixating and tracking visual stimuli are considered. The human eye has numerous parts that 
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must be controlled. Below there will be a simple reference of the most major types of eye 

movements and only the most commonly used in past research and in this thesis will be 

described. The main types of eye movements is a saccade, a miniature, a pursuit, a smooth, 

a compensatory, a vergence, a nystagmus and a blink.[23,24,25] 

The main measurements used in eye-tracking research are fixations and saccades.  

A saccade is a rapid eye movement, a jump, which is usually conjugate and under voluntary 

control but ballistic; once they are initiated, the path of motion and destination cannot be 

changed. It takes about 100 to 300 milliseconds to initiate a saccade, i.e. from the time a 

stimulus is presented till the eye starts moving, and another 30 to 120 milliseconds to 

complete the saccade. The purpose of these movements is to bring images of particular 

areas of the visual world to fall onto the fovea. Saccades are therefore a major instrument of 

selective visual attention. It is often convenient to consider both that a saccadic eye 

movement always occurs in a straight line and also that we do not ‘see’ during these 

movements. 

Fixation is the moment, in average 218 milliseconds, when the eyes are relatively stationary, 

between saccades, taking in or encoding information. Fixation duration provides an index of 

the speed with which information is processed. Increasing fixation duration is associated 

with tasks that require more detailed visual analysis. Frequency of fixations often serves as a 

measure of sampling quantity. They can reveal the amount on processing being applied to 

objects and therefore studying them can tell us about the complexity or salience of an object 

in an interface. 

A scanpath describes a complete saccade-fixate-saccade sequence. In a search task, for 

example, an optimal scan path is viewed as being a straight tile to a desired target, with 

relatively short fixation duration at the target. For both long-lasting and long scanpaths, 

when detected, less efficient scanning is indicated. Also, comparing saccade times to fixating 

times helps in research. 

Blinking is the automatic rapid closing of the eyelid. If detected can be used as an input 

device, for example as a mouse click. Blink rate can be used as an index of cognitive 

workload. A lower blink rate is assumed t indicate higher workload and a higher blink rate 

fatigue. However, blink rate may be determined by other factors such as ambient light levels  

Drifts are slow movements away from a fixation point. Flicks or micro saccades reposition 

the eye on the target. Predominantly these are corrective movements, correcting for the off-

center foveal position produced by a drift eye movement. Irregular slow movements of the 

eye also occur. High frequency tremor causes the image of an object to constantly stimulate 

cells in the fovea. 
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2.4.5. Perception in an Immersive Virtual Environment 
 

Perception of our immediate environment is not based on what we actually see or what is 

there. It is based upon little actual sensory information and is for the most part illusory. 

Theoretically everything we ‘see’ around us exist as a model in our minds. We rely upon our 

perceptive system so much that it enables us to be fooled. 

When immersed in a VE our compelling senses are presented with an alternative view of our 

local environment whilst the real world is shut out. Our perceptual system is trained over 

many years to recognize our everyday reality, thus has no experience to distinguish it from 

the VR. An IVE simply provides cues that are a sufficient match for our inner conceptual 

models of what it is to be in an environment. For instance, stage magicians rely upon this 

fact by providing basic cues that purposely misinform our perceptual system and leave us 

wondering how we have apparently jumped from one world-state to another. Just as when 

we see an illusion and are able to accept the perhaps ‘odd’ perspective that is implied, when 

we view an IVE we can accept the virtual world perspective implied over the real world. 

 

2.5. Eye Tracking 
 

Eye tracking is a technique whereby an individual’s eye movements are measured so that 

the researcher knows both the point of gaze (“where a person is looking”) at any given time 

and the sequence in which their eyes are shifting from one location to another. Eye tracking 

can be used in two main ways, to improve UIs and to understand human behavior. Tracking 

people’s eye movements can help HCI researchers understand visual and display-based 

information processing and the factors that may impact upon the usability of system 

interfaces. In this way, eye-movement recordings can provide an objective source of 

interface-evaluation data that can inform the design of improved interfaces. Eye movements 

can also be captured and used as control signals to enable people to interact with interfaces 

directly without the need for mouse or keyboard input, which can be a major advantage for 

certain populations of users such as disabled individuals[4, 5, 12]. 

Eye trackers are used in visual system research, in psychology, in cognitive linguistics and in 

product design. There are a number of methods for measuring eye movement. The most 

popular variant uses video images from which the eye position is extracted. Other methods 

use search coils or are based on the electro-oculography. 

The HMD employed in this research included embedded binocular eye tracking by Arrington 

Research.  
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2.5.1 History & Methods 

 

Many methods have been used for eye tracking since a 100 years ago. Eye trackers measure 

rotations of the eye in one of several ways, but principally they fall into three categories:  

One type uses an attachment to the eye, such as a special contact lens with an embedded 

mirror or magnetic field sensor, and the movement of the attachment is measured with the 

assumption that it does not slip significantly as the eye rotates. Measurements with tight 

fitting contact lenses have provided extremely sensitive recordings of eye movement, and 

magnetic search coils are the method of choice for researchers studying the dynamics and 

underlying physiology of eye movement. 

The second broad category uses some non-contact, optical method for measuring eye 

motion. Light, typically infrared, is reflected from the eye and sensed by a video camera or 

some other specially designed optical sensor. The information is then analyzed to extract 

eye rotation from changes in reflections. Video based eye trackers typically use the corneal 

reflection (the first Purkinje image) and the center of the pupil as features to track over time. 

A more sensitive type of eye tracker, the dual-Purkinje eye tracker, uses reflections from the 

front of the cornea (first Purkinje image) and the back of the lens (fourth Purkinje image) as 

features to track. A still more sensitive method of tracking is to image features from inside 

the eye, such as the retinal blood vessels, and follow these features as the eye rotates. 

Optical methods, particularly those based on video recording, are widely used for gaze 

tracking and are favored for being non-invasive and inexpensive. 

The third category uses electric potentials measured with electrodes placed around the 

eyes. The eyes are the origin of a steady electric potential field, which can also be detected 

in total darkness and if the eyes are closed. It can be modelled to be generated by a dipole 

with its positive pole at the cornea and its negative pole at the retina. The electric signal that 

can be derived using two pairs of contact electrodes placed on the skin around one eye is 

called Electrooculogram (EOG). If the eyes move from the center position towards the 

periphery, the retina approaches one electrode while the cornea approaches the opposing 

one. This change in the orientation of the dipole and consequently the electric potential field 

results in a change in the measured EOG signal. Inversely, by analyzing these changes in eye 

movement can be tracked. Due to the discretization given by the common electrode setup 

two separate movement components – a horizontal and a vertical – can be identified. A 

third EOG component is the radial EOG channel, which is the average of the EOG channels 

referenced to some posterior scalp electrode. This radial EOG channel is sensitive to the 

saccadic spike potentials stemming from the extra-ocular muscles at the onset of saccades, 

and allows reliable detection of even miniature saccades. 
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The Eye-tracker from Arrington Research, Inc. that was used in this thesis is based on an 

optical method and relies on two infrared video cameras for the estimation of eye motion 

and position by detecting saccades, fixations, drifts. 

 

2.5.2. Features that can be tracked 
 

Gaze direction and gaze point. It is used in interaction with computers and other interfaces, 

and in behavioral research/human response testing to better understand what attracts 

people’s attention. 

Eye-presence detection. The eye-tracking system must first find the eyes, so it is the most 

fundamental part of eye tracking. It is also used in specific features such as power saving by 

dimming the screen when eyes are not detected. 

Eye position. The ability to calculate the position of the eyes in real time makes the eye 

tracking system accurate and precise while allowing the user to move freely. Eye position is 

also used in gaming and auto stereoscopic 3D-display systems. 

User identification. The eye tracking system can be used as a multimodal biometrics sensor, 

such as for logging on to a computer or for car-driver identification. It can combine face 

identification with physiological eye features and eye movement patterns. 

Eyelid closure is used to monitor the user’s sleepiness, for instance in advanced driver 

assistance or operator safety solutions. 

Eye movement and patterns are studied to understand human behavior and to assess and 

diagnose injuries or diseases. You can, for example, perform hearing tests on infants or 

identify markers of diseases such as Alzheimer’s or autism at a very early stage. The study of 

micro saccades is also central in neurological research. 

Pupil size and pupil dilation. Pupil dilation is an indicator of excitement. In combination with 

eye movement patterns and facial expressions, it can be used to derive emotional reactions, 

for instance in creating innovative user experiences. Pupil dilation can also serve as a marker 

of impairment, such as concussion, or drug or alcohol influence. 
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Chapter 3 – Software Architecture and Development 
 

3.1 Game Engine: Unity 3D 
  

Game Engines are power-tools behind all games we know and love. Unity is one of the most 

widely-used application for game development and with a huge variety of packages to offer. 

It is used by everyone, from a hobbyist level to large studios, to create games and interactive 

experiences for the web, desktops, mobiles, and consoles. With its intuitive and combination 

of easy to learn toolset and rapid productive workflows, Unity 3D allows the user to 

minimize the time, effort and construction-cost of interactive content.  

Even though Unity is basically used for game development, in this thesis was used to employ 

an eye tracking control to a unity custom made 3D MUI interactive environment.  

 

3.1.1 The Third Dimension (3D World) 
 

Let’s understand how Unity 3D allows you to develop 3D games and interactive 

environments. 

Coordinates 

In a screen, each point is uniquely specified by a pair of numerical coordinates (X-axis, Y-axis) 

which are the signed distances from the point to two fixed perpendicular directed lines 

measured in the same unit of length. In Unity, and as in all 3D applications, there is the 

concept of the Z-axis. The Z-axis in addition to the existing X for horizontal and Y for Vertical, 

represents depth. In 3D applications information on objects are laid out in X, Y, Z format, 

knows as the Cartesian coordinate method. Dimensions, rotational values and positions in 

the 3D world can all be described in this way. 

Vectors 

3D vectors are described in Cartesian coordinate. They are simply lines drawn in the 3D 

world that have a direction and a length and can be moved in world space but remain 

unchanged themselves. Vectors are useful as they allow us to calculate distances, relative 

angles between objects and the direction of them. 

Cameras  

Cameras act as the viewport for the screen. They can be placed at any point of the 3D world, 

animated or attached to characters or other objects. There can be multiple existing cameras 

but only a single main camera can render what the user sees. 
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Vertices and Meshes 

All objects are made up of 2D shapes, known as polygons, and are converted into polygon 

triangles by Unity itself. A polygon triangle is made up of 3 connected edges and the location 

at which these edges meet are knows as vertices. By combining many linked polygons Unity 

allows us to build complex shapes, known as meshes.  In 3D projects, the importance of the 

number of polygons used in it is of utmost as they define the details of it. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: A Spacecraft Model. Left: A Simple Mesh Collider with a Small Polygon Count. Middle: No Mesh 
Component Right: A Higher Polygon Count Mesh 

 

The polygon count it’s usually referred to models, but also to props or the entire scene 

(‘game level’).The higher the polygon count the more computer sources are needed to 

render the project. Because of this, when modeling, developers must consider polygonal 

detail, and where it is most required. 

Materials, Textures and Shaders 

Graphical Assets are broken down into materials, textures and shaders.  
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Figure 11: Unity’s 3D Basic Components of a 3D Model 

 

Materials provide the means to set visual appearance to 3D models; from basic colorings to 

image-based surfaces. 

Textures are flat images that are applied to 3D objects. They are responsible for models 

being colorful and interesting instead of blank and boring. How textures work is simple, it’s 

like a label that is “wrapped” around the 3D model. Textures must be scaled to a power of 2 

(64px x 64px, 128px x 128px, etc.). Larger textures will give the chance to add more detail to 

the textured models, but more intensive to render. 

In a single material, a script, the shader, is in charge of the style of rendering. For instance, in 

a reflective shader the material will render reflections of surrounding objects but maintain 

its color or the look of the image applied as its texture. 

Rigidbody Physics  

Physics refer to the simulation of certain real world physical phenomena and systems. A 

physics engine is required in order to provide this real-time simulations and in our case, 

Unity uses the NVidia’s PhysX engine. In simple words, physics engines give games a mean of 

simulating realism in physical terms, not only physical reactions such as mass and gravity but 

realistic responses to friction, torque and mass-based impact. This realistic motion is 

implemented by using the Rigidbody dynamic system. 

The influence of the physics engine on objects is called force. Forces are applied through 

scripting or by applying components. So in order to invoke physics on an object in Unity a 

Rigidbody component must be added. There is no assumption that the object should be 

affected by physics; physics consume a lot of processing power and in general computer 

resources. Rigidbody physics component is not given to any object but only to those you 

wish to be control under the physics engine, and ideally to any moving object, so that the 

physics engine is aware of it and to save on performance. 
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Having added a Rigidbody component u can adjust the Mass parameter, the weight of the 

object in kg, the Drag parameter, the amount of air resistance affecting an object as it 

moves, the Angular Drag parameter, affects the rotational velocity, the Use Gravity 

parameter, it sets whether or not and in what degree the object is affected by gravity, the Is 

Kinematic parameter, option that allows you to have a Rigidbody object that is not affected 

by the physics engine, the Interpolate/Extrapolate parameter, that smoothens the transform 

movement of an object, and the Constraints parameter, that locks objects so that they do 

not move or rotate as a result of forces applied by the engine. 

Collision Detection 

Objects in games and 3D interactive applications interact with the player, the environment 

and each other. By giving an object a Collider component we place an invisible net around it. 

This net usually mimics its shape, mesh shaped colliders, but also primitive shapes can also 

be chosen, Box, Sphere, Capsule, Wheel colliders, and is in charge of reporting any collisions 

with other colliders, making the game engine respond accordingly. 

 

 

Figure 12: Unity 3D Primitive Shapes and Colliders(Cube, Sphere, Capsule, Wheel ) 

 

The act of detecting and retrieving information from these collisions is knows as collision 

detection. Instead of detecting when two collisions interact we can also detect when 

colliders are intersecting (trigger mode collision detection) and even pre-empt collision 

detection. There is also the Raycasting technique, that doesn’t detect intersecting colliders 

but draws an invisible (non-rendered) vector line between two points. Raycasting can also 

be used by reading the length of the ray and therefore get the distance of 2 colliders/objects 

and also the point of impact of the end of the line, in other words the object that the ray 

faces and lands on. 

In this thesis, Raycasting is used to detect what and where the user is looking at by 

translating the eye-tracking data. 
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3.1.2 Unity’s Essential Concepts  

  

Unity establishes the use of the Game Object concept. By this, the developer breaks down 

part of the project into easily manageable objects that are made of many individual 

Component parts. After introducing functionality to each individual object and to each 

component attached to it the project can expand infinitely in a logical progressive matter. 

Here is an overview of some of the key-basic Unity concepts. 

Assets  

The Assets are the building blocks of Unity projects. From textures in the form of image files, 

through 3D models for meshes, and sound files for effects, Unity refers to those files you use 

for your project as Assets. 

Scenes 

As a Scene, in Unity 3D is considered a level of a game or areas of a project content or even a 

whole project, if the developer decides to dynamically load all the content at through code 

in a single scene. By using different Scenes you will be able to distribute loading times and 

test different parts of the project individually. Only one scene at a time can be open and 

edited. 

GameObjects & Components 

All active objects in a Scene are called GameObjects. Each Asset (for instance a model) when 

placed or instantiated into the current Scene becomes a GameObject. Every GameObject 

contains at least one Component, the Transform component. The Transform component 

tells the game engine about the position, rotation and scale of an object. Further required 

functionality will be applied by adding more components. 

Also, Game Objects can be linked to each other. They can be nested in order to create 

parent-child relationships. 

Components are used to apply new parts of the game engine to your object. They can be for 

creating behavior, defining appearance and influencing other aspects of an object’s function. 

Those are the Rigidbody component, textures, lights, cameras, particle emitters, animations, 

audio sources, scripts and more.  

Scripts 

Scripts are components that extend or modify the existing functionality available in Unity. In 

this thesis our scripts are written in C Sharp (C#) and JavaScript (JS).Scripts are added to 

objects, also empty objects, and there are no limitations on how many can be used on one. 
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Prefabs 

A prefab is a stored version of an object that can be reused in different parts of your project. 

By using prefabs, complex objects with various components and settings can be instantiated 

at any time allowing each instance of it to be individually modifiable. 

 

3.2 Overview of Eye Tracking Device’s Software  
 

The software used in this thesis in relation to the eye tracking device embedded in the HMD 

is the ViewPoint EyeTracker® of Arrington Research, Inc. This software provides a complete 

eye movement evaluation environment including integrated stimulus presentation, 

simultaneous eye movement and pupil diameter monitoring, and a Software Developer’s Kit 

(SDK) for communication with other applications. It incorporates several methods from 

which the user can select to optimize the system for a particular application and methods of 

mapping position signals extracted from the segmented video image in EyeSpaceTM 

coordinates to the participant’s point of regard GazeSpaceTM  

 

3.2.1. Interface 
 

Only the most basic features of the software will be presented here. For full documentation 

refer on the user manual of the ViewPoint application found in Chapter 7.Once the program 

is running, it displays several windows arranged as shown below. 

 

Figure 13:Startup Interface of the ViewPoint EyeTacker Software 

There is the EyeCamera window, the EyeSpace window, the Status window, the Controls 

window, the GazeSpace and the PenPlot windows 
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Figure 14: EyeCamera Window 

Figure 15: EyeSpace Window 

Figure 16: The Controls Window 

 

The EyeCamera window displays the video image of 

the eye and the image analysis graphics. It provides 

controls to make the eye tracking results more reliable 

and to extend the range of the trace area. Thus, it 

makes it easy to limit the areas within the software 

searches for the pupil and corneal reflection to 

exclude extraneous reflections and shadows. 

         

     

The EyeSpace window corresponds to the geometry of 

the EyeCamera image. It displays an array of the relative 

locations of the pupil, glint, or difference vector, which 

were obtained during calibration. This provides 

information about calibration accuracy and allow rapid 

identification and correction of individual calibration 

errors by allowing manual recalibration of individual 

points or the ability to omit problem points. The number, 

color and presentation rate can be set from here. 

 

                                                        

      

 

The Controls window allows the user to adjust the 

image-analysis and gaze-mapping parameter settings 

and to specify the feedback information to be displayed 

in both Stimulus window and the GazeSpace window. 

Eye Image quality adjustments can be made and tacking 

method can be specified. Also, smoothing and other 

criteria can be applied to data, has parameters to setup 

the regions of interest and calibration regions as well as 

adjust brightness, contrast, hue, saturation of the scene 

image and to open, pause, close data files or insert 

markers. 
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Figure 17: Status Window 

Figure 19: Pen Plot Window 

Figure 18: Stimulus Window 

 

The Status window gives details about 

processing performance and measurements. 

Also, shows the applications that share the 

same .dll of the application; thus the threads 

that ViewPoint communicates with. 

 

 

 

The Stimulus window is a new window 

that pops up when calibration starts. It is 

designed to be full screen, preferably on 

a second monitor. Upon which may be 

displayed the subject’s calculated 

position-of-gaze information and region 

of interest boxes. 

 

 

 

 

 

The Pen Plot window displays plots of X and Y 

position of gaze, velocity, ocular torsion, pupil 

width, pupil aspect ratio, drift, etc. in real time. 
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Figure 20: Schematic of the ViewPoint EyeTracker System (Head Fixed) 

3.2.2 How the software works 
 

In general, how the Viewpoint EyeTracker® works in a typical head fixed configuration will be 

described. The numbers in this section refer to the items in the figure below. 

The infrared light source (item 1) serves to both illuminate the eye (item 2) and also to 

provide a specular reflection from the surface of the eye. In dark pupil mode, the pupil acts 

as infrared sink that appears as a black hole. In bright pupil mode, the “red eye” effects 

causes the pupil to appear brighter than the iris.  

 

The video signal from the camera (item 3) is digitized by the video capture device (item 4) 

into a form that can be 

understood by a computer. 

The computer takes the 

digitized image and applies 

image segmentation 

algorithms (item 5) to 

locate the areas of pupil 

and the bright corneal 

reflection, the glint. 

Additional image processing 

(item 6) locates the centers 

of these areas and also 

calculates the difference 

vector between the center 

locations. A mapping 

function (item 7) transforms 

the eye position signals 

(item 6) in EyeSpace 

coordinates to the subject’s 

GazeSpace coordinates. 

(item 8) Because the eye 

movements are rotational, 

for example the translation 

of the eye position signal that is apparent to the camera is a trigonometric function of the 

subject’s gaze angle, the best algorithms are non-linear. Next, the program tests to 

determine whether the gaze point is inside of any region of interest (ROI) that the user has 

defined.  
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The calibration system (item 12) can be used to present calibration stimuli via (item 10) to 

the user and to measure the eye position signals for each of the stimulus points. These data 

are then used by the calibration system to compute an optimal mapping function for 

mapping to position of gaze in GazeSpace. 

 

3.2.2. Binocular Method 
 

The eye-tracker used in this thesis supports both monocular and binocular eye tracking. 

By default, ViewPoint is set for monocular eye tracking. So we have to switch from 

monocular to binocular operation. Once this is done, we will see that another EyeCamera 

window will appear, for the second eye and in the GazeSpace window there is an additional 

drop down box to specify which eye the calibration process is to apply to. 

 In our project we applied binocular eye tracking in order to accomplish no mouse input 

interaction in our project. The left eyes’ point gaze data are used to map where the user is 

looking at in out virtual scene and the right eye is used to check blinking to apply mouse click 

by detecting blinks. 

 

3.2.3. Calibration 

 

In order to know where the participant’s eyes are fixating on the computer screen, we must 

first “teach” the computer, in our situation the ViewPoint software, what the eye looks like 

when the participant is fixated on known locations on the screen. So, prior to using the eye 

tracker the user needs to undergo a personal calibration process. The reason for this is that 

each person has a different eye characteristics, and the eye tracking software needs to 

model these in order to estimate gaze accurately. 

The tracker operates by tracking the pupil of the eye, the “dark/black” part of the eye, which 

will appears as filled-in with blue in the camera-view of the eye, as well as the “corneal 

reflection”, the reflection off of the cornea that appears in yellow on the eye-view. The 

relative positions and size of these two landmarks are measured as the participant looks at 

specific points on the screen during calibration. During the rest of the experiment, the 

tracker figures out where the eye must be looking, depending on the relative size of the 

pupil as well as the relative location of the pupil and corneal reflection. Anything that 

disrupts the pupil capture, or interferes with the corneal reflection will cause calibration to 

be very difficult or even impossible. 
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In our situation, calibration takes approximately 1-2 minutes to complete and consists in 

square green target that is displayed at different locations of the screen on a blank 

background. The user is warned with a “Get Ready” message on the screen to draw the 

subject’s attention to start the calibration process.  During the calibration process, we must 

ensure that the pupil is accurately located at all times by monitoring the green dots and the 

yellow oval, i.e., monitoring the image segmentation. As for the calibration points, we must 

use at least 9 but tests showed us that best calibration results are provided by using 16 or 20 

points; for this thesis we used 20. Successful calibration will be indicated by a rectilinear and 

well separated configuration of green dots corresponding to the locations of the pupil at the 

time of calibration point capture; the green and yellow dots are show in the EyeSpace 

window. 

 

Stray calibration data points can be identified and re-calibrated or omitted. The EyeSpace 

window allows the user to select stray calibration points to be recalibrated. If a point is 

selected to be re-calibrated, then it will be re-presented in the screen and the participant 

will be asked to look at the center of it; to calibrate. This can be repeated with many 

calibration data points as necessary. If the calibration points are not rectilinear, for example, 

there are lines crossing then complete re-calibration is necessary. If a particular point cannot 

be recalibrated, then that specific point can be omitted. 

 

3.2.4. SDK and Communication with Unity3D 
 

In order to implement eye tracking in Unity3D, we should allow communication to be made 

between both Unity3D and the ViewPoint software.  

ViewPoint software includes a powerful developer’s kit (SDK) that allows interfacing with 

ViewPoint in real-time, giving real-time access to all ViewPoint data. Allowing complete 

Figure 21: Calibration Attempts. The Left Picture Depicts a Successful Calibration. The Right Picture Depicts a 
Wrong Calibration 
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external control of the ViewPoint EyeTracker, the SDK is based on shared memory in a 

dynamic-linked library (DLL). The SDK is event/message driven so there is no CPU load from 

polling and provides microsecond latency. 

So, Unity3D interacts with ViewPoint by compiling the VPX_InterApp.lib file, a library file. We 

will extend further in how communication is established and how constants, data types and 

functions are accessed by Unity3D in Chapter 5.3.  

 

3.3. Head Tracking Device - Software 
 

3.3.1. Overview 

 

The head tracking device used in this thesis is the InertiaCube3 and the InertiaCube 

Processor by Thales. It is an inertial three degree of freedom (3-DOF) orientation tracking 

software. It obtains its motion sensing using a miniature solid-state inertial measurement 

unity, which senses angular rate of rotation, gravity and earth magnetic field along three 

perpendicular axes. The angular rates are integrated to obtain the orientation (yaw, pitch, 

and roll) of the sensor. Gravimeter and compass measurements are used to prevent the 

accumulation of gyroscopic drift. 

 

 

Figure 22: The Inertia Cube3 and its Processor 
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3.3.2 SDK and Communication  
 

The head tracking device has a test software and the InterSense Software Development Kit 

(SDK). The core of all InterSense software that are associated with the head tracker is a 

dynamic-linked library, the isense.dll, which must be saved in the Windows system directory. 

This library, along with all other InterSense libraries provide a standard interface for the 

device. 

Before the tracker is used, it must be configured and a diagnostic tool must be run. During 

this thesis, these test were run once, right before the testing and experiment phase. This 

testing tool, is the ISDEMO, validates the communication of the InertiaCube3 to the PC and 

tests the performance through the above mentioned DLL. In this phase, the compass, 

perceptual enhancement, sensitivity, prediction, and in general all the tracker’s sensor 

parameters, can be modified and checked so that the device is working properly. Also, tools 

such as self-system test and compass calibration. 

 

 

Figure 23:  Left – ISDEMO application showing  real-time Yaw, Pitch and Roll data.  
Right – Setting Adjustments for the head tracking device 

 

There is also the InterSense Server Application, ISERVER, which provides multiple services to 

applications requiring tracker data. It is the link between the head tracker’s data output and 

third party applications, in our situation Unity3D. ISERVER runs in the system tray, reading 

the data from the connected device at the maximum speed allowed by the operating 

system. That data is then made available to Unity3D through the InterSense DLL. Inter-

process communication will be explained in detail in Chapter 5.4 
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Chapter 4 – UI Implementation 
 

Having explained the background and all the necessary theories and methods that are used 

in this thesis, it’s about time to explain the implementation of the UI. The way the 3D visual 

Scenes were designed and how everything was wrapped together in order to get the desired 

functionality. The first paragraph 4.1 refers to how the interface was modeled and the 

second paragraph 4.2 refers to how the models composing each scene were placed and 

configured. 

To begin with, let us state again what this project is about. The project aims to create a 3D 

MUI that will allow the user to control it only with his eyes; it will be mouse free. Six 

applications based on the eye tracked 3D UI paradigm have been implemented.  

A Photo Gallery, allows the user to browse the user’s Picture’s directory. The application 

searches through the image folder and visualizes folders, sub folders and files in a virtual 3D 

slide. All types of images are supported (jpeg, bmp, gif, .png, etc.) 

A 3D Music Player, explores the user’s Music folder and exposes virtual 3D geometry for 

audio and playback control. It consists of a 3D Player and virtual speakers that visualize the 

music and vibrate according to the music tempo, like in real life. Once the user picks a song, 

he can listen to it, pause it, stop playing it or choose another one. He I also allowed to adjust 

the volume through the volume panel. 

A 3D Email Composer, consists of a 3D custom-made keyboard and a 3D email form. The 

keyboard is based on a standard mobile device keyboard layout supporting only Latin 

characters and a set of symbols. In order to compose an email, the user fills his email and 

password, the receiver’s email, the subject and the main body of the mail. After filling the 

form, the user can either send the mail or clear the form and start over. 

A Word Processor, consists of the above mentioned keyboard and a text editor form. The 

word processor allows the user to create, and therefore save, or edit a .txt file located at the 

user’s Documents directory.  

Finally, two immersive mini games were implemented; a puzzle game and an action game. 

The puzzle game in which a user-selected picture is fragmented in tiles. The tile layout is 

then randomized and the user has to re-arrange the tiles to form the original picture and 

solve the puzzle. The action game, is a 3D rendition of the classic flappy bird game [3] but 

instead including an airplane and a custom made virtual world, representing a valley with 

cabins, mountains, trees, etc. 
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4.1 Creating the 3D Visual Content  
 

In order to create the 3D Virtual Scenes that the application would render, several steps 

were required, from creating the actual 3D object to importing them inside Unity3D and 

placing them to a virtual scene, as well as creating and assigning the materials to these 

objects. 

A custom outdoor environment was chosen as the rendered displayed environment, divided 

into six zones according to the developed applications of this project. As mentioned above, 

the six zones are the pictures’ explorer, the music player, the email composer, the text 

editor, the puzzle, and an action game similar to flappy bird. The 3D MUI elements are 

considered to be on static locations in the virtual space while a moving observer may 

interact with them from various locations. Specifically, the six developed applications are 

centered on a main pivot point while the observer can turn around and select the desired 

applications. Thus, the main menu is a circular application menu. The 3D models used in this 

project were either custom made or downloaded from 3D model repositories [19]. 

The interface, separates each application with a custom made semi-transparent layer or 

frame displaying the title of each individual application. This frame is actually a flat 3D wall 

by adjusting the scale of a primitive cube object to meet our needs. Having created the 

model, then a dark gray transparent material was created and assigned to it. Therefore, our 

main menu consists of six layers that are decorated with models depending on what each 

scene represents. 

 

 

Figure 24 : The Application’s Main Interface from a Higher Angle to Display the Individual Applications 
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For the Picture Explorer, folder and files objects needed to be modelled. As for the scene 

layout, we represented exactly the preview of the Windows Directory. A folder object, 

representing a Windows Folder of yellowish color and a file object representing the pictures 

and assigning the image itself as a texture on it, like a small preview of the picture. Also, in 

order to view the pictures of a directory, a preview slide model must be created. It is a 

simple primitive cube object that was modelled in such way to allow us to attach different 

textures on each face or in other words different picture preview on each side. Finally, we 

modelled a Back button that would allow the user to jump back to available directories until 

he reaches the root Directory which is the Windows Picture folder. 

 

 

 

 

Figure 25: The Folder, Picture and Preview Box Models of the Explorer Scene 

 

For the needs of the Email and Text processor scene, we modeled a 3D virtual keyboard. The 

keyboard layout is based on a standard mobile layout and supports Latin characters, both 
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capitals and lower case, and some basic symbols. We modeled each key one by one using 

Unity’s primitive cube objects, scaled and positioned at the desired position and size. Also, 

each texture and material assigned to the keys are custom made, using Photoshop. The main 

color material is in the color of gray and the letter font is in white. The keyboard model 

consists of 3 separate models, each one representing a different layout; the Characters 

layout and 2 Numbers and Symbols layouts. Below, we present the keyboard model. 
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Figure 26: The Keyboard Models. All Three Types are shown. Char Layout, and both Number and Symbol Layouts 

 

As for the Music Player application, models for the music player, the song files and folders, 

and the speakers were created. The music player, represents a 3D version of a classic 2D 

music player, with a Play, Pause, and Stop buttons as well as Volume Buttons. The music 

player is accompanied by 4 speakers. A pair of custom made speakers made of Unity’s 

primitive game objects, such as cubes and cylinders, scaled and positioned according to our 

needs and a pair of speakers from the model’s repository [19]. 
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Figure 27: The Song Model, Music Player Model and the Speakers 

 

For the tiles game, the basic object that was created was a model that consists of blocks. We 

thought of breaking the picture into twenty five blocks making it more challenging and 

interesting. The model of a picture is therefore divided into twenty five sub blocks; twenty 

five identical primitive cube objects scaled and positioned in order to depict the picture that 

the user selects to play with. As for the materials and textures of each block, they are 

assigned through code and not from the modeling view of Unity3D. Just for reference, since 

coding and functionality will be explained in detail in the next chapter, empty materials are 

added at this point to each tile and during runtime and based on the picture that is loaded, 

the picture itself is the texture of each block but with a specific offset. For example the top 

left block’s texture depicts the first upper left area of the picture if imagined it is divided into 

twenty five identical areas. Another model of this scene, is a transparent gameobject, 

exactly identical with the one described above, that will work like a guidance tool in order to 

guide the user at where he is supposed to place the blocks during the game. This model has 

the exact scale as the previous one and is also divided into twenty five blocks. 

 

Finally, the most fascinating and complex scene, regarding its rendered components is the 

action game. This application of the MUI has its own new environment, different from all the 

previous ones. We have created a whole new virtual world, depicting a valley. From scratch, 

we have created a whole valley surrounded from mountains, with the help of the Unity’s 

terrain attributes. As a terrain we refer to the ground of an outdoor scene. Unity has a 
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toolkit that allows one to regulate the dimensions of the terrain, adjust changes in the 

height of the terrain, and apply trees, grass, wind zones and much more.  

In the beginning, a terrain is nothing more than a large, flat plane as shown below. 

 

 

Figure 28: A New Terrain Gameobject and Unity’s Terrain Toolkit 

 

Since the airplane will fly towards one direction only, we set a very big depth to the terrain. 

There are tools that allow us to adjust the height levels of the terrain, allowing us to create 

the mountains and in general the different height areas of the valley. Using the so called 

“brushes” in Unity’s terrain toolkit, the terrain is firstly transformed as shown below. 

 

 

Having created the final model of the terrain, it’s time to decorate it with some colors and in 

general all the textures needed. Ground textures, grass, dirt are all applied from the Unity’s 

terrain toolkit.  

 

Figure 29 : Using Unity’s Terrain Toolkit. The First Attempt of Creating the Environment 
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Figure 30: Applying Ground Textures to the Terrain 

 

The next step was to import some models from online repositories. We search online for 

house and trees models that suited our needs and placed them on the terrain 

 

 

Figure 31: House and Tree Models Imported into the Scene 

 

Finally, pipe models, coins and the airplane that the user would navigate through the world 

were imported. For the pipe models, custom made materials and textures were used and 

assigned and a coin object was placed in between the vertical pipes so that the user could 

collect. The pipe models are loaded on runtime of the game because of high memory and 

rendering costs. After having placed the pipes, the airplane is instantiated at the beginning 

of the pipes row in order to be controlled and navigate through them. 
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Figure 32: A Random View of The Final Action Game Scene After Having Imported All the Models 

 

Apparently, all these models were created in separate Unity project folders and scenes and 

organized in a way that would allow easy export and import into our final master scene. 

4.2 Setting up the Virtual Scene 
 

Having created all the models for our interface, it is about time we explained how they were 

imported and positioned in our master scene as well as how they interact with each other 

and the virtual environemnt. Since the user interacts with most of the created objects, we 

must explain how this interaction was achieved. In the previous sub-chapter we did not 

mention anything about the collision shape of the 3D objects.  

In general, the collision shape of 3D objects can be automatically assigned using the mesh 

component collider. Each gameobject that participates in raycast hits, or in other words that 

the user can interact with by looking at it, have custom made colliders. According to each 

object’s geometry, primitive type colliders are assigned. By using custom colliders rather 

than the mesh colliders, the colliders that wrap exactly the object, the dimensions of the 

colliders could change and small divergences of gaze data would still allow correct 

interaction. 

Below, an example of the creation of a box collider is presented. The figure represents the 

folder model inside a green box. The green scaled primitive cube surrounding the geometry 

of the folder is the collider that was created for the folder object. As we can see, the collider 

surrounding the object does not fit exactly the gameobject it surrounds. Depending on the 

gameobject, each collider extends the bounds of the objet by ten or fifteen percent on each 

side; on the top, left, right and bottom. 
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Figure 33 : The Green Box is the Folder’s Collider Component 

The imported models were placed inside a new master scene.  First of all, the scene was 

divided into six cone zones respectively for each application. The scene behind each 

transparent dark gray layer belongs to each individual application. 

The Pictures Explorer scene and the Music Player scene have the same basic layout. They are 

both divided into left and right panels. The left half area consists of the models that 

represent the directory folder that the user accesses and on the right half is the area of slide 

preview of the selected photos or the music player respectively.  

Pictures Explorer & Music Player Scene 

An example of the Pictures explorer scene is shown below. 

 

Figure 34: A View of the Pictures Explorer Scene 
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As we can see, on the left half of the view, there are two different types of models, the 

folders models and the pictures models. Depending on the number of folders and content of 

each current directory, more or less models are presented. This means that there is no 

standard visualization of the scene. The only thing that is exactly the same at every run time 

is the number of models that consist a row of the visualized directory. Just for reference, the 

maximum number of models, both folders and files, are six per row. 

On the right half view of the scene, we can see the picture preview model. This object is 

placed in a static position that never changes but only rotates around itself on user 

selection. By default the textures placed on the model are the first four pictures of the 

current directory the user is navigating through and change every time a user clicks a picture 

model, changes directory or selects the preview model. By changing, we mean that the 

models’ surface-textures change dynamically to depict the next photo-model the user 

selects or, if he keeps interacting with the model, respectively navigate through the entire 

directory. If the user navigates through the entire directory then the preview repeats itself. 

The root folder is the Window’s Picture Directory folder. Once the user opens an inner 

directory then the GoBack model appears dynamically, on a static always position, allowing 

him to go back to the previous directory. The Back game object disappears when he reaches 

the Root Directory again since there is no parent folder to access and visualize. Each model is 

positioned through code and depending on the folder that is depicted, changes. 

Following is an example of a random view of the Music scene. 

 

 

Figure 35: A View of the Music Player Scene 
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As for the Music Player Scene, on the left half view we can see the Windows Music directory 

content. The folders and subfolders are represented with the folder model and each song 

represented with the song model. Like in the Picture Scene, the display changes depending 

on the computer’s directory. On the right, we can find the music player itself being 

accompanied with the 4 speakers. 

On the other hand, the Email Composer and the Text Editor have similar layouts. On the left 

half of the view we can find the keyboard model and on the right the editable fields. 

Email Composer & Text Editor Scene 

 

 

Figure 36: A View of the Email Composer Scene 

As mentioned above, on the left half of the scene we can see the keyboard model. It is 

always placed on a static position and different layouts are loaded depending on the user’s 

needs and interaction. By default, the character layout is displayed and when a transition to 

the numbers’ or symbols’ layout is needed, the new layout is placed at the same position of 

the previous. 

Concerning the Email Composer scene, on the other half of the display is the 3D email form 

that the user is called to fill in order to compose the email. The Form is placed in such a way 

in order for the user to have good vision of it while typing. The form consists of 5 fields, the 
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sender’s email, password, receiver’s email, subject and body field of the mail as also a Clear 

and Send selection that, respectively, clears the form or sends the email 

 

 

Figure 37: A View of the Text Editor Scene when the User Created a New Document File 

 

As for the Text Editor, the right half of the scene depicts the 3D text models and the actions 

that are allowed. By default, the user is allowed to create a new documents file with the 

name “new.txt”, edit its body field and save it at the default Windows Document Directory. 

If he selects the load file field, the root Documents directory of the computer is represented 

and can select the model of the desired document to be loaded. Once he selects a file, the 

document models are destroyed and the fields are loaded with the respective data of his 

selection. Below the process of editing an existing file is shown. 
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Figure 38: (a) A View of the Scene when the User Selects to Load Document File from the Windows Directory (b) 
The User Selects to Edit the File myDoc.txt. It’s Content and Path are Displayed and the User is Allowed to Edit, 

Save or Discard the Changes he makes  
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The two Game scenes have completely individual layouts. Only the tile game will be 

described below. For more details on the action game please refer to the previous chapter.  

 

Tiles Game 

 

 

Figure 39: A View of the Tiles Game Scene Before the User has Chosen a Image to Start Playing With. 

 

For the tiles game only the Windows root Pictures folder is allowed to be accessed and 

therefore only the pictures it contains, no folders or subfolders, will be visualized. Once 

loaded, each picture in the root directory is fragmented and applied as a texture, on the 5x5 

block models. The folder inspector displays 5 images in each row. Once the user selects an 

image, then it moves to the front, while the rest are placed deeper in the background and in 

a fixed time they disappear. After three seconds, the tiles are randomized and then the 5x5 

model is brought up and placed in a fixed position in order to guide the user to where he is 

allowed to place each block in order to reform the initial image. Once a tile is selected the 

allowed positions to place the block when hovered change to a transparent color of green. 
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Figure 40: A View of the Tile Game Scene While the User has Selected to play the Puzzle with the Polar Bear Image 
and Has Placed a Few Blocks at the Correct position 
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Chapter 5 – Implementation (Scripting) 
 

In this chapter, the implementation and development of the application and its components 

will be described. More specifically, the way in which the 3D Virtual Scene was configured in 

order to achieve stereoscopy, the main classes and controllers of the application and how 

user’s inputs were handled. 

 

5.1 Stereoscopic View - Setup 
 

The HMD used in this thesis uses the partial overlap method to achieve stereoscopy. 

However, the HMD does not automatically adjust the input image signal to match that 

requirement thus the computer’s output image signal must be formatted based on the 

HMD’s specifications.  

The ideal solution was to use dual monitors and output two video signals from Unity3D, one 

for each monitor and therefore for each camera/screen of the HMD. Since the HMD requires 

SXGA resolution to work our solution should meet this specification. Based on the SXGA 

format, each camera of the HMD has resolution of 1280 x 1024 pixels, amounting to a total 

of 2560 x 1024 pixels for the display of the HMD screens (the resulted resolution of 1280 x 

1024 pixels for each separated view was not adequate). To fix this, the viewport of the 

application was expanded using the graphics card’s option to select two displays with total 

resolution of 2560 x 1024 pixels. 

In order to output two video signals from Unity3D, one for the left screen (left eye) and one 

for the right screen (right eye) of the HMD,  two cameras and two controllers were needed. 

We tried to implement real world dimensions as for the virtual “head format” to suit the 

specifications of the HMD, thus we translated the positions of each part of the head to 

Unity3D world units. Depicting the headset in Unity3D, the “Head” model consists of a head 

and two cameras. Both cameras were centered at the width of the head but positioned at 

the 2/3 point of the heads height (if we look at it from bottom to up) and in the 1/3 of its 

depth. The distance between the two cameras-eyes based on the average pupil distance 

measurement, is at 64mm or 0.064 Unity3D world units. Since that is the average 

measurement of the inter-pupillary distance (IPD), we allowed through scripting each user to 

manually set his own IPD in order to achieve better stereoscopic effects. By pressing the ‘o’ 

keyboard key the IPD increases and the ‘p’ keyboard key it decreases. We have to be careful 

here because by increasing the IPD the user might feel uncomfortable and dizzy [14, 16]. 

Thus, during the experiments we were responsible for setting the IPD. Below we present the 

code that set the IPD of the individual, and in simple words, the distance between the two 

eye-cameras.  
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void Update () { 

 setIPD_ =0.01f; 

        if (Input.GetKey("p")){ 

            Vector3 prevRight = CamRightEye.transform.position; 

            Vector3 prevLeft = CamLeftEye.transform.position; 

            CamRightEye.transform.position= new Vector3(prevRight.x + setIPD_, prevRight.y, 

prevRight.z); 

            CamLeftEye.transform.position= new Vector3(prevLeft.x setIPD_, prevLeft.y, 

prevLeft.z); 

            Debug.Log(CamRightEye.transform.position.x); 

        }else if (Input.GetKey("o")){ 

            Vector3 prevRight = CamRightEye.transform.position; 

            Vector3 prevLeft = CamLeftEye.transform.position; 

            CamRightEye.transform.position= new Vector3(prevRight.x - setIPD_, prevRight.y, 

prevRight.z); 

            CamLeftEye.transform.position= new Vector3(prevLeft.x + setIPD_, prevLeft.y, 

prevLeft.z); 

        } 

    } 

 

 

 

So far, a full overlap stereoscopic effect has not been achieved yet since both eyes are still 

viewing the exact same video signal. The FoV needs to be adjusted. Based on the HMD’s 

specifications, the FoV of each camera-eye was set to 90 ° and the cameras were rotated by 

13 ° left and right respectively.  

The figure below depicts how the cameras position, rotation and FoV are set.  

 

 

Figure 41: Stereoscopic Cameras' Field of View. The Left and Right Cameras are Rotated by 13o with a Field of 
View 90o each. The Field of View of the Left and Right Cameras are in a Yellowish and Orange Shade Respectively. 

The Stereo View of the Scene is in a Pink Shade. 
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Finally, in order to display the scene to the user, the eye cameras’ video signals must be 

projected on two planes that depict the HMD screens. A plane is a flat model on which 

materials and textures can be applied on. In our case, we added two components on each 

plane. A render texture that allows a video signal to be set as a texture on a material and the 

material to apply the render texture on. So, to be more specific, the video signal of the left 

camera-eye was assigned to the left render texture and then that texture assigned as the 

material of the left plane. Respectively, the same steps were applied for the right plane. 

Both textures’ size was set to 1024 x 1024 pixels. Basically, it is exactly like the technique a 

projector uses, but in our case the surface that the image, video signal, is projected are the 

two planes. 

 

5.2 Handling User Input 
 

Navigation through the interface is limited and specified by rotating around a main pivot. 

There are three different type of inputs according to the purpose of this thesis; gaze data 

inputs, head data inputs and a single button input. Initially, two user inputs would allow 

interaction with the application, eye gaze data and head orientation data. The eye gaze data 

would not only simulate the traditional mouse movement and move the mouse cursor 

respectively based on where the user looks but would also simulate the mouse click by 

detecting blinks.  

In the very beginning, once the first out of the six applications was completed, we tried to 

apply the above interaction technique; controlling the whole application only with gaze data. 

With our preliminary approach this interaction lead to a common issue that occurs while 

using eye tracking to control an interface known as the Midas’ touch problem. Certain eye 

movements are involuntary and accidental interface activation is frequent [5]. Due to the 

way the ViewPoint Software dealt with blinks, it was very difficult to apply settings to 

accurately detect an intentional blink with a duration longer than the normal autonomous 

blink As the eye lid comes down during a blink, the ellipsis that the ViewPoint software tries 

to fit to the pupil in order to “read” the gaze becomes increasingly flat before it disappears. 

This flattening, allows the software to detect blinks since it crosses below a set threshold. 

The normal semi-autonomous blinking, in other words the non-intentional blinking, can be 

detected almost accurately since the ellipsis is below threshold for less than 350 

milliseconds, in average, and thus it “finds” the pupil almost immediately. In 99% of our 

cases, wanting to detect blinks that were larger or equal to one second, the minimum 

estimated time for both our application and more important the user feeling comfortable 

with keep his one eye closed in order to click on an object, was never detected.  

This happened because despite the elliptical fit being flattened since it couldn’t find a pupil, 

it would randomly detect the pupil at the user’s eyelashes until the blink would be 

considered as a click-blink. After many tests and hours of research, we figured out that this 

was impossible and if it were possible, precise settings of the elliptical fit’s threshold would 
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be necessary for each individual user. But, even if we found the exact settings for a single 

individual, other factors such as the infrared camera’s reflections or external environmental 

light would lead to false blink detections. Since false blink detection would lead to random 

clicks on objects and therefore non-intended interactions with the interface we decided to 

comment the code out of the project and instead replace it with a single button input or 

more specific the “space” key of the computer’s keyboard. However, if a different eye 

tracker or HMD is used it is possible that the disabled code may work with minor changes in 

the blink detection algorithm. 

 

The simplest of both is head trackers data input. While immersed in the interface, the user 

may rotate around the scene using his head and by sitting on a swivel chair to be more 

comfortable. The rotation is in both horizontal (yaw) axis and vertical (pitch) is 360o. The 

user input was captured through the head-tracking device IntertiaCube3. 

Both input types will be explained in detail in the following chapters. 

 

5.3 Communication with the Eye - Tracking Device (.dll) 
 

As mentioned in previous chapters, the data from the infrared cameras of the Eye-tracking 

device is done through the SDK that ViewPoint EyeTracker® of the Arrington Research 

Company provides for third parties applications. More specific, the SDK comes with a 

dynamic link library named VPX_InterApp.dll which allows any third party application to 

interact with the eye –tracking device. The dynamic linked library must be saved in the same 

folder as the Unity executable file in order to be accessed by the application. 

In order to interact with the eye-tracking device, our application needed to register with the 

dynamic link library. After the registration, the application obtains a unique message 

identifier used by ViewPoint for inter-process communication. Since the source code of the 

Figure 42: ViewPoint Software Detecting a Blink Once the Eye Lid Closes (Left) but unfortunately it Almost 
Immediately identifies the eye lashes as a pupil. (Right) 
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dynamic linked library is already precompiled, and written in C++, we had to create a new 

class MyVPX in C# that will bind the library with our application. 

C# allows to make calls to native code from managed applications, in our case Unity3D, 

through the DLLImport attribute. The DLLImport attribute tells the compiler to declare a 

function residing in the VPX_InterAPP.dll. So, in our case the code below “reads” the needed 

functions from the dynamic linked library. Below are the functions in the library that are 

called inside Unity3D. 

 

 

[DllImport(vpx_dllPath)] 
unsafe public static extern int VPX_GetGazePoint(VPX_RealPoint *gp ); 
 

[DllImport(vpx_dllPath)] 
unsafe public static extern int VPX_GetGazePoint2(int eye, 

VPX_ReaPoint *gp ); 
     

[DllImport(vpx_dllPath)] 
unsafe public static extern int VPX_GetGazePointSmoothed2(int eye, 

VPX_RealPoint *gp ); 
     

[DllImport(vpx_dllPath)] 
unsafe public static extern int VPX_GetDataQuality2(int eyn, int 

*quality); 
 

[DllImport(vpx_dllPath)] 
unsafe public static extern int VPX_InsertCallback (Func <int, int, 

int, int, int> callbackfunc); 
 

[DllImport(vpx_dllPath)] 
unsafe public static extern int VPX_RemoveCallback (Func< int, int, 

int, int, int> callbackfunc); 
     

[DllImport(vpx_dllPath)] 
public static extern VPX_EyeEventType VPX_GetBlinkEvent2(int eyn ); 
 

 

 

 

As we can see above, there is an unsafe command in front of each function declaration. C# 

allows using pointer variables in a function code block when it is marked by the unsafe 

modifier. The unsafe code or the unmanaged code is a code block that uses a pointer 

variable. However, unsafe code cannot be compiled by Unity 3D. This was solved by adding 

two files in our Unity3D project folder, a smcs.rsp file and a gmcs.rsp, containing only the 

command shown below. 

 

 

 

-unsafe 

 

Eventually after the successful registration with the Eye-tracking software, myVPX class 

defines a callback function which is managed by the library VPX_InterApp.dll. Unfortunately, 

inside the callback functions limited coding can be used. Since it interacts with native code 

written in other programming language, C++, only common types such as integers or 

characters can be defines and used. Otherwise the application will crash. For example, c# 

tolerates strings in a different way C++ does, causing inter-process communication to fail 



Chapter 5 – Implementation (Scripting) 

   60 
 

since these languages understand string data types in different ways. Below is the function 

that establishes Unity and ViewPoint inter-process communication. 

 

 

 

 

VPX_InsertCallback (theCallBackFunction2); 

 

The theCallBackFunction function is responsible for the data exchange between the library 

and the UI’s executable file and will be described later on. When a connection is established, 

we can see from the ViewPoint software that in the Status Window the attribute of DLL 

Sharing has been changed by 1; this shows the number of third party applications that are 

registered. 

 

Figure 434: The Status Window of the Viewpoint Software Shows the Total  Number of Registrations from Third 
Party Applications 

Every new “fresh” data arrives in the ViewPoint application from the frame grabber and the 

application sends it to all the other programs that are registered. Then the library 

VPX_InterApp.dll calls every function that was defined as callback for each application, 

passing the “fresh” data. As “fresh” data we mean the message which can inform the 

application that new data is available about a change on eye fixations or an infrared camera, 

and in general useful data about the eye. Every time “fresh” data is available quality checks 

are made, using the VPX_GetDataQuality2 () function of the VPX_InterApp.dll and depending 

on the resulted quality code gaze data are fetched using the VPX_GetGazePoint2 () function.  

 

Table 1: Quality Codes and the Respectively Information about the New Data Received  

Quality Code Information  

5 Pupil scan threshold failed.  

4 Pupil could not be fit with an ellipse.  

3 Pupil was bad because it exceeded criteria limits.  

2 Wanted glint, but it was bad, using the good pupil.  

1 Wanted only the pupil and got a good one.  

0 Glint and pupil are good.  



Chapter 5 – Implementation (Scripting) 

   61 
 

Depending on quality code, data is either fetched or discarded. Quality codes “0”, “1” and 

“2” are considered as good data and fetched. On the other hand codes “3”,”4”,”5” are 

discarded. Possible reasons for these errors are either the user blinked or an impropriate 

eye movement was made or the infrared camera was instantly shaken due to sharp spin of 

the HMD. 

 

 

 

unsafe int theCallBackFunction2(int msg, int subMsg, int param1, int 

param2){ 
VPX_RealPoint gp_0;  
//VPX_EyeEventType blnk; 

int qualityData; 
//Debug.Log ("Quality Data "+qualityData); 

//VPX_GetDataQuality2(1,&qualityData); 
//if (qualityData == 3 && VPX_GeBlinkEvent2(1) == 

//VPX_EyeEventType.VPX_EVENT_Blink_Continue) { 
//Debug.Log("blinkingA..."); 
//isBlinking=1; 
//endblink=0; 

//}  

 

VPX_GetDataQuality2(0,&qualityData); 
if (qualityData == 1 || qualityData == 0||qualityData == 2) 

{//pupil(1) or Pupil & glint(0) are good.GET data 
//VPX_GetGazePoint2(0,&gp_0);       
VPX_GetGazePointSmoothed2 (0, &gp_0); 

      //VPX_GetBlinkEvent2 (0); 
      //isBlinking=0;  
      trackerData.x = gp_0.x; 
      trackerData.y = gp_0.y; 
      //endblink=1; 
} 
return 0;  

} 

 

In the end, when we exit the application, we must end the binding that was made with the 

dynamic linked library of the ViewPoint software. This action is mandatory because every 

time we would close our application, it would crash because ViewPoint would keep on 

sending data, or at least try, to a receiver that would not exist anymore. 

 

 

void OnApplicationQuit(){ 
      int removed=VPX_RemoveCallback (theCallBackFunction2); 

Debug.Log ("exit  "+removed); 
} 
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5.4 Communication with the Head - Tracking Device (.dll) 
In a similar way, data is passed from the head tracking device through the InterCube3 

software’s SDK using a link with trackers dynamic linked library, isense.dll; the DLL must be 

saved inside the System32 Windows directory. Two are the main classes that are responsible 

for the communication between the two applications, StereoCamLook and HeadTracker 

scripts. Below we will explain how connection is established and how data is retrieved from 

the device. TheHeadTracker class is responsible to establish the communication between the 

two applications and retrieving the data from the tracker and the StereoCamLook class is 

responsible for passing the data as the Euler angles of the “head” model in our application. 

The dynamic linked library is accessed with C#’s DLLImport attribute, exactly as described 

previously about communication with the eye-tracking software. Below, the function 

declaration is shown: 

 

 

public const string isense_dllPath = "C:\\Windows\\Sytem32\\ 

isense.dll"; 
 

[DllImport(isense_dllPath)] 
unsafe public static extern int ISD_OpenTracker( 

IntPtr hParent, 
int commPort, 
bool infoScreen, 
bool verbose 

   ); 
     

[DllImport(isense_dllPath)] 
unsafe public static extern bool ISD_CloseTracker(int handle); 
 

[DllImport(isense_dllPath)] 
unsafe public static extern float ISD_GetTime(); 
 

[DllImport(isense_dllPath)] 
unsafe public static extern bool ISD_GetTrackerConfig( 

int handle, 
ref ISD_TRACKER_INFO_TYPE Tracker,  
bool verbose 

   ); 
 

[DllImport(isense_dllPath)] 
unsafe public static extern int ISD_GetTrackingData( 

int handle,  
ref ISD_TRACKING_DATA_TYPE Data 

   ); 
     

[DllImport("isense.dll")] 
public static extern bool ISD_GetStationConfig( 

int handle, 
      ref ISD_STATION_INFO_TYPE Station, 
      int stationID,  
      bool verbose 
   ); 
 

[DllImport("isense.dll")] 
public static extern bool ISD_ResetHeading(  

int handle, 
      int stationID  
   ); 
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Using the ISD_OpenTracker function, the application seeks for the tracker that is connected 

to the computer and if a tracker is detected then a timer is set to count the connection 

duration and with ISD_ResetHeading synchronization to the tracker is done. After successful 

connection, head tracking data are passed from the device to our application by calling the 

ISD_GetTraackingData function once per frame. Once the user decides to exit the 

application, ISD_CloseTracker is called to terminate smoothly the connection without 

crashing. 

The data are passed from the one class to the other using the PlayerPrefs attribute that is 

allowed in Unity3D:  

 

 

PlayerPrefs.SetFloat ("StereoEuler_y",data.Euler[0]); 
PlayerPrefs.SetFloat ("StereoEuler_x",-data.Euler[1]); 
PlayerPrefs.SetFloat ("StereoEuler_z",-data.Euler[2]); 

 
 

 

Respectively, the yaw, pitch and roll orientation data that are received from the tracker, are 

then used by the StereoCamLook Class as inputs in order to adjust the head models’ 

orientation, using the PlayerPrefs’ Get method. 

 

 

float eulerX, eulerY, eulerZ; 

 

eulerX = PlayerPrefs.GetFloat ("StereoEuler_x"); 

eulerY = PlayerPrefs.GetFloat ("StereoEuler_y"); 

eulerZ = PlayerPrefs.GetFloat ("StereoEuler_z"); 

 

myHead.transform.eulerAngles = new Vector3 (eulerX, eulerY,eulerZ); 

 

 

 

In the end, when we exit the application, the ISD_CloseTracker function is responsible to 

terminate the connection. 

 

 

void OnApplicationQuit(){ 

ISD_CloseTracker (handle); 

} 

 

 

 

 

5.6 Deprojection of eye’s gaze data 
 

As projection we refer to the transformation from the 3D world coordinate system to the 2D 

screen coordinates. On the other hand, deprojection refers to the transformation of a 2D 

screen coordinate into a 3D world space origin and direction. In our situation we are 

interested in deprojection since they eye gaze input should be used to detect objects in the 

scene. The process of deprojection will be explained below in detail with some basic source 

code samples. 
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The data received form the ViewPoint application is raw data of the user’s gaze in 2D 

coordinates normalized between values zero and one, in both x and y axis.  Since each point 

in a 3D scene is described with a three-dimensional coordinate system with origin and 

direction, this data is not useful as it cannot be used to determine which object in the 3D 

world space a participant is looking at. Therefore, this screen point must be transformed in a 

Vector3, with origin and direction, components of a ray. The ray or even better RayCast, 

known as the procedure of casting a ray, is casted from a specific origin and has a direction, 

therefore has meaning in a 3D world, and can determine what objects in the world the user 

is aiming at with the mouse, and in our situation with by gaze data. 

The eye’s gaze data from the ViewPoint software are normalized between zero and one. 

Thus, these 2D coordinates must be converted into 2D screen coordinates. Since the total 

resolution, as mentioned in previous chapters, of our screen is 2560 x 1024 pixels every gaze 

data value has to be multiplied and scaled based on this custom resolution. Also, since our 

initial thought was to use the right eye only as a blinking input, in order to apply clicks, only 

the left eye’s data are used and therefore, only the left half of the screen, 0 to 1280 pixels, 

horizontally will be deprojected into the scene. 

 

 

 

function translateToPixels(){ 
         

        if (gaze_x>=0 && gaze_y>=0){ 
            cross_x = gaze_x * 1280.0; 
            cross_y = (1.0-gaze_y)* 1024.0; 
        } 
} 

 

 

 

 

On the above cited source code, gaze_x and gaze_y are the data that are received from the 

eye tracking device. We only accept positive values since negative values of gaze data are 

data with noise and therefore should be discarded. Also, the screen coordinate system 

values on the vertical axis increase from bottom to the top however the gaze data vertical 

values increase from top to the bottom thus we have to inverse the values before the data 

are scaled based on the resolution.  

Having transformed the 2D gaze data into 2D screen coordinates the next step is to cast a 

ray with origin and direction into the scene. The ray must be casted in order to determine 

what the user is looking in the 3D world. The ray is casted every frame having as the origin 

the left eye-camera and direction of the z axis of the 3D scene and an infinite depth. If the 

ray cast doesn’t hit anything then no action is taken but if it hits a gameobject then we have 

all the information of that gameobject; the gameobject must have a collider component, 

else the ray doesn’t detect it. In our project, the hit information that we consider is the 

gameobject’s name or tag; as a tag we refer to number of objects that are labeled as a 

group. A respective sample code is the following:   
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var hitInfo : RaycastHit = new RaycastHit(); 
var ray : Ray ; 
Debug.DrawRay(ray.origin, ray.direction * 10000, Color.red); 

if (Physics.SphereCast(ray.origin,0.1f , ray.direction, 

hitInfo,Mathf.Infinity)){ 
         if (hitInfo.transform.tag == "something"){ 
                    if (Input.GetKeyUp(KeyCode.Space)){ 
      

    /* 

     * Do something 

     */ 

    } 
} 

} 

 
 
 

 

Depending on the phase that the application is during a raycast hit, the main controller class 

of the interface decides what actions, initializations, scripts or models must be loaded. 

 

 

5.7 Logging of Events  
 

The application was recording every event that was happening during the runtime of the 

application. As an event was considered every interaction or selection using the users gaze 

and the single button as inputs. Each log entry reported the specific gameobject that the 

user was looking at and ‘clicked’ on along with the exact time it happened. The time was 

measured in seconds after the start of each experiment and was reset every time the 

application was run. Also, data such as the gaze coordinate and screen deprojection of the 

eye data were held but proved meaningless for the statistical analysis that will be explained 

on chapter 6. All this data was organized in a database using the SQLite Database Engine. 
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Chapter 6 – User Study 
 

6.1 Material and Methods 
 

This user study was designed to evaluate the proposed eye-tracked interaction and the 3DUI 

paradigm. We aim to explore the effect of eye-tracking and in what rate users actually prefer 

the traditional methods in order to interact with a 3D MUI. The experimental methodology 

and procedure will be descried in detail in the following sections. 

 

6.1.1 Apparatus 
 

A total of 7 post-graduates from Technical University of Crete, 5 males and 2 females with 

mean age 24.3, participated in the experiment. All participants had normal or corrected to 

normal vision and no reported neuromotor or stereovision impairment. The test VE was set 

up in a dedicated experimental space on campus, which was darkened to remove any 

periphery disturbance during the exposure.  

The 3D MUI was displayed on an NVisor TM SX111 HMD, having a stereo SXGA resolution and 

a FoV of 102 degrees horizontal by 64 degrees vertical. Participants panned around the VE 

using an InterSense TM InertiaCube3TM 3DoF head tracker attached to the HMD. Eye-

tracking data was recorded using a twin-CCD binocular eye-tracker by Arrington Research TM, 

also attached to the HMD updating at a frequency of 30Hz. 

 

6.1.2 Visual Content and Experimental Procedure 
 

We conducted a pilot study in order to identify which application required the greatest gaze-

tracking accuracy. The study indicated that the Mail Composer was the most suitable 

application to assess task accuracy requiring complex eye movements such as typing on a 

virtual keyboard. 

The experiment was set to be completed in three stages by each participant. The first stage 

was a training session. During this stage, the participants were able to familiarize themselves 

with the device and understand how gaze control works and appropriate adjustments were 

made individually for each one. The second stage, which is the main phase of the 

experiment, the participant was asked to perform a specific task and data was recorded. The 

third and final stage took effect when participants finish with the task and were asked to 

complete a questionnaire about their experience. Below, the three stages of the experiment 

will be explained in detail. 
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Phase 1 

During the first stage, appropriate adjustments were conducted accordingly for each 

individual. Initially, the participant was asked to fill in his personal information in order to 

save in the database and the procedure was explained. Ensuring that they have understood 

the procedure, the next step was to wear the HMD and adjust it in order for them too feel 

comfortable and achieve the best stereoscopic view. This was achieved by moving slightly 

the position of the HMD on his head and by matching his IPD. After feeling comfortable and 

having a good sense of the stereoscopic view without side-effects we set the infrared 

cameras of the HMD in a static position in order to start the calibration of the eye’s gaze. 

Participants were instructed how to conduct the calibration process described in Chapter 

3.2.3. For two subjects, the calibration process was conducted more than once. Having 

everything set up, the training VE was loaded and the users freely navigated through it as 

much time as they wanted.  

Phase 2 

After ensuring that the participant felt comfortable and seeing that he could actually control 

the interface through his gaze, the main scene of the experiment was loaded. At this point, 

we remind the basic task that he has to complete; the task was divided into two parts. 

Firstly, Each user was asked to compose a dictated email by moving their eyes to select 

letters on the virtual keyboard and by pressing a switch, the “space” key from a keyboard 

was used, he could select the letter or symbol we wished to write. Then, the same email was 

written using the traditional keyboard while still being immersed in the scene; thus the 

keyboard was occluded by the HMD and the participant had no vision of it. Each gaze input 

or keyboard press respectively, accuracy and task completion times were inserted in the 

database for later on analysis. All but one participants (that was excluded from the analysis 

due to insufficient eye tracking data) successfully executed both tasks by wearing the eye-

tracking HMD. 

Phase 3 

Following the experiments, participants were asked to fill in a questionnaire about their 

experience. They were asked to rate their experience when using the 3D MUI on a 1-7 Likert 

Scale, by answering four questions, commonly used in qualitative assessments of 3D UIs 

[13]: 

(i) The 3D UI is as comfortable as the traditional mouse-keyboard paradigm.  

(ii) I felt more tired when using the 3D UI than with the traditional mouse-keyboard 

paradigm.  

(iii) The 3D UI was more interesting when using it compared to traditional mouse-

keyboard paradigm.  

(iv) I prefer the 3D UI more than the traditional mouse-keyboard paradigm.  
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6.1.3 Simulator Sickness 
 

A potential side effect of all HMDs is simulator sickness. As simulator sickness we refer to 

fatigue, headaches, dizziness, visual discomfort and nausea that appear while someone is 

immersed in a VE. Also, some other side effects that were met during the experiments was 

eyestrain and changes in balance. Usually, these effects are caused due to system latency 

[14, 15], limitations to Field of View [14], to image scale factor [15], etc. In our situation, the 

hugest factor that causes most of the side effects is the IPD. Improper adjustments of the 

IPD perceives dissimilar imagery from their eyes that causes dizziness and fatigue.  

Nevertheless, the experiments reported here were conducted without any participant 

interrupting the procedure because of simulator sickness. Only fatigue, as expected, was an 

issue since all the users never had past experience with eye-tracking and gaze control 

systems. 

 

6.2 Results and Discussion 
 

An independent-samples t-test was conducted to compare type rate with the eye-tracker 

versus occluded keyboard input. There was a significant difference in the scores for the eye-

tracker (M=257.6s, SD=5570.3) and keyboard (M=123.3s, SD=7169.0) conditions; t(6) = 2:91, 

p < 0:05. These results suggest that participant’s type about 2 times slower on average with 

the eye-tracker interface. 

 

Table 2: (Left) Comparison of Task Completion Times for the Eye Tracker Input Versus Blind Keyboard Input for all 
Subjects. (Right) Comparison of Type Errors for the Eye Tracker Input Versus Blind Keyboard Input for all Subjects 
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However, analyzing the type error rate for both interfaces (9: 3% for the eye-tracker vs. 54: 

19% for the occluded keyboard) indicated that despite the fact that users type faster when 

utilizing the out-of-view keyboard, they make many more errors. The results of the 

qualitative analysis and thorough discussion with the test subjects indicated that the 

proposed interaction method is much more enjoyable than a standard keyboard. Fatigue 

levels where found to be the same for both interfaces, with the exception of one subject. 

Usage of a 3D UI keyboard does not require good typing skills. After interaction with the rest 

of the applications, participants stated that they would certainly opt for the 3D UI since it 

feels more futuristic and therefore more exciting for the users. 

 

 

Table 3: Responses on the Four Questions of the Qualitative Questionnaire for the 3D UI Keyboard. 
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Chapter 7 – Conclusions  
 

The purpose of this thesis was to employ eye tracking technology as a new interaction 

technique in VR and Immersive applications. Eye movements seem to be an ideal means to 

be used for interface control while immersed in a virtual environment. Moving the eyes over 

long distances on the screen required less effort when compared to other control methods 

[5]. We have showed that the user can move a cursor by simply gazing at the intended 

location. However, many eye movements are involuntary and in combination with the 

technology being used to detect gaze changes may lead to a certain ‘’Midas Touch’’ [5] 

problem. Such problems can be dealt with by combining eye movements with other input 

devices; a single button input or even speech commands.  

Our contention is that eye-movement tracking represents a promising technique that can 

offer useful advantages for user interfaces in VR. A first intuitive application for such a 

method is interfacing with a computer for disabled users not able to move their hands to 

control a mouse or keyboard. Eye tracking techniques are expected to become more popular 

as this technology becomes increasingly more affordable and easier to use. The future 

seems promising for eye tracking and HCI. 
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 (Eye Movements)  
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Appendix B: User Study Questionnaire 
Employing binocular eye tracking for the control of a custom made 

immersive multimedia user interface 

Φόρμα Συγκατάθεσης 

Σας ζητείται να συμπληρώσετε ένα ερωτηματολόγιο το οποίο θα βοηθήσει την έρευνα και το πειραματικό 

στάδιο μιας προπτυχιακής εργασίας που πραγματοποιείται στο Πολυτεχνείο Κρήτης, στο τμήμα Ηλεκτρονικών 

Μηχανικών και Μηχανικών Υπολογιστών. Υπεύθυνοι αυτού του πειράματος είναι ο προπτυχιακός φοιτητής 

Σιδωράκης Νικόλαος, ο υποψήφιος διδάκτορας Κουλιέρης Γεώργιος Αλέξανδρος και η αναπληρώτρια 

καθηγήτρια Μανιά Κατερίνα. Η έρευνα πραγματοποιείται για την επαλήθευση μιας τρισδιάστατης διεπαφής 

χρήστη. Αναμένεται να απασχοληθείτε το πολύ 10 λεπτά. Θα χρησιμοποιήσουμε τα δεδομένα σας ανώνυμα 

μαζί με πολλά άλλα άλλων συμμετεχόντων. 

Κατανοείτε τη φόρμα συγκατάθεσης?  Ναι Όχι 

Δίνετε τα δεδομένα σας για περαιτέρω ανάλυση στα πλαίσια της παρούσας εργασίας?  Ναι Όχι 

Επιβεβαιώνετε ότι είστε τουλάχιστον 18 χρονών?  Ναι Όχι 

Ονοματεπώνυμο  

E-mail  

Ηλικιακή ομάδα 18-22       23-27       28-32       33-37         38-42        > 43 

Φύλο Αρσενικό           Θηλυκό 

Ημερομηνία 31 / 1 / 2015 

Αν σπουδάζετε τώρα 
παρακαλώ επιλέξτε ποια 

είναι η βαθμίδα σας 

 
Προπτυχιακός        Μεταπτυχιακός         Διδακτορικός 

 

 

Υπογραφή 

Ερωτηματολόγιο 

Η τρισδιάστατη διεπαφή ήταν το ίδιο άνετη στη χρήση σε σχέση με τον παραδοσιακό τρόπο 

αλληλεπίδρασης 

 

Διαφωνώ απόλυτα Αδιάφορο Συμφωνώ απόλυτα 

1 2 3 4 5 6 7 
 
 
Ένιωσα περισσότερη κούραση κατά τη χρήση της τρισδιάστατης διεπαφής σε σχέση με τον 
παραδοσιακό τρόπο αλληλεπίδρασης 
 

Διαφωνώ απόλυτα Αδιάφορο Συμφωνώ απόλυτα 

1 2 3 4 5 6 7 
 
 
Η τρισδιάστατη διεπαφή ήταν πιο ενδιαφέρουσα σε σχέση με τον παραδοσιακό τρόπο 
αλληλεπίδρασης 

 
 

Διαφωνώ απόλυτα Αδιάφορο Συμφωνώ απόλυτα 

1 2 3 4 5 6 7 
 
 
Προτιμώ περισσότερο την τρισδιάστατη διεπαφή σε σχέση με τον παραδοσιακό τρόπο 
αλληλεπίδρασης 
 

Διαφωνώ απόλυτα Αδιάφορο Συμφωνώ απόλυτα 

1 2 3 4 5 6 7 

 


