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Abstract— This paper proposes a freeway traffic controller
with the objective of minimizing, at the same time, congestion
phenomena and traffic emissions. A multi-class framework is
considered in the paper, i.e two classes of vehicles (cars and
trucks) are explicitly modelled and specific control actions
for each vehicle class are computed. The controller is based
on the formulation and solution of a constrained discrete-
time nonlinear optimal control problem for which a specific
solution algorithm, the feasible direction algorithm, is used. The
effectiveness of the proposed approach is shown and discussed
in the paper by means of some simulation results.

I. INTRODUCTION

In order to reduce congestion in freeway systems, different

control measures can be adopted, such as ramp metering

which enables to regulate the inflow of vehicles from on-

ramps. One of the first effective ramp metering strategies is

the local feedback traffic controller ALINEA [1], developed

in the Nineties, that has been successfully applied in practice

in many cases. During the years, ALINEA has been further

extended, resulting in the proportional-integral version PI-

ALINEA [2], or through a coordination of the local ramp-

metering actions which yields the linked control of the inflow

from consecutive on-ramps [3].

Among the existing traffic control methodologies, some

approaches are based on optimization or optimal control

algorithms. In some cases, the problem of controlling a free-

way is formulated as a discrete-time constrained nonlinear

optimal control problem (see [4] and the references therein),

whose numerical solution is often hard to find by directly

using the available Nonlinear Programming codes, because

of the problem dimensions and complexity. A very efficient

numerical solution has been adopted in the optimal freeway

traffic control tool AMOC [5], [6], in which the so-called

feasible direction algorithm is used. More recent works

propose sophisticated control architectures, again based on

AMOC, such as the three-layer hierarchical control approach

described in [7] and the mainstream traffic flow control

scheme proposed in [8]. Optimal control algorithms may be

also embedded in Model Predictive Control (MPC) schemes,

using real-time measurements as initial states. For instance,
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in [9], [10] nonlinear MPC frameworks adopting the macro-

scopic model METANET [11] for prediction are presented.

Also in these works, nonlinear optimization problems have

to be solved, since the prediction model is nonlinear, thus

efficient numerical solution algorithms are needed to enable

on-line applications for large freeway networks.

Most of the research works on traffic control are devised

to minimize congestion, often measured in terms of total

time spent by the drivers, whereas in few recent works

other cost terms are considered, such as the minimization of

traffic emissions (see [12], [13], [14]). In order to explicitly

consider traffic emissions as an objective to be minimized,

models for evaluating hot exhaust emissions are needed.

Among others, simple but very widespread models are the

so-called average-speed emission models which assume that

the average emission factor for a certain pollutant and a given

type of vehicle only depends on the average speed during a

trip [15]. These models have been studied and periodically

updated on the basis of real measured data obtained from

different sources [16].

In this paper, we propose a freeway traffic control ap-

proach which considers, as control objectives, both the

minimization of traffic emissions and the reduction of traffic

congestion. A similar idea was proposed in [14], [17], where

the control scheme was based on a local regulator inspired by

ALINEA. In this work, instead, an optimal control problem

is formulated and solved by applying the feasible direc-

tion algorithm and, in particular, a specific version of this

algorithm which considers the derivative backpropagation

method RPROP. A further characteristic of this work is that

a two-class macroscopic traffic model (based on METANET

model) and a two-class controller are considered. First of

all, considering a two-class traffic model allows to represent

the system behaviour more accurately than with a one-

class macroscopic model. Secondly, it is possible to devise

separate control actions for the two vehicle classes, properly

actuated with separate on-ramp lanes and signals for cars

and trucks. The two-class model considered in this paper has

already been adopted in [14], [17]. Other multi-class models

have been studied ([18], [19]) and in some cases adopted in

MPC approaches [20], [21].

The paper is organized as follows. Section II introduces the

modeling framework. In Section III the optimal control prob-

lem is stated while the adopted numerical solution algorithm

is described in Section IV. In Section V simulation results

are discussed, and the conclusions are drawn in Section VI.



II. THE ADOPTED MODELS

The considered two-class macroscopic traffic flow model,

derived from METANET [11], is based on the division of

the freeway stretch in N sections (i = 1, . . . , N indicates

the section) and the discretization of the time horizon in

K time steps (k = 0, . . . ,K denotes the temporal stage).

Moreover, c = 1, 2 represents the vehicle class (cars and

trucks, respectively), T is the sample time interval and Li is

the length of section i.

The main aggregate variables of the considered model are

the following:

• ρi,c(k) is the traffic density of class c in section i at time

kT (expressed in vehicles of class c per kilometre);

• ρi(k) is the total traffic density in section i at time kT
(expressed in cars per kilometre);

• vi,c(k) is the mean traffic speed of class c in section i
at time kT (expressed in kilometre per hour);

• qi,c(k) is the traffic volume of class c leaving section

i during time interval [kT, (k + 1)T ) (expressed in

vehicles of class c per hour);

• li,c(k) is the queue length of vehicles of class c waiting

on the on-ramp of section i at time kT (expressed in

vehicles of class c);
• di,c(k) is the traffic volume of class c requiring to

access section i from the on-ramp during time interval

[kT, (k + 1)T ) (expressed in vehicles of class c per

hour);

• ri,c(k) is the on-ramp traffic volume of class c entering

section i during time interval [kT, (k+1)T ) (expressed

in vehicles of class c per hour);

• ri(k) is the total on-ramp traffic volume entering section

i during time interval [kT, (k+1)T ) (expressed in cars

per hour);

• si,c(k) is the off-ramp traffic volume of class c exiting

section i during time interval [kT, (k+1)T ) (expressed

in vehicles of class c per hour).

The considered model includes some traffic parameters.

Specifically, vfi,c and rmax
i,c are, respectively, the free-flow

speed (expressed in kilometres per hour) and the on-ramp

capacity (expressed in vehicles of class c per hour) referred

to class c = 1, 2 and section i = 1, . . . , N . Moreover,

ρcri and ρmax
i represent, respectively, the critical density

and the jam density (expressed in cars per kilometre) of

section i = 1, . . . , N . Finally the parameter ς is a conversion

factor between cars and trucks. Its meaning is analogous to

the definition of passenger car equivalents (PCE), as better

detailed in [22]. In this work a constant factor ς is considered,

assuming that it has been suitably estimated on the basis

of real data. The two-class dynamic model is given by the

following equations

ρi,c(k + 1) = ρi,c(k) +
T

Li

[

qi−1,c(k)− qi,c(k)

+ ri,c(k)− si,c(k)

]

(1)

vi,c(k + 1) = vi,c(k) +
T

τc

[

Vi,c(k)− vi,c(k)

]

+
T

Li

vi,c(k)
(

vi−1,c(k)− vi,c(k)
)

−
νcT

(

ρi+1(k)− ρi(k)
)

τcLi

(

ρi(k) + χc

) − δonc T
vi,c(k)ri(k)

Li(ρi(k) + χc)
(2)

li,c(k + 1) = li,c(k) + T
[

di,c(k)− ri,c(k)
]

(3)

c = 1, 2, i = 1, . . . , N , k = 0, . . . ,K − 1, where τc, νc, χc,

δon,c, c = 1, 2, are suitable parameters.

The traffic flow is obtained as

qi,c(k) = ρi,c(k) · vi,c(k) (4)

c = 1, 2, i = 1, . . . , N , k = 0, . . . ,K − 1, and the steady-

state speed density relation Vi,c(k) can be expressed as

Vi,c(k) = vfi,c ·

[

1−

(

ρi(k)

ρmax
i

)lc]mc

(5)

c = 1, 2, i = 1, . . . , N , k = 0, . . . ,K − 1, where lc, mc,

c = 1, 2, are other model parameters specific for each class.

The total density and the total on-ramp traffic volume, for

i = 1, . . . , N , k = 0, . . . ,K − 1, can be computed as

ρi(k) = ρi,1(k) + ςρi,2(k) (6)

ri(k) = ri,1(k) + ςri,2(k) (7)

If the freeway system is controlled, the on-ramp entering

flow ri,c(k) is a portion µi,c(k) of the outflow r̄i,c(k) that

should access in the mainstream in the case without ramp

metering. Therefore µi,c(k) ∈ [µmin
i,c , 1] is the metering rate

for the on-ramp of section i at time step kT for class c, and

when µi,c(k) is set equal to 1 no ramp metering is applied.

Then

ri,c(k) = µi,c(k) · r̄i,c(k) (8)

r̄i,c(k) = min

{

di,c(k)+
li,c(k)

T
, rmax

i,c , rmax
i,c ·

ρmax
i − ρi(k)

ρmax
i − ρcri

}

(9)

with c = 1, 2, i = 1, . . . , N , k = 0, . . . ,K − 1.

In order to consider the traffic emissions in the freeway,

the average-speed emission model COPERT proposed in [16]

has been adopted. In this paper, we only consider gasoline

cars, split in four legislation emission categories (from Euro

1 to Euro 4). For the second class of vehicles, we consider

only half loaded trucks in the case of roads with no slope.

Let us start from cars. The hot emissions for a gasoline

passenger car of legislation emission category j are calcu-

lated as a function of the mean speed v, i.e.

Ξj
1(v) =

aj1 + ej1v + f j
1v

2

1 + bj1v + dj1v
2

(10)

where aj1, bj1, dj1, ej1 and f j
1 , j = 1, . . . , 4, are parameters

depending on the considered pollutant. The hot emissions for

a truck are given by

Ξ2(v) = a2 +
b2

1 + exp(−c2 + d2 ln(v) + e2v)
(11)



where a2, b2, c2, d2 and e2 are specific parameters.

Finally, let us recall some performance indicators used in

the paper. Starting from the indicators of traffic emissions,

ME indicate the emissions in the mainstream, which can be

computed as

ME =

K−1
∑

k=0

N
∑

i=1

[ 4
∑

j=1

Li · ρi,1(k) · γ
j
1 · Ξ

j
1

(

vi,1(k)
)

]

+

[

Li · ρi,2(k) · Ξ2

(

vi,2(k)
)

]

(12)

The first term in (12) considers the average-speed model

(10) referred to one single car of category j, multiplied by the

number of these cars, where γj
1 represents the composition

rate of cars of legislation emission j. The second term in (12)

considers the average-speed model (11) referred to one single

truck, multiplied by the number of trucks. The emissions in

the on-ramp, denoted as RE, are computed as

RE =

K−1
∑

k=0

N
∑

i=1

[ 4
∑

j=1

γj
1 · α

j
1 · li,1(k)

]

+

[

α2 · li,2(k)

]

(13)

where αj
1, j = 1, . . . , 4, and α2 are constant emission factors

obtained respectively from (10) and (11) in case of minimum

average speed. The Total Emissions in the freeway TE can

be computed as

TE = ME +RE (14)

The Total Time Spent (TTS), extended to the two-class

case, can be seen as the sum of the Total Travel Time (TTT )

and the Total Waiting Time (TWT ) and is computed as

TTS = TTT+TWT =

K−1
∑

k=0

N
∑

i=1

TLi

[

ρi,1(k)+ς ·ρi,2(k)

]

+

K−1
∑

k=0

N
∑

i=1

T

[

li,1(k) + ς · li,2(k)

]

(15)

The Total Travelled Distance (TTD) is given by

TTD =
K−1
∑

k=0

N
∑

i=1

[

Li · T

(

qi,1(k) + ς · qi,2(k)

)]

(16)

III. OPTIMAL CONTROL PROBLEM

The objective of the present work is to define a coordinated

ramp metering strategy in order to reduce traffic congestion

in the freeway and, at the same time, to minimize the total

emissions (both in the mainstream and at the on-ramps). The

control strategy is sought by defining and solving a finite

horizon nonlinear optimal control problem with constrained

control variables.

Combining the equations from (1) to (9), a discrete-time

dynamic system of the form

x(k + 1) = f
[

x(k), u(k)
]

(17)

can be obtained for the considered freeway system, where

x(k) is the state vector with x(0) = x0 and u(k) is the

vector of the control variables. In particular the state vector

consists of the densities ρi,c(k), the mean speeds vi,c(k),
and the queues li,c(k) for every section i = 1, . . . , N and

for each class c = 1, 2. The control vector corresponds to

the ramp metering rates µi,c(k), i = 1, . . . , N , c = 1, 2.

The general formulation of the optimization problem over

a finite horizon of K time steps is the following.

Problem 1: Given the system initial conditions x(0) =
x0, find the control sequence u(k), k = 0, . . . ,K − 1, that

minimizes

J = ϑ[x(K)] +

K−1
∑

k=0

ϕ
[

x(k), u(k)
]

(18)

subject to (17) and

umin ≤ u(k) ≤ umax k = 0, . . . ,K − 1 (19)

�

In accordance with the purposes of the considered ap-

proach, the chosen objective function is defined as

J = β · Γ · TE + (1 − β) · TTS

+

K−1
∑

k=1

N
∑

i=1

2
∑

c=1

wµ
i,c ·

[

µi,c(k)− µi,c(k − 1)
]2

(20)

with

µmin
i,c ≤ µi,c(k) ≤ 1

c = 1, 2, i, . . . , N, k = 0, . . . ,K − 1 (21)

The first two terms in cost function (20) are the Total

Emissions and the Total Time Spent, given respectively by

(14) and (15), reported to the same order of magnitude thanks

to coefficient Γ and arbitrarily weighted by β ∈ [0, 1]. The

third term in (20), with the weights wµ
i,c, i = 1, . . . , N ,

c = 1, 2, is introduced in order to prevent oscillations of

the control trajectories.

IV. NUMERICAL SOLUTION ALGORITHM

The numerical solution of Problem 1 may be obtained by

direct use of available Nonlinear Programming codes, but

this approach often presents unsurmountable difficulties in

the case of large freeway infrastructures, due to the problem

dimensions and complexity. A much more efficient numerical

solution is obtained by use of the feasible direction algorithm

which is adopted within the optimal freeway traffic control

tool AMOC [5] and leads to low computation times even for

very large-scale freeway traffic control problems, (see e.g.

[4], [8]). A version of this algorithm is therefore used for

the present problem. The solution determined by the feasible

direction algorithm consists of the optimal control actions

u(k), k = 0, . . . ,K − 1, and the corresponding optimal state

trajectories x(k), k = 1, . . . ,K , over the whole time horizon.

For a given control sequence u(k), k = 0, . . . ,K− 1, and

for a given initial condition, the state trajectory x(k + 1)
can be found by applying (17), so that the cost criterion

only depends on the control variables u(k) that can be

considered as the independent optimization variables. Thus,



the cost criterion can be expressed as J̄ [u(k)], and the

reduced gradient g(k) is given by

g(k) =
∂J̄ [u(k)]

∂u(k)
+

(

∂f
[

x(k), u(k)
]

∂u(k)

)T

· λ(k + 1) (22)

where the vector λ(·) is calculated via backward integration

by using the following

λ(k) =
∂J

[

x(k), u(k)
]

∂x(k)
+

(

∂f
[

x(k), u(k)
]

∂x(k)

)T

·λ(k+1)

k = 0, . . . ,K − 1 (23)

starting from the final condition

λ(K) =
∂ϑ

[

x(K)]

∂x(K)
(24)

Therefore the optimality conditions that have to be satisfied

are (17), (19), (23), (24). Moreover, a saturation vector

function sat(π) is defined by

sat(π) =











πmax, if π > πmax

πmin, if π < πmin

π, else

(25)

The adopted numerical algorithm, i.e. the feasible direc-

tion algorithm, is widely known in the literature. In this

work a specific version of this algorithm is used, that is the

derivative backpropagation method RPROP, in the version

proposed in [6], since its application to freeway traffic control

problems has led to effective results, as described in [6]. The

steps of the adopted algorithm follow.

1) Guess a feasible initial control sequence u(0)(k), k =
0, . . .K − 1, and set the iteration index ı = 0.

2) For each iteration ı, using u(ı)(k) and the initial

conditions x(0), apply (17) to calculate x(ı)(k + 1);
then, using x(ı)(k + 1) and u(ı)(k), apply (23) via

backward integration from the final state (24) to get

λ(ı)(k + 1).
3) Use x(ı)(k + 1), u(ı)(k) and λ(ı)(k + 1) to compute

the components of the reduced gradient g(ı)(k).
4) Apply the RPROP method to get a new, improved

admissible control sequence u(ı+1)(k) by applying

the following relation

u(ı+1)(k) = sat
(

u(ı)(k) + ∆u(ı)(k)
)

(26)

Each component ∆u
(ı)
i (k) of the control variable

increment ∆u(ı)(k) is calculated according to the sign

of the gradient component g
(ı)
i (k) and the increment

component at the previous iteration ∆u
(ı−1)
i (k), as

follows

∆u
(ı)
i (k) =



















−sign
(

g
(ı)
i (k)

)

η+∆u
(ı−1)
i (k)

if g
(ı−1)
i (k)g

(ı)
i (k) > 0

−sign
(

g
(ı)
i (k)

)

η−∆u
(ı−1)
i (k)

otherwise
(27)

where 0 < η− < 1 < η+. The algorithm starts with

∆u(0)(k) = ∆ verifying (26), while in the following

iterations (27) is applied. Nevertheless, at each iteration

the calculated ∆u(ı)(k) may be restricted in a specific

interval [∆min
,∆max

].
5) If for a given scalar σ the convergence test |J (ı+1) −

J (ı)|/J (ı) < σ is satisfied, stop; otherwise start a new

iteration ı = ı+ 1, and go back to 2).

V. SIMULATION RESULTS

This section presents some simulation results in which

the proposed control approach is compared with the two-

class PI-ALINEA regulator proposed in [14]. The considered

three-lane freeway stretch is composed of N = 20 sections,

each one with a length Li = 500 [m], i = 1, . . . , 20.

Moreover three on-ramps (in sections i = 12, 14, 16) and two

off-ramps (in sections i = 13, 15) are present. The sample

time is T = 10 [s] and a total time horizon of 2 and half

hours (K = 900) has been considered for the simulation

tests. The case study is characterized by trapezoidal demand

profiles for both vehicle classes, as shown in the left side

plots in Fig. 1. The mainstream flow is composed by 3900

[cars/h] and 86 [trucks/h] (344 [PCE/h]) and the exit flows

from the off-ramps are 5% of the relative mainstream flow.

Moreover, the ratio ς has been chosen equal to 4. In order

to apply the two-class PI-ALINEA, the set-point value for

the density is set equal to 160 [cars/km], while the adopted

parameters for the RPROP algorithm are η+ = 1.2, η− =
0.5, ∆max = 0.2, ∆min = 10−6, σ = 10−6.
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Fig. 1: No-control case (blue solid line for cars, blue dashed

line for trucks [PCE], red line for cars plus trucks [PCE]).

The plots in the right side of Fig. 1 report the density

evolution downstream the three on-ramps in case the freeway

is not controlled. The no-control case is characterized by a

high congestion in these downstream sections, in which for



0 0.5 1 1.5 2 2.5
0

100

200

300
Q

ue
ue

 [v
eh

]
On−ramp 1

0 0.5 1 1.5 2 2.5
0

100

200

300

D
ow

ns
tr

. D
en

s.
 [v

eh
/k

m
]

On−ramp 1

0 0.5 1 1.5 2 2.5
0

100

200

300

Q
ue

ue
 [v

eh
]

On−ramp 2

0 0.5 1 1.5 2 2.5
0

100

200

300

D
ow

ns
tr

. D
en

s.
 [v

eh
/k

m
]

On−ramp 2

0 0.5 1 1.5 2 2.5
0

100

200

300300

Q
ue

ue
 [v

eh
]

Time [h]

On−ramp 3

0 0.5 1 1.5 2 2.5
0

100

200

300

D
ow

ns
tr

. D
en

s.
 [v

eh
/k

m
]

Time [h]

On−ramp 3

Fig. 2: PI-ALINEA (blue solid line for cars, blue dashed line

for trucks [PCE], red line for cars plus trucks [PCE]).
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Fig. 3: Optimal solution with β = 0.5 (blue solid line for

cars, blue dashed line for trucks [PCE], red line for cars plus

trucks [PCE]).

most of the time the density is much higher than the fixed set-

point value. When the system is not controlled the resulting

Total Time Spent is TTS = 3080 [veh· h], and the Total

Emissions are TE = 907208 [g].

Fig. 2 shows the behaviour of the queue lengths and the

density downstream the three on-ramps in case the two-

class PI-ALINEA is applied. The traffic density is highly

reduced and a long queue is created only in the third

on-ramp (the TWT is equal to 271 [veh·h]). Moreover,

the TTS is reduced to 2673 [veh·h], which is a 13.2%
reduction compared with the no-control case, whereas the

TE are reduced to 732457 [g], i.e. corresponding to a

19.3% reduction in comparison with the no-control case. The

variation of the TTD is very slight with respect to the no

control case, corresponding to 1.08%.
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Fig. 4: Total emissions in the no-control case (4a), with PI-

ALINEA (4b), and applying the feasible direction algorithm

with β = 0.5 (4c)

In case the feasible direction algorithm is applied with

β = 0.5 (i.e. minimizing both TTS and TE), the queue

lengths and the density downstream the three on-ramps are

depicted in Fig. 3. In this case, some vehicles are queued in

the second and third on-ramps but the queue length is lower

than in the case with PI-ALINEA (the TWT is equal to

109 [veh·h]). It is worth noting that in the optimal solution

only cars are queued. This is due to the fact that trucks

present high emissions in case of low speeds according to
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(11). The optimal solution obtained by the application of the

feasible direction algorithm reduces the TTS to 2486 [veh·h]

and gets a percentage reduction of 19.3%, whereas the TE
are reduced to 635582 [g], with a reduction of 29.9%. The

variation of the TTD with respect to the no-control case is

equal to 0.57%.

To further compare the three considered cases, i.e. no-

control, application of PI-ALINEA and optimal solution with

β = 0.5, the total emissions in the freeway along the

considered time horizon are reported in Fig. 4. The worst

situation is represented by the no-control case in which high

emissions are present in a large part of the freeway for more

than one hour. The situation with PI-ALINEA is slightly

better because the high emissions are more localized only in

one freeway section. These high values are mostly due to the

emissions at the on-ramps, since with PI-ALINEA vehicles

are queued only in the third on-ramp. The best situation is

surely guaranteed by the approach proposed in this paper

which reduces the total emissions both in space and in time.

Fig. 5 reports the different performance indexes, TTD,

TE and TTS, properly normalized, for each of the three

considered cases (characterized by very similar values of

TTD). Both PI-ALINEA and the feasible direction algo-

rithm guarantee a reduction of TTS and TE but the latter

ensures the best performance of the traffic system behaviour.

VI. CONCLUSION

A two-class traffic regulator has been proposed in the

paper with the aim of reducing congestion, on one hand,

and reducing traffic emissions, on the other. The control

actions to be applied via ramp metering have been computed

by formulating a multi-objective nonlinear optimal control

problem, which has been solved by adopting the derivative

backpropagation method RPROP, a version of the feasible

direction algorithm. The effectiveness of the proposed ap-

proach has been assessed through simulation results in which

it is shown that the two parts of the control function are non

conflicting objectives since both the average travel times and

the emissions are reduced if the control actions manage to

reduce or eliminate traffic congestion.
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