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Abstract— We present a macroscopic model-based approach
for estimation of the total density and flow of vehicles, for the
case of “mixed” traffic, i.e., traffic comprising both ordinary
and connected vehicles, utilizing only average speed measure-
ments reported by connected vehicles and a minimum number
(sufficient to guarantee observability) of spot sensor-based total
flow measurements. The approach is based on the realistic
assumption that the average speed of conventional vehicles is
roughly equal to the average speed of connected vehicles, and
consequently, it can be obtained at the (local or central) traffic
monitoring and control unit from connected vehicles’ reports.
Thus, complete traffic state estimation (for arbitrarily selected
segments in the network) may be achieved by estimating the
total density of vehicles. Recasting the dynamics of the total
density of vehicles, which are described by the well-known
conservation law equation, as a linear time-varying system, we
employ a Kalman filter for the estimation of the total density.
We demonstrate the fact that the developed approach allows
a variety of different measurement configurations, by also
considering the case in which additional mainstream total flow
measurements are employed to replace a corresponding number
of total flow measurements at on-ramps or off-ramps. We
validate the performance of the developed estimation scheme
through simulations using a well-known second-order traffic
flow model as ground truth for the traffic state.

I. INTRODUCTION

The introduction of various Vehicle Automation and Com-
munication Systems (VACS), which, besides their potentials
in improving driving safety and convenience have great
potentials in mitigating traffic congestion, creates the need
for the development of advanced traffic management method-
ologies that efficiently exploit VACS capabilities [7]. For this
reason, numerous papers are dealing with the modeling and
control of traffic flow in presence of VACS, employing both
macroscopic and microscopic approaches, such as [5], [10],
[18], [19], [20], [22], [24], [25], [26], among others.

Due to the high purchase, installation, and maintenance
costs of the large amount of spot sensors needed for traffic
monitoring, traffic estimation utilizing a limited amount of
sensors is preferable for achieving a cost-efficient solution
to the highway traffic surveillance and control problems.
As a result, several papers are devoted to the development
of traffic state estimation algorithms employing a limited
number of conventional detector measurements, such as, for
example, [1], [9], [11], [13], [14], [28]. The communication
capabilities of VACS-equipped vehicles can be exploited for
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further reduction of the implementation and maintenance
costs that the use of conventional road-side detectors en-
tails. Since in the presence of VACS vehicles may become
“connected”, i.e., enabled to send (and receive) real-time
information to a local or central monitoring and control
unit (MCU), connected vehicles may communicate their
position, speed and other relevant information, i.e., they can
act as mobile sensors. Consequently, exploiting different, less
costly data sources such as mobile phone, or GPS (Global
Positioning System), or even vehicle speed data, for travel
time or highway traffic state estimation is the subject of
various works; see, e.g., [2], [6], [8], [15], [17], [21], [23],
[29], [30]; employing various kinds of traffic or statistic
models.

In this paper, we address the problem of estimation of the
total density and flow of vehicles in highway segments of
arbitrary length (typically around 500 m) for a mixed traffic
flow that includes both conventional and connected vehicles,
exploiting the information provided by connected vehicles,
thus reducing substantially the need for spot sensor measure-
ments. The developments rely on the realistic assumption that
the average speed of conventional vehicles is roughly equal
to the average speed of connected vehicles, and consequently,
the average speed of all vehicles on an arbitrary segment of
the highway can be readily obtained at the local or central
MCU from connected vehicles reports. This assumption
relies on the fact that, even at very low densities, there is
no reason for connected vehicles to feature a systematically
different mean speed than conventional vehicles; while at
higher densities, the assumption is further reinforced due
to increasing difficulty of overtaking. As a consequence of
this assumption, complete traffic state estimation (of the total
density and flow in arbitrary segments in the highway) may
be achieved via estimating the traffic density (see [4] for an
alternative approach to estimating the traffic state via estima-
tion of the percentage of connected vehicles with respect to
the total number of vehicles) and by utilizing only average
speed measurements from connected vehicles together with
a minimum (necessary to guarantee observability) amount
of conventional measurements of traffic volumes, e.g., at all
entries and exits of the considered highway stretches.

The developed estimation methodology allows a variety
of different measurement configurations. We demonstrate
this fact by also considering the case in which traffic state
estimation is achieved when additional mainstream total flow
measurements are employed to replace a corresponding num-
ber of total flow measurements at on-ramps or off-ramps. The
performance of the developed estimation scheme is validated



through simulations using a well-known METANET traffic
flow model as ground truth for the traffic state.

More specifically, the dynamics of the total traffic density,
as described by the well-known (discrete-time) conservation
law equation, are recast as a linear time-varying system with
known parameters that depend on the real-time average speed
measurements (Section II-A), thus removing the requirement
of (empirical, hence uncertain) traffic speed modeling, such
as the fundamental diagram. The observability properties
of this system are studied (Section II-B) and a Kalman
filter is employed for the estimation of the total density of
vehicles (Section II-C). The effectiveness of the proposed
estimation design is illustrated in simulation with a second-
order macroscopic model as ground truth (Section II-D). The
estimation approach is then extended to the case of unmea-
sured total flows at on-ramps or off-ramps (by incorporating
additional mainstream total flow measurements that replace
a corresponding number of total flow measurements at on-
ramps or off-ramps) and its performance in this case is also
illustrated in simulation (Section III).

II. TRAFFIC ESTIMATION USING AVERAGE SPEED
MEASUREMENTS FROM CONNECTED VEHICLES

A. The Dynamics of Traffic Density as a Linear Time-Varying
System

We consider the following discrete-time equations that
describe the dynamics of the total density ρ of vehicles on
a highway (see, e.g., [16]; see also the upper part of Fig. 1)

ρi(k + 1) = ρi(k) +
T

∆i
(qi−1(k)− qi(k)

+ri(k)− si(k)) , (1)

where i = 1, . . . , N is the index of the specific segment
at the highway, N being the number of segments on the
highway; for all traffic variables, we denote by index sub-i its
value at the segment i of the highway; qi is the total flow at
segment i; T is the time-discretization step, ∆i is the length
of the discrete segments of the highway, and k = 0, 1, . . . is
the discrete time index. The variables ri and si denote the
inflow and outflow of vehicles at on-ramps and off-ramps,
respectively, at segment i. Using the known relation

qi = ρivi, (2)

where vi is the average speed in segment i, we write (1) as

ρi(k + 1) =
T

∆i
vi−1(k)ρi−1(k) +

(
1− T

∆i
vi(k)

)
ρi(k)

+
T

∆i
(ri(k)− si(k)) . (3)

Assuming that the average speed of conventional vehicles
is roughly equal to the average speed of connected vehicles,
and hence, it can be reported to the traffic authority from the
connected vehicles, one can conclude that vi, i = 1, . . . , N ,
are measured. Therefore, defining the state

x = (ρ1, . . . , ρN )
T
, (4)

system (3) can be written in the form of a known linear
time-varying system of the form

x(k + 1) = A(k)x(k) +Bu(k) (5)
y(k) = Cx(k), (6)

where

A(k) =


aij = T

∆i
vi−1(k), if i− j = 1

and i ≥ 2
aij = 1− T

∆i
vi(k), if i = j

aij = 0, otherwise

 (7)

B =


bij = T

∆i
, if i = 1 and j = 1, 2

or j − i = 1 and i ≥ 2
bij = 0, otherwise

 , (8)

u(k) =
[
q0(k) r1(k)− s1(k) . . . rN (k)− sN (k)

]T
(9)

C =
[

0 . . . 0 1
]
, (10)

with A ∈ RN×N , B ∈ RN×(N+1), where q0 denotes the
total flow of vehicles at the entry of the considered highway
stretch and acts as an input to system (5), along with ri
and si; while vi, i = 1, . . . , N , are viewed as time-varying
parameters of system (5). The variable ρN at the exit of the
considered highway stretch is viewed as the output of the
system and may be obtained via ρN = qN

vN
, using total flow

measurements qN at the exit of the considered stretch.
Before studying the observability of (5)–(10), we sum-

marize the assumptions that guarantee that the matrix A is
known, as well as that the input u and output y are measured.

• The average speed of all vehicles at a segment of the
highway equals the average speed of connected vehicles
at the same segment, and hence, it can be obtained from
regularly received messages by the connected vehicles.

• The total flow of vehicles at the entry and exit of the
considered highway stretch, q0 and qN , respectively, are
measured via conventional detectors.

• The total flow of vehicles at ramps, i.e., ri and si, i =
1, . . . , N , are measured via conventional detectors.

The above formulation may be modified to incorporate
different total flow measurement configurations. In Section
III we consider the case in which additional mainstream flow
measurements (using conventional detectors) are employed
to replace a corresponding number of flows at ramps.

B. Observability of the System

System (5) can be viewed as a known linear time-varying
system. As it is stated in Section II-A, it is assumed that the
quantities q0, vi, ri, and si, for all i, are available, which
implies that the matrix A and the input u in (5) may be
calculated in real time. We show next that system (5)–(10)
is observable at k = k0 +N −1, for any initial time k0 ≥ 0.
We construct the observability matrix

O(k0, k0 +N) =


C

CA(k0)
CA(k0 + 1)A(k0)

...
CA(k0 +N − 2) · · ·A(k0)

 . (11)
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Fig. 1. The traffic system under consideration and the Kalman filter
implemented at the MCU. The data used to operate the Kalman filter are
either speed measurements coming from connected vehicles (solid lines) or
flow measurements coming from fixed sensors (dashed lines). The variable
mw

i denotes the measurement of quantity w at segment i, which might be
different than the actual quantity w, due to, for example, the presence of
measurement noise. A variable wc

i represents the value of quantity w of
connected vehicles at segment i.

From (7), A is lower triangular with non-zero entries only
in the main diagonal and the first diagonal below it. Thus,
from (10) it follows that O is an anti-lower triangular matrix,
namely, a matrix with zero elements above the anti-diagonal.
Therefore, relation det(O) 6= 0 holds if the anti-diagonal
elements of O are non-zero. The anti-diagonal elements
of O are given by 1, T

∆N
vN−1(k0), T 2

∆N∆N−1
vN−1(k0 +

1)vN−2(k0), . . . , TN−1

∆N∆N−1···∆2
vN−1(k0 +N −2) · · · v1(k0).

Since vi, i = 1, . . . , N , are lower and upper-bounded (and
positive) for all time, it follows that the matrix O is invertible,
and thus, (5)–(10) is observable at k = k0 +N−1. Note that
the measurement of ρN (or, equivalently, the measurement of
qN ), rather than any other intermediate density, is necessary
for system (5)–(10) to be observable. To see this note that if

C =

{
cij = 1, if i = 1 and j = J
cij = 0, otherwise

}
with J < N , then

the J + 1, . . . , N columns of O(k0, k0 + N̄) are zero for all
k0≥0 and N̄≥N . Thus, the system cannot be observable. In
other words, a fixed flow sensor should necessarily be placed
at the last segment of the highway in order to guarantee
density observability based on model (5)–(10).

C. Kalman Filter

We employ a Kalman filter for the estimation of the total
density of vehicles on a highway (Fig. 1). Defining x̂ =
(ρ̂1, . . . , ρ̂N )

T , the Kalman filter’s equations are (e.g., [3])

x̂(k + 1) = A(k)x̂(k) +Bu(k)

+A(k)K(k) (z(k)− Cx̂(k)) (12)

K(k) = P (k)CT
(
CP (k)CT +R

)−1
(13)

P (k + 1) = A(k) (I −K(k)C)P (k)A(k)T +Q,(14)

where z is a noisy version of the measurement y, R =
RT > 0 and Q = QT > 0 are tuning parameters. Note

that, in the ideal case in which there is additive, zero-mean
Gaussian white noise in equations (5) and (6), respectively,
R and Q represent the (ideally known) covariance matrices
of the measurement and process noise, respectively. Since the
system equations here are relatively complex, some tuning of
R, Q may be needed for best estimation results. The initial
conditions of the filter (12)–(14) are chosen as

x̂(k0) = µ (15)
P (k0) = H, (16)

where µ and H = HT > 0, which, in the ideal case in which
x(k0) is a Gaussian random variable, represent the mean and
auto covariance matrix of x(k0), respectively. The Kalman
filter (12)–(16) delivers estimates of the total densities ρ̂i as
indicated at the output of the Kalman filter in Fig. 1.

In addition to guaranteeing observability of the system,
we impose the conditions that the pair (A,C) is uniformly
completely observable (UCO) and that the pair (A,Q

1
2 ) is

uniformly completely controllable (UCC), which, in com-
bination with the fact that A is uniformly bounded with
bounded from below positive determinant (assuming 1 −
T
∆i
vi, ∀i, positive and bounded from below), guarantee

that the homogenous part of the estimator is exponentially
stable and that the covariance of the estimation error is
bounded [12]. We show that (A,C) is UCO by showing that
∃ε1, ε2 > 0 such that ε1IN×N ≤ OT (k0, k0 +N)O(k0, k0 +
N) ≤ ε2IN×N , ∀k0 ≥ 0. Since O is an anti-lower
triangular matrix with uniformly bounded from below and
above, positive elements on the anti-diagonal, it follows that
it has N independent columns, and hence, OT (k0, k0 +
N)O(k0, k0 + N) > 0, ∀k0 ≥ 0. Thus, ε1IN×N ≤
OT (k0, k0 + N)O(k0, k0 + N) ≤ ε2IN×N , ∀k0 ≥ 0,
where ε1 = infk0≥0 λmin

(
OT (k0, k0 +N)O(k0, k0 +N)

)
and ε2 = supk0≥0 λmax

(
OT (k0, k0 +N)O(k0, k0 +N)

)
.

Note that ε1>0 since det(O)2 is uniformly bounded from be-
low and ε2<∞ (since A is bounded). The fact that (A,Q1/2)
is UCC follows exploiting the choice Q = σIN×N , for some
bounded σ > 0, and the fact that A is lower triangular with
bounded from below positive elements on the main diagonal.

D. Evaluation of the Performance of the Estimator Based on
a METANET Model as Ground Truth

For preliminary assessment of the developed estimation
scheme, we test in this section the performance of the
Kalman filter employing the second-order METANET model
[16] as ground truth. We employ equation (1) for the total
density of vehicles together with relation (2) for the total
flow. The average speed at segment i is given by

vi(k + 1)=vi(k) +
T

τ
(V (ρi(k))− vi(k)) +

T

∆i
vi(k)

× (vi−1(k)− vi(k))− νT

τ∆i

ρi+1(k)− ρi(k)

ρi(k) + κ

−δT
∆i

ri(k)vi(k)

ρi(k) + κ
, i = 1, . . . , N, (17)

with v0 = v1 and ρN = ρN+1, where the nominal average
speed V is given by V (ρ) = vfe

− 1
α ( ρ

ρcr
)
α

, and τ , ν, κ, δ, vf ,



TABLE I
PARAMETERS OF THE MODEL (1), (2), (17).

T 1
360

(h) δ 1.4 ∆i 0.5 (km) N 20

vf 120
(

km
h

)
τ 1

180
(h) ρcr 33.5

(
veh
km

)
ν 35

(
km2

h

)
α 1.4324 κ 13

(
veh
km

)

TABLE II
THE MEASUREMENT NOISE γwi AND THE PROCESS NOISE ξwi ,
i = 0, . . . , N AFFECTING THE w VARIABLE AT SEGMENT i.

γqi γri γsi γvi ξvi ξqi
SD 25 veh

h 10 veh
h 5 veh

h 3 km
h 5 km

h 25 veh
h

ρcr, α are positive model parameters. In particular, vf denotes
the free speed, ρcr the critical density, and α the exponent of
the stationary speed equation. The model parameters, which
are taken from [27], are shown in Table I.

The measurements of the total flow of vehicles at the
entry and exit of the highway stretch under consideration,
the speed measurements stemming from connected vehicles,
and the measurements of the total flow at the on-ramps or off-
ramps are subject to additive measurement noise. Moreover,
there is additive process noise affecting the speed and flow
equations, namely, (17) and (2), respectively. All noise used
in the simulation is zero-mean Gaussian white with standard
deviation (SD) shown in Table II.

The parameters and initial conditions of the Kalman filter
(12)–(16), (7)–(10) are shown in Table III. In Fig. 2 we show
the employed scenario of total input flow at the entry of the
considered highway stretch for our simulation investigation.
We assume that there are three on-ramps at segments 2, 6, 10
with constant inflows satisfying r2 = r6 = r10 = 150 veh

h .
Three off-ramps are supposedly present on the highway
under study, specifically at segments 4, 8, 12. It is assumed
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Fig. 2. The total flow of vehicles q0 at the entry of the highway stretch
under consideration.

TABLE III
PARAMETERS OF THE KALMAN FILTER (12)–(16) AND (7)–(10).

Q R µ H

IN×N 100 (15, . . . , 15)T IN×N
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Fig. 3. The average speed v2 of the second segment of the highway as it
is produced by the METANET model (1), (2), (17), with parameters given
in Table I and additive process noise given in Table II.

that si = 0.1qi−1, i = 4, 8, 12. The average speed at segment
2 (where the first on-ramp is located) is shown in Fig. 3. It is
evident from Fig. 3 that a congestion is created between the
first and second hour of our test, whereas free-flow conditions
are prevailing at the first and last hour. Congestion starts
approximately at the location of the second on-ramp, i.e., at
the sixth segment of the highway, and propagates backwards
all the way to the input of the highway.

In both traffic conditions, our estimator successfully esti-
mates the total density of vehicles on the highway, as it is
evident from Fig. 4, which displays the actual density and its
estimate at segment 2 (at which congested conditions prevail
for one hour). Note the very fast convergence of the produced
density estimates, starting from remote initial values.

III. TRAFFIC ESTIMATION FOR UNMEASURED TOTAL
FLOW AT ON-RAMPS AND OFF-RAMPS

In the case that the total flow at some on-ramps or off-
ramps is not directly measured, we treat these flows as
unmeasured states to be estimated by a Kalman filter. Hence,
we augment the state (4) as

x̄ = (ρ1, . . . , ρN , θ1, . . . , θlr+ls)
T
, (18)

where lr and ls are the number of unmeasured flows
at on-ramps and off-ramps, respectively, and θi ={ T

∆i
rni , if ni ∈ Lr

T
∆i
sni , if ni ∈ Ls

}
, for all i = 1, . . . , lr + ls, with

Lr = {n1, . . . , nlr} and Ls = {nlr+1, . . . , nlr+ls}, being
the collection of segments, denoted by ni, which have an
on-ramp and an off-ramp, respectively, whose flows are not
directly measured. Assuming that at a segment i there can



Time (h)

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

ρ̂2

ρ2

Fig. 4. The total density of vehicles ρ2
(
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of the highway (black line) as it is produced by the METANET model (1),
(2), (17) with parameters given in Table I and additive process noise given
in Table II, and its estimate ρ̂2 (blue line) as it is produced by the Kalman
filter (12)–(16) and (7)–(10) with parameters given in Table III.

be either only one on-ramp or only one off-ramp (which is
typically the case on a highway) and that the unmeasured
ramp flows are constant (or, effectively, slowly varying),
the unmeasured ramp flow dynamics may be reflected by
a random walk, i.e., θi(k + 1) = θi(k) + ξθi (k), where ξθi
is zero-mean white Gaussian noise. Thus, the deterministic
part of the total density dynamics (1) and of θi are

x̄(k + 1) = Ā(k)x̄(k) + B̄ū(k), (19)

where

Ā(k) =



āij = T
∆i
vi−1(k), if i− j = 1

and i ≥ 2
āij = 1− T

∆i
vi(k), if i = j

ānij = 1, if ni ∈ Lr
and j = N + i

ānij = −1, if ni ∈ Ls
and j = N + i

āij = 1, if N < i ≤ N1

and j = i
āij = 0, otherwise



(20)

B̄ =


b̄ij = T

∆i
, if i = 1 and j = 1

b̄mij = T
∆mi

, if mi /∈ L̄, 1 ≤ mi ≤ N ,
1 ≤ i ≤ N2, and j = i+ 1

b̄ij = 0, otherwise

(21)

ū(k) =

[
ūi = q0(k), if i = 1
ūi+1 = rmi − smi , if mi /∈ L̄

]
, (22)

with L̄ = Lr ∪ Ls, N1 = N + lr + ls, N2 = N − lr − ls,
Ā ∈ RN1×N1 , B̄ ∈ RN1×(N2+1). The measured outputs asso-
ciated with system (19)–(22) are the density (or, equivalently,
the flow) at the exit of the considered highway stretch and
at a highway segment between every two consecutive ramps
whose flows are not measured. Therefore,

ȳ(k) = C̄x̄(k), (23)

TABLE IV
PARAMETERS OF THE KALMAN FILTER EMPLOYED IN SECTION III.

Q̄ R̄ µ̄ H̄

I(N+2)×(N+2) 100I2×2 (2, . . . , 2)T I(N+2)×(N+2)
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Fig. 5. The total density of vehicles ρ2
(
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km

)
at the second segment

of the highway (black line) and its estimate ρ̂2 (blue line) as it is produced
by the Kalman filter with parameters given in Table IV.

where C̄ ∈ R(lr+ls)×(N+lr+ls) is defined as

C̄ =


c̄ij = 1, for all i = 1, . . . , lr + ls − 1

and some n∗i ≤ j ≤ n∗i+1 − 1
c̄ij = 1, if i = lr + ls and j = N
c̄ij = 0, otherwise

,(24)

where L̄∗ =
{
n∗1, n

∗
2, . . . , n

∗
lr+ls

}
is the set L̄ ordered by <.

We employ the Kalman filter (12)–(16) with parameters
given in Table IV (in particular, the q̄N+iN+i elements of Q̄
represent the filter’s anticipation for the covariance of ξθi ),
for the estimation of the state x̄, defined in (18), of system
(19)–(24). We assess the filter’s performance, employing the
same scenario with the one considered in Section II-D, in
the case in which the total flow at on-ramp 6 and off-ramp
8 are not measured. One additional mainstream total flow
measurement is available from a fixed detector that is placed
at the exit of the seventh segment. We show in Fig. 5 the
estimation of the density in segment 2. In Fig 6 we show the
estimation of the total flow at on-ramp 6 and off-ramp 8.

IV. CONCLUSIONS

A subject of our ongoing research is the performance
comparison between the estimation scheme developed in
this paper and the alternative estimation algorithm that we
recently developed [4], which is based on the estimation
of the percentage of connected vehicles, with respect to
the total number of vehicles, using a much more detailed
microscopic simulation platform, thus considering a more
realistic simulation of all involved real-time measurements.
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produced by the Kalman filter with parameters given in Table IV.
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