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ABSTRACT 
First-order traffic flow models are known for their simplicity and computational efficiency and have, for 
this reason, been widely used for various traffic engineering tasks. However, first-order models are not able 
to reproduce significant traffic phenomena of great interest such as the capacity-drop and stop-and-go 
waves. This paper presents an overview of the, so far, proposed modelling approaches which aim to 
introduce the capacity-drop phenomenon into first-order traffic flow models. The background and main 
characteristics of each approach are analyzed with a particular emphasis on the practical applicability of 
such models for traffic management and control. The presented modelling approaches are calibrated and 
tested using real data from a motorway network in U.K.   
 
 
 
 
Keywords: Capacity-drop phenomenon, First-order traffic flow models, model calibration  
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INTRODUCTION 
Among numerous phenomena characterizing traffic flow behavior, one of the most known and puzzling is 
the so-called capacity drop. This phenomenon breeds the reduction in the mainstream flow of a motorway 
when a queue starts forming upstream of a bottleneck location (1, 2). Bottleneck locations can be motorway 
merge areas, areas with particular infrastructure layout (such as lane drops, strong grade or curvature, 
tunnels etc.), areas with specific traffic conditions (e.g. strong weaving of traffic streams), areas with 
external capacity-reducing events (e.g. work-zones, incidents) etc. (3–5). If the arriving demand is higher 
than the bottleneck capacity, i.e. the maximum flow that can pass through a reference point at a certain time 
period, the bottleneck is activated, i.e. congestion is formed upstream of the bottleneck location. Empirical 
observations show that, whenever a bottleneck is activated, the maximum outflow that materializes (also 
called discharge flow) may be 5 to 20 percent lower than the nominal bottleneck capacity. The capacity 
drop is then defined as the difference between these two values of flow, i.e. the capacity and the discharge 
flow. Certainly, the capacity drop reflects infrastructure degradation, leading to increased vehicles’ travel 
times and longer delays. To avoid or delay the activation of a bottleneck, and the related capacity drop 
phenomenon, various traffic control measures have been proposed and applied (6, 7). 

The design and testing of new traffic control strategies requires the existence of accurate traffic 
flow models that are able to reproduce the motorway traffic conditions with satisfactory accuracy. The 
macroscopic first-order traffic flow models represent a valuable tool for the study of traffic behavior, as 
they are simple and effective in reproducing wave formation and propagation under congested conditions. 
However, their inherent formulation does not allow for capturing traffic phenomena such as the capacity 
drop and stop-and-go waves. In contrast, second-order models (e.g., (8–10)),  are able to reproduce traffic 
instabilities, such as the aforementioned phenomena, but they are characterized by drawbacks such as 
higher complexity, the specification of parameters without clear physical significance and the higher 
computation effort that is needed for optimization problems built upon them. 

The most common space-time continuous first-order macroscopic model is the 
Lighthill-Whitham-Richards (LWR) model (11, 12), which is described by a single partial differential 
equation based on the conservation of vehicles. A significant amount of literature proposes and extends 
discrete approximations of LWR using the Godunov scheme (13, 14). The most referenced among them is 
the Cell Transmission Model (CTM) (15), where the flow is defined as a function of density via the 
definition of a triangular fundamental diagram (FD). 

During the last years, attention has been drawn in the direction of including the capacity drop 
phenomenon into first-order models, since this seems of crucial importance for designing and testing 
motorway traffic control strategies (16). Some researchers have tried to capture the capacity drop 
phenomenon based on the “inverse lambda” shaped FD, first proposed in (17), suggesting that the 
flow-density relation (FD) can be discontinuous, characterized by a sharp flow drop within a small density 
range. This behavior can be theoretically modelled via definition of two flow values for a specific range of 
densities around the critical, where the different flows appear depending on the current traffic conditions 
(18, 19).  Other researchers (20, 21) propose two-phase traffic flow models, assuming bounded acceleration 
for certain traffic conditions via building a modified demand function. Following this concept, in (22) the 
authors introduce generalized versions of discrete approximations of the LWR, allowing for a wide range of 
demand functions to be taken into account for overcritical densities; while in (23), the authors included the 
capacity drop phenomenon into a multi-lane first-order traffic flow model where the capacity drop is 
triggered by lateral and on-ramp flows. In (24) the authors utilize a macroscopic first-order multilane 
model, including capacity drop by decreasing the supply function of the cells located downstream of a 
congested one. In addition, some studies such as (25) and (26), describe the capacity drop mechanism as a 
consequence of microscopic phenomena, such as lane-changing maneuvers, slow vehicles entering a merge 
cell, and heterogeneous lane behavior due to the variations of traffic states at merges, which prevent the 
system to reach the full motorway capacity before the breakdown (27). Furthermore, there are also some 
studies that combine some of the aforementioned concepts such as in (28), where the authors proposed a 
model which includes two approaches for capacity drop: a reduction of the mainstream demand and the 
introduction of a weaving parameter.  
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The rest of the paper is structured as follows: Firstly, the approaches selected for testing are 
described in more detail, highlighting the necessary modification of a basic discretized-LWR formulation. 
Later, the aforementioned approaches are tested using real traffic data from a motorway network in UK. 
Finally, some concluding remarks are provided. 
 

MODEL FORMULATIONS 
For the subsequent description and testing of different capacity-drop strategies, a simple formulation of a 
discretized-LWR model is utilized. Despite the fact that some of the considered approaches are introduced 
for more sophisticated models, their implementation is here based on a common formulation, which also 
permits a clearer understanding and a fairer result comparison. Also the notation (see Table 1) is kept 
constant throughout the paper for all the described approaches. Moreover, a simple demonstrative example 
is constructed, which illustrates the qualitative behavior of the different approaches that are tested hereafter. 
 

Basic Discretized-LWR Formulation 
A discretized first-order model considers the discretization of the network in a finite number of cells and the 
definition of rules for sending and receiving traffic flow. To this end, a motorway stretch is divided into n  
cells as shown in Figure 1. The thi  cell (where 1,...,i n ) is characterized by a single state variable i , 
which corresponds to the density of vehicles, namely the number of vehicles divided by the length of the 
cell, implying that the state of the motorway is entirely described by the n -dimensional vector 

 1,..., n    evolving according to a n -dimensional nonlinear difference equation. The movement of 
vehicles from one cell to the next is governed by the steady-state relation between flow and density, i.e. the 
corresponding FD. This relation is characterized by its concave branches, where the demand part and the 
supply part reflect, respectively, its increasing and decreasing branches (13, 14). The density value 
(unimodal FDs) or values (multimodal FDs), for which the maximum flow is observed, is defined as the 
critical density of the cell. The equations considered in our formulation are Equations (1), (2), (3), and (4); 
while the definition of the model’s variables and parameters are given in Table 1. 
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FIGURE 1  The discretization of motorway network 
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TABLE 1 Models’ variables and parameters 

Symbol  Name  Units  
T  simulation time step h 

il  number of lanes in the thi  cell dimensionless 

iL  length of the thi  cell km 
( )i k  density of the thi  cell at time t kT , 0,1,2,...k   veh/km/lane 

max,i  storage capacity of the thi  cell veh/km/lane 

,cr i  critical density of the thi  cell veh/km/lane 

( ( ))i if k  actual outflow from the thi  to thi )1(   cell in ( ,( 1) ]kT k T , 0,1,2,...k   veh/h 

, ( ( ))i D if k  demand part of the FD of the thi  cell veh/h 

, ( ( ))i S if k  supply part of the FD of the thi  cell veh/h 

iQ  capacity flow of the thi  cell veh/h 
( )ir k  demand on-ramp flow of the thi  cell in ( ,( 1) ]kT k T , 0,1,2,...k   veh/h 

ip  percentage of the actual flow exiting from the off-ramp of the thi  cell 
(exit-rate of the thi  cell) 

dimensionless 

,f iv  free-flow speed of the thi  cell km/h 

iw  congestion wave speed of the thi  cell km/h 
 

Notice that, according to this formulation, it is assumed that vehicles entering from on-ramps have 
full priority. That is, the flow from an on-ramp always enters the cell (given that the maximum density is not 
exceeded) while only the remaining supply space can be occupied by the flow received from the upstream 
cell. Although this assumption may not be always correct, it helps significantly the calibration procedure, 
since boundary conditions are given, and therefore the actual on-ramp flow is allowed to feed directly the 
model. Note also, that for the 1st cell, the entering mainstream flow plus any possible on-ramp flow are 
considered within 1r ; which can be fully accommodated by the same cell (no supply term); this implies that 
any appearing congestion in the stretch never reaches the upstream boundary. 

Finally, notice that in Equations (3) and (4), the demand and supply functions, respectively, are 
completed by assuming capacity flow values iQ  for overcritical and undercritical densities, respectively. 
Thus, this model predicts capacity flow (no capacity drop) for discharge flows, in accordance with the 
non-discretised LWR model. Note also, that the right-hand side of the FD of the thi  cell in Equation (4) is 
assumed to be linear (with a negative slope iw ); while the left-hand side of the FD in Equation (3) is 
assumed to be a non-decreasing function ( )i ig  . 
 

Different Shapes for the FD 
Different functions ( )i ig   can be used within the demand function in Equation (3). The CTM formulation 
(15) considers a triangular-shaped FD (Figure 2(a)), where ,( )i i f i i ig v l  , ,( )i cr i ig Q   and 

 max, ,( )i i i cr i iw Q l   . This formulation has two main drawbacks: first, when using realistic free-flow 
and congestion-wave speeds, it leads to high (and sometimes unrealistic) capacity flow; second, only one 
speed value is considered for all under-critical densities, which is often not compatible with traffic 
observations. To overcome the first issue, a trapezoidal FD can be used, where ,( )i i f i i ig v l  , 

,( )i cr i ig Q   and  max, ,( )i i i cr i iw Q l   , as illustrated in Figure 2(b). In this case, the critical density, 
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instead of being a fixed point for both the FD parts, can be selected within an interval of densities, 
increasing also the degree of freedom for model calibration. Nevertheless, in real traffic, the observed speed 
may be characterized by a decreasing-slope behavior also for low densities, which can be reflected by using 
a nonlinear concave function ig  (Figure 2(d)), where ,( )i cr i ig Q   and  max, ,( )i i i cr i iw Q l   . An 
opportune calibration of such function may lead to more realistic results. As an example, a nonlinear 
exponential function, as proposed in (10), can be employed. A similar behavior can also be obtained, 
without much loss of accuracy, considering a piecewise-linear approximation of the nonlinear function 
(Figure 2(c)), which is helpful in case linear constraints are needed for the formulation of an optimization 
problem (e.g., (23, 29)). 
 
 
 

 
FIGURE 2  Different choices for the left-hand side of the fundamental diagram corresponding to: (a) 
a triangular FD (CTM), (b) a trapezoidal FD, (c) a piecewise linear FD and (d) a nonlinear FD. 

 
Demonstrative Example 
In order to illustrate the behavior of each approach, a simple hypothetical motorway stretch is considered, 
consisting of a set of 15n   homogeneous cells of equal length  0.5iL  km, 3 lanes ( 3il  ) and common 
FD parameters. The motorway stretch includes one on-ramp which is located at the upstream boundary of 
the cell 13i  . Furthermore, the FD parameters are set to be , 20cr i  veh/km/lane, , 100f iv  km/h, 

max, 120i   veh/km/lane, 20iw  km/h, and 6000iQ  veh/h. The simulation time step is set to be 5T  s, 
while the simulation time horizon is 4horT  h for all the following tests. For the sake of simplicity, in all 
the following tests, the function ig utilized in the Equation (3) is selected to be ,( )i i f i i ig v l   (for 

1,...,15i  ). Boundary conditions are set so that the exit can accommodate the receiving flow from the last 
cell (infinite supply). A hypothetical trapezoidal traffic demand scenario is applied to the network which, 
for some time period, exceeds the capacity of the merge area, generating congestion that spills back for 
several kilometers, without though reaching the network origin. Specifically, the mainstream traffic 
demand and the demand from the on-ramp are equal to 1 3500r  veh/h and 13 500r  veh/h, respectively, for 
[0-0.5] hours and for [2.5-4] hours; after 0.5 hours, both demand flows start to increase linearly and then are 
constant and equal to 1 4500r  veh/h and 13 1600r  veh/h, respectively, for [1-2] hours; while after 2 hours, 
they start again to decrease linearly for [2-2.5]hours. The initial state for every cell is set (0) 11.7i 

veh/km/lane for 1,..,12i   and (0) 13.3i  veh/km/lane for 13,14,15i  .  
Figure 3 (a), (b), (c) illustrates some significant characteristics that appear in the well-known 

behavior of the CTM in case congestion is created at an on-ramp merge. Once the total demand flow (in this 
case, the sum of mainstream and ramp flows) exceeds the bottleneck’s capacity, only a portion of the 
available mainstream flow is allowed to access the 13th cell, since full priority is given to the on-ramp flow. 
This causes an increase of density at the upstream cell (the 12th cell) (see Figure 3(a), red line), which 
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eventually enters into a congested state, generating a congestion wave. During this period, the density in the 
merge cell remains at its critical value (see Figure 3(a), blue line), allowing an exit flow equal to the 
capacity (Figure 3(c)). As a consequence of the observations above, the speed at the 12th cell decreases 
(Figure 3(b), red line), while the speed at the merge cell (13th) remains constant and equal to the free speed. 
Note that, in contrast to this modelled behavior, the merge cell is typically congested in real traffic; while 
the exit flow is reduced upon the onset of congestion due to capacity drop. 

In the following subsections, the selected approaches for including capacity drop are described. 
 
Approach 1: Switching Logic for Maximum Flow 
One effective way to implement a FD characterized by the inverse-lambda shape is via the definition of an 
opportune switching logic to define the current maximum flow. An example can be found in (18), where the 
authors proposed a set of rules to impose capacity drop in case VSL (variable speed limits) are applied in a 
certain area of the network. The concept is based on the coexistence of two FDs for the same location: a 
triangular-shaped one, active in case VSL are not applied (and no congestion is present); and a 
trapezoidal-shaped one, characterized by a lower capacity that materializes in case congestion is present. 
This method can be extended straightforwardly to the case of bottlenecks due to lane drops, tunnels, etc.; in 
addition, we show here that it is also effective in case congestion is generated because of a merging 
on-ramp. 

The formulation is described by Equations (1), (2), (5), and (6) under Equations (7) and (8): 
 

 , ( ( )) min ( ), ( ( )) (1 )i D i i i if k R k g k p    for 1,...,i n , (5) 

  1, 1 1 1 max, 1 1 1 1( ( )) min ( ), ( ) ( )i S i i i i i i if k R k w k l r k             for 1,..., 1i n  , (6) 
 
where 
 
 ,)1(,)1( 2211 QkRQkR   (7) 

max, 1, 11
1

1

( ( )) min( ( ( )), ( ))
( 1)

. .
i i i i i D i ii

i
i

if w k l f k R kQ
R k

o wQ
   





  
  


 for 2,..., 1i n  , (8) 

 
where iR  are auxiliary variables that define the maximum flow for cell i  and iQ  is the queue discharge 
flow observed after the congestion onset. The queue discharge flow iQ , can also be viewed as i iQ Q , i.e., 
a portion 1   of the capacity flow. For this simulation test, this portion is constant and equal to 0.95  . 
Equation (7) reflects the assumption that the spilling-back congestion does not reach the entrance of the 
network. Moreover, all cells are initially uncongested, thus (0)i iR Q , for every 1,...,i n . 

Figure 3 (d), (e), (f), illustrates the behavior resulting from the application of this approach. The 
main idea lies in decreasing the capacity of the cell located immediately downstream of a congested one. 
More specifically, when the aggregated flow from the on-ramp and the mainstream exceeds the capacity of 
the merge cell, the density of the upstream cell starts increasing (see Figure 3(d), red line) while at the same 
time its speed starts decreasing (see Figure 3(e), red line); consequently, after some time, its supply function 
becomes smaller than the demand function of the upstream cell; this, according with Equation (8), triggers 
a reduction of the maximum flow for the downstream cell (see Figure 3(f)), which persists until the overall 
demand is sufficiently decreased. As a possible drawback, the flow reduction appears with some delay after 
the congestion starts; this is because this reduction materializes only when both the demand flow of the 11th 
cell and the maximum flow of the 12th cell become higher than the supply of the 12th cell. Furthermore, it is 
interesting to point out that despite the flow-drop, there is no congestion, i.e. over-critical density (Figure 
3(d), blue line) and therefore also no speed-drop (Figure 3(e), blue line), at the merge cell. 
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Approach 2: Introduction of a Weaving Parameter 
Another option to achieve a reduced outflow at a merge cell is via the introduction of a weaving parameter 
that affects the supply function at the merge cell, as proposed in (28). The purpose of this parameter is to 
take into account the “intensity” of lane changing maneuvers performed by vehicles just entered from the 
on-ramp, imposing a reduction of the available space for vehicles coming from upstream. The mathematical 
formulation consists of Equations (1), (2), (3), and (9): 
 

  1, 1 1 1 max, 1 1 1 1 1( ( )) min , ( ) ( )r
i S i i i i i i i if k Q w k l r k               for 1,..., 1i n   (9) 

 
where 1 1r

i    is the weaving parameter which aims to further reduce the supply of the merge cell, in order 
to reduce the mainstream flow attempting to enter. We can see from Figure 3(i) (where 13 1.2r   is used), 
that the capacity flow is never reached even in case of low on-ramp demand; for this reason, the flow 
reduction is barely visible. Notice also, that the merge cell is again not congested (Figure 3(g),(h), blue 
line). 
 

Approach 3: Reduction of the Demand Function 
Another way to incorporate capacity drop, also utilized in (28), consists of the definition of a discontinuous 
demand part of the FD at bottleneck locations and the implementation of a switching rule to determine 
which value of maximum flow should be used. In particular, the model can be described by Equations (1), 
(2), (4), and (10): 
 

,
,

( ( )) ( )
( ( )) (1 )

. .
i i i cr i

i D i i
i

g k if k
f k p

Q o w
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


  


 for 1,...,i n . (10) 

 
This approach generates the same values as the basic LWR when the density in the 12th cell is undercritical 
(Figure 3(j)), reaching properly capacity flow; then, for overcritical densities, the flow drops to a value 
corresponding to ( )i iQ r k ; in this case, i iQ Q , and 0.7   are used (Figure 3(l)). As a main drawback, 
traffic congestion persists longer than in the other cases, because, once formed, its disappearance can only 
be triggered by a decrease of the arriving demand below iQ , irrespectively of the ramp variations. Again, no 
congestion appears at the merge cell (Figure 3(k),(j), blue line).  
 
Approach 4: Linear Reduction of Maximum Flow 
As mentioned earlier, the presence of capacity drop within traffic flow models plays a key role for the 
design and testing of motorway traffic control strategies. Among others, model-based control problems 
have been widely exploited in recent years because of the possibility to explicitly consider the system 
dynamics and physical constraints. In some works, the classic formulation of first-order models was 
implemented via use of integer variables and opportune switching rules; see e.g. (28, 30, 31). In other 
works, e.g. in (29, 32), linear inequalities (derived from the piecewise linear FD) were considered as 
constraints in the optimization problem; hereafter some modification of these models are presented, which 
allow to define linearly constrained formulations for corresponding optimization problems. A similar model 
is proposed in (33). 

The same concept as in Approach 1 can be used, albeit with the introduction of an additional 
linear term that reduces the supply function of a downstream cell. Specifically, when congestion starts in the 
cell i  ( ,i cr i  ), the supply term of the downstream cell 1i   is linearly decreased as a function of i , 
according to the following equations: 
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  1, 1 1 1 max, 1 1 1 1( ( )) min ( ( )), ( ) ( )i S i i i i i i i if k F k w k l r k              for 1,..., 1i n  , (11) 
 
where 1( ( ))i iF k  is given by: 
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i i cr i

i i i i
i i i

cr i i

Q if k
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 


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


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 
  

 for  1,..., 1i n   (12) 

 
with i iQ Q , and 0.9  . The proposed formulation is thus given by Equations (1), (2), (3) and (11) 
under Equation (12). For under-critical densities, iF  is constant and equal to the capacity flow; however, in 
case the density of the thi  cell increases beyond its critical value (Figure 3(m), red line), the maximum flow 
of the supply function of the ( 1)thi   cell is reduced linearly (Figure 3(o)). This approach appears to work 
appropriately also for bottlenecks due to lane drops, tunnels etc.; the capacity flow is reached before 
dropping, in contrast with Approach 2; furthermore, the capacity drop appears with a lower delay than the 
one observed in Approach 1. On the other hand, the merge segment is seen to remain uncongested as with 
all previous approaches as well. 
 

Approach 5: Increased Space for Vehicles Entering a Bottleneck Location. 
Yet another approach may be conceived, which, in contrast to all previous approaches, allows for the 
bottleneck (e.g. merge) cell to get congested, as in real traffic. To achieve this, the bottleneck cell must be 
enabled to temporarily receive more flow than the cell’s capacity parameter would allow. To this end, the 
supply function is modified, compared with the basic approach, in two ways. First, the upper bound 
(capacity) used in Equation (4) for undercritical densities is increased, e.g. by 5%; second, the wave speed 
is set slightly (e.g. 5%) higher than usual; thus, the merge cell can temporarily accommodate more inflow 
than what it can sent downstream. In addition, in order to also enable capacity drop, a linearly decreasing 
demand part for overcritical densities (similar to the one proposed in (20, 21)), is introduced. These changes 
may be applied either to bottleneck cells only or to all cells (as in the current test example), leading to very 
similar results. In Figure 3, this approach causes indeed a density increase in the merge cell whenever 
capacity is exceeded (Figure 3(p), blue line). This increase generates consequently a reduction of the cell 
outflow (Figure 3(r)), i.e. capacity drop, accompanied also by a reduction of speed (Figure 3(q), blue line). 
The resulting equations, that replace Equations (3) and (4), are Equations (13) and (14) respectively: 
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 for 1,...,i n , (13) 

  1, 1 1 1 1,max 1 1( ( )) min , ( ) ( )i S i i i i i if k Q w k r k             for 1,..., 1i n  , (14) 

 
where i iQ Q   and i iw w  . For this test, we selected i iQ Q  with 0.4   while 1.05 6300i iQ Q   veh/h 
and 1.05 21i iw w   km/h for every 1,...,15i  . It is interesting to point out that this approach, despite not 
being a direct derivation of the LWR model, still guarantees the conservation of vehicles; and furthermore, 
the congestion is first created at the merge cell and the flow drop occurs immediately after the maximum 
flow is reached, in accordance with real traffic observations. 
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FIGURE 3  The time-series of the density of the 12th and 13th cell, the speed of the 12th and 13th cell 
and the outflow from the 13th for the application of (a),(b),(c) CTM, (d),(e)(f) Approach 1, (g),(h),(i) 
Approach 2, (j),(k),(l) Approach 3, (m),(n),(o) Approach 4, (p),(q),(r) Approach 5. 
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CALIBRATION RESULTS 
In this section the described approaches of the previous section are validated and compared regarding the 
representation of traffic conditions in a real motorway stretch with particular emphasis on the reproduction 
of the capacity drop phenomenon. 
 

Motorway Network and Calibration Set-up 
The considered motorway stretch of 9.45 km in length is a part of the M56 motorway in the United 
Kingdom, direction from Chester to Manchester. This 3-lane motorway stretch includes one off-ramp and a 
two-lane on-ramp, which, before reaching the motorway, is divided into two separate lanes. The 
corresponding on-ramp flows of each lane enter the motorway at two different locations, is shown in Figure 
4. In order to model the network by use of the selected traffic flow models, the examined motorway stretch 
is divided into 7 links (Figure 4) and each motorway link is subdivided in model cells of equal length (about 
250 m each). Using this representation, the motorway cells are well-defined, and the model equations 
presented in the previous section, are directly applicable. Figure 4 displays the length of each link, the 
location of the on-ramps and off-ramp and the locations of the available detector stations. 
 The real traffic data used in this study were obtained from MIDAS database (34). The traffic data 
includes flow and speed measurements at each detector location, with a time resolution of 60 s. The traffic 
data analysis showed that, within this motorway stretch, recurrent congestion is created during the morning 
peak hours due to the high on-ramp flow. In particular, Figure 5(a) displays the space-time diagram of the 
real speed measurements for 03/06/2014. It is observed that congestion is created upstream of the second 
on-ramp during 7–8 a.m. which spills back several kilometers. Moreover, downstream of the second 
on-ramp, the vehicles accelerate as they exit the congestion area. Figure 6 presents the time-series of the 
flow measurements (black line) from the detector station D 8180 which is located downstream of the 
congestion creation area (see also Figure 4). It is observed that the capacity drop is present here, as the 
merge area outflow drops visibly when congestion sets in (between 7:10 a.m. and 8:10 a.m.).  
 In order to apply the examined models to this motorway stretch and achieve a fair comparison, it 
is important to first calibrate the models using real traffic data. The model calibration procedure aims to 
appropriately specify the model parameter values, so that the representation of the network traffic 
conditions is as accurate as the model structure allows. This can be achieved by employing a suitable 
optimization methodology which aims at minimizing the discrepancy between the model estimations and 
the real traffic data. For more details on the considered model calibration procedure see (35). 
 In the current study, the Nelder-Mead optimization method is employed for the calibration of the 
examined traffic flow models. The models are fed with boundary data (upstream boundary and ramps) and 
produce the stretch-internal traffic state according to the respective equations and parameter values. The 
utilized performance index (PI) under minimization is the root-mean-square error (RMSE) of the real 
versus the model-predicted speed values at all detector locations. The models are calibrated using real 
traffic data from 03/06/2014 and a simulation time step equal to T = 5 s. It should be stressed that all cells of 
the modelled motorway stretch are characterized by the same parameters of the FD. After the calibration 
procedure, the accuracy and robustness of the resulted models should be tested. This is achieved by the 
model validation, where the produced models are applied using different traffic data (from the same 
motorway site) than those used for their calibration. In this study, the models are validated using real traffic 

 

 
FIGURE 4  Representation of the considered freeway stretch. 
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data from 24/06/2014. 
 

Basic Discretized-LWR Formulation 
As mentioned before, the investigated capacity drop approaches are based on a simple first-order model. 
This basic first-order model cannot reflect the capacity drop phenomenon; however, different expressions 
for the FD may improve the model’s accuracy. To this end, four different shapes of the FD were examined 
first, all applied to the basic model, i.e. triangular FD, trapezoidal FD, piecewise linear FD, and nonlinear 
exponential FD (see Figure 2). 

Table 2 includes the estimated models’ parameter values and the corresponding PI value for the 
calibration and the validation date. It is interesting to see that all four variations estimated similar value for 
the Q  (capacity) parameter. Moreover, as it was expected, the use of a triangular FD results in a low cr  
value, lower than in the other formulations. Table 2 also includes the calibration results of a second-order 
model, METANET (10), which was applied to this motorway stretch for comparison purposes. Note that 
Table 2 presents only some of the estimated METANET parameter values, due to the limited available 
space, while the rest parameters were estimated equal to: τ=26.8 s, ν=45.6 km2/h, δ=0.1 h/km, κ=10 
veh/km/lane, vmin=7 km/h. Figure 5 illustrates the space-time diagrams of the real speed measurements and 
the corresponding model predictions of speed for the calibration date. It is observed that the models using a 
triangular or a trapezoidal FD predict free flow conditions at all areas outside congestion. In contrast, the 
use of a piecewise linear or non-linear FD allows for mean speed variations, also outside of the congestion 
area, thus achieving higher accuracy there, compared to the first two formulations. The second-order model 
METANET, produces, as expected, a more realistic representation of the prevailing traffic conditions 
thanks to the fact that this model takes into account the vehicle acceleration and the drivers reaction time. 
Considering the above results, first-order models with nonlinear FD are used for the subsequent 
investigations of capacity drop approaches. 

 

FIGURE 5  Space-time diagrams of the real speed measurements and the models’ estimations of speed 
for 03/06/2014. 
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Capacity Drop Approaches 
Five capacity drop approaches are implemented for this simple, but typical, motorway stretch, which were 
described in the previous section. Table 2 includes the estimated model parameter values for all five 
approaches. It should be mentioned that in all examined approaches the maximum capacity flow Q  was 
considered fixed and equal to 6900 veh/h, which is close to the highest flows observed in the network. This 
was done in order to achieve a fair comparison of the models regarding the reproduction of the capacity 
drop phenomenon.  
 Table 2 shows that in all five approaches similar values were estimated for the fv  and cr  
parameters, while quite different values were obtained for the parameters w  and max  due to the different 
formulations adopted for the reproduction of the capacity drop phenomenon. Moreover, it should further be 
noted that although in all approaches the parameter α is related to the magnitude of the capacity drop, it is 
actually introduced to the model equations in a different way and for this reason the value of α varies in the 
different approaches.  
 Figure 6 (a)-(f) display the time-series of the real flow measurements and the corresponding 
model estimations, at the location of detector station D 8180, for all tested approaches. It is observed that, in 
contrast to the simple first-order model, all five approaches are able to reproduce the capacity drop, 
resulting in reduced merge area outflow during the congestion period, in accordance also with simulation 
results. Table 2 also includes the PI value for the calibration and the validation days. It is observed that the 
models achieve similar PI values, which implies that they are all able to reproduce the traffic conditions in 
this network with sufficient accuracy. Moreover, all approaches improve the PI value compared to the 
simple first-order model with non-linear FD. 

 Nevertheless, each approach is characterized by a different qualitative behavior. In particular, the 
discharge flow observed at detector D8180 for Approach 1 corresponds exactly to the pre-specified value 

6141Q aQ  veh/h. In Approach 2, the observed outflow never reaches capacity, even before the onset of 
congestion, in accordance with the behavior described in the previous section. For Approach 3, the 
discharge flow that materializes is also dependent on the on-ramp flow entering the merge cell (which 
causes the fluctuations that can be observed in the corresponding plot), whereas the mainstream flow 
exiting the cell upstream of the merge cell is constantly equal to 4968Q aQ  veh/h. In Approach 4, the 
magnitude of the observed capacity drop increases according to the density of the upstream cell; i.e., in case 

TABLE 2  Calibration and validation results for all employed models. 

Model 
vf 

(km/h) 

ρcr 

(veh/km/ 
lane) 

w 
(km/h) 

ρmax 

(veh/km/ 
lane) 

Q 

(veh/h) 

ρα 

(veh/km/ 
lane) 

α 
 

η 
 

w′ 
(km/h) 

PI 
3/6 

PI 
24/6 

Trian. FD 112.0 18.7 21.2 117.4 6282 - - - - 18.0 19.3 

Trap. FD 112.0 - 21.8 145.0 6192 - - - - 18.0 16.9 

PWL FD 110.5 24.7 14.8 165.5 6258 14.4 - - - 12.6 13.1 

NL FD 114.2 26.0 19.4 133.9 6285 - - - - 12.9 13.5 

METANET 114.2 28.9 - - 6525 - - - - 7.9 11.5 

Approach 1 123.2 36.4 25.9 124.9 6900 - 0.89 - - 11.6 12.9 

Approach 2 123.4 35.9 21.9 139.2 6900 - - 1.56 - 11.9 13.7 

Approach 3 122.8 33.5 21.4 149.1 6900 - 0.72 - - 12.8 13.1 

Approach 4 123.0 35.6 25.9 131.2 6900 - 0.63 - - 11.3 13.1 

Approach 5 122.8 35.7 33.6 106.7 6900 - 0.57 - 38.2 11.5 12.7 
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of stronger congestion characterized by a lower internal speed, a stronger capacity drop is observed, which 
is in accordance with some traffic observations. Finally, in Approach 5, the discharge flow is the 
equilibrium resulting from the combined effect of the demand and supply functions for the merge cell. It 
should further be noted that all approaches, except for Approach 2, are capable to estimate a high merge 
area outflow just before the onset of congestion, which is in accordance with the real flow values observed. 
 Regarding the calibration procedure, Approaches 1, 2 and 4 were found to converge to similar 
optimal parameter valus, reflecting a capacity drop, when started with different initial parameter values. As 
a consequence, these models might be more easily applicable to different application scenarios. On the 
other hand, for Approaches 3 and 5 the selection of appropriate parameters was more challenging; in 
particular, several calibration runs starting from different initial parameter values led sometimes to 
solutions with a less pronounced capacity drop. These sensitivity and robustness issues are currently under 
more focussed investigation, and related findings may shed more light to the particularities of each 
approach. 
 

CONCLUSIONS 
This study presents an overview of modelling approaches to include capacity drop into first-order traffic 
flow models. The presented approaches were tested first for a hypothetical network and traffic demand 
scenario to highlight their principal behaviour and qualitative properties; eventually the models were more 
rigorously calibrated and validated using real-data from a motorway in the U.K. The obtained results show 
that, although the tested models employ different mechanisms to include the capacity drop phenomenon, 
they are all able to produce an appropriate flow reduction at the merge area whenever traffic congestion is 
present. Furthermore, it is important to point out that Approaches 1, 3, 4, and 5 can be implemented in a 
similar way to other types of bottlenecks (e.g. due to lane-drop, tunnel etc.), while Approach 2, in its current 
form, can only be applied to merging bottlenecks because of its inherent formulation. 
The obtained results were found to be quantitatively similar with respect to the achieved PI values, which is 
mainly attributed to a traffic situation with limited complexity and a limited number of internal comparison 
data. Future investigations involving more complex traffic situations and richer data might shed more light 
on the comparative quantitative accuracy of different approaches. 

 

FIGURE 6  Time-series of the real flow measurements at the location of detector station D 8180 for (a) 
the simple first-order model; (b) the Approach 1; (c) the Approach 2; (d) the Approach 3; (e) the 
Approach 4; and (f) the Approach 5 for 03/06/2014. 
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