
TECHNICAL UNIVERSITY OF CRETE

MASTER THESIS

Online Structure Learning for Markov Logic
Networks using Background Knowledge

Axiomatization

Author:

Evangelos MICHELIOUDAKIS

Supervisor:

Assoc. Prof. Michail G. LAGOUDAKIS

THESIS COMMITTEE

Assoc. Prof. Michail G. LAGOUDAKIS (ECE)

Professor Minos GAROFALAKIS (ECE)

Dr. Alexander ARTIKIS (University of Piraeus, NCSR Demokritos)

Technical University of Crete

School of Electronic and Computer Engineering

in collaboration with the

National Centre for Scientific Research “Demokritos”

Institute of Informatics and Telecommunications

April 2016

http://www.tuc.gr
http://www.intelligence.tuc.gr/~lagoudakis/
http://www.tuc.gr
http://www.ece.tuc.gr
http://www.demokritos.gr
http://www.iit.demokritos.gr

“The question of whether computers can think

is like the question of whether submarines can swim.”

— Edsger W. Dijkstra

Abstract

Many domains of interest today are characterized by both uncertainty and complex

relational structure. Therefore, probabilistic structure learning is a popular research

topic in artificial intelligence and machine learning. The research area of Statistical

Relational Learning (SRL) specifically attempts to effectively represent, reason, and learn

in domains that are governed by these characteristics. This thesis studies the problem

of probabilistic structure learning under the Markov Logic Networks (MLN) framework.

In particular, it addresses the issue of exploiting background knowledge axiomatization

to effectively constrain the space of possible structures by learning clauses subject to

specific characteristics defined by these axioms. We focus on the domain of symbolic

event recognition under uncertainty by using the axiomatization of a probabilistic variant

of the Event Calculus (MLN−EC) as background knowledge. We employ an online strategy

in order to effectively handle large training sets and incrementally refine the previously

learned structure. We demonstrate the effectiveness of our method through experiments

in the domain of activity recognition, using a publicly available benchmark dataset for

video surveillance.

Περίληψη

Πολλά ενδιαφέροντα προβλήματα σήμερα χαρακτηρίζονται τόσο από αβεβαιότητα όσο και από

περίπλοκη σχεσιακή δομή. Ως εκ τούτου, η πιθανοτική μάθηση σχεσιακής δομής είναι ένα

δημοφιλές θέμα έρευνας στον τομέα της τεχνητής νοημοσύνης και της μηχανικής μάθησης.

Η περιοχή έρευνας της Στατιστικής Σχεσιακής Μάθησης (Statistical Relational Learning)

επιχειρεί να ανακαλύψει τρόπους για αποτελεσματική αναπαράσταση, πιθανοτικό συμπερα-

σμό, και μηχανική μάθηση σε προβλήματα που διέπονται από αυτά τα χαρακτηριστικά. Αυτή η

διατριβή μελετά το πρόβλημα της πιθανοτικής μάθησης σχεσιακής δομής υπό την σκοπιά των

Μαρκωβιανών Λογικών Δικτύων (Markov Logic Networks). Ειδικότερα, εξετάζει το ζήτημα

της αξιοποίησης αξιωμάτων που προϋπάρχουν ως γνωστικό υπόβαθρο ώστε να περιορίσει

αποτελεσματικά το χώρο των πιθανών δομών μαθαίνοντας κανόνες που υπόκεινται σε ειδικά

χαρακτηριστικά που ορίζουν αυτά τα αξιώματα. Επικεντρωνόμαστε στην περιοχή της συμβο-

λικής αναγνώρισης γεγονότων υπό συνθήκες αβεβαιότητας, χρησιμοποιώντας τα αξιώματα

που ορίζονται από μια πιθανοτική παραλλαγή του Λογισμού Συμβάντων (MLN−EC) ως γνω-
στικό υπόβαθρο. Χρησιμοποιούμε μια σταδιακή στρατηγική, προκειμένου να χειριστούμε

αποτελεσματικά τα μεγάλα σύνολα εκπαίδευσης και να βελτιώσουμε σταδιακά την δομή σε

κάθε βήμα της διαδικασίας. Αποδείκνυουμε την αποτελεσματικότητα της μεθόδου μας μέσα

από πειράματα στον τομέα της αναγνώρισης ανθρώπινων δραστηριοτήτων, χρησιμοποιώντας

ως μέτρο σύγκρισης ένα διαθέσιμο στο κοινό σύνολο δεδομένων από βιντεοεπιτήρηση.

Acknowledgements

First and foremost, I would like to thank my advisors at NCSR Demokritos Dr. Georgios

Paliouras and Dr. Alexander Artikis for their guidance and limitless encouragement during

the course of my work. I really appreciate all the valuable discussions, the ideas, the

willingness to share their extensive knowledge, and the patience they showed in my

mistakes. Their help has been proved indispensable. I am also deeply thankful to my

supervisor at TUC Michail G. Lagoudakis for the trust that he placed on me and made

this work possible by giving me the opportunity to enstablish a collaboration with NCSR

Demokritos and obtain such a great experience.

I am also very grateful to my colleague Dr. Anastasios Skarlatidis for his continuous sup-

port and invaluable assistance. I wish to thank him for his inspiration and the motivating

discussions we held throughout our collaboration. He taught me in depth many of the

concepts governing the field of Statistical Relational Learning, as well as how to become

a better software engineer. It was a privilege to work with him and to benefit from his

knowledge and friendship. I surely own the quality of this work to him.

Special thanks to Konstantinos Pechlivanis, Alexandros Mavrommatis, Stella Maropaki,

Sotiris Sourlantzis, Giannis Liverios, Alexandros Armaos, Antonis Kechribaris, Stelios

Christinakis, Panagiotis Kazantzas, Vasilis Thanopoulos, and Eleni Xynogala for their

valuable friendship, for the beautiful moments we spent together and for always being

there for me.

Last, but by no means least, I would like to thank my parents for everything they have

done over these years. I would like to dedicate this work to them. They were always

supportive and encouraging either to my successes or failures. Thank you.

Evangelos Michelioudakis

Chania, April 2016

To my parents.

Contents

Abstract iii

Acknowledgements vii

Contents ix

List of Figures xi

List of Tables xiii

1 Introduction 17

1.1 Motivation . 18

1.2 Thesis Contribution . 19

1.3 Thesis Outline . 19

2 Background 21

2.1 The Event Calculus . 21

2.2 Statistical Relational Learning . 22

2.2.1 Markov Logic Networks . 23

2.2.2 MLN−EC: Probabilistic Event Calculus based on MLNs 25

2.2.3 Probabilistic Inference . 26

2.2.4 Weight Learning . 29

2.2.5 LoMRF: Logical Markov Random Fields 32

2.3 Related Work . 33

2.4 Summary . 39

x Contents

3 OSLα: Online Structure Learning using background knowledge Axiomatiza-

tion 41

3.1 Extracting Templates from Axioms . 43

3.2 Hypergraph and Relational Pathfinding . 44

3.3 Template Guided Search . 48

3.4 Clause Creation and Evaluation . 50

3.5 Weight Learning . 52

3.6 Summary . 57

4 Experimental Evaluation 59

4.1 Experimental Setup . 59

4.2 The Methods Being Compared . 61

4.3 Weight Learning Performance . 62

4.4 OSLα Performance . 64

4.5 Summary . 67

5 Conclusions and Future Work 69

5.1 Conclusions . 69

5.2 Future Work . 70

Bibliography 73

List of Figures

2.1 Statistical Relational Learning combines logic-based representation with

probabilistic modeling and machine learning (after [Skarlatidis, 2014]). . 23

2.2 The structure of MLN−EC (after [Skarlatidis, 2014]) 25

2.3 Markov network translation into an equivalent optimization problem . . . 28

3.1 The procedure of OSLα . 42

3.2 Hypergraph for the training set of Table 3.1.Continuous line ellipses rep-

resent the HappensAt predicates, dashed line AUXwalking, line followed

by dots AUXmove, fine-dotted Close, horizontal line filled Next, vertical

line filled OrientationMove and the diagonal line filled HoldsAt. 45

3.3 Hypergraph paths discovered by relational pathfinding 46

3.4 Pruned hypergraph . 50

4.1 F1 score over 10 folds for various evaluation threshold values. 64

4.2 Weight distibution learned for meet (left) and move (right) 65

4.3 Reduction in the number of clauses learned as ξ increases for meet (left)

and move (right). 66

4.4 Effect of F1 score as ξ increases for meet (left) and move (right). 66

4.5 Reduction of testing time as ξ increases for meet (left) and move (right). . 67

List of Tables

2.1 The MLN−EC predicates . 26

3.1 Example training set for move CE. The first column is composed of a

narrative of SDEs, while the second column contains the CE annotation in

the form of ground HoldsAt predicates. 44

4.1 Training example for move CE. The first column is composed of a narrative

of SDEs, while the second column contains the CE annotation in the form

of ground HoldsAt predicates. 60

4.2 Variants of CAVIAR, using hard and soft inertia rules. 61

4.3 CAVIAR statistics . 61

4.4 Weight learning accuracy of the meet CE 62

4.5 Weight learning accuracy of the move CE 63

4.6 Weight learning running times for meet and move CE 63

4.7 Results for OSLα for µ= 4 and µ=1 respectively. 65

4.8 OSLα running times for meet and move CE 65

1 | Introduction

“The only source of knowledge is experience.”
— Albert Einstein

Many real-world application domains are characterized by both uncertainty and complex

relational structure. For instance, in social network analysis the individuals are related

to one another via friendship or collaborations; in computational biology, one is usually

interested in relations or interactions between chemical substances; in natural language

processing tasks, it its often necessary to reason about the relationships of documents

or tokens within a sentence; in activity recognition relations are defined over entities

of persons or objects. Furthermore, applications such the ones mentioned above almost

always contain noisy data due their real-world nature. Regularities in these domains

are very hard to identify manually, and thus automatically learning them from data

is desirable. Therefore, methods for unifying the strengths of logic and probabilistic

modeling have become an important aspect of recent research in the area of machine

learning. In particular, the fields of Probabilistic Inductive Logic Programming (PILP) and

Statistical Relational Learning (SRL) concern the induction of probabilistic knowledge by

combining the power of logic and probability and adopting principles of Inductive Logic

Programming (ILP) and statistical learning. Furthermore, the collection and processing

of data from various uncorrelated sources, which is common nowadays, provides a

significant resource for knowledge discovery. In particular, it facilitates the automated

discovery of multi-relational dependencies over these data useful for improving business

process and providing services of higher quality.

The data provided for such a SRL system in many occasions represent temporal activities,

that can be represented by events. Therefore, the multi-relational dependencies discov-

ered by the machine learning procedure can be further used for the accurate detection

of significant events by employing Complex Event Processing (CEP) techniques. CEP

techniques recognize composite events (CEs) of interest, based on input streams of simple
derived events (SDEs). CEs are defined as relational structures over other sub-events,

either CEs or SDEs. Such CE definitions take the form of rules, usually expressed in a

18 Introduction

formal language, that capture the knowledge of domain experts. Due to the dynamic

nature of the real-world applications, the CE definitions may need to be refined over time

or the current knowledge base may need to be enhanced with new definitions. Manual

creation of event definitions is a tedious and cumbersome process and thus machine

learning techniques to automatically derive the definitions are essential.

1.1 Motivation

One of the logic-based representations that handles uncertainty, proposed in the area of

SRL, is Markov Logic which combines finite first-order logic and probabilistic graphical

models. Structure learning approaches that focus on this formalism have been success-

fully applied to a variety of applications where uncertainty holds. However, most of these

methods are batch algorithms that cannot handle large training sets. Moreover, these

batch learning methods are data-driven and must repeatedly perform inference over the

entire training set in each learning iteration, which becomes computationally expensive,

and renders them unusable to real-world applications.

Huynh and Mooney [2011b] proposed an online strategy based on Markov Logic for

updating the structure of the model in order to effectively handle large training datasets.

Based on the model’s incorrect predictions the proposed approach searches for relational

dependencies that help enhancing these predictions. Nevertheless, it does not exploit

background knowledge during the search procedure and may spend a lot of time explor-

ing structures that are very common and therefore largely useless for the purposes of

learning, yielding models that are not adequate generalizations.

Therefore, the approach proposed in Huynh and Mooney [2011b] is not suitable in a

number of real-world event recognition tasks, such as activity recognition, because it

cannot effectively handle a search space over a very large domain of constants (e.g.

time), leading to an explosion of relational dependencies. There are also other large

domain settings that cannot be handled effectively by existing methods, such as social

network analysis and many tasks in natural language processing.

The motivation behind this thesis is the potential benefit of exploiting background knowl-

edge in order to effectively constrain the search space of possible structures during

learning. The space can be constrained subject to specific characteristics introduced by

the rules governing a specific task that are usually stated as axioms. In our case the rules

are the domain-independent axioms of the Event Calculus which is used for Complex

Event Recognition.

Introduction 19

1.2 Thesis Contribution

We focus on learning the structure of a logic-based model in situations where various

forms of uncertainty hold, in order to be able to apply efficient and accurate event

recognition. Moreover, we handle large training sets during the learning procedure by

employing an online strategy. We propose a probabilistic structure learning method

called OSLα that exploits background knowledge in order to efficiently search the space

of possible structures, yielding an accurate model. To demonstrate the benefits of the

proposed approach, the method is evaluated on human activity recognition.

OSLα extends the approach of [Huynh and Mooney, 2011b] by using the axiomatization

of a probabilistic variant of the Event Calculus called MLN−EC, in order to define templates

over the space of possible structures leading into an efficient template-guided search

procedure. In principle, any axiomatization having similar properties can be used to

constraint the search space of a similar problem. The proposed method can handle a

simple form of first-order logic functions having finite domains and learn rules using

these functions.

1.3 Thesis Outline

Chapter 2 provides the required background for the Event Calculus, Statistical Relational

Learning, Markov Logic Networks, MLN−EC and the open-source software LoMRF. Fur-

thermore, it also presents and discusses related work on structure learning. Chapter 3

describes the proposed method (OSLα) for Online Structure Learning by exploiting the

background knowledge axiomatization. In Chapter 4, we present the experimental eval-

uation results of OSLα using a publicly available benchmark dataset for human activity

recognition. Finally, in Chapter 5, we propose directions for future work regarding open

issues and conclude.

2 | Background

“The beginning is the most important part of the work.”
— Plato

We focus on learning the structure of a logic-based model in situations where various

forms of uncertainty hold, in order to be able to apply efficient and accurate event recog-

nition. Moreover, we focus on employing an online learning strategy in order be able to

exploit large datasets during the structure learning procedure. This chapter provides the

required background for our work. The proposed method of this work is based both on

the MLN−EC method, a variant of the Event Calculus formalism which handles uncertainty

by employing a Statistical Relational Learning framework, as well as on a previously

developed online structure learning algorithm [Huynh and Mooney, 2011b]. In Section

2.1 we briefly present the Event Calculus formalism. Then in Section 2.2, we present

a state-of-the-art Statistical Relational Learning framework; that is Markov Logic Net-

works along with the MLN−EC method, as well as inference, weight learning methods, and

LoMRF; an open-source implementation of Markov Logic Networks that we contributed

our work. Finally, in Section 2.3, we present related work in the domain of probabilistic

structure learning for Markov Logic Networks.

2.1 The Event Calculus

The Event Calculus, originally introduced by Kowalski and Sergot [1986], is a first-

order predicate calculus for reasoning about events and their effects. A number of

different variations of the original formalism have been proposed using either logic

programming or classical logic — see Shanahan [1999], Miller and Shanahan [2002]

and Mueller [2008] for surveys. Most of these dialects share the same ontology and core

domain-independent axioms. The ontology consists of time-points, events and fluents. The

underlying time model is often linear and may represent time-points as real or integer

numbers. A fluent is a property whose value may change over time. When an event
occurs it may change the value of a fluent. The core domain-independent axioms define

22 Background

whether a fluent holds or not at a specific time-point. In addition, they also incorporate

the common sense law of inertia, according to which fluents persist over time, unless

they are affected by an event occurrence.

We consider finite domains of time-points, events and fluents, that are represented by

the sets T , E and F , respectively. Moreover, individual entities appearing in a particular

event recognition task, e.g., persons, objects, activities etc., are represented by constants

in the finite setO. Among the many variants of the original Event Calculus formalism, we

chose a probabilistic version of the Event Calculus (MLN−EC) proposed by Skarlatidis et al.

[2015] that is expressed in first-order logic and modeled using Markov Logic Networks.

MLN−EC is based on the Discrete Event Calculus and constitutes a probabilistic variant of

the formalism, which is desirable for the purpose of our work.

The Discrete Event Calculus1 (DEC) is an alternative formulation of Shanahan’s Full

Event Calculus [Shanahan, 1999], which has been proved to be logically equivalent to

the latter one when the domain of time-points is limited to integers [Mueller, 2008] —

i.e., T ∈ Z. The original DEC is composed of twelve domain-independent axioms. On

the contrary, MLN−EC is focused only on a subset of the domain-independent axioms that

determine the influence of the events to fluents as well as the inertia of fluents. More

details are given in Section 2.2.2.

2.2 Statistical Relational Learning

The Event Calculus can compactly represent complex event relations. A knowledge

base of Event Calculus axioms and CE definitions is defined by a set of first-order logic

formulas. Each formula is composed of predicates that associate variables or constants,

representing SDEs, CEs, time-points, etc. One of the strong motivations for using such a

relational representation is its ability to directly express dependencies between related

instances — e.g., events. While this type of representation is highly expressive, it cannot

handle uncertainty. Each formula imposes a (hard) constraint over the set of possible

worlds, that is, Herbrand interpretations. Therefore, a missed or an erroneous SDE

detection can have a significant effect on the event recognition results. For example, an

initiation of a specific CE may be based on an erroneously detected SDE, thus causing

the recognition of a CE to be certain.

Statistical machine learning systems, e.g., methods that are based on probabilistic graph-

ical models [Lafferty et al., 2001; Murphy, 2002; Rabiner and Juang, 1986], adopt a

probabilistic approach to handle uncertainty. Such probabilistic models have been suc-

cessfully applied in many real-word applications that involve various forms of uncertainty,

such as speech recognition, natural language processing, activity recognition, etc. By
1An open-source implementation of the Discrete Event Calculus is available at http://decreasoner.

sourceforge.net

http://decreasoner.sourceforge.net
http://decreasoner.sourceforge.net

Background 23

employing statistical learning techniques, the parameters of such models can be esti-

mated automatically from training data. Compared to logic-based methods, probabilistic

methods are less flexible for modeling several entities and relations among them. Thus,

by relying on propositional representations, it is difficult to represent complex relational

data or incorporate prior domain knowledge (e.g., knowledge from experts or common

sense knowledge). Consequently, these methods are usually specifically extended for

modeling particular applications.

Statistical Relational Learning (SRL) aims to develop methods that can effectively rep-

resent, reason and learn in domains with uncertainty and complex relational structure

(e.g., relations among instances of SDEs and CEs). As shown in Figure 2.1, SRL com-

bines a logic-based representation with probabilistic modeling and machine learning. In

the domain of event recognition, the logic-based representation allows one to naturally

define the relations between events and incorporate existing domain knowledge. This

particularly expressive representation is combined with probabilistic modeling, in order

to naturally handle uncertainty. Using machine learning techniques, the model can be

automatically estimated or refined according to the given set of example data.

LOGIC

Formal and
declarative
relational
representation

LEARNING

Improving performance
through experience

PROBABILITIES
Sound mathematical
foundation for
reasoning under
uncertainty

FIGURE 2.1: Statistical Relational Learning combines logic-based representation with
probabilistic modeling and machine learning (after [Skarlatidis, 2014]).

2.2.1 Markov Logic Networks

Markov Logic Networks (MLNs) [Domingos and Lowd, 2009] is a state-of-the-art SRL

method that provides a framework which combines first-order logic representation with

Markov Network modeling. The basic idea is to soften the constraints that are imposed

by the formulas of a knowledge base and be able to perform probabilistic inference.

Each formula Fi is represented in first-order logic and is accompanied by a weight value

wi ∈ R that reflects its confidence. The higher the value of weight wi, the stronger

the constraint represented by formula Fi. Therefore, unlike classical logic, all worlds in

MLNs are possible and they are quantified by a certain probability. The probability of a

world increases as the number of formulas it violates decreases, other things being equal.

24 Background

Consequently, a knowledge base in MLNs may contain both hard and soft-constrained

formulas. Hard-constrained formulas are always accompanied by an infinite weight

value indicating that the captured knowledge is certain. Therefore, an acceptable world

(i.e., a possible Herbrand interpretation) must at least satisfy the hard constraints. On

the contrary, soft constraints capture imperfect knowledge, allowing for the existence of

worlds in which the knowledge is violated.

Formally, a knowledge base L of weighted formulas, together with a finite domain of

constants C, define a ground Markov network ML,C . All formulas are converted into

clausal normal form (CNF) and each one of them is grounded according to the domain

of its distinct first-order logic variables, e.g., a variable over the domain of time-points T .

The nodes in the resulting ML,C are Boolean random variables, also called ground atoms,

each one corresponding to a possible grounding of a predicate that appears in L. The

predicates of ground clauses form cliques in ML,C and each clique is accompanied by the

weight wi of the corresponding formula Fi in L. Moreover, each clique defines a Boolean

feature, taking the value 1 when the ground clause is true and 0 otherwise. ML,C defines

a probability distribution over possible worlds and is represented as a log-linear model.

The aim of event recognition is to recognize CEs of interest given a stream of SDEs.

Consequently, the focus is on discriminative MLNs [Singla and Domingos, 2005], that

are related to Conditional Random Fields [Lafferty et al., 2001; Sutton and McCallum,

2007]. Boolean random variables in ML,C are partitioned into a set of evidence random

variables X, and a set of query random variables Y . The former correspond to the input

SDEs (e.g. HappensAt predicates) while the latter correspond to the CEs of interest (e.g.

HoldsAt predicates). The joint probability distribution of a possible assignment of Y=y,

conditioned over a given assignment of X=x, is defined as follows:

P (Y=y |X=x) =
1

Z(x)
exp

(|Fc|∑
i=1

wini(x,y)

)
(2.1)

Vectors x ∈ X and y ∈ Y represent a possible assignment to evidence X and query/hid-

den variables Y , respectively. X and Y are the sets of all possible assignments that the

evidence X and query/hidden variables Y can take. Fc is the set of clauses produced by

the knowledge base L and the constants in C. The scalar value wi is the weight of the

i-th clause and feature ni(x,y) is the number of satisfied groundings of the i-th clause in

x and y. Z(x) is called partition function and normalizes the probability over all possible

assignments y′ ∈ Y of query/hidden variables given the assignment x, as follows:

Z(x) =
∑
y′∈Y

exp
(|Fc|∑
i=1

wini(x,y
′)
)

(2.2)

Background 25

2.2.2 MLN−EC: Probabilistic Event Calculus based on MLNs

MLN−EC [Skarlatidis, 2014; Skarlatidis et al., 2015, 2011] is a method which combines a

discrete variant of the Event Calculus with the probabilistic framework of Markov Logic

Networks in order to deal with uncertainty and retain the advantages of a logic-based

representation. Figure 2.2 outlines the structure of the method. The input to MLN−EC
is a stream of SDE occurrences, as well as a set of domain-dependent CE definitions.

These definitions take the form of common-sense rules and describe the conditions under

which a CE starts or ends. The basic concept behind MLN−EC is that it combines the given

CE definitions with the domain-independent axioms of MLN−EC (2.3)–(2.6), generating

a compact knowledge base serving as a pattern for the production of Markov Networks

and enabling us to perform probabilistic inference and machine learning. The compact

knowledge base is generated by performing circumscription by predicate completion

[Lifschitz, 1994; Mueller, 2008; Shanahan, 1999] – a syntactic transformation where

formulas are translated into logically stronger ones. The aim of circumscription is to au-

tomatically rule out all conditions which are not explicitly entailed by the given formulas.

Hence, circumscription introduces a closed-world assumption to first-order logic.

INPUT I TRANSFORMATION I INFERENCE I OUTPUT �

Compact
Knowledge

Base

Composite
Event

Definitions

Event
Calculus
Axioms

Simple,
Derived
Event

Stream

Recognised
Composite

Events

Markov Logic Networks

FIGURE 2.2: The structure of MLN−EC (after [Skarlatidis, 2014])

MLN−EC is based on a discrete version of the Event Calculus in first-order logic. Table 2.1

summarizes the main elements of MLN−EC. Following the conventions of first-order logic,

variables and functions start with a lower-case letter and are assumed to be universally

quantified unless otherwise indicated. Predicates and constants start with an upper-case

letter.

The predicate HappensAt expresses the input evidence, determining the occurrence of a

SDE at a specific time-point. The input stream of observed SDEs is represented as a nar-

rative of ground HappensAt predicates. The predicates InitiatedAt and TerminatedAt

specify the conditions under which a fluent – representing a CE – is to be initiated or

terminated at a specific time-point.

26 Background

Predicate Meaning

HappensAt(e, t) Event e occurs at time-point t

HoldsAt(f , t) Fluent f holds at time-point t

InitiatedAt(f , t) Fluent f is initiated at time-point t

TerminatedAt(f , t) Fluent f is terminated at time-point t

TABLE 2.1: The MLN−EC predicates

The MLN−EC axioms that determine when a fluent holds are defined as follows:

HoldsAt(f , t+1)⇐
InitiatedAt(f , t)

(2.3)

HoldsAt(f , t+1)⇐
HoldsAt(f , t) ∧
¬TerminatedAt(f , t)

(2.4)

Axiom (2.3) defines that if a fluent f is initiated at time t, then it holds at the next

time-point. Axiom (2.4) specifies that a fluent continues to hold unless it is terminated.

The axioms that determine when a fluent does not hold are defined similarly:

¬HoldsAt(f , t+1)⇐
TerminatedAt(f , t)

(2.5)

¬HoldsAt(f , t+1)⇐
¬HoldsAt(f , t) ∧
¬InitiatedAt(f , t)

(2.6)

According to Axiom (2.5), if a fluent f is terminated at time t then it does not hold at

the next time-point. Axiom (2.6) states that a fluent continues not to hold unless it is

initiated.

2.2.3 Probabilistic Inference

In order to be able to perform machine learning using MLNs, efficient methods for prob-

abilistic inference are required. Directly computing the Equation (2.1) is intractable,

because the value of Z(x), shown in Equation (2.2), depends on the relationship among

all clauses in the knowledge base. For this reason, a variety of efficient inference al-

gorithms have been proposed, based on local search and sampling [Biba et al., 2011;

Poon and Domingos, 2006; Singla and Domingos, 2006], variants of Belief Propagation

[Gonzalez et al., 2009; Kersting, 2012; Kersting et al., 2009; Singla and Domingos,

2008], Integer Linear Programming [Huynh and Mooney, 2009; Noessner et al., 2013;

Riedel, 2008], Lifted Model Counting [Apsel and Brafman, 2012; den Broeck et al., 2011;

Background 27

Gogate and Domingos, 2011], etc. Below we present the two types of inference that can

be performed in MLNs: marginal inference and maximum a-posteriori inference (MAP).

2.2.3.1 Marginal Inference

Marginal inference computes the conditional probability that CEs hold given an input of

observed SDEs:

P (HoldsAt(CE, T)=True |SDEs)

The probability value measures the confidence that the CE is recognized. Since it is

#P-complete to compute it [Domingos and Lowd, 2009], approximate Markov Chain

Monte Carlo (MCMC) sampling algorithms have been employed for efficient inference.

Since MLNs incorporate logic to probabilistic modeling, inference must deal both with

deterministic and probabilistic dependencies. Deterministic or near-deterministic depen-

dencies arise from formulas accompanied by an infinite or a strong weight value. On the

other hand, by being purely statistical, MCMC can only handle probabilistic dependen-

cies, because in the presence of deterministic dependencies the properties of ergodicity
and detailed balance characterizing Markov Chains are violated and the sampling algo-

rithms give poor results [Poon and Domingos, 2006]. Ergodicity requires that all states

are reachable from each other, while detailed balance that the probability of moving

from one state to another is identical to the probability of moving back. Deterministic

dependencies create isolated regions in the state space and thus typical MCMC methods,

such as Gibbs sampling [Casella and George, 1992], get trapped in local regions and are

unable to converge.

To overcome these issues, MC-SAT algorithm was developed [Poon and Domingos, 2006],

which is a MCMC method that combines satisfiability testing with slice-sampling [Damlen

et al., 1999]. Specifically, a satisfiability solver is used to find an assignment satisfying

all hard-constraint clauses and subsequently a sequence of sampling steps takes place,

each one choosing a subset of ground clauses satisfied by the previous step in order

to be satisfied in the next step. The sampling is restricted only to states that satisfy at

least all chosen clauses. Therefore, MCMC cannot get trapped in local regions, because

satisfiability testing collects samples from all isolated regions.

2.2.3.2 MAP Inference

MAP inference, on the other hand, identifies the most probable assignment among all

HoldsAt instantiations that are consistent with the given input of observed SDEs:

28 Background

argmax
HoldsAt

P (HoldsAt(CE, T) |SDEs)

This task reduces to finding the truth assignment of all HoldsAt instantiations that maxi-

mizes the sum of weights of satisfied ground clauses. This is equivalent to the weighted

maximum satisfiability problem. The problem is NP-hard in general and there has been

significant work on finding an approximate solution efficiently using local search algo-

rithms (e.g., MaxWalkSAT [Kautz et al., 1997], see Hoos and Stützle [2004] for in depth

analysis) and linear programming methods (e.g., Huynh and Mooney [2009]; Noessner

et al. [2013]; Riedel [2008]).

We employ both approaches for approximate MAP inference by using the classic local

search MaxWalkSAT solver proposed by Kautz et al. [1997] and the LP-relaxed Integer

Linear Programming method proposed by Huynh and Mooney [2009]. In particular,

for the latter algorithm, the ground Markov network is translated into a set of linear

constraints, as shown in Figure 2.3, and solved using standard linear optimization algo-

rithms. Note that a binary variable yi is assigned to each unknown ground predicate. For

each (non-unit2) soft-constrained clause, an auxiliary binary variable zj is introduced

and additional constraints are added containing the binary variables of the literals ap-

pearing in the clause (negated literals are appearing as 1−yi). Negative weighted clauses

impose a constraint for each individual literal in the clause indicating that it should not

be satisfied. Hard-constrained clauses impose constraints causing them to necessarily be

satisfied. Unit clauses do not impose any constraints.

MARKOV NETWORK LINEAR PROGRAMMING

max: 3y1+0.5z1+z2

st. y1+y2≥z1

1−y2≥z2, 1−y3≥z2

(1−y1)+(1−y2)≥1

(1−y1)+(1−y3)≥1

(1−y2)+(1−y3)≥1

3 HoldsAt(CEa , 5)

0.5 HoldsAt(CEa , 5) ∨ HoldsAt(CEb , 5)

−1 HoldsAt(CEb , 5) ∨ HoldsAt(CEc , 5)

∞ ¬HoldsAt(CEa , 5) ∨ ¬HoldsAt(CEa , 5)

∞ ¬HoldsAt(CEa , 5) ∨ ¬HoldsAt(CEb , 5)

∞ ¬HoldsAt(CEb , 5) ∨ ¬HoldsAt(CEc , 5)

FIGURE 2.3: Markov network translation into an equivalent optimization problem

Due to the NP-hardness of the problem, the linear programming solver usually returns

non-integral solutions — i.e., the assignment of some ground HoldsAt(CE, T) is not

Boolean, but within the open interval (0, 1). For that reason, the method uses a rounding

procedure called ROUNDUP [Boros and Hammer, 2002]. Specifically, the procedure
2Unit clauses are composed of a single literal.

Background 29

iteratively assigns the truth value of non-integral ground atoms, by satisfying the clauses

that appear with respect to their cost (i.e., summation of their weights). Compared to the

local search MaxWalkSAT algorithm, the linear programming approach typically achieves

higher accuracy [Huynh and Mooney, 2009].

2.2.4 Weight Learning

The weights of the soft-constrained clauses in MLNs can be estimated from training data,

using supervised learning techniques. When the goal is to learn a model that recognizes

CEs with some confidence (i.e., probability), then a widely adopted learning approach is

to minimize the negative conditional log-likelihood (CLL) function that is derived from

Equation (2.1). Given training data that are composed of a set X of evidence predicates

(e.g., ground HappensAt predicates) and their corresponding query predicates Y (e.g.,

ground HoldsAt predicates), the negative CLL has the following form:

− logPw(Y=y |X=x) = logZ(x)−
|Fc|∑
i=1

wini(x,y)

The vector x is the assignment of truth values to the evidence random variables X,

according to the training data. Similarly, y represents a possible assignment of truth

values to the query random variables Y that are provided as annotation. CLL is used to

evaluate how well the model fits the given training data.

The parameters of the model are the weight values wi that are associated to the soft-

constrained clauses in Fc and can be estimated by using either first-order or second-order
optimization methods [Lowd and Domingos, 2007; Singla and Domingos, 2005]. First-

order methods apply standard gradient descent optimization techniques, e.g., the Voted

Perceptron algorithm [Collins, 2002; Singla and Domingos, 2005], while second-order

methods pick a search direction based on the quadratic approximation of the target

function. As stated by Lowd and Domingos [2007], second-order methods are more ap-

propriate for MLN training, as they do not suffer from the problem of ill-conditioning. In

a training set some clauses may have a significantly greater number of satisfied ground-

ings than others, causing the variance of their counts to be correspondingly larger. This

situation makes the convergence of the standard gradient descent methods very slow,

since there is no single appropriate learning rate for all soft-constrained clauses.

If the goal is to predict accurate target-predicate probabilities (e.g., the probability of

a CE to hold), these approaches are well motivated. However, in many applications,

the actual goal is to maximize an alternative performance metric such as classification

accuracy or F-measure. Thus, an alternative to CLL optimization is max-margin training

which constitutes an approach competitive to discriminative training and also has the

advantage that it can be adapted to maximize a variety of performance metrics beyond

30 Background

classification accuracy such as ROC area, Precision or Recall [Joachims, 2005]. Further-

more, max-margin methods have been successfully applied to structure prediction, where

the output space consists of structured objects, such as sequences, trees or graphs [Taskar

et al., 2003; Tsochantaridis et al., 2005] in order to learn parameters that maximize the

margin between the probability of the correct assignment and that of the closest incorrect

assignment. Instead of optimizing CLL, max-margin maximize the following ratio:

P (Y=y|X=x,w)

P (Y=ŷ|X=x,w)

The above equation measures the ratio between the probability of correct truth assign-

ment y of CEs and the closest competing incorrect truth assignment, which is also known

as separation oracle, ŷ=argmaxȳ∈Y\yP (Y=ȳ|X=x). The intuition is that the more ac-

curate is a model the closer should be in the correct truth assignment and thus the ratio

should be minimized. We employ the method of Huynh and Mooney [2009] which for-

mulates the max-margin problem as 1-slack structural support vector machine (SVM)

using a cutting-plane algorithm proposed by Joachims et al. [2009]. Specifically, struc-

tural SVMs are predicting structured outputs instead of simple labels or real values. They

describe the problem of learning a function h : X 7→ Y, where X is the space of inputs

examples, and Y is the space of multivariate and structured outputs from the set of

training examples S = ((x1,y1), . . . , (xn,yn)) ∈ (X × Y)n.

The goal is to find a function h that has low prediction error. This can be accomplished

by learning a discriminant function f : X × Y 7→ R and maximizing f over all y ∈ Y for

a given input x to get a classifier of the form:

hw(x) = argmax
y∈Y

fw(x,y)

The discriminant function fw(x,y) = wTΨ(x,y) is linear in the space of features, where

w ∈ RN is a parameter vector and Ψ(x,y) is a feature vector relating an input x and

output y. The features need to be designed for a given problem so that they capture the

dependency structure of y and x and the relations among the outputs y. In our case

Ψ(x,y) = n(x,y) which is the number of satisfied groundings in x and y. Therefore,

the goal is to find a parameter vector w that maximises the margin by employing linear

programming techniques, such as the Integer Linear Programming inference method

described above.

2.2.4.1 Online Weight Learning

Batch training algorithms, described in the previous section, must repeatedly run in-

ference over all training examples in each iteration. This becomes computationally

Background 31

expensive and eventually infeasible for very large datasets with thousands of training

examples, which may not even fit in the main memory. To overcome this problem, we

employ an online learning strategy where the learner sequentially processes a set of

examples at each step in the form of micro-batches. The size of these batches can be

adjusted.

In particular, we employ an online max-margin method proposed by Huynh and Mooney

[2011a] based on the Coordinate-Dual-Ascent update rule (CDA). The algorithm is

derived from the primal-dual framework for strongly convex loss functions [Hazan et al.,

2006], which is a framework for deriving online algorithms that have low regret. CDA

can use various loss functions to guide the optimization. We employ a prediction-based

loss which measures the difference between the predicted possible world and the ground-

truth one. The update rule in terms of the weight vector for each step t is the following:

wt+1 =
t− 1

t
wt + min

{ 1

σt
,

`t
||∆φt||22

}
∆φt (2.7)

where σ is a non-negative constant and φt is a feature vector representing the number

of satisfied groundings in x and y as in the batch version of max-margin training. Note

that the learning rate of the update rule is controlled by the loss `t suffered at each step.

At the beginning, when the model has low predictive quality, CDA aggressively updates

the model based on the loss suffered at each step. Later, when the model improves, it is

updated less aggressively.

Although CDA is quite fast, it may lack in accuracy. Moreover, Lee et al. [2006] states

that parameter learning algorithms used by the structure learning procedure, which may

introduce a lot of new features and many of which may not be useful, perform better

when they use L1-regularization. Therefore, L1-regularization, which has the tendency

to force parameters to zero and thus leads us to sparser models, is preferred over other

Lp norm regularization methods. For this reason we also employ another algorithm for

online optimization used by Huynh and Mooney [2011b], in order to perform structure

learning more efficiently.

AdaGrad, proposed by Duchi et al. [2011], is a state-of-the-art online method, which

is an L1-regularized adaptive subgradient algorithm based on composite mirror-descent

updates. AdaGrad belongs to a family of subgradient methods that dynamically incorpo-

rate knowledge of the geometry of the data observed in earlier steps to perform more

informative gradient-based learning. Informally, the algorithm gives frequently occurring

features very low learning rates and infrequent features high learning rates, where the

intuition is that each time an infrequent feature is seen, the learner should “take notice".

Thus, the adaptation facilitates finding and identifying very predictive but comparatively

rare features. It is often the case that infrequently occurring features are highly informa-

tive and discriminative. Indeed, in many applications of online and stochastic learning,

32 Background

the input instances are of very high dimensionality, yet within any particular instance

only a few features are non-zero. AdaGrad updates the weight vector at each step t as

follows:

wt+1,i = sign
(
wt,i −

η

Ht,ii
gt,i

)[∣∣∣wt,i −
η

Ht,ii
gt,i

∣∣∣− λη

Ht,ii

]
+

(2.8)

where λ is the regularization parameter used to tackle overfitting, η is the learning rate,

wt,i is the i-th component of the weight vector at step t and [a]+ denotes a truncated

function at 0, i.e. [a]+ = max(a, 0). The function sign returns the sign of the operation

inside the brackets. The subgradient gt is computed, at each step t, over the loss function

which guides the optimization process, as follows:

gPL = nC(xt,y
PL
t)− nC(xt,yt) = ∆nC (2.9)

where nC is the number of true groundings for the clause C and yPLt is the predicted

possible world. The subgradient of the loss function represents the difference between

the number of satisfied groundings computed over the predicted possible world and

the ground-truth one. Regarding the loss function, we use the prediction-based loss

function, also used by Huynh and Mooney [2011b] which is a simpler variant of the max-

margin loss [Huynh and Mooney, 2009]. Furthermore, the subgradient is also required

to compute Ht,ii as follows,

Ht,ii = δ + ||g1:t,i||2 = δ +

√√√√ t∑
j=1

g2
j,i (2.10)

where H is a diagonal matrix and δ is the default value of the matrix. Note that AdaGrad

assigns a different step size η
Ht,ii

for each component of the weight vector. Thus, AdaGrad

needs to retain the sum of squared subgradients of each component. From the update

rule we can see that if a clause is not relevant to the current example the AdaGrad

discounts its weight by λη
Ht,ii

. Thus, irrelevant clauses will be zeroed out in the long run.

2.2.5 LoMRF: Logical Markov Random Fields

There are several systems implementing Markov Logic Networks reasoning and learn-

ing algorithms such as, Alchemy, Tuffy, Markov TheBeast, ProbCob, RockIt, Factorie

and LoMRF. LoMRF3 [Skarlatidis, 2012] is an open-source implementation of Markov

Logic Networks written in Scala programming language. It is a tool for easily perform-

ing knowledge base compilation, grounding, exporting the Markov network in various
3https://github.com/anskarl/LoMRF

http://alchemy.cs.washington.edu
http://research.cs.wisc.edu/hazy/tuffy
http://code.google.com/p/thebeast
http://ias.cs.tum.edu/probcog-wiki
https://code.google.com/p/rockit/
http://factorie.cs.umass.edu/index.html
https://github.com/anskarl/LoMRF
https://github.com/anskarl/LoMRF

Background 33

formats as well as performing MAP and marginal inference. It provides various useful

features such as predicate completion in three variants (full, decomposed, and simplifi-

cation) [Lifschitz, 1994; Mueller, 2008; Shanahan, 1999], clausal form transformation,

function elimination and introduction by using auxiliary predicates. Furthermore, it also

provides a parallel grounding algorithm which constructs the minimal Markov Network

or Markov Random Field (MRF) required by doing various optimizations in the process

(removing tautologies, ignoring everything not required for inferring the query variables,

etc.). This implementation, in particular, was very suitable to our work due to the fact

that during event recognition we usually query for every time point and therefore even

lifted inference may not be a solution. For all these reasons we chose LoMRF as a baseline

for this work and contributed to the project various features that extended its function-

ality. Specifically, we contributed another algorithm for MAP inference based on integer

linear programming, as well as algorithms for parameter learning (max-margin, CDA,

and AdaGrad) and online structure learning (OSL and OSLα).

2.3 Related Work

The task of structure learning is to discover the dependency structure of the model as

well as estimate the parameters of these dependencies given a set of training examples

D. The training set usually consists of a single interconnected example containing

many ground instances of observed SDEs as well as unobserved CEs (query predicates).

Nearly all approaches developed for structure learning perform a heuristic search through

the space of possible structures, known as the hypothesis space H, in order to avoid

exhaustive search, which is combinatorially explosive for complex models. Typically,

given a particular scoring function S(h,D) for h ∈ H the task is reduced to finding a

hypothesis h∗ ∈H that maximizes the score, i.e., h∗ = argmaxh∈H S(h,D).

In MLNs the structure is a set of weighted formulas in conjunctive normal form. In prin-

ciple, the structure can be learned or revised by using approaches for learning graphical

models [Heckerman, 1999; McCallum, 2012; Pietra et al., 1997], as well as Inductive

Logic Programming (ILP) techniques [De Raedt and Dehaspe, 1997; Quinlan, 1990;

Srinivasan, 2004]. However, since an MLN represents a probability distribution over

possible worlds, much better results are obtained by using evaluation functions based

on likelihood (e.g., pseudo-likelihood), rather than typical ILP ones like accuracy and

coverage [Kok and Domingos, 2005]. Log-likelihood or conditional log-likehood are

probably the best evaluation functions, albeit particularly expensive to compute.

In this section we outline important batch approaches that have been developed in

order to efficiently learn and revise the MLN structure, starting either from an existing

knowledge base or an empty one. These methods have proven to be beneficial in many

real-world applications in citation analysis, web mining, natural language processing,

robotics, bioinformatics, computer games as well as activity recognition.

34 Background

Top-down structure learning Top-down structure learning as proposed by Kok and

Domingos [2005] learns and/or revises the MLN structure in an iterative fashion. The

initial structure can be an empty network or an existing KB. At each step, the algorithm

searches for the best clause to add to the model. Searching can be performed using one of

two possible strategies. The first one, beam search, keeps the best k clause candidates at

each step of the search. The second one, shortest-first search, tries to find the best clauses

of length i before it moves on to clauses of length i + 1. Candidate clauses are formed

by adding each predicate (negated or not) to each current clause, using all possible

combinations of variables, subject to the constraint that at least one variable in the new

predicate must appear in the current clause. Candidate clauses are scored using the

weighted pseudo log-likelihood measure, an adaptation of the pseudo log-likelihood that

weights the pseudo-likelihood of each grounded atom by 1 over the number of groundings

of its predicate, in order to prevent predicates with larger arity from dominating the

expression. The procedure follows a blind generate-and-test strategy in which many

potential changes to an existing model are systematically generated independently of the

training data, and then tested for empirical adequacy. For complex models such as MLNs,

the space of potential revisions is combinatorially explosive and such a search procedure

can become difficult to control, resulting in convergence to suboptimal local maxima.

Iterative Local Search One way of addressing the potential shortcomings of greedy

structure selection is by using iterative local search techniques [Lourenço et al., 2003],

that explores the space of structures through a biased sampling of the set of local optima

found by a local search procedure. They focus the search not on the full space of solu-

tions but on a smaller subspace defined by the solutions that are locally optimal for the

optimization engine. These techniques alternate between two types of search steps: (a)

either moving towards a locally optimal solution using a given evaluation function, or

(b) perturbing the current solution in order to escape from local optima. The algorithm

proposed by Biba et al. [2008] uses the above technique to avoid local maxima when

learning MLNs in a discriminative setting, where the focus is on predicting a specific

target predicate given the evidence on all other predicates.

Bottom-up structure learning Another alternative is using algorithms developed to re-

strict the hypothesis space H, typically by performing a pre-processing step that, roughly

speaking, discovers more promising regions of the space. Bottom-Up Structure Learning

(BUSL) introduced by Mihalkova and Mooney [2007] is based on the observation that,

once an MLN is instantiated into a Markov network (through the grounding procedure),

the instantiations of each clause of the MLN define a set of identically structured cliques in

the Markov network. BUSL inverts this process of instantiation and constrains the search

space by inducing lifted templates for such cliques in order to learn a so-called Markov
network template. The template network is composed of template nodes, conjunctions of

one or more literals that serve as building blocks for creating clauses. Template nodes are

Background 35

constructed by looking for groups of constant-sharing ground literals that are true in the

data and abstracting them by substituting variables for constants. Thus, these template

nodes could also be viewed as portions of clauses that have true groundings in the data.

To understand why conjunctions of literals with true groundings are good candidates for

clause components, consider the special case of a definite clause L1 ∧ · · · ∧Ln⇒P . If the

conjoined literals in the body have no true groundings, then the clause is always trivially

satisfied. Therefore, true conjunctions will be most useful for building effective clauses.

To search for these, BUSL generates clause candidates by focusing on each maximal

clique in turn and producing all possible clauses consistent with it. The candidates are

then evaluated using the weighted pseudo log-likelihood score. BUSL restricts its search

for clauses only to those candidates whose literals correspond to template nodes that

form a clique in the template. It also makes a number of additional restrictions on the

search in order to decrease the number of free variables in a clause, thus decreasing

the size of the ground MLN during inference, and further reducing the search space.

Therefore, BUSL typically restricts the search to very short paths, creating short clauses

from them and greedily joining them into longer ones. Although this approach is faster

and yields more accurate models than the top-down approach, it may still converge to a

suboptimal local maxima.

Discriminative heuristic structure learning An approach somewhat similar to the

principle underlying the BUSL algorithm was proposed by Dinh et al. [2010]. Heuristic

Method for Discriminative Structure Learning employs a heuristic method in order to dis-

criminatively learn the structure of MLNs. It consists of three main steps. First, for each

true ground query atom, applies a heuristic technique to build a set of variable literals,

called chain. To achieve that it adds to the set each ground atom in the training example

D connected to the ground query atom through its arguments and variabilize it. Then

transforms the learning dataset to a boolean table, having ground query atoms as rows

and variable literals as columns, representing their connections. Second, by applying the

Grow-Shrink Markov Network [Bromberg F, 2009] algorithm to these boolean tables,

it extracts a set of template clauses. A template clause is a disjunction of positive vari-

able literals. Finally, candidate clauses are built from the template clauses to be added

into the MLN. The score of the weighted MLN is then measured by computing either

its conditional log-likelihood or weighted pseudo log-likelihood. The procedure follows

a similar approach to the BUSL algorithm. Both of them consist of three mains steps:

Transforming the relational dataset into template clauses, building candidate clauses

using these templates and putting clauses into the MLN. Although the quality of the

boolean tables constructed yields higher accuracy, the greedy strategy delivers higher

running times.

Moralized Bayes Nets An alternative approach is searching for structures of increasing

complexity at each stage of the procedure using the structures found at the previous stage

36 Background

to constrain the search space. Such a strategy was employed by Khosravi et al. [2010]

for learning MLN structure in domains that contain many descriptive attributes, namely

predicates having very large arity. Their approach, which is similar to the technique

employed to constrain the search space in Probabilistic Relational Models [Friedman

et al., 1999], distinguishes between two types of tables – attribute tables that describe

a single entity type, and relationship tables that describe relationships between entities.

The algorithm, called MBN (Moralized Bayes Net), proceeds in three stages. In the first

stage, dependencies local to attribute tables are learned. In the second stage, depen-

dencies over a join of an attribute table and a relationship table are learned, but the

search space is constrained by requiring that all dependencies local to the attribute table

found in the first stage remain the same. Finally, in the third stage, dependencies over a

join of two relationship tables, joined with relevant attribute tables are learned and the

search space is similarly constrained. Although the goal of MBN is to learn an undirected

model, dependencies are learned using a Bayesian network learner and then the directed

structures are converted to undirected ones by using moralization [Cowell et al., 2007].

The advantage of this approach is that structure learning in directed models is signifi-

cantly faster than structure learning in undirected models due to the decomposability of

the score, which allows it to be updated locally, only in parts of the structure that have

been modified, making scoring of candidate structures more efficient. On the other hand,

when scaling to larger table joins, the algorithm becomes computationally intensive.

Hypergraph Lifting Another MLN learner that is based on constraining the search

space is the Learning via Hypergraph Lifting (LHL) algorithm introduced by Kok and

Domingos [2009]. LHL receives as input the set of clause candidates considered by rela-

tional pathfinding [Richards and Mooney, 1992] and focuses only on the most promising

ones. Developed in the ILP community, relational pathfinding searches for clauses by

tracing paths across the true instantiations of relations in the data. The data are repre-

sented as a generalized graph, called hypergraph, having edges connecting any number

of nodes, called hyperedges. However, because in real-world relational domains the

search space over relational paths may be very large, a crucial aspect of LHL is that it

does not perform relational pathfinding over the original relational graph of the data,

but over a so-called lifted hypergraph, which is formed by jointly clustering the entities

in the domain via an agglomerative clustering procedure. Intuitively, constants are clus-

tered together if they tend to participate in the same kind of relations (i.e., predicates)

with constants from other clusters. The complexity of the agglomerative clustering in

the general case is O(n3), which makes it slow for large datasets. On the other hand,

pathfinding on this lifted hypergraph is typically at least an order of magnitude faster

than on the ground training data, producing MLNs that are more accurate than previous

approaches. Subsequently, the ground atoms in each path are variabilized, and they are

used to form clauses, which are evaluated using a pseudo-likelihood measure. Then, the

Background 37

algorithm iterates over the clauses from shortest to longest and for each clause, com-

pares its score against those of its sub-clauses. If a clause scores higher than all the

sub-clauses it is retained, otherwise it is discarded because it is unlikely to be useful.

Finally, the retained clauses are added to an MLN, the weights are re-learnt and the

clauses are kept in the MLN, which improves the overall weighted pseudo log-likelihood.

LHL is a data-driven algorithm which cannot exploit background knowledge for learning

rules. This inability makes it inappropriate for capturing complex relations and learning

qualitatively meaningful rules.

Structural Motifs Kok and Domingos [2010] have proposed constraining the search

for clauses by identifying so-called structural motifs, which capture commonly occurring

patterns among densely connected entities in the domain (i.e. sets of entities that are

closely related). The Learning using Structural Motifs (LSM) algorithm, a modification

of LHL, proceeds by first identifying motifs (recurring patterns) and then searching for

clauses by performing relational pathfinding within them. To discover motifs, LSM starts

from an entity i in the relational graph and performs a series of random walks. The

random walks are used to calculate the average number of steps required to reach an-

other entity j for the first time, called hitting time. Entities that are reachable within

a thresholded hitting time as well as the hyperedges among them are included in the

motif and the paths through which they are reachable from i are recorded. Next, the

entities included in the motif are clustered by their hitting times into groups of poten-

tially symmetrical nodes (i.e., nodes that have symmetrical paths). The nodes within

each group are then further clustered in an agglomerative manner by the similarity of

distributions over paths through which they are reachable from i. This process results

in a lifted hypergraph, analogous to the one produced by LHL; however, whereas in

LHL nodes were clustered based on their close neighborhood in the relational graph,

here they are clustered based on their longer-range connections to other nodes. Thus,

intuitively, LHL is making use of length-2 paths to determine the similarity of nodes. In

contrast, LSM uses longer paths, and thus more information, to find clusterings of nodes

(motifs). In addition, LSM finds various clusterings rather than just a single one. Motifs

are extracted from the lifted hypergraphs through depth-first search. Finally, LSM runs

relational pathfinding on each motif to find candidate rules, and retains the good ones

in an MLN using the same procedure as LHL. Although LSM is much faster and accurate

than LHL, especially for more compex models, is still data-driven and thus cannot exploit

background knowledge for learning rules.

Gradient-Based Boosting Khot et al. [2011] have extended the functional gradient

boosting approach to learning the relational dependency networks of Natarajan et al.

[2012] to MLNs. In contrast to previous approaches, they learn structure and parameters

simultaneously, thus avoiding the cost of repeated parameter estimation. This is done

through a sequence of functional gradient steps, each of which adds clauses based on the

38 Background

point-wise gradients of the training examples in the current model. They present two

representations for functional gradients. The first one is based on relational regression

trees [Blockeel and De Raedt, 1998] and the second one learns Horn clauses by using

a beam search that adds literals to clauses that reduce the squared error. Moreover,

Khot et al. [2015] extend the algorithm to handle missing data by using an EM-based

approach.

Markov Networks Structure learning techniques for Markov networks have been de-

veloped in the graphical models community. One technique is that of structure selection

through appropriate regularization [Lee et al., 2006]. In this approach, a large number

of factors of a Markov network are evaluated simultaneously by training parameters over

them and using the L1 norm as a regularizer (as opposed to the typically used L2 norm).

Since the L1 norm imposes a strong penalty on smaller parameters, its effect is that it

forces more parameters to zero, leading to sparser models. Huynh and Mooney [2008]

extend this technique for structure learning of MLNs by first using Aleph [Srinivasan,

2004], an off-the-shelf ILP learner, to generate a large set of potential factors (in this case,

first-order clauses), and then perform L1-regularized parameter learning over this set.

Another technique proposed by Lowd and Davis [2010] uses probabilistic decision trees

to learn the structure. The Decision Tree Structure Learning (DTSL) algorithm learns

probabilistic decision trees using the training data in a depth-first manner to predict the

value of each variable. It then converts the trees into sets of conjunctive features. All

learned features are merged into a global model and the parameters for those features

can be estimated using any standard parameter learning method. In addition to this

conversion, various pruning methods are used during the feature generation process

in order to make learning and inference faster. Lowd and Davis [2014] extended the

algorithm and introduced two new variations of DTSL. The first one, DT-BLM, builds on

DTSL by using the Bottom-Up Learning of Markov Networks (BLM) algorithm of Davis

and Domingos [2010] to further refine the structure learned by DTSL. This algorithm

is much slower, but usually more accurate than DTSL. Furthermore, it serves as an

example of how decision trees can be used to improve search-based structure learning

algorithms, by providing a good initial structure. The second one, DT+L1, combines

the structure learned by DTSL with the pairwise interactions learned by L1-regularized

logistic regression [Ravikumar et al., 2010] by taking the union of the best DTSL and L1

feature set. The trees used by DTSL are good at capturing higher-order interactions. In

contrast, L1 captures many independent interaction terms, but each interaction can only

be between just two variables. Their combination offers the potential to represent both

kinds of interaction, leading to better performance in many domains.

Online Structure Learning The Online Structure Learning (OSL) algorithm proposed

by Huynh and Mooney [2011b] updates both the structure and the parameters of the

model using an incremental approach based on the model’s incorrect predictions. Unlike

Background 39

the previously presented methods, OSL takes into account the predicted possible worlds,

i.e., the most probable possible worlds predicted by the current model. Specifically, at

each step t of the algorithm, if the predicted possible world yPt is different from the

ground-truth one yt then OSL focuses on searching for clauses that differentiate yt from

yPt . This is related to the idea of using implicit negative examples in ILP [Zelle et al.,

1995]. In this particular case, each ground-truth possible world plays the role of a

positive example and any predicted possible world that differs from the ground-truth

one is incorrect and can be considered as a negative example. In addition, this follows

the max-margin training criterion which focuses on discriminating the true label from

the most probable incorrect one [Tsochantaridis et al., 2005]. In order to discover useful

clauses specific to the set of wrongly predicted atoms, OSL employs relational pathfinding

over a hypergraph [Richards and Mooney, 1992]. The search procedure is also combined

with mode declarations [Muggleton, 1995], a form of language bias, to speed up the

process. Paths found by the mode-guided relational pathfinding process are generalized

into first-order clauses by replacing constants with variables. The resulting set of clauses

is added to an MLN and the parameters are updated using the AdaGrad weight learning

algorithm described in Section 2.2.4.

2.4 Summary

The aforementioned methods for structure learning in Markov Logic Networks, exclud-

ing OSL, are batch learning algorithms that are effectively designed for training data

consisting of many ground instances. Moreover, most of these algorithms are strictly

data-driven, which means that they only consider the ground-truth possible worlds and

search for clauses that improve the likelihood of those worlds. They do not exploit the

background knowledge that may be available about a task and may spend a lot of time

exploring clauses that are true in most of these worlds, therefore largely useless for the

purposes of learning. To overcome these issues we developed OSLα, presented in Chapter

3, that exploits the background knowledge domain-independent axiomatization in order

constrain the seach space of possible structures. Moreover, it uses an online strategy, like

OSL, in order to effectively handle large datasets.

3 | OSLα: Online Structure Learning using

background knowledge Axiomatization

“Reasoning draws a conclusion, but does not make the conclusion certain,
unless the mind discovers it by the path of experience.”

— Roger Bacon

As mentioned in Section 1.1, our goal is to effectively learn definitions from a search

space having a very large domain of constants by exploiting the background knowl-

edge axiomatization of a specific task. In our case we take advantage of the domain-

independent rules of MLN−EC in order to learn domain specific composite event (CE)

definitions and accurately perform event recognition given an input of observed simple

derived events (SDEs). OSL has several limitations which renders it unable to learn

such definitions. Specifically, even when performing mode-guided search over the hy-

pergraph, the space of possible paths can become exponentially large. For instance, the

Event Calculus is a temporal formalism describing CE occurrences over time. Therefore,

data used for training will inevitably contain a large domain of time points (possibly)

having multiple complex temporal relations between events. Mode declarations alone

cannot handle this large domain. It will be then fundamental to prune a portion of the

search space. Moreover, existing structure learning methods, including OSL, assume

that domains do not contain any functions, which are essential for the Event Calculus

representation.

To cope with these limitations we propose OSLα, which exploits domain-independent

axioms of the background knowledge, to further constrain the search space only to

clauses subject to specific characteristics introduced by these axioms. Furthermore, our

approach can handle a subset of functions defined by the first-order logic formalism and

effectively learn definitions using these functions. Figure 3.1 presents the interactions

among the components underlying OSLα. In our case, the background knowledge consists

of the MLN−EC axioms (i.e., domain-independent rules) and an already known hypothesis

(i.e., set of clauses). At a step tn of the online procedure a training example (micro-

batch) Dtn arrives and is used together with the already learnt hypothesis in order to

42 OSLα: Online Structure Learning using background knowledge Axiomatization

Micro-Batch tn
HappensAt(walking(ID1), 99)
HappensAt(walking(ID2), 99)
OrientationMove(ID1, ID2, 99)
Close(ID1, ID2, 34, 99)
Next(99, 100)
HoldsAt(move(ID1, ID2), 100)
. . .

Micro-Batch tn+k

HappensAt(exit(ID1), 200)
HappensAt(walking(ID2), 200)
¬OrientationMove(ID1, ID2, 200)
¬Close(ID1, ID2, 34, 200)
Next(200, 201)
¬HoldsAt(move(ID1, ID2), 201)
. . .

.

Data Stream/Training Examples

Learnt Hypothesis Hn:

0.51 HoldsAt(move(id1, id2), t+1)⇐
HappensAt(walking(id1), t)∧
HappensAt(walking(id2), t)

+

MLN−EC Axioms:
HoldsAt(f, t+1)⇐

InitiatedAt(f, t)

HoldsAt(f, t+1)⇐
HoldsAt(f, t) ∧
¬TerminatedAt(f, t)

¬HoldsAt(f, t+1)⇐
TerminatedAt(f, t)

¬HoldsAt(f, t+1)⇐
¬HoldsAt(f, t) ∧
¬InitiatedAt(f, t)

OSLα

Inference Hypergraph

Paths to
Clauses

Clause
Evaluation

Weight
Learning

FIGURE 3.1: The procedure of OSLα

predict the truth values yPtn of the CEs of interest using probabilistic inference. Then

for all wrongly predicted CEs the hypergraph is searched, guided by MLN−EC axioms, for

definite clauses explaining these CEs. The paths discovered during the search are then

translated into clauses and evaluated. The resulting set of retained clauses is passed

onto the weight learning module for estimating their weights. Then, the set of weighted

clauses is appended into the hypothesis Hn and the whole procedure is repeated given

the next training example Dtn+1 .

In Section 3.1 we describe the procedure of grouping the axioms into templates used by

the hypergraph to constrain the space of possible structures. In Section 3.2 we present

the hypergraph search by relational pathfinding and mode declarations alone and in

Section 3.3 the extended template-guided search using the MLN−EC axioms. Finally, in

Section 3.4 and 3.5 the clause creation/evaluation and weight learning procedure are

presented respectively.

OSLα: Online Structure Learning using background knowledge Axiomatization 43

3.1 Extracting Templates from Axioms

OSLα begins by partitioning the background knowledge into a set of axioms A and a

set of domain-dependent definitions B, that is, the rest of the formulas. Each axiom

α ∈ A should contain exactly one so-called template predicate as well as at least one

query predicate representing the CEs we are trying to recognize. These are the desired

properties required for OSLα in order to operate. Furthermore, axioms must not contain

free variables, meaning variables only appearing in a single predicate.

In the case of the Event Calculus, A contains the four axioms of MLN−EC (2.3)–(2.6) that

designate the properties of the formalism. Then, HoldsAt ∈ Q are the query predicates
and InitiatedAt, TerminatedAt ∈ P are the template predicates. Those latter predicates

specify the conditions under which a CE starts and stops being recognized respectively.

They form the target CE patterns that we want to learn. Therefore, these four axioms

of MLN−EC can be used to define a template over all possible structures and guide the

search in selecting clauses following the desired properties of the Event Calculus. By

exploiting the information of this template, the algorithm does not need to search over

time sequences during relational pathfinding, but only needs to find explanations for the

template predicates over the current time-point, in the form of definite clauses. Following

the work of Skarlatidis et al. [2015], we perform circumscription by predicate completion,

a syntactic transformation where formulas are translated into stronger ones. Predicate

completion is applied to the InitiatedAt and TerminatedAt predicates. Finally, we also

eliminate the InitiatedAt and TerminatedAt predicates by exploiting the equivalences

resulting from predicate completion [Mueller, 2008]. Formally speaking, the algorithm

only needs to search for definite clauses having the following form:

InitiatedAt(f , t)⇐ body

TerminatedAt(f , t)⇐ body

The body of these definitions is a conjunction of n literals `1 ∧ · · · ∧ `n, which is very

convenient, because it can be seen as a variabilized hypergraph path as we shall explain

below. Given a set of axioms A, we further partition it into templates. Each template Ti
contains axioms having identical Cartesian product of domain types over their template

predicate variables. For instance, MLN−EC axioms (2.3)–(2.6) should all belong to one

template because InitiatedAt and TerminatedAt both have joint domain F × T . Each

of these resulting templates Ti is used during relational pathfinding in order to constrain

the search space into specific bodies for the definite clauses.

44 OSLα: Online Structure Learning using background knowledge Axiomatization

3.2 Hypergraph and Relational Pathfinding

Following the procedure of OSL, at each step t the algorithm receives an example xt

representing the evidence, it produces the predicted label yPt = argmaxy∈Y〈w,n(xt,y)〉,
and then receives the true label yt. Given both yt and yPt , in order to discover clauses

that separate yt from yPt , it finds all ground atoms that are in yt but not in yPt denoted as

∆yt = yt \ yPt . That means ∆yt contains the false positives and false negatives resulted

from inference. Then, it searches the ground-truth possible world (xt,yt), namely the

training example of the current step t, for clauses specific to the axioms defined in the

background knowledge using the constructed templates. In contrast to OSL, OSLα con-

siders all misclassified (false positives/negatives) ground atoms instead of the true ones

(false negatives), and searches the ground-truth possible world for clauses.

Simple Derived Events Supervision of Composite Events

.

HappensAt(walking(ID1), 99)

HappensAt(walking(ID2), 99)

OrientationMove(ID1 , ID2 , 99) HoldsAt(move(ID1 , ID2), 100)

Close(ID1 , ID2 , 34, 99)

Next(99 , 100)

.

.

AUXwalking(WalkingID1, ID1)

AUXwalking(WalkingID2, ID2)

AUXmove(MoveID1ID2, ID1, ID2)

AUXmove(MoveID2ID1, ID2, ID1)

HappensAt(WalkingID1 , 99)

HappensAt(WalkingID2 , 99)

OrientationMove(ID1 , ID2 , 99) HoldsAt(MoveID1 ID2 , 100)

Close(ID1 , ID2 , 34, 99)

Next(99 , 100)

.

TABLE 3.1: Example training set for move CE. The first column is composed of a narrative
of SDEs, while the second column contains the CE annotation in the form of ground
HoldsAt predicates.

In order to discover useful clauses specific to a set of wrongly predicted atoms, we employ

relational pathfinding, which considers a training example D as a hypergraph having

constants as nodes and true ground atoms as hyperedges, connecting the nodes appearing

as its arguments. Hyperedges are a generalization of edges connecting any number of

nodes. It then searches the hypergraph for paths that connect the arguments of an input

literal. Consider, for example, a training example Dt at step t of SDEs and CEs as shown

OSLα: Online Structure Learning using background knowledge Axiomatization 45

WalkingID1

WalkingID2

99

100

ID1

ID2

MoveID1ID2

34

FIGURE 3.2: Hypergraph for the training set of Table 3.1.Continuous line ellipses repre-
sent the HappensAt predicates, dashed line AUXwalking, line followed by dots AUXmove,
fine-dotted Close, horizontal line filled Next, vertical line filled OrientationMove and
the diagonal line filled HoldsAt.

in Table 3.1. In the top part of the table the training set is presented using functions

and in the bottom part using auxiliary predicates. Each auxiliary predicate models the

behavior of a function. For example the predicate AUXwalking matches the return values

of function walking with the domain of Id. Auxiliary predicates are required in order to

indirectly include functions into the hypergraph.

The equivalent hypergraph representing the training example of Table 3.1 is presented in

Figure 3.2, where each ellipse is a hyperedge and each dot is a constant node. Starting

from each wrongly predicted ground atom in ∆yt, relational pathfinding searches for

all paths (up to length l) connecting the arguments of the given atom. In our case,

these ground atoms correspond to the wrongly predicted CEs. A path of hyperedges

corresponds to a conjunction of true ground atoms connected by their arguments and

can be generalized into conjunction of variabilized literals. For example consider the

training set of Table 3.1. If the predicted label yPt says that HoldsAt(MoveID1 ID2 , 100) is

false, then is considered a wrongly predicted atom and therefore the hypergraph should

be searched for paths. Below, we present two paths found by searching the hypergraph

of Figure 3.2 for paths up to length l = 7 for this misclassified CE. These paths are also

presented in Figure 3.3 with highlighted hyperedges. Obviously there are many other

possible paths that can be found.

46 OSLα: Online Structure Learning using background knowledge Axiomatization

{
HoldsAt(MoveID1 ID2 , 100), Next(99 , 100), HappensAt(WalkingID1 , 99),

HappensAt(WalkingID2 , 99), AUXwalking(WalkingID1, ID1), (3.1)

AUXwalking(WalkingID2, ID2), AUXmove(MoveID1ID2, ID1, ID2)
}

{
HoldsAt(MoveID1 ID2 , 100), Next(99 , 100), Close(ID1 , ID2 , 34, 99), (3.2)

AUXmove(MoveID1ID2, ID1, ID2)
}

WalkingID1

WalkingID2

99

100

ID1

ID2

MoveID1ID2

34 WalkingID1

WalkingID2

99

100

ID1

ID2

MoveID1ID2

34

FIGURE 3.3: Hypergraph paths discovered by relational pathfinding

To speed up relational pathfinding, we employ mode declarations to constrain the search

for paths, which represent the body of the definite clauses defined by the template

predicates appearing in the axioms of the background knowledge. Mode declarations are

a form of language bias that constrain the search for definite clauses. Since we want to

constrain the space of paths, we use a variant of the path mode declarations introduced

by Huynh and Mooney [2011b]. Formally speaking, declaration modep(r, p) has two

components: a recall number r ∈ N0, and an atom p whose arguments are place-markers

optionally preceding the symbol #. A place-marker is either + (input), − (output),

or . (ignore). The symbol # preceding each place-marker specifies that this particular

predicate argument will remain constant after the generalization of the path. For many

tasks it is critical to have clauses specific to particular constants. The recall number r

limits the number of appearances of the predicate p in a path to r. These place-markers

restrict the search of relational pathfinding. A ground atom is only added to a path, if

one of its arguments has previously appeared as ‘input’ or ‘output’ arguments in the path

and all of its ‘input’ arguments are ‘output’ arguments of previous atoms.

Furthermore, in order for our algorithm to be able to handle functions, we also introduce

mode declarations for functions, defined as modef(r, p) and having exactly the same

functionality as described above. The only difference is that functions have a return

type and the position for this type cannot be declared in the mode declaration; it is

OSLα: Online Structure Learning using background knowledge Axiomatization 47

always assumed as ‘input’. The intuition behind this is that a function always returns a

constant value belonging to some other function or predicate as an argument. Therefore,

the return value must appear before in the path. Below we present a couple of mode

declarations for both predicates and functions:

modep(1, HappensAt(−, +)) modef(1, move(−,−))

The above mode declarations require that a legal path contains at most one ground atom

of each of the predicates HappensAt and at most one ground function move. Moreover,

the first argument of HappensAt and all arguments of move are ‘output’ arguments; the

second argument of HappensAt is an ‘input’ argument. The ‘input’ mode constrains the

position constant in HappensAt atoms to have appeared in previous atoms in a path.

Algorithm 1 HG(D, modes, P)

Input: D: training example, modes: mode declarations, P: set of template predicates
Output: HG: hypergraph

1: for all constant c ∈ D do
2: HG[c] = ∅
3: for all true ground atom p(c1, . . . , cr) ∈ D & p /∈ P do
4: for all constant ci ∈ {c1, . . . , cr} do
5: if isInputOrOutputVar(ci,modes) then
6: HG[ci] = HG[ci] ∪ {p(c1, . . . , cr)}

return HG

Algorithm 1 presents the pseudocode for constructing a reduced hypergraph from a train-

ing example D based on mode declarations, by only allowing input and output nodes.

There is no point in constructing the entire search space, because only the portion of

it defined by the mode declarations will be eventually searched. Note that template

predicates are not added in the hypergraph, because they are not allowed to appear

in the body of the definite clause. Moreover, in order to search for functions, before

the hypergraph is constructed, all functions in the domain are converted into auxiliary

predicates (see Table 3.1 for example) and their corresponding mode declarations are

converted into predicate modes. For example, the function move will be converted into

the auxiliary predicate AUXmove having arity 3, because it also incorporates the return

value of the function and the corresponding mode declaration modef(1, move(−,−)) will

be converted into modep(1, AUXmove(+,−,−)). By performing this conversion, the func-

tions can be included in the hypergraph as auxiliary predicates and added to paths during

the search procedure.

48 OSLα: Online Structure Learning using background knowledge Axiomatization

3.3 Template Guided Search

Starting from each wrongly predicted ground atom q(c1, . . . , cn) ∈ ∆yt, we use the

templates Ti constructed at the initial steps of the algorithm in order to find the corre-

sponding ground template predicates for which the axioms belonging in the template

Ti are satisfied by the current training example. The algorithm considers each axiom

α ∈ A in turn and checks whether the desired properties, presented in Section 3.1, hold.

Assume, for example, that one of these axioms is 2.3:

HoldsAt(f , t+1)⇐

Next(t , t+1) ∧ InitiatedAt(f , t)

and we have given the wrongly predicted ground atom HoldsAt(CE , T4) (false negative).

We would substitute the constants of the given atom q into the axiom. The result of the

substitution on the above rule will be the following partially grounded axiom:

HoldsAt(CE , T4)⇐

Next(t , T4) ∧ InitiatedAt(CE , t)

If after the substitution there are no variables left in the template predicate of the axiom,

it adds the grounded template predicate into the initiation set I and moves to the next

axiom. Otherwise, it searches for all literals in the axiom sharing variables with the

template predicate. For these literals, it searches the training data for all jointly ground

instantiations among those satisfying the axiom. Then, for each of them, it substitutes

the remaining variables of the template predicate and adds them into the initiation set.

In this example, InitiatedAt has one remaining variable t and the only literal sharing

this variable is Next. Thus, we search for all ground instantiations of Next in the training

data D that satisfy the axiom and substitute their constants into the partially grounded

axiom. Because t represents time-points and the predicate Next describes sequence of

time-points, there will be only one true ground atom in the training data D having

the constant T3. The same applies for axioms 2.5 and 2.6 determining the termination

conditions and false positives. Algorithm 2 presents the pseudocode for extracting these

ground template predicates.

For each grounded template predicate returned by Algorithm 2, the mode-guided rela-

tional pathfinding, presented in Algorithm 3, is used to search the constructed hyper-

graph for an appropriate body. It recursively adds to the path ground atoms or hyperedges

OSLα: Online Structure Learning using background knowledge Axiomatization 49

Algorithm 2 InitialSet(q, D, T)

Input: q: misclassified ground atom, D: training example, T : path template
Output: I: a set of grounded template predicates

1: I = ∅ . The set of ground template predicates used to initiate the search
2: for all axiom α ∈ T do
3: if ∃ literal ` ∈ α : signature(`) = signature(q) & isPositive(`) == isTrue(g,D)

then
4: θ-substitute β = αθ where θ = {variables(`)→ constants(q)}
5: τ = templateAtom(β)
6: if ∃ variable v ∈ τ then
7: L = ∅
8: if ∃ variable v ∈ τ ∧ ∃ literal ` ∈ β : v ∈ ` then
9: L = L ∪ `

10: for all literal ` ∈ L do
11: Tl = {c1, . . . , cn} ∈ D : `(c1, . . . , cn)⇒ >
12: for all row r = {c1, . . . , cn} ∈ ./|L|`=1 Tl do
13: θ-substitute γ = βθ where θ = {variables(β)⇒ r}
14: I = I ∪ templateAtom(γ)

15: else
16: I = I ∪ τ

return I

that satisfy the mode declarations. The search terminates when the path reaches a speci-

fied maximum length or when no new hyperedges can be added. The algorithm stores

all paths encountered during the search.

Algorithm 3 ModeGuidedSearch(curPath, C, HG, mode, maxLength, paths)

Output: paths: a set of paths
1: if |curPath| < maxLength then
2: for all constant c ∈ C do
3: for all p(c1, . . . , cr) ∈ HG[c] do
4: if canAdd(p, curPath, mode) then
5: if curPath /∈ paths then
6: curPath = curPath ∪{p(c1, . . . , cr)}
7: paths = paths ∪{p(c1, . . . , cr)}
8: C′ = ∅
9: for all ci ∈ {c1, . . . , cr} do

10: if ci /∈ C & isInputOrOutputVar(ci, mode) then
11: C = C ∪ {ci}
12: C′ = C′ ∪ {ci}
13: ModeGuidedFindPath(curPath,C,HG,mode,maxLength,paths)
14: curPath = curPath \p
15: C = C \ C′

By employing this procedure the hypergraph is essentially pruned in order to contain only

ground atoms explaining the template predicates. Consider the hypergraph presented in

Figure 3.2. By exploiting the Event Calculus axioms the hypergraph is pruned and only

50 OSLα: Online Structure Learning using background knowledge Axiomatization

need to contain predicates explaining the InitiatedAt and TerminatedAt as presented

in Figure 3.4. Therefore the paths (3.1) and (3.2) are pruned by removing Next and

HoldsAt predicates, resulting into the paths (3.3) and (3.4). The pruning resulting from

the template guided search is essential to learn Event Calculus, because the search space

becomes independent of time.

WalkingID1

WalkingID2

99

100

ID1

ID2

MoveID1ID2

34

FIGURE 3.4: Pruned hypergraph

{
InitiatedAt(MoveID1 ID2 , 99), HappensAt(WalkingID1 , 99),

HappensAt(WalkingID2 , 99), AUXwalking(WalkingID1, ID1), (3.3)

AUXwalking(WalkingID2, ID2), AUXmove(MoveID1ID2, ID1, ID2)
}

{
InitiatedAt(MoveID1 ID2 , 99), Close(ID1 , ID2 , 34, 99), (3.4)

AUXmove(MoveID1ID2, ID1, ID2)
}

3.4 Clause Creation and Evaluation

In order to generalize paths into first-order clauses, we follow three steps. First, we

replace each constant ci in a conjunction with a variable vi, except for those declared

constant in the mode declarations. Then, these conjunctions are used as a body to form

definite clauses using the template predicate present in each path as head. The auxiliary

OSLα: Online Structure Learning using background knowledge Axiomatization 51

predicates are converted back into functions. Therefore, from the paths presented above,

the following definite clauses will be created:

InitiatedAt(move(id1 , id2), t)⇐
HappensAt(walking(id1), t) ∧
HappensAt(walking(id2), t)

(3.5)

InitiatedAt(move(id1 , id2), t)⇐
Close(id1 , id2 , 34, t)

(3.6)

The first definition says that the CE move is initiated for a person id1 and a person id2 at

t when the event walking happens for both of them. Similarly the second definition says

that move is initiated when id1 and id2 are close enough, which does not make sense.

These definite clauses can be used together with the axioms defined in the background

knowledge in order to eliminate all the template predicates by exploiting the equiva-

lences resulting from predicate completion. After the elimination process all resulting

formulas are converted into clausal normal form (CNF), since that is the form used by

the inference algorithms. Therefore, the resulting set of clauses is independent of the

template predicates. Evaluation must take place for each clause c individually. The

difference in the number of true groundings of c in the ground-truth world (xt,yt) and

the predicted world (xt,y
P
t) is computed. Then, the only clauses whose difference in the

number of groundings is greater than or equal to a predefined threshold µ will be added

to the existing MLN:

∆nc = nc(xt,yt)− nc(xt,yPt)

The intuition behind this measure is to keep clauses whose coverage of the ground-truth

world is different from the one induced by the clauses already learnt. Subsequently, it

may be necessary to perform again predicate completion and template predicate elim-

ination, because the resulting set of formulas returned by the circumscription changes

entirely if any one definite clause is removed during evaluation. To illustrate these

changes in the resulting hypothesis, consider the domain-dependent definitions of move

– i.e., rules (3.5)–(3.6). After predicate completion, these rules will be replaced by the

following formula:

InitiatedAt(move(id1 , id2), t)⇔(
HappensAt(walking(id1), t) ∧
HappensAt(walking(id2), t)

) ∨
Close(id1 , id2 , 34, t)

(3.7)

52 OSLα: Online Structure Learning using background knowledge Axiomatization

The resulting rule (3.7) defines all conditions under which the move CE is initiated.

Based on the equivalence in formula (3.7), the domain-independent axiom (2.3) of

MLN−EC automatically produces the following template predicates free (i.e, InitiatedAt,

TerminatedAt) rules:

HoldsAt(move(id1 , id2), t+1)⇐
HappensAt(walking(id1), t) ∧
HappensAt(walking(id2), t)

(3.8)

HoldsAt(move(id1 , id2), t+1)⇐
Close(id1 , id2 , 34, t)

(3.9)

Similarly, the inertia axiom (2.6) produces:

¬HoldsAt(move(id1 , id2), t+1)⇐
¬HoldsAt(move(id1 , id2), t) ∧
¬
((

HappensAt(walking(id1), t) ∧
HappensAt(walking(id2), t)

) ∨
Close(id1 , id2 , 34, t)

)
(3.10)

Consider now, that during the evaluation process the definite clause (3.9) yields a score

less than µ and therefore it is discarded. Then, the resulting hypothesis is reduced to the

following rules:

HoldsAt(move(id1 , id2), t+1)⇐
HappensAt(walking(id1), t) ∧
HappensAt(walking(id2), t)

(3.11)

¬HoldsAt(move(id1 , id2), t+1)⇐
¬HoldsAt(move(id1 , id2), t) ∧
¬
(
HappensAt(walking(id1), t) ∧

HappensAt(walking(id2), t)
) (3.12)

3.5 Weight Learning

The weights of all retained clauses are learnt or updated using the AdaGrad online

learner described in Section 2.2.4. As stated in the previous section the circumscription

of predicate completion depends upon the set of definite clauses, in the sense that if

OSLα: Online Structure Learning using background knowledge Axiomatization 53

that set changes then the resulting clauses may be different. At each step t of OSLα the

definite clauses are updated by adding new clauses found during the hypergraph search

procedure and therefore the resulting set of clauses Ct is different from the set Ct−1. In

order for AdaGrad to be able to apply weight updates in a constantly changing theory,

OSLα searches for clauses in the current theory Ct that are θ-subsumed [Raedt, 2008] by

a clause in the previous theory and inherit its weight. The intuition is that if a clause is

θ-subsumed by another clause then is at least as general as the latter one. All others are

considered new and their weights are set to an initial value close to zero. In this way

the already learned weight values are transfered to the next step of the procedure. To

illustrate the procedure consider a set of definite clauses learned in step t:

Dt =



InitiatedAt(move(id1 , id2), t)⇐
HappensAt(walking(id1), t) ∧
HappensAt(walking(id2), t)

TerminatedAt(move(id1 , id2), t)⇐
HappensAt(inactive(id1), t) ∧
HappensAt(active(id2), t)

By performing predicate completion upon the set Dt and using the domain-independent

axioms of MLN−EC to flatten the produced rules, thus eliminating the template predicates,

the following hypothesis arises:

Σt =


HoldsAt(move(id1 , id2), t+1)⇐

HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t)
(3.13)

¬HoldsAt(move(id1 , id2), t+1)⇐
HappensAt(inactive(id1), t) ∧ HappensAt(active(id2), t)

(3.14)

Σ′t =



HoldsAt(move(id1 , id2), t+1)⇐
HoldsAt(move(id1 , id2), t) ∧
¬
(
HappensAt(inactive(id1), t) ∧ HappensAt(active(id2), t)

) (3.15)

¬HoldsAt(move(id1 , id2), t+1)⇐
¬HoldsAt(move(id1 , id2), t) ∧
¬
(
HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t)

) (3.16)

These rules are further transformed into CNF, in order to be able to carry out inference,

but for the purposes of demonstration we keep them in their initial form. The rules in

(3.13) - (3.16) are separated into two subsets. The former set Σt contains specialized

definitions of axioms (2.3) and (2.5), specifying that a fluent holds (or does not hold)

when its initiation (or termination) conditions are met. The latter set Σ′t contains spe-

cialized definitions of the inertia axioms (2.4) and (2.6), specifying whether a specific

fluent continues to hold or not at any instance of time. Both sets are passed onto the

54 OSLα: Online Structure Learning using background knowledge Axiomatization

weight learning module in order for their weights to be estimated. Let’s suppose that

weight learning maps these rules onto the following weight values:

Wt =



0.56 HoldsAt(move(id1 , id2), t+1)⇐
HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t)

(3.17)

0.71¬HoldsAt(move(id1 , id2), t+1)⇐
HappensAt(inactive(id1), t) ∧ HappensAt(active(id2), t)

(3.18)

0.47 HoldsAt(move(id1 , id2), t+1)⇐
HoldsAt(move(id1 , id2), t) ∧
¬
(
HappensAt(inactive(id1), t) ∧ HappensAt(active(id2), t)

) (3.19)

0.24¬HoldsAt(move(id1 , id2), t+1)⇐
¬HoldsAt(move(id1 , id2), t) ∧
¬
(
HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t)

) (3.20)

Then consider that in the next learning step t′ of OSLα another definite clause is learned

and the set of definite clauses is expanded into following hypothesis:

Dt′ =



InitiatedAt(move(id1 , id2), t)⇐
HappensAt(walking(id1), t) ∧
HappensAt(walking(id2), t)

TerminatedAt(move(id1 , id2), t)⇐
HappensAt(inactive(id1), t) ∧
HappensAt(active(id2), t)

TerminatedAt(move(id1 , id2), t)⇐
HappensAt(exit(id1), t)

Similarly to Dt, by applying predicate completion to Dt′ and flattening the rules using

the domain-independent axioms of MLN−EC a different hypothesis arises:

Σt′ =



HoldsAt(move(id1 , id2), t+1)⇐
HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t)

(3.21)

¬HoldsAt(move(id1 , id2), t+1)⇐
HappensAt(inactive(id1), t) ∧ HappensAt(active(id2), t)

(3.22)

¬HoldsAt(move(id1 , id2), t+1)⇐
HappensAt(exit(id1), t)

(3.23)

OSLα: Online Structure Learning using background knowledge Axiomatization 55

Σ′t′ =



HoldsAt(move(id1 , id2), t+1)⇐
HoldsAt(move(id1 , id2), t) ∧
¬
(
HappensAt(inactive(id1), t) ∧ HappensAt(active(id2), t)

) (3.24)

¬HoldsAt(move(id1 , id2), t+1)⇐
¬HoldsAt(move(id1 , id2), t) ∧
¬
(

(HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t)) ∨
HappensAt(exit(id1), t)

) (3.25)

Note that in the set Σt′ another rule (3.23) has appeared and in the set Σ′t′ the rule (3.25)

changed by incorporating another literal. Therefore, in order to refine the weights of

the current theory at step t′ a mapping of the previous learned weights onto the current

theory is required, so that the already learned values are retained. To achieve that,

OSLα searches for clauses in the current theory that are θ-subsumed by a clause in the

previous theory and inherit its weight. In our example, rules (3.21), (3.22), and (3.24)

are identical to (3.13), (3.14), (3.15) respectively and consequently they inherit their

weights. Rule (3.23) is completly new and its weight is set to an initial value. Finally,

rule (3.25) is θ-subsumed by (3.16) and therefore should inherit its weight. Thereafter,

weight learning takes place in order to refine the inherited weights according to the

current training data. The intuition behind this is that clauses changing their structure

by introducing new literals are preferred to have an initial weight value close to a similar

structured clause.

Moreover, we can treat the rules in sets Σ and Σ′ as either hard or soft constraints

and modify the behavior of MLN−EC as stated by Skarlatidis [2014]; Skarlatidis et al.

[2015]. In order to do this, we only need to define the corresponding axioms of the

MLN−EC as either soft or hard constraints in the background knowledge. By doing so,

the corresponding sets of Σ and Σ′ will produce either soft or hard constraint clauses,

during predicate completion and elimination, depending on the axiom used to produce

each clause during predicate completion. If the axiom has an infinite weight, then the

corresponding clauses created by it will also have an infinite weight and therefore it

cannot be changed during weight learning.

Finally, at the end of the OSLα learning we can choose to remove those clauses whose

weights are less than a predefined threshold ξ in order to speed-up inference. By doing

so and finding a good ξ, the resulting hypothesis can be pruned significantly and the

accuracy, although reduced, remains in acceptable levels. We present below the complete

procedure of OSLα.

56 OSLα: Online Structure Learning using background knowledge Axiomatization

Algorithm 4 OSLa(C,P,modes,maxLength,µ,λ,η,δ)

Input: KB: initial knowledge base
1: P: template predicates
2: modes: mode declarations
3: maxLength: maximum number of hyperedges in a path
4: µ: evaluation threshold
5: λ, η, δ: AdaGrad parameters
6: Partition KB into A and B
7: Create templates T from A
8: Initialize resulting theory R0 = B
9: Initialize weight vector w0 = initialValue

10: for t = 1 to T do
11: Receive an instance xt
12: Predict yPt = argmaxy∈Y〈w,n(xt,y)〉
13: Receive the correct target yt
14: Compute ∆yt = yt \ yPt
15: if ∆yt 6= ∅ then
16: HG = HG

(
(xt,yt),modes,P

)
17: paths= ∅
18: for all wrogly predicted query atom q ∈ ∆yt do
19: for all template Ti ∈ T do
20: I = InitialSet

(
q, (xt,yt), Ti

)
21: V = ∅
22: for all τ(c1, . . . , cn) ∈ I do
23: for all ci ∈ {c1, . . . , cn} do
24: if isInputOrOutputVar(ci,modes) then
25: V = V ∪ ci
26: ModeGuidedSearch

(
q,V, HG,modes,maxLength,paths

)
27: Dt = CreateDefinitions(Dt−1,paths,modes)
28: Ct = CreateClauses(Dt,modes)
29: Compute ∆nCt
30: for i = 1 to |Ct| do
31: if ∆nCt,i ≤ µ then
32: Remove definite clause di corresponding to Ct,i from Dt

33: Rt = B ∪ CreateClauses(Dt,modes)
34: Compute ∆nRt

35: for i = 1 to |Rt| do
36: if ∃ ci,t−1 ∈ Rt−1, ci,t ∈ Rt : ci,t−1 θ-subsumes ci,t then
37: wi,t=wi,t−1

38: else
39: wi,t=initialValue

40: AdaGrad(wt,∆nRt , λ, η, δ)

OSLα: Online Structure Learning using background knowledge Axiomatization 57

3.6 Summary

We addressed the issue of exploiting the background knowledge axiomatization in order

to effectively learn definitions inheriting the properties of MLN−EC. Specifically, the MLN−EC
axioms are used for constructing templates constraining the space of possible structures

defined by the training data. OSLα considers both types of wrongly predicted CEs (false

positives and false negatives) and searches for structures explaining their occurrences.

Furthermore, it uses mode declarations for both predicates and functions in the hyper-

graph to further guide the search procedure in finding useful features (i.e., clauses). It

employs an online strategy in order to handle large training sets by iteratively refining

the already learnt hypothesis in terms of both structure and weights. Due to predicate

completion, a procedure of weight inheritance was introduced in order to retain the

already learnt weight values between steps of the online procedure. We contributed the

implementations of the aforementioned algorithms along with the implementations of

ILP inference, max-margin weight learning as well as CDA and AdaGrad online learners

to the LoMRF open-source project (see Section 2.2.5), resulting to a state-of-the-art MLN

framework.

4 | Experimental Evaluation

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are.
If it doesn’t agree with experiment, it’s wrong.”

— Richard P. Feynman

In this chapter we evaluate our OSLα learning method in the domain of video activity

recognition. We use the publicly available benchmark dataset of the CAVIAR project1.

The aim of the experiments is to assess the effectiveness of OSLα in learning weighted

relational structures used for recognizing complex activities that take place between

multiple persons, by exploiting information about simple observed individual activities.

This dataset comprises 28 surveillance videos, where each frame is annotated by human

experts from the CAVIAR team on two levels. The first level contains simple derived
events (SDEs) that concern activities of individual persons or the state of objects. The

second level contains composite event (CE) annotations, describing the activities between

multiple persons and/or objects, i.e., people meeting and moving together, leaving an

object and fighting.

In Section 4.1 we briefly describe the dataset characteristics and the experimental setup

for all of our experiments. Then in Section 4.2 we give an overview of the compared

methods. In Sections 4.3 and 4.4 we present the results of weight learning and OSLα

learning performance respectively, and finally in Section 4.5 we present conclusions

about the experimental evaluation.

4.1 Experimental Setup

The input to the learning methods is a stream of SDEs along with the CE annotations.

The SDEs are representing people walking, running, staying active, or inactive. The

first and the last time that a person or an object is tracked are represented by the SDEs

enter and exit. Additionally, the coordinates of tracked persons or objects are also taken
1http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1

60 Experimental Evaluation

into consideration in order to express qualitative spatial relations, e.g. two persons

being relatively close to each other. The CE supervision indicates when each of the CE

holds. Table 4.1 presents the structure of the training sequences. Each sequence is

composed of input SDEs (ground HappensAt), precomputed spatial constraints between

pairs of people (ground Close), as well as the corresponding CE annotations (ground

HoldsAt). Negated predicates in the training sequence state that the truth value of the

corresponding predicate is False.

Simple Derived Events Supervision of Composite Events

.

HappensAt(walking(ID1), 100)

HappensAt(walking(ID2), 100)

OrientationMove(ID1 , ID2 , 100)

Close(ID1 , ID2 , 24, 100)

Next(100 , 101) HoldsAt(move(ID1 , ID2), 101)

.

HappensAt(exit(ID1), 200)

HappensAt(walking(ID2), 200)

¬OrientationMove(ID1 , ID2 , 200)

¬Close(ID1 , ID2 , 24, 200)

Next(200 , 201) ¬HoldsAt(move(ID1 , ID2), 201)

TABLE 4.1: Training example for move CE. The first column is composed of a narrative
of SDEs, while the second column contains the CE annotation in the form of ground
HoldsAt predicates.

The definitions of the CEs meet and move we are using were developed in Artikis et al.

[2010]2. The former CE (meet) indicates that two persons are meeting and the latter

(move) indicates they are moving together. These definitions take the form of common

sense rules and describe the conditions under which a CE starts or ends (InitiatedAt,

TerminatedAt). For example, when two persons are walking together with the same

orientation, then moving together starts being recognized. Similarly, when the same

persons walk away from each other, then moving together stops being recognized.

From the 28 videos of the CAVIAR dataset, we have extracted 19 sequences that are

annotated with the meet and/or move CEs. The rest of the sequences in the dataset

are ignored, as they do not contain positive examples of the target CE. Out of the 19

sequences, 8 are annotated with both meet and move activities, 9 are annotated only with

move and 2 only with meet. The total length of the extracted sequences is 12869 frames.

Each frame is annotated with the (non-)occurrence of a CE and is considered an example

instance. The whole dataset contains a total of 25738 annotated example instances.

There are 6272 example instances in which move occurs and 3722 in which meet occurs.
2The MLN−EC definitions and CAVIAR dataset can be found at www.iit.demokritos.gr/~anskarl/pub/

mlnec/MLN-EC_CAVIAR-20130319-00_07_20.tar.bz2

www.iit.demokritos.gr/~anskarl/pub/mlnec/MLN-EC_CAVIAR-20130319-00_07_20.tar.bz2
www.iit.demokritos.gr/~anskarl/pub/mlnec/MLN-EC_CAVIAR-20130319-00_07_20.tar.bz2

Experimental Evaluation 61

Consequently, for both CEs the number of negative examples is significantly larger than

the number of positive examples, specifically 19466 for move and 22016 for meet. The

input consists of a sequence of SDEs, i.e., active, inactive, walking, running, enter

and exit, the spatial constraints Close and OrientationMove, which was precomputed,

and its truth value was provided as input, as well as the supervision for meet and move.

Following the work of Skarlatidis [2014]; Skarlatidis et al. [2015] we used three different

inertia settings (HI, SIh and SI, see Table 4.2 for a description). In all three variants, all

rules are always soft-constrained, except the inertia rules that, depending on the setting,

may be either soft-or hard-constrained.

Settings Description

HI All inertia rules are hard-constrained.

SIh
The inertia rules of HoldsAt are soft-constrained, while the rest
remains hard-constrained.

SI All inertia rules are soft-constrained.

TABLE 4.2: Variants of CAVIAR, using hard and soft inertia rules.

Throughout the experimental analysis, the evaluation results was obtained using the MAP

inference of Huynh and Mooney [2009] and are presented in terms of True Positives

(TP), False Positives (FP), False Negatives (FN), Precision, Recall and F1 score. All

reported experiment statistics are micro-averaged over the instances of recognized CEs

using 10-fold cross validation over the 19 sequences. Details about the dataset are

presented in Table 4.3. The experiments were performed on a computer having an Intel

i7 4790@3.6GHz processor (4 cores and 8 threads) and 16GiB of RAM, running Apple

OSX version 10.11.

total SDEs 63147

average SDEs per fold 56832

total meet positive CEs 3722

total move positive CEs 6272

average meet positive CEs 3350

average move positive CEs 5600

TABLE 4.3: CAVIAR statistics

4.2 The Methods Being Compared

We begin by evaluating the online weight learning methods using manual definitions.

We compare their results against the batch max-margin learning method. Moreover, for

comparison purposes, we also include in the experiments the results of the logic-based

activity recognition method of Artikis et al. [2010], which we call here ECcrisp. The

62 Experimental Evaluation

latter employs a different variant of the Event Calculus, uses the same manual definitions

of CEs and cannot perform probabilistic reasoning. Then, we present the experimental

results of our OSLα learning and compare them against the results obtained by the manual

definitions trained by the online weight learning and the pure logic-based method ECcrisp.

Lastly, we also present the running times of OSL for the meet CE.

4.3 Weight Learning Performance

In this section both online max-margin (CDA) and AdaGrad algorithms presented in

Section 2.2.4 are compared for all three inertia configurations of Table 4.2 against the

batch max-margin learning and ECcrisp. The CE definitions of meet and move CEs are

transformed by using the domain-independent axioms of MLN−EC and exploiting the equiv-

alences resulting from predicate completion to eliminate InitiatedAt, TerminatedAt

predicates. Then by applying CNF transformation each theory results into 23 and 44

clauses for meet and move respectively. Results of weight learning for both CEs are pre-

sented in Tables 4.4 and 4.5. As expected the batch max-margin weight learning yields

the best overall accuracy due the fact that it uses all the data at once in order to estimate

the optimal weights. AdaGrad is the second best choice as it yields more accurate results

as opposed to CDA and ECcrisp in the majority of the cases.

Method TP FP FN Precision Recall F1 score

ECcrisp 3099 1413 523 0.6868 0.8556 0.7620

CDAHI 1868 106 1754 0.9463 0.5157 0.6676

CDASIh 1767 183 1855 0.9061 0.4878 0.6342

CDASI 1552 355 2070 0.8138 0.4284 0.5614

AdaGradHI 3099 1397 523 0.6892 0.8556 0.7634

AdaGradSIh 3096 1187 526 0.7228 0.8547 0.7833

AdaGradSI 3099 1397 523 0.6892 0.8556 0.7634

MaxMarginHI 3099 1397 523 0.6892 0.8556 0.7634

MaxMarginSIh 2946 260 676 0.9189 0.8133 0.8629

MaxMarginSI 3009 809 613 0.7673 0.4770 0.5883

TABLE 4.4: Weight learning accuracy of the meet CE

Note that the SIh inertia setting yields the best results for each individual method. In this

setting, the inertia rule of HoldsAt remains soft-constrained. As a result, the probability

of a CE tends to decrease, even when the required termination conditions are not met.

Therefore, if the probability cannot be reinforced by a re-initiation then SIh setting is very

useful [Skarlatidis, 2014; Skarlatidis et al., 2015]. This dataset in particular has overlaps

where meet CE has been initiated and not terminated and then move CE is recognized.

Thereafter all occurring SDEs during the overlap are irrelevant to meet and cannot cause

any re-initiation or termination.

Experimental Evaluation 63

Method TP FP FN Precision Recall F1 score

ECcrisp 4008 400 2264 0.9093 0.6390 0.7506

CDAHI 4008 384 2264 0.9125 0.6390 0.7516

CDASIh 2437 261 1197 0.9032 0.6706 0.7697

CDASI 3386 368 2886 0.9019 0.5398 0.6754

AdaGradHI 4008 384 2264 0.9125 0.6390 0.7516

AdaGradSIh 4077 368 2031 0.9172 0.6674 0.7726

AdaGradSI 3148 1542 3124 0.6712 0.5019 0.5743

MaxMarginHI 5598 1128 674 0.8323 0.8925 0.8614

MaxMarginSIh 5902 1088 370 0.8443 0.9410 0.8901

MaxMarginSI 3226 1268 1760 0.6599 0.6470 0.6534

TABLE 4.5: Weight learning accuracy of the move CE

Table 4.6 present the running times for learning the weights of the manual definitions.

Both training and testing times are averaged across the 10 folds. The results justify the

usage of an online weight learner. Both CDA and AdaGrad are an order magnitude faster

during training in contrast to the batch max-margin learner. This arises from the fact

that batch learning methods require to run inference over the whole dataset in each

iteration. CDA is a little faster than AdaGrad in most cases, but it lacks in accuracy and

therefore AdaGrad is preferred. Moreover, AdaGrad uses L1-regularization in contrast to

CDA which uses L2 and is more appropriate for the task of structure learning, which may

introduce a lot of new features and many of which may not be useful. Note that testing

times are almost identical because the set of learned clauses used as an input to these

methods is the same and only their resulting weights differ. Therefore grounding and

inference times do not change substantially. Consequently, the presented experiments

justify our choice for selecting AdaGrad in our online structure learning method.

Method meet move

training testing training testing

CDAHI 1m 28s 11s 2m 27s 17s

CDASIh 1m 24s 11s 1m 44s 13s

CDASI 1m 26s 10s 2m 22s 13s

AdaGradHI 1m 40s 11s 1m 21s 18s

AdaGradSIh 1m 26s 11s 1m 35s 15s

AdaGradSI 1m 26s 9s 2m 58s 15s

MaxMarginHI 19m 4s 11s 26m 36s 15s

MaxMarginSIh 18m 53s 11s 28m 10s 12s

MaxMarginSI 20m 35s 10s 29m 39s 13s

TABLE 4.6: Weight learning running times for meet and move CE

64 Experimental Evaluation

4.4 OSLα Performance

In this section the experiments for our online probabilistic structure learning method

are presented. The model is trained natively and its performance is evaluated using

10-fold cross-validation over 19 sequences. The results are compared against the results

presented in the previous Section and OSL. In order to achieve the best possible accuracy

for OSLα, tuning of the evaluation threshold µ (see Section 3.4) is required. We run

structure learning using 10-fold cross validation over 5 distinct values of µ. The results

are presented in Figure 4.1. The highest accuracy is achieved by using µ=4 and µ=1 for

meet and move CEs respectively. In the case of meet the evaluation threshold smoothly

affects accuracy, in contrast to move where a lot of important structures are penalized if

OSLα becomes more austere and accuracy is decreasing significantly.

1 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

threshold

F
1
sc
or
e

meet
move

FIGURE 4.1: F1 score over 10 folds for various evaluation threshold values.

Then by using the best thresholds detailed results of OSLα over 10 folds are presented in

Tables 4.7(a) and 4.7(b). Note that OSLα can be at least as accurate as AdaGrad training

definitions developed by hand or even better (see Tables 4.4 and 4.5 for comparison).

Different inertia configurations do not affect the accuracy. That is happening because

the dataset contains SDEs in every single timepoint and the definitions learned by OSLα

introduce all possible predicates in the bodies of the template atoms (i.e., InitiatedAt,

TerminatedAt) due to the exhaustive hypergraph search. As a consequence, inertia rules

are outweighed by the rest of the theory.

Furthermore, Table 4.8 present the running times of OSLα for both CEs. Both training and

testing times are averaged across the 10 folds. Training time of move is much slower than

the one of meet. That is because move includes another predicate (OrientationMove)

in its predicate schema and therefore yields more possible structures. Moreover testing

times, although pretty fast, still is slower in contrast to the ones presented in the weight

Experimental Evaluation 65

Method TP FP FN Precision Recall F1 score

ECcrisp 3099 1413 523 0.6868 0.8556 0.7620

OSLαHI 3082 680 540 0.8192 0.8509 0.8347

OSLαSIh 3082 680 540 0.8192 0.8509 0.8347

OSLαSI 3082 680 540 0.8192 0.8509 0.8347

(a) Results for the meet CE

Method TP FP FN Precision Recall F1 score

ECcrisp 4008 400 2264 0.9093 0.6390 0.7506

OSLαHI 4718 1138 1554 0.8056 0.7522 0.7780

OSLαSIh 4718 1138 1554 0.8056 0.7522 0.7780

OSLαSI 4718 1138 1554 0.8053 0.7522 0.7779

(b) Results for the move CE

TABLE 4.7: Results for OSLα for µ= 4 and µ=1 respectively.

Method meet move

training testing training testing

OSLαHI 22m 49s 54s 1h 56m 2s 1m 6s

OSLαSIh 23m 4s 49s 1h 59m 6s 59s

OSLαSI 23m 17s 55s 1h 58m 50s 1m 2s

OSL >25h - - -

TABLE 4.8: OSLα running times for meet and move CE

learning experiments (see Table 4.6). However, structure learning yields a lot of clauses

and therefore the grounding of the theory during inference is slower. Then we attempted

to perform probabilistic structure learning on this dataset using OSL. Specifically, we

began running experiments for the meet CE and we terminated the experimentation after

25 hours. During this time OSL had processed only 4 training examples (micro-batches)

out of the 17 contained in the first fold. OSLα on the other hand performed 10 fold cross

validation for the meet CE in about 4 hours.

(-2
,-1
.5
]

(-1
.5
,-1
]

(-1
,-0
.5
]

(-0
.5
, 0
]

(0
, 0
.5
]

(0
.5
, 1
]

(1
, 1
.5
]

(1
.5
, 2
]

(2
, 2
.5
]

0

50

100

150

weight

cl
au

se
s

(-2
.5
,-2
]

(-2
,-1
.5
]

(-1
.5
,-1
]

(-1
,-0
.5
]

(-0
.5
, 0
]

(0
, 0
.5
]

(0
.5
, 1
]

(1
, 1
.5
]

(1
.5
, 2
]

(2
, 2
.5
]

0

100

200

300

400

weight

cl
au

se
s

FIGURE 4.2: Weight distibution learned for meet (left) and move (right)

66 Experimental Evaluation

For effective CE recognition, we prune a portion of the learned weighted structures

having weights below a certain threshold ξ (see Section 3.5), for various values of ξ,

and present the results in terms of both accuracy and testing time. We begin by running

OSLα using all the 19 sequences of the dataset and present a histogram for each CE

representing the distribution of weights learned. The distributions are shown in Figure

4.2. The presented histogram give an insight of the portion of the theory that is about to

be pruned for each chosen ξ value.

Note that there is a considerable amount of clauses having significantly small weight

values. These clauses may be pruned in order to simplify the resulting model without

significantly affecting the accuracy, but yielding better inference times. Therefore, we

prune the resulting structure for 3 distinct values of ξ and present the change in the

behavior with respect to the original model, where all learned structures were retained

(ξ=0). The following results are obtained over 10 folds. Figure 4.3 present the reduction

in the number of clauses in the resulting theory as ξ increases. This reduction corresponds

to missing features that can affect accuracy and on the other hand reduce the inference

time.

0 0.1 0.5 1
0

100

200

300

245
229

178

50

ξ

cl
au

se
s

0 0.1 0.5 1
0

200

400

600

800

1,000

780 745

531

169

ξ

cl
au

se
s

FIGURE 4.3: Reduction in the number of clauses learned as ξ increases for meet (left)
and move (right).

0 0.1 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.83 0.83 0.83

0.69

ξ

F
1
sc
or
e

0 0.1 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.78 0.78
0.71

0.65

ξ

F
1
sc
or
e

FIGURE 4.4: Effect of F1 score as ξ increases for meet (left) and move (right).

Experimental Evaluation 67

Figures 4.4 and 4.5 present the effect of ξ in accuracy and testing time. Note that ξ=0.5

results in a slight reduction in accuracy for move and no reduction for meet, but testing

time is much better. Therefore, we can prune a subset of the resulting theory by choosing

a value for ξ in order to achieve a minimal set of clauses yielding the best overall accuracy

and inference performance.

0 0.1 0.5 1
0

200

400

600
539

430
395

52

ξ

se
co
n
d
s

0 0.1 0.5 1
0

200

400

600

660

540 530

376

ξ
se
co
n
d
s

FIGURE 4.5: Reduction of testing time as ξ increases for meet (left) and move (right).

4.5 Summary

By exploiting of the MLN−EC axiomatization, OSLα can effectively constrain the space of

possible structures and search only for clauses subject to the characteristics introduced by

these axioms. By doing so, OSLα discovers the weighted structures an order of magnitude

faster than OSL. Moreover it can learn definitions equally accurate to the manually

developed definitions trained by online weight learning or even outperforming them.

Finally, the resulting hypothesis can be pruned leading to faster inference in exchange

for a slight reduction of accuracy.

5 | Conclusions and Future Work

“Science never solves a problem without creating ten more.”
— George Bernard Shaw

In this thesis we focused on probabilistic structure learning under the MLNs framework in

order to effectively learn CE definitions for activity recognition. In Section 2.3 we argued

that existing structure learning methods cannot effectively handle large training sets or

learn complex definitions for temporal reasoning, due to their batch processing nature

and greedy strategies. OSL is the first online structure learning approach proposed for

MLNs, but it cannot effectively search for clauses in the presence of very large domains of

constants or take the background knowledge into account. Moreover none of the existing

approaches support first-order logic functions during learning or inference. In order to

address these issues we have developed an online structure learning method, extending

OSL, that exploits the background knowledge axiomatization in order to effectively

constrain the space of possible structures, learn definitions including functions and use

an online strategy to handle large training sets.

5.1 Conclusions

In Chapter 3 we presented the OSLα method, in order to address the issue of proba-

bilistic online structure learning by exploiting the background knowledge and learn CE

definitions. To demonstrate the features and the performance of the OSLα, we used the

probabilistic variant of the Event Calculus (MLN−EC) in the domain of activity recognition.

OSLα exploits the axiomatization of MLN−EC, in order to constrain the space of possible

structures (i.e., hypergraph) and searches only for clauses having specific characteristics

by considering both types of wrongly predicted CEs (false positives and false negatives).

The performance of OSLα is demonstrated in Chapter 4 through a series of experiments

on a publicly available benchmark dataset. OSLα has been compared against OSL, a

70 Conclusions and Future Work

method that uses crisp Event Calculus as well as weight learning alone on manual def-

initions. The results indicate that OSLα outperforms both OSL and manual definitions

trained by the online weight learning methods.

5.2 Future Work

There are several directions in which we would like to extend our work. The main ones

are presented below:

Faster Hypergraph Search

The hypergraph search procedure presented in this work effectively constrains the space

of possible structures by using the background knowledge but still is an exhaustive search

yielding high running times for large domains of constants. Thus, one possible improve-

ment is to employ a heuristic or randomized graph search method like random walks

in order to search the hypergraph faster for definitions explaining the data. Moreover,

the search procedure can be parallelized in order to get a significant speed up. Specifi-

cally, one hypergraph search takes place for each wrongly predicted atom and therefore

these searches are independent and can be divided into separated processes running

concurrently.

Learn Rules with Negation

Learning definitions that include negated predicates is an important concept of structure

learning and gives the learner higher expressive capabilities. Therefore it is desired for

the hypergraph search procedure to be able to search for negated literals. As explained

in Chapter 3, the hypergraph contains only the true ground atoms as hyperedges and

therefore the discovered paths are generalized into positive literals. In order to be able

to also discover paths that include negated literals, false ground atoms should exist as

hyperedges. Usually false ground atoms are far more than the true ones in a data set,

yielding a huge space of hyperedges and making the hypergraph unable to be searched

by an exact search procedure like the one OSLα is currently using. Therefore a faster

hypergraph search incorporating heuristic methods could possible handle a search space

that includes false ground atoms.

Semi-supervised Learning for Handling Missing Data

Investigate the problem of learning the structure of MLNs in the presence of hidden

(unobserved) data. Most structure learning approaches (including OSLα) make the

Conclusions and Future Work 71

closed world assumption, i.e., whatever is unobserved in the world is considered to be

false. Research in the presence of missing data in SRL has mainly focused on weight

learning and is based on classical EM. There has also been work on learning the structure

of SRL models from hidden data. These approaches, compute the sufficient statistics

over the hidden states and perform a greedy hill-climbing search over the clauses.

Bibliography

Apsel, U. and Brafman, R. I. (2012). Lifted MEU by Weighted Model Counting. In

Proceedings of the 26th AAAI Conference on Artificial Intelligence, July 22-26, 2012,
Toronto, Ontario, Canada. AAAI Press.

Artikis, A., Skarlatidis, A., and Paliouras, G. (2010). Behaviour Recognition from Video

Content: a Logic Programming Approach. International Journal on Artificial Intelligence
Tools (JAIT), 19(2):193–209.

Biba, M., Ferilli, S., and Esposito, F. (2008). Discriminative Structure Learning of Markov

Logic Networks. In Proceedings of the 18th International Conference on Inductive Logic
Programming, ILP ’08, pages 59–76, Berlin, Heidelberg. Springer-Verlag.

Biba, M., Xhafa, F., Esposito, F., and Ferilli, S. (2011). Engineering SLS Algorithms

for Statistical Relational Models. In Proceedings of the International Conference on
Complex, Intelligent and Software Intensive Systems (CISIS), pages 502–507. IEEE

Computer Society.

Blockeel, H. and De Raedt, L. (1998). Top-Down Induction of First-Order Logical

Decision Trees. Artificial Intelligence, 101(1–2):285–297.

Boros, E. and Hammer, P. L. (2002). Pseudo-Boolean optimization. Discrete Applied
Mathematics, 123(1–3):155–225.

Bromberg F, Margaritis D, H. V. (2009). Efficient Markov Network Structure Discovery

Using Independence Tests. Journal of Artificial Intelligence Research, 35(1):449–484.

Casella, G. and George, E. I. (1992). Explaining the Gibbs Sampler. The American
Statistician, 46(3):167–174.

Collins, M. (2002). Discriminative training methods for Hidden Markov Models: Theory

and Experiments with Perceptron Algorithms. In Proceedings of the ACL Conference on
Empirical Methods in Natural Language Processing (EMNLP), volume 10, pages 1–8.

Association for Computational Linguistics.

74 Bibliography

Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J. (2007). Probabilistic
Networks and Expert Systems: Exact Computational Methods for Bayesian Networks.
Springer Publishing Company, Incorporated, 1st edition.

Damlen, P., Wakefield, J., and Walker, S. (1999). Gibbs sampling for Bayesian non-

conjugate and hierarchical models by using auxiliary variables. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 61(2):331–344.

Davis, J. and Domingos, P. (2010). Bottom-Up Learning of Markov Network Structure.

In Proceedings of the 27th International Conference on Machine Learning (ICML-10),
June 21-24, 2010, Haifa, Israel, pages 271–278. Omnipress.

De Raedt, L. and Dehaspe, L. (1997). Clausal discovery. Machine Learning, 26(2-3):99–

146.

den Broeck, G. V., Taghipour, N., Meert, W., Davis, J., and de Raedt, L. (2011). Lifted

Probabilistic Inference by First-Order Knowledge Compilation. In Proceedings of the
22nd International Joint Conference on Artificial Intelligence (IJCAI), pages 2178–2185.

IJCAI/AAAI.

Dinh, Q. T., Exbrayat, M., and Vrain, C. (2010). Heuristic Method for Discriminative

Structure Learning of Markov Logic Networks. In The Ninth International Conference
on Machine Learning and Applications, ICMLA 2010, Washington, DC, USA, 12-14
December 2010, pages 163–168. IEEE Computer Society.

Domingos, P. and Lowd, D. (2009). Markov Logic: An Interface Layer for Artificial Intelli-
gence. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &

Claypool Publishers.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization. Journal of Machine Learning Research, 12:2121–

2159.

Friedman, N., Getoor, L., Koller, D., and Pfeffer, A. (1999). Learning Probabilistic

Relational Models. In Proceedings of the 16th International Joint Conference on Artificial
Intelligence - Volume 2, IJCAI’99, pages 1300–1307, San Francisco, CA, USA. Morgan

Kaufmann Publishers Inc.

Gogate, V. and Domingos, P. (2011). Probabilistic Theorem Proving. In Proceedings
of the 27th Conference on Uncertainty in Artificial Intelligence (UAI), pages 256–265.

AUAI Press.

Gonzalez, J., Low, Y., Guestrin, C., and O’Hallaron, D. R. (2009). Distributed Parallel

Inference on Large Factor Graphs. In Proceedings of the 25th Conference on Uncertainty
in Artificial Intelligence (UAI), pages 203–212. AUAI Press.

Bibliography 75

Hazan, E., Kalai, A., Kale, S., and Agarwal, A. (2006). Logarithmic Regret Algorithms

for Online Convex Optimization. In 19th Annual Conference on Learning Theory, pages

499–513.

Heckerman, D. (1999). Learning in Graphical Models. chapter A Tutorial on Learning

with Bayesian Networks, pages 301–354. MIT Press, Cambridge, MA, USA.

Hoos, H. H. and Stützle, T. (2004). Stochastic Local Search: Foundations & Applications.
Elsevier / Morgan Kaufmann.

Huynh, T. N. and Mooney, R. J. (2008). Discriminative Structure and Parameter Learn-

ing for Markov Logic Networks. In Proceedings of the 25th International Conference on
Machine Learning, ICML ’08, pages 416–423, New York, NY, USA. ACM.

Huynh, T. N. and Mooney, R. J. (2009). Max-Margin Weight Learning for Markov

Logic Networks. In Proceedings of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), volume 5781

of Lecture Notes in Computer Science, pages 564–579. Springer.

Huynh, T. N. and Mooney, R. J. (2011a). Online Max-Margin Weight Learning for

Markov Logic Networks. In Proceedings of the 11th SIAM International Conference on
Data Mining (SDM11), pages 642–651, Mesa, Arizona, USA.

Huynh, T. N. and Mooney, R. J. (2011b). Online Structure Learning for Markov Logic

Networks. In Proceedings of the European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML-PKDD 2011), volume 2, pages

81–96.

Joachims, T. (2005). A support vector method for multivariate performance measures.

In Machine Learning, Proceedings of the Twenty-Second International Conference (ICML
2005), Bonn, Germany, August 7-11, 2005, pages 377–384. ACM Press.

Joachims, T., Finley, T., and Yu, C.-N. (2009). Cutting-plane training of structural SVMs.

Machine Learning, 77(1):27–59.

Kautz, H., Selman, B., and Jiang, Y. (1997). A General Stochastic Approach to Solving

Problems with Hard and Soft Constraints. In Gu, D., Du, J., and Pardalos, P., editors,

The Satisfiability Problem: Theory and Applications, volume 35 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 573–586. AMS.

Kersting, K. (2012). Lifted probabilistic inference. In de Raedt, L., Bessière, C., Dubois,

D., Doherty, P., Frasconi, P., Heintz, F., and Lucas, P. J. F., editors, 20th European
Conference on Artificial Intelligence, Including Prestigious Applications of Artificial Intelli-
gence (PAIS-2012) System Demonstrations Track, volume 242 of Frontiers in Artificial
Intelligence and Applications, pages 33–38. IOS Press.

76 Bibliography

Kersting, K., Ahmadi, B., and Natarajan, S. (2009). Counting Belief Propagation. In

Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI), pages

277–284. AUAI Press.

Khosravi, H., Schulte, O., Man, T., Xu, X., and Bina, B. (2010). Structure Learning for

Markov Logic Networks with Many Descriptive Attributes. In Fox, M. and Poole, D.,

editors, Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press.

Khot, T., Natarajan, S., Kersting, K., and Shavlik, J. (2011). Learning Markov Logic

Networks via Functional Gradient Boosting. In 11th IEEE International Conference on
Data Mining, number 1, pages 320–329. IEEE Computer Society.

Khot, T., Natarajan, S., Kersting, K., and Shavlik, J. (2015). Gradient-based Boosting

for Statistical Relational Learning: The Markov Logic Network and Missing Data Cases.

Machine Learning, 100(1):75–100.

Kok, S. and Domingos, P. (2005). Learning the Structure of Markov Logic Networks. In

Proceedings of the 22nd international conference on Machine learning, pages 441–448.

ACM.

Kok, S. and Domingos, P. (2009). Learning Markov Logic Network Structure via

Hypergraph Lifting. In Proceedings of the 26th Annual International Conference on
Machine Learning, pages 505–512. ACM.

Kok, S. and Domingos, P. (2010). Learning Markov Logic Networks using Structural

Motifs. In Proceedings of the 27th International Conference on Machine Learning (ICML-
10), pages 551–558. Citeseer.

Kowalski, R. and Sergot, M. (1986). A Logic-based Calculus of Events. New Generation
Computing, 4(1):67–95.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional Random Fields:

Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of the
18th International Conference on Machine Learning (ICML), pages 282–289. Morgan

Kaufmann.

Lee, S., Ganapathi, V., and Koller, D. (2006). Efficient structure learning of markov

networks using l1 regularization. In Advances in Neural Information Processing Systems
(NIPS), pages 817–824.

Lifschitz, V. (1994). Circumscription. In Handbook of logic in Artificial Intelligence and
Logic Programming, volume 3, pages 297–352. Oxford University Press, Inc.

Lourenço, H. R., Martin, O. C., and Stützle, T. (2003). Iterated local search. In Glover, F.

and Kochenberger, G., editors, Handbook of Metaheuristics, volume 57 of International
Series in Operations Research & Management Science, pages 320–353. Springer US.

Bibliography 77

Lowd, D. and Davis, J. (2010). Learning Markov Network Structure with Decision Trees.

In Proceedings of the 2010 IEEE International Conference on Data Mining, ICDM ’10,

pages 334–343, Washington, DC, USA. IEEE Computer Society.

Lowd, D. and Davis, J. (2014). Improving Markov Network Structure Learning Using

Decision Trees. Journal of Machine Learning Research, 15(1):501–532.

Lowd, D. and Domingos, P. (2007). Efficient Weight Learning for Markov Logic

Networks. In Proceedings of the 11th European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD), volume 4702 of Lecture Notes in Computer
Science, pages 200–211. Springer.

McCallum, A. (2012). Efficiently inducing features of conditional random fields.

Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence,

abs/1212.2504:2–35.

Mihalkova, L. and Mooney, R. (2007). Bottom-Up Learning of Markov Logic Network

Structure. In Proceedings of the 24th international conference on Machine learning,

pages 625–632. ACM.

Miller, R. and Shanahan, M. (2002). Some Alternative Formulations of the Event

Calculus. In Computational Logic: Logic Programming and Beyond, Essays in Honour
of Robert A. Kowalski, Part II, Lecture Notes in Computer Science, pages 452–490.

Springer.

Mueller, E. T. (2008). Event Calculus. In Handbook of Knowledge Representation,

volume 3 of Foundations of Artificial Intelligence, pages 671–708. Elsevier.

Muggleton, S. (1995). Inverse Entailment and Progol. New Generation Computing,

13:245–286.

Murphy, K. P. (2002). Dynamic Bayesian Networks: representation, inference and learning.

PhD thesis, University of California.

Natarajan, S., Khot, T., Kersting, K., Gutmann, B., and Shavlik, J. (2012). Gradient-

based Boosting for Statistical Relational Learning: The Relational Dependency Network

Case. Machine Learning, 86(1):25–56.

Noessner, J., Niepert, M., and Stuckenschmidt, H. (2013). RockIt: Exploiting Parallelism

and Symmetry for MAP Inference in Statistical Relational Models. In desJardins,

M. and Littman, M. L., editors, Proceedings of the 27th AAAI Conference on Artificial
Intelligence, 2013, USA. AAAI Press.

Pietra, S. D., Pietra, V. D., and Lafferty, J. (1997). Inducing features of random fields.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):380–393.

78 Bibliography

Poon, H. and Domingos, P. (2006). Sound and Efficient Inference with Probabilistic and

Deterministic Dependencies. In Proceedings of the 21st AAAI Conference on Artificial
Intelligence, pages 458–463. AAAI Press.

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning,

5:239–266.

Rabiner, L. R. and Juang, B.-H. (1986). An introduction to Hidden Markov Models.

Acoustics, Speech, and Signal Processing Magazine (ASSP), 3(1):4–16.

Raedt, L. D. (2008). Logical and Relational Learning: From ILP to MRDM (Cognitive
Technologies). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Ravikumar, P., Wainwright, M. J., and Lafferty, J. D. (2010). High dimensional ising

model selection using l1 regularized logistic regression. Ann. Statist., 38(3):1287–

1319.

Richards, B. L. and Mooney, R. J. (1992). Learning relations by pathfinding. In

Proceedings of the Tenth National Conference on Artificial Intelligence, AAAI’92, pages

50–55. AAAI Press.

Riedel, S. (2008). Improving the Accuracy and Efficiency of MAP Inference for Markov

Logic. In Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence
(UAI), pages 468–475. AUAI Press.

Shanahan, M. (1999). The Event Calculus Explained. In Wooldridge, M. and Veloso, M.,

editors, Artificial Intelligence Today, volume 1600 of Lecture Notes in Computer Science,

pages 409–430. Springer.

Singla, P. and Domingos, P. (2005). Discriminative Training of Markov Logic Networks.

In Proceedings of the 20th National Conference on Artificial Intelligence, pages 868–873.

AAAI Press / The MIT Press.

Singla, P. and Domingos, P. (2006). Memory-Efficient Inference in Relational Domains.

In Proceedings of the 21st AAAI Conference on Artificial Intelligence, pages 488–493.

AAAI Press.

Singla, P. and Domingos, P. (2008). Lifted First-Order Belief Propagation. In Proceedings
of the 23rd AAAI Conference on Artificial Intelligence, pages 1094–1099. AAAI Press.

Skarlatidis, A. (2012). Logical Markov Random Fields (LoMRF): an open-source

implementation of Markov Logic Networks.

Skarlatidis, A. (2014). Event Recognition Under Uncertainty and Incomplete Data. PhD

thesis, Department of Digital Systems, University of Piraeus.

Bibliography 79

Skarlatidis, A., Paliouras, G., Artikis, A., and Vouros, G. A. (2015). Probabilistic Event

Calculus for Event Recognition. ACM Transactions on Computational Logic, 16(2):11:1–

11:37.

Skarlatidis, A., Paliouras, G., Vouros, G. A., and Artikis, A. (2011). Probabilistic Event

Calculus Based on Markov Logic Networks. In RuleML America, volume 7018 of Lecture
Notes in Computer Science, pages 155–170. Springer.

Srinivasan, A. (2004). The Aleph Manual.

Sutton, C. and McCallum, A. (2007). An Introduction to Conditional Random Fields for

Relational Learning. In Getoor, L. and Taskar, B., editors, Introduction to Statistical
Relational Learning, pages 93–127. MIT Press.

Taskar, B., Guestrin, C., and Koller, D. (2003). Max-Margin Markov Networks. In

Advances in Neural Information Processing Systems 16 [Neural Information Processing
Systems, NIPS 2003, December 8-13, 2003, Vancouver and Whistler, British Columbia,
Canada], pages 25–32.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2005). Large Margin

Methods for Structured and Interdependent Output Variables. Journal of Machine
Learning Research, 6:1453–1484.

Zelle, J. M., Thompson, C. A., Califf, M. E., and Mooney, R. J. (1995). Inducing Logic

Programs without Explicit Negative Examples. In Proceedings of the Fifth International
Workshop on Inductive Logic Programming (ILP-95), pages 403–416, Leuven, Belgium.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis Contribution
	1.3 Thesis Outline

	2 Background
	2.1 The Event Calculus
	2.2 Statistical Relational Learning
	2.2.1 Markov Logic Networks
	2.2.2 MLN-EC: Probabilistic Event Calculus based on MLNs
	2.2.3 Probabilistic Inference
	2.2.4 Weight Learning
	2.2.5 LoMRF: Logical Markov Random Fields

	2.3 Related Work
	2.4 Summary

	3 OSL: Online Structure Learning using background knowledge Axiomatization
	3.1 Extracting Templates from Axioms
	3.2 Hypergraph and Relational Pathfinding
	3.3 Template Guided Search
	3.4 Clause Creation and Evaluation
	3.5 Weight Learning
	3.6 Summary

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 The Methods Being Compared
	4.3 Weight Learning Performance
	4.4 OSL Performance
	4.5 Summary

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work

	Bibliography

