
DESIGN AND IMPLEMENTATION OF

A PLATFORM FOR SUPPORTING ANNOTATION OF INDOOR OBJECTS

AND NAVIGATION IN COMPLEX INTERIOR SPACES.

BY

PETROS I. KONTOGIANNIS

THESIS COMMITTEE

PROFESSOR STAVROS CHRISTODOULAKIS, THESIS ADVISOR

PROFESSOR MINOS GAROFALAKIS

ASSOCIATE PROFESSOR ANTONIOS DELIGIANNAKIS

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE

DIPLOMA OF

ELECTRONICS & COMPUTER ENGINEERING

AT THE

SCHOOL OF ELECTRONICS & COMPUTER ENGINEERING

TECHNICAL UNIVERSITY OF CRETE

MAY 2016

Dedicated to my family

The engineer who gave me my father, the gentle dynamism of my mother
and the rhythm of life that gives my sister...

Abstract

Recent international surveys present that humans spend over 75% of their time indoors, however

their movements are rarely limited to streets routes and mainly take place within buildings of differ-

ent size and shape, since they are able to roam almost in any free space of a building. Furthermore,

the complexity of buildings is growing constantly and visitors want to feel familiar inside build-

ings and they want to be able to search, find and finally reach their desired destination through a

sequence of simple instructions. They also want to know more information about the objects that

they are located front of them, in order to acquire a complete view. To this end, any tool supporting

the creation of floor plans, management of their content and generation of navigation instructions

is considered invaluable both for visitors of buildings and owners. In this thesis we discuss the de-

sign and implementation of a platform for the design, creation and management of interior spaces.

More specifically, we present an editor tool (desktop application) supporting the design, creation

and management of floor plans, as well as floor plan editing, definition of primitives structures and

give annotation to each containing object. Furthermore, we present the mobile application that we

have developed, supporting the navigation inside the buildings which have been created using the

editor tool. The mobile application is compatible with most state-of-the-art mobile devices and

platforms, while both tools have been designed with flexibility and extensibility in mind. To this

end, they can be used in various domains including universities, museums, shopping malls, as well

as every large building. Finally, is worth mentioning that our applications have been evaluated for

their usability by professionals and naive users.

Acknowledgements

I would like to express my gratitude to my supervisor, Prof Stavros Christodoulakis, for his en-

couragement and his continuous guidance and support not only throughout my thesis but also my

studies. I would also like to thank him for the important experiences he offered me during my stay

at the Laboratory of Distributed Multimedia Information Systems and Applications (TUC/MUSIC),

as well as for the positive influence in broadening my horizons. But the most important thing is that

Mr. Christodoulakis was the main source of inspiration for me and made me try daily for the best.

Special thanks go to Nektarios Gioldasis for his support, his valuable advices, as well as our

long fruitful discussions. I would also like to thank you Prof. Antonios Deligiannakis and Prof.

Minos Garofalakis for serving on my thesis committee.

I would like to thank you all my colleagues in the TUC/MUSIC Laboratory for their support

and for the pleasant environment they provided. My sincerest gratitude also goes to all my friends

for the memorable moments we lived together during our studies.

Finally, this thesis would not have possible without the support and encouragement of MY

PARENTS. My mother Maria and my father Isidoros were and are always there whenever I need

them. Every hour, every day, every moment are there and constantly support me everywhere. At

this point, I want to use Greek language in order to express exactly what I want.

Thank you from the bottom of my heart for your never ending love and care.

I am grateful to you...

Contents

1 Introduction 1
1.1 Summary of Contributions . 3

1.2 Reader’s Guide . 4

2 Related Work 7
2.1 Google Indoor Maps . 7

2.2 Nokia HAIP . 9

2.3 Bing Indoor Maps . 10

2.4 WifiSlam . 11

2.5 WiFarer . 12

3 Background 15
3.1 The Spring Framework . 15

3.2 MongoDB . 20

3.3 Phonegap . 26

3.4 Javascript . 27

3.5 Xuggler . 31

3.6 AngularJs . 31

4 Functional Specification 37
4.1 Stakeholders . 37

4.2 Technical Requirements . 38

4.2.1 Model . 39

4.2.2 Editor Tool . 40

4.2.3 Mobile Application . 41

4.2.4 Backend . 42

4.3 Use Cases . 43

x Contents

5 Model 83

5.1 Specification . 83

5.2 Model Examples . 90

5.3 Navigation Capabilities . 93

5.3.1 Shortest Path Calculation . 94

5.3.2 Navigation Instructions Generation . 95

6 Architecture 105

6.1 Server Side . 105

6.1.1 Service Layer . 107

6.1.2 Business Logic Layer . 107

6.1.3 Data Layer . 107

6.2 Client Side . 108

6.2.1 Application Manager . 108

6.2.2 Router . 109

6.2.3 Multilinguality . 109

6.2.4 Model . 109

6.2.5 View . 109

6.2.6 Controller . 109

7 Implementation 111

7.1 Client Side . 111

7.1.1 MVC Pattern . 112

7.1.2 User Interface . 113

7.1.3 Router . 115

7.1.4 Controller . 117

7.1.5 Services and Factories . 120

7.1.6 Multilinguality . 122

7.1.7 SVG . 125

7.1.8 QR Codes . 126

7.2 Server Side . 130

7.2.1 Persistency . 130

7.2.2 RESTful Web Services . 131

7.2.3 Security . 132

7.2.4 JSON Web Token . 132

Contents xi

8 Graphical User Interface 135
8.1 Prototypes . 135

8.1.1 Editor Tool . 136

8.1.2 Mobile Application . 142

8.2 Usability Evaluation . 145

8.2.1 Pluralistic Walkthrough . 145

8.2.2 Heuristic Evaluation . 147

8.2.3 Think Aloud . 149

8.3 User Interfaces . 150

8.3.1 Editor Tool . 150

8.3.2 Mobile Application . 161

9 Conclusion & Future Work 167

Bibliography 171

A Model Implementation Samples 177

B Restful Web Services 185
B.1 User . 186

B.2 Building . 189

B.3 Structure . 195

List of Tables

4.1 Use case 1: "Log into the Editor Tool" . 46

4.2 Use case 2: "Log into the Mobile Application" . 47

4.3 Use case 3: "Log out" . 47

4.4 Use case 4: "Create Account" . 48

4.5 Use case 5: "Create Building" . 49

4.6 Use case 6: "View existing Building" . 50

4.7 Use case 7: "Update Building" . 51

4.8 Use case 8: "Delete Building" . 52

4.9 Use case 9: "Create Floor" . 53

4.10 Use case 10: "View existing Floor" . 54

4.11 Use case 11: "Update Floor" . 55

4.12 Use case 12: "Delete Floor" . 56

4.13 Use case 13: "Draw Polygon" . 57

4.14 Use case 14: "Delete Polygon" . 58

4.15 Use case 15: "Add Node" . 59

4.16 Use case 16: "Update Node" . 60

4.17 Use case 17: "Delete Node" . 61

4.18 Use case 18: "Add Connection" . 62

4.19 Use case 19: "Delete Connection" . 63

4.20 Use case 20: "Add Helpful Image" . 64

4.21 Use case 21: "Delete Helpful Image" . 64

4.22 Use case 22: "Create Object" . 65

4.23 Use case 23: "View existing Object" . 66

4.24 Use case 24: "Update Object" . 67

4.25 Use case 25: "Delete Object" . 68

4.26 Use case 26: "View Portfolio" . 68

xiv List of Tables

4.27 Use case 27: "Upload multimedia files to Portfolio" 69

4.28 Use case 28: "Delete Multimedia File" . 70

4.29 Use case 29: "Create Structure" . 71

4.30 Use case 30: "View existing Structure" . 72

4.31 Use case 31: " Update Structure" . 73

4.32 Use case 32: "Delete Structure" . 74

4.33 Use case 33: "Use structure to Create Object" . 74

4.34 Use case 34: "Update Account Information" . 75

4.35 Use case 35: "View available Buildings" . 75

4.36 Use case 36: "View Building" . 76

4.37 Use case 37: "View Floors of Building" . 76

4.38 Use case 38: "View Objects of Floor" . 77

4.39 Use case 39: "View Objects of Building" . 77

4.40 Use case 40: "User locates himself" . 78

4.41 Use case 41: "User scans QR Code" . 79

4.42 Use case 42: "Find a Place" . 80

4.43 Use case 43: "Navigate to Object" . 81

B.1 RESTful Service: Get all users . 186

B.2 RESTful Service: Get user’s details . 187

B.3 RESTful Service: Update user’s details . 188

B.4 RESTful Service: Get user’s details . 188

B.5 RESTful Service: Get all Buildings . 189

B.6 RESTful Service: Get Building’s details . 190

B.7 RESTful Service: Get all structures . 195

B.8 RESTful Service: Get structure’s details. 197

List of Figures

2.1 Google Indoor Maps. 8

2.2 The floor plan of Madison Square Garden Arena - Google Maps 9

2.3 Nokia HAIP user interface presents the interior of Conference Center. 10

2.4 Bing Indoor Maps - Screenshot of the user interface presents the floor map of

British Museum. 11

2.5 Bing Indoor Maps - Screenshot of the user interface presents the floor map of Shop-

ping Mall. 12

2.6 WiFarer - Screenshot of the mobile application during navigation. 13

2.7 WiFarer - Screenshot of the floor plan of editor. 14

3.1 Overview of the Spring Framework . 16

3.2 A MongoDB document with 4 fields and values of types text, number and list. . . . 21

3.3 A MongoDB collection of documents. 21

3.4 Default routing of reads and writes to the primary. 22

3.5 Large collection with data distributed across 4 shards. 23

3.6 The stages of a MongoDB query with a query criteria and a sort modifier. 25

3.7 Sample aggregation pipeline operation. 25

3.8 Important parts of AngularJS. 32

3.9 Two way data binding in AngularJS. 32

3.10 Definition of MVC pattern in AngularJS. 34

4.1 Editor Tool - User Management. 43

4.2 Editor Tool - Building Management. 44

4.3 Editor Tool - Portfolio Management. 44

4.4 Editor Tool - Structure Management. 45

4.5 Mobile Application. 45

xvi List of Figures

5.1 Model. 84

5.2 Model Example - Museum. 92

5.3 Model Example - University. 93

5.4 Model Example - Library. 93

5.5 Dijkstra’s algorithm steps. 96

5.6 Natural History Museum - First and Second Floor. 100

5.7 Natural History Museum - Path from Entry to Library. 101

5.8 Natural History Museum - Path from Entry to Tyrannosaurus (cont ’d). 102

5.9 Natural History Museum - Path from Entry to Tyrannosaurus. 103

6.1 System reference architecture. 106

7.1 Model View Controller Pattern in our application. 112

7.2 Two Way Binding. 113

7.3 The main areas of our desktop user interfaces. 114

7.4 Example of QR Code. 126

7.5 The Viewport. 128

7.6 Json Web Token process diagram. 133

8.1 Editor Tool - View Buildings. 136

8.2 Editor Tool - View Building. 137

8.3 Editor Tool - View Structures. 137

8.4 Editor Tool - Create Structure. 138

8.5 Editor Tool - Editor (View Plan). 138

8.6 Editor Tool- Editor (View Nodes). 139

8.7 Editor Tool - Give Semantic Step 1. 139

8.8 Editor Tool - Give Semantic Step 2. 140

8.9 Editor Tool - Building Media. 140

8.10 Editor Tool - Portfolio. 141

8.11 Mobile Application - User Interface Prototypes 142

8.12 Player Application - User Interface Prototypes (cont’d). 143

8.13 User Interface Prototypes . 144

8.14 Editor Tool - Landing. 150

8.15 Editor Tool - Create Account. 151

8.16 Editor Tool - Log in. 151

8.17 Editor Tool - Home. 153

List of Figures xvii

8.18 Editor Tool - Create Building. 154

8.19 Editor Tool - Add Floor. 154

8.20 Editor Tool - Draw Object. 155

8.21 Editor Tool - Give Semantic - step 1. 156

8.22 Editor Tool - Give Semantic - step 2. 156

8.23 Editor Tool - Upload Media. 157

8.24 Editor Tool: Add Nodes. 157

8.25 Editor Tool: View Node. 158

8.26 Editor Tool: Create Structure. 158

8.27 Editor Tool: View Building. 159

8.28 Editor Tool: View Portfolio. 160

8.29 Mobile Application. 161

8.30 Mobile Application (cont’d). 162

8.31 Mobile Application (cont’d). 163

8.32 Player Application (cont’d). 164

8.33 Mobile Application (cont’d). 165

8.34 Mobile Application (cont’d). 165

8.35 Mobile Application. 166

Chapter 1

Introduction

Inspired by the achievements of satellite-based location services in outdoor applications the chal-

lenge has shifted to the provision of such services for the indoor environment. However, the ability

to locate objects and people indoors remains a substantial challenge.

Humans spend over 75% of their time indoors, therefore their movements are rarely restricted

to specific streets routes and mainly take place inside buildings of different size and shape. Con-

sidering the growing complexity of new buildings, the interest has shifted to providing navigation

guidance for indoor spaces. Unfortunately, due to a number of GPS limitations, obtaining accurate

indoor tracking or positioning is rarely possible, making indoor mobility, navigation, and movement

analysis a really challenging topic.

In general, the design requirements of indoor navigation systems are different from outdoor

navigation systems in several ways. First of all, the coordinate system and the precision measure-

ment, supported by the indoor location infrastructure, often differs from GPS. Secondly, navigation

within a building is different from navigation in the road system. Unlike cars, which are restricted

by the road network, mobile users are able to roam almost in any free space of a building due to

the lack of well-defined pathways (roads, cyclic nodes, etc.) in it. Consequently, the techniques

used for charting a path between any indoor origin and destination are different from those used

in charting paths on the road network. In more details, the road system can be represented as a

huge graph of vertices (nodes) and edges (pathways). Finally, it is so important that in case of

outdoor navigation, there are many commercial and public digitalized maps and Geographical In-

formation System databases for the road network whereas maps of buildings and campuses are not.

In this way, it is easy to take all these information and follow the appropriate standards in order to

implement your own GPS navigation system for outdoor environment.

The implementation of indoor navigation systems is by far more complex. In indoor envi-

2 Chapter 1. Introduction

ronments there is a great variety of different structures and the CAD building floor plans are not

represented in a form that can be easily processed. This is the reason why an implementation of

indoor navigation systems should be conducted on a custom basis. Such a deployment model re-

quires a set of tools to automate the process of creating indoor maps. Through this process, the

owners of the buildings should be able to create and design indoor maps with specific characteristic

according to their needs. These indoor maps may contain multiple structures, such as rooms, stairs,

small objects, etc. In each case, the creator of building should be able to choose a structure from a

set of primitive structures or define his desired structure with specific characteristics. For example

in case of a museum, such structures may as well be an exhibit room, an elevator or a statue. All of

these primitive structures can be described using a specific set of characteristics, such as the subject

of an exhibit, the material of an exhibit, etc. Such characteristics might be of major importance for

the visitor of the building.

Here is a use case scenario demonstrating the challenges that a visitor might face while navigat-

ing inside a building: Imagine that it is your first time visiting the Museum of Pergamus in Berlin

or the Acropolis museum in Athens and you have a strong urge to see a popular exhibit. Although

the museum is filled with numerous magnificent works of art, the museum is about to close and

you would like to head directly to admire your favorite exhibit, the main reason why you visited

this museum. After entering the museum, you arrive at the first hall and eagerly look for signs that

lead you to your favorite exhibit. But there is not anything helpful for you. Then you try to ask a

museum attendant for help in order to reach your destination but she only gives a long sequence of

directions so complicated that you cannot possibly hope to follow them. After wandering around

for a while, you find a pamphlet or a panel with floor map of museum that indicates the location

of your favorite exhibit. Holding the pamphlet in your hand, you can feel hopeful and excited that

you will soon see the desired exhibit. But soon, those feelings turn into feelings of defeat and frus-

tration. As you walk through different rooms, you have troubles locating yourself on the map; the

landmarks surrounding you, do not seem to correspond to those indicated on the map. Moreover,

you discover that a variety of rooms are closed for the day, and the path that you are currently taking

will not get you to your eventual goal.

This is a common scenario that can happen whenever people try to find a particular place,

person or object inside an unfamiliar or complex environment. Such complex environments can

be airports, museums, conference centers, exhibitions, corporate and school campuses, hospitals,

shopping malls, stadiums, train station, public buildings, supermarkets, and urban areas. Such

examples trigger the need for a system that assists the navigation of users in real time by providing

a sequence of evolving directions in order to reach the desired destination. Such a system should

1.1. Summary of Contributions 3

take into account not only the user’s position on the map but also the objects spatial relations. For

example, if you know that your favorite painting is near to a huge statue and opposite another, you

can find it more easily. The relations between objects are very useful and provide a better and easier

navigation inside a building. Additionally, as we have already mentioned, it is very important for

a visitor to obtain more information about the object that he wants to find or the object that is in

front of him. In case of a painting, the visitor wants to know more information about it, such as its

material, culture, artist, etc in order to acquire a overall view about the object. In this way, we can

enable the user to search and find the desired objects depending on a specific set of characteristics.

For example, a museum visitor may want to find artworks related to the impressionism or Ancient

Greek statues.

In this thesis, we present the design and implementation of a platform for supporting annota-

tions of indoor objects and navigation in complex interior spaces. The structures that we support,

follow a flexible model, allowing our framework to support a great variety of buildings. More

specifically, we present our editor tool (desktop application) supporting the creation, design and

management of floor maps, as well as the creation and definition of primitive structures and objects.

Furthermore, we present the mobile application that we developed for supporting indoor navigation

in buildings that have been created using our editor tool. Our application is compatible with most

state-of-the-art mobile devices/platforms and offers among others: (a) search functionality allow-

ing users to track certain objects based on specific characteristics, (b) indoor navigation assistance

by providing directions, and (c) QR code scanning as a supplementary method for identifying the

user location inside the building.

Both the editor and the mobile application have been designed with flexibility and extensibil-

ity in mind and can be used in various domains, including museums, supermarkets, universities,

shopping malls, as well as in every large building infrastructure.

The aim of this thesis is to: (a) define the model needed to represent building design created

by both professional and novices users, (b) design and implement an infrastructure supporting

the model, (c) design and implement an editor tool (desktop application) supporting the creation

and management of building conforming to the model, and (d) design and implement a mobile

application supporting the navigation and information retrieval inside buildings which have been

created by our editor tool.

1.1 Summary of Contributions

In this thesis, we present a framework for the creation and management of Interior building spaces.

In more details, we propose a model for describing objects of interior spaces according to the

4 Chapter 1. Introduction

kind of building and the user needs. The model refers to the overall information concerning the

creation of a building. The aim of constructing the model was to support as many as possible types

of building. To this end, we tried to parametrize it depending on different contexts, by defining

information that constitutes each type of building.

Additionally to the model, we have developed a technical platform to support them. The im-

plemented platform is comprised of two parts, the backend system and the client applications. The

backend system is the core of the infrastructure, holding all the data of the system and performing

all the business logic while providing services to the client side as well as to external systems. The

client applications are the graphical user interfaces that the users interact with during the manage-

ment of building and its objects (editor tool - desktop application) and retrieving information about

them (mobile application). The whole technical platform has been built using state-of-the-art web

technologies, and the provided tools include a native mobile application compatible with all the

major mobile platforms.

Our novel infrastructure supports the modern way of creating buildings and its objects and

offers strong flexibility about the different structures (types of objects), giving you capabilities of

creation and definition of structures and give them a set of characteristics and attributes. By doing

so, we achieve the better and faster familiarization of visitors with the space of building using

mobile devices and their tools (camera, map, compass etc.). This infrastructure can be applied in a

variety of buildings such as hospitals, museums, airports, universities, retails, stadiums, shopping

malls, hotels, libraries and other large buildings in order to cover the needs and objectives of these

buildings and their visitors.

1.2 Reader’s Guide

Apart from the introduction, the preliminaries, the related work, and the conclusion, this thesis can

be divided into three parts. In the first part, we define the model for the building construction. In the

second part, we describe the infrastructure that we developed in order to support the model and the

third part we present the user interfaces that we developed for the interaction between our systems

and the users. More precisely, this thesis is structured as follows:

• chapter 2 presents the systems and research that are most relevant to the issues addressed in

this thesis.

• chapter 3 provides a brief overview of the technologies used for the implementation of the

systems. These include the state-of-the-art advances in developing web applications (Angu-

larJS), web applications/services (Spring Framework) and modern database systems (Mon-

1.2. Reader’s Guide 5

goDB).

• chapter 4 describes the functional specifications of the system that has been developed for

the management of the whole different types of buildings.

• chapter 5 specifies the model for describing building and its indoor structures. This model

refers to the overall information concerning the creation and design of buildings.

• chapter 6 describes the architecture that has been designed and implemented for the infras-

tructure.

• chapter 7 describes the implementation details of some of the components in more details,

providing some more insight on how specific parts of the system have been implemented.

• chapter 8 presents the user interfaces that have been developed for the interaction with the

user.

• chapter 9 summarizes and reviews the presented work and sketches some perspectives for

future extensions.

Chapter 2

Related Work

In this chapter, we present tools and applications that are considered relevant to our work. For

each of the systems described below, we provide the objective that they aim to reach, present their

capabilities and discuss their functionality. Additionally, we compare them to the tools and services

that we developed, focusing on the strengths and weaknesses they possess. To the extend of our

knowledge, there is no platform or tool that combines the creation of building and its objects, the

automatic construction of navigation and instructions directly available in any mobile device and

tablet, as well as the dynamic creation and definition of structures and give semantic of containing

objects.

2.1 Google Indoor Maps

Google Indoor Maps1 is an Indoor Positioning System developed by Google. More specifically,

GIM is a web platform that offers the capability to preview a floor map, specifically an image,

which is uploaded by a user.

Administrator users can draw an image with the floor plan of each floor of building and set it up

to the area of building on Google Maps. In this way an administrator can "compose" a building con-

sisting of images. Each image should have been placed on Google Maps in the desired orientation

and the appropriate level and then should be approved by Google Administrators.

On the other side, a simple user can view and retrieve their position on this image using GPS

functionality of his mobile device. By using GPS, Google achieves a limited accuracy, about 3-5

meters. Figure 2.1 presents the Google Indoor Maps mobile application in action, displaying two

of the floor plans of Madison Square Garden Arena, in the New York area.

1https://www.google.com/maps/about/partners/indoormaps/

https://www.google.com/maps/about/partners/indoormaps/

8 Chapter 2. Related Work

The main purpose of GIM is to help the visitors of a building to navigate inside it in order to

save effort and time while trying to reach the desired destination.

(a) The floor plan of Madison Square Garden Arena. (b) The floor plan of San Francisco International Airport.

Figure 2.1: Google Indoor Maps.

Compared to our application, GIM is more limited because it does not provide the editor tool

to the user in order to draw and design the desired floor plans. Also Google should approve the

uploaded images in order to publish them to the users. On the contrary, we provide an editor tool

and a mobile application which are able to support the creation and design of an extended variety

of buildings and navigation inside them. Using our tools, the user is able to create his own objects

and their specific types and of course to give semantic to them in order to give the ability to the

simple users to search, retrieve and navigate at specific location. Furthermore our system provides

a sequence of instructions to help the mobile user to reach his destination in a simple and fast way.

2.2. Nokia HAIP 9

Figure 2.2: The floor plan of Madison Square Garden Arena - Google Maps

2.2 Nokia HAIP

Nokia2 has its own indoor location technology called HAIP (High Accuracy Indoor Positioning)

based on BlueTooth Low Energy beacons (BLE). With this combination of software and hardware

the user can locate his position inside a building and is able to retrieve a 3D map of each floor of

building. In this case the owner of a building should send all relevant information, such as floor

plans, photographies of spaces etc, to the Nokia administrators in order to design and represent the

interior spaces in form of a 3D Map. In this way, the user is able to identify his position in relation

to the objects which are located around and navigate inside building during his wondering. The

system previews a very accurate visualization of floor and containing objects in real time and the

user is able to locate himself. The most impressive feature of Nokia technology is the accuracy since

it is possible to locate the mobile devices in accuracy of 50 cm. Figure 2.3 presents a screenshot of

the Nokia HAIP user interface, displaying a 3D map of a conference center.

Compared to our work, Nokia HAIP is limited because it does not offer the editor tool and

therefore all of the implemented floor should be generated with programming language from a

team of administrators. Additionally, it does not take into account the user’s instructions in order to

navigate him inside the building. The last but not least is that our floor plan editor gives the user the

capability to give semantic at the object of the floor and customize their type and their attributes.

In this way, the objects and their positions can be retrieved from our mobile application in case the

user wants to navigate there through a sequence of instructions.

2http://www.nokia.com/el_gr

http://www.nokia.com/el_gr

10 Chapter 2. Related Work

Figure 2.3: Nokia HAIP user interface presents the interior of Conference Center.

2.3 Bing Indoor Maps

Bing Indoor Maps3 is a very similar system with Google Indoor Maps and offers about the same

capabilities. Like Google, and Bing Maps allow to the user, who wants to design a building, to

upload a set of images and information about the building which give the required information

about the floor plans. In the next step, the administrators of Bing Maps create a composition

of floor plans in the appropriate format in order to be previewed to the mobile user. Figure 2.4

presents a screenshot of the Bing Indoor Maps user interface, displaying a map of the first floor of

the British Museum, in London.

Although Bing Indoor Maps technology uses the GPS and WiFi to locate the mobile devices

inside buildings, the accuracy of the system is about to 2-3 meters, because the deviation of GPS is

further in the interior spaces.

It is worth mentioning, that Bing Maps in contrast with Google, contains not only public build-

ings but also private buildings and in this way the users can design an extended variety of buildings.

Figure 2.5 presents a screenshot of the Bing Indoor Maps user interface, displaying a map of the

first floor of known department store, in the Moscow area.

On the contrary, the building editor of our application can be used by everyone who wants to

design a building, either it is for a public building or not. Furthermore, our application provides

further information about the spaces of building and not only the name of those. Using our editor

tool the user is able to describe the desired spaces, as well as possible, with an extended list of

3http://www.bing.com/maps/

http://www.bing.com/maps/

2.4. WifiSlam 11

Figure 2.4: Bing Indoor Maps - Screenshot of the user interface presents the floor map of British Museum.

characteristics such as description, category, images etc. Finally, through our application the visitor

of a building is able to receive navigation instructions in order to navigate inside the building and

reach his destination.

2.4 WifiSlam

WifiSlam4, is a mobile application software which focuses on fast navigation in interior spaces.

First of all, an administrator set up into application the positions of WiFi sensors and then note

them on image of floor plan. After that, the administrator user uploads images of floor plans to the

system. On the other side the final user who wants to navigate into the building scan the appropriate

image and then is able to locate him into this building, in real time. Through this application the

final user can take his position with accuracy of 2 to 3 meters because the signal strength of WiFi

is not constant during the time. In other words, the WiFi signal strength is changing constantly

depending on the number of mobile devices which are connected with this. As opposed to our

application, WiFiSlam does not offer an editor tool in order to create a floor plan and give semantic

on containing objects. Using the scanned image, the user is able to locate himself but he is not able

4https://angel.co/wifislam

https://angel.co/wifislam

12 Chapter 2. Related Work

Figure 2.5: Bing Indoor Maps - Screenshot of the user interface presents the floor map of Shopping Mall.

to interact with the map in order to retrieve information about the objects. The last but not least

difference with our application, is that the WiFiSlam software does not navigate the user inside the

interior spaces, and as a result the user can not find the appropriate path to reach his destination.

2.5 WiFarer

WiFarer5, is a web platform for setting up a number of floor plans and navigate inside them. In the

first step, the owner of a building can sign up into this platform and upload the floor plan images of

his building accompanied with the appropriate information about the containing objects. After that,

a team of specialists create a floor map, in the appropriate format, with all the required information

depending on the user needs.

Furthermore, WiFarer provides an editor for the management of objects which are contained

inside the building. In this way the owner of the building is able to manage (upload media, edit the

title, description, etc.) the content of these objects according to his needs.

WiFarer provides the appropriate hardware of bluetooth or WiFi sensors in order to achieve the

positioning of the final user. Similarly to our case, the WiFarer offers a mobile application in order

to for the users to install it to their mobile devices and navigate inside the building.

Compared to our application and services, WiFarer does not offer the ability to the user, to

change the floor plans using editor tools. Thus, if someone wants to change a floor map of a build-
5http://www.wifarer.com/

http://www.wifarer.com/

2.5. WiFarer 13

Figure 2.6: WiFarer - Screenshot of the mobile application during navigation.

14 Chapter 2. Related Work

ing, he should contact the administrator of the system and give them all the required information

and files in order to set up the desired changes. Furthermore, unlike our application, the WiFarer

does not offer the capability of extension concerning the primitive structures and also it is capable

to preview information about an object without giving more information and semantic on that.

Figure 2.7: WiFarer - Screenshot of the floor plan of editor.

Apart from the above, the most important limitation of WiFarer is that their mobile application

is designed only for iPhones. On the contrary, we provide our mobile application for the majority

of mobile phones operating system including iOS, Android and Windows. Additionally, it is worth

mentioning that our application is also available through the browser.

Summary

In this section we presented the systems and research that are most relevant to the issues addressed

in our work. For each of these systems we described the features that are closest to our framework

and we compared them to our framework.

Chapter 3

Background

This chapter presents a brief overview of the standards and technologies used in this thesis. Section

3.1 describes the Spring Framework, the core of the back-end system. Section 3.2 presents Mon-

goDB, the document-oriented databases system used for persisting the data. Section 3.3 discusses

PhoneGap, an open-source mobile development framework. Section 3.4 presents JavaScript, the

scripting language used mainly for the implementation of client side logic and the interaction with

the users, as well as the JavaScript libraries used. Section 3.5 describes Xuggle, the library used for

analysing and manipulating video and audio files. Section 3.6 presents AngularJS, the JavaScript

framework that we user to build our client side applications.

3.1 The Spring Framework

The Spring Framework [65, 66] is an open source application framework and inversion of con-

trol container for the Java platform. It provides a comprehensive programming and configuration

model for modern Java-based enterprise applications on any kind of deployment platform. The

framework’s core features can be used by any Java application, but there are extensions for build-

ing web applications on top of the Java EE platform. Although the framework does not impose

any specific programming model, it has become popular in the Java community as an alternative to,

replacement for, or even addition to the Enterprise JavaBeans (EJB) model.

Modules

The Spring Framework consists of features organised into about 20 modules. These modules are

grouped into Core Container, Data Access/Integration, Web, AOP(Aspect Oriented Programming),

Instrumentation, Messaging, and Test, as shown in the following diagram Figure 3.1.

16 Chapter 3. Background

Figure 3.1: Overview of the Spring Framework

3.1. The Spring Framework 17

Core Container

The Core Container consists of the Core, Beans, Context, and Expression Language modules. The

Core and Beans modules provide the fundamental parts of the framework including the Inversion

of Control (IoC) and Dependency Injection features. The BeanFactory is a sophisticated imple-

mentation of the factory pattern. It removes the need for programmatic singletons and allows you

to decouple the configuration and specification of dependencies from your actual program logic.

The Context module builds on the solid base provided by the Core and Beans modules: it is a

means to access objects in a framework-style manner that is similar to a JNDI registry. The Context

module inherits its features from the Beans module and adds support for internationalization (using,

for example, resource bundles), event propagation, resource loading, and the transparent creation of

contexts by, for example, a Servlet container. The Context module also supports Java EE features

such as EJB, JMX, and basic remoting. The ApplicationContext interface is the focal point of the

Context module.

The Expression Language module provides a powerful Expression Language for querying and

manipulating an object graph at runtime. It is an extension of the unified expression language

(unified EL) as specified in the JSP 2.1 specification. The language supports setting and getting

property values, property assignment, method invocation, accessing the content of arrays, collec-

tions and indexers, logical and arithmetic operators, named variables, and retrieval of objects by

name from Spring’s IoC container. It also supports list projection and selection as well as common

list aggregations.

Data Access/Integration

The Data Access/Integration layer consists of the JDBC, ORM, OXM, JMS, and Transaction mod-

ules.

• The JDBC module provides a JDBC-abstraction layer that removes the need to do tedious

JDBC coding and parsing of database-vendor specific error codes.

• The ORM module provides integration layers for popular object-relational mapping APIs,

including JPA, JDO, and Hibernate. Using the spring-orm module you can use all of these

O/R-mapping frameworks in combination with all of the other features Spring offers, such as

the simple declarative transaction management feature mentioned previously.

• The OXM module provides an abstraction layer that supports Object/XML mapping imple-

mentations such as JAXB, Castor, XMLBeans, JiBX and XStream.

18 Chapter 3. Background

• The Java Messaging Service module contains features for producing and consuming mes-

sages. Since Spring Framework 4.1, it provides integration with the spring-messaging mod-

ule.

Web

The Web layer consists of the spring-web, spring-webmvc, spring-websocket, and spring-webmvc-

portlet modules.

• The spring-web module provides basic web-oriented integration features such as multipart

file upload functionality and the initialization of the IoC container using Servlet listeners and

a web-oriented application context. It also contains an HTTP client and the web-related parts

of Spring’s remoting support.

• The spring-webmvc module (also known as the Web-Servlet module) contains Spring’s model-

view-controller (MVC) and REST Web Services implementation for web applications. Spring’s

MVC framework provides a clean separation between domain model code and web forms and

integrates with all of the other features of the Spring Framework.

• The spring-webmvc-portlet module (also known as the Web-Portlet module) provides the

MVC implementation to be used in a Portlet environment and mirrors the functionality of the

spring-webmvc module.

Test

The spring-test module supports the unit testing and integration testing of Spring components with

JUnit or TestNG. It provides consistent loading of Spring ApplicationContexts and caching of those

contexts. It also provides mock objects that you can use to test your code in isolation.

Inversion of control container

Applications that are build with the Java Language typically consist of objects that collaborate to

form the application proper. Thus the objects in an applications have dependencies on each other.

Although the Java platform provides a wealth of application development functionality, it lacks

the means to organize the basic building blocks into a coherent whole, leaving that task to architects

and developers. This drove the development and usage of popular design patterns such as Factory,

Abstract Factory, Builder, Decorator, and Service Locator in order to compose the various classes

and object instances that make up an application. However, these patterns are simply best practices,

3.1. The Spring Framework 19

with a description of what the pattern does, where to apply it, the problems it addresses, and so forth.

Patterns are formalized best practices that the developer must implement himself in his application.

The Spring Framework Inversion of Control (IoC) component addresses this concern by pro-

viding a formalized means of composing disparate components into a fully working application

ready for use. The Spring Framework codifies formalized design patterns as first-class objects that

you can integrate into your own application(s). Numerous organizations and institutions use the

Spring Framework in this manner to engineer robust, maintainable applications.

Central to the Spring Framework Inversion of Control (IoC) component is the inversion of

control (IoC) container. The container can manage the whole life-cycle of the objects. Objects

created by the container are also called managed objects or beans. The container can be configured

by loading XML files or detecting specific Java annotations on configuration classes. These data

sources contain the bean definitions which provide the information required to create the beans.

Objects can be obtained by means of either dependency lookup or dependency injection. De-

pendency lookup is a pattern where a caller asks the container object for an object with a specific

name or of a specific type. Dependency injection is a pattern where the container passes objects by

name to other objects, via either constructors, properties, or factory methods.

In many cases one need not use the container when using other parts of the Spring Framework,

although using it will likely make an application easier to configure and customize. The Spring

container provides a consistent mechanism to configure applications and integrates with almost all

Java environments, from small-scale applications to large enterprise applications.

Data access framework

Spring’s data access framework addresses common difficulties developers face when working with

databases in applications. Support is provided for all popular data access frameworks in Java:

JDBC, iBatis/MyBatis, Hibernate, JDO, JPA, Oracle TopLink, Apache OJB, and Apache Cayenne,

among others. For all of these supported frameworks, Spring provides these features:

• Resource management - automatically acquiring and releasing database resources.

• Exception handling - translating data access related exception to a Spring data access hierar-

chy.

• Transaction participation - transparent participation in ongoing transactions.

• Resource unwrapping - retrieving database objects from connection pool wrappers.

• Abstraction for BLOB and CLOB handling.

20 Chapter 3. Background

All these features become available when using template classes provided by Spring for each

supported framework. Critics have said these template classes are intrusive and offer no advan-

tage over using (for example) the Hibernate API directly.[14][not in citation given] In response,

the Spring developers have made it possible to use the Hibernate and JPA APIs directly. This

however requires transparent transaction management, as application code no longer assumes the

responsibility to obtain and close database resources, and does not support exception translation.

Together with Spring’s transaction management, its data access framework offers a flexible ab-

straction for working with data access frameworks. The Spring Framework doesn’t offer a common

data access API; instead, the full power of the supported APIs is kept intact. The Spring Framework

is the only framework available in Java that offers managed data access environments outside of an

application server or container.

3.2 MongoDB

MongoDB [46, 20] is a cross-platform document-oriented database system. Classified as a NoSQL

database, MongoDB eschews the traditional table-based relational database structure in favor of

JSON-like documents with dynamic schemas (MongoDB calls the format BSON [17]), making the

integration of data in certain types of applications easier and faster. Released under a combination

of the GNU Affero General Public License and the Apache License, MongoDB is free and open

source software.

Document-Oriented Storage

Data in MongoDB has a flexible schema. Unlike SQL databases, where you must determine and

declare a table’s schema before inserting data, MongoDB’s collections do not enforce document

structure. This flexibility facilitates the mapping of documents to an entity or an object. Each doc-

ument can match the data fields of the represented entity, even if the data has substantial variation.

In practice, however, the documents in a collection share a similar structure.

MongoDB stores data in the form of documents, which are JSON-like field and value pairs.

Documents are analogous to structures in programming languages that associate keys with values,

where keys may hold other pairs of keys and values (e.g. dictionaries, hashes, maps, and associative

arrays). Formally, MongoDB documents are BSON documents, which is a binary representation of

JSON with additional type information. Figure 3.2 depicts a sample MongoDB document contain-

ing four fields: (a) a name with textual content, (b) an age with numeric content, (c) a status with

textual content, (d) a list of groups with textual content.

3.2. MongoDB 21

Figure 3.2: A MongoDB document with 4 fields and values of types text, number and list.

MongoDB stores all documents in collections. A collection is a group of related documents that

have a set of shared common indexes. Collections are analogous to a table in relational databases.

Figure 3.3 depicts a collection of the previous described document.

Figure 3.3: A MongoDB collection of documents.

Full Index Support

Indexes support the efficient execution of queries in MongoDB. Without indexes, MongoDB must

scan every document in a collection to select those documents that match the query statement.

These collection scans are inefficient because they require MongoDB to process a larger volume of

data than an index for each operation.

Fundamentally, indexes in MongoDB are similar to indexes in other database systems. Mon-

goDB defines indexes at the collection level and supports indexes on any field or sub-field of the

documents in a MongoDB collection. Any field in a MongoDB document can be indexed and

secondary indices are also available.

If an appropriate index exists for a query, MongoDB can use the index to limit the number of

documents it must inspect. In some cases, MongoDB can use the data from the index to determine

which documents match a query.

Replication

Replication is the process of synchronizing data across multiple servers. Replication provides re-

dundancy and increases data availability. With multiple copies of data on different database servers,

22 Chapter 3. Background

replication provides a level of fault tolerance against the loss of a single database server.

In some cases, replication can provide increased read capacity as clients can send read oper-

ations to different servers. Maintaining copies of data in different data centers can increase data

locality and availability for distributed applications. You can also maintain additional copies for

dedicated purposes, such as disaster recovery, reporting, or backup.

MongoDB provides high availability and increased throughput with replica sets. A replica set

consists of two or more copies of the data. Each replica may act in the role of primary or secondary

replica at any time. The primary replica performs all writes and reads by default. Secondary replicas

maintain a copy of the data on the primary using built-in replication. When a primary replica fails,

the replica set automatically conducts an election process to determine which secondary should

become the primary. Secondaries, can also perform read operations, but the data is eventually

consistent by default.

Figure 3.4: Default routing of reads and writes to the primary.

A replica set is a group of MongoDB instances that host the same data set. One MongoDB

instance, the primary, receives all write operations. All other instances are secondary instances

and apply operations from the primary so that they have the same data set. Figure 3.4 presents the

interaction between the MongoDB instances in a replica set.

The primary accepts all write operations from clients. Replica sets can have one and only one

primary at any given moment. Because only one member can accept write operations, replica sets

provide strict consistency. To support replication, the primary records all changes to its data sets in

its operation log.

3.2. MongoDB 23

The secondaries replicate the primary’s operation log and apply the operations to their data sets.

Secondaries data sets reflect the primary’s data set. If the primary is unavailable, the replica set will

elect a secondary to be primary. By default, clients read from the primary; however, clients can

specify a read preference to send read operations to secondaries.

Load Balancing

MongoDB scales horizontally using sharding. The user chooses a shard key, which determines how

the data in a collection will be distributed. The data is split into ranges,based on the shard key, and

distributed across multiple shards. Alternatively, the shard key can be hashed to map to a shard -

enabling an even data distribution.

MongoDB can run over multiple servers, balancing the load duplicating data to keep the system

up and running in case of hardware failure. MongoDB is easy to deploy, and new machines can be

added to a running database.

Database systems with large data sets and high throughput applications can challenge the ca-

pacity of a single server. High query rates can exhaust the CPU capacity of the server. Larger

data sets exceed the storage capacity of a single machine. Finally, working set sizes larger than the

system’s RAM stress the I/O capacity of disk drives.

Figure 3.5: Large collection with data distributed across 4 shards.

Sharding addresses the challenge of scaling to support high throughput and large data sets:

24 Chapter 3. Background

• Sharding reduces the number of operations each shard handles. Each shard processes fewer

operations as the cluster grows. As a result, a cluster can increase capacity and throughput

horizontally. For example, to insert data, the application only needs to access the shard

responsible for that record.

• Sharding reduces the amount of data that each server needs to store. Each shard stores less

data as the cluster grows.

File Storage

MongoDB can be used as a file system, taking advantage of load balancing and data replication

features over multiple machines for storing files. The specification created for this purpose is called

GridFS and it is used for storing and retrieving files that exceed the BSON-document size limit of

16MB. GridFS is included with MongoDB drivers and available with no difficulty for development

languages.

MongoDB exposes functions for file manipulation and content to developers. Instead of storing

a file in a single document, GridFS divides a file into parts, or chunks, and stores each of those

chunks as a separate document. By default GridFS limits chunk size to 256k. GridFS uses two

collections to store files. One collection stores the file chunks, and the other stores file metadata.

In a multi-machine MongoDB system, files can be distributed and copied multiple times be-

tween machines transparently, thus effectively creating a load-balanced and fault-tolerant system.

When you query a GridFS store for a file, the driver or client will reassemble the chunks as needed.

You can perform range queries on files stored through GridFS. You also can access information

from arbitrary sections of files, which allows you to "skip" into the middle of a video or audio file.

GridFS is useful not only for storing files that exceed 16MB but also for storing any files for

which you want access without having to load the entire file into memory.

Querying

In MongoDB a query targets a specific collection of documents. Queries specify criteria, or con-

ditions, that identify the documents that MongoDB returns to the clients. A query may include a

projection that specifies the fields from the matching documents to return. You can optionally mod-

ify queries to impose limits, skips, and sort orders. An example query and the evaluation process

can be seen in Figure 3.6.

3.2. MongoDB 25

Figure 3.6: The stages of a MongoDB query with a query criteria and a sort modifier.

Aggregation

Aggregations are operations that process data records and return computed results. MongoDB

provides a rich set of aggregation operations that examine and perform calculations on the data

sets. Running data aggregation on the MongoDB instance simplifies application code and limits

resource requirements.

Like queries, aggregation operations in MongoDB use collections of documents as an input and

return results in the form of one or more documents.

Figure 3.7: Sample aggregation pipeline operation.

26 Chapter 3. Background

Aggregation Pipelines

Documents enter a multi-stage pipeline that transforms the documents into an aggregated result.

The most basic pipeline stages provide filters that operate like queries and document transforma-

tions that modify the form of the output document. An example aggregation pipeline operation is

presented in Figure 3.7.

3.3 Phonegap

Phonegap [55] is an open-source mobile development framework. It allows the use of standard

web technologies such as HTML5, CSS3, and JavaScript for creating native mobile applications,

avoiding the interaction with each mobile platforms’ native development language. Applications

execute within wrappers targeted to each platform, and rely on standards-compliant API bindings

to access each device’s sensors, data, and network status. Examples of developers that can benefit

from the use of Phonegap are:

• a mobile developer and want to extend an application across more than one platform, without

having to re-implement it with each platform’s language and tool set.

• a web developer who wants to deploy a web app that’s packaged for distribution in various

app store portals.

• a mobile developer interested in mixing native application components with a WebView (spe-

cial browser window) that can access device-level APIs, or if you want to develop a plugin

interface between native and WebView components.

Basic Components

Phonegap applications rely on a common config.xml file that provides information about the app

and specifies parameters affecting how it works, such as whether it responds to orientation shifts.

This file adheres to the W3C’s Packaged Web App, or widget, specification.

The application itself is implemented as a web page, by default a local file named index.html,

that references whatever CSS, JavaScript, images, media files, or other resources are necessary

for it to run. The app executes as a WebView within the native application wrapper, which you

distribute to app stores.

The Cordova-enabled WebView may provide the application with its entire user interface. On

some platforms, it can also be a component within a larger, hybrid application that mixes the Web-

3.4. Javascript 27

View with native application components. Phonegap provides a plugin interface for these compo-

nents to communicate with each other.

Development Paths

The easiest way to set up an application is to run the phonegap command-line utility, also known

as the command-line interface (CLI). Depending on the set of platforms that the developer wants

to target, he can rely on the CLI for progressively greater shares of the development cycle:

In the most basic scenario, the CLI is simply used to create a new project that is populated with

default configuration for the developer to modify. Once a mobile platform’s SDK is installed, the

applications can be compiled locally.

Adobe has also introduced Phonegap Build server, allowing the developer to upload the source

code, while the system takes care of the compilation process in various platforms.

For many mobile platforms, the CLI can also be used to set up additional project files required

to compile within each SDK. For this to work, each targeted platform’s SDK needs to be installed

For the supporting platforms, the CLI can compile executable applications and run them in an

SDK-based device emulator. For comprehensive testing, one can also generate application files and

install them directly on a device.

At any point in the development cycle, the developer can also rely on platform-specific SDK

tools, which may provide a richer set of options. An SDK environment is more appropriate for the

implementation of a hybrid app that mixes web-based and native application components.

3.4 Javascript

JavaScript is a dynamic computer programming language released by Netscape and Sun Microsys-

tems in 1995. It is most commonly used as part of web browsers, whose implementations allow

client-side scripts to interact with the user, control the browser, communicate asynchronously, and

alter the document content that is displayed. It is also being used in server-side programming, game

development and the creation of desktop and mobile applications.

JavaScript is a prototype-based scripting language with dynamic typing and has first-class func-

tions. It copies many names and naming conventions from Java, but the two languages are otherwise

unrelated and have very different semantics. The key design principles within JavaScript are taken

from the Self and Scheme programming languages. It is a multi-paradigm language, supporting

object-oriented, imperative, and functional programming styles.

JavaScript has also significant support outside of web pages for example, in PDF documents,

28 Chapter 3. Background

site-specific browsers, and desktop widgets. Newer and faster JavaScript VMs and platforms built

upon them (notably Node.js) have also increased the popularity of JavaScript for server-side web

applications. On the client side, JavaScript was traditionally implemented as an interpreted lan-

guage but just-in-time compilation is now performed by recent browsers.

JavaScript was formalized in the ECMAScript [27] language standard and is primarily used as

part of a web browser (client-side JavaScript). This enables programmatic access to computational

objects within a host environment. As of 2011, the latest version of the language is JavaScript 1.8.5.

It is a superset of ECMAScript (ECMA-262) Edition 3. The following sections highlight the most

important features of JavaScript.

Dynamic typing

As in most scripting languages, types are associated with values, not with variables. For example,

a variable x could be bound to a number, then later rebound to a string.

Object-based

JavaScript is almost entirely object-based. JavaScript objects are associative arrays, augmented

with prototypes (see below). Object property names are string keys. They support two equivalent

syntaxes: dot notation (obj.x = 10) and bracket notation (obj[’x’] = 10). Properties and their values

can be added, changed, or deleted at run-time. Most properties of an object (and those on its

prototype inheritance chain) can be enumerated using a for...in loop. JavaScript has a small number

of built-in objects such as Function and Date.

Run-time evaluation

JavaScript includes an eval function that can execute statements provided as strings at run-time.

First-class functions

Functions in JavaScript are first-class citizens. They are complete objects themselves. As such, they

have properties and methods, such as call() and bind(). JavaScript also supports nested functions.

A nested function is a function that is defined within another function. It is created each time the

outer function is invoked. In addition, each created function forms a closure: the scope of the outer

function, including any constants, local variables and argument values, becomes part of the internal

state of each inner function object, even after execution of the outer function concludes.

3.4. Javascript 29

Prototypes

JavaScript uses prototypes where many other object oriented languages use classes for inheritance.

It is possible to simulate many class-based features with prototypes in JavaScript [48].

Functions as object constructors

Functions double as object constructors along with their typical role. Prefixing a function call with

new will create an instance of a prototype, inheriting properties and methods from the constructor

(including properties from the Object prototype). ECMAScript 5 offers the Object.create method,

allowing explicit creation of an instance without automatically inheriting from the Object proto-

type (older environments can assign the prototype to null). The constructor’s prototype property

determines the object used for the new object’s internal prototype. New methods can be added by

modifying the prototype of the object used as a constructor. JavaScript s built-in constructors, such

asArray or Object, also have prototypes that can be modified. While it is possible to modify the

Object prototype, it is generally considered bad practice because most objects in JavaScript will

inherit methods and properties from the Object prototype and they may not expect the prototype to

be modified.

Functions as methods

Unlike many object-oriented languages, there is no distinction between a function definition and a

method definition. Rather, the distinction occurs during function calling; when a function is called

as a method of an object, the function’s local this keyword is bound to that object for that invocation.

Type Composition and Inheritance

Whereas explicit function based delegation does cover composition in JavaScript, implicit delega-

tion already happens every time the prototype chain is walked in order to e.g. find a method that

might be related to but is not directly owned by an object. Once the method was found it gets called

within this object’s context. Thus inheritance in JavaScript is covered by a delegation automatism

that is bound to the prototype property of constructor functions.

Run-time environment

JavaScript typically relies on a run-time environment (e.g. a web browser) to provide objects and

methods by which scripts can interact with the environment (e.g. a webpage DOM). It also re-

lies on the run-time environment to provide the ability to include/import scripts (e.g. HTML

30 Chapter 3. Background

<script>elements). This is not a language feature per se, but it is common in most JavaScript

implementations.

Variadic functions

An indefinite number of parameters can be passed to a function. The function can access them

through formal parameters and also through the local arguments object. Variadic functions can also

be created by using the apply method.

Array and object literals

Like many scripting languages, arrays and objects (associative arrays in other languages) can each

be created with a succinct shortcut syntax. In fact, these literals form the basis of the JSON data

format.

Regular expressions

JavaScript also supports regular expressions in a manner similar to Perl, which provide a concise

and powerful syntax for text manipulation that is more sophisticated than the built-in string func-

tions.

Asynchronous JavaScript and XML (AJAX)

In 1990’s user interaction in web applications was request-wait-response based, which slowed down

the user interaction considerably. Most web sites were based on complete HTML pages where each

user action required that the complete page should be re-loaded from the server. Each time a page

was reloaded due to a partial change, all of the content was re-sent instead of only the changed in-

formation. This placed additional load on the server and use of excessive bandwidth. Asynchronous

JavaScript and XML (AJAX) [68, 34] came as a boon to the web application development, provid-

ing mechanisms for user experience similar to desktop applications.

In the classic web application model, addressed as pre-AJAX web model, user interaction trig-

gers an HTTP [28] request to the web server. The server performs necessary processing for exam-

ple, retrieving data or doing some calculations etc. When the processing is completed the server

returns an HTML [15] page to the client. The problem is that, during the server processing time,

the user can do nothing but wait for a page to be loaded or refreshed from the server.

AJAX increases the web page’s interactivity, speed, and usability in order to provide richer

user experience. AJAX places an AJAX engine between the client and server. This engine is

3.5. Xuggler 31

written in JavaScript and behaves like a hidden frame. The AJAX engine renders the user interface

and handles the communication between client and server. The client-server communication with

AJAX is asynchronous. Asynchronous communication means the client does not need to wait for

the server response. After sending the request to the server the execution in the client program does

not halt, rather the execution is continued. The response is sent to the client when it is available.

The AJAX engine sends requests to the server on behalf of the client and receives data or responses

from the server. In a web model with AJAX, the server sends small data instead of the HTML page.

The AJAX engine shows the received data or response by updating the page partially. Thus user is

free to do other interactions after sending a request to the server.

3.5 Xuggler

Xuggler [73] is a Java library that allows developers to easily decompress, modify, and re-compress

any media file or stream. It is built on top of the FFMPEG 1 and is provided under the Lesser GNU

Public License. We have used it in our systems in order to manipulate video and audio files and

produce thumbnails.

3.6 AngularJs

AngularJS [10] is an open-source web application framework mainly maintained by Google and

by a community of individuals and corporations to address many of the challenges encountered

in developing single-page applications. It aims to simplify both the development and the testing

of such applications by providing a framework for client-side model-view-controller (MVC) and

model-view-viewmodel (MVVM) architectures, along with components commonly used in rich

Internet applications.

The AngularJS framework works by first reading the HTML page, which has embedded into

it additional custom tag attributes. Angular interprets those attributes as directives to bind input

or output parts of the page to a model that is represented by standard JavaScript variables. The

values of those JavaScript variables can be manually set within the code, or retrieved from static or

dynamic JSON resources.

Core Features

The core features of the AngularJS framework are presented in Figure 3.8 and most of them are

described below in greater detail.

32 Chapter 3. Background

Figure 3.8: Important parts of AngularJS.

Data-binding

Data-binding in Angular apps is the automatic synchronization of data between the model and view

components. The way that Angular implements data-binding lets you treat the model as the single-

source-of-truth in your application. The view is a projection of the model at all times. When the

model changes, the view reflects the change, and vice versa. An example of two way data-binding

is presented in Figure 3.10.

Figure 3.9: Two way data binding in AngularJS.

3.6. AngularJs 33

Scope

Scope is an object that refers to the application model. It is an execution context for expressions.

Scopes are arranged in hierarchical structure which mimic the DOM structure of the application.

Scopes can watch expressions and propagate events.

Controller

In Angular, a Controller is a JavaScript constructor function that is used to augment the Angular

Scope. When a Controller is attached to the DOM via the ng-controller directive, Angular will

instantiate a new Controller object, using the specified Controller’s constructor function. A new

child scope will be available as an injectable parameter to the Controller’s constructor function as

$scope.

Services

Angular services are substitutable objects that are wired together using Dependency Injection (DI).

You can use services to organize and share code across your app. The Angular services are:

• Lazily instantiated - Angular only instantiates a service when an application component de-

pends on it.

• Singletons - Each component dependent on a service gets a reference to the single instance

generated by the service factory.

Filters

A filter formats the value of an expression for display to the user. They can be used in view

templates, controllers or services and it is easy to define your own filter.

Directives

At a high level, directives are markers on a DOM element (such as an attribute, element name,

comment or CSS class) that tell AngularJS’s HTML compiler ($compile) to attach a specified

behavior to that DOM element or even transform the DOM element and its children.

Angular comes with a set of these directives built-in, like ngBind, ngModel, and ngClass. Much

like you create controllers and services, you can create your own directives for Angular to use.

When Angular bootstraps your application, the HTML compiler traverses the DOM matching di-

rectives against the DOM elements.

34 Chapter 3. Background

Templates

In Angular, templates are written with HTML that contains Angular-specific elements and at-

tributes. Angular combines the template with information from the model and controller to render

the dynamic view that a user sees in the browser.

Model View Controller

MVC is a design pattern for dividing an application into different parts (called Model, View and

Controller), each with distinct responsibilities. AngularJS does not implement MVC in the tradi-

tional sense, but rather something closer to MVVM (Model-View-ViewModel). A definition of

MVC pattern in AngularJS is presented in Figure 3.10.

Figure 3.10: Definition of MVC pattern in AngularJS.

MVC is popular because it isolates the application logic from the user interface layer and sup-

ports separation of concerns. The controller receives all requests for the application and then works

with the model to prepare any data needed by the view. The view then uses the data prepared by

the controller to generate a final presentable response. The MVC abstraction can be graphically

represented as follows.

Forms

Form and controls provide validation services, so that the user can be notified of invalid input before

submitting a form. This provides a better user experience than server-side validation alone because

the user gets instant feedback on how to correct the error. Keep in mind that while client-side

3.6. AngularJs 35

validation plays an important role in providing good user experience, it can easily be circumvented

and thus can not be trusted. Server-side validation is still necessary for a secure application.

Deep Linking

Deep linking allows you to encode the state of application in the URL so that it can be bookmarked.

The application can then be restored from the URL to the same state.

Dependency Injection

Dependency Injection (DI) is a software design pattern that deals with how components get hold of

their dependencies. The Angular injector subsystem is in charge of creating components, resolving

their dependencies, and providing them to other components as requested.

Chapter 4

Functional Specification

This chapter describes the functional specification of the platform and tools that have been devel-

oped for the management of the life-cycle of the structures and their instances (e.g objects). It

specifies the stakeholders of our system, lists the technical requirements that had to be met for

achieving the desired functionality and provides an in-depth analysis of the system’s functionality.

Section 4.1 specifies the system’s stakeholders and their role in our system, while Section 4.2 dis-

cusses the technical requirements of the tool. Finally, Section 4.3 demonstrates the functionality

that has to be provided by our system in the form of use cases.

4.1 Stakeholders

A stakeholder is someone or something that has a vested interest in the behavior of the use case.

Our platform is targeted for organizations and large structures owners who want to facilitate their

visitors and give them the ability to become acquainted with their buildings. It is worth noting that

we designed our platform in order to be able to accommodate as more as possible different types

of buildings. On the other side, our platform is targeted to everyone who wants to navigate and

familiarize with a new building which he visits, either he visits a university building, or he visits a

museum or a library. During the application’s design process we bore in mind that our applications

are targeted to two different teams of people, the buildings owners and the buildings visitors. To

do this, we tried to implement a user friendly and simple user interface for both of these teams of

people. Building’s owner, museum’s director, hotel’s owner or mall’s director has different needs

in order to describe their buildings. For those scenarios, the system’s stakeholders are:

• The Museum Director who wants to describe the museum’s exhibits in order to give infor-

mation to the visitors about them. This user wants to give further information for an exhibit

38 Chapter 4. Functional Specification

such as the description or historical background, and give them characteristics such as the

category of this exhibit etc.

• The University Staff Member who wants to create a floor plan about the course room, office

of professors, conference room or other kind of room in order for a simple visitor to be able

to retrieve information about a room such as position, owner etc.

• The Hotel Owner who wants to give the ability to the guests to familiarize with hotel’s

spaces and take pleasure of every different kind of facilities which are offered by this hotel.

• The Airport Staff Member who wants to create an extensive and representative floor plan

of airport spaces in order to navigate the travellers and visitors to multiple different spaces of

airport such as cafeterias, water closets and of course the Gates.

• The Hospital Staff Member who wants to describe the floor map of hospital in order to give

the visitors the ability to find fast and easily the desired room or department.

• The Malls Staff who will use our system to build a floor plan which contains the different

kind of shops in order to give the ability to the visitors to search and find the desired shop.

• The Shipping Companies who want to give an interactive floor plan to the travellers in order

to familiarize with their ships and find the different spaces of ships, such as a cabin, water

closet, bars or the lounge.

• The Library Staff who want to give a fast and easy way to the user to search and find

the position of their desired book or paper and navigate there through a sequence of simple

instructions.

• The Visitors of Buildings who want to retrieve information about the visited building, nav-

igate inside the building and of course familiarize with the new for them building. By using

our application they have the ability to take advantage of all offered facilities.

4.2 Technical Requirements

This section discusses the technical requirements that were identified and set for the development

of the model and the systems. The requirements have been split in 4 categories. Section 4.2.1

describes the requirements of the Model. Section 4.2.2 describes the requirements of the editor

tool that assists the creation, design and management of buildings and the definition and editing of

structures, and Section 4.2.3 describes the requirements of the mobile application. Finally, Section

4.2.4 describes the requirements of the system’s backend.

4.2. Technical Requirements 39

4.2.1 Model

As we have already mentioned, a strong requirement that we set for our infrastructure is that it

should not be bound to a single context. Instead, it should be configurable so that it can support any

domain with the specification of different structures. However, we have identified four entities that

form the base of our model. These are:

• Building: The building is a very important component of our model. It should be created

using an editor tool and retrieve it by a mobile application. It consists of several parts, called

floors, including the floor composition (e.g objects), the presentation information and the

descriptive meta-data.

• Floor: The floor is an integral part of the building. In essence, floor is the plan that is being

used by the user in order to draw and design the desired floor plan. The floor contains a

number of objects that represent all the different objects of this floor, such as rooms, stairs or

movable objects (exhibits, statues, etc.).

• Object: The object is the cornerstone component of our model. An object is a structure that is

instantiated in a certain building and floor. This may be a statue with its own characteristics

and different attributes, such as the category, the height, the sculptor etc.

• Structure: The structure is the primitive type of object. A structure may be indoor structure,

multi floor structure or movable structure. User is able to create the desired structure and

give it a list of different attributes corresponding to his needs. An example of structure might

be the secretary office or a conference room.

Some examples describing the context that our model can be applied, include the following:

• Museums: In the context of museum, our model should provide support for creation and

designing objects which are related to museums. Such objects need to present both textual

information and multimedia (photos, videos, audios). Moreover, it is very important to give

the ability to the designer to create the desired types of objects (structures) in order to ac-

commodate the building’s needs. In case of the museum, the designer can create a structure

of a movable object which is characterized by attributes which are referred to the material of

the exhibit, the creation date, the artist etc. Additionally, in this case the ability of uploading

multimedia files is very useful in order to provide further and representative information to

the visitors of the museum.

• Hospitals: In the context of Hospitals, our model should provide support for creating and

designing objects which are related to hospitals. It is very useful for visitors to be aware

40 Chapter 4. Functional Specification

of the exact location of the specific ward they are looking for. Indoor locations such as

classic rooms, emergency rooms and other type of medical rooms can be designed through

our application.

• Universities: In the context of University, our model should provide support for creating and

designing objects which are related to the university environment. Through our application a

university staff member is able to create and design multiple types of rooms, such as secretary

office, professor office, conference room, courses rooms etc. in order to give the visitors the

ability to search and find the desired place.

• Airports: In the context of Airport, our model should provide support for creating and de-

signing objects which are related to an Airport building. These objects may be cafeterias that

are inside the building, the counters of different Airlines or the most important place of the

airport which are the Gates. In this way, the travellers are able to find the desired place in

order to save their time and avoid the hassle.

• Shopping Malls: In the context of Shopping Malls, our model should provide support for

creating and designing objects which are related to this domain. To be more specific through

our application the user will be able to design indoor spaces such as shops with different

characteristics (category, etc.) and of course will be able to design the variety of different

products.

• Conference Center: In the context of Conference Center, our model will provide support

for creating and designing objects which are related to this domain. In other words the user

should be in the position of creating and designing multiple types of rooms. For example it is

useful for someone to know the capacity of a room or whether this room provides a projector

or other kind of equipment.

• Libraries: In the context of Libraries, our model should provide support for creating and

designing objects which are related to the library building. To be more specific through our

application the user will be able to design interior spaces and objects such as shelves with

specific category, books with particular characteristics or newspaper accordingly.

4.2.2 Editor Tool

The editor tool needs to be a desktop application due to the extended functionality that should offer

to the building creator. More specifically it should be web based in order to be easily accessible, to

have minor setup requirements and allow future collaboration in the building creation process. As

a web application it should be compatible with the state-of-the-art standards and its user interface

4.2. Technical Requirements 41

needs to be responsive and operate smoothly in any screen and browser. Using this tool the users

will be able to create and manage their buildings, create and edit their objects and finally create

their own new types of structures if needed. In more details, the editor tool should:

• Be compatible with state-of-the-art standards.

• Have responsive interface.

• Be able to be used not only by professionals but also for non experts.

• Have a multilingual interface in order to attract people of different nationalities and allow

them to contribute in the tools building library.

• Support extensibility for making new structure through our interface.

• Allow the definition and management of new structures.

• Support the floor plan editing process by providing the means to easily create objects and

structures for different types of building.

• Allow the creation and management of building and its containing objects.

• Provide search and filter functionality in order to allow easy finding of an already existing

structure based on different characteristics.

• Provide a multimedia file library for uploading and managing media material in order to be

used in a building creation.

4.2.3 Mobile Application

The end-user application needs to be a mobile application due to the fact that it should support

the navigation inside a specific building. A problem with this requirement is the fact that different

device vendors provide different frameworks for the development of applications compatible with

their devices. Most of these are using completely different programming languages(e.g Java for

Android, Objective C and Swift for iOS). To this end, we decided to base our application on HTML5

and JavaScript, eliminating the need for porting the code in different platforms and programming

languages and thus, provide support for the majority of devices.

The application should also be native rather than web, so that the user can create a launch

icon and use it just like normal native applications, not requiring the browser opening and the

entering of the url. In addition, when the device is not connected to the internet, the use of native

apps is a better fit to the user’s state of mind. Although latest standards in HTML5 allow the

offline usage of web applications, they still require the user to launch a browser in order to use the

42 Chapter 4. Functional Specification

application. The requirement for making a web application operate natively on mobile devices has

risen from the very beginning of mobile device programming. Although many platforms have been

developed to provide this functionality and they each have advantages and disadvantages[39], we

use ’PhoneGap’, which is the most popular among them and of course is Open Source and free.

The features of the end-user application should include:

• Compatibility with most state-of-the-art mobile devices/platforms.

• Beautiful and usable UI/UX, able to be used by everyone naive user.

• Support of real time browsing of available building and its objects.

• Ability to play, pause and load videos and sounds.

• Ability to open external links and resources within the application.

• Compatibility with our editor tool, in the sense that it should reproduce building and floor

maps that have been generated by the web application.

• Ability to use the hardware tools (camera, compass etc.) of the mobile device.

4.2.4 Backend

The requirements that we have set for the backend of our system, serving both the editor tool and

the mobile application, are summarized below:

• Compatible with state-of-the-art standards.

• Able to support the persistency of structures, buildings, floors and objects.

• Expose restful web services for allowing the access of the data from external applications.

• Publishing the multimedia that are uploaded by the users.

• Creation of thumbnails for the multimedia.

• Efficient searching on the data.

• Support data scalability.

• Support for the persistency of highly complex and structured data.

• Perform efficient serialization and de-serialization of the persisted information.

4.3. Use Cases 43

4.3 Use Cases

A use case describes the system’s behavior under various conditions as the system responds to a

request from one of the stakeholders, called primary actor. The primary actor initiates an interaction

with the system to accomplish a goal. The system responds, protecting the interests of all the

stakeholders.

This section describes the system’s behavior under its interaction with the stakeholders. To this

end, we exploit the method of use cases as they have been described by Alistair Cockburn [21]. For

more understanding we present use cases clustered in form of use case diagrams. Figures 4.1, 4.2,

4.3 and 4.4 present the use cases of Editor Tool, also, figure 4.5 presents the use cases of Mobile

Application.

Figure 4.1: Editor Tool - User Management.

44 Chapter 4. Functional Specification

Figure 4.2: Editor Tool - Building Management.

Figure 4.3: Editor Tool - Portfolio Management.

4.3. Use Cases 45

Figure 4.4: Editor Tool - Structure Management.

Figure 4.5: Mobile Application.

46 Chapter 4. Functional Specification

Table 4.1: Use case 1: "Log into the Editor Tool"

Use case 1: "Log into the Editor Tool"
Context of Use The user wants to be logged into the system in order to use the

system’s functionality.
Scope System (Editor Tool)
Level Sub function
Preconditions The user has already created successfully an account to the system.
Success End Conditions User logged into the system.
Failed End Conditions User could not log into the system.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user visits the application’s url without being already logged
in.

Description Step Action
1 The system displays the log in form.
2 The user fills in the form with his credentials and se-

lects to log in.
3 The system validates the submitted form details,

checks if the user credentials are correct.
4 The system displays the first screen to the user.

Extensions Step Branching Action
1 3a1. Submitted data are incorrect.
2 3a2. The system displays the login form with the ap-

propriate message.

4.3. Use Cases 47

Table 4.2: Use case 2: "Log into the Mobile Application"

Use case 2: "Log into the Mobile Application"
Context of Use The user wants to be logged into the Mobile Application in order

to use the mobile functionality.
Scope System (Mobile Application)
Level Sub function
Preconditions The user has already an account to the system.
Success End Conditions User logged into the system.
Failed End Conditions User could not log into the system.
Primary, Secondary
Actors

User
System (Mobile Application)

Trigger The user opens the Mobile Application.
Description Step Action

1 The system displays the log in form.
2 The user fills in the form with his credentials and se-

lects to log in.
3 The system validates the submitted form details,

checks if the user credentials are correct.
4 The system displays the first screen to the user.

Extensions Step Branching Action
1 3a1. Submitted data are incorrect.
2 3a2. The system displays the login form with the ap-

propriate message.

Table 4.3: Use case 3: "Log out"

Use case 3: "Log out"
Context of Use The user wants to be logged out from the system.
Scope System (Editor Tool & Mobile Application)
Level Sub function
Preconditions The User is already logged in the system.
Success End Conditions The User is logged out successfully from the system.
Failed End Conditions The system could not log the user out of the system.
Primary, Secondary
Actors

User
System (Editor Tool & Mobile Application)

Trigger The user selects to log out from the system.
Description Step Action

1 The system logs the User out of the system.
2 The system displays the log in screen.

Extensions Step Branching Action

48 Chapter 4. Functional Specification

Table 4.4: Use case 4: "Create Account"

Use case 4: "Create Account"
Context of Use The user wants to create new account, so he can have full access to

the system’s functionality.
Scope System (Editor Tool & Mobile Application)
Level Sub function
Preconditions The user is not logged in the system.
Success End Conditions The user created a new account successfully.
Failed End Conditions The user could not create a new account.
Primary, Secondary
Actors

User
System (Editor Tool & Mobile Application)

Trigger The user selects to create a new account in the system.
Description Step Action

1 The system displays the Sign Up form.
2 The user fills in the required information about his

new account.
3 The system validates the user’s input.
4 The system creates a new user which is persisted in

the database and displays the first screen to the user.
Extensions Step Branching Action

1 3a1. Submitted data are incorrect.
2 3a2. The system displays the sign up form.

4.3. Use Cases 49

Table 4.5: Use case 5: "Create Building"

Use case 5: "Create Building"
Context of Use The user wants to create a new building.
Scope System (Editor Tool)
Level Summary
Preconditions The user is already logged in the system.
Success End Conditions The user created a new building successfully.
Failed End Conditions The user could not create a new building.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to create a new building.
Description Step Action

1 The system presents the interface for the creation of
the new building.

2 The user fills the required information about the
building and if required edits optional information
about building.

3 The system validates the user’s input and creates a
new building which is persisted in the database.

4 The system presents the newly created building to the
user.

Extensions Step Branching Action
1 3a1. Submitted data are incorrect.
2 3a2. The system displays the interface for the creation

of the new building.

50 Chapter 4. Functional Specification

Table 4.6: Use case 6: "View existing Building"

Use case 6: "View existing Building"
Context of Use The user wants to view an existing building.
Scope System (Editor Tool)
Level Summary
Preconditions The user is already logged in the system and there are buildings

persisted in database.
Success End Conditions The user has viewed a specific building.
Failed End Conditions The user could not view a building.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to view a building from existing.
Description Step Action

1 The user browses the list of buildings which are cre-
ated by him.

2 The user selects to view a building from the available
buildings.

3 The system presents the interface of building.
Extensions Step Branching Action

4.3. Use Cases 51

Table 4.7: Use case 7: "Update Building"

Use case 7: "Update Building"
Context of Use The user wants to update a building.
Scope System (Editor Tool)
Level Sub function
Preconditions The user has already created this building.
Success End Conditions The user updated a building successfully.
Failed End Conditions The user could not update a building.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to update a building.
Description Step Action

1 The user selects a building to be updated.
2 The system presents the interface for the creation with

filled in the information fields.
3 The user edits the information about the building.
4 The system validates the user’s input and creates a

new building which is persisted in the database.
5 The system presents the newly updated building to the

user.
Extensions Step Branching Action

1 4a1. Submitted data are incorrect.
2 4a2. The system presents the interface for the creation

of the building with filled the information.

52 Chapter 4. Functional Specification

Table 4.8: Use case 8: "Delete Building"

Use case 8: "Delete Building"
Context of Use The user wants to delete a building.
Scope System (Editor Tool)
Level Sub function
Preconditions The user has already created this building.
Success End Conditions The user deleted a building successfully.
Failed End Conditions The user could not delete a building.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to delete a building.
Description Step Action

1 The user selects a building to be deleted.
2 The system asks the user to confirm the action.
3 The user selects to delete the building.
4 The system deletes the building and all related infor-

mation about this building (containing objects, multi-
media, nodes etc.).

5 The system presents the first screen to the user.
Extensions Step Branching Action

1 2a1. The user selects to cancel the deletion.
2 2a2. The system presents the building.

4.3. Use Cases 53

Table 4.9: Use case 9: "Create Floor"

Use case 9: "Create Floor"
Context of Use The user wants to add floor in a building.
Scope System (Editor Tool)
Level Summary
Preconditions The user is already logged in the system, and has created a building

already.
Success End Conditions The user created a new floor successfully.
Failed End Conditions The user could not create a new floor.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to create a new floor.
Description Step Action

1 The system presents the interface for the creation of
the new floor.

2 The user fills the required information about the floor
and if required edits optional information about floor.

3 The system validates the user’s input and creates a
new floor which is persisted in the database.

4 The system presents the newly created floor to the
user.

Extensions Step Branching Action
1 3a1. Submitted data ara incorrect.
2 3a2. The system displays the interface for the creation

of the new floor.

54 Chapter 4. Functional Specification

Table 4.10: Use case 10: "View existing Floor"

Use case 10: "View existing Floor"
Context of Use The user wants to view an existing floor.
Scope System (Editor Tool)
Level Summary
Preconditions The user is already logged in the system and there are floors of

selected building. persisted in database.
Success End Conditions The user has viewed a specific floor.
Failed End Conditions The user could not view a floor.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to view a floor from existing.
Description Step Action

1 The user browses the list of floors of building which
are created by him.

2 The user selects to view a floor from the available
floors.

3 The system presents the interface of floor.
Extensions Step Branching Action

4.3. Use Cases 55

Table 4.11: Use case 11: "Update Floor"

Use case 11: "Update Floor"
Context of Use The user wants to update a floor.
Scope System (Editor Tool)
Level Summary
Preconditions The user has already created this floor.
Success End Conditions The user updated a floor successfully.
Failed End Conditions The user could not update a floor.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to update a floor.
Description Step Action

1 The user selects a floor to be updated.
2 The system presents the interface for the creation with

filled in the information fields.
3 The user edits the information about the floor.
4 The system validates the user’s input and updated this

floor which is persisted in the database.
5 The system presents the newly updated floor to the

user.
Extensions Step Branching Action

1 4a1. Submitted data are incorrect.
2 4a2. The system presents the interface for the creation

of the floor with filled the information.

56 Chapter 4. Functional Specification

Table 4.12: Use case 12: "Delete Floor"

Use case 12: "Delete Floor"
Context of Use The user wants to delete a floor.
Scope System (Editor Tool)
Level Summary
Preconditions The user has already created this floor.
Success End Conditions The user deleted a floor successfully.
Failed End Conditions The user could not delete a floor.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to delete a floor.
Description Step Action

1 The user selects a floor to be deleted.
2 The system asks the user to confirm the action.
3 The user selects to delete the floor.
4 The system deletes the floor and all related informa-

tion about this floor (containing objects, multimedia,
nodes etc.).

5 The system presents the main building interface to the
user.

Extensions Step Branching Action
1 2a1. The user selects to cancel the deletion.
2 2a2. The system presents the main building interface

to the user.

4.3. Use Cases 57

Table 4.13: Use case 13: "Draw Polygon"

Use case 13: "Draw Polygon"
Context of Use The user wants to draw a polygon on a floor plan.
Scope System (Editor Tool)
Level Summary
Preconditions The user is already logged in the system, and has created a building

already and added successfully a floor.
Success End Conditions The user drew a new polygon successfully.
Failed End Conditions The user could not draw a new polygon.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to draw a new polygon.
Description Step Action

1 The system presents the interface for the creation of
the new polygon.

2 The user draw the appropriate polygon about the com-
position of the floor plan.

3 The system persists the polygon in the database.
4 The system presents the newly created floor plan to

the user.
Extensions Step Branching Action

58 Chapter 4. Functional Specification

Table 4.14: Use case 14: "Delete Polygon"

Use case 14: "Delete Polygon"
Context of Use The user wants to delete a polygon from a floor plan
Scope System (Editor Tool)
Level Summary
Preconditions The user is already logged in the system, and has created a building

already and added successfully a floor.
Success End Conditions The user deleted a polygon successfully.
Failed End Conditions The user could not delete a polygon.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to draw a new polygon.
Description Step Action

1 The user selects a polygon to be deleted.
2 The system asks the user to confirm the action.
3 The user selects to delete the polygon.
4 The system deletes the polygon.
5 The system presents the newly floor plan interface to

the user.
Extensions Step Branching Action

1 2a1. The user selects to cancel the deletion.
2 2a2. The system presents the floor plan interface to

the user.

4.3. Use Cases 59

Table 4.15: Use case 15: "Add Node"

Use case 15: "Add Node"
Context of Use The user wants to add a node on a floor plan.
Scope System (Editor Tool)
Level Summary
Preconditions The user is already logged in the system, and has created a building

already and added successfully a floor.
Success End Conditions The user added a new node successfully.
Failed End Conditions The user could not add a new node.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to add a new node.
Description Step Action

1 The system presents the interface for the creation of
the new node.

2 The user add the appropriate node about the compo-
sition of the graph of floor plan.

3 The system persists the node in the database.
4 The system presents the newly created graph on floor

plan to the user.
Extensions Step Branching Action

60 Chapter 4. Functional Specification

Table 4.16: Use case 16: "Update Node"

Use case 16: "Update Node"
Context of Use The user wants to update a node.
Scope System (Editor Tool)
Level Summary
Preconditions The user has already created this node.
Success End Conditions The user updated a node successfully.
Failed End Conditions The user could not update a node.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to update a floor.
Description Step Action

1 The user selects a node to be updated.
2 The system presents the interface for the creation with

filled in the information fields.
3 The user edits the information about the node.
4 The system validates the user’s input and updated this

node which is persisted in the database.
5 The system presents the newly updated node to the

user.
Extensions Step Branching Action

1 4a1. Submitted data are incorrect.
2 4a2. The system presents the interface for the creation

of the node with filled the information.

4.3. Use Cases 61

Table 4.17: Use case 17: "Delete Node"

Use case 16: "Delete Node"
Context of Use The user wants to delete a node.
Scope System (Editor Tool)
Level Summary
Preconditions The user is already logged in the system, and has created a building

already and added successfully a floor.
Success End Conditions The user deleted a node successfully.
Failed End Conditions The user could not delete a node.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to delete a node.
Description Step Action

1 The user selects a node to be deleted.
2 The system asks the user to confirm the action.
3 The user selects to delete the node.
4 The system deletes the node.
5 The system presents the newly floor plan interface to

the user.
Extensions Step Branching Action

1 2a1. The user selects to cancel the deletion.
2 2a2. The system presents the floor plan interface to

the user.

62 Chapter 4. Functional Specification

Table 4.18: Use case 18: "Add Connection"

Use case 18: "Add Connection"
Context of Use The user wants to connect two nodes on a floor plan.
Scope System (Editor Tool)
Level Summary
Preconditions The user is already logged in the system, and has created a building

already and added successfully a floor.
Success End Conditions The user add a new connection successfully.
Failed End Conditions The user could not add a new connection.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to add a new connection.
Description Step Action

1 The system presents the interface for the creation of
the new connection.

2 The user add the appropriate connection about the
composition of the graph of floor plan.

3 The system persists the connection in the database.
4 The system presents the newly created graph on floor

plan to the user.
Extensions Step Branching Action

4.3. Use Cases 63

Table 4.19: Use case 19: "Delete Connection"

Use case 19: "Delete Connection"
Context of Use The user wants to delete a connection.
Scope System (Editor Tool)
Level Summary
Preconditions The user is already logged in the system, and has created a building

already and added successfully a floor.
Success End Conditions The user deleted a connection successfully.
Failed End Conditions The user could not delete a connection.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to delete a connection.
Description Step Action

1 The user selects a connection to be deleted.
2 The system asks the user to confirm the action.
3 The user selects to connection the node.
4 The system deletes the connection.
5 The system presents the newly floor plan interface to

the user.
Extensions Step Branching Action

1 2a1. The user selects to cancel the deletion.
2 2a2. The system presents the floor plan interface to

the user.

64 Chapter 4. Functional Specification

Table 4.20: Use case 20: "Add Helpful Image"

Use case 20: "Add Helpful Image"
Context of Use The user wants to add a helpful image on a floor plan.
Scope System (Editor Tool)
Level Summary
Preconditions The user is already logged in the system, and has created a building

already and added successfully a floor.
Success End Conditions The user added a new helpful image successfully.
Failed End Conditions The user could not add a new helpful image.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to add a new helpful image.
Description Step Action

1 The system presents the interface for the creation of
the new helpful image.

2 The user add the appropriate helpful image about the
composition of floor plan.

3 The system persists the helpful image in the database.
Extensions Step Branching Action

Table 4.21: Use case 21: "Delete Helpful Image"

Use case 21: "Delete Helpful Image"
Context of Use The user wants to delete a helpful image.
Scope System (Editor Tool)
Level Summary
Preconditions The user is already logged in the system, and has created a building

already and added successfully a floor.
Success End Conditions The user deleted a helpful image successfully.
Failed End Conditions The user could not delete a helpful image.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to delete a node.
Description Step Action

1 The user selects a helpful image to be deleted.
2 The system asks the user to confirm the action.
3 The user selects to delete the helpful image.
4 The system deletes the helpful image.
5 The system presents the newly floor plan interface to

the user.
Extensions Step Branching Action

1 2a1. The user selects to cancel the deletion.
2 2a2. The system presents the floor plan interface to

the user.

4.3. Use Cases 65

Table 4.22: Use case 22: "Create Object"

Use case 22: "Create Object"
Context of Use The user wants to create a new object.
Scope System (Editor Tool)
Level Summary
Preconditions The user is already logged in the system, and has created a building

already and added successfully a floor.
Success End Conditions The user created a new object successfully.
Failed End Conditions The user could not create a new object.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to create a new object.
Description Step Action

1 The system presents the interface for the creation of
the new object.

2 The user fills the required information about the ob-
ject and if required edits optional information about
object.

3 The system validates the user’s input and creates a
new object which is persisted in the database.

4 The system presents the newly created object to the
user.

Extensions Step Branching Action
1 3a1. Submitted data are incorrect.
2 3a2. The system displays the interface for the creation

of the new object.

66 Chapter 4. Functional Specification

Table 4.23: Use case 23: "View existing Object"

Use case 23: "View existing Object"
Context of Use The user wants to view an existing object.
Scope System (Editor Tool)
Level Summary
Preconditions The user is already logged in the system and here are objects per-

sisted in database.
Success End Conditions The user has viewed a specific object.
Failed End Conditions The user could not view an object.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to view an object from existing.
Description Step Action

1 The user browses the list of objects which are created
by him.

2 The user selects to view an object from the available
objects.

3 The system presents the interface of object.
Extensions Step Branching Action

4.3. Use Cases 67

Table 4.24: Use case 24: "Update Object"

Use case 24: "Update Object"
Context of Use The user wants to update an object.
Scope System (Editor Tool)
Level Summary
Preconditions The user has already created this object.
Success End Conditions The user updated an object successfully.
Failed End Conditions The user could not update an object.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to update an object.
Description Step Action

1 The user selects an object to be updated.
2 The system presents the interface for the creation with

filled in the information fields.
3 The user edits the information about the object.
4 The system validates the user’s input and updated this

object which is persisted in the database.
5 The system presents the newly updated object to the

user.
Extensions Step Branching Action

1 4a1. Submitted data are incorrect.
2 4a2. The system presents the interface for the creation

of the object with filled the information.

68 Chapter 4. Functional Specification

Table 4.25: Use case 25: "Delete Object"

Use case 25: "Delete Object"
Context of Use The user wants to delete an object.
Scope System (Editor Tool)
Level Summary
Preconditions The user has already created this object.
Success End Conditions The user deleted an object successfully.
Failed End Conditions The user could not delete an object.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to delete an object.
Description Step Action

1 The user selects an object to be deleted.
2 The system asks the user to confirm the action.
3 The user selects to delete the object.
4 The system deletes the object and all related informa-

tion about this object (containing objects, multimedia,
nodes etc.).

5 The system presents the main building interface to the
user.

Extensions Step Branching Action
1 2a1. The user selects to cancel the deletion.
2 2a2. The system presents the main building interface

to the user.

Table 4.26: Use case 26: "View Portfolio"

Use case 26: "View Portfolio"
Context of Use The user wants to view portfolio.
Scope System (Editor Tool)
Level Summary
Preconditions The user is already logged in the system.
Success End Conditions The user has viewed his portfolio successfully.
Failed End Conditions The user could not view portfolio.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to view portfolio.
Description Step Action

1 The system presents the interface of portfolio (im-
ages).

2 The user can select to view videos or audios in port-
folio.

Extensions Step Branching Action

4.3. Use Cases 69

Table 4.27: Use case 27: "Upload multimedia files to Portfolio"

Use case 27: "Upload multimedia files to Portfolio"
Context of Use The user wants to upload multimedia files to portfolio.
Scope System (Editor Tool)
Level Summary
Preconditions The user is already logged in the system.
Success End Conditions The user uploaded multimedia file in portfolio successfully.
Failed End Conditions The user could not upload multimedia to portfolio successfully.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to upload multimedia files to portfolio.
Description Step Action

1 The system presents the interface of selection multi-
media files from desktop.

2 The user selects a multimedia file.
3 The system presents progress bar about upload.
4 The system presents the correct status.

Extensions Step Branching Action
1 2a1. The user selects to cancel the selection.
2 2a2. The system presents the interface of portfolio.
3 4a1. The multimedia file could not uploaded success-

fully.
4 4a2. The system presents the interface of portfolio.

70 Chapter 4. Functional Specification

Table 4.28: Use case 28: "Delete Multimedia File"

Use case 28: "Delete Multimedia File"
Context of Use The user wants to delete a multimedia file.
Scope System (Editor Tool)
Level Sub function
Preconditions The user has already uploaded multimedia files.
Success End Conditions The user deleted a multimedia file successfully.
Failed End Conditions The user could not delete a multimedia file.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to delete a multimedia file.
Description Step Action

1 The user selects to delete a specific multimedia file.
2 The system asks the user to confirm the action.
3 The user selects to delete the multimedia file.
4 The system deletes the multimedia file successfully.
5 The system presents the portfolio interface to the user.

Extensions Step Branching Action
1 2a1. The user selects to cancel the deletion.
2 2a2. The system presents portfolio interface.

4.3. Use Cases 71

Table 4.29: Use case 29: "Create Structure"

Use case 29: "Create Structure"
Context of Use The user wants to create a new structure.
Scope System (Editor Tool)
Level Summary
Preconditions The user is already logged in the system.
Success End Conditions The user created a new structure successfully.
Failed End Conditions The user could not create a new structure.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to create a new structure.
Description Step Action

1 The system presents the interface for the creation of
the new structure.

2 The user fills the required information about the struc-
ture and if required edits optional information about
structure.

3 The system validates the user’s input and creates a
new structure which is persisted in the database.

4 The system presents the newly created structure to the
user.

Extensions Step Branching Action
1 3a1. Submitted data are incorrect.
2 3a2. The system displays the interface for the creation

of the new structure.

72 Chapter 4. Functional Specification

Table 4.30: Use case 30: "View existing Structure"

Use case 30: "View existing Structure"
Context of Use The user wants to view an existing structure.
Scope System (Editor Tool)
Level Sub function
Preconditions The user is already logged in the system and there are structures

persisted in database.
Success End Conditions The user has viewed a specific structure.
Failed End Conditions The user could not view a structure.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to view a structure from existing.
Description Step Action

1 The user browses the list of structures which are per-
sisted in database.

2 The user selects to view a structure from the available
structures.

3 The system presents the interface of structure.
Extensions Step Branching Action

4.3. Use Cases 73

Table 4.31: Use case 31: " Update Structure"

Use case 31: " Update Structure"
Context of Use The user wants to update a structure.
Scope System (Editor Tool)
Level Sub function
Preconditions The user has already created this structure.
Success End Conditions The user updated a structure successfully.
Failed End Conditions The user could not update a structure.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to update a structure.
Description Step Action

1 The user selects an structure to be updated.
2 The system presents the interface for the creation with

filled in the information fields.
3 The user edits the information about the structure.
4 The system validates the user’s input and updated this

structure which is persisted in the database.
5 The system presents the newly updated structure to

the user.
Extensions Step Branching Action

1 4a1. Submitted data are incorrect.
2 4a2. The system presents the interface for the creation

of the structure with filled the information.

74 Chapter 4. Functional Specification

Table 4.32: Use case 32: "Delete Structure"

Use case 32: "Delete Structure"
Context of Use The user wants to delete a structure.
Scope System (Editor Tool)
Level Summary
Preconditions The user has already created this structure.
Success End Conditions The user deleted a structure successfully.
Failed End Conditions The user could not delete a structure.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to delete a structure.
Description Step Action

1 The user selects a structure to be deleted.
2 The system asks the user to confirm the action.
3 The user selects to delete the structure.
4 The system deletes the object and all related infor-

mation about this structure (sub-structures, structure’s
type objects, etc.).

Extensions Step Branching Action
1 2a1. The user selects to cancel the deletion.
2 2a2. The system presents the structure.

Table 4.33: Use case 33: "Use structure to Create Object"

Use case 33: "Use structure to Create Object"
Context of Use The user wants to use structure to create object.
Scope System (Editor Tool)
Level Sub function
Preconditions The user is already logged in the system, and has created a building

already and added successfully a floor.
Success End Conditions The user selected a structure to create an object successfully.
Failed End Conditions The user could not select structure to create object.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to create structure to create object.
Description Step Action

1 The system presents the interface of available struc-
ture.

2 The user selects a structure
3 The user selects to use this structure to create object.

Extensions Step Branching Action

4.3. Use Cases 75

Table 4.34: Use case 34: "Update Account Information"

Use case 34: "Update Account Information"
Context of Use The user wants to update account information.
Scope System (Editor Tool)
Level Sub function
Preconditions The user is already logged in the system.
Success End Conditions The user has successfully updated account information.
Failed End Conditions The user could not successfully update account information.
Primary, Secondary
Actors

User
System (Editor Tool)

Trigger The user selects to update account information.
Description Step Action

1 The user selects to view profile.
2 The system presents account information.
3 The user edited account information.
4 The system validates the user’s input and present the

newly updated account information.
Extensions Step Branching Action

Table 4.35: Use case 35: "View available Buildings"

Use case 35: "View available Buildings"
Context of Use The user wants view the available buildings.
Scope System (Mobile Application)
Level Summary
Preconditions The user is already logged in the system.
Success End Conditions The user viewed available buildings successfully.
Failed End Conditions The user could not view available buildings successfully.
Primary, Secondary
Actors

User
System (Mobile Application)

Trigger The user selects to view available buildings.
Description Step Action

1 The system presents the available buildings.
Extensions Step Branching Action

76 Chapter 4. Functional Specification

Table 4.36: Use case 36: "View Building"

Use case 36: "View Building"
Context of Use The user wants to view a specific building.
Scope System (Mobile Application)
Level Summary
Preconditions The user is already logged in the system and to view available

buildings.
Success End Conditions The system presents the selected building.
Failed End Conditions The system could not present the selected building.
Primary, Secondary
Actors

User
System (Mobile Application)

Trigger The user selects to view a specific building.
Description Step Action

1 The system presents the available buildings.
2 The user selects to view a specific building.
3 The system present the selected building.

Extensions Step Branching Action

Table 4.37: Use case 37: "View Floors of Building"

Use case 37: "View Floors of Building"
Context of Use The user wants to view floors of building.
Scope System (Mobile Application)
Level Summary
Preconditions The user is already logged in the system and to view a specific

building.
Success End Conditions The system presents the floors of specific building.
Failed End Conditions The system could not present the floors of specific building.
Primary, Secondary
Actors

User
System (Mobile Application)

Trigger The user selects to view the floors of specific building.
Description Step Action

1 The system presents the floors of a specific building.
2 The user selects a floor.
3 The system presents the information of a selected

floor.
Extensions Step Branching Action

4.3. Use Cases 77

Table 4.38: Use case 38: "View Objects of Floor"

Use case 38: "View Objects of Floor"
Context of Use The user wants view objects of floor.
Scope System (Mobile Application)
Level Summary
Preconditions The user is already logged in the system and to view a specific

floor.
Success End Conditions The system presents the objects of specific floor.
Failed End Conditions The system could not present the objects of specific floor.
Primary, Secondary
Actors

User
System (Mobile Application)

Trigger The user selects to view the objects of specific floor.
Description Step Action

1 The system presents the objects of a specific floor.
2 The user selects an object.
3 The system presents the information of a selected ob-

ject.
Extensions Step Branching Action

Table 4.39: Use case 39: "View Objects of Building"

Use case 39: "View Objects of Building"
Context of Use The user wants view objects of floor.
Scope System (Mobile Application)
Level Summary
Preconditions The user is already logged in the system and to view a specific

building.
Success End Conditions The system presents the objects of specific building.
Failed End Conditions The system could not present the objects of specific building.
Primary, Secondary
Actors

User
System (Mobile Application)

Trigger The user selects to view the objects of specific building.
Description Step Action

1 The system presents the objects of a specific building.
2 The user selects an object.
3 The system presents the information of a selected ob-

ject.
Extensions Step Branching Action

78 Chapter 4. Functional Specification

Table 4.40: Use case 40: "User locates himself"

Use case 40: "User locates himself"
Context of Use The user wants to locate himself inside the building.
Scope System (Mobile Application)
Level Summary
Preconditions The user is already logged in the system and is able to scan a QR

code or type a set of keywords.
Success End Conditions The user locates himself successfully.
Failed End Conditions The user could not locate himself.
Primary, Secondary
Actors

User
System (Mobile Application)

Trigger The user selects to locate himself and scan a QR code or type a set
of keywords.

Description Step Action
1 The system presents the appropriate UI to the user and

gives him the ability to use the camera of his mobile
to scan a QR code.

2 The user scan a QR code.
3 The systems presents a floor map which contains the

highlighted position of the user.
Extensions Step Branching Action

1 2a1. The user scans an invalid QR code.
2 2a2. The system inform the user and use the camera

to capture another QR code.
3 2a1. The user types a set of keywords.

4.3. Use Cases 79

Table 4.41: Use case 41: "User scans QR Code"

Use case 41: "User scans QR Code"
Context of Use The user wants to scan a QR code inside the building.
Scope System (Mobile Application)
Level Summary
Preconditions The user is already logged in the system and is able to scan a QR

code.
Success End Conditions The user retrieve the object that is connected with QR code.
Failed End Conditions The user could not retrieve the object that is connected with QR

code.
Primary, Secondary
Actors

User
System (Mobile Application)

Trigger The user selects to scan a QR code.
Description Step Action

1 The system presents the appropriate UI to the user and
gives him the ability to use the camera of his mobile
to scan a QR code.

2 The user scan a QR code.
3 The systems presents the appropriate object that is

connected with scanned QR code.
Extensions Step Branching Action

1 2a1. The user scans an invalid QR code.
2 2a2. The system inform the user and use the camera

to capture another QR code.

80 Chapter 4. Functional Specification

Table 4.42: Use case 42: "Find a Place"

Use case 42: "Find a Place"
Context of Use The user wants to find a place inside the building.
Scope System (Mobile Application)
Level Summary
Preconditions The user is already logged in the system.
Success End Conditions The system presents the searched object.
Failed End Conditions The system could not present the searched object.
Primary, Secondary
Actors

User
System (Mobile Application)

Trigger The user selects to find a place.
Description Step Action

1 The user type the desired keywords.
2 The system presents the retrieved results which are

matched with the keywords.
3 The user selects the desired object from the results.
4 The system presents the selected object.

Extensions Step Branching Action
1 2a1. The keywords do not match at an existing object.
2 2a2. The system informs the user for non-existent re-

sults.

4.3. Use Cases 81

Table 4.43: Use case 43: "Navigate to Object"

Use case 43: "Navigate to Object"
Context of Use The user wants to navigate to an object.
Scope System (Mobile Application)
Level Summary
Preconditions The user is already logged in the system and is able to select to

navigate to an existing object.
Success End Conditions The system presents the appropriate sequence of commands to the

user.
Failed End Conditions The system could not present the appropriate sequence of com-

mands to the user
Primary, Secondary
Actors

User
System (Mobile Application)

Trigger The user selects to navigate to a specific object.
Description Step Action

1 The system highlights the position of the user and the
positions of the user’s destination.

2 The system presents the suitable instructions to the
user in order to navigate him to his destination.

3 The user selects the current command and follow the
instruction.

Extensions Step Branching Action
1 2a1. There is not a path in order to the user reach to

his destination.
2 2a2. The system informs the user for non-existent

path.

82 Chapter 4. Functional Specification

Summary

In this chapter we described the functional specification of the system that has been developed for

the management of the whole lifecycle of the floor plans and their containing objects. We specified

the stakeholders of the system, listed the technical requirements that had to be met for achieving

the desired functionality and provided an in depth analysis for the system’s functionality along with

the use case tables.

Chapter 5

Model

This chapter presents the model that has been developed to support, among others, the represen-

tation of buildings, floors, objects, structures, nodes etc. Section 5.1 describes the model’s basic

notions and structure, while Section 5.2 provides some model implementation examples in order to

acquire deeper understanding of the model’s capabilities.

5.1 Specification

The model developed and supported by our system has been designed with extensibility in mind, so

as to be able to describe as many as possible different types of buildings. To do this, we identified

that a building should be described as a sequence of building objectives (e.g floor and objects) and

each of these objectives should have the potential to be further differentiated with specific attributes

or characteristics. Figure 5.1 presents the identified model entities in the form of a class diagram.

User

The User class represents the users of our system and includes both building creators and simple

users, differentiating based on their role. The attributes that each user has are those presented

below:

• lastSeen: the last date that the user logged in to our system.

• id: the user’s unique identifier.

• firstName: the user’s first name.

• lastName: the user’s last name.

84 Chapter 5. Model

Figure 5.1: Model.

5.1. Specification 85

• email: the user’s email address

• password: the password used for logging in the system.

• image: a profile picture of the user.

• joinedOn: the date on which the user signed up to our application.

• lastSeen: the last date that the user logged in to our system.

Building

The Building class represents the buildings which can be created and managed by our system. It

can be created by users in order to set up a building, while it can also be used for the navigation of

simple user inside it. It is consisted of a sequence of floors which contain objects. Since buildings

can be bounded to a specific location, they can also be used for building searching and filtering.

The attributes comprising a building are the following:

• id: the building’s unique identifier.

• fullName: the building’s full name.

• shortName: the building’s short name.

• address: the building’s address

• url: the building’s url.

• description: the building’s description.

• createdDate: the date on which the building is been created.

• lastChanged: the last date that the user changed information about the building.

Floor

The Floor class represents the floors which compose a building. They can be created by building

creators in order to set up a building. Each floor has its own borders which are defined by the

building creator and is consisted of a sequence of containing objects. A floor may be described

using the following attributes:

• id: the floor’s unique identifier.

• fullName: the floor’s full name.

• shortName: the floor’s short name.

86 Chapter 5. Model

• level: the floor’s level in building.

• scale: the floor’s map scale depends on the user selection compared with editor surface.

• description: the floor’s description.

• createdDate: the date on which the floor is been created.

• lastChanged: the last date that the user changed information about the floor.

Object

The Object class represents a floor objective. In essence, an object is an instance of predefined

structure. Each of object has a structure and take the appropriate attributes from it. In other words,

all of building’s containing objects refer to Object class. The main attributes of an object are the

following:

• id: the object’s unique identifier.

• fullName: the object’s full name.

• shortName: the object’s short name.

• description: the object’s description.

• surface: the object’s overall surface.

• createdDate: the date on which the object is been created.

• lastChanged: the last date that the user changed information about the object.

Indoor Object

The Indoor Object class represents the "Object" which is referred to an indoor location object. This

object may be a course room, a conference room, an exhibition room etc. Additionally this type of

object is characterized by its accessibility(e.g if is a privately accessible or publicly accessible).

Multifloor Object

The Multifloor Object class represents the "Object" which is referred to a multifloor location object.

This object may be an elevator, stairs etc. Additionally this type of object is characterized by its

accessibility(e.g if is a privately accessible or publicly accessible), by source and target floor, which

are the connected floors, and whether this transition is for disabled people or not.

5.1. Specification 87

Movable Object

The Movable Object class represents the "Object" which is referred to an movable object. This

object may be an exhibit, such as statue, painting, musical instrument, aquarium etc. Additionally,

this type of object is characterized by its relation to other objects. In other words, a movable object

may be near to another movable object or inside an object. To be more specific, relations such as

is below, above, near, opposite, north, etc are some of possible choices in order to be used for the

better navigation to the simple user.

Structure

The Structure class represents the structures which can be created, defined and managed by our

system. It is comprised of several descriptive and presentation meta-data. Additionally, it consists

of a sequence of attributes that each of them represents the desired attribute of user in order to

create a new primitive structure depending on his needs. The Structure consists of the following

attributes:

• id: the structure’s identifier.

• fullName: the structure’s full name.

• shortName: the structure’s short name.

• description: the structure’s description.

• createdDate: the date on which the structure is been created.

Structure Attribute

The Structure Attribute class represents a structure objective. Each structure attribute describes a

specific characteristic which user wants to include in his created structure. A structure attribute

consists of the following attributes:

• id: the structure attribute’s unique identifier.

• label: the descriptive name of the attribute, used in the user interface.

• description: a basic description for the contents of the attribute, used as a helping guide for

novice users.

• type: defines the type of the attribute. This is mostly used in the user interfaces for the

creation of different user interface elements for the different attribute types.

88 Chapter 5. Model

• order: defines the order of the attribute as it appears in the user interfaces.

• multivalued: defines if the attribute can appear multiple times.

• required: defines if the attribute must be populated in the instantiation process.

• hasReference: defines if the attribute has reference to another object.

• createdDate: the date on which the object is been created.

Structure Attribute Value

The Structure Attribute Value class represents the instantiation of a Structure Attribute. In essence,

this object contains key - value(s) pairs in order to set values at the desired attributes.

Route

The Route class represents the total set of instructions that are given to the simple user in order to

navigate him inside the building. A route can contain multiple destinations but contain only one

origin. In other words, a route consists of a sequence of instructions that represent certain actions

in order for the user to arrive at his destination. The attributes comprising a route are the following:

• id: the route’s identifier.

• origin: the route’s origin position.

• intermidiatePosition: the route’s intermediate positions.

• destination: the route’s destination position.

Command

The Command class represents a sentence which is given to the simple user in order to navigate

him from one position to another. Each command has one origin node and one destination node

which is connected to each other. Additionally these commands are dynamically generated from

our system depending on the user selection. The main attributes of a command are the following:

• id: the command’s identifier.

• origin: the command’s origin and the position of the user’s device.

• destination: the command’s destination and the next position of the simple user.

• associatedObject: the command’s associated object is the object which the user moves inside.

5.1. Specification 89

• idverb: the command’s verb which informs the user about the action that is needed.

• content: the command’s content which construct a completed sentence.

• curveNumber: the command’s curve number is the number of curve that the user may need

to turn in order to arrive at his destination.

• distance: the command’s distance is the distance between the origin and the destination of

command.

• degrees: the command’s degrees is the degrees of possible curve which is included in com-

mand.

• direction: the command’s direction is the direction of the curve in order to inform the user

about the direction of potential curve.

Node

The Node class represents a specific position on floor map in order to set it there a QR code. Each

node is connected with a list of nodes composing a graph of paths. Furthermore, each node is

connected with a list of objects so as the position of these objects can be retrieved by simple user.

The Node consists of the following attributes:

• id: the node’s unique identifier.

• nodeName: the node’s name.

• point: the node’s position on a floor map.

Useful Image

The Useful Image class represents a specific position on floor map in order to set it there a Helpful

Image. Each helpful image has specific position and direction in order to give to the user more

information about the content that is around. Furthermore, each node is connected with a list of

objects. The Useful Image consists of the following attributes:

• id: the node’s unique identifier.

• rotation: the useful image’s rotation.

• point: the useful image’s position on a floor map.

90 Chapter 5. Model

Multimedia Object

The Multimedia Object class represents multimedia objects of type: video, image, text and au-

dio. Each type of Multimedia Object is depicted as a different class, holding its own descriptive

attributes.

Audio

The Audio class represents the multimedia objects of type sound. Optionally, it contains a GPS

point specifying the location that has been recorded.

Image

The Image class represents the multimedia objects that are of type image. Optionally, it contains a

GPS point with information about the location where it was captured, as well as other descriptive

metadata.

Video

The Video class represents the multimedia objects that are of type video. Optionally, it contains a

list of GPS points with information about the location where it was recorded, as well as any other

information provided by the camera. The list of GPS points can be used to recreate the path that

the user took for the duration of the capturing.

Portfolio

The Portfolio class represents the multimedia library which has a user. These multimedia files will

be used on creation buildings, floors or objects.

5.2 Model Examples

As already mentioned, our model has been created with flexibility and extensibility in mind in

order to support a wide variety of buildings. To this end, our application provides a series of

basic building blocks, supported by our model, so as assist a user in the creation of either simple

or a highly complex and structured building. This section presents some examples of buildings,

structures and objects that can be directly supported by our model and application.

5.2. Model Examples 91

Museum

A museum is a more representative example of building that our application can be applied. In case

of museum, the museum director should be able to create and design the appropriate environment in

order to give a useful content to the visitor of museum. The first step for the director of the museum

is to create the desired structures according to building’s needs. In more details, the user is able to

create the indoor objects which are contained inside the museum. These indoor objects may contain

an exhibit hall, a souvenir shop, a number of water closet or a cafeteria. For example an exhibit hall

type may be characterized by the subject of containing objects or the number of containing objects

in order to give further information to the visitor. Simultaneously, a museum has a wide variety of

exhibits, such as statues, paintings etc. each of those has its own attributes. For example a statue

characterized by its owner or its material, while a painting may be oil painting or pastel painting.

On the other side a visitor of museum should be able to search and retrieve information about the

exhibits and the halls of museum and of course retrieve its positions. As in all cases the retrieved

data based on the basic information and the list of attributes of each object.

University

Another building that can be supported from our application is a university building. In this case,

the university staff member should be able to create and design the appropriate structures that

are contained inside the university building. Structures such as courses room, secretary offices,

professor offices are some of the desired objects in case of university. More specifically, it is so

important for a professor to know how many students fit in a course room, if a course room provides

a projector or other useful equipment or if it is appropriate for a presentation. On the other side in

many cases, especially in huge buildings such as universities, the students need to know where the

secretary’s office, a lab or a professor office are and navigate to those with simple instructions.

Library

One type of building that we target through our application is the library or similar kind of buildings.

In this case, a library member is able to create and design the desired structures that are contained

inside the Library. More specifically, it is very useful for a visitor of library to search and retrieve

the library’s content (books, journals, cds, dvds, etc.). All of these different structures have its

own different attributes. In more details, a book is characterised by his author, publisher, pages,

language etc, or a DVD has duration, language, subject etc. Furthermore, a student needs to know

where he can look for educational material (books, dvds, journals, etc.) with specific characteristic

92 Chapter 5. Model

in order to find the desired information.

In the following figures we present some of objects, that are supported by our system, and theirs

attributes in order to provide analytical description about the capabilities of our application. More

specifically, Figure 5.2 presents a subset of objects that are contained in the museum building,

Figure 5.3 presents the objects that may be contained in University building and Figure 5.4 presents

some of objects that a user is able to design in case of library.

Figure 5.2 presents a set of objects that can be created through our application in the context of

Museum. In more details, we present a painting with a list of attributes, such as Artist, Date Made,

Material etc, a Statue accompanied by its sculptor, discovery date, discovery location etc, and a

Pottery which have been discovered at Phaistos.

Figure 5.2: Model Example - Museum.

Figure 5.3 presents a set of objects that can be located in a University building. These may be

a Course Room, a Laboratory, a Professor Office, etc. In the following figure 5.3 is presented this

set of object. More specifically, we present a course room with its capacity, sector, provision of

projector, etc, a laboratory and a professor office.

Figure 5.4 presents a very representative example of building that can be supported by our sys-

tem. In this figure present a set of object that are useful in case of Library. More specifically, objects

5.3. Navigation Capabilities 93

Figure 5.3: Model Example - University.

such as books, dvds and journal are very commons inside a library. All of these objects have its

own attributes.

Figure 5.4: Model Example - Library.

5.3 Navigation Capabilities

In this section we present the navigation capabilities that be offered from our application. In more

detail, we analyze the algorithm that we used for shortest path computation and the language that

94 Chapter 5. Model

we defined in order to provide a well-defined set of instructions for navigation purposes.

5.3.1 Shortest Path Calculation

Shortest Path calculation is a very common topic when we need to implement navigation systems.

The problem of finding the shortest path between two intersections on a road map, may be modelled

by a special case of the shortest path problem in graphs. One of the most known algorithm to solve

this kind of problem has been conceived by the Dutch computer scientist Edsger Dijkstra and bears

the name of Dijkstra algorithm.

The latter can be applied to real navigation systems as follows: Suppose you would like to

find the shortest path between two intersections on a city map, a starting point and a destination.

Dijkstra’s algorithm initially marks the distance, from the starting point, to every other intersection

on the map with infinity. This is done not to imply that there is an infinite distance, but to note that

those intersections have not yet been visited. Now, at each iteration, select the current intersection.

For the first iteration, the current intersection will be the starting point, and the distance to it will be

zero. For subsequent iterations, after the first, the current intersection will be the closest unvisited

intersection to the starting point.

From the current intersection, update the distance to every unvisited intersection that is directly

connected to it. This is done by determining the sum of the distance between an unvisited inter-

section and the value of the current intersection, and relabelling the unvisited intersection with this

value, if it is less than its current value. In effect, the intersection is if the path to it through the cur-

rent intersection is shorter than the previously known paths. To facilitate shortest path identification,

in pencil, mark the road with an arrow pointing to the relabelled intersection if you label/relabel it,

and erase all others pointing to it. After you have updated the distances to each neighbouring in-

tersection, mark the current intersection as visited, and select the unvisited intersection with lowest

distance, from the starting point, as the current intersection. Nodes marked as visited are labelled

with the shortest path from the starting point to it and will not be revisited or returned to.

Continue this process of updating the neighbouring intersections with the shortest distances,

then marking the current intersection as visited and moving onto the closest unvisited intersection

until you have marked the destination as visited. Once you have marked the destination as visited,

as is the case with any visited intersection, you have determined the shortest path to it, from the

starting point, and can trace your way back, following the arrows in reverse. In the algorithm’s

implementations, this is usually done, after the algorithm has reached the destination node, by

following the nodes’ parents from the destination node up to the starting node. That is why we

keep also track of each node’s parent.

5.3. Navigation Capabilities 95

Listing 5.1: Pseudocode of Dijkstra’s Algorithm.

1 function Dijkstra(Graph , source):

2 create vertex set Q

3 for each vertex v in Graph:// Initialization

4 dist[v] = INFINITY // Unknown distance from source to v

5 prev[v] = UNDEFINED // Previous node in optimal path from source

6 add v to Q// All nodes initially in Q (unvisited nodes)

7 dist[source] = 0// Distance from source to source

8 while Q is not empty:

9 u = vertex in Q with min dist[u]// Source node will be selected

first

10 remove u from Q

11 for each neighbor v of u:// where v is still in Q.

12 alt = dist[u] + length(u, v)

13 if alt < dist[v]:// A shorter path to v has been found

14 dist[v] = alt

15 prev[v] = u

16 return dist[], prev[]

This algorithm makes no attempt to direct "exploration" towards the destination as one might

expect. Rather, the sole consideration in determining the next "current" intersection is its distance

from the starting point. This algorithm therefore expands outward from the starting point, inter-

actively considering every node that is closer in terms of shortest path distance until it reaches the

destination. When understood in this way, it is clear how the algorithm necessarily finds the short-

est path. However, it may also reveal one of the algorithm’s weaknesses: its relative slowness in

some topologies. Figure 5.5 shows an example of Dijkstra’s algorithm with some real values

5.3.2 Navigation Instructions Generation

The generation of navigation instructions is a very important part of our application and it is a

fact that makes a very difficult and complex process. The user of our application is able to reach

his desired destination following a sequence of instructions. In order to provide the navigation

instructions, we should take into consideration a set of things. First of all, we should calculate the

shortest path, depending on the user needs. For example, in case of disabled people our algorithm

calculates the shortest path which avoid stairs for transition between the floors. For each case we

compute the shortest path using the Dijkstra Algorithm in order to avoid the nodes of graph that we

can’t cross (stairs nodes in case of disabled people).

Secondly, taking the shortest path from our algorithm, the next step is to generate the appropri-

ate instructions that should be followed by the user. In order to give a set of well-defined and simple

96 Chapter 5. Model

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6

(g) Step 7

Figure 5.5: Dijkstra’s algorithm steps.

5.3. Navigation Capabilities 97

instructions we created a language with its own grammar and syntax. This grammar consists of a

set of verbs, subjects, objects and local determinations.

To begin with defining the meaning of instruction. An instruction is a sentence that urge the

user do an action and consists of a set of words in the appropriate format and sequence that well

defines the desired action. Each instruction follows a set of rules that should be applied in order to

guide the user at his desired destination. More specifically, an instruction should be started with a

verb that indicates the desired action to the user. The following are the basic set of verbs that we

used in each occasion.

• Walk: Using this verb, we can advise the user to walk a number of meters or feet in order

to reach the next node of our graph. This word should be followed by a local determination

as "ahead", "right", "left" in order to give the appropriate direction to the user. Furthermore,

this verb can be followed by a number of feet that should be traversed by the user.

• Use: This verb is used in case the user should change floor in order to reach his destination.

Using this verb, we can advise the user to use a multifloor object in order to be transferred in

other floor. Followed by an object, suggests the user to use an elevator, stairs etc. to ascend

or descend floors.

• Ascend - Descend: Using these verbs, we can advise the user to ascend or descend floors

in case the user should change floor in order to reach his destination. These verbs can be

followed by the level of floor that the user should be transferred to meet the next node of our

graph.

• Turn: This verb is used in case the user should change direction in order to reach his desti-

nation. This word should be followed by a local determination that indicated the appropriate

direction to the user. More specifically these local determinations are the words "left" and

"right" connected with a quantitative determination that suggest how the user must turn in

order to follow the correct direction. It is worth mentioning, that we took into consideration

the size of angle in each case and if this size was a significant factor for userâĂŹs navigation.

If the angle that the user should turn was less than 10 degrees, we ignored it and we advised

user to walk ahead to the next node.

• Arrive: Using this verb, we can notify the user that he reached his destination. This word is

used only in the last instruction and can be followed by the object that user wanted to find.

• Proceed: This verb is used in case that the user should walk inside an indoor object for a

number of feet. This word should be followed by a number of feet that the user should cover

and an object that the user should going through in order to reach the next node of his route.

98 Chapter 5. Model

• See: Using this verb, we can point out the objects that the user can encounter through his

transfer from a node to another. This word should be followed by the set of objects that the

user encounter in each side and of course the side that the user can be see these objects.

Additionally we had enriched these verbs with a set of local determinations which can be en-

abled in some cases. These determinations are used in order to indicate the desired direction to the

user and may be the words "right", "left", "front", "back", etc. Using these determinations we are

able to give a complete instruction to the user in order to complete an action.

As we already mentioned, our grammar contains a set of objects that are used in order to make

a correct instruction form. These words, may be contains the whole set of objects that the user

created through our application, as office, corridor, room, elevator etc.

In more detail we compose our grammar using the following rules and expressions.

expression ⇒ exp | exp and exp

exp ⇒ use_exp | turn_exp | arrive_exp | proceed_exp | walk_exp

| meet_exp

use_exp ⇒ use_kwd multifloor_object "to" transition_kwd "at" num

number_suffix floors

turn_exp⇒ turn_verb direction_kwd

turn_verb⇒ turn_kwd | turn_kwd slightly

direction_kwd⇒ right | left

arrive_exp ⇒ arrive_kwd "at" object | "the" destination object is

front of you

proceed_exp⇒ proceed_kwd num feet inside indoor_object

walk_exp⇒ walk_kwd num feet

meet_exp ⇒ will meet object_list on your left and object_list

on your right

object_list⇒ object | object object_list

object ⇒ indoor_object | multifloor_object | movable_object

transition_kwd ⇒ ascend | descend

num ⇒ [’0’-’9’]+

number_suffix⇒ st | nd | rd | th

Some examples describing the instructions that our system can produce, include the following:

• Walk 18 feet and then turn left.

5.3. Navigation Capabilities 99

• Walk 12 feet, turn slightly left.

• Use elevator to ascend at the 2nd floor.

• Walk 17 feet, Use Elevator B to go to 4th Floor.

• Walk 84 feet, arrive at Christodoulakis Office.

• Use stairs to ascend to the 2nd floor.

• Walk 25 feet, Use Stairs to go to 3th Floor.

• Walk 31 feet, the destination Conference Center is on your left.

• Arrive at your destination.

• During this path, you can meet the Library Room and 145P48 Course Room on your left and

Garofalakis Office on your right.

• The destination Coffee Shop is front of you.

To determine the appropriate instructions profound knowledge of geometric relations was needed,

since the calculation of angles and the direction was a very complex process. More specifically, at

each step we took into account the position of three nodes, as well the direction of the user in

order to generate the correct instruction. It is worth mentioning, that we took into consideration

the size of angle in each case and if this size was a significant factor for userâĂŹs navigation. If

the angle between the three nodes was less than 10 degrees, we ignored it and we advised user to

walk ahead to the next node. In each case we should enable the appropriate set of words in order to

give a correct instruction to the user. In the following figures, Figure 7.8, Figure 7.9, Figure 7.10,

and Figure 7.11 are presented the floor plans of Natural History Museum with all connected nodes

and the sequence of instructions which are given to the user in order to reach his destination. This

building consists of four floors which are connected with stairs. Each floor contains numerous of

objects, either indoor or movable objects.

100 Chapter 5. Model

(a) First Floor.

(b) Second Floor.

Figure 5.6: Natural History Museum - First and Second Floor.

5.3. Navigation Capabilities 101

(a) Start Location. (b) Walk 4 feet ahead, then turn right.

(c) Walk 5 feet ahead. (d) You arrived at your destination.

Figure 5.7: Natural History Museum - Path from Entry to Library.

102 Chapter 5. Model

(a) Start Location. (b) Walk 3 feet ahead, then turn right.

(c) Walk 7 feet ahead, then use stairs to go to 2nd floor. (d) Turn right, then walk 2 feet ahead.

Figure 5.8: Natural History Museum - Path from Entry to Tyrannosaurus (cont ’d).

5.3. Navigation Capabilities 103

(a) Turn right, then walk 3 feet ahead. (b) You arrived at your destination.

Figure 5.9: Natural History Museum - Path from Entry to Tyrannosaurus.

104 Chapter 5. Model

Summary

In this chapter we presented the model that we have developed for the support of the building cre-

ation and design. Furthermore, we described three example implementations for the Model in order

to support creation and annotation of floor plans. Finally, we described the navigation capabilities

through description of shortest path calculation and the description of navigation instruction.

Chapter 6

Architecture

This chapter described the overall system architecture, identifies its basic components and provides

an in depth analysis of the internal functionality. Moreover it allocates the architectural decisions

that were made for the most important application aspects.

Built as a web application, the system adopts the Rich Internet Application (RIA) principles,

which promote the development of web applications as desktop applications performing business

logic operations on the server side, as well as on the client side. The client side logic operates

within the web browser running on a user’s local computer, while the server side logic operates the

web server hosting the application. Figure 6.1 displays the overall system architecture.

For the development of the application we adopted several design patterns [32]. The use of well-

established and documented design patterns, speeds up the development process, since they provide

reusable solutions to the most common software design problems [9, 31]. The design patterns that

we have used in designing the system’s architecture are presented in detail in the following sections.

The Model View Controller (MVC) design pattern [58, 59] and the Observer patterns were used on

the client side, and a multi-tier architecture was implemented on the server side.

The analysis of the architecture has been broken into two parts; Section 6.1 presents the server

side architecture, while Section 6.2 presents the client side architecture.

6.1 Server Side

The Server Side part of our framework follows a multi-layered architectural pattern consisting

of three basic layers: Service Layer, Business Logic Layer and Data Layer. This increases the

system’s maintainability, reusability of components, scalability, robustness and security. As shown

in Figure 6.1, the server side is comprised of a number of distinct modules which are described

106 Chapter 6. Architecture

Figure 6.1: System reference architecture.

6.1. Server Side 107

below.

6.1.1 Service Layer

The Service Layer controls the communication between the client-side logic and the server-side

logic, by exposing a set of services (operations) to the client-side components[8]. These services

comprise the middle-ware concealing the application business logic from the client and have been

build as RESTful [52, 30]. The basic system services are:

• CRUD Services: Facilitate the creation, retrieval, update and deletion of a building, a floor,

an object associated with a structure, a user etc.

• External Access Services: Provide the means for the client side and external systems to user

the data of the system.

• Multimedia Access Services: Provide the means for the client side and external systems to

user the data of the system.

• Search Services: Provide the client side with the ability to search the data.

• Multimedia Access Services: Enable the access to the uploaded multimedia files and their

respective thumbnails.

6.1.2 Business Logic Layer

The Business Logic Layer, also know as Domain Layer, contains the business logic of the applica-

tions and separates it from the Data Layer and the Service Layer. In more details:

• The Building Management Module, which manages the building, as well as for the floor and

object (de)composition in our system.

• The Structure Management Module, is responsible for the structure management.

• The Search Management Module, which responds to the queries on the data with the appro-

priate results.

• The Multimedia Management Module, which manages the persistence and the serving of the

multimedia files, as well as their analysis and thumbnail generation.

6.1.3 Data Layer

The Data Layer accommodates external systems which are used to index and persist both data and

multimedia files. Such systems are: (a) the Data Repository, storing all the data of the system,

108 Chapter 6. Architecture

(b) the Search Index, allowing faster full text queries, and (c) the File Repository, persisting the

multimedia files and thumbnails.The implementation details of the components that comprise the

Data Layer can be found in Section 7.2.

6.2 Client Side

The Client Side of the application is responsible for the interaction with the user. All the actions

performed by an individual using the system, are handled by the client side logic, which undertakes

the presentation of the information as well as the communication with the server. In order to achieve

a high level of decoupling between the components forming the client logic we adopted the Model

View Controller (MVC) design pattern [58, 59], as well as the Observer pattern.

The usage of the MVC pattern introduces the separation of the responsibilities for the visual

display and the event handling behavior into different entities, named respectively, View and Con-

troller. Some of the advantages of this approach are: (a) maximization of the code that can be

tested with automation (Web pages containing HTML elements are hard to test), (b) code sharing

between pages that require the same behaviour, and (c) separation of the business logic from the

user interface logic from User Interface logic to make the code easier to understand and maintain.

On the other side, the Observer pattern is also a key part in the familiar model-view-controller

(MVC) architectural pattern and provides the means for achieving the decoupling of the user inter-

face components. It is a software design pattern in which an object, called the subject maintains a

list of its dependents, called observers, and notifies them automatically of any state changes, usu-

ally by calling one of their methods. It is used in our system for enabling the message transmission

between the entities that reside on the Client Side. In the next sub-chapter, we describe the compo-

nents of the client-side architecture (Figure 6.1) in depth, focusing on their objective and internal

functionality.

6.2.1 Application Manager

The Application Manager acts as a centralized point of control for the system’s client side logic,

handling the communication between the Controllers and the server side by making call to the

RESTful services exposed in the Service Layer, and notifying the Presenters for their responses. It

implements the Mediator pattern and handles the communication between the Controller and the

Server Side. Additionally it enables seamless data caching on the client side with the use of a

dedicated cache.

6.2. Client Side 109

6.2.2 Router

The Router is used for deep-linking URLs to controllers and views (HTML partials). It manages

the URL of the client browsers. Specifically provides a different path to each distinct interface,

without raising a browser event that will force a reload on the whole page. Additionally when the

URL changes, the Router analyses the new path (location) and handles the transition to the new

View. This is implemented using mappings between the different URLs supported in the system,

as well as the Controllers and the Views.

6.2.3 Multilinguality

The Multilinguality Support module manages the translation of the user interface elements through

the use of certain configuration files. The process is easily adaptable and the system can be extended

to support any language with the minimum effort. In other words, if is needed to support another

language we can add a new configuration file with all translated terms of our application and then

our application serve the desired language to the user.

6.2.4 Model

The Model refers to the business objects which are being used by our system. When the system

needs to present information about a business object, the client side requests the respective infor-

mation from the server side using the services. In turn, the server side services transfer the Model

to the client side. Accordingly, when an update on the Model needs to be persistent, the client side

send s the updated Model to the server side, initiating the corresponding procedures.

6.2.5 View

The Views are responsible for the presentation of the information in the user interface. Each vies

controls a number of widget on the application’s graphical user interface. It contains multiple

handles that are responsible for listening user’s actions and the HTML templates that define the

presentation of the widgets.

6.2.6 Controller

The Controllers are the most important part of our application because contains the majority of the

client side logic of our application. They are the modules that respond to the user input and interact

with the Views in order to perform any change on the user interface. Additionally, they maintain the

Model and change it appropriately. Every View has a dedicated Controller which manage, handle

110 Chapter 6. Architecture

and propagate any changes that are to be performed or have already been performed to the user

interface. It is also important that there are a number of Controllers that are form a composition of

Controller in order to perform more specific, wide and complex functionality. The Controller also

have access to the browsers in order to use all the desired feature of them, such as Local Storage,

File Upload, GPS Location etc.

Summary

In this chapter we presented the overall system architecture, identifying its basic components and

providing an in depth analysis of their internal functionality.

Chapter 7

Implementation

The functionality of the system and the architecture has been successfully implemented as de-

scribed above. This chapter provides an extended an in depth description about the implementation

details of some of the components, as well as source code examples. This way the reader can re-

alize how specific parts of the system have been implemented. We have split the chapter into two

Sections. Section 7.1 describes the Client Side, while Section 7.2 describes the Server Side. For

the source control management of our application we have used multiple Git repositories on Bit-

Bucket1. Furthermore, we have used Jenkins2, which is a continuous integration server, allowing

us to run automatic tests and deploy the applications easier and in a more controlled way.

7.1 Client Side

The client side refers to both the editor tool (desktop application) and the mobile application. These

two systems are based on the latest web-application standards, rely on the JavaScript programming

language and make extensive use of the AngularJS framework in order to extend the DOM func-

tionality. Additionally, they have been created in order to match different user requirements, and

their user interfaces are implemented differently in order to match the goals of their stakeholders.

Regarding to our mobile applications it is worth to note that it has been compiled and packages

as a native mobile application using PhoneGap, making it compatible with all the major mobile

operation systems, such as Android, iOS and Windows. This allows our applications to run without

the need of internet access, or loading its source each time that the users accesses it. Further-

more, the use of Apache Cordova allowed us to provide more functionality by using various native

platform features that are otherwise unavailable to web applications.
1https://bitbucket.org/
2https://jenkins-ci.org/

https://bitbucket.org/
https://jenkins-ci.org/

112 Chapter 7. Implementation

The client side is built using state-of-the-art technologies, such as JavaScript, HTML5 and

CSS3. For the code organization of the client side we have used various open source libraries

and frameworks such as AngularJS, Bootstrap etc. Section 7.1.1 presents the use of MVC pattern

in our system. Section 7.1.2 provides some details about the way that the user interface have

been implemented for our desktop and mobile applications. Section 7.1.3 describes the parts that

bind the HTML templates with controllers and urls, while sections 7.1.4 and 7.1.5 describe the

AngularJS controller and service implementation on the client side. Finally, the other two sections

7.1.6 and 7.1.7 describe the implementation of multilinguality and the use of SVG elements in our

applications.

7.1.1 MVC Pattern

The client side of our applications has been based heavily on the Model View Controller design

pattern. Numerous JavaScript frameworks implements the MVC pattern have emerged during the

last years. Most of the force strict definition format rules to the various components due to the

special handling that complex JavaScript libraries need. After having evaluated the most popular

open-source frameworks, we decided to use AngularJS.

Figure 7.1: Model View Controller Pattern in our application.

AngularJS [10] has been developed as an MVC framework for JavaScript applications. It’s

main purpose is to provide the basic structure to the application. It is very lightweight and ex-

tremely extensible, allowing developers to customize it according to their needs with minimum

7.1. Client Side 113

effort. Apart from the MVC features, it provides other useful functionality, including models with

key-value binding and custom events, collections with a rich API of enumerable functions, views

with declarative event handling, and connects it all to your existing API over a RESTful JSON

interface.

Figure 7.1 presents the MVC components and the interaction between them in our applications.

The Controller instantiates the View and manipulates the Model. In turn, the View listens for

updates of the Model, and when these happen it is re-rendered with the changes. This functionality

is called two way binding and is presented in Figure 7.2. The View is also responsible for the

updating of the Document Object Model (DOM) [41] when needed, as well as the handling of

interaction events which are triggered by the user. In some cases the View also manipulates the

Model.

Figure 7.2: Two Way Binding.

7.1.2 User Interface

This section presents some user interface implementation details for our applications.

Editor Tool

When building an application optimized for desktop such as our application and editor tool, the

developer take into consideration the size of the screen which affects instantly the usability of the

applications. Figure 7.3 provides the main structure of our desktop application in order to ensure

the best usability of our application. As we can see, we have a top bar with the basic information

about the user and our application and also a sidebar which gives more choices to the user.

It is also important that we tried to build our desktop application bearing in mind the respon-

siveness which is a strong part of modern applications. As it is rational this responsiveness could

not be achieved in every different page. It is worth to mention that we used Bootstrap Framework in

114 Chapter 7. Implementation

Figure 7.3: The main areas of our desktop user interfaces.

order to give the majority of responsiveness in our application but also we used specific annotations

whenever is needed. Listing 7.1 presents some sample code of the css style using @media rule.

7.1. Client Side 115

Listing 7.1: Example of css style.

1 @media (min -width: 992px) {

2 .app.container {

3 width: 970px;

4 }

5 .app.container .app -header ,

6 .app.container .app -aside {

7 max -width: 970px;

8 }

9 .app.container .app -footer -fixed {

10 max -width: 770px;

11 }

12 .app.container.app -aside -folded .app -footer -fixed {

13 max -width: 910px;

14 }

15 .app.container.app -aside -dock .app -footer -fixed {

16 max -width: 970px;

17 }

18 }

7.1.3 Router

Modern web applications, built with the latest technologies, enable more powerful interaction with

the users. Their features are very close to desktop applications in terms of complexity and manage-

ment. These applications are called RIAs (Rich Internet Applications).

A very important aspect in the development of RIAs, is the use of AJAX for the communication

between the client and server. This enables the generation and presentation of content without

forcing the web browser to reload a new web page. JavaScript source code running on the user’s

browser is responsible for issuing AJAX calls to the server as well as manipulating the Document

Object Model and presenting the data.

As JavaScript applications are being used to manipulate all of the interfaces presented to the

user, they are becoming more complex. Two major problems have arise from this complexity.

Firstly, the change of user interface using JavaScript needs special treatment in order to allow the

browser’s history support. This appears because the web browsers tend to push the URLs to history

and reload a new one whenever a change is performed. In RIAs this is not always the case. The

second problem is the ability of users to create bookmarks for a specific user interface screen, which

is not possible if the application does not propagate the interface change to the browser’s URL.

In our system, these issues are handled by the Router component, which takes care of both the

116 Chapter 7. Implementation

history of the browser and the mapping between the different screens of our applications and their

URLs. Our Router is based on the Router object provided by the AngularJS framework. Listing 7.2

presents sample code of a router (state provider) in our application.

Listing 7.2: Example of router.

1 /** Home Page or Dashboard Page of my Application */

2 .state('app.dashboard ', {

3 url: '/dashboard ',

4 templateUrl: 'tpl/app_dashboard_v1.html ',

5 resolve: load(['js/controllers/chart.js '])

6 })

7

8 /** Page which contains building list */

9 .state('app.buildings ', {

10 url: '/buildings ',

11 controller: 'BuildingsAllCtrl ',

12 templateUrl: 'tpl/buildings.html ',

13 resolve: load(['js/controllers/buildings.js ',

14 'js/factories/BuildingFactory.js '])

15 })

16

17 /** Page which contains building detail */

18 .state('app.detailOfBuilding ', {

19 url: '/building/{buildingId}',

20 templateUrl: 'tpl/building.detail.html ',

21 controller: 'BuildingDetailCtrl ',

22 resolve: {

23 deps: ['$ocLazyLoad ',

24 function ($ocLazyLoad) {

25 return $ocLazyLoad.load([

26 'js/controllers/building.js ',

27 'js/factories/BuildingFactory.js ',

28 'js/app/music/theme.css ',

29 'com.2fdevs.videogular ',

30 'com.2fdevs.videogular.plugins.controls ',

31 'com.2fdevs.videogular.plugins.overlayplay ',

32 'com.2fdevs.videogular.plugins.poster ',

33 'com.2fdevs.videogular.plugins.buffering ',

34 'js/app/music/theme.css ']);

35 }]

36 }

37 })

7.1. Client Side 117

7.1.4 Controller

In Angular, a Controller is defined by a JavaScript constructor function that is used to augment the

Angular Scope. When a Controller is attached to the DOM via the ng-controller directive, Angular

will instantiate a new Controller object, using the specified Controller’s constructor function. In our

implementation we use controller in order to respond to the user input and user action and interact

with the View in order to perform any change on the user interface. Additionally, they are used

to maintain the Model and change it appropriately. Listing 7.3 presents some sample code of a

Controller in the JavaScript language.

Listing 7.3: Example of controller implementation

1 app.controller('FloorCtrl ', ['$rootScope ', '$scope ', '$state ',

'$stateParams ', '$http ', 'FileUploader ', '$timeout ', '$modal ',

'$log', '$filter ', 'floorFactory ', 'buildingFactory ',

'$localStorage ', 'myConfig ',

2 function ($rootScope , $scope , $state , $stateParams , $http ,

FileUploader , $timeout , $modal , $log , $filter , floorFactory ,

buildingFactory , $localStorage , myConfig) {

3

4 $scope.apiUrl = myConfig.apiUrl;

5 /**

6 * Meter Analogy

7 * */

8 $scope.meterAnalogy = 1;

9 /** Get Floor Id from stateParams */

10 $scope.floorId = $stateParams.floorId;

11 $scope.buildingId = $stateParams.buildingId;

12 /** Initialize Url for Image Floor Plan */

13 $scope.urlFloorPlan = '';

14 $scope.floor = {

15 scale: 1

16 };

17 /** Initialize all floor data */

18 $scope.pos = {};

19 $scope.polygon = {};

20 $scope.basicsvg = {};

21 /** Floor Borders */

22 $scope.floorElements = [];

23 $scope.nonSemanticObjectElements = [];

24 /** Objects Elements */

25 $scope.objectElements = [];

118 Chapter 7. Implementation

26 $scope.detailedObjectElements = [];

27 /**

28 * Nodes Initialization

29 * */

30 $scope.nodes = [];

31 $scope.links = [];

32 /**

33 * Temporary Points for Polygon

34 * */

35 $scope.temporaryPoints = [];

36 /** Distance Calculator between two Points */

37 function lineDistance(point1 , point2) {

38 var xs = 0;

39 var ys = 0;

40 xs = point2.x - point1.x;

41 xs = xs * xs;

42 ys = point2.y - point1.y;

43 ys = ys * ys;

44 var res = Math.sqrt(xs + ys);

45 return (res / 100) * $scope.meterAnalogy;

46 }

47 /** Initialize all possible functions */

48 $scope.onFirstBtnClickResult = "";

49 $scope.secondBtnInput = "";

50 $scope.onDblClickResult = "";

51 $scope.onMouseDownResult = "";

52 $scope.onMouseUpResult = "";

53 $scope.onMouseEnterResult = "";

54 $scope.onMouseLeaveResult = "";

55 $scope.onMouseMoveResult = "";

56 $scope.onMouseOverResult = "";

57 /**

58 Accepts a MouseEvent as input and returns the x and y

59 coordinates relative to the target element.

60 */

61 var getCrossBrowserElementCoords = function (mouseEvent) {

62 var result = {

63 x: 0,

64 y: 0

65 };

66 if (! mouseEvent) {

67 mouseEvent = window.event;

7.1. Client Side 119

68 }

69 if (mouseEvent.pageX || mouseEvent.pageY) {

70 result.x = mouseEvent.pageX;

71 result.y = mouseEvent.pageY;

72 } else if (mouseEvent.clientX || mouseEvent.clientY) {

73 result.x = mouseEvent.clientX + document.body.scrollLeft +

74 document.documentElement.scrollLeft;

75 result.y = mouseEvent.clientY + document.body.scrollTop +

76 document.documentElement.scrollTop;

77 }

78 if (mouseEvent.target) {

79 var offEl = mouseEvent.target;

80 var offX = 0;

81 var offY = 0;

82 if (typeof(offEl.offsetParent) != "undefined") {

83 while (offEl) {

84 offX += offEl.offsetLeft;

85 offY += offEl.offsetTop;

86

87 offEl = offEl.offsetParent;

88 }

89 } else {

90 offX = offEl.x;

91 offY = offEl.y;

92 }

93 result.x -= offX;

94 result.y -= offY;

95 }

96 return result;

97 };

98 var getMouseEventResult = function (mouseEvent , mouseEventDesc) {

99 var coords = getCrossBrowserElementCoords(mouseEvent);

100 return mouseEventDesc + " at (" + coords.x + ", " + coords.y +

")";

101 };

102 /** Event Handlers */

103 $scope.onFirstBtnClick = function () {

104 $scope.onFirstBtnClickResult = "CLICKED";

105 };

106 $scope.onSecondBtnClick = function (value) {

107 $scope.onSecondBtnClickResult = "you typed '" + value + "'";

108 };

120 Chapter 7. Implementation

109 $scope.onDblClick = function () {

110 $scope.onDblClickResult = "DOUBLE -CLICKED";

111 };

112 $scope.onMouseDown = function ($event) {

113 $scope.onMouseDownResult = getMouseEventResult($event , "Mouse

down");

114 };

115 $scope.onMouseUp = function ($event) {

116 $scope.onMouseUpResult = getMouseEventResult($event , "Mouse

up");

117 };

118 $scope.onMouseEnter = function ($event) {

119 $scope.onMouseEnterResult = getMouseEventResult($event , "Mouse

enter");

120 };

121 $scope.onMouseLeave = function ($event) {

122 $scope.onMouseLeaveResult = getMouseEventResult($event , "Mouse

leave");

123 };

124 $scope.onMouseMove = function ($event) {

125 $scope.onMouseMoveResult = getMouseEventResult($event , "Mouse

move");

126 };

127 $scope.onMouseOver = function ($event) {

128 $scope.onMouseOverResult = getMouseEventResult($event , "Mouse

over");

129 };

130 /** End of editor functionality */

131 }]);

7.1.5 Services and Factories

The Services and Factories in our application are responsible for the communication between the

client side and the server side. Besides of the services at the server side, we implemented a list of

services and factories at the client side. In more details, through these services and factories we

can call server side services through AJAX calls and get the responses in the client side. Due to the

nature of JavaScript and the asynchronous calls between the client side and the server, there is the

need to adjust all the calls accordingly. Listing 7.4 presents some sample code of a Service and a

Factory in the JavaScript language.

Listing 7.4: Example of a factory implementation.

7.1. Client Side 121

1 app.factory('PortfolioFactory ', function ($http , myConfig) {

2 var portfolioFactory = {};

3 portfolioFactory.getAllMedia = function (token) {

4 var promise = $http({

5 method: 'GET',

6 header: {

7 Authorization: 'Bearer ' + token

8 },

9 url: myConfig.apiUrl + '/portfolio '

10 });

11 return promise;

12 };

13 portfolioFactory.getAllMediaByType = function (type , token) {

14 var promise = $http({

15 method: 'GET',

16 header: {

17 Authorization: 'Bearer ' + token

18 },

19 url: myConfig.apiUrl + '/portfolio/' + type

20 });

21 return promise;

22 };

23 portfolioFactory.deleteMultimedia = function (multimediaId , token)

{

24 var promise = $http({

25 method: 'DELETE ',

26 header: {

27 Authorization: 'Bearer ' + token

28 },

29 url: myConfig.apiUrl + '/portfolio/' + multimediaId

30 });

31 return promise;

32 };

33 portfolioFactory.getAllMediaSplitByType = function (token) {

34 var promise = $http({

35 method: 'GET',

36 header: {

37 Authorization: 'Bearer ' + token

38 },

39 url: myConfig.apiUrl + '/portfolio/split'

40 });

41 return promise;

122 Chapter 7. Implementation

42 };

43 return portfolioFactory;

44 });

7.1.6 Multilinguality

Both our client side applications, the editor tool and the mobile application, support multilinguality.

Currently all the user interfaces that have been implemented are translated in both English and

Greek.

In order to tackle this aspect of the system we exploited the techniques and configurations pro-

vided by AngularJS. To this end, firstly we used ids (e.g., "content.left.description", "header.title",

"content.right.logo") to identify the different elements in our HTML templates that should be trans-

lated. Then in the appropriate configuration files we set the textual values to these ids, representing

the actual label translation. Listing 7.5 presents some sample code of an HTML template, while

Listing 7.6 provides some sample code from the configuration file that we use for the English

translation.

Listing 7.5: Example of an HTML template.

1 <ul class="nav">

2 <li class="hidden -folded padder m-t m-b-sm text -muted text -xs">

3 Navigation

4

5 <li ui-sref -active="active">

6 <a ui-sref="app.dashboard">

7 <i class="glyphicon glyphicon -stats icon

text -info -dker"></i>

8 <span class="font -bold"

translate="aside.nav.DASHBOARD">Dashboard

9

10

11 <li ui-sref -active="active">

12 <a ui-sref="app.buildings">

13 <i class="fa fa-building icon text -info -dker"></i>

14 My

Buildings

15

16

17 <li ui-sref -active="active">

18 <a ui-sref="app.users">

19 <i class="fa fa-users icon text -info -dker"></i>

7.1. Client Side 123

20 <span class="font -bold"

translate="aside.nav.USERS">Users

21

22

23 <li ui-sref -active="active">

24 <a ui-sref="app.portfolio.type({type: 'image ', page: '1'})">

25 <i class="fa fa-image icon text -warning -lter"></i>

26 <span class="font -bold"

translate="aside.nav.PORTFOLIO">Portfolio

27

28

29

30 <a href class="auto">

31

32 <i class="fa fa-fw fa-angle -right text"></i>

33 <i class="fa fa-fw fa-angle -down text -active"></i>

34

35 <i class="glyphicon glyphicon -list -alt icon

text -primary -dker"></i>

36 <span class="font -bold"

translate="aside.nav.STRUCTURES">Structures

37

38 <ul class="nav nav -sub dk">

39 <li class="nav -sub -header">

40 <a href>

41 <span

translate="aside.nav.STRUCTURES">Structures

42

43

44 <li ui-sref -active="active">

45 <a ui-sref="app.indoor">

46

47

48

49 <li ui-sref -active="active">

50 <a ui-sref="app.movable">

51

52

53

54 <li ui-sref -active="active">

55 <a ui-sref="app.multifloor">

56

124 Chapter 7. Implementation

57

58

59

60

61 <li ui-sref -active="active">

62 <a ui-sref="app.settings">

63 <i class="fa fa-cogs icon text -info -dker"></i>

64 <span class="font -bold"

translate="aside.nav.SETTINGS">Settings

65

66

67 <li class="line dk hidden -folded">

68 <li class="hidden -folded padder m-t m-b-sm text -muted text -xs">

69 Your

Stuff

70

71

72 <a ui-sref="app.page.profile">

73 <i class="icon -user icon text -success -lter"></i>

74 <span

translate="aside.nav.your_stuff.PROFILE">Profile

75

76

77

78 <a ui-sref="app.docs">

79 <i class="icon -question icon"></i>

80 <span

translate="aside.nav.your_stuff.DOCUMENTS">Documents

81

82

83

Listing 7.6: Example of the configuration file format used for achieving multilinguality.

1 "building_new" : {

2 "header" : {

3 "basicInfo" : "Basic Information",

4 "subtitle" : "Please fill the information to continue",

5 "create_button" : "Create Building"

6 },

7 "footer" : {

8 "create_button" : "Submit"

9 },

7.1. Client Side 125

10 "content" : {

11 "form" : {

12 "description" : "Description of Building ",

13 "keywords" : "Keywords",

14 "fullName" : "Full Name of Building",

15 "shortName" : "Short Name of Building",

16 "code" : "Code",

17 "address" : "Address of Building",

18 "phones" : "Phones of Building",

19 "website" : "Website of Building",

20 "numLevels" : "Number of Floors",

21 "keywords" : "Keywords of Building",

22 },

23 "placeholder" : {

24 "fullName":"Enter the Full Name of Building",

25 "shortName":"Enter the Short Name of Building",

26 "description":"Enter the Description of Building",

27 "address":"Enter the Address of Building",

28 "url":"Enter the Url of Building",

29 }

30 }

31 }

7.1.7 SVG

In order to design and implement a useful and full functional editor, we used SVG language. SVG

stands for Scalable Vector Graphics and it is a language for describing 2D-graphics and graphical

applications in XML and the XML is then rendered by an SVG viewer. SVG is mostly useful for

vector type diagrams like Pie charts, Two-dimensional graphs in an X, Y coordinate system etc.

Most of the web browsers can display SVG just like they can display PNG, GIF, and JPG. SVG is

a great way to present vector based line drawings and is a great complement to bitmaps, the latter

being better suited for continuous tone images. One of the most useful things about SVG is that it’s

resolution independent, meaning that you don’t need to think about how many pixels you have on

your device, the result will always scale and be optimized by the browser to look great. The SVG

specification defines 14 functional areas or feature sets such as:

• Paths: Simple or compound shape outlines are drawn with curved or straight lines that can

be filled in, outlined, or used as a clipping path. Paths have a compact coding. For example

M (for ’move to’) precedes initial numeric x and y coordinates and L (line to) precedes a

126 Chapter 7. Implementation

point to which a line should be drawn. Further command letters (C, S, Q, T and A) precede

data that is used to draw various BÃl’zier and elliptical curves. Z is used to close a path. In

all cases, absolute coordinates follow capital letter commands and relative coordinates are

used after the equivalent lower-case letters.

• Basic shapes: Straight-line paths and paths made up of a series of connected straight-line

segments (polylines), as well as closed polygons, circles and ellipses can be drawn. Rectan-

gles and round-cornered rectangles are also standard elements.

• Text: Unicode character text included in an SVG file is expressed as XML character data.

Many visual effects are possible, and the SVG specification automatically handles bidirec-

tional text (for composing a combination of English and Arabic text, for example), vertical

text (as Chinese was historically written) and characters along a curved path (such as the text

around the edge of the Great Seal of the United States).

7.1.8 QR Codes

A QR code is a type of matrix bar-code invented in 1994 by Toyota. QR codes were first intended

to be used for the automotive industry. Due to their fast readability and large storage capacity,

they quickly became famous for other purposes like advertising by storing an address or a Uniform

Resource Locator (URL).

Figure 7.4: Example of QR Code.

In the context of this thesis, QR codes are used to identify the current position of a device inside

the building. Indeed, the QR codes are placed at strategic places inside the building. When the user

scans a QR code with his device, the system recognizes his current position. Figure 7.4 presents an

example of QR Code.

7.1. Client Side 127

Scanning QR codes on Android

There exist various open source software suites for reading QR codes. They all basically use the

same decoding principle, namely to use the built-in camera of a mobile device to scan and decode

a QR code. One of these software suites is called ZXing. The problem with ZXing is that it is

not possible to use it within an existing application. Developers can only use it by first placing

a button somewhere inside the UI of the application, and by implementing a click event that will

open a camera window in order to use the functionalities provided by ZXing. This is clearly not in

the sense we wanted our application to behave. The software suite that has been finally chosen for

this thesis is called ZBar. The latter can be directly included into iPhone or Android applications,

which makes the QR code scanning process completely transparent to the user.

Mobile Application

When building an application optimized for mobile devices, the developer must take into account

the small size of the screen which affects the usability of the applications. The menus that are

provided with the mobile applications are at most times hidden and become visible only when the

user needs them. This happens with the use of a button that reveals the menu. When building native

applications for the mobile platforms, the Software Development Kits provide the functionality

needed for creating such menus.

However, when building web applications for mobile devices, the developer needs to implement

the functionality for the sliding menu by himself. There are a number of ready-to-use implemen-

tations available open-source, but they all have their disadvantages when it comes to performance,

since they try to apply themselves to the general cases, providing more functionality than needed

most of the times. To this end we developed a custom sliding menu, as minimal as possible with

performance in mind.

Figures 7.5a and 7.5b present the main elements of our mobile user interfaces. These are the two

menus (right and left) and the main content area in the middle. When the menus are hidden, they

are pushed away from the visible area (Viewport) of the document. When the menus are becoming

visible, the whole canvas is moved to the left or right (depending on which menu is open), which

causes one of the two menus to appear.

In order to make a native-like mobile application, we used Ionic Framework [2]. Ionic is a

powerful HTML5 SDK that helps you build native-feeling mobile apps using web technologies

like HTML, CSS, and Javascript.

Built on top of AngularJS and Apache Cordova, Ionic provides tools and services for devel-

oping hybrid mobile apps using Web technologies like CSS, HTML5, and Sass. Ionic is focused

128 Chapter 7. Implementation

(a) Menu is hidden. (b) Menu is visible.

Figure 7.5: The Viewport.

mainly on the look and feel, and UI interaction of mobile applications. Ionic simply match with

PhoneGap and AngularJS in order to create a powerful SDK most suited to develop rich and robust

applications. Listing 7.7 presents a sample code of an HTML template using the Ionic Framework

in our mobile application. Ionic tags can be immediately recognized since their names are in the

form of "ion-*", while the AngularJS tags use generally the form of "ng-*".

Listing 7.7: Example of html template.

1 <ion -view class="category -feeds -view">

2 <ion -nav -title>

3 List Of Objects

4 </ion -nav -title>

5 <ion -content >

6 <div class="list category -feeds">

7 <!-- Multimedia Files -->

8 <div style="border: 1px solid;border -radius:

5px;border -color: #ddd;margin -top:10px">

9 <div class="item item -divider">

10 <i class="ion -images"></i>

11 Indoor Objects

12 </div>

13 </div>

14 <a ng-repeat="static in staticElements" class="item

item -icon -right"

15 ui-sref="app.generalobject(

16 {

17 buildingId: buildingId ,

18 floorId: static.floorId ,

19 objectId: static.id

20 })">

7.1. Client Side 129

21 <div class="thumbnail -outer">

22 <pre -img ratio="_1_1" helper -class="">

23 <img class="thumbnail"

24 ng-src="{{ static.imgUrl }}"

25 spinner -on-load>

26 </pre -img>

27 </div>

28 <div>

29 {{ static.shortName }}

30 <p class="description">{{ static.description }}</p>

31 </div>

32 <i class="icon ion -chevron -right"></i>

33

34 <div style="border: 1px solid;border -radius:

5px;border -color: #ddd;margin -top:10px">

35 <div class="item item -divider">

36 <i class="ion -images"></i>

37 Movable Objects

38 </div>

39 </div>

40 <a ng-repeat="mov in movableElements" class="item

item -icon -right"

41 ui-sref="app.generalobject(

42 {

43 buildingId: buildingId ,

44 floorId: mov.floorId ,

45 objectId: mov.id

46 })">

47 <div class="thumbnail -outer">

48 <pre -img ratio="_1_1" helper -class="">

49 <img class="thumbnail"

50 ng-src="{{mov.imgUrl }}"

51 spinner -on-load>

52 </pre -img>

53 </div>

54 <div>

55 {{mov.shortName }}

56 <p class="description">{{mov.description }}</p>

57 </div>

58 <i class="icon ion -chevron -right"></i>

59

60 </div>

130 Chapter 7. Implementation

61 </ion -content >

62 </ion -view>

7.2 Server Side

The server side (backend) of our system is based on the Java programming language. More specifi-

cally, we used the Spring Framework. The main features of Spring that we used were: the Inversion

of Control container, the Spring Data framework, Spring Web and Spring Security.

7.2.1 Persistency

For the persistence of the data we have chosen a document database, MongoDB [46, 20]. Mon-

goDB is a non-relational (NoSQL) database which allows us to represent the data of the system

as JSON documents, while providing rich query expressiveness and selectivity. In recent years,

non-relational databases are becoming more and more popular and have been replacing relational

databases in a lot of cases, especially in big data and cloud based systems. The technology be-

hind most NoSQL databases is based on distributed and parallel systems, as well as in-memory

databases. There has been a lot of evaluation and criticism on NoSQL databases [43, 37], and a lot

of debate about the selection of the best database technology between the two [67, 52]. Comparing

relational (SQL) databases to NoSQL, we can note the following:

• Schema: Regular SQL platforms often have strictly enforced rules for a schema change,

while most NoSQL platforms are schema-less, thus allowing any schema updates without

any effort.

• Queries: SQL supports a growing subset languages for queries, as well as a wide range of

filters, sorting options, and projections and index queries. NoSQL does all this as well, but

SQL can often go beyond it, allowing powerful aggregations of your data as well, beyond

what NoSQL can do.

• Scalability: For years, database administrators relied on scaling up, buying bigger servers

as database load increased. However, as transaction rates and demands on the databases

continue to expand immensely, emphasis is on scaling out instead. Scaling out is distributing

databases across multiple hosts, and that is something NoSQL does better than standard SQL.

They are designed for optimal use on scaled out databases.

• Management: NoSQL databases are generally designed to require less management overall.

Repairs are often automatic, and data distribution and simpler data models contribute to less

7.2. Server Side 131

administration required overall.

Some reasons, that led us to choose MongoDB are the following:

• Schema-less: Most of our data does not conform to a rigid relational schema. Hence, we can

not bound it in the structure of a relational database and we need some more flexibility. Due

to the fact that MongoDB allows us to store parts of our data in different forms with minor

effort. Moreover, this makes our system capable of supporting interoperability with other

external systems with minimum effort.

• Querying: Our flexible schema will need to support a lot of elasticity in the querying of the

data. Using SQL, which is a strictly typed language, we would have to implement big and

complex queries, and most of the times even whole procedures with multiple queries until we

search for the results and create the objects. On the contrary, the query language supported

by MongoDB is extremely flexible.

• Geospatial: A particularly powerful feature of MongoDB is its support for geospatial indexes.

This allows the storage of x and y coordinates within documents and operations like near a

set of coordinates or within a box or circle.

Examples of the data as persisted in the database are presented in Appendix A. We have divided

the model to a number of entities, with each entity represented by a collection in MongoDB. The

most important of these entities are: Building, Structure, Object, Multimedia, User. Apart from

JSON documents, MongoDB can also persist blobs (files), which allowed us to put the multimedia

files and the thumbnails along with model collections.

7.2.2 RESTful Web Services

In order to expose our data to our client applications and other external systems we developed an

API that enables data access through the use of RESTful services [4]. The reason of using REST

was based on the following facts:

(a) less overhead compared with SOAP (b) minimize the coupling between client and server

components in a distributed application (c) less duplication since HTTP already represents DELETE,

GET, PUT and POST operations (d) our server is going to be used by many different clients that

we do not have control over (e) more standardized, providing HTTP operations that are well un-

derstood and operate consistently (f) more human readable and testable there is no requirement to

use complex data interchange formats like XML (g) a service that a client developer should be able

to easily understand due to the consistent use of the HTTP protocol To this end, we built a set of

132 Chapter 7. Implementation

RESTful services exposing all the resources and functionality of our system and we created CRUD

operations for every possible feature. These services are used by both our client side applications,

the editor tool (desktop application) and the mobile application to fetch, create, update and delete

data on our system.

7.2.3 Security

Security is a very important aspect in every system, especially in the web-based applications. More

importantly, applications based on AJAX and Web 2.0 technologies pose a lot of possible security

vulnerabilities due to the nature of the protocols that they use for transferringdata [61].

For securing our infrastructure, we have used the security capabilities provided by the Spring

Framework. These include the cookie based identification of the users of the system and the login

using the RESTful login service. The important services that require the users to be logged in in

order to use them check for the existence of the user data in the HTTP session, and deny access

otherwise. However, we have also implemented some services that do not require user identification

so that they can be used by external applications without problems or need for identification.

7.2.4 JSON Web Token

JSON Web Token is an open standard that defines a compact and self-contained way for securely

transmitting information between parties as a JSON object. This information can be verified and

trusted because it is digitally signed. JWTs can be signed using a secret or a public/private key pair

using RSA. Below we explain some concepts of this definition further.

• Compact: Because of its size, it can be sent through an URL, POST parameter, or inside an

HTTP header. Additionally, due to its size its transmission is fast.

• Self-contained: The payload contains all the required information about the user, to avoid

querying the database more than once

In authentication, when the user successfully logs in using his credentials, a JSON Web Token

will be returned and must be saved locally , instead of the traditional approach of creating a ses-

sion in the server and returning a cookie. Whenever the user wants to access a protected route or

resource, it should send the JWT, typically in the Authorization header using the Bearer schema.

Figure 7.6 presents a diagram of this process. Therefore the content of the header should look like

the following. Authorization: Bearer <token>

7.2. Server Side 133

Figure 7.6: Json Web Token process diagram.

134 Chapter 7. Implementation

Summary

In this chapter we described the implementation details of the most important components. Addi-

tionally, we provided source code listings with examples of our implementation.

Chapter 8

Graphical User Interface

This chapter presents the methodology that we followed for designing the user interfaces of our

applications, as well as the final product. Section 8.1 describes the phase of storyboard designing

and user interface prototyping, Section 8.2 describes the evaluation methods that we had applied in

order to design better and more useful applications and Section 8.3 presents the final outcome of

the graphical user interface as they have been implemented.

8.1 Prototypes

At the initial stages of the design process, we sketched some prototypes of the user interfaces and

created storyboards to visualize and organize our ideas. A storyboard is a representation of a partic-

ular interaction sequence [49]. Storyboards enable the better visualization of the interaction and the

navigation between screens, while presenting most of the functionality of the system. Moreover,

they enable brainstorming and allow changes to occur on the fly if a problem is found.

In our user interface design process, the storyboards were used in multiple heuristic evaluations

with random users familiar with mobile devices. We were able to receive feedback from these

evaluations and refine our design, making it more user friendly and efficient.

The following sections present some early user interface prototypes of the system along with

the action that the user was supposed to perform. More specifically, Section 8.1.1 presents the user

interface prototypes of the editor tool (desktop application), while Section 8.1.2 provides the user

interface prototypes of our player application (mobile application).

136 Chapter 8. Graphical User Interface

8.1.1 Editor Tool

The figures of this section present some of user interface prototypes of the editor tool which were

drawn in the early stages of the design process. These prototypes were initially used for the creation

of storyboards and of course for usability evaluation process. Each prototype has a title and the

purpose that the user interface serves.

Figure 8.1: Editor Tool - View Buildings.

8.1. Prototypes 137

Figure 8.2: Editor Tool - View Building.

Figure 8.3: Editor Tool - View Structures.

138 Chapter 8. Graphical User Interface

Figure 8.4: Editor Tool - Create Structure.

Figure 8.5: Editor Tool - Editor (View Plan).

8.1. Prototypes 139

Figure 8.6: Editor Tool- Editor (View Nodes).

Figure 8.7: Editor Tool - Give Semantic Step 1.

140 Chapter 8. Graphical User Interface

Figure 8.8: Editor Tool - Give Semantic Step 2.

Figure 8.9: Editor Tool - Building Media.

8.1. Prototypes 141

Figure 8.10: Editor Tool - Portfolio.

142 Chapter 8. Graphical User Interface

8.1.2 Mobile Application

The figures of this section present some of user interface prototypes of the mobile application which

were drawn in the early stages of the design process. Each prototype has a title and the purpose that

the user interface serves.

(a) Landing Page. (b) Index Page.

Figure 8.11: Mobile Application - User Interface Prototypes.

8.1. Prototypes 143

(a) Find a Place. (b) List Of Objects.

(c) View Object. (d) Settings.

Figure 8.12: Player Application - User Interface Prototypes (cont’d).

144 Chapter 8. Graphical User Interface

(a) Side Menu. (b) View Map.

(c) Map Instruction.

Figure 8.13: User Interface Prototypes.

8.2. Usability Evaluation 145

8.2 Usability Evaluation

The following sections present the evaluation methods that have been applied in order to evaluate

and improve usability of our applications. In more details, Section 8.2.1 describes the Pluralistic

Walkthrough method, Section 8.2.2 describes the Heuristic Evaluation method and Section 8.2.3

describes the Think-Aloud method.

8.2.1 Pluralistic Walkthrough

The Pluralistic Walkthrough [3] is a usability inspection method used to identify usability issues

in a piece of software or website in an effort to create a maximally usable human-computer in-

terface. The method centers on using a group of users, developers and usability professionals to

step through a task scenario, discussing usability issues associated with dialog elements involved

in the scenario steps. The group of experts used is asked to assume the role of typical users in the

testing. The method is prized for its ability to be utilized at the earliest design stages, enabling the

resolution of usability issues quickly and early in the design process. The method also allows for

the detection of a greater number of usability problems to be found at one time due to the inter-

action of multiple types of participants (users, developers and usability professionals). This type

of usability inspection method has the additional objective of increasing developers sensitivity to

users concerns about the product design.

Walkthrough Team

A walkthrough team must be assembled prior to the pluralistic walkthrough. Three types of partic-

ipants are included in the walkthrough: representative users, product developers and human factors

(usability) engineers/professionals. Users should be representative of the target audience, and are

considered the primary participants in the usability evaluation. Product developers answer ques-

tions about design and suggest solutions to interface problems users have encountered. Human

factors professionals usually serve as the facilitators and are also there to provide feedback on the

design as well as recommend design improvements. The role of the facilitator is to guide users

through tasks and facilitate collaboration between users and developers. It is best to avoid having

a product developer assume the role of facilitator, as they can get defensive to criticism of their

product. As it is rational we were not able to follow the above process but we tried to approach

it through chose four representative users in order to take more accurate results. More specifically

we chose two students from School of Architecture, one developer and the director of Maritime
Museum of Chios, Miss Anna Sitara.

146 Chapter 8. Graphical User Interface

Procedure

We had printed our paper prototypes (as described in section 8.1) and put it together in packets in

the same order that the screen would be displayed when the users were carrying out the specific

tasks. This included hard copy panels of screens, dialog boxes, menus, etc. presented in order. Ad-

ditionally, we gave to each participant a hard copy of the task scenario. There are several scenarios

defined in this document complete with the data to be manipulated for the task. Each participant

receives a package that enables him or her to write a response directly onto the page. The task

descriptions for the participant are short direct statements.

Participants are given written instructions and rules at the beginning of the walkthrough session.

The rules indicate to all participants (users, designers, usability engineers) to:

• Assume the role of the user.

• To write on the panels the actions they would take in pursuing the task at hand.

• To write any additional comments about the task.

• Not flip ahead to other panels until they are told to.

• To hold discussion on each panel until the facilitator decides to move on.

The selected tasks include the entire range of our applications (desktop and mobile). The tasks

was performed by the users in Editor tool were the following:

1. Create account.

2. Browse existing buildings.

3. Preview a building.

4. Create a building.

5. Add Floor.

6. Draw a floor plan.

7. Add Object.

8. Add Node.

9. Preview all structures.

10. Add Structure.

The tasks were performed by the users in mobile application were the following:

8.2. Usability Evaluation 147

1. Log in to the application.

2. Browse an existing building.

3. Find a place inside building.

4. Locate himself.

5. Take instruction for navigation to an object.

After the completion of this type of evaluation we gave a short questionnaire to the users in order

to evaluate the interface and general usability and feel of our application. Although the difficulty

of the tasks and the complexity of our application, the feedback was very hopeful, saying that it is

handy especially if we corrected the identified problems and the carried on with the other evaluation

types and that provides to user all the necessary functionality. The users pointed out that the lack

of color on the interface did not help them, and that by adding it, the interface would become

much better and even more convenient. We correct the identified problems and then initiated at the

following evaluations.

8.2.2 Heuristic Evaluation

After we implemented user interfaces of our applications, based on the results from the previous

phase of evaluation, we tried to make a heuristic evaluation. A heuristic evaluation[1] is a usability

inspection method for computer software that helps to identify usability problems in the user inter-

face design. It specifically involves evaluators examining the interface and judging its compliance

with recognized usability principles.

These evaluation methods are now widely taught and practised in the new media sector, where

UIs are often designed in a short space of time on a budget that may restrict the amount of money

available to provide for other types of interface testing.

The main goal of heuristic evaluations is to identify any problems associated with the design of

user interfaces. Usability consultant Jakob Nielsen developed this method on the basis of several

years of experience in teaching and consulting about usability engineering.

Jakob Nielsen’s heuristics are probably the most-used usability heuristics for user interface

design. Nielsen developed the heuristics based on work together with Rolf Molich in 1990. The

final set of heuristics that are still used today were released by Nielsen in 1994. The heuristics as

published in Nielsen’s book Usability Engineering[50] are as follows:

• Visibility of system status: The system should always keep users informed about what is

going on, through appropriate feedback within reasonable time.

148 Chapter 8. Graphical User Interface

• Match between system and the real world: The system should speak the user’s language, with

words, phrases and concepts familiar to the user, rather than system-oriented terms. Follow

real-world conventions, making information appear in a natural and logical order.

• User control and freedom: Users often choose system functions by mistake and will need a

clearly marked "emergency exit" to leave the unwanted state without having to go through an

extended dialogue. Support undo and redo.

• Consistency and standards: Users should not have to wonder whether different words, situa-

tions, or actions mean the same thing. Follow platform conventions.

• Error prevention: Even better than good error messages is a careful design which prevents a

problem from occurring in the first place. Either eliminate error-prone conditions or check

for them and present users with a confirmation option before they commit to the action.

• Recognition rather than recall: Minimize the user’s memory load by making objects, actions,

and options visible. The user should not have to remember information from one part of the

dialogue to another. Instructions for use of the system should be visible or easily retrievable

whenever appropriate.

• Flexibility and efficiency of use: Accelerators may often speed up the interaction for the

expert user such that the system can cater to both inexperienced and experienced users. Allow

users to tailor frequent actions.

• Aesthetic and minimalist design: Dialogues should not contain information which is irrel-

evant or rarely needed. Every extra unit of information in a dialogue competes with the

relevant units of information and diminishes their relative visibility.

• Help users recognize, diagnose, and recover from errors: Error messages should be expressed

in plain language (no codes), precisely indicate the problem, and constructively suggest a

solution.

• Help and documentation: Even though it is better if the system can be used without docu-

mentation, it may be necessary to provide help and documentation. Any such information

should be easy to search, focused on the user’s task, list concrete steps to be carried out, and

not be too large.

The simplicity of heuristic evaluation is beneficial at the early stages of design. Heuristic eval-

uation requires only one expert, reducing the complexity and expended time for evaluation and as

it is rational this evaluation was made by us. It was held at the early stages of design and we ex-

amined the system twice using the rules of Nielsen. Firstly we tried to find out problems that naive

8.2. Usability Evaluation 149

users might encounter, as well as problems related to the conceptual model of our system. Then

we examined the system having the user’s primary goals, their ability targets and environmental

parameters in mind.

8.2.3 Think Aloud

After the corrections of the heuristic evaluation we tried to do another kind of evaluation in order to

take more accurate feedback about our applications. This time we tried to perform the same tasks

on the real implemented system. The aim was to see how people react with our applications in real

conditions and not over a paper without interactivity that has the electronic device. So we tried to

evaluate our applications with the method of think aloud.

Think aloud protocols [5] consist of observing a user working with an interface while encour-

aging them to "think-aloud"; to say what they are thinking and wondering at each moment. Think-

aloud protocols are of particular value because they focus on the problems a user has; when the

user is working without difficulty, direct observation (and hence the think-aloud protocol itself) is

of very limited use. This is because the user is unable to communicate as fast as they think and

act, unless a specific problem arises which slows them down. It is at these times when this method

really shines as it allows the observer to correlate the actions and statements of the participant. Test

sessions are often audio and video recorded so that developers can go back and refer to what partic-

ipants did and how they reacted. The purpose of this method is to make explicit what is implicitly

present in subjects who are able to perform a specific task.

Procedure

In this stage we chose three different users, two of them were students of School of Architecture

and one of them is the director of local super market of Chania. In this way we had a wide variety

and representative user which are possible user in the future. According to the think aloud method

we allowed the users unaided to follow all the steps needed to reach the completion of an action. We

observe all of the user actions in order to see whether they make mistakes, when they are confused

and how they are trying to correct their mistakes. Also a key requirement was that the user should

tell us what he was thinking, and when he did not, we were trying to remind it to him. We recorded

a video of what happens on the screen and the room, which enabled us to inspect and analyse the

whole process more closely.

The results were impressive and the feedback was very hopeful. However, there were some

problems which we tried to correct. After these correction, users were asked if the problems that

150 Chapter 8. Graphical User Interface

they are encountered were solved and the results we got were very positive.

8.3 User Interfaces

The following section present some graphical user interfaces of our applications as they have been

implemented in the final system. In more details, Section 8.3.1 presents user interfaces of our editor

tool and Section 8.3.2 provides the user interfaces of our mobile application.

8.3.1 Editor Tool

Landing Page

When the users types our url and opens our application for the first time, the landing page (Fig-

ure 8.14) is presented which describes our objectives and capabilities which provided by our appli-

cations. The user also has the option to create a new account or login in order to get all of potential

functionality.

Figure 8.14: Editor Tool - Landing.

Create Account

When the user selects the Signup button the screen (Figure 8.15) is displayed, and the system waits

the user to type his personal information. The user has also the option to log in if he has already an

account to our system.

8.3. User Interfaces 151

Figure 8.15: Editor Tool - Create Account.

Log In

When the user selects the Sign In button the screen (Figure 8.16) is displayed, and the system waits

the user to type his credentials. The user has also the option to create a new account, as well as to

restore his password if he has forgotten it.

Figure 8.16: Editor Tool - Log in.

152 Chapter 8. Graphical User Interface

Home Page

After a successful login, the homepage(Figure 8.17) of our application is presented to the user’s

browser. The homepage is consisted of three main parts as we said in previous chapter. These

parts is the top bar, the left side menu, and the main content of our application. The top bar and

the left side menu are constantly presented to the user in order to take pleasure of the majority of

application’s capabilities in one step from every different page. The main content of our application

is modified based on the page that the user wants to access. In the next paragraphs, we describe in

more detail all the available options provided by these three main parts of the application.

Top Bar

• Menu hide/show: By selecting this option the user has ability to either hide or show the left

side menu.

• Profile button: By selecting this option the left side menu presents some basic information

regarding the user’s profile.

• Add Building: This option is used for the creation of a new building from scratch.

• Multilinguality: Shows the current language of the graphical user interface and provides the

option to change it using a dropdown menu.

• Full screen: This option is used for changing the presentation mode of the application to

fullscreen.

• Profile: Presents the personal information and settings of the user that is currently logged in.

Left Side Menu

• Dashboard: Presents the homepage of the application.

• My Buildings: Presents the buildings which are created by the user.

• Users: Presents the users that have access in this application account, in order to contribute

to the building creation and modification.

• Portfolio: Presents the personal multimedia object library of the user. Additionally, it offers

the ability to upload new content and organize in the form of collections.

• Structures: Presents the structures which have been created through the application and pro-

vide several filtering options in order to enable better searching experience.

8.3. User Interfaces 153

• Profile: Shows the user’s profile page and allows the editing of information related to his

account.

• Help: Provides information that explains how to use our application in order to perform

certain tasks.

Figure 8.17: Editor Tool - Home.

Create Building

Figure 8.18 presents the user interface of our application when creating a new building from scratch.

This is actually the first step in the building creation process and the user has to fill out some basic

descriptive information about the building.

Create/Add Floor

Figure 8.19 presents the user interface that is displayed when creating/adding a new floor to an

already existing building. The user fills some basic information about the floor on the pop-up

window and after finishing his action the new floor is added to the building’s floor list.

Draw Object

After creating a floor, the user should draw the plan of this floor using the editor tools. The Fig-

ure 8.20 presents screenshot of drawing process. The user select the polygon button and then draws

154 Chapter 8. Graphical User Interface

Figure 8.18: Editor Tool - Create Building.

Figure 8.19: Editor Tool - Add Floor.

8.3. User Interfaces 155

his desired polygon. These polygons represents the containing objects of floor, such as rooms,

stairs or movable objects.

Figure 8.20: Editor Tool - Draw Object.

Give Semantic to an existing Object (2 screens)

After drawing a number of polygons, the user should describe them in order to give semantic to

them. In this stage, the user selects the give semantic button and fills all the required and optional

information in order to describe as well as possible the selected object. Information such as full

name, short name, description etc. are presented below in Figure 8.21 and Figure 8.22.

Upload Media to an existing Object

Optionally the user is able to upload media files in order to give more representative information

about the objects of building. In this screen (Figure 8.23) the user can upload three types of media

files, such as images, audios or videos. After the uploading of these files we give a thumbnail of

each file.

Add Node

For navigation purposes the user should create and set a complete graph which represent the pos-

sible paths inside the building. To do this, the user should to add multiples nodes, as shown in the

156 Chapter 8. Graphical User Interface

Figure 8.21: Editor Tool - Give Semantic - step 1.

Figure 8.22: Editor Tool - Give Semantic - step 2.

8.3. User Interfaces 157

Figure 8.23: Editor Tool - Upload Media.

following figures(Figure 8.24 and Figure 8.25), around the floor and then he should connected to

each other.

Figure 8.24: Editor Tool: Add Nodes.

158 Chapter 8. Graphical User Interface

Figure 8.25: Editor Tool: View Node.

Create Structure

Figure 8.26 presents a screenshot of the user interface that is displayed in case the user wants to

create a new structure. In this stage the user has the ability to add the desired kind of structure, such

as indoor, multi-floor or movable.

Figure 8.26: Editor Tool: Create Structure.

8.3. User Interfaces 159

Building

The presentation mode of an already created building is shown in the user interface screenshot

of Figure 8.27. It provides an overview of the building’s characteristic including the full name,

description and other useful information.

Figure 8.27: Editor Tool: View Building.

Portfolio

The user interface of the user’s personal multimedia object library is presented in Figure 8.28.

Through this interface the user is able to upload new material, categorize the already existing mul-

timedia objects and also filter them based on their type.

160 Chapter 8. Graphical User Interface

Figure 8.28: Editor Tool: View Portfolio.

8.3. User Interfaces 161

8.3.2 Mobile Application

This section presents several screenshots of the mobile application’s user interface that we im-

plemented. Additionally, it provides some basic information and descriptions on how to perform

certain actions.

Landing Page

When the user visits a building and opens our application for the first time, we presented the Fig-

ure!8.29a below. In this screen give the ability to the user to log in if he already has an account,

sign up or simple login as visitor.

Log In

When the user selects the Login button the screen (Figure 8.29b) is presented, prompting him to

enter his credentials before continuing to the home screen of the application. The user also has the

option to create a new account and there is option to restore his password if user has forgot it.

(a) Landing. (b) Log in.

Figure 8.29: Mobile Application.

Find Building

The screenshot of Figure 8.30 is presented when the user opens our application for the first time,

he is able to search and choose the desired building or simply scan a QR code in order to retrieve

162 Chapter 8. Graphical User Interface

automatically his position.

(a) Welcome Page.

Figure 8.30: Mobile Application (cont’d).

Create Account

When the user selects the Signup button the screenshot of Figure 8.31a is presented in order to give

the ability to the user signup to our application. The user also has the option to login, in case that

he has already an account to our system.

Left Side Menu

The left side menu of our mobile application is presented in Figure 8.31b. The available options of

this menu are presented below along with some basic description.

• Profile: Presents the personal information and settings of the user that is currently logged in.

• Locate Yourself : Give the ability to the user to user his camera device in order to scan a QR

code that is located near to him.

• See the Map: Presents the current position of the user on the appropriate floor map.

• What’s in the Building: Shows a list with all building containing objects.

• Find a Place: Through this screen the user is able to search and retrieve a place inside the

building.

8.3. User Interfaces 163

• Recent Destination: In this screen are presented the recent destination of the user.

• Help and Feedback: Presents some information about the way that user can use our applica-

tion.

• Settings: Shows the application’s settings.

(a) Create account. (b) Left side menu.

Figure 8.31: Mobile Application (cont’d).

All Buildings

Figure 8.32a presents a screenshot of the available buildings in our application. The user has the

option to inspect a specific building by simply clicking on it. By swiping left, the user is able to see

the left side menu of our application.

View Building

In this screen (Figure 8.32b) the user is able to see information about the selected building. In this

user interface the user is able to inspect some descriptive information about the building and its

containing objects.

164 Chapter 8. Graphical User Interface

(a) All buildings. (b) Building.

Figure 8.32: Player Application (cont’d).

Settings

Figure 8.33a presents a screenshot of the settings of our application. The user is able to select a

building as default in order to see information about the selected building. Additionally he has

the option to select if he is person with special needs in order to take into consideration through

generation of instruction process. Finally he has the choice to select the desired language of our

application.

See the Map

Figure 8.34 presents a screenshot of a floor map of specific floor. In this screen the user has the

option to locate himself inside the building or simple see information about the floor’s objects.

Additionally, he is able to click on these objects in order to retrieve more information about the

selected object, either is a movable object or multifloor and indoor.

Take Instructions

Figure 8.35 presents two of stages which are presented when the user selects to navigate to an

object. In the bottom of the map are presented the appropriate instructions in order to navigate the

user to his destination. With clicking on the arrows the user is able to retrieve the next command.

8.3. User Interfaces 165

(a) Settings. (b) Find Place.

Figure 8.33: Mobile Application (cont’d).

(a) See the Map. (b) See the Map - Search.

Figure 8.34: Mobile Application (cont’d).

166 Chapter 8. Graphical User Interface

(a) Start Location. (b) Command

Figure 8.35: Mobile Application.

Chapter 9

Conclusion & Future Work

In this thesis we presented the design and implementation of a platform for creating, designing,

annotating content and management of interior spaces, as well the navigation inside them. Our

main objectives were to: (a) support an easy and fast way to create and design the map of building,

(b) support a wide variety of possible buildings through the freedom which characterize our model,

(c) familiarize visitors of building with created interior spaces, and (d) provides instructions to the

user in order to navigate inside a building.

More specifically, we designed and implemented a platform that consists of two applications,

an editor tool and a mobile application. Through the editor tool, we supported the creation, design,

object’s annotation, and management of internal spaces of building, including building’s objects

editing. We tried to give the ability to everyone to create and design whichever kind of building

he wants, such as museum, supermarkets, retails, hotels etc. On the other side, we developed and

implemented a mobile application supporting the searching and the navigation of a user inside the

created building in order to familiarize with a new building. The mobile application is compatible

with most state-of-the-art mobile devices/operations, while both tools have been designed with

flexibility and extensibility in mind. The underlying model supports the creation and design of

great variety of building in order to create a great range of buildings that a user is able to navigate

inside and retrieve their content. To this end, our tools can be used in various domains including

museum, supermarkets, stadiums, hotels, ships etc.

Both the editor tool and mobile application have been evaluated for their usability though the

user of three types of evaluation (heuristic evaluation, pluralistic walkthrough evaluation and think

aloud evaluation). Finally, it is worth mentioning that we used state-of-the-art technologies to

implement our system in order to be compatible with all modern platforms.

It is a fact that we want to continue the work that we developed in this thesis and we have

168 Chapter 9. Conclusion & Future Work

many upgrades and extensions in our mind in order to give a more complete system to our users.

More specifically our future work will include multiple steps in order to extend our functionality

and system’s quality. Firstly we want to improve the procedure during the creation and design of

the floor plan. In the current version the user draws the floor plans from scratch using an editor,

but it would be better if this procedure is shorter. For example it would be very useful to retrieve

the desired floor plan from an uploaded image using image recognition algorithms or construct

an algorithm which transforms a design that is produced using CAD tools, in order to avoid the

drawing of floor plan. Furthermore, we want to work on the generation of instruction about the

navigation to the user and take advantage of all our data about the objects in order to generate

instruction which are connected with object inside building. It is a undeniable fact that in the current

supported model we save extended information for our objects, such as if an object is above, below,

opposite to another object. Regarding navigation instructions, our goal is to give to the form of

voice instructions in order to give the user the ability not to see the mobile device and be able to

navigate inside building only using these instructions. Another point that we want to focus on is to

implement our mobile application using native language in order to take pleasure of every feature

that is offered by mobile devices and improve experience of our users. It will be interesting to use

wireless or bluetooth technologies in order to track the mobile position in real time and generate

instruction on the fly.

Besides them, we want to give more features to creators of building. For example we think that

it is very useful for the museum staff to give them the ability to create a tour inside the building.

In this way a visitor is able to take part in scenario in order to see the whole museum according

to the museum staff guide. Also we think that it is a significant improvement to give the ability to

the administrator to manage and watch the interior spaces from another aspect. Specifically, it is

so important for administrators to know how many people are inside a room or how visitors move

inside building, or even create and organize events inside a reserved room.

In case of museum building, it may be useful for visitors to give recommendations about the

visitors exhibits in order to improve their sightseeing tour inside the museum, using their attitude

towards the objects which they have already seen. For example, if someone stands in front of an

exhibit for some time, is possible to be interested in these category of exhibits.

Additionally, in the near future we want to extend our model in order to connect an interior

space with a person who has a specific role (professor, lab director, staff member), for example a

professor with his office or his lab.

The routing system currently uses Dijkstra’s algorithm to find the shortest path between two

points. Using different algorithms, for example A*, can decrease the time needed to calculate

169

a route. Route calculation could also be performed on the device to decrease the reliance on a

internet connection. Especially, a visitor might not always have the needed credentials to use the

Wi-Fi system or even be aware of it’s existence. The reception from the cell phone network is not

always reliable and especially in underground levels unreliable at best.

Finally, we want to include in our model, connectivity with existing systems which have been

developed in our lab, such as educational games in case of student visits. People may discover

objects that enable them to proceed in the next step, they may get as a result hints on where the

next object to be discovered is, and eventually find the winning object which gives you the price.

Through the organization of educational games, we are able to familiarize children with a new

building and discover the desired objects.

In the long term, it is desirable to extend our application to another sector. It would be impres-

sive for us, if we were able to provide a 3D view of the interior. In this way, we could take off the

user experience and it would be too easy for the user to navigate inside the building. The second

sector that we are able to extend our application is the augmented reality. It is a too different sector

but it would be fantastic to enrich our application with this feature.

As you can understand, our main goal is to continue the development of this thesis in order to

create a platform that can be used for an extended variety of buildings through various ways.

Bibliography

[1] Heuristic Evaluation. https://en.wikipedia.org/wiki/Heuristic_evaluation.

[2] Ionic Framework. http://ionicframework.com/docs/.

[3] Pluralistic walkthrough. https://en.wikipedia.org/wiki/Pluralistic_walkthrough.

[4] Spring RESTful Services. http://spring.io/guides/gs/rest-service/.

[5] Think aloud protocol. https://en.wikipedia.org/wiki/Think_aloud_protocol.

[6] V. Abramova and J. Bernardino. NoSQL Databases: MongoDB vs Cassandra. In Proceedings

of the International C* Conference on Computer Science and Software Engineering, C3S2E

’13, pages 14–22, New York, NY, USA, 2013. ACM.

[7] F. Aebi. Autonomous Indoor Navigation. Msc thesis, University of Fribourg (Switzerland),

2012.

[8] G. Alonso. Web Services: Concepts, Architectures and Applications. Springer, 2004.

[9] D. Alur, D. Malks, and J. Crupi. Core J2EE Patterns: Best Practices and Design Strategies

(2nd Edition). Prentice Hall, 2 edition, 2003.

[10] AngularJS. https://docs.angularjs.org/guide.

[11] S. Anjum. Place Recognition for Indoor Blind Navigation. Msc thesis, Carnegie Mellon

University, 2010.

[12] D. M. Applications. https://msdn.microsoft.com/en-us/library/ee658108.aspx.

[13] A. Bachmeier. Wi-Fi based indoor navigation in the context of mobile services. Msc thesis,

University of Fribourg (Switzerland), 2013.

https://en.wikipedia.org/wiki/Heuristic_evaluation
http://ionicframework.com/docs/
https://en.wikipedia.org/wiki/Pluralistic_walkthrough
http://spring.io/guides/gs/rest-service/
https://en.wikipedia.org/wiki/Think_aloud_protocol
https://docs.angularjs.org/guide
https://msdn.microsoft.com/en-us/library/ee658108.aspx

172 Bibliography

[14] J. Behr, Y. Jung, J. Keil, T. Drevensek, M. Zoellner, P. Eschler, and D. Fellner. A Scalable

Architecture for the HTML5/ X3D Integration Model X3DOM. 2010.

[15] T. Berners-Lee and D. Connolly. RFC 1866 – Hypertext Markup Language – 2.0. http:

//www.faqs.org/rfcs/rfc1630.html, November 1995.

[16] I. Biederman. Recognition-by-Components: A Theory of Human Image Understanding .

1987.

[17] BSON. http://bsonspec.org.

[18] A. Chandgadkar. An Indoor Navigation System For Smartphones. Msc thesis, Imperial Col-

lege London, 2013.

[19] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra, A. Fikes,

and R. Gruber. Bigtable: A distributed storage system for structured data. Proceedings of the

7th USENIX Symposium on Operating Systems Design and Implementation (OSDI’06), 2006.

[20] K. Chodorow and M. Dirolf. MongoDB - The Definitive Guide: Powerful and Scalable Data

Storage. O’Reilly, 2010.

[21] A. Cockburn. Writing Effective Use Cases. Addison-Wesley Professional, 2001.

[22] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. 2004.

[23] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasub-

ramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value store.

SIGOPS Oper. Syst. Rev., 41(6):205–220, 2007.

[24] D. J. DeWitt and J. Gray. Parallel Database Systems: The Future of High Performance

Database Systems. Commun. ACM, 35(6):85–98, 1992.

[25] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D. A. Wood.

Implementation Techniques for Main Memory Database Systems. In Proceedings of the 1984

ACM SIGMOD International Conference on Management of Data, SIGMOD ’84, pages 1–8,

New York, NY, USA, 1984. ACM.

[26] H. Dinh, C. Lee, D. Niyato, and P. Wang. A survey of mobile cloud computing: architecture,

applications, and approaches. 2011.

[27] ECMA International. Standard ECMA-262 - ECMAScript Language Specification. 5.1 edi-

tion, June 2011.

http://www.faqs.org/rfcs/rfc1630.html
http://www.faqs.org/rfcs/rfc1630.html
http://bsonspec.org

Bibliography 173

[28] R. Fielding, J. Gettys, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. RFC2616

- Hypertext Transfer Protocol – HTTP/1.1. http://www.w3.org/Protocols/rfc2616/rfc2616-

sec10.html, 1999. [Online; accessed 25-July-2012].

[29] R. T. Fielding. Architectural Styles and the Design of Network-based Software Architectures.

Phd thesis, University of California, 2000.

[30] R. T. Fielding and R. N. Taylor. Principled Design of the Modern Web Architecture. ACM

Transactions on Internet Technology (TOIT), 2(2):115–150, 2002.

[31] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, Boston, erste

auflage edition, 2003.

[32] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.

[33] S. R. GANDHI. A REAL TIME INDOOR NAVIGATION AND MONITORING SYSTEM FOR

FIREFIGHTERS AND VISUALLY IMPAIRED . Msc thesis, ETH Zurich, 2012.

[34] J. J. Garrett. Ajax: A New Approach to Web Applications. 2005.

[35] O. Gierke. Spring Data JPA - Reference Documentation, 2012.

[36] T. Gothivarekar, H. Ajay, C. Pathak, S. Yadav, A. Perupalli, and P. Gauda. Indoor Navigation

System. 2015.

[37] R. Hecht and S. Jablonski. NoSQL Evaluation: A Use Case Oriented Survey. In Proceedings

of the 2011 International Conference on Cloud and Service Computing, CSC ’11, pages 336–

341, Washington, DC, USA, 2011. IEEE Computer Society.

[38] M. Hegarty. The Cognitive Science of Visual-Spatial Displays: Implications for Design. 2011.

[39] H. Heitkötter, T. A. Majchrzak, B. Ruland, and T. Weber. Evaluating Frameworks for Creating

Mobile Web Apps. In K.-H. Krempels and A. Stocker, editors, WEBIST, pages 209–221.

SciTePress, 2013.

[40] M. Holcik. Indoor Navigation for Android. Msc thesis, MASARYK UNIVERSITY FAC-

ULTY OF INFORMATICS, 2012.

[41] A. L. Hors, P. L. Hégaret, L. Wood, G. Nicol, J. Robie, M. Champion, and S. Byrve. Document

Object Model (DOM) Level 3 Core Specification. W3C Recommendation, April 2004.

174 Bibliography

[42] H. Huang and G. Gartner. A Survey of Mobile Indoor Navigation Systems. 2009.

[43] N. Leavitt. Will NoSQL Databases Live Up to Their Promise? Computer, 43(2):12–14, Feb.

2010.

[44] X. Li, B. Dong, L. Xiao, L. Ruan, and D. Liu. HCCache: A Hybrid Client-Side Cache Man-

agement Scheme for I/O-intensive Workloads in Network-Based File Systems. In Parallel

and Distributed Computing, Applications and Technologies (PDCAT), 2012 13th Interna-

tional Conference on, pages 467–473, Dec 2012.

[45] R. Mautz. Indoor Positioning Technologies . Msc thesis, ETH Zurich, 2012.

[46] MongoDB. http://www.mongodb.org/.

[47] D. L. Moody. The "Physics" of Notations: Towards a Scientific Basis for Constructing Visual

Notations in Software Engineering. 2009.

[48] M. D. Network. Introduction to Object-Oriented JavaScript.

[49] M. W. Newman and J. A. Landay. Sitemaps, Storyboards, and Specifications: A Sketch of

Web Site Design Practice. In Symposium on Designing Interactive Systems, pages 263–274,

2000.

[50] R. Nielsen, J; Mack. Usability Inspection Methods, John Wiley and Sons Inc. 1994.

[51] Z. Parker, S. Poe, and S. V. Vrbsky. Comparing NoSQL MongoDB to an SQL DB. In

Proceedings of the 51st ACM Southeast Conference, ACMSE ’13, pages 5:1–5:6, New York,

NY, USA, 2013. ACM.

[52] C. Pautasso, O. Zimmermann, and F. Leymann. RESTful Web Services vs. "Big" Web Ser-

vices: Making the Right Architectural Decision. In WWW ’08: Proceeding of the 17th inter-

national conference on World Wide Web, Proceedings of the 17th international conference on

World Wide Web, pages 805–814, New York, 2008. ACM.

[53] B. Peterson and R. Darken. Representation and recognition of the spatial organization of

three-dimensional shapes. 1977.

[54] A. Petrenko. GENERATION OF AN INDOOR NAVIGATION NETWORK FOR THE UNI-

VERSITY OF SASKATCHEWAN. Msc thesis, University of Saskatchewan, 2013.

[55] Phonegap. http://cordova.apache.org/docs/en/5.0.0/index.html.

http://www.mongodb.org/
http://cordova.apache.org/docs/en/5.0.0/index.html

Bibliography 175

[56] J. Pokorny. NoSQL Databases: A Step to Database Scalability in Web Environment. In

Proceedings of the 13th International Conference on Information Integration and Web-based

Applications and Services, iiWAS ’11, pages 278–283, New York, NY, USA, 2011. ACM.

[57] B. Pricope. Positioning using terrestrial wireless systems. Msc thesis, Jacobs University,

2013.

[58] T. Reenskaug. Models - Views - Controllers. Technical report, Technical Note, Xerox Parc,

1979.

[59] T. Reenskaug. The Model-View-Controller (MVC) Its Past and Present, 2003.

[60] J. Rehana. Model Driven Development of Web Application with SPACE Method and Tool-suit.

Msc thesis, Norwegian University of Science and Technology, 2010.

[61] P. Ritchie. The Security Risks of AJAX/Web 2.0 Applications. Network Security, 2007(3):4–

8, March 2007.

[62] G. Skevakis, C. Tsinaraki, I. Trochatou, and S. Christodoulakis. A Crowdsourcing Framework

for the Management of Mobile Multimedia Nature Observations. 2014.

[63] J. F. Smart. Jenkins - The Definitive Guide: Continuos Integration for the Masses: also Covers

Hudson. O’Reilly, 2011.

[64] R. Snook. MSOA Design Patterns and Mobile. Technical report, IBM Software, Rational,

2013.

[65] Spring. http://spring.io/.

[66] Spring. http://docs.spring.io/spring-framework/docs/current/

spring-framework-reference/html/overview.html.

[67] M. Stonebraker. SQL databases v. NoSQL databases. Commun. ACM, 53(4):10–11, 2010.

[68] A. van Kesteren, J. Aubourg, J. Song, and H. R. M. Steen. XMLHttpRequest Level 1. World

Wide Web Consortium, Working Draft WD-XMLHttpRequest2-20080930, January 2014.

[69] W. Wei, T. Enmin, and F. bing. A Data Distribution Platform Based on Event-Driven Mecha-

nism. In Computational Intelligence and Security (CIS), 2011 Seventh International Confer-

ence on, pages 1395–1399, Dec 2011.

http://spring.io/
http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/overview.html
http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/overview.html

176 Bibliography

[70] L. P. WEN, C. W. NEE, K. M. CHUN, T. SHIANG-YEN, and R. IDRUS. Application of

WiFi-based Indoor Positioning System in Handheld Directory System. 2010.

[71] J. Xiao and Y. Furukawa. Reconstructing the World’s Museums. 2012.

[72] F. Y. Xiao J. Reconstructing the World’s Museums, 2012.

[73] Xuggler. http://www.xuggle.com/xuggler/.

[74] Y. Zhuang, H. Lan, Y. Li, and N. El-Sheimy. PDR/INS/WiFi Integration Based on Handheld

Devices for Indoor Pedestrian Navigation. 2015.

http://www.xuggle.com/xuggler/

Appendix A

Model Implementation Samples

This appendix provides samples of the implementation of the model, as persisted in the database,

transferred through the services and used by the components. The database contains 8 main col-

lections: (a) "user" collection holds the details for the users of the system who have an account,

(b) "building" collection holds all buildings, (c) "floor" collection holds all floors of buildings,

(d) "generalObject" collection holds the containing objects of floors, (e) "objectType" collection

holds the structures, (f) "node" collection holds the containing nodes of structures, and (g) "multi-

media" collection holds the multimedia which are stored in our system.

Apart from these, there are some additional collections holding pieces of data, like the collec-

tions that contain the data for authentication of users. In the following sections we will present

sample data for the most important collections.

Users

1 {

2 "_id" : ObjectId ("562cdcb531da12efc40cab0e"),

3 "_class" : "gr.tuc.music.tucips.core.model.User",

4 "firstName" : "Petros",

5 "lastName" : "Kontogiannis",

6 "email" : "pkontogiannis4@gmail.com",

7 "password" : "*&%^%^ JHDST$56*&54",

8 "dateOfBirth" : ISODate ("2015-10-25T13:44:21.267Z"),

9 "portfolioId" : ObjectId ("562cdcb531da12efc40cab0f"),

10 "createdBuildingsIds" : [],

11 "createdGeneralObjectsIds" : [],

12 "favoriteBuildingsIds" : [],

13 "favoriteGeneralObjectsIds" : [],

178 Appendix A. Model Implementation Samples

14 "joinedOn" : ISODate ("2015-10-25T13:44:21.267Z"),

15 "roleId" : ObjectId ("562cdb3a31dae773cb074920"),

16 "phone" : "",

17 "activated" : true

18 }

Buildings

1 {

2 "_id" : ObjectId ("56bf449ee74a985ef488c08c"),

3 "_class" : "gr.tuc.music.tucips.core.model.stable.Building",

4 "fullName" : "Electronic Department",

5 "shortName" : "ECE",

6 "address" : "Kounoupidiana , Chania",

7 "url" : "www.ece.tuc.gr",

8 "description" : "It is with great pleasure that we welcome you to

the web pages of the School of Electronic and Computer

Engineering (ECE) of the Technical University of Crete

(TUC)...",

9 "creatorId" : ObjectId ("562cdcb531da12efc40cab0e"),

10 "floorsIds" : [

11 ObjectId ("56bf7052e74a98494001d2d1"),

12 ObjectId ("56bf706fe74a98494001d2d2"),

13 ObjectId ("56bf708ae74a98494001d2d3")

14],

15 "grade" : 0,

16 "ratingsIds" : [],

17 "multimediaDefaultId" : ObjectId ("56c88bd0e74a98138c5591d0"),

18 "multimediaIdsList" : [

19 ObjectId ("56bf6f95e74a98494001d2cd"),

20 ObjectId ("56bf6f95e74a98494001d2ce")

21],

22 "createdDate" : ISODate ("2016-02-13T14:58:38.994Z"),

23 "lastChangeDate" : ISODate ("2016-02-13T14:58:38.994Z"),

24 "lastChangedByUserId" : ObjectId ("562cdcb531da12efc40cab0e"),

25 "keywords" : [

26 "ece",

27 "tuc"

28],

29 "phones" : [

30 "2821091239"

31],

179

32 "numberOfFloors" : 3

33 }

Floors

1 {

2 "_id" : ObjectId ("56c0c38ae74a9866bfef38bd"),

3 "_class" : "gr.tuc.music.tucips.core.model.stable.Floor",

4 "fullName" : "First Floor",

5 "shortName" : "1st",

6 "description" : "First Floor of ECE",

7 "buildingId" : ObjectId ("56bf98f2e74a9874499c5f23"),

8 "creatorId" : ObjectId ("562cdcb531da12efc40cab0e"),

9 "level" : 3,

10 "surface" : [],

11 "scale" : 0,

12 "multimediaIdsList" : [],

13 "multimediaIdMap" : ObjectId ("56c0c38ee74a9866bfef38be"),

14 "temporaryObjects" : [],

15 "containsObjectsIds" : [],

16 "createdDate" : ISODate ("2016-02-14T18:12:26.577Z"),

17 "lastChangeDate" : ISODate ("2016-02-15T17:18:36.839Z"),

18 "lastChangedByUserId" : ObjectId ("562cdcb531da12efc40cab0e")

19 }

General Object

1 {

2 "_id" : ObjectId ("56bf96c2e74a9874499c5f07"),

3 "_class" :

"gr.tuc.music.tucips.core.model.stable.IndoorLocationObject",

4 "containsIndoorObjIds" : [],

5 "containsMovableObjIds" : [],

6 "containsMultifloorObjIds" : [],

7 "type" : "indoor",

8 "fullName" : "English Course Room",

9 "shortName" : "145.P.42",

10 "description" : "English Course Room Description",

11 "creatorId" : ObjectId ("562cdcb531da12efc40cab0e"),

12 "floorId" : ObjectId ("56bf708ae74a98494001d2d3"),

13 "objectTypeId" : ObjectId ("56bf413fe74a985ef488c07c"),

180 Appendix A. Model Implementation Samples

14 "values" : [

15 {

16 "objectTypeAttributeId" :

ObjectId ("56bf413fe74a985ef488c07b"),

17 "value" : 12

18 }

19],

20 "multimediaIdsList" : [],

21 "surface" : {

22 "type" : "polygon",

23 "color" : "#512864",

24 "accessibility" : false,

25 "accessPoints" : [

26 {

27 "x" : 81,

28 "y" : 70,

29 "len" : 5.300339611760741

30 },

31 {

32 "x" : 84,

33 "y" : 335,

34 "len" : 8.420213774008353

35 },

36 {

37 "x" : 505,

38 "y" : 338,

39 "len" : 5.38

40 },

41 {

42 "x" : 505,

43 "y" : 69,

44 "len" : 8.480023584872862

45 },

46 {

47 "x" : 81,

48 "y" : 70,

49 "len" : 8.480023584872862

50 }

51],

52 "height" : 0,

53 "opacity" : 0.2000000029802322

54 },

181

55 "scale" : 0,

56 "createdDate" : ISODate ("2016-02-13T20:49:06.963Z"),

57 "lastChangeDate" : ISODate ("2016-02-13T20:49:06.963Z"),

58 "lastChangedByUserId" : ObjectId ("562cdcb531da12efc40cab0e"),

59 "publicAccessibility" : false

60 }

Structures

1 {

2 "_id" : ObjectId ("56bf4060e74a985ef488c072"),

3 "_class" : "gr.tuc.music.tucips.core.model.extension.ObjectType",

4 "type" : "indoor",

5 "fullName" : "Office of the Secretary",

6 "shortName" : "Sec Off",

7 "description" : "Office of the Secretary Description",

8 "creatorId" : ObjectId ("562cdcb531da12efc40cab0e"),

9 "objectAttributes" : [

10 {

11 "_id" : ObjectId ("56bf4060e74a985ef488c06f"),

12 "label" : "Phone",

13 "description" : "Phone Description",

14 "type" : "text",

15 "multivalued" : false,

16 "required" : true,

17 "hasReference" : false,

18 "order" : 0

19 },

20 {

21 "_id" : ObjectId ("56bf4060e74a985ef488c070"),

22 "label" : "Fax",

23 "description" : "Fax Description",

24 "type" : "text",

25 "multivalued" : false,

26 "required" : false,

27 "hasReference" : false,

28 "order" : 1

29 },

30 {

31 "_id" : ObjectId ("56bf4060e74a985ef488c071"),

32 "label" : "Office Hours",

33 "description" : "Office Hours Description",

182 Appendix A. Model Implementation Samples

34 "type" : "text",

35 "multivalued" : false,

36 "required" : false,

37 "hasReference" : false,

38 "order" : 2

39 }

40],

41 "subTypesIds" : [],

42 "levelType" : 0,

43 "isUsed" : false,

44 "usedByGeneralObjectsIds" : []

45 }

Nodes

1 {

2 "_id" : ObjectId ("56bfadb6e74a9874499c5f69"),

3 "_class" : "gr.tuc.music.tucips.core.model.stable.Node",

4 "nodeName" : "27744884-5a7f-4e43-8b72-19d24650e3c1",

5 "point" : {

6 "x" : 548,

7 "y" : 352,

8 "len" : 0

9 },

10 "creatorId" : ObjectId ("562cdcb531da12efc40cab0e"),

11 "connectedWithNodes" : [

12 {

13 "_id" : ObjectId ("56bfadd0e74a9874499c5f70"),

14 "distance" : 3.640054941177368,

15 "disabled" : true

16 },

17 {

18 "_id" : ObjectId ("56bfadc0e74a9874499c5f6a"),

19 "distance" : 0.854283332824707,

20 "disabled" : true

21 },

22 {

23 "_id" : ObjectId ("56bfadc6e74a9874499c5f6d"),

24 "distance" : 1.283900260925293,

25 "disabled" : true

26 },

27 {

183

28 "_id" : ObjectId ("56bfad7ae74a9874499c5f67"),

29 "distance" : 0,

30 "disabled" : true

31 }

32],

33 "connectedWithIds" : [],

34 "floorId" : ObjectId ("56bfabbae74a9874499c5f31")

35 }

Multimedia

1 {

2 "_id" : ObjectId ("56bf92fce74a98734b9a54bb"),

3 "_class" : "gr.tuc.music.tucips.core.model.multimedia.Multimedia",

4 "creatorId" : ObjectId ("562cdcb531da12efc40cab0e"),

5 "name" : "test.mp3",

6 "contentType" : "audio/mpeg",

7 "size" : "2905266",

8 "path" : "1393b961-c974-45b4-bf59-41025bffa5c4",

9 "type" : "audio",

10 "createdDate" : ISODate ("2016-02-13T20:33:00.636Z")

11 }

Appendix B

Restful Web Services

This appendix describes a list of the web services that are provided by the system. All the services

are based on Representational state transfer (REST) [29]. The data format supported is JSON,

although the services can be easily extended to support other formats as well. The services have

been classified in three categories:

• "User": describes services that are relevant to the user management.

• "Building": contains services that handle the buildings.

• "Structures": contains services that handle the structures of the system.

186 Appendix B. Restful Web Services

B.1 User

Table B.1: RESTful Service: Get all users.

URL /user
Method GET
Description Returns the user list.
Example GET /user

1 [

2 {

3 "data": [

4 {

5 "id": "562cdcb531da12efc40cab0e",

6 "firstName": "Petros",

7 "lastName": "Kontogiannis",

8 "email": "pkontogiannis4@gmail.com",

9 "userName": "",

10 "dateOfBirth": 1445780661267,

11 "portfolioId": "562cdcb531da12efc40cab0f",

12 "createdBuildingsIds": [],

13 "createdGeneralObjectsIds": [],

14 "favoriteBuildingsIds": [],

15 "favoriteGeneralObjectsIds": [],

16 "joinedOn": 1445780661267,

17 "roleId": "562cdb3a31dae773cb074920",

18 "role": {

19 "id": "562cdb3a31dae773cb074920",

20 "roleName": "Student",

21 "description": "Student",

22 "buildingCategory": "University"

23 },

24 "phone": "",

25 "activated": true

26 },

27 {

28 "id": "56bf4566e74a985ef488c08d",

29 "firstName": "Filio",

30 "lastName": "Alvanou",

31 "email": "filioalv@gmail.com",

32 "userName": "",

33 "dateOfBirth": 1455375718755,

34 "portfolioId": "56bf4566e74a985ef488c08e",

B.1. User 187

35 "createdBuildingsIds": [],

36 "createdGeneralObjectsIds": [],

37 "favoriteBuildingsIds": [],

38 "favoriteGeneralObjectsIds": [],

39 "joinedOn": 1455375718755,

40 "roleId": "562cdb3a31dae773cb074920",

41 "role": {

42 "id": "562cdb3a31dae773cb074920",

43 "roleName": "Student",

44 "description": "Student",

45 "buildingCategory": "University"

46 },

47 "phone": "",

48 "activated": true

49 }

50],

51 "code": "200"

52 }

53]

Table B.2: RESTful Service: Get user’s details.

URL /user/id
Method GET
Parameters id: the user’s id
Description Returns the details of the user.
Example GET /user/554f1f7644ae93bee5fee7b5

1 {

2 "data": {

3 "id": "562cdcb531da12efc40cab0e",

4 "firstName": "Petros",

5 "lastName": "Kontogiannis",

6 "email": "pkontogiannis4@gmail.com",

7 "userName": "",

8 "dateOfBirth": 1445780661267,

9 "portfolioId": "562cdcb531da12efc40cab0f",

10 "createdBuildingsIds": [],

11 "createdGeneralObjectsIds": [],

12 "favoriteBuildingsIds": [],

13 "favoriteGeneralObjectsIds": [],

14 "joinedOn": 1445780661267,

15 "roleId": "562cdb3a31dae773cb074920",

16 "phone": "",

188 Appendix B. Restful Web Services

17 "activated": true

18 },

19 "code": "200"

20 }

Table B.3: RESTful Service: Update user’s details.

URL /user/id
Method PUT
Parameters firstName: the new user’s first name

lastName: the new last name
email: the new email
imageId: the new user’s image

Description Updates the user’s details and returns the new data.
Example POST /user/562cdcb531da12efc40cab0e

1 {

2 "data": {

3 "id": "562cdcb531da12efc40cab0e",

4 "firstName": "Petros",

5 "lastName": "Kontogiannis",

6 "email": "pkontogiannis4@gmail.com",

7 "userName": "",

8 "dateOfBirth": 1445780661267,

9 "portfolioId": "562cdcb531da12efc40cab0f",

10 "createdBuildingsIds": [],

11 "createdGeneralObjectsIds": [],

12 "favoriteBuildingsIds": [],

13 "favoriteGeneralObjectsIds": [],

14 "joinedOn": 1445780661267,

15 "roleId": "562cdb3a31dae773cb074920",

16 "phone": "",

17 "activated": true

18 },

19 "code": "200"

20 }

Table B.4: RESTful Service: Delete user.

URL /user/id
Method DELETE
Parameters id: the user’s id
Description Deletes the user.
Example DELETE /user/562cdcb531da12efc40cab0e

B.2. Building 189

B.2 Building

Table B.5: RESTful Service: Get all Buildings.

URL /building
Method GET
Description Return the buildings by our system.
Example GET /building

1 [{

2 "data": [

3 {

4 "id": "56bf449ee74a985ef488c08c",

5 "fullName": "Electronic Department",

6 "shortName": "ECE",

7 "address": "Kounoupidiana , Chania",

8 "url": "www.ece.tuc.gr",

9 "description": "It is with great pleasure that we welcome you to

the web pages of the School of Electronic and Computer

Engineering (ECE) of the Technical University of Crete (TUC),

and we wish you a pleasant navigation through these pages.

Our School is the second of its kind that was founded in

Greece to cover the needs of the country 's industry with

engineers having studies and know -how in Computer

Engineering .",

10 "creatorId": "562cdcb531da12efc40cab0e",

11 "floorsIds": [

12 "56bf7052e74a98494001d2d1",

13 "56bf706fe74a98494001d2d2",

14 "56bf708ae74a98494001d2d3"

15],

16 "grade": 0,

17 "ratingsIds": [],

18 "multimediaDefaultId": "56c88bd0e74a98138c5591d0",

19 "multimediaIdsList": [

20 "56bf6f95e74a98494001d2cd",

21 "56bf6f95e74a98494001d2ce"

22],

23 "createdDate": 1455375518994,

24 "lastChangeDate": 1455375518994,

25 "lastChangedByUserId": "562cdcb531da12efc40cab0e",

26 "keywords": [

27 "ece",

190 Appendix B. Restful Web Services

28 "tuc"

29],

30 "phones": [

31 "2821091239"

32],

33 "numberOfFloors": 3

34 },

35 {

36 ...

37 }

38],

39 "code": "200"

40 }

Table B.6: RESTful Service: Get Building’s details.

URL /building/id
Method GET
Parameters id: the building’s id
Description Return the details of the building.
Example GET /building/558beedcb7601b0fa8e03256

1 {

2 "data": {

3 "id": "56c6cb7fe74a98102d6fe3e5",

4 "fullName": "Nektarios House",

5 "shortName": "Nektarios House",

6 "address": "Nektarios House",

7 "description": "Nektarios House",

8 "creatorId": "562cdcb531da12efc40cab0e",

9 "creator": {

10 "id": "562cdcb531da12efc40cab0e",

11 "firstName": "Petros",

12 "lastName": "Kontogiannis",

13 "email": "pkontogiannis4@gmail.com",

14 "userName": "",

15 "dateOfBirth": 1445780661267,

16 "portfolioId": "562cdcb531da12efc40cab0f",

17 "createdBuildingsIds": [],

18 "createdGeneralObjectsIds": [],

19 "favoriteBuildingsIds": [],

20 "favoriteGeneralObjectsIds": [],

21 "joinedOn": 1445780661267,

22 "roleId": "562cdb3a31dae773cb074920",

B.2. Building 191

23 "phone": "",

24 "activated": false

25 },

26 "floorsIds": [

27 "56c6cc0fe74a98102d6fe3e6"

28],

29 "floors": [

30 {

31 "id": "56c6cc0fe74a98102d6fe3e6",

32 "fullName": "Underground",

33 "shortName": "Underground",

34 "description": "Underground",

35 "buildingId": "56c6cb7fe74a98102d6fe3e5",

36 "creatorId": "562cdcb531da12efc40cab0e",

37 "creator": {

38 "id": "562cdcb531da12efc40cab0e",

39 "firstName": "Petros",

40 "lastName": "Kontogiannis",

41 "email": "pkontogiannis4@gmail.com",

42 "userName": "",

43 "dateOfBirth": 1445780661267,

44 "portfolioId": "562cdcb531da12efc40cab0f",

45 "createdBuildingsIds": [],

46 "createdGeneralObjectsIds": [],

47 "favoriteBuildingsIds": [],

48 "favoriteGeneralObjectsIds": [],

49 "joinedOn": 1445780661267,

50 "roleId": "562cdb3a31dae773cb074920",

51 "phone": "",

52 "activated": false

53 },

54 "level": 1,

55 "surface": [],

56 "scale": 0,

57 "multimediaIdsList": [],

58 "multimediaIdMap": "56c88b85e74a98138c5591cf",

59 "temporaryObjects": [],

60 "containsObjectsIds": [

61 "56c6d280e74a98102d6fe3f6"

62],

63 "containsObjects": [

64 {

192 Appendix B. Restful Web Services

65 "type": "indoor",

66 "id": "56c6d280e74a98102d6fe3f6",

67 "fullName": "asdf",

68 "shortName": "fasdf",

69 "description": "asdfasdf",

70 "creatorId": "562cdcb531da12efc40cab0e",

71 "code": "asdfasdf",

72 "floorId": "56c6cc0fe74a98102d6fe3e6",

73 "url": "",

74 "objectTypeId": "56bf4060e74a985ef488c072",

75 "values": [

76 {

77 "objectTypeAttributeId": "56bf4060e74a985ef488c06f",

78 "objectTypeAttributeName": "Phone",

79 "value": "4352345"

80 },

81 {

82 "objectTypeAttributeId": "56bf4060e74a985ef488c070",

83 "objectTypeAttributeName": "Fax",

84 "value": "234523452345"

85 },

86 {

87 "objectTypeAttributeId": "56bf4060e74a985ef488c071",

88 "objectTypeAttributeName": "Office Hours",

89 "value": "sdfgsdfg"

90 }

91],

92 "multimediaIdsList": [],

93 "surface": {

94 "type": "polygon",

95 "color": "#512864",

96 "accessibility": false,

97 "accessPoints": [

98 {

99 "x": 86,

100 "y": 76,

101 "len": 2.800017857085915

102 },

103 {

104 "x": 87,

105 "y": 356,

106 "len": 4.53004414989523

B.2. Building 193

107 },

108 {

109 "x": 540,

110 "y": 358,

111 "len": 2.8800694436072196

112 },

113 {

114 "x": 542,

115 "y": 70,

116 "len": 2.55

117 },

118 {

119 "x": 287,

120 "y": 70,

121 "len": 2.010895322984267

122 },

123 {

124 "x": 86,

125 "y": 76,

126 "len": 2.010895322984267

127 }

128],

129 "height": 0,

130 "opacity": 0.2

131 },

132 "scale": 0,

133 "createdDate": 1455870592156,

134 "lastChangeDate": 1455870592156,

135 "lastChangedByUserId": "562cdcb531da12efc40cab0e",

136 "publicAccessibility": false,

137 "containsIndoorObjIds": [],

138 "containsMovableObjIds": [],

139 "containsMultifloorObjIds": []

140 }

141],

142 "createdDate": 1455868943534,

143 "lastChangeDate": 1455870592200,

144 "lastChangedByUserId": "562cdcb531da12efc40cab0e"

145 }

146],

147 "grade": 0,

148 "ratingsIds": [],

194 Appendix B. Restful Web Services

149 "multimediaDefaultId": "56c6cb7fe74a98102d6fe3e4",

150 "multimediaIdsList": [],

151 "createdDate": 1455868799666,

152 "lastChangeDate": 1455868799666,

153 "lastChangedByUserId": "562cdcb531da12efc40cab0e",

154 "phones": [

155 "697585856"

156],

157 "numberOfFloors": 3

158 },

159 "code": "200"

160 }

B.3. Structure 195

B.3 Structure

Table B.7: RESTful Service: Get all structures.

URL /structure
Method GET
Description Returns the structures created in our system.
Example GET /structure

1 {

2 "data": [

3 {

4 "id": "56bf4060e74a985ef488c072",

5 "fullName": "Office of the Secretary",

6 "shortName": "Sec Off",

7 "type": "indoor",

8 "description": "Office of the Secretary Description",

9 "creatorId": "562cdcb531da12efc40cab0e",

10 "objectAttributes": [

11 {

12 "id": "56bf4060e74a985ef488c06f",

13 "label": "Phone",

14 "description": "Phone Description",

15 "type": "text",

16 "multivalued": false,

17 "required": true,

18 "hasReference": false,

19 "order": 0

20 },

21 {

22 "id": "56bf4060e74a985ef488c070",

23 "label": "Fax",

24 "description": "Fax Description",

25 "type": "text",

26 "multivalued": false,

27 "required": false,

28 "hasReference": false,

29 "order": 1

30 },

31 {

32 "id": "56bf4060e74a985ef488c071",

33 "label": "Office Hours",

34 "description": "Office Hours Description",

196 Appendix B. Restful Web Services

35 "type": "text",

36 "multivalued": false,

37 "required": false,

38 "hasReference": false,

39 "order": 2

40 }

41],

42 "subTypesIds": [],

43 "levelType": 0,

44 "used": false

45 },

46 {

47 ...

48 }

49],

50 "code": "200"

51 }

B.3. Structure 197

Table B.8: RESTful Service: Get structure’s details.

URL /structure/id
Method GET
Parameters id: the structure’s id
Description Returns the structure’s details.
Example GET /structure/558c11deb7601b0fa8e035b9

1 {

2 "data": {

3 "id": "56bf4060e74a985ef488c072",

4 "type": "indoor",

5 "fullName": "Office of the Secretary",

6 "shortName": "Sec Off",

7 "description": "Office of the Secretary Description",

8 "creatorId": "562cdcb531da12efc40cab0e",

9 "objectAttributes": [

10 {

11 "id": "56bf4060e74a985ef488c06f",

12 "label": "Phone",

13 "description": "Phone Description",

14 "type": "text",

15 "multivalued": false,

16 "required": true,

17 "hasReference": false,

18 "order": 0

19 },

20 {

21 "id": "56bf4060e74a985ef488c070",

22 "label": "Fax",

23 "description": "Fax Description",

24 "type": "text",

25 "multivalued": false,

26 "required": false,

27 "hasReference": false,

28 "order": 1

29 },

30 {

31 "id": "56bf4060e74a985ef488c071",

32 "label": "Office Hours",

33 "description": "Office Hours Description",

34 "type": "text",

35 "multivalued": false,

36 "required": false,

198 Appendix B. Restful Web Services

37 "hasReference": false,

38 "order": 2

39 }

40],

41 "subTypesIds": [],

42 "levelType": 0,

43 "usedByGeneralObjectsIds": [],

44 "used": false

45 },

46 "code": "200"

47 }

	Introduction
	Summary of Contributions
	Reader's Guide

	Related Work
	Google Indoor Maps
	Nokia HAIP
	Bing Indoor Maps
	WifiSlam
	WiFarer

	Background
	The Spring Framework
	MongoDB
	Phonegap
	Javascript
	Xuggler
	AngularJs

	Functional Specification
	Stakeholders
	Technical Requirements
	Model
	Editor Tool
	Mobile Application
	Backend

	Use Cases

	Model
	Specification
	Model Examples
	Navigation Capabilities
	Shortest Path Calculation
	Navigation Instructions Generation

	Architecture
	Server Side
	Service Layer
	Business Logic Layer
	Data Layer

	Client Side
	Application Manager
	Router
	Multilinguality
	Model
	View
	Controller

	Implementation
	Client Side
	MVC Pattern
	User Interface
	Router
	Controller
	Services and Factories
	Multilinguality
	SVG
	QR Codes

	Server Side
	Persistency
	RESTful Web Services
	Security
	JSON Web Token

	Graphical User Interface
	Prototypes
	Editor Tool
	Mobile Application

	Usability Evaluation
	Pluralistic Walkthrough
	Heuristic Evaluation
	Think Aloud

	User Interfaces
	Editor Tool
	Mobile Application

	Conclusion & Future Work
	Bibliography
	Model Implementation Samples
	Restful Web Services
	User
	Building
	Structure

