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Abstract 
 

     Stream join is one of the most fundamental operations to relate information 
from different streams. The challenging task is to use systems with memory and 
run-time constraints in order to store and analyze massive volumes of 
streaming data. Hence, it is important to maximize the processing which is done 
on-the-fly as the streaming data arrives. This paper presents an FPGA-based 
architecture that maps the most performance-efficient stream join algorithm, 
i.e. ScaleJoin, to reconfigurable logic. The system was fully implemented on a 
Convey HC-2ex hybrid computer and experimental performance evaluation 
shows that the proposed system outperforms by up to one order of magnitude 
the corresponding fully optimized software-based solution running on a high-
end 48-core multiprocessor platform, by exploiting the high internal bandwidth 
of present-day FPGAs. The proposed architecture can be used as a generic 
template for mapping other stream processing algorithms, taking into 
consideration real-world challenges. 
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Chapter 1:       Introduction 

 

 

 

1.1 Introduction 
In this chapter of this Thesis, we make reference to the bibliography of Stream Data 

Mining or Stream Mining. Stream Data Mining is a new research subject in Computer 

Science. Stream data mining is a combination of the research in Data Mining and 

Streams and it has been studied extensively because of the volume of data in many 

applications. So, converting this big amount of data into useful information and 

knowledge is a fundamental process and an area worth studying. Before we analyze 

what Stream Data Mining is, we will make reference to Big Data, Streams and Data 

Mining. 

 

1.2 Terminology 
1.2.1 Big Data 

Big data is a recent term that has appeared to define the large amount of data that 

surpasses the traditional storage and processing requirements. Volume, Velocity and 

Variety, also called the 3’ Vs, is commonly used to characterize big data. Looking at 

each of the 3’Vs independently brings challenges to big data analysis. 

 

Big Data 3Vs 

Volume: The volume of data implies scaling the storage and being able to perform 

distributed querying for processing. Solutions for the volume problem are either by 

using data warehousing techniques or using parallel processing architecture systems. 

Velocity: Velocity deals with the rate in which data is generated and flows into a 

system. Everyday sensor devices and applications generate unbounded amount of 

information that can be used in many ways for predictive purposes and analysis. 

Velocity not only deals with the rate of data generation but also with the speed in 

which an analysis can be returned from this generated data. Having real-time feedback 

is crucial when dealing with fast evolving information such as stock markets, social 

networks, sensor networks, mobile information and many others. In aiming to process 

these streams of unbounded flow of data, some frameworks have emerged like the 

Apache! S4. 

Variety: One problem in big data is the variety of data representations. Data can have 

many different formats depending on the source’s nature, therefore dealing with this 

variety of formats can be challenging. Distributed key value stores, commonly referred 
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as NoSQL databases, come in very handy for dealing with variety due to the 

unstructured way of storing data. This flexibility provides an advantage when dealing 

with big data. Traditional relational databases would imply restructuring the schemes 

and remodeling when new formats of data appear. 

 

1.2.2 Data Mining 

Data mining is the process of extraction of previously unknown and potentially useful 

information from raw data [1]. Despite data mining being a relatively new term, this 

field has been widely used by various organizations, i.e. financial, communication, and 

marketing companies. Data mining algorithms need to explore and analyze huge 

volumes of data under strict space and time restrictions in order to enhance the value 

of existing information resources. Modern applications, which require real-time 

processing of high-volume data streams, are pushing the limits of traditional data 

processing infrastructures [2]. Thus, as the data mining research field is evolving, the 

researchers focus on new concepts and trends, like the scalability of the proposed 

algorithms and systems, the implementation of performance efficient distributed 

systems and the development of real time data mining solutions. 

Use of Data Mining 

Data mining is primarily used today by companies with a strong consumer focus - 

retail, financial, communication, and marketing organizations. It enables these 

companies to determine relationships among factors such as price, product 

positioning, or staff skills, and "external" factors such as economic indicators, 

competition, and customer demographics. It enables them to determine the impact 

on sales, customer satisfaction, and corporate profits. Finally, it enables them to "drill 

down" into summary information to view detail transactional data. With data mining, 

a retailer could use point-of-sale records of customer purchases to send targeted 

promotions based on an individual's purchase history. By mining demographic data 

from comment or warranty cards, the retailer could develop products and promotions 

to appeal to specific customer segments. 

Data Mining Tasks 

Data mining involves six common classes of tasks: 

 Anomaly detection: The identification of unusual data records, that might be 

interesting or data errors that require further investigation. 

 Association rule learning (Dependency modelling): Searches for relationships 

between variables. For example a supermarket might gather data on customer 

purchasing habits. Using association rule learning, the supermarket can 

determine which products are frequently bought together and use this 

information for marketing purposes. This is sometimes referred to as market 

basket analysis. 
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 Clustering is the task of discovering groups and structures in the data that are 

in some way or another "similar", without using known structures in the data. 

 Classification is the task of generalizing known structure to apply to new data. 

For example, an e-mail program might attempt to classify an e-mail as 

"legitimate" or as "spam". 

 Regression attempts to find a function which models the data with the least 

error. 

 Summarization: providing a more compact representation of the data set, 

including visualization and report generation. 

 

1.2.3 Streams 

In computer science, a stream is a sequence of data elements made available over 

time. A stream can be thought of as items on a conveyor belt being processed one at 

a time rather than in large batches. Streams are processed differently from batch data 

since normal functions cannot operate on streams as a whole, as they have potentially 

unlimited data and formally, streams are potentially unlimited, not like data which is 

finite. Functions that operate on a stream, producing another stream, are known as 

filters, and can be connected in pipelines, analogously to function composition. Filters 

may operate on one item of a stream at a time, or may base an item of output on 

multiple items of input, such as a moving average. 

The limitations and the drawbacks of the traditional data mining systems for big data 

collections lead to the need for in-stream processing. Stream processing solutions 

focus on continuous computations that take place as data flows in the system. The 

stream processing systems are designed to process high-volume data with low latency 

and in a scalable way.  

 

1.2.4 Stream Data Mining  

Data Stream Mining is the process of extracting knowledge structures from 

continuous, rapid data records. Examples of data streams include computer network 

traffic, phone conversations, ATM transactions, web searches, and sensor data. Data 

stream mining can be considered a subfield of data mining, machine learning, and 

knowledge discovery. 

In many data stream mining applications, the goal is to predict the class or value of 

new instances in the data stream given some knowledge about the class membership 

or values of previous instances in the data stream. Machine learning techniques can 

be used to learn this prediction task from labeled examples in an automated fashion. 

Often, concepts from the field of incremental learning, a generalization of Incremental 

heuristic search are applied to cope with structural changes, on-line learning and real-

time demands. In many applications, especially operating within non-stationary 

environments, the distribution underlying the instances or the rules underlying their 
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labeling may change over time, i.e. the goal of the prediction, the class to be predicted 

or the target value to be predicted, may change over time. This problem is referred to 

as concept drift. 

As one can easily understand is that processing a Stream and Data Mining algorithms 

combination cannot simply “work” to get Stream Data Mining. Many Data Mining 

algorithms are used to process Streams but they need to match new challenges and 

make adjustments. Examples of these challenges and adjustments are the input of the 

algorithm, which in Streams is infinite in comparison with Data Mining that data are 

finite and the configured algorithm must have a real-time response. In the Related 

work Chapter we make a more analytical reference to the problems that Stream Data 

Mining algorithms have and discuss the challenges that each type of algorithm 

referred has. 

A fundamental operator for the data stream mining is the stream join operator [3]. 

Stream join is used to correlate the information from different streams. The join 

operation usually takes place over specific time-based windows due to the unbounded 

size of the data streams [4]. The stream join operator is computationally expensive [5] 

and there are many works that focus on accelerating its processing using distributed or 

parallel frameworks. There exist published works on how to accelerate stream join 

processing using multicore platforms [6, 7, 8] and other works that use hardware-based 

solutions [9 - 15]. Thus, The ScaleJoin algorithm [6] is a new, parallel formulation of the 

stream join operator that uses a shared-memory framework. The algorithm offers high 

performance results, outperforming any other state-of-the-art stream join 

implementation. The main advantages of the ScaleJoin algorithm is that it can process 

tuples coming from an arbitrary number of input streams and it guarantees 

deterministic processing with scalable and high-throughput parallelism. The main core 

of the ScaleJoin algorithm is an abstract data-type, i.e. the ScaleGate, which is 

presented in more details in Chapter 3. 

 

1.3 Scientific contribution  
The contributions of this work are:  

 This is the first hardware-based work, to the best of our knowledge, which proposes 
a reconfigurable architecture for the ScaleJoin stream join algorithm that is 
considered the most performance efficient state-of-the-art stream join technique. 

 The proposed hardware-based architecture is scalable and generic. This 
architecture can be used for many streaming problems that need to correlate 
streaming data. Also, this is the first, to the best of our knowledge, hardware-based 
work that is not restricted by the hardware resources due to the size of the 
processing time window.  

 The proposed architecture is extensible, as it takes advantage of the fine-grained 
and the coarse-grained parallelism that reconfigurable hardware can offer. In more 
details, this is the first presented work that takes advantage of a multi-FPGA 
platform for mapping the stream join operator.  
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 The implemented system achieves at least 4x better throughput data rates vs. the 
fastest stream join multi-threaded solution, when it is mapped on a high-end multi-
processor platform. Also, we show that the proposed solution can offer at least one 
order of magnitude higher processing rates than any other multi-core published 
solution.  

 

 

1.4 Structure of this thesis 
This thesis is organized as follows. Chapter 2 presents other stream mining types and 

platforms and briefly compares other works, implementations and algorithms, 

regarding stream joins and makes an introduction and analyzes some preliminary 

concepts on the stream join problem. Section 3 describes the ScaleJoin algorithm, its 

new abstract data type and its challenges. Section 4 presents our proposed 

architecture and explains how it meets the requirements of the ScaleJoin algorithm. 

Section 5 evaluates the performance of the proposed architecture on a multi-FPGA 

platform and compares the performance results with the performance of previously 

presented works. Section 6 draws the conclusions of this work. 
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CHAPTER 2:       Related Work 

 

 

2.1 Introduction 
In this Chapter, we address some of the current problems in the bibliography of 

Stream Data Mining, which is a quite new research chapter in Computer Science. We 

also present a new Stream Data Mining platform, called SAMOA, developed in Yahoo! 

Labs Barcelona, which addresses the main problems in Stream Mining and provides 

solutions to them. Finally, we present general stuff as it comes to Join processing and 

we make a reference to the studies that have been made on the algorithms that are 

compared with ScaleJoin algorithm in [6], both Hardware based and Software based. 

 

2.2 Streaming Data Mining Types and Algorithms 
A huge part of Computer Science division focuses on Data Mining, Machine learning 

and Streams in the last decade. So, besides Join processing, in Steam Data Mining 

many other problems and challenges associated with them exist and for each problem 

many algorithms exist to have them solved, but what changes is how they process the 

data. Therefore, in this point, we present to you the most common problems, as it 

comes to Stream data mining and we make a reference to the most common 

algorithms for each type of problem.  

Data Stream Clustering Algorithms: Clustering is a widely studied problem in the data 
mining literature. However, it is more complicated when it comes to adapting arbitrary 
clustering algorithms to data streams because of one-pass constraints on the data set. 
An interesting adaptation of the k-means algorithm has been discussed in [16] which 
uses a partitioning based approach on the entire data set. This approach uses an 
adaptation of a k-means technique in order to create clusters over the entire data 
stream. In the context of data streams, it may be more desirable to determine clusters 
in specific user defined horizons rather than on the entire data sets. 
Here, it is worth mentioning the technique of micro-clusters [17] that defines clusters 
over the entire data set. In order to apply this technique to a variety of data mining 
algorithms, a micro-clustering based stream mining framework is utilized. This 
framework is designed by a summary of information which is defined by Micro-
clusters and Pyramidal Time Frame data structures. The Micro-clusters technique can 
be extended to the problem of Data Stream Classification. 
 
Data Stream Classification Algorithms: The problem of classification is perhaps one 
of the most widely studied in the context of data stream mining. The problem of 
classification is made more difficult by the evolution of the underlying data stream. 
Therefore, to consider an algorithms as effective, it needs to be designed to take 
temporal locality into account. Also typical problems, which must be taken into 
account in classification are the memory needed to implement the techniques of 
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classification, the concept of Drifting in which sends the result of the classifier over 
time and the reliability of the classification. 
Classic example of Stream Classification algorithms is Very Fast Decision Trees 
algorithm (VFDT) or Hoeffding Trees developed by Domingos and Hulten [35] and it is 
also used in Samoa. This algorithm splits the tree using the current best attribute taking 
into account that the number of examples used satisfies the Hoeffding bound. VFDT is 
an extended version of such a method which can address the research issues of data 
streams. Another algorithm worth mentioning is the on Demand Classification 
Aggarwal et al. have adopted the idea of micro-clusters introduced in CluStream [20] 
in On-Demand classification in [17]. The on-demand classification method divides the 
classification approach into two components. One component constantly stores 
summarized statistics about the data streams and the second one continuously uses 
the summary statistics to perform the classification. The summary statistics are 
represented in the form of class-label specific micro-clusters. This means that each 
micro-cluster is associated with a specific class label which defines the class label of 
the points in it. 
 
Frequent Pattern/Itemset Mining: The problem of frequent pattern mining was first 
introduced in [21], and was extensively analyzed for the typical case of disk resident 
data sets. In the case of data streams, one may wish to find the frequent itemsets 
either over a sliding window (either time or tuple based) or in an entire data stream 
[22, 23]. 
Manku and Motwani proposed the first one-pass algorithm, Lossy Counting, to find all 
frequent itemsets over an entire data stream [24]. This algorithm is a false-positive 
oriented in the sense that it does not allow false negatives, and has a provable bound 
on false positives. It uses a user-defined error parameter ǫ to control the quality of 
the answering set for a given support level θ. As a closure, a recent work by Karp, 
Papadimitriou and Shenker on finding frequent elements (or 1-itemset) [25]. Formally, 
given a sequence of length N and a threshold θ (0 < θ < 1), the goal of their work is to 
determine the elements that occur with frequency greater than Nθ. 
 
Change Detection in Data Streams:  The patterns in a data stream may evolve over 
time. In many cases, it is desirable to track and analyze the nature of these changes 
over time. In [26, 27, 24], a number of methods have been discussed for change 
detection of data streams. In addition, data stream evolution can also affect the 
behavior of the underlying data mining algorithms when it comes to the results that 
become stale over time. 
A known change detection method is the Velocity Density Method. The idea in velocity 
density is to construct a density based velocity profile of the data. This is analogous to 
the concept of kernel density estimation in static data sets. Kernel density estimation 
[28], provides a continuous estimate of the density of the data at a given point. The 
value of the density at a given point is estimated as the sum of the smoothed values 
of kernel functions K′h (·) associated with each point in the data set. Each kernel 
function is associated with a kernel width h which determines the level of smoothing 
created by the function. 
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Stream Cube Analysis of Multi-Dimensional Streams: Much of stream data resides at 
a multi-dimensional space and at rather low level of abstraction, whereas most 
analysts are interested in relatively high-level dynamic changes in some combination 
of dimensions. To discover high-level dynamic and evolving characteristics, one may 
need to perform multi-level, multi-dimensional on-line analytical processing (OLAP) of 
stream data. Such necessity calls for the investigation of new architectures that may 
facilitate on-line analytical processing of multi-dimensional stream data [29,30]. 
Therefore, an interesting cube stream architecture that performs efficiently on-line 
partial grouping of current multi- dimensional data capture the basic dynamic and 
evolving characteristics of data streams, and facilitates fast OLAP data stream . Power 
cube architecture facilitates online analytical processing of data streams. It is also a 
preliminary structure for online mining stream.  
As a reference to Stream Cube Analysis , we propose two methods, which are popular-
path cubing, which rolls up the cuboids from the m-layer to the o-layer, by following 
the most popular drilling path, materializes only the layers along the path, and leaves 
other layers to be computed at OLAP query time and Popular-path-based stream cube 
computation Computing initial stream cube, i.e., the cuboids along the popular-path 
between the m-layer and the o-layer, based on the currently collected set of input 
stream data. 
 
Dimensionality Reduction and Forecasting in Data Streams: Because of the inherent 
temporal nature of data streams, the problems of dimensionality reduction and 
forecasting is particularly important. When there are a large number of simultaneous 
data stream, we can use the correlations between different data streams in order to 
make effective predictions [31, 32] on the future behavior of the data stream. In pa-
rticular, the well-known MUSCLES method [32] has been discussed, and its application 
to data streams have been explored. In addition, MUSCLES tries to predict the value 
of a Stream, under the previous values of all Streams and the current values from 
other streams. 
Furthermore, SPIRIT algorithm exists, which explores the relationship between 
dimensionality reduction and forecasting in data streams. More precisely, SPIRIT 
operates on the column-vectors of observed stream values xt and continually updates 
the participation weights. SPIRIT also adapts the number k of hidden variables 
necessary to capture most of the information. The adaptation is performed so that the 
approximation achieves a desired mean-square error. 
 
 
 
 

2.3 Distributed Stream Data Mining Platform: Samoa 

In this section, we present to you Samoa [33], the basic information about it, why 

Samoa was developed and Samoa’s inner architecture.  

2.3.1 What is SAMOA? 

SAMOA is a tool to perform mining on big data streams. It is basically a distributed 
streaming machine learning (ML) framework, for example it is a Mahout but for 
stream mining. SAMOA contains a programing abstraction for distributed streaming 
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ML algorithms to enable development of new ML algorithms without dealing with the 
complexity of underlying streaming processing engines (SPE, such as Twitter Storm 
and S4).  SAMOA also provides extensibility in integrating new SPEs into the 
framework. These features allow SAMOA users to develop distributed streaming ML 
algorithms once and they can execute the algorithms in multiple SPEs, i.e. code the 
algorithms once and execute them in multiple SPEs. 
 
2.3.2 Why SAMOA? 

 
Big Data is always evolving and one of the ways to mine big data is by using the 

streaming ML paradigm. This paradigm implies that the corresponding ML model for 

data mining will utilize real-time feedback and ML model updates will be faster.  The 

ML model will adapt to changes via concept drift to handle adversarial interactions 

(such as spam) with the ML model. The main usage of streaming ML paradigm is to 

provide immediate feedback to user based on certain actions. 

Concrete example of big data stream mining is spam detection on Yahoo! News or 

Yahoo! Mail. The spams’ characteristics change over time, hence we need to retrain 

the ML model with new arriving data. Moreover, we also need to quickly develop new 

ML algorithms for big data stream mining.  

 

 

The following are the existing solutions that are not designed for big Data Streams: 

 

 Mahout is suitable for batch processing of the data and it is not designed for 

stream machine learning 

 Massive Online Analysis (MOA) is suitable for stream machine learning, but it 

does not scale. It is only able to execute on a single machine and it could no be 

scaled into multiple machines if needed.  

Furthermore, there is an existing solution called Jubatus, which is a distributed 

machine learning framework for big data stream. However, Jubatus implementation 

is tightly coupled between distributed ML algorithms and the underlying distributed 

streaming computation platform. 

Table below summarizes existing machine learning framework and their 

characteristics related to mining big data streams. 
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Table 2.1 ML frameworks 

 

 

 

SAMOA addresses the aforementioned limitations of existing frameworks and tools 

by: 

 SAMOA is a framework that executes on top of distributed streaming 

computation platforms, such as Storm and S4. Hence, SAMOA inherits the 

scalability of the underlying platform. 

 

 SAMOA utilizes stream ML paradigm and it contains collection of streaming ML 

algorithms. Hence it is suitable to perform real-time analytics. 

 

 SAMOA decouple the ML algorithms with the underlying distributed streaming 

computation platforms, which means we can easily deploy SAMOA in different 

platforms. In other words, SAMOA has “write once, deploy everywhere” 

paradigm, i.e. we only need to write the ML algorithms once using SAMOA API 

and we can easily deploy the algorithms in different types of cluster. 

To conclude, SAMOA scales horizontally, is designed for streaming ML paradigm 

(SAMOA focuses on speed/real-time analytics), and is loosely coupled with its 

underlying distributed computation platform. 

 

2.3.3 Samoa’s Design Goals 

 

 Flexibility in term of developing new ML algorithms or reusing existing ML 
algorithms from existing ML frameworks. 
 

 Extensibility in term of extending SAMOA with new SPEs. 
 

 Scalability in term of handling ever increasing amount of data. 
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2.3.4 Algorithms used in SAMOA 

 

 Decision Tree Induction 

 Hoeffding Tree Induction 

 Vertical Hoeffding Tree Induction 

 K-means Clustering 

 Gradient Boosted Tree 

 Bayesian Model Averaging 

 
 

Figure 2.2: Samoa’s Inner Architecture 

 

 
                                                    

2.4 Stream Join Processing Implementations 
Stream join processing is a fundamental operation, in which we merge information 
from different streams inputs. This is especially useful in many applications such as 
sensor networks in which the streams arriving from different sources may need to be 
related with one another. In the stream setting input tuples arrive constantly and 
result tuples need to be produced continuously as well. Join algorithms that use 
blocking operations, e.g., sorting, are no longer working properly. Conventional 
methods for cost estimation and query optimization are also inappropriate, because 
they assume finite inputs. Moreover, the long-running and evolving nature of stream 
queries calls for even more adaptive processing strategies , such as data structures 
that help our implementation achieve lower latency and higher throughput, that can 
react to changes of data and stream characteristics have.  
By nature of stream joins, we need to take in consideration the past tuples of the 
stream, so that adds another dimension to the challenge. In general, in order to 
compute the complete result of a stream join, we need to retain all past arrivals as 
part of the processing state, be-cause a new tuple may join with an arbitrarily old tuple 
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arrived in the past. This problem is exacerbated by unbounded input streams, limited 
processing resources, and high performance requirements (low latency –high 
throughput), as it is impossible in the long run to keep all past history in fast memory. 
Hence, motivated by the inherently high computational complexity of stream joins, a 
considerable research effort has been devoted to their parallelization. So, much work 
have been done to create FPGA architectures of the join processing implementations, 
with a view to achieve speedup to those algorithms. 
Hence, in this section we present software and hardware based implementations of 
Handshake join and Cell join implementations. 
 
2.4.1 Software based implementations 

In this section, we present to you the state of the art algorithms, Handshake join and 
Cell join that are compared with the ScaleJoin algorithm, in terms of processing 
latency and processing throughput.  
Kang et al. [4] were the first to describe a streaming join operator. Each newly arriving 
tuple r of stream R is processed in three steps: First, scan the window associated with 
input stream S and look for matching tuples, second Invalidate old tuples in both 
windows and third, insert r into the window associated with R. Kang’s procedure 
latency characteristics, because it tries to find matches on any arrival tuple. 
Gedik et al. [10] have thus suggested to stick with the three step procedure even in 
parallel environments, but parallelize the scan task over available processing units. 
Hence, Celljoin inherited the latency characteristics of Kang’s procedure and thus, low 
scalability. 
Then, Handshake Join [7], replaced the three step procedure by a data flow oriented 
setup. Both input streams notionally flow through the stream processing engine, in 
opposing directions. The two sliding windows are laid out side by side and predicate 
evaluations are performed along the windows whenever two tuples encounter each 
other. In this implementation, latency is scaling linearly depending on the time 
window size, that it is considerable in large windows. 
Later, Low Latency Handshake Join was presented [8] and its goal was to remove the 
latency bottleneck of handshake join. The algorithm is semantically equivalent to the 
handshake join and classical stream join operators with respect to their set of output 
tuples. It also preserves the architecture awareness of the handshake join but in 
addition lowers significantly the latency. 
 
2.4.2 Hardware based implementations 

In this chapter, we present to you all related works that have been materialized upon 
hardware. 
To begin with, Halstead et. al. [5] introduces an FPGA-based implementation that uses 
a hash-join engine, achieving impressive performance speedup compared to the 
corresponding software implementation. The main difference of this work vs. our 
proposed solution is that this work focuses on relational data bases and not on stream 
processing.  
Moreover, Qian et al. presented M3Join in [13]. The implementation of M3Join in 

hardware was compared vs. software solution, achieving much higher processing 

throughput. 
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Then, authors in [7] and [8] presented the best ways to implement Handshake join 
algorithm on reconfigurable logic by setting up an adaptive merging network. The 
results in [8] show the evaluation between the proposed model and the baseline and 
nested loop joins and explains why the proposed model is the best Handshake join 
operator compared to other hardware-based solutions. In addition, Oge et al. [11, 12] 
presented a hardware solution for the Handshake algorithm that can process input of 
1.2 million tuples per second for small window sizes equal to 512 tuples and 1024 
tuples, though. In addition, [14] proposes a scalable and order-agnostic hardware 
design of sliding-window aggregation and its implementation on an FPGA. The 
proposed design adopts a two-step aggregation method using panes and supports 
disordered data arrival with punctuations. 
Regarding the Cell join, presented by Bu˘gra Gedik, Rajesh R. Bordawekar and Philip 
S. Yu [10], an implementation has been made using Cell Processors, that is initially 
intended for game consoles and multimedia rich consumer devices, for stream join 
processing. In their work, the implementation’s problems are discussed and analyzed 
in order to find a proper architecture for the SPEs and Cells , discussing in advance the 
coordinator-side and co-processor-side processing logic of the join algorithm and the 
optimal basic window size for this operation. 
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Chapter 3:      Algorithm Analysis 

 

 

 

3.1: Introduction  
In this Chapter, we present an analytical description of the ScaleJoin algorithm. Stream 
joins are among the most important and expensive data stream mining operators 
employed to process live data in a real-time fashion. Directly from their database 
counterpart, stream joins compare tuples coming from data streams rather than 
relations. 
So, the chapter is divided in 6 sections. In the first section we define some terms used 

in ScaleJoin algorithm, in order to make understandable how the individual parts of 

the algorithm are functioning. Moreover, in the second section, an introduction is 

being made about the goals, problems and description of the algorithm and its 

functions, in parallelization and its concurrent abstract data type. The third Section 

presents a more analytical description of the algorithm, as it comes to modules 

separately. In the fourth section, we make a short reference to the algorithms that 

ScaleJoin is compared, in terms of processing throughput and algorithmic latency. In 

fifth section, we analyze each separate part of the algorithm, with a view to analyze 

our thoughts about each one and make the whole implementation simpler on 

reconfigurable logic. Finally, sixth section is concluding all above information and 

makes an introduction on the whole architecture that we are going to use. 

3.2: Algorithm’s terminology 
In this section, we describe how the ScaleJoin algorithm defines its basic functions, in 

order to work properly. In the ScaleJoin report [6], these terms are used to describe 

the inner functions and their uses in the algorithm.    

 

3.2.1 Ready tuple 

A ready tuple is a tuple that it is waiting to be sent to the PUs (Processing Units) by the 

ScaleGate distributed Data Structure. When sent to a PU, a tuple is compared with all 

tuples of the opposite stream, which have less or equal than window size timestamp 

range. 

A ready tuple, as defined in [6], is a tuple that it’s timestamp ts is less or equal than 

merge.ts, where merge.ts is the minimum among the latest timestamps from each 

timestamp-sorted stream j (merge.ts = minj(maxi(tj
i .ts)). 
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3.2.2 Tuple and Time based Windows 

A window is an interval that a function can take place. Windows are described by 

window size constant which defines the length of the interval. Windows, in stream 

data mining, can be either time based or tuple based. Time based windows have a 

defined window size counted in t seconds and the interval defined for a certain tuple, 

with a timestamp tk, is [tk-t,tk+t], when tk-t >0 and [0,tk+t], when tk-t <=0. Tuple based 

windows have a window size counted in k tuples and the interval defined for a certain 

tuple, which is the m-th tuple, is [m-k, m+k], when m-k >0 and [0,tk+t], when m-k <=0. 

In ScaleJoin report is focused on time-based windows, but with some changes it can 

easily work for tuple-based windows as well. 

3.2.3 Tuple Merge 

Merging tuples is one of the basic functions of the ScaleJoin algorithm. As described 

in the report, PUs are comparing each tuple in each stream with each tuple of the 

opposite stream to find correlations between tuples. If found, PU creates a merge 

tuple by combining the two tuples that correlation was found in a tuple t0 with its 

timestamp calculated as t0.ts = max (tR.ts, tS.ts), where tR.ts and tS.ts are the tuples 

from stream R and S, respectively, that the correlation was found. Then, the merged 

tuple is sent to the output ScaleGate, where it be defined as Ready and be extracted 

as an output of the algorithm. 

 

3.3: The ScaleJoin algorithm 
As discussed earlier, ScaleJoin is a Stream Join algorithm, which is parallel and works 

upon ScaleGate concurrent data structure. ScaleGate is acting at the articulation 

points maintaining the tuples being consumed and produced in a deterministic fashion 

regardless of the number of processing units or the number of physical streams 

delivering them. 

ScaleJoin allows for the parallel execution of an arbitrary number of sequential stream 

joins while distributing the overall work among them without assuming any 

centralized coordinator. As the evaluation shows in the report, ScaleJoin does not only 

enforce deterministic processing while providing disjoint and skew-resilient 

parallelism, but also achieves higher processing throughput and lower processing 

latency in comparison with the  state of the art parallel stream join operators such as 

Celljoin and Handshake join. 

3.3.1 Problems and challenges 

The main problems and challenges that the ScaleJoin algorithm has to face are 

deterministic processing, disjoint parallelism and skew-resilience. Below is a brief 

description of foregoing challenges/problems. 



26 
 

Deterministic processing means that given the same inputs in a method, the same 

outputs must be produced independently of its environment. This requirement allows 

for a parallel stream join to be leveraged in sensitive scenarios (fraud detection or 

business-centric pricing applications) and to leverage fault tolerance mechanisms, in 

which deterministic processing ensures consistency among primary and replica nodes. 

Disjoint parallelism, requiring a method not to rely on any centralized coordinator and 

thus leverage the wide-spreading architectures supporting high degrees of parallelism 

and the continuously increasing available computational resources. 

Skew-resilience, to be able to confront any varying rate of nature of data streams and 

to enable the processing of tuples that, while referring to the same logical stream, 

might be delivered by arbitrary numbers of distinct physical streams. 

 

3.3.2 Parallelization 

As it comes to parallelization, ScaleJoin algorithm parallelizes its comparisons by using 

PUs. State of the art parallelization techniques still rely on data types that are oblivious 

to the specific needs of parallel stream joins. Based on this observation, the 

possibilities enabled by lifting the parallelization challenges to the articulation points 

that maintain the tuples consumed and produced by a parallel stream join are being 

explored. More specifically stream joins are extremely computationally expensive 

nature, so it is understandable that parallelization improves significally the time that 

the output needs to be produced. ScaleJoin is using n PUs to run the comparisons in 

parallel, approximately 1/n of the overall comparisons by each PU. Each PU gets a 

ready tuple and looks for correlations among the tuples of the opposite stream, that 

are in the interval of a time window of the processed tuple timestamp, in order to 

produce output tuples by the correlating tuples. This new parallelization perspective 

does not only allow to address such challenges and overcome state of the art 

parallelization approaches but also allows to achieve high processing throughput and 

low processing latency, as shown in the evaluation of the report[6] and, also, in section 

3.4. 

 

3.3.3 Abstract Data Type: ScaleGate 

ScaleGate, as mentioned before, is a new concurrent abstract data type acting at the 

articulation points maintaining the tuples being consumed and produced in a 

deterministic fashion regardless of the number of processing units or the number of 

physical streams delivering them. ScaleJoin is built upon ScaleGate, which guarantees 

properties essential for the parallelization of ScaleJoin. ScaleGate, is a lock-free 

implementations ensure system-wide progress, by guaranteeing at least one of the 

threads operating on the data structure to make progress independently of the 

behavior of other threads. Also, as proved in the report, ScaleGate algorithm is a 

linearizable implementation. In other words, it guarantees that every method call 
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appears to take effect at some point (linearization point) between its invocation and 

response and more formally, for a linearizable implementation of a data structure. 

ScaleGate allows for an arbitrary number of timestamp-sorted streams each delivered 

by a source entity, to be merged into a timestamp-sorted stream of ready tuples. At 

the same time, it allows for an arbitrary number of reader entities to consume all the 

ready tuples of the resulting timestamp-sorted stream. Furthermore, ScaleGate 

distributes the overall work in the processing units by delivering ready tuples in a 

round robin fashion, in order to be totally parallelized and have the maximum 

throughput achieved.  

3.3.4 ScaleJoin Basic Steps 

Below, we present ScaleJoin basic steps, according to the report. In the fourth section 

we will analyze how the algorithm is functioning inside. 

 

Table 3.1: ScaleJoin basic Steps 

 

 

3.4: ScaleJoin evaluation 
As it comes to the evaluation, ScaleJoin is compared with the state of the art parallel 

stream joins, Celljoin and the Handshake join algorithms. Scalejoin’s report mentions 

the evaluation data set of the algorithm is the same benchmark used to evaluate 

Celljoin and Handshake join. R tuples are composed by attributes [ts, x, y, z], where x, 

y, z are of types int, float and char[20], respectively. S tuples are composed by 

attributes [ts, a, b, c, d], where a, b, c, d are of types int, float, double and bool, 

respectively. An output tuple composed by attributes [ts, x, y, z, a, b, c, d] is created 

when |x-a|<10 AND |y-b|<10. The values of the attributes are drawn from a uniform 

distribution in the interval of [1-10000]. The outcome of the evaluation for all pre 

mentioned, on an eight-core computer and a window of 15 minutes, are shown in the 

table 3.1 bellow. 
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Table 3.2 ScaleJoin evaluation table 

Algorithm Throughput (t/s) 

ScaleJoin 1300 

Handshake Join 1000 

Handshake Join (SIMD implementation) 1400 

Celljoin 750 

Celljoin (SIMD implementation) 1000 

 

As the table shows ScaleJoin is performing significally better than both Handshake join 

and Celljoin algorithms when they are not relying in SIMD instructions. When relying 

on SIMD, ScaleJoin is still performing better than Celljoin but less than 8% worse than 

Handshake Join. In this point, it should be noticed that only ScaleJoin of these 

parallelization techniques enforces deterministic processing, and has been evaluated 

for deployment-specific aspects such as number of physical streams delivering R and 

S tuples and rate fluctuations. 

Moreover, there has been a latency evaluation of those algorithms in the report of 

ScaleJoin. The original Handshake join algorithm incurs in a processing latency that is 

proportional to half of the window size (in this data set, the window size is equal to 

15 minutes). Though, the improved low-latency Handshake Join algorithm and 

Celljoin algorithm achieved latencies in the realm of milliseconds, same as ScaleJoin 

algorithm.  

 

3.5: ScaleJoin analysis 

As discussed earlier, ScaleJoin algorithm is a parallel stream join algorithm that 

compares tuples from each stream, in order to find correlations between them and 

merge them into a new tuple. In section 3.3, we discussed, briefly, about what the 

ScaleJoin algorithm does. Therefore, in this section, our major concern is how the 

algorithm works, how each separate module is operating and how all modules work 

together. Basically, as shown in the figure 3.2, which is taken by the report [7], the 

ScaleJoin algorithm has 3 parts. The first one is the ScaleGate (SG), which works as an 

input of the whole algorithm and called SGin, data type that has as inputs each 

Streams tuples. The second one is the processing units (PUs) part, which has n PUs 

and their inputs are the ready tuples given by the SGin. The last part is another 

ScaleGate data type, which has as an input the output tuples given by PUs and it is 

called SGout, because it is the output of the whole algorithm. 
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Figure.3.2: Overview of Scalejoin’s architecture 

 

 

 

3.5.1 ScaleGate input (SGin) 

Let 2 streams, R and S. SGin’s input is an arbitrary number of R and S tuples delivered 

by streams need to be merged into a timestamp-sorted stream of ready (defined in 

section 3.2) tuples in order to ensure deterministic processing. ScaleGate is merging 

the input streams’ tuples in a stream and defines as ready tuples the tuples that are 

ready to be processed by the PUs. Incoming tuples are still sorted by timestamp when 

others are processed, in order to be compared with all the tuples of the opposite 

stream and have the appropriate result as merging tuples. Specifically, the above data 

structure is used for merging the incoming tuples from various number of streams into 

a single timestamp-sorted stream without using any locks. In addition, the ScaleGate 

module distributes the incoming tuples to the parallel processing threads without the 

need for centralized coordination. Last, the ScaleGate module is, also, used for 

collecting the correlated output tuples from the parallel threads to the final output. 

ScaleGate has 2 major functions, the addTuple function and getNextReadyTuple 

function. AddTuple allows a tuple from the source entity to be merged by ScaleGate 

in the resulting timestamp-sorted stream of ready tuples, concurrently with other 

operations. GetNextReadyTuple which provides to the calling reader entity the next 

earliest ready tuple that has not been yet consumed by the former, concurrently with 

other operations. 

During the insertion of a tuple, the appropriate position is located by starting the 

search from the highest level node that is closest to the last added tuple from the 

same source, since the tuples from each source arrive in increasing timestamp order. 

The main advantage of this software-based module is that it offers lock-free and high-

performance processing of streaming data without taking into account the number of 

the incoming or the outgoing streams. 
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3.5.2 Processing units 

As mentioned previously in this thesis, Processing units (PUs) are the major 

parallelization of the ScaleJoin algorithm. PUs split equally, approximately 1/n, the 

overall comparisons that the ScaleJoin algorithm has to do, that can be calculated by 

knowing an average incoming tuple rate (tuples/sec) and the window size parameter, 

always referring to time based windows, and is 2 x WinSize x tupleRate2 comparisons. 

As it is shown in figure 3.2, PUs are processing ready tuples, explained in section 3.5.1, 

given by the SGin module. 

As mentioned in the report, the work done by a Processing unit is almost similar with 

Kang’s three step procedure [3], in which we have 3 tasks. Three step procedure tasks 

are, first to. Compare tR with all tS WS, second add tR to WR and third to remove all ti 

in WR: ti.ts < tR.ts – winsize. This procedure differs from the ScaleJoin algorithm in the 

way the tuples are stored in their respective windows. In this new procedure, R and S 

tuples are stored in PU's windows in a round robin fashion. More concretely, each PUi 

maintains a counter of the ready tuples being processed and stores a new incoming 

ready tuple only if counter%n is equal to i, in which n is the number of PUs 

implemented in the algorithm and counter is a simple tuple counter of both streams. 

A Processing unit’s major part is the combination of 2 tuples. Whenever a correlation 

is found, PU has to combine a tuple, like explained in section 3.2, create a new tuple 

and add it to a secondary output ScaleGate as shown in image 3.2. The correlations 

are checked, as referred in the report, using a predicate and the function holds, which 

checks if 2 tuples are correlated. Each comparison that has to be done must be done 

only by one PU, in order to have the right results. 

Figure 3.4 shows the flowchart of a PU, based on pseudocode given in the report. 

 

3.5.3 ScaleGate output (SGout) 

Scalejoin’s output is handled by another ScaleGate. ScaleGate is fed by merged tuples, 

explained in section 3.2, in order to be timestamp-sorted and be produced as an 

output of the whole algorithm. As mentioned before, the output tuples must be ready 

to be given as an output.  

 

3.5.4 Conclusion 

To sum up this section, as shown in figure 3.2 the ScaleJoin algorithm uses 2 ScaleGate 

implementations and N Pus in its software implementation. ScaleGate implementations are 

used only as sorted timestamp-based storage to keep the tuples coming from S and R or the 

output. The processing is done by the Pus, which compare each tuple from both stream and 

split the whole process depending on the number of Pus mapped, i.e. the number of 

processors in the system. ScaleGate are managing the I/O in parallel with the Processing Units. 
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Figure 3.3: PU flowchart 
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3.6 Thoughts and processing steps 
In this section, we analyze the processing steps of our implementation, based in what 

we saw in this chapter about the ScaleJoin implementation. We start by showing our 

implementations steps, how the comparisons are made and how we ensure 

deterministic processing through our implementation and finally how we output the 

appropriate results. 
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At first, we make a reference to the algorithm steps, which we need to implement in 

order to work correctly. 

1. Load all the new tuples. 

2. Make all the comparisons for each one of those tuples. 

3. Store and output the merged tuples, timestamp sorted 

4. Delete tuples that have made all the comparisons. 

5. Start again. 

So, in order to make an accurate implementation we must take in consideration those 

parts of the algorithm. Moreover, we need to think about the nature of stream and 

be prepared for each rate of incoming tuples. So, given a window size and the 

incoming tuple rate, our comparisons can be shown in the figure below. More 

specifically, every second we need to compare S stream’s new tuples with all prior 

ones from R, which timestamp is greater or equal the difference of the current 

timestamp and window size, respectively for R stream’s new tuples with all S stream’s 

tuples prior ones. Additionally, we have to compare each R and S new tuples but only 

once (!), in order not to have duplicate tuples.  

By definition, each tuple in stream joins need to be compared with all tuples within 

the interval [N-W, N+W]. In figure 3.4, tuples from the N-th second are only compared 

with the prior tuples i.e. [N-W, N]. Thus, within the next seconds, each one of the 

arriving tuples, will also be compared with the tuples of the N-th second. So, after 

Window size seconds all comparisons have been done with the tuples from the N-th 

second, and finally, those tuples will be deleted (overwrote) and the process will 

continue.  

 

Figure 3.4 Correlation Graph 
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3.7 Conclusion 
ScaleJoin algorithm is a stream join algorithm and therefore it has high complexity. By 

knowing the full functionality of the algorithm, its challenges and the total process 

needed, we can implement it in reconfigurable logic. As mentioned before, we to fully 

understand the nature of a stream and make the most of the incoming data, achieving, 

at the same time, deterministic processing, disjoint parallelism and skew-resilience. 

Additionally, understanding each successive module as a distinct entity is useful 

enough, in order to successful map it in reconfigurable logic. Then, by taking into 

account the algorithm’s processing steps we can accomplish the correct result and 

have a successful implementation.  
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Chapter 4:       ScaleJoin Architecture 
 

 

4.1 Introduction 
In this chapter, we present the final architecture of the ScaleJoin algorithm in 

reconfigurable logic. The final architecture cooperates with a coprocessor for the 

implementation of ScaleJoin. The architecture is mapped on Convey platform using 

four Virtex 6 LX760 FPGA devices. By using Convey platform, we can accurately fulfil 

Scalejoin’s challenges and successfully simulate a stream’s behavior. Moreover, the 

whole implementation’s input is controlled via a C code, which stores each tuple of 

both streams in Convey’s RAM. Further explanation will occur later in this chapter. 

This chapter is divided in 5 sections. The first one refers to the Convey HC-2 

architecture and its tools. The second one is focusing in the understanding of the 

implementation’s top level and its sub modules, the third focuses on each ScaleJoin 

module mapped in the implementation, the fourth focusses on the parallelization of 

the processing units, which are mentioned before. Lastly, we explain the structure of 

a Processing Unit in section 4. 

4.2 Convey HC‐2 
Convey Computers made a revolution to the high-performance computing (HPC) field 

by launching the world's first hybrid-core computer HC-2 that breaks the barriers of 

expensive power, performance and programmability. The HC -2 server managed to 

change the till today known HPC as it breaks through the current power/performance 

wall to significantly increase performance for certain compute and memory 

bandwidth intensive applications. Also, it is easy for programmers to use as it provides 

full support of an ANSI standard C, C++ and Fortran development environment and it 

significantly reduces support, power and facility costs for companies. Convey with HC-

2 managed to fill a market space called hybrid-core computing, which marries low cost 

and simple programming model of a commodity system with the performance of 

customized hardware architecture. 

4.2.1 HC‐2 server 

Convey’s infrastructure combines an Intel Xeon processor and a Convey designed 
coprocessor based on Xilinx Field Programmable Gate Arrays, with its own high-
bandwidth, virtual memory addressed, cache coherent memory subsystem. It also 
offers an ANSI standard development environment, increasing productivity and 
portability. HC-2’s main strength is Convey’s implementations, called Personalities, 
which are extensions to the x86 instruction set that are implemented in hardware 
increasing productivity and optimizing performance of specific portions of an 
application. They are sharing the same physical and virtual address spaces with the 
x86 instructions, and applications can contain both x86 and coprocessor instructions 
in a single-instruction stream. Convey compilers generate one executable image that 
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contains both x86 and coprocessor instructions. Systems can contain multiple 
personalities. Convey provides a Personality Development Kit (PDK) for creation of 
new application oriented architectures discussed in details later in this chapter. 
Another strong point of HC-2 is its memory, which provides a bandwidth of 80 
Gigabytes/sec delivering huge sustainable performance. A shared virtual and physical 
memory between the coprocessor and the x86 provide the tight integration that 
allows the system to be programmed as a single architecture. This means that the 
programmer does not need to manage the physical memory on the coprocessor nor 
explicitly move data back and forth between the x86 main memory and the 
coprocessor main memory. 
 
4.2.2 Hc‐1 system architecture 

Convey HC-2 is a hybrid-core computer system that uses a commodity two-socket 
motherboard to combine a reconfigurable, FPGA-based coprocessor with an industry 
standard Intel 64 host processor. Physically, the system is based on two main logic 
boards in a rack-mountable 2U enclosure. The top half of the enclosure is the 
coprocessor and the bottom half is the commodity motherboard. A mezzanine 
interconnection mechanism connects the halves and extends the host 
motherboard’s front-side bus (FSB) to the coprocessor. The entire system consumes 
approximately 600 watts with the coprocessor executing code. The system 
architecture is shown in Figures 4.1 and 4.2 below. 
 

Figure 4.1 HC-1 server architecture. 

 
 

4.2.3 Intel host processor 

HC-1’s host consists of a dual socket Intel server motherboard an Intel 5400 
memory-controller hub chipset, 1,066 MHz FSB and a 2.13 GHz dual core Intel Xeon 
low voltage processor. The HC-2 host runs a 64-bit 2.6.18 Linux kernel with a Convey 
modified virtual memory system for memory coherent with the coprocessor board 
memory reasons. 
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Figure 4.2 HC-1 Architecture. 

 

 

4.2.4 Convey FPGA-based coprocessor 

Convey’s HC-1 coprocessor composed by three main sets of components. The 

Application Engines (AEs), the Memory Controllers (MCs), and the Application Engine 

Hub (AEH). 

Figure 4.3 Coprocessor three main components AEH, AEs, MCs. 

 

 

The Application Engine Hub (AEH) is the coprocessor’s to host interface, it consists of 
two non–user programmable Xilinx V5LX110 FPGAs. One serves as the physical 
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interface between the coprocessor board and the FSB, it monitors the FSB to maintain 
the snoopy memory coherence protocol and manages the coprocessor memory’s 
page table. This FPGA is actually mounted to the mezzanine connector. The second 
one contains a soft-core scalar processor, which implements the base Convey 
instruction set. It is also the mechanism by which the host invokes computations on 
the AEs. To support the bandwidth demands of the coprocessor, 8 Memory 
Controllers (MCs) are used. Each memory controller is implemented on its own FPGA 
and is connected to two standard DDR2 dual inline memory modules (DIMMs) or to 
two Convey-designed scatter-gather dual inline memory modules (SG-DIMMs), 
containing 64 banks each and an integrated Stratix-2 FPGA. The SG-DIMMs allow 
access to physical memory by quad words (8 bytes) instead of by 64-byte cache lines 
(as the host does). Accessing by 8-byte blocks reduces the inefficiencies encountered 
when accessing memory by no unity strides (or randomly) with a cache-based system. 
The inefficiency can be as drastic as one eighth of the peak bandwidth, because if only 
4 or 8 bytes out of an entire 64-byte cache line are needed, the rest of the transfer is 
wasted. The Application Engines (AEs) are four user-programmable Virtex-6 
XC6VLX760 FPGAs, which are the heart of the coprocessor and implement the 
extended instructions that deliver performance for a “personality” which is a 
particular configuration of these FPGAs .The AEs are connected to the AEH by a 
command bus that transfers opcodes and scalar operands, and to the memory 
controllers via a network of point-to-point links that provide very high sustained 
bandwidth. Each AE instruction is passed to all four AEs. The way that they process the 
instructions depends on the personality. The AEs are interconnected with 668 
Mbytes/s, full duplex links for AE to AE communication. Each AE has a 2.5 GB/s link to 
each memory controller, and each SGDIMM has a 5 GB/s link to its corresponding 
memory controller. The effective memory bandwidth of the AEs is dependent on their 
memory access pattern to the eight memory controllers and their two SG-DIMMs. 
Each AE can achieve a theoretical peak bandwidth of 20 Gbyte/s when striding across 
eight different memory controllers, but this bandwidth would drop if two other AEs 
attempt to read from the same set of SG-DIMMs because this would saturate the 5 
Gbytes/s DIMM memory controller links [12]. The Convey memory system using 
Scatter/Gather DIMMs has 1024 memory banks. The banks are spread across eight 
memory controllers (MCs). Each memory controller has two 64-bit busses, and each 
bus in accessed as eight sub busses (8-bits per sub bus). Finally, each sub bus has eight 
banks. The 1024 banks is the product of 8 MCs * 2 DIMMs/MC * 8 sub bus/DIMM * 8 
bank/sub bus.  
 
4.2.5 Programming model 

In Convey’s programming model applications can be coded in standard C, C++, or 
Fortran, the AEs act as co-processors to the scalar processor, while the scalar 
processor acts as a co-processor to the host CPU. Because of this, the executable file 
on the host contains integrated scalar processor code. This is transferred to and 
executed on the scalar processor when the host code calls a scalar processor routine 
through one of Convey’s runtime library. The scalar processor code can contain 
instructions that are dispatched and executed on the AEs. The final executable is 
generated by a unified compiler and it integrates both x86 and co-processor 
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instructions defined by the personality used on compilation time. Figure 4.4 shows an 
abstract view of the programming. 
 
4.2.6 Porting already existing applications 

Convey offers four different ways for porting already existing applications to their HC-
2 system mentioned below: 

 Use the Convey Mathematical Libraries (CML), which is a set of functions 
optimized for the co-processor, which use predefined Convey-supplied 
personalities, for example Convey’s CML-based FFT uses the single-precision 
personality. 

 Compile one or more routines with Convey’s compiler. This uses the Convey 
auto-vectorization tool to automatically select and vectorize do/for loops for 
execution on the co-processor. Directives and pragmas can also be manually 
inserted in the source code, to explicitly indicate which part of a routine should 
execute on the co-processor. 

 Develop hand-code routines in assembly language, using both standard 
instructions and personality specific accelerator instructions. Which can be 
called from C, C++, or FORTRAN code. 

 Develop a custom personality using Convey’s Personality Development Kit 
(PDK), to give the ultimate in performance using a hardware description 
language such as Verilog or VHDL. 
 

Figure 4.4  HC-2 runtime environment 
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4.2.7 The Convey Personality Development Kit 

 
The Personality Development Kit is a set of tools and infrastructure that enables 
development of a custom personality for the Convey HC-1 system. A set of generic 
instructions and defined machine state in the Convey instruction-set architecture 
allows the user to define the behavior of the personality. Logic libraries included in 
the PDK provide the interfaces to the scalar processor, memory controllers, to the 
inter-FPGA links and to the management processor for debug. We will present each 
of these interfaces with more detail in next session. The user develops custom logic 
that connects to these interfaces. 
The Convey PDK provides the following set of features as a part of the kit: 

 Makefiles to support simulation and synthesis design flows. 

 A Programming-Language Interface (PLI) to let the host code interface with a 
behavioral HDL simulator such as Modelsim or Synopsys. 

 FPGA hardware interfaces provided as Verilog modules, these interfaces 
connect custom personality hardware to instruction dispatch, management 
and memory resources on the coprocessor. 

 Custom personality software and hardware simulation environment Bus -
functional models are provided to connect each of the hardware interfaces to 
Convey’s architecture simulator. 

 A sample personality illustrates how to use the hardware and simulation 
interfaces to develop a custom personality. 
 

In addition to the PDK package, several Convey software packages are required for 
PDK development. Which are: 

 Xilinx ISE Design Software for synthesis, place and route of FPGAs. 

 An HDL simulator for Verilog/VHDL simulation. Mentor ModelSim or 
Synopsys VCS.  

The PDK’s simulation framework is easy to use and allows users to switch between a 
simulated coprocessor mode and an actual coprocessor, by changing a single 
environment variable. 
 
4.2.8 AE-to-AE Interface 

The AE-to-AE interface allows data to be transferred directly from one AE to another. 
Because the use of an AE-AE interface is unique to each application, it is difficult to 
design a solution that would be ideal for all custom personalities. Convey provides an 
AE- AE interface that the user may choose to use. The user is also free to use the 
signals between AEs in whatever way best supports their application. The Convey 
provided the AE-to-AE interface, which is designed with unidirectional busses to and 
from the previous or next AE. Each instance of the interface connects to a single AE, 
to connect an AE to both the previous and next AEs, two interfaces must be 
instantiated. This interface is simple and generic so that it can be used by many 
applications. Figure 4.5 below shows the AE-AE interface to the Custom Personality. 
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Figure 4.5 AE-to-AE Interface Diagram. 

 

 
 
 
4.2.9 Management/Debug Interface 

The management interface provides the communication path between the 
Management Processor and the AE. The Management Processor (MP) is responsible 
for initialization and monitoring of the FPGAs. Since this path is independent of the 
instruction dispatch path from the host processor, it can be useful in debugging by 
allowing visibility into internal FPGA state, even when the application is hung. The 
MP interface is instantiated in the Convey-supplied libraries, along with CSR agents 
in a ring topology. The custom personality must complete the ring by either adding 
one or more CSR agents to the ring or by simply connecting the inputs to the 
outputs. For many designs, a single agent is sufficient. For more complicated designs, 
the developer may choose to instantiate multiple CSR agents. The ring topology 
allows multiple agents to be placed near their associated logic. PDK CSR Registers are 
accessed from the host for debugging reasons. The host communicates with the MP 
FPGA via telnet. Figure 4.6 below shows the connectivity of the CSR interface: 
 

Figure 4.6 Management Interface Diagram. 
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4.3 Reconfigurable ScaleJoin System 
This section describes the complete stream join system architecture. This architecture 

can take advantage of the high scalability and performance advantages that hardware 

can offer, if it is mapped on a shared memory platform, which can offer fast data I/O 

data links, and has a large number of available hardware resources. As mentioned 

before, the proposed architecture was mapped on a Convey HC-2ex FPGA-based 

server, which permits the communication between the software that is executed on a 

processor with a reconfigurable subsystem via shared memory. The HC-2ex platform 

offers an all-around versatile coprocessor memory subsystem that is able to provide 

nearly-constant streams of data even for non-sequential accesses. There are two main 

advantages in used HC-2ex platform: first, it offers the ability to build FPGA-based 

architectures, which are implemented on the Convey reconfigurable coprocessor; 

second, it offers an aggregate stream bandwidth of up to 80 Gigabytes/sec, which is 

very useful in cases of data-intensive problems. 

Figure 4.7 presents the total system architecture for the stream join processing. As 

referred above, the proposed architecture is scalable, as it can map up to N Processing 

Units (PUs), where the number of N is only limited by the available resources. In our 

prototype platform, each one of the available 4 FPGA devices maps a ScaleJoin module, 

which has 256 PUs in total, i.e. 128 PUs for each stream. We parallelized the problem 

by loading different newly arrived tuples into each one of the available ScaleJoin 

modules from the global shared memory. Hence, our proposed system can process in 

parallel up to 1024 newly arrived tuples, i.e. 4 x 256 tuples, but it has no restrictions as 

far as the size of the processing time window. 

As referred above, each ScaleJoin module processes a different part of the newly 

arrived tuples, thus it reads the needed tuples from different parts of the shared 

memory. The Convey HC-2ex FPGA-based server has 16 parallel memory controllers, 

which can access concurrently the internal RAM. The newly arrived tuples are stored 

in shared memory by different threads that serve the physical input streams. Next, the 

tuples are loaded from the RAM and they are streamed into FIFOs and then they are 

passed to the processing elements. The combination of the parallel writing in memory 

at different places and the input FIFOs implement the corresponding software-based 

ScaleGate data structure, which is presented in [6], for the hardware solution. Also, the 

PUs are connected in a pipelined way, in order to make all the comparisons needed 

with the minimum amount of memory reads. Last, each ScaleJoin module outputs the 

results into an output FIFO and then the results are passed to the global shared 

memory.  
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Figure 4.7 FPGA-based Architecture 
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At this point, we shall make a reference on how the proposed system can offer solution 

for even higher throughput rates for the incoming streams. The streams usually have a 

time-based rate of incoming tuples per second. As mentioned above, each FPGA device 

can process in parallel only a portion of the newly arrived tuples. For our prototype 

platform, each ScaleJoin module can map up to 256 tuples, i.e. 128 tuples for each 

stream. Thus, the proposed solution can process up to 1024 newly arrived tuples in 

parallel. On the other hand, the high level of parallelism that hardware can offer and 

the high bandwidth data I/O links that our proposed platform offers, leads to the fact 

that the reconfigurable part can be reloaded with newly arrived tuples at the same 

rate-based portion of time, i.e. second. This reloading procedure does not reduce the 

streaming nature of our proposed solution as it takes place on the same portion of time 

until the new streaming tuples from the next second arrive. This reloading process can 

take place many times during the same rate-based time portion. Thus, this is the 

limiting factor as far as the scalability of our system. This process is the main difference, 

which our proposed solution offers for higher scalability vs. all of the previously 

proposed hardware based solutions of the stream join processing. 

4.2 Scalejoin’s Implementation 
In order to make the algorithm work correctly, we implemented our design in Convey 

hybrid Computer TM HC-2ex. Using this platform, we can have a more realistic 

simulation of our work and correct various bugs, which would alter the output. To 

begin with, we used a C code, which generates random tuples for both streams and 

feeds them into Convey’s RAM. Given a Rate size R and a window size W, this C code 

feeds the algorithm with random tuples and in the same time it sends R and W values 
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as an input to our implementation. Also, we send the addresses of each array used i.e. 

6 arrays for each attribute needed in the process (ts, a , b for stream S and ts, x, y for 

stream R) and 2 addresses to store the merged output. 

Furthermore, the appropriate addresses of the attributes of each stream is been given 

to the top level, via an Assembly code which just organizes the inputs and the outputs. 

In order to keep the processing deterministic and valid at the same time, we make use 

of FIFOs in the input to make sure that the right combination of attributes is being 

feeded to the ScaleJoin module. Input tuples are sent to the ScaleJoin module, 

whether an input control decides that they are ready to get fed. It can be also said that 

the combination of the input FIFOs and their control is a separate architecture of the 

ScaleGate data type given in the initial report (SGin).  

Then, the tuples are fed and loaded in the algorithm’s module exactly as it is done by 

the initial algorithm given. Each time we load the amount of new and ready tuples that 

came in the last second and then we compare each one of them with the tuples came 

in a Window size interval before the current second. While we compare each pair of 

tuples between them, we may have some merges found. So a round robin fashion 

reading control reads each Processing unit, to find those that have valid outputs and 

extract them. This phase stops when all tuples needed to get processed are loaded in 

the ScaleJoin module and all phases of this module are finished. Then, an output signal 

informs the top level control that this module have finished or it is in the idle phase. 

Moving towards the output, all tuples extracted from the ScaleJoin module is being 

stored in FIFOs, one for each output. Then two control module takes over and gives 

permission to each one of the FIFOs to write their merged value using the same 

memory controller for both of them. As said before, this is also an accurate 

implementation of the ScaleGate data type for the output (SGout). When all tuples 

from both FIFOs are written in the output addresses, given by the C code, then we ask 

permission from the memory controller, in order to write the final value to those 

addresses. This value is the number of merges found in each one of the sets of 

processing units. 

The final step is to inform the C code that this processing phase is finished. So, after 

each run, we read both arrays which have the output values. From the previous step, 

during the final write, we write the amount of valid merges found in each array. Thus, 

with a loop branch, we write all merged outputs into separate .txt files, so if we want 

to check a specific run and view this runs values, we just open this file and check the 

merges found. As a summary, when the algorithm makes all the amount of runs in the 

respective second, it return a sum of the merges found, the window size and rate per 

second given, the number of runs and the average merges per run found. 

Each module will be explained further in this section, previewing a top-down analysis 

of the implemented algorithm. 
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Figure 4.8: ScaleJoin architecture 
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4.3.1 System input (SGin) 

As we described in the previous section, a C code creates tuples for both R and S stream and stores 

them in Convey’s RAM. So, our goal at this point is to address them and read them correctly, in 

order to process them with the implemented algorithm module. As show in graph 3.1, in each 

second we have to load the new tuples from each stream in the first phase and then compare them 

with all tuples within a Window size interval, taking into account that we must compare the new 

tuples came between them only once! To do this, we need two separate but pretty much similar 

modules. 

At this point, we have to clarify how the memory inside the Convey platform is organized. In the 

start of the initial execution, we make use of a malloc-like Convey’s instruction which “binds” a 

specific amount of memory for each attribute needed for both streams. So, for each one of those 

attributes we make use of a 64-bit value. The size of each array, which contains the attributes, is 

windows_size*rate.  The incoming attributes in those arrays are stored FIFO-like in those arrays, in 

more details let an array A[n]. In each run, we load all new values in the array, overwriting the tuples 

inserted window_size seconds before! In this way, we make sure that always the tuples that stay in 

the reserved arrays are valid for the comparisons of next processing run. 

As we mentioned before, when we enable the algorithm to run, we give as an input to the top level 

the addresses of each attribute of the streams. In the first phase, we read the new tuples, stored in 

arrays via the C code, in order to store them into the algorithm’s FIFOs. When this is done, we need 

to read all the previously stored tuples, sequentially, with a view to comparing all of them with each 

one of the new tuples. When this is finished, the one stream has finished its compares but the other 

one need to compare its new tuples with the others streams new ones. So, the only thing that needs 

to be done is to read the new tuples of the one stream again and send them to be processed in the 

algorithm. 

In order to give a more analytical example, figure 4.9 shows the full implementation of these specific 

modules. Regarding S stream’s attributes, the addresses of their arrays are sent to the memory 

controllers control (MC_Ctrl). We use these control modules to read sequentially all the tuples 

needed in order to have a complete process. When an attribute is read, we increase a counter value, 

which refers to the current address of each memory controller, by 8 bytes in order to get the next 

attribute of the array and we enable the Enable read signal to store the value in its respective FIFO. 

This process continues until we have read all attributes needed and then these modules become 

Idle and the same process occurs for all attributes in each stream, that are necessary for the whole 

process.  

This module is also shown briefly in the left end in figure 4.8 for both S and R and depicts the whole 

algorithms input. 
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Figure 4.9: ScaleGate in Architecture 
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4.3.2 ScaleJoin module 

The previous module described is used as an input to the whole implementation. Hence, this section 

focuses in describing the ScaleJoin module as an entity to the whole algorithm. As we said before, 

the input of the FIFOs in figure 4.8 are the attributes that are used to make the comparisons needed 

to complete a process. FIgure 4.9 depicts the next phase of the inserted attributes, which is the 

processing phase. Further analysis in the architecture of the comparison module will occur in section 

4.9. 

The output of the memory reading FIFOs are concatenated and inserted to either Stream S or stream 

R. Control module is informed when all attributes of each stream are ready to feed the tuple in the 

ScaleJoin module, exactly like the initial ScaleJoin implementation to keep our process deterministic. 

For example if we insert 3 attributes, 32 bits each, then we insert 96 bits in the algorithm for each 

tuple in each stream. Moreover, we insert the current rate value and size value to the FPGA via the 

C code in order to inform this module about the number of tuples it needs to insert in each state of 

its process. By doing that, we can run any process with varying values of rate or window size in order 

to conserve the other two challenges mentioned in Scalejoin’s report which are skew-resilience, 

namely, to cope with the bursty and rate-varying nature of data streams and, as we will explain 

more analytically in section 4.9, Disjoint parallelism, which means not to rely on any centralized 

coordinator throughout the process. 

Regarding to the output of this module, we have two outputs that return the merges between two 

tuples and we use a large, parallel module for the comparisons of each stream. So having two 

stream, will result in two outputs that the one is the merges found in the lastly inserted tuples of 

Stream R and the other output the merges found in the lastly inserted tuples of Stream S. The valid 

output signals are nothing more than 1 bit values that inform the next module that this outcome is 

valid one and it needs to be stored. Figure 4.10 depicts the architecture of the comparison module, 

its inputs and outputs  

A more analytical approach about this module will occur in section 4.4, in which we will focus on 

describing this module’s top level and make a top down presentation of each module used to make 

a successful implementation. 
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Figure 4.10: Comparison module 
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4.3.3 System’s output (SGout) 

The ScaleJoin module, as described briefly in the previous section, has 2 outputs, one for each 

stream processed. These outputs are sent to FIFOs pretty much alike the ones described in section 

4.3.1. In this section, we are focusing in the way our whole implementation works in order to store 

the output merged tuples. 

To begin with, we are using two FIFOs, one for each output, in order to store the output tuples. Valid 

output signal enables those FIFOs to write the result. Again, same as the 4.3.1, we use memory 

controllers, but we use them to extract the output of those FIFOs and store it in Convey’s memory. 

This is exactly the opposite procedure of the one used to input the attributes of each stream. Again, 

we use a malloc-like Convey’s instruction in C, to occupy memory addresses to store the output. 

Those addresses are inserted into our implementation and used by the memory controllers in order 

to store each merge found in the occupied addresses of each array. After the whole process is 

finished, we save each array in a txt file in the project’s directory. The output files names are 

“outX_Y”, where X is the number of output of the ScaleJoin algorithm (merged output 1 or merge 

output 2, figure 4.10) and the Y value shows the processing second in which those merges occurred. 

Figure 4.11 shows the final implementation of ScaleGate out. 

Figure 4.11: ScaleGate out 
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4.3.4 Scalejoin’s Control 

To sum up this section, we make a short reference to the whole top level control. Knowing all the 

pre mentioned modules, it is easy enough to understand the way the control module works. To 

begin with, all memory controllers mentioned in 4.3.1 send an idle signal to the control module 

which is high when their respective FIFOs have sent to the ScaleJoin module all attributes needed 

for the comparisons. Furthermore, the ScaleJoin module also has an idle signal, which is high when 

no comparison occurs and the result FIFOs are empty. Figure 4.12 shows that also memory 

controllers, which are controlling the output, have an idle signal which is sent to the control. Below, 

there is a presentation of each state of this control, which is actually an FSM, and explain on how 

each state changes and how we manage to preserve the algorithm’s challenges. 

State 1: Idle State: Waiting for the start signal to procced. 

State 2: Feeding state: Feeding ready tuples by checking each streams attributes if they are ready 

to get processed. Waiting until all tuples are sent to the processing unit. 

State 3: Processing Phase: Waiting for the ScaleJoin algorithm to complete all comparisons. Waiting 

until the Comparison module gets idle. 

State 4:  Writing Outputs: Waiting until the output FIFOs are empty (Figure 4.11). 

State 5: Stores the number of comparisons found and becomes Idle. 

Figure 4.12: ScaleJoin Control  
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4.4 Comparison modules 
In this section, we make a top-down presentation of each module used in Scalejoin’s architecture. 

Furthermore, we discuss why we choose to each module in our implementation, where 

parallelization techniques have been applied and what part of the algorithm each module simulates 

in order to have an accurate implementation with exactly the same outcome, using the same data 

set in our implementation and in the ScaleJoin algorithm, regardless the data set we are using.  

4.4.1 Comparison module architecture 

As we move towards our implementations top level, we need to think how all of these modules 

would work together, in terms of timing all pre mentioned components. We decided to use the 

architecture, which is shown in the figure 4.13 and we explain how all these modules work with 

each other and produce the appropriate result. As our implementation starts, we constantly load 

tuples from each stream, in order to load them to the appropriate set of processing units. To do 

that, our control has to handle the input FIFOs for each stream and each set in order to load 

correctly. So, the control module has as input the state bits (empty, full) from each FIFO and keep 

loading tuples until all tuples in each set are stored. In order to know when all new tuples from both 

streams are loaded, we use counters. When those counters reach a specific value, which is inputted 

by the initial C code, a finish signal informs our control that the Load state has finished. Then, FIFOs 

get the older (in terms of timestamp) tuples each stream has and loads them in the opposite set of 

processing units (e.g. if, in load state, the new R tuples are stored in the first set, then, in compare 

state, we feed the first set of processing units with older S tuples) in order to compare all tuples in 

a stream with all tuples in the opposite stream. Moreover, control module needs to stall all the 

process if at least one of the processing unit’s FIFO is full, that no result merged tuple is overwritten 

and have all the results outputted. Having this on mind, we have to adjust our processing control 

and each module separate to block every write or read to each module. Still, as we mentioned in 

the previous section, each clock cycle, we are searching and reading each processing unit’s output 

round robin like, with a view not to hold our implementation stalled for too long, if a stall take place 

in one or both sets. In order to define when we finished sending all older tuples to each set, we use 

to count until it reaches the window size*rate value, which informs us that we have sent all tuples 

needed for this second comparisons. If one of the sets finishes all the comparisons before the other 

one, it stalls and waits for the other to finish and then they proceed together in the starting state of 

the algorithm in order to reload the registers and start the comparison process again.As we 

mentioned in this thesis, our main goal, regardless of our processing throughput is to make an 

implementation that is exactly accurate and fulfils Scalejoin’s challenges, as presented in its report. 

So, as we explained in all of the above sections of this chapter, our implementations inputs 

timestamp sorted tuples with, which in each second we can accept a floating number of incoming 

tuples per second (e.g. in the n-th second we had as input k tuples, the (n+1)-th second we has as 

input L tuples e.t.c. with a maximum number of tuples per sec equal to our maximum throughput), 

makes all the appropriate comparisons that have to be done between the each streams tuples, with 

caution not to have duplicate  compares of the same tuples and while the comparisons take place 

we output the timestamp sorted merged tuples, exactly as the report describes. 

Figure 4.13 below shows the final implementation for the Comparison module, which just inputs 

tuples to the input FIFOs and subsequently does the pre mentioned processing.
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Figure 4.13: Comparison module architecture 
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4.4.2 Process control module 

Moving down on our architecture’s hierarchy, we need to refer how our modules are controlled and 

how they are clocked to work as the ScaleJoin algorithm. In order to do that we have to define, at 

first,  the stages of our algorithm and what the algorithm does in each one of them. 

As we mentioned before, our implementation needs to get fed constantly by incoming tuples. 

Therefore, in our first stage of processing, we must feed the new ready tuples, regardless of the 

incoming rate, to the processing units. In order to do that, we need to control our input, with a view 

to insert the amount of tuples that came in the exact second of our processing time, and store them 

(Tuple S figure 4.16) in the appropriate Processing unit as described in section 4.3.2 and 4.3.1. Also, 

another thing that we should have in mind is that the modules need to function correctly and have 

the same outcome as the ScaleJoin algorithm, in terms of its challenges, regardless of the tuples 

latency (e.g. network latency) and keep our implementation deterministic. In order to do that, we 

need to stall all of our modules, until all new tuples from both streams are stored in the processing 

units and all merged tuples written in the previous process must have been outputted from our 

implementation, in order to proceed to the processing phase of our algorithm.    

In the next stage, we have to process and compare the new tuples stored in the first phase with the 

tuples came a window size before. As we mentioned in the beginning, a window size is a time based 

(seconds) variable which defines how much older, a valid comparison, can be. In other words, in 

order to define if a comparison is being accepted, in terms of window size, or not, we need to 

subtract the timestamp values of the compared tuples and the outcome should be less or equal 

than the window size variable. When the second phase starts, we feed the Set of N processing units 

with older tuples that have to be compared with the new ones. To do that, in each cycle, we draw a 

tuples from the other Stream and store it in the first processing unit (Tuple R Figure 4.16). In the 

same time, we need to “inform” the first processing unit that this comparison is valid, in terms of 

window size, and store the value “1” in the valid register (Figure 4.16). In the next cycle, the value 

sent before, is stored in the next processing unit and the next one is drawn from the stream. 

Therefore, as we explained in section 4.3.2, the older tuples that are fed in this phase, are moving 

in a pipeline fashion and so we manage to compare all tuples from the one stream with all the new 

ones in the other stream. Each successful merge is stored to the FIFO of each Processing unit until 

a permission is given to the processing unit to output its merged tuple, as we explained in section 

4.3.1.  Something that is worth mentioning is that in each phase of the process, the output control 

module (Figure 4.15) is searching each processing unit for new merged tuples. This processing phase 

continues until all of the older tuples are sent to the appropriate set of processing units and then 

we move to the next stage of processing. 

As we move to the third and final stage of our implementation’s processing, we need to wait for our 

pipeline to empty. The reason we used this stage is that when all older tuples are fed to a set of 

processing units, does not mean that all the comparisons have been made (!). So, in order to have 

all the comparisons done, we have to wait until the last tuple fed in stage 2 reaches the final 

pipelined processing unit and then call back the first state of our control and proceed with the next 

load in each Processing unit. 
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As someone can easily understand, this module is an FSM, which has as inputs the output signals of 

its controlling components. The output signal of each component define in which state each 

component is, and decide,  given the combination of all of those signals, what  each module must 

do in order to keep our whole implementation up to the challenges of the ScaleJoin algorithm, which 

is our main goal. The figure 4.14 below shows a brief diagram of our FSM and its functionality. 

 

Figure 4.14: Comparison Control 
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4.4.3 Parallelization of processing units 

Join processing algorithms have a need in processing throughput, which is constantly increasing. In 

order to achieve higher throughput, ScaleJoin algorithm is using many processing units to increase 

its throughput, via the parallelization of the whole processing on tuples given and therefore 

parallelization upon the overall comparisons. So, in order to decide which parallelization technic we 

are going to use to our processing units, we need to think about satisfying the parallelization 

challenges of the ScaleJoin algorithm and furthermore, as it is natural, have exactly the same 

outcome as the algorithm itself would have if the same data sets were given as an input in the 

algorithm. 

Therefore, out of many parallelization techniques, we decided to use a pipeline implementation, 

with a pipe length equal to the maximum incoming tuple rate per second of the whole process. 

Figure 4.15 shows a set of processing units. A set of processing units is a number of processing units 

which are connected to each other in a pipeline fashion   in order to achieve the sliding window 

having a sliding window, as mentioned in the report [7].
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Figure 4.15: Reconfigurable StreamJoin Architecture 
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As it comes to the functionality of each set, each cycle, we load each processing unit with new tuple 

from the one stream. When we finish loading the new tuples, we feed each processing unit with the 

older tuples from the opposite streams which have a maximum timestamp difference of a Window 

size, in order to make all the appropriate comparisons that need to be done in a processing second. 

The opposite tuples are stored in one processing unit, they are processed and then they move to 

the next processing unit in a pipeline fashion, with a view to comparing all old tuples with all new 

ones (sliding window).  So, in the end of each cycle, each comparison has been made and the tuples 

that need to be merged are stored in the respective processing unit’s FIFO, as it will be described in 

section 4.3.4, which focuses on the architecture of a processing unit. Thus, all the possible 

correlations among the newly arrived tuples and the previously arrived tuples are computed. Also, 
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each result passes through a network of MUXes as an output. When all tuples from the processing 

window are streamed and no other results have to be sent out, then the processing finishes. The 

above process takes place again at each second or many times during a single second in case the 

newly arrived tuples are more than the available PUs of the PEs, as we will show below. 

 

4.5 Processing Unit 
As we referred in previous chapters, processing units are the fundamental part of the ScaleJoin 

algorithm. The processing units need to compare one tuple of each stream and create a new tuple, 

if we have a successful compare, by merging the tuples into one that has all the attributes of both 

tuples. This module is being fed tuples from stream R and stream S, compares their attributes and 

defines if a compare is successful and then proceeds to the merging phase of the tuples. 

In order to create a modules that has the same functionality as a processing unit, we first had to 

decide how we should parallelize the Processing units. The level of parallelization is presented in 

the next section (section 4.3.2). 

Our final implementation for this module is shown in figure 4.16. This module has two 96-bits 

registers, each one for each merging stream’s tuple, and each of those tuples have two attributes 

32-bits each and an ID/timestamp to define each comparison between those tuples. The value of 

those registers is being driven into a compare module, which is responsible for the merge-or-not 

decision. The merge-or-not is set in the top level of our architecture. In our implementation, we 

used a bound given in the ScaleJoin report [7] in which we decide that we have a successful compare 

when the absolute difference of the first attribute of each tuple and the absolute difference of the 

second attribute of each tuple is less than offset number 10. The outcome of the compare module 

is a 64-bit signal, which is a concatenation of the ID/timestamp of the tuples merged. 

In addition, we have another 1-bit register, which works as a validation bit, and its purpose of use is 

to define which comparison is valid. When we have a successful compare and we have a valid 

comparison then the FIFO is being enabled in order to write the outcome of the comparison. Each 

processing unit has its own FIFO, which has depth equal to 4, and each cycle we know in which state 

the FIFO is. FIFO is enabled by other modules in order to read a value and for each value which has 

as outcome, it returns a valid bit, in order to decide which value is a valid compare or no
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Figure 4.16: PU architecture 

Compare Merge?

Valid Tuple

Tuple S

Tuple R

Valid 
Data

Write 
enable

FIFO out

V
al

u
e

 1

V
al

u
e

 2

T
im

e
st

.

V
al

u
e

 1

V
al

u
e

 2

^

^

^

MERGER

T
im

e
st

.

 

 

4.6 Conclusion 
All in all, the above sections describe the whole implementation of the ScaleJoin in each FPGA. As 

we mentioned before, every copy in each FPGA runs in parallel with the others and the process in 

each one is completely irrelevant with the others. This is made to make the most of the hardware 

given by Convey HC-2 and, at the same time, in each FPGA we used this architecture in order to 

process each stream as efficiently as we could. 
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Chapter 5:       Evaluation 
 

 

 

 

5.1 Introduction 
This chapter presents the performance results of the proposed system. Firstly, we present how we 

made sure that our implementation is totally correct and has the same output, given the same input, 

as the initial ScaleJoin algorithm. Then, we present the performance bounds for a system that 

implements the stream join processing, as presented in [6]. Next, we show the performance upper 

limits, in terms of comparisons/sec and tuples/sec, that the proposed hardware solution can offer. 

Last, an evaluation benchmark among other related works that are presented in bibliography and 

accelerate the stream join processing with our proposed system is presented. 

 

5.2 Cross-check evaluation 
Our first step during the evaluation phase is to make sure that we are made a completely accurate 

implementation, which results in the same outcome as the initial algorithm, given the same input. At 

this point, with much help from Chalmers University of Technology and more specifically from 

Gulisano, Vincenzo, Nikolakopoulos, Y., Papatriantafilou M. and Tsigas F., a data set has been sent 

to us, which represent the input streams and their respective merge results.  Then, we decided to 

create a non-parallel C code for ScaleJoin, taking into account the things said in [7]. Our next step is 

to import each tuple of each stream in this code and make sure our results are the same as the 

results, which are sent from Chalmers University. Finally, after making sure that the C code is an 

accurate copy of the initial ScaleJoin algorithm, we had to make sure that our FPGA architecture has 

the same output as the pre mentioned C code and also with the initial algorithm. As a result, each 

random tuple created for each stream created by the C code, which controls Convey HC-2, was 

stored in 2 txt files. Those txt files were then loaded to the copy of the ScaleJoin algorithm and made 

sure that each random run, returned the same results. 

  

5.3 Theoretical Performance bounds 
The stream join processing includes the comparison of the newly arrived tuples from each one of two 

streams with all the in time-window tuples of the other stream. Considering that the tuples from 

both streams arrive with a rate T tuples/sec and the time processing window has size W, then the 

total number of comparisons that need to take place at each second is about 2 x W x T2 [6]. Thus, 

according to the above formula we can calculate the maximum number of the comparisons that can 

be implemented by a system per second, given the window size and the maximum throughput rate 

in tuples per second that the system can process. 
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5.4 Experimental setup 
We use the same benchmark that was used for evaluating ScaleJoin [6], CellJoin [10] and Handshake 

joins [7, 8]. The R tuples have 4 attributes (ts,x,y,z), where x,y,z are of types int, float and char[20], 

respectively. The S tuples also have 4 attributes (ts, a, b, c, d), where a, b, c, d are of types int, float, 

double and bool, respectively. The values for attributes x, y, a and b are random using a uniform 

distribution in the interval [1−10,000]. An output tuple (ts, x, y, z, a, b, c, d) is created for each pair of 

tuples tR, tS only if the below comparisons are true:  

 

|tS.a −  tR.x| <= 10 and |tS.b − tR.y| <= 10. 

We use a C code, which generates random tuples, according to the above interval, for both streams 

and stores them into Convey’s RAM at each second. Next, the new tuples of R and S streams are 

loaded to the reconfigurable part of the ScaleJoin module, while the older tuples are streamed for 

processing.  Last, the processor reads and presents the stream join results at each second.  

In a real-life application, the arrival of data can take place in parallel from parallel running threads, 

which store the streaming values in different places of RAM. The implemented system can operate 

with multiple physical links, like the ScaleJoin algorithm. The performance results, which are 

presented in the next section, are based on a single thread data generation, which is considered to 

be the worst case in terms of performance.  

 

5.5 Performance Evaluation 
This section presents the performance achieved by the proposed reconfigurable system. Also, we 

compare the performance achieved by our solution vs. the performance achieved by the most 

performance efficient multicore solution, as presented in [6]. Last, we show the scalability of our 

hardware-based solution when a single and four parallel FPGA devices of a Convey HC-2ex server are 

used. 

As referred above, the reconfigurable architecture was mapped on a Convey HC-2ex server. The HC-

2ex server is equipped with four Virtex 6 LX760 FPGA devices and a 4-core Intel Xeon CPU at 2.13 

GHz with 24GB RAM. The resource utilization for the proposed architecture is presented in Table 1; 

the processing system is clocked at 150 MHz. As Table II shows, the proposed architecture uses less 

than 30% of the available resources. In our future plans, we aim at proposing a novel architecture 

taking advantage of even greater parallelism, thus, getting better performance results. 
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Table 5.1: Resource utilization for hardware-based stream join architecture 

FPGA Resources 
System’s 

FPGA Utilization 

DSPs 0/864 (0%) 

Slice Registers 158777/948480 (16%) 

Slice LUTs 151688/474240 (31%) 

Registers used as Memory 22.904/132480 (17%) 

Block RAMs 114/720 (15%) 

Number of IOBs 909/1200 (75%) 

 

On the other hand, the software-based reference system, as presented in [6], is equipped with a 2.6 

GHz AMD Opteron 6230, 48 cores over 4 sockets and 64 GB RAM. Both systems’ performance was 

measured evaluating the maximum number of comparisons that can be executed per second and 

the maximum throughput achieved, i.e. number of tuples per sec., and the measurements are 

actual, experimental results from runs on the respective platforms. 

Figure 1 shows the processing capabilities of the proposed system. According to the performance 

results presented in [6], software-based reference system with 48 cores can achieve approximately 

4 billion comparisons/sec for various window sizes. On the other hand, the proposed FPGA-based 

system with 1 FPGA device can offer up to 18.5 billion comparisons/sec, while when all the four 

available FPGA devices are used can offer up to 74 billion comparison/sec. Thus, our proposed 

solution outperforms in terms of processing the best multi-core solution by a factor of about 4x 

when a single FPGA is used or by a factor of 19x when four parallel FPGA devices are mapped. We 

note here that there is no performance lost when the application runs on all four FPGAs due to the 

intrinsic parallelism. 

Figure 2 shows the throughput achieved in tuples per second for both systems. As the results 

indicate, the FPGA-based solution can process with a single FPGA device 2 times higher throughput 

streams vs. a multicore solution, as the full reconfigurable system outperforms the fastest software-

based multicore solution by at least a factor of 4x.  
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Figure 5.1: Processing rate (comparisons/sec) for SW-based multicore ScaleJoin and FPGA-based 

solution ScaleJoin 

 

Figure 5.2: Throughput (tuples/sec) for SW-based multicore ScaleJoin and FPGA-based solution 

ScaleJoin 

 

 

In addition, it is important to mention the scalability of the hardware proposed solution. According 

to Figure 2, the performance, when 4 FPGA devices are used, scales proportionally to the square 

root of the number of parallel processing units, which can be shown from the formula described 

above, too. This is the theoretical upper bound, and it is realized in practice too. 
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5.6 Benchmark Performance Evaluation 
This section compares the performance of the proposed stream join implementation vs. other state-

of-the-art multicore solutions under the same benchmark, which was described above. The 

comparison takes place in terms of maximum throughput rate that each system can achieve and the 

maximum number of comparisons that each system can execute. Last, we compare the proposed 

system vs. previous hardware implementations, despite the fact that there is not a single clear, 

common benchmark for this case.  

As referred above, there are three works on stream join problem that followed the same 

benchmark. The first work is the CellJoin system [10], where a Cell processor was used for 

implementing window-based stream joins. The Celljoin system used 9 processors, i.e. one Power PC 

processing element and 8 Synergistic Processing Elements, for the parallel stream join processing. 

The second work is the software-based Handshake algorithm [7, 8]. This method was evaluated 

using an AMD Opteron 6174 “Magny Cours” machine with 48 parallel cores. The last work is about 

the implementation of the most performance efficient stream join algorithm, ScaleJoin [6]. The 

performance evaluation of the ScaleJoin algorithm took place on a 2.6 GHz AMD Opteron 6230 with 

48 cores.  

Table 2 shows the performance achieved by the three above works and the proposed reconfigurable 

implementation. As the results show, the Handshake system offers the best throughput rate which 

can reach in a software-based system with about 5125 tuples per sec, among the previously 

presented systems. On the other hand, the proposed reconfigurable system with a single FPGA 

device offers a throughput rate up to 6400 tuples per sec, whereas when the full system is used the 

rate reaches up to 12800 tuples per sec. Thus, our system seems to outperform any other proposed 

software-based solution by at least a factor of 2x. 

The other performance metric, which is widely used, is the number of comparisons per second 

without taking into consideration the I/O issues. The most performance efficient solution, as 

presented in Table 2, is the ScaleJoin system. It can offer up to 4 billion comparisons pes sec. On the 

contrary, the reconfigurable system can offer up to 74 billion comparisons per sec including I/O 

time. Thus, according to Table 2, the reconfigurable solutions seems to outperform any other state-

of-the-art multicore solution by at least one order of magnitude as far as the number of executed 

comparisons on streaming data. 

Lastly, there are some previous works [12, 13 and 14] which map the stream join problem but they 

do not follow an open source benchmark to compare with. The work in [6] offers really good 

performance but only for small processing windows, which can reach only up to 1024 tuples. On the 

contrary, our proposed work offers real-time stream processing without taking into account the size 

of the time processing window. Next, the work in [13] offers really good performance results but 

the results are not from real hardware runs but from simulation. On the other hand, the 

performance results of our proposed solution come from real life experiments under specific real 

time restrictions.  The work in [14] offer performance results which can reach up to 200 million 

tuples/sec but without giving any more details about the benchmark that the authors used. 
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Table 5.2. SW multicore stream join vs. FPGA based stream join on Benchmark Evaluation 

Systems 
Handshake system  

[7, 8] 

ScaleJoin system  

[6] 

CellJoin system  

[10] 

FPGA-based 

ScaleJoin system 

CPU Cores 40 48 9 1 CPU + 4 FPGAs 

CPU type 
2.2 GHz AMD 

Opteron 

2.6 GHz AMD 

Opteron 
1 PPE and 8 SPEs 

2.13 GHz Intel 

Xeon 

Processing Time 

Window (mins) 
15 15 15 15 

Max Throughput 

Rate (tuples/sec) 
5125 3000 2000 12800 

Max Processing 

Rate (Comps/sec) 
1.5 x 109 4 x 109 - 74 x 109 

 

 

5.7 Conclusion 
As the results show, we outperform, in most occasions by far, the related works that have been 

done in the stream join branch both in software and hardware. Our implementation can achieve 

tens of billions of comparisons in second, achieving, at the same time, a great number of maximum 

new incoming tuples per second. Moreover, regarding the software-based implementation of 

ScaleJoin, we achieve a high enough 19x of its maximum throughput, while we also achieve 4.5 

times greater tuple rate. 
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Chapter 6:       Conclusion and Future work 

 

 

 

6.1 Conclusion 
This works presented an FPGA-based system that implements a widely used steam data mining 

operator, i.e. stream join. To the best of our knowledge, this is the first work that maps a stream 

join operator on a high-end multi-FPGA system, such as the Convey HC-2ex server. Next, we 

presented and analyzed an efficient, extensible, scalable and generic reconfigurable architecture for 

the stream join workload. The main characteristics of the proposed architecture are analyzed below: 

• Efficient. According to the performance evaluation presented in this work, the proposed 

architecture seems to outperform any other state-of-the-art published work. The proposed 

architecture, when mapped on a high-end multi-FPGA system with fast I/O links, can offer about 

one order of magnitude higher processing rates than any other software or hardware-based state-

of-the-art system. 

• Extensible. The proposed architecture can be easily mapped in parallel to more than a single 

FPGA device, as shown in experimental evaluation. We presented the results for implementations 

when one and four FPGA devices, without loss of genericity, achieving the theoretical expected 

increase in performance. 

• Scalable. The proposed architecture offers high fine grained scalability. As shown, increasing 

the number of available PUs in each FPGA device, it can offer even better performance results.  

• Generic architecture. The proposed architecture is generic and can be used to tackle the 

stream-based workloads on reconfigurable hardware. As shown, the processing that takes place 

into the main processing unit of the system can change according to the mapped application. Thus, 

the proposed architecture can easily be extended or used to any type of streaming processing that 

combines data from different streams.  

To conclude, FPGA’s are particularly well suited for this form of computation vs. software-based 

multicore solutions, but fast I/O and the proper memory organization is necessary in order to fully 

realize these advantages. 

 

6.2 Future work 
Regarding future work, we are aware of certain adjustments that can significally increase our 

processing throughput, while we keep our implementation accurate. As shown in Table 5.1, we 

occupy less than a third of the total LUTs of Virtex 6 LX 760. This is because we faced certain 

problem, while we were mapping a larger implementation into the bitfile. Should this problem is 

solved, we would be capable of mapping more PUs in each set of processing units and so we would 

load a higher number of new tuples in each run. Then, we could also organize our stalls in each set 
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of processing units. We could create smaller groups and stall those smaller groups dynamically and 

not the whole set. Lastly we can achieve a greater clock period (FPGAs maximum is 200 MHz) and 

improve our results. 
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