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Abstract

Information Theory was created in 1948, by Claude Shannon. Besides other contribu-

tions, Shannon defined the channel capacity and proved that it can be achieved arbi-

trarily well via channel coding. Since then, both theory and practice for point-to-point

communications have been constantly developed, up to the point that, nowadays, tech-

niques for practically attaining channel capacity exist. This has been made possible by

the invention of powerful coding methods, such as turbo codes and low-density parity-

check (LDPC) codes. In this thesis, we focus on LDPC codes, which were invented

by Robert Gallager in the early Sixties. At that time, the limited available computa-

tional power made the use of LDPC codes impractical and prevented scientists from

fully understanding their potential. After the introduction of irregular LDPC codes and

of practical performance analysis tools in the late nineties, LDPC codes became the

most powerful error correcting codes, enabling reliable transmissions at rates close to

the channel capacity for a number of communication channels.
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Chapter 1

Coding, channels, and capacity

1.1 Introduction

In 1948, Shannon demonstrated that, by proper encoding of the information, errors

created by a noisy channel can be reduced to any desired level without sacrificing the

rate of information transmission, as long as the information rate is less than the capacity

of the channel [1]. Since then, much effort has been spent on the problem of efficient

encoding and decoding methods for error control in a noisy communication environment.

A typical transmission system can be represented by the block diagram shown in the

figure below [2, p. 2].

SourceSource

Channel DecoderChannel Decoder

ChannelChannel

Source DecoderSource Decoder

Source EncoderSource Encoder Channel EncoderChannel Encoder

DestinationDestination

ModulatorModulator

DemodulatorDemodulator

uu cc

rrû̂u

Figure 1.1: A typical communication system.
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CHAPTER 1. CODING, CHANNELS, AND CAPACITY

The information source can be either a continuous waveform or a sequence of discrete

symbols. The source encoder transforms the source output into a sequence of binary

digits (bits) called information word (u). The source encoder is ideally designed so

that the length of the bit sequence is minimized and it can be recovered without loss

of information. The channel encoder adds redundancy to the information word and

creates a discretely encoded sequence called codeword (c), which, in many instances, is

also binary. The design of channel encoder is based on the size and the kind of channel

noise.

The channel encoder output symbol stream is not suitable for transmission over a phys-

ical channel. The modulator transforms this stream into a waveform that is suitable for

transmission. This waveform enters the channel and is corrupted by noise. The demod-

ulator processes each received waveform and produces either a discrete (quantized) or a

continuous (unquantized) output. The sequence of demodulator outputs corresponding

to the encoded sequence, c, is called the received sequence, r.

The channel decoder transforms the received sequence r into a binary sequence û called

the estimated information sequence. Ideally, û is the same as the information sequence

u, but the noise usually causes decoding errors. The source decoder transforms the

estimated information sequence û into an estimate of the source output and delivers

this estimate to the destination. In a well-designed system, the estimate is a faithful

reproduction of the source output.

1.2 Block codes

The most commonly used codes nowadays are the block codes [3, pp. 66–71]. The encoder

for a block code divides the information sequence into message blocks of k information

bits each. A message block is represented by the binary k-tuple u = (u1, u2, . . . , uk),

called a message. There are a total of 2k different possible messages. The encoder

transforms each message u independently into an n-tuple c = (c1, c2, . . . , cn) of dis-

crete symbols, called a codeword. Therefore, corresponding to the 2k different possible

messages, there are 2k different possible codewords at the encoder output. This set of

codewords of length n is called an (n, k) block code. The ratio R = k/n is called the

code rate, which is the ratio of the number of bits that enter the channel encoder to the

2



1.2. BLOCK CODES

p1p1

        u4u4       

u1u1   
              p2p2

u3u3

        u2u2

p3p3

Figure 1.2: Venn diagram representation of (7, 4) Hamming-code encoding and de-
coding rules.

number of bits that depart from it, with 0 < R ≤ 1. For example, if a 1000-bit codeword

is assigned to each 500-bit information word, then R = 1/2 and there are 500 redundant

bits in each codeword.

If the 2k codewords of a block code of length n form a k-dimensional linear subspace of

the vector space of all binary n-tuples, then the block code is called linear. In simpler

terms, a block code is linear, if any linear combination of codewords is also a codeword.

A very popular linear block code is the (7, 4) Hamming code [2, pp. 4–7]. The codeword

length is n = 7 and the information word length is k = 4, so the code rate is R = 4/7.

The Hamming code is easily described by the Venn diagram in Figure 1.2, in which

u = (u1, u2, u3, u4) is the information word and p = (p1, p2, p3) are the parity bits. The

concatenation of parity bits and information bits gives the codeword:

c = (p u) = (p1, p2, p3, u1, u2, u3, u4) = (c1, c2, c3, c4, c5, c6, c7).

For encoding, the parity bits are chosen so that each circle in Figure 1.2 has an even

number of 1s. So, the parity equations are:

p1 = u1 ⊕ u3 ⊕ u4,

p2 = u1 ⊕ u2 ⊕ u3,

p3 = u2 ⊕ u3 ⊕ u4,

3



CHAPTER 1. CODING, CHANNELS, AND CAPACITY

  r1 = 0r1 = 0

                 r4 =r4 =  
              
                 r6 =r6 = 
     
       r7 = 1r7 = 1 

           r2 = 0r2 = 0

     00

     11

       r5 = 0r5 = 0

r3 = 1r3 = 1

Circle 1Circle 1 Circle 2Circle 2

Circle 3Circle 3

Figure 1.3: Venn diagram setup for the Hamming decoding example.

and the 16 codewords are:

(01)→ 000 0000 (02)→ 110 1000 (03)→ 011 0100 (04)→ 001 1010

(05)→ 000 1101 (06)→ 100 0110 (07)→ 010 0011 (08)→ 101 0001

(09)→ 111 0010 (10)→ 011 1001 (11)→ 101 1100 (12)→ 010 1110

(13)→ 001 0111 (14)→ 100 1011 (15)→ 110 0101 (16)→ 111 1111.

We can see that the modulo-2 sum of 2 codewords yields a codeword. So, the code is

linear.

Suppose now that c = (p u) = (001 0111) is transmitted, but r = (001 0011) is received.

The symbol c5 has been changed, so we have an error. We can use the Venn diagram

of Figure 1.3 for decoding r and error correction. According to this Venn diagram, the

first cycle has an even number of 1s, because r1 = r4 = 0, r6 = r7 = 1. The second

circle has an odd number of 1s, because r2 = r4 = r5 = 0, r6 = 1. The r4 and r6 are

part of the first circle which is correct. So, the error must be for r2 or r5. In the same

manner for third circle, the error must be for r3 or r5. Consequently, the error is for r5

and correcting it, we have r5 = 1.

4



1.3. THE MINIMUM DISTANCE OF A BLOCK CODE

1.3 The minimum distance of a block code

An important parameter for error detection and correction of a block code is the mini-

mum distance [3, pp. 76–77]. Let v = (v1, v2, . . . , vn) be a binary n-tuple. The Hamming

weight of v, denoted by w(v), is defined as the number of nonzero components of v. For

example, the Hamming weight of v = (1 1 1 0 0 1 1) is 5. Let v and w be two n-tuples.

The Hamming distance between v and w, denoted d(v,w), is defined as the number of

places where they differ. For example, the Hamming distance between v = (1 1 1 0 0 1 1)

and w = (0 1 0 0 0 0 1) is 3, because they differ in first, third, and sixth bit. The Ham-

ming distance is a metric function that satisfies the triangle inequality. Let v, w, and x

be three n-tuples. Then,

d(v,w) + d(w,x) ≥ d(v,x). (1.1)

Moreover, it can be shown that the Hamming distance between two n-tuples v and w

is equal to the Hamming weight of the modulo-2 sum of v and w. So,

d(v,w) = w(v ⊕w). (1.2)

For example, the Hamming distance between v = (1 1 1 0 0 1 1) and w = (0 1 0 0 0 0 1)

is 3, and the weight of v ⊕w = (1 0 1 0 0 1 0) is also 3.

Given a block code C, one can compute the Hamming distance between any two distinct

codewords. The minimum distance of C, denoted by dmin, is defined as

dmin , min{d(v,w) : v,w ∈ C,v 6= w}. (1.3)

From the definition of linear block codes, we know that the sum of two codewords is also a

codeword. So, if C is a linear block code, from (1.2) we have that the Hamming distance

between two codewords in C is equal to the Hamming weight of a third codeword in C.

Then, it follows from (1.3) that

dmin = min{w(v ⊕w) : v,w ∈ C,v 6= w}

= min{w(x) : x ∈ C,x 6= 0}

, wmin.

(1.4)

5



CHAPTER 1. CODING, CHANNELS, AND CAPACITY

The parameter wmin , min{w(x) : x ∈ C,x 6= 0} is called the minimum weight of the

linear code C. So, the minimum distance of a linear block code is equal to the minimum

weight of its nonzero codewords.

1.4 Error-detection and error-correction capabilities of a

block code

When a codeword c of a block code C is transmitted over a noisy channel, an error

pattern of l errors will result in a received vector r that differs from the transmitted

codeword c in l places. So, we have d(c, r) = l. If the minimum distance of code C

is dmin, any two distinct codewords of C differ in at least dmin places. For this code,

no error pattern of dmin − 1 or fewer errors can change one codeword into another.

Therefore, any error pattern of dmin− 1 or fewer errors will result in a received vector r

that is not a codeword in C. Hence, a block code with minimum distance dmin is capable

of detecting all the error patterns of dmin− 1 or fewer errors. However, it cannot detect

all the error patterns of dmin errors because there exists at least one pair of codewords

that differ in dmin places, and there is an error pattern of dmin errors that will carry one

into the other. For example, for the (7, 4) Hamming code, if we receive r = (111 0010),

this is a codeword and there is no any error detection. However, there is a possibility

that the transmitter sent u = (111 1111) and the channel noise created dmin = 3 errors.

The same argument applies to error patterns of more than dmin errors. For this reason,

we say that the error-detection capability of a block code with minimum distance dmin

is dmin − 1 [3, p. 78].

If a block code C with minimum distance dmin is used for error correction, one would

like to know how many errors the code is able to correct. Suppose that the code can

correct up to t errors, with t ≤ (dmin−1)/2. Let c be the transmitted codeword and r be

the received vector with t or fewer errors, so that d(c, r) ≤ t. To see that C can correct

these errors, note that, if w is a codeword other than c, then d(r,w) ≥ t + 1. To see

this note that if d(r,w) ≤ t, then by the triangle inequality d(c,w) ≤ d(c, r)+d(r,w) ≤
t + t ≤ 2t, contradicting the assumption that t ≤ (dmin − 1)/2. In summary, a block

code with minimum distance dmin guarantees correction of all the error patterns of

6



1.5. CHANNELS AND CAPACITY

t = b(dmin − 1)/2c or fewer errors. The parameter t = b(dmin − 1)/2c is called the

error-correction capability of the code [3, p. 81].

1.5 Channels and capacity

We consider a channel with input X, output Y , and transfer function pY |X(y|x). Input

X has probability mass function pX(x) and output Y has probability mass function

pY (y). The mutual information of X and Y is defined as [2, p. 10]

I(X;Y ) = H(Y )−H(Y |X), (1.5)

where H(Y ) is the entropy of the channel output,

H(Y ) = −
∑

y

pY (y) log2(pY (y)),

and H(Y |X) is the conditional entropy of Y given X,

H(Y |X) = −
∑

x

pX(x)H(Y |X = x)

= −
∑

x

∑

y

pX,Y (x, y) log2(pY |X(y|x))

= −
∑

x

∑

y

pX(x)pY |X(y|x) log2(pY |X(y|x)).

The mutual information can also be expressed as I(X;Y ) = H(X)−H(X|Y ), which is

sometimes useful. The capacity of a channel is defined as [2, p. 11]

C = max
pX(x)

I(X;Y ), (1.6)

in which we see that the capacity is the maximum mutual information, where the max-

imization is over the channel input probability distribution {pX(x)}.

The three most popular channels are the binary erasure channel (BEC), the binary sym-

metric channel (BSC), and the binary-input additive white-Gaussian-noise channel (BI-

AWGNC). All these channels are named memoryless because their output, at any time

instant, depends only on their input at that time instant. More precisely, for a sequence

7
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Figure 1.4: The BEC channel and its capacity.

of transmitted symbols x = [x1, x2, . . . , xN ] and received symbols y = [y1, y2, . . . , yN ]:

pY|X(y|x) =
N∏

i=1

pY |X(yi|xi). (1.7)

A memoryless channel is therefore completely described by its input and output alpha-

bets and the conditional probability distribution pY |X(y|x) for each input-output symbol

pair.

Specifically, a binary erasure channel with erasure probability p, denoted as BEC(p), is

a channel with binary input, ternary output, and probability of erasure p. That is, let

X be the transmitted random variable with alphabet {0, 1} and let Y be the received

variable with alphabet {0, 1, e}, where e is the erasure symbol. Then, the channel is

characterized by the following transition probabilities:

pY |X(0|0) = pY |X(1|1) = 1− p,

pY |X(e|0) = pY |X(e|1) = p,

pY |X(1|0) = pY |X(0|1) = 0.

The capacity of BEC(p) is [2, p. 12]

CBEC(p) = 1− p,

and is plotted in Figure 1.4.

The second channel which we consider is the binary symmetric channel with crossover

probability p, denoted as BSC(p). This is a channel with binary input, binary output,

8
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Figure 1.5: The BSC channel and its capacity.

and probability of error p. That is, if X is the channel input and Y the channel output,

then

pY |X(0|0) = pY |X(1|1) = 1− p,

pY |X(1|0) = pY |X(0|1) = p.

The capacity of BSC(p) is [2, p. 12]

CBSC(p) = 1−H(p),

and it is plotted in Figure 1.5.

The last channel which we consider is the binary-input additive white-Gaussian-noise

channel, denoted as BI-AWGN , and depicted in Figure 1.6. If X is the channel input,

Y the channel output, and Z the AWGN, then the channel can be described by the

equation

Y = X + Z,

where X ∈ {±1} is the transmitted symbol, Y is the received symbol and Z is a real-

valued additive white Gaussian noise (AWGN) sample with mean 0 and variance σ2,

i.e., Z ∼ N (0, σ2). The probability density function of Z is

pZ(z) =
1√

2πσ2
e−

z2

2σ2 . (1.8)

9
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Figure 1.6: The binary AWGN channel and its capacity.

The capacity of the binary AWGN channel is [2, p. 14]:

CBI−AWGN = −0.5 log2(2πeσ
2)−

∫
pY (y) log2(pY (y))dy, (1.9)

where, assuming equiprobable source,

pY (y) = pY |X(y|+ 1)pX(+1) + pY |X(y| − 1)pX(−1)

=
1

2
(pY |X(y|+ 1) + pY |X(y| − 1))

and

pY |X(y|x = ±1) =
1√

2πσ2
e(−(y∓1)

2/2σ2).

The capacity of the BI-AWGN channel is plotted in Figure 1.6 as a function of signal-

to-noise-radio (SNR) measure Eb/N0, where Eb is the average energy per information

bit and N0 = 2σ2 is the two-sided power spectral density.

1.6 Maximum likelihood decoding

The most common error correction decoder is the maximum likelihood decoder [4, p. 19],

as it will always choose the codeword that is most likely to have produced y. Specifically,

given a received vector y, the ML decoder will choose the codeword c that maximizes

the probability pY|C(y|c). The ML decoder returns the decoded codeword ĉ according

10
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to the rule

ĉ = argmax
c∈C

pY|C(y|c),

where assuming a memoryless channel,

pY|C(y|c) =
N∏

i=1

pYi|Ci(yi|ci).

For a binary symmetric channel with crossover probability less than 0.5, the most likely

codeword is the one that requires the fewest number of flipped bits to produce y, since

a bit is more likely to be received correctly than flipped. Then, the ML decoder is

equivalent to choosing the codeword closest in Hamming distance to y.

Example 1.6.1. We have the following codeword set

C = {000000, 000111, 011100, 011011, 110001, 110110, 101010, 101101}. (1.10)

We transmit c = [011011] over a binary symmetric channel and we receive the vector

y = [001011], which is not a codeword. So, the ML decoder will choose c = [011011]

as the closest codeword, because it is the only codeword with hamming distance 1 from

y. If we transmit the same vector and the received vector is y = [011010], we have 2

bits flipped and the ML decoder will choose c = 011011, which is wrong. This happens

because the minimum distance of the code is 3 and the error-correcting capability of the

code is t = b(dmin − 1)/2c = 1.

When the channel has not binary output, the Hamming distance is replaced by the

Euclidean distance described as

‖y − x‖ =

√∑

i

|yi − xi|2.

Example 1.6.2. We assume the codeword set of (1.10) and suppose that now we trans-

mit over a BI-AWGN channel. The codewords c = [c1 . . . cn] are transmitted by mapping

11
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c x |y − x|
[0 0 0 0 0 0] [+1 + 1 + 1 + 1 + 1 + 1] 6.1890
[0 0 0 1 1 1] [+1 + 1 + 1− 1− 1− 1] 5.5570
[0 1 1 1 0 0] [+1− 1− 1− 1 + 1 + 1] 7.2910
[0 1 1 0 1 1] [+1− 1− 1 + 1− 1− 1] 7.1030
[1 1 0 0 0 1] [−1− 1 + 1 + 1 + 1− 1] 5.9330
[1 1 0 1 1 0] [−1− 1 + 1− 1− 1 + 1] 4.5410
[1 0 1 0 1 0] [−1 + 1− 1 + 1− 1 + 1] 5.2190
[1 0 1 1 0 1] [−1 + 1− 1− 1 + 1− 1] 6.1670

Table 1.1: Euclidean distances from the vector y = [−0.535 + 0.217 + 0.445 −
0.111 − 0.395 + 0.190]

the codeword bits ci ∈ {0, 1} to the symbols xi ∈ {+1,−1}

0→ +1

1→ −1.

The Xi are then transmitted over the BI-AWGN channel which can be described as

Yi = Xi + Zi,

where Zi ∼ N (0, σ2). Suppose that a codeword c is transmitted (x = −2c+1) and that

we receive the vector y = [−0.535 + 0.217 + 0.445 − 0.111 − 0.395 + 0.190]. Then,

we can find the Euclidean distance of y from every vector x of the code. As wee see in

the Table 1.1, the ML decoder will choose the codeword c = [1 1 0 1 1 0].

The ML decoder we used in example (1.6.2) is named soft decision decoder. If we

would like to use hard decision decoder and we have received the same vector y =

[−0.535 + 0.217 + 0.445 − 0.111 − 0.395 + 0.190], we first convert it to [1 0 0 1 1 0]

and find the Hamming distance from any codeword. In this case, the hard decision ML

decoder would have chosen c = [1 1 0 1 1 0], as the codeword with minimum distance of

the received vector. The same process we did in example (1.6.1) for the binary symmetric

channel. In our example, soft and hard decisions gave us the same result, but generally

the soft decision decoder is better because it uses more information.

12
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1.7 Maximum a posteriori (MAP) decoding

A maximum a posteriori (MAP) decoder [4, p. 22] chooses the codeword c that maxi-

mizes pC|Y(c|y), so ĉ is chose according to

ĉ = argmax
c∈C

pC|Y(c|y).

The probability pC|Y (c|y) is called the a posteriori probability. We can continue accord-

ing to Bayes and find that

ĉ = argmax
c∈C

pC|Y(c|y)

= argmax
c∈C

pY|C(y|c)pC(c)

pY(y)
.

Because the pY(y) is common for all the probabilities we have to compute, we can

remove it. So, the final rule for MAP decoder is

ĉ = argmax
c∈C

pY|C(y|c)pC(c).

If each codeword is equally likely to have been sent, then the MAP and ML decoder

give identical result. However, because MAP decoder takes into account the a priori

information instead of ML decoder, we conclude that the MAP decoder is optimal.
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Chapter 2

Factor Graphs

2.1 Introduction

A large number of computational problems have to deal with complicated global func-

tions of many variables. These functions can be factorized into a product of simpler

local functions to reduce the time complexity of many computational problems. Such a

factorization can be visualized using a factor graph, that expresses which variables are

arguments of which local functions.

2.2 Marginal functions

Let x1, x2, . . . , xn be a collection of variables. For every function f(x1, . . . , xn), there

are n marginal functions fi(xi). Let f(x1, x2, x3, x4, x5, x6, x7) be a function of seven

variables. We denote the marginal of f with respect to x1, as the summation over all

variables contained in function, except x1

f(x1) =
∑

x2,x3,x4,x5,x6,x7

f(x1, x2, x3, x4, x5, x6, x7) =
∑

∼x1

f(x1, x2, x3, x4, x5, x6, x7).

Assuming that all variables take values in a finite alphabet X, the time complexity of

determining f(x1) for all values of x1 by brute force is Θ(|X|7). Suppose that f can be

expressed as a product of five factors.

f(x1, . . . , x7) = f1(x1, x2, x3)f2(x1, x4, x5)f3(x4)f4(x5, x6)f5(x5, x7). (2.1)
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This product can be visualized as a factor graph. A factor graph is a bipartite graph,

which has two types of nodes, variable nodes and factor nodes, and edges that connect

only different types of nodes. We see that the factor graph for our particular example

x1 x2 x3 x5 x6 x7

f1 f2 f3 f4 f5

x4

Figure 2.1: A factor graph of the right-handside of (2.1).

has no cycles. This means that there is one and only one path between each pair of

nodes. Such factor graphs are called and can be visualized as trees. Generally, suppose

x1

x2 x3 x4 x5

x6 x7

f1 f2

f3 f4 f5

Figure 2.2: A tree representation of (2.1).

that we have a function g and we are interested in marginalizing g with respect to the

variable z. If the factor graph of g is a bipartite tree, g can be factorized as

g(z, . . . ) =
K∏

k=1

[gk(z, . . . )] (2.2)

for some integer K with the property that z appears in every factor gk, but all other

variables appear in only one factor.
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From the marginal definition, we have

g(z) =
∑

∼z
g(z, . . . ). (2.3)

If we use (2.2) in (2.3), we have

∑

∼z
g(z, . . . ) =

∑

∼z

K∏

k=1

[gk(z, . . . )]

︸ ︷︷ ︸
marginal of product

=

K∏

k=1

[∑

∼z
gk(z, . . . )

]

︸ ︷︷ ︸
product of marginals

. (2.4)

In function f of (2.1), K = 2, and the marginal of product is

f(x1) =
∑

∼x1

[f1(x1, x2, x3)][f2(x1, x4, x5)f3(x4)f4(x5, x6)f5(x5, x7)]

which has Θ(|X|7) time complexity, and the product of marginals is

f(x1) =

[∑

x2,x3

f1(x1, x2, x3)

][ ∑

x4,x5,x6,x7

f2(x1, x4, x5)f3(x4)f4(x5, x6)f5(x5, x7)

]

which has Θ(|X|5) time complexity. The complexity has been reduced, but we can do

better if every marginal of product becomes product of marginals.

In general, each gk is a product of factors. In our example, the one product of fac-

tors is f1(x1, x2, x3) and the other is f2(x1, x4, x5)f3(x4)f4(x5, x6)f5(x5, x7). Since the

factor graph is a bipartite tree, gk must in turn have a generic factorization of the form

gk(z, . . . ) = h(z, z1, . . . , zJ)︸ ︷︷ ︸
kernel

J∏

j=1

[hj(zj , . . . )]︸ ︷︷ ︸
factors

, (2.5)

where z appears only in the “kernel” and each of the zj appears at most twice, possibly

in the kernel and in at most one of the “factors”. For our running example, we have

f1(x1, x2, x3) = f1(x1, x2, x3)︸ ︷︷ ︸
kernel

[1]︸︷︷︸
x2

[1]︸︷︷︸
x3

(2.6)

and

f2(x1, x4, x5)f3(x4)f4(x5, x6)f5(x5, x7) = f2(x1, x4, x5)︸ ︷︷ ︸
kernel

[f3(x4)]︸ ︷︷ ︸
x4

[f4(x5, x6)f5(x5, x7)]︸ ︷︷ ︸
x5

17
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We can go further and say that

x1

x4 x5

x6 x7

f2

f3 f4 f5

    
kernel

       [f3]

     [f4f5]

           [f2f3f4f5]

Figure 2.3: The particular instance of f2 factorization.

f4(x5, x6) = f4(x5, x6)︸ ︷︷ ︸
kernel

[1]︸︷︷︸
x6

and

f5(x5, x7) = f5(x5, x7)︸ ︷︷ ︸
kernel

[1]︸︷︷︸
x7

.

From equation (2.5), we have

∑

∼z
gk(z, . . . ) =

∑

∼z


h(z, z1, . . . , zJ)

J∏

j=1

[hj(zj , . . . )]




=
∑

∼z



h(z, z1, . . . , zJ)

J∏

j=1


∑

∼zj

hj(zj , . . . )




︸ ︷︷ ︸
product of marginals



, (2.7)
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which says that the desired marginal gk(z) can be computed by multiplying the kernel h

with the individual marginals and summing all the remaining variables other than z. So,

we continue to analyze every factor until we reach the leaves of the tree. The calculation

of the marginal then follows the recursive splitting in reverse. In general, nodes in the

graph compute marginals and send them to the next level. This is the idea of message

passing.

2.3 Message passing

The algorithm proceeds by sending messages along the edges of the tree. Message passing

starts at the leaf nodes. If the leaf node is variable node, we have from (2.6) that node

sends the constant function 1 to its parent node. If the leaf node is a function node,

then it has the generic form gk(z), so that
∑
∼z gk(z) = gk(z) and it sends the function

itself.

xx

xxff

ff

µ(x) = 1µ(x) = 1µ(x) = f(x)µ(x) = f(x)

Figure 2.4: Initialization at leaf nodes.

Now, we have to find the message passing rules after the initialization. Suppose a variable

node has received messages from all its children. The message that will be sent is the

product of its incoming messages because, according to (2.4), the marginal of products

is the product of marginals. Suppose now that a factor node has received messages from

all its children. The message that will be sent, according to (2.7), is the product of the

incoming messages times the kernel of this function f , after summing all variable nodes

except the node that the message will be sent.

Now, it is easy to perform an example of marginalization via message passing. Suppose

we have the function f of (2.1) and we want to marginalize f with respect to the variable

x1. We have the tree from Figure 2.2.
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x

x

x1 xj xJ

f

f

f1 fk fK

µ1 µk µK µ1 µj µJ

µ(x) =
QK

k=1 µk(x) µ(x) =
P

⇠x f(x, x1, . . . , xj)
QJ

j=1 µj(xj)

Figure 2.5: Variable/Function node processing.

x1

x2 x3 x4 x5

x6 x7

f1 f2

f3 f4 f5

1
1

1 1

f3
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x2 x3 x4 x5

x6 x7

f1 f2

f3 f4 f5

1
1

1 1

f3

P
⇠x1

f1

P
⇠x5

f5
P

⇠x5
f4

f3

x1

x2 x3 x4 x5

x6 x7

f1 f2

f3 f4 f5

1
1

1 1

f3

P
⇠x1

f1

P
⇠x5

f5
P

⇠x5
f4

f3
P

⇠x5
f4f5

x1

x2 x3 x4 x5

x6 x7

f1 f2

f3 f4 f5

1
1

1 1

f3

P
⇠x1

f1

P
⇠x5

f5
P

⇠x5
f4

f3
P

⇠x5
f4f5

P
⇠x1

f2f3f4f5

Figure 2.6: The 4 steps of marginalization of function f of (2.1) via message passing.
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The messages are generated as follows

Step 1

µx2→f1(x2) = 1

µx3→f1(x3) = 1

µf3→x4(x4) = f3(x4)

µx6→f4(x6) = 1

µx7→f5(x7) = 1

Step 2

µf1→x1(x1) =
∑

x2,x3

f1(x1, x2, x3)[1][1] =
∑

x2,x3

f1(x1, x2, x3)

µx4→f2(x4) = f3(x4)

µf4→x5(x5) =
∑

x6

f4(x5, x6)[1] =
∑

x6

f4(x5, x6)

µf5→x5(x5) =
∑

x7

f5(x5, x7)[1] =
∑

x7

f5(x5, x7)

Step 3

µx5→f2(x5) =
∑

x6

f4(x5, x6)
∑

x7

f5(x5, x7)

Step 4

µf2→x1(f2) =
∑

x4,x5

[
f2(x1, x4, x5)f3(x4)

∑

x6

f4(x5, x6)
∑

x7

f5(x5, x7)

]

Termination

f(x1) =

[∑

x2,x3

f1(x1, x2, x3)

][∑

x4,x5

(
f2(x1, x4, x5)f3(x4)

∑

x6

f4(x5, x6)
∑

x7

f5(x5, x7)

)]
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which is the marginal
∑
∼x1 f1f2f3f4f5. The first factor has Θ(|X|2) complexity and

the second factor has Θ(|X|3). Since there are |X| values for x1, the overall task has

complexity Θ(|X|4). This compares favorably to the complexities we found before for

the marginal computations.

We saw how we can marginalize a function with respect to a single variable. For de-

coding, the case of interest is the marginalization over all variables. Such a computa-

tion might be accomplished by drawing a tree rooted in this variable and applying the

algorithm on each tree. However, this approach is not efficient because some subcom-

putations will be the same. So, we perform the algorithm simultaneously on a single

tree. We start at all leaf nodes and for every edge we compute the outgoing message as

soon as we have received the incoming messages along all other edges that connect to

the given node. We continue this until a message has been sent in both directions along

every edge. Let’s see an example on our previous function f of 2.1.

x1

x2

x3 x4

x5

x6

x7

f1 f2

f3

f4

f5

1

1

2 3

4

4

5

5

6

6

1

1

1
2

2

2

3

45
6

6
5

Figure 2.7: Messages generated in each step of the message passing algorithm.

The messages are generated as follows

Step 1

µx2→f1(x2) = 1

µx3→f1(x3) = 1

µx7→f5(x7) = 1

µx6→f4(x6) = 1

µf3→x4(x4) = f3(x4)
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Step 2

µf1→x1(x1) =
∑

x2,x3

f1(x1, x2, x3)

µf5→x5(x5) =
∑

x7

f5(x5, x7)

µf4→x5(x5) =
∑

x6

f4(x5, x6)

µx4→f2(x4) = f3(x4)

Step 3

µx1→f2(x1) = µf1→x1(x1) =
∑

x2,x3

f1(x1, x2, x3)

µx5→f2(x5) = µf4→x5(x5)µf5→x5(x5) =
∑

x6

f4(x5, x6)
∑

x7

f5(x5, x7)

Step 4

µf2→x5(x5) =
∑

x1,x4

[f2(x1, x4, x5)µx4→f2(x4)µx1→f2(x1)]

=
∑

x1,x4

[
f2(x1, x4, x5)f3(x4)

∑

x2,x3

f1(x1, x2, x3)

]

µf2→x4(x4) =
∑

x1,x5

[f2(x1, x4, x5)µx1→f2(x1)µx5→f2(x5)]

=
∑

x1,x5

[
f2(x1, x4, x5)

∑

x2,x3

f1(x1, x2, x3)
∑

x6

f4(x5, x6)
∑

x7

f5(x5, x7)

]

µf2→x1(x1) =
∑

x4,x5

[f2(x1, x4, x5)µx4→f2(x4)µx5→f2(x5)]

=
∑

x4,x5

[
f2(x1, x4, x5)f3(x4)

∑

x6

f4(x5, x6)
∑

x7

f5(x5, x7)

]
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Step 5

µx1→f1(x1) = µf2→x1(x1)

=
∑

x4,x5

[
f2(x1, x4, x5)f3(x4)

∑

x6

f4(x5, x6)
∑

x7

f5(x5, x7)

]

µx5→f5(x5) = µf2→x5(x5)µf4→x5(x5)

=
∑

x6

f4(x5, x6)
∑

x1,x4

[
f2(x1, x4, x5)f3(x4)

∑

x2,x3

f1(x1, x2, x3)

]

µx5→f4(x5) = µf5→x5(x5)µf2→x5(x5)

=
∑

x7

f5(x5, x7)
∑

x1,x4

[
f2(x1, x4, x5)f3(x4)

∑

x2,x3

f1(x1, x2, x3)

]

µx4→f3(x4) = µf2→x4(x4)

=
∑

x1,x5

[
f2(x1, x4, x5)

∑

x2,x3

f1(x1, x2, x3)
∑

x6

f4(x5, x6)
∑

x7

f5(x5, x7)

]

Step 6

µf5→x7(x7) =
∑

x5

[f5(x5, x7)µx5→f5(x5)]

=
∑

x5

[
f5(x5, x7)

∑

x6

f4(x5, x6)
∑

x1,x4

(
f2(x1, x4, x5)f3(x4)

∑

x2,x3

f1(x1, x2, x3)

)]

µf4→x6(x6) =
∑

x5

[f4(x5, x6)µx5→f4(x5)]

=
∑

x5

[
f4(x5, x6)

∑

x7

f5(x5, x7)
∑

x1,x4

(
f2(x1, x4, x5)f3(x4)

∑

x2,x3

f1(x1, x2, x3)

)]

µf1→x2(x2) =
∑

x1

[f1(x1, x2, x3)µx1→f1(x1)µx3→f1(x3)]

=
∑

x1

[
f1(x1, x2, x3)

∑

x4,x5

(
f2(x1, x4, x5)f3(x4)

∑

x6

f4(x5, x6)
∑

x7

f5(x5, x7)

)]

µf1→x3(x3) =
∑

x1

[f1(x1, x2, x3)µx2→f1(x2)µx1→f1(x1)]

=
∑

x1

[
f1(x1, x2, x3)

∑

x4,x5

(
f2(x1, x4, x5)f3(x4)

∑

x6

f4(x5, x6)
∑

x7

f5(x5, x7)

)]
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Termination

f(x1) = µf1→x1(x1)µf2→x1(x1)

=

[∑

x2,x3

f1(x1, x2, x3)

][∑

x4,x5

(
f2(x1, x4, x5)f3(x4)

∑

x6

f4(x5, x6)
∑

x7

f5(x5, x7)

)]

f(x2) = µf1→x2(x2)

=
∑

x1

[
f1(x1, x2, x3)

∑

x4,x5

(
f2(x1, x4, x5)f3(x4)

∑

x6

f4(x5, x6)
∑

x7

f5(x5, x7)

)]

f(x3) = µf1→x3(x3)

=
∑

x1

[
f1(x1, x2, x3)

∑

x4,x5

(
f2(x1, x4, x5)f3(x4)

∑

x6

f4(x5, x6)
∑

x7

f5(x5, x7)

)]

f(x4) = µf3→x4(x4)µf2→x4(x4)

= f3(x4)
∑

x1,x5

[
f2(x1, x4, x5)

∑

x2,x3

f1(x1, x2, x3)
∑

x6

f4(x5, x6)
∑

x7

f5(x5, x7)

]

f(x5) = µf2→x5(x5)µf5→x5(x5)µf4→x5(x5)

=

[∑

x7

f5(x5, x7)

][∑

x6

f4(x5, x6)

][∑

x1,x4

(
f2(x1, x4, x5)f3(x4)

∑

x2,x3

f1(x1, x2, x3)

)]

f(x6) = µf4→x6(x6)

=
∑

x5

[
f4(x5, x6)

∑

x7

f5(x5, x7)
∑

x1,x4

(
f2(x1, x4, x5)f3(x4)

∑

x2,x3

f1(x1, x2, x3)

)]

f(x7) = µf5→x7(x7)

=
∑

x5

[
f5(x5, x7)

∑

x6

f4(x5, x6)
∑

x1,x4

(
f2(x1, x4, x5)f3(x4)

∑

x2,x3

f1(x1, x2, x3)

)]

We saw how we compute marginals over all variables. Since the messages represent prob-

abilities or beliefs, the algorithm is also known as the belief propagation (BP) algorithm.
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2.4 Sum product decoding with example

Assume we transmit over a binary-input (Xi ∈ {±1}) memoryless (pY|X(y|x) =
∏n
i=1 pYi|Xi(yi|xi)) channel using a linear code C defined by its parity-check matrix H

and assume that codewords are chosen uniformly at random. We saw that that the rule

for the MAP decoder is

x̂MAP (y) = arg max
xi∈±1

∑

∼xi

pY|X(y|x)pX(x)

= arg max
xi∈±1

∑

∼xi


∏

j

pYj |Xj (yj |xj)


1{x∈C},

where in the last step we have used the fact that the channel is memoryless and that

codewords have uniform prior. Each term 1{·} is an indicator function: it is 1 if the

condition inside the braces is fulfilled and 0 otherwise.

A message µ(x) can be though of as a real-valued vector of length 2, (µ(1), µ(−1)).

The initial such message sent from the factor leaf node representing the i-th channel

realization to the variable node i is (pY |X(yi|1)), pY |X(yi|−1)). Recall that, at a variable

node of degree K + 1, the message passing rule calls for a pointwise multiplication

µ(1) =

K∏

k=1

µk(1), µ(−1) =

K∏

k=1

µk(−1).

Introduce the ratio rk = µk(1)
µk(−1) . These ratios are the likelihood ratios associated with

the channel observations. We have

r =
µ(1)

µ(−1)
=

∏K
k=1 µk(1)

∏K
k=1 µk(−1)

=
K∏

k=1

rk, (2.8)

so the ratio of the outgoing message at a variable node is the product of the incoming

ratios. If we define the log-likelihood ratio lk = ln(rk), then the processing rule is

simplified to l =
∑K

k=1 lk, which is widely used as processing rule for the variable

nodes.

At the check nodes, the processing rule is slightly more complex. Consider the ratio of

an outgoing message at a check node which has degree J + 1. The associated kernel will
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be

f(x, x1, . . . , xJ) = 1[
∏J
j=1 xj=x]

.

We have a product instead of a modulo-2 sum since we have assumed that Xi takes

values in {±1} and not in {0, 1}. For the outgoing message of a check node we have

r =
µ(1)

µ(−1)
=

∑
∼x f(1, x1, . . . , xJ)

∏J
j=1 µj(xj)∑

∼x f(−1, x1, . . . , xJ)
∏J
j=1 µj(xj)

=

∑
x1,...,xJ :

∏J
j=1 xj=1

∏J
j=1 µj(xj)

∑
x1,...,xJ :

∏J
j=1 xj=−1

∏J
j=1 µj(xj)

=

∑
x1,...,xJ :

∏J
j=1 xj=1

∏J
j=1

µj(xj)
µj(−1)

∑
x1,...,xJ :

∏J
j=1 xj=−1

∏J
j=1

µj(xj)
µj(−1)

=

∑
x1,...,xJ :

∏J
j=1 xj=1

∏J
j=1 r

(1+xj)/2
j

∑
x1,...,xJ :

∏J
j=1 xj=−1

∏J
j=1 r

(1+xj)/2
j

=

∏J
j=1(rj + 1) +

∏J
j=1(rj − 1)

∏J
j=1(rj + 1)−∏J

j=1(rj − 1)
.

For the last step, we use the fact that

J∏

j=1

(rj + 1) +

J∏

j=1

(rj − 1) = 2
∏

x1,...,xJ :
∏J
j=1 xj=1

r
(1+xj)/2
j ,

which can be applied to both the numerator and the denominator in order to get the

last equation.

If we divide both numerator and denominator by
∏J
j=1(rj + 1), we see that

r =
1 +

∏J
j=1

rj−1
rj+1

1−∏J
j=1

rj−1
rj+1

,

which in turns implies that

r − 1

r + 1
=

J∏

j=1

(rj − 1)

rj + 1
.
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Recall that l denotes the message from a variable node in the log-likelihood form. Then,

r = el and we see that

r − 1

r + 1
= tanh(l/2).

Combining these two statements, we have

tanh(l/2) =
r − 1

r + 1
=

J∏

j=1

rj − 1

rj + 1
=

J∏

j=1

tanh(lj/2),

so that the final processing rule for the check node is

l = 2 tanh−1




J∏

j=1

tanh(lj/2)


 . (2.9)

At the end of each decoding iteration, the overall LLR is calculated for each variable

node and its estimated value is changed accordingly. If, at any point, the estimated

vector is found to be a codeword, decoding stops declaring a success.

Example 2.4.1. We have a code C described by the parity check matrix

H =




1 1 0 1 0 0

0 1 1 0 1 0

1 0 0 0 1 1

0 0 1 1 0 1



,

and we transmit the codeword

c = [0 0 1 0 1 1].

The vector c is sent through a binary AWGN channel where the noise has mean 0 and

variance σ2 = 0.5 and the received signal is

y = [−0.83 + 0.72 − 1.35 + 1.1 − 0.98 − 1.59].
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The log-likelihood ratios will be

l(y) = log
pY |X(y|+ 1)

pY |X(y| − 1)

= log

1√
2πσ2

exp
[
− (y−1)2

2σ2

]

1√
2πσ2

exp
[
− (y+1)2

2σ2

]

= log exp

[
−(y − 1)2

2σ2
+

(y + 1)2

2σ2

]

=
2

σ2
y.

Then

R = [−6.64 + 5.76 − 10.80 + 8.80 − 7.84 − 12.72].

To begin decoding, we set the maximum number of iterations to 2. At initialization,

Mj,i = Li.

The first variable node is connected only to the first and third check node. So, the

message L1 will be sent only to these check nodes:

M1,1 = L1 = −6.64 and M3,1 = L1 = −6.64.

Repeating this for the remaining variable nodes gives

for i = 2, M1,2 = R2 = +5, 76, M2,2 = R2 = +5.76

for i = 3, M2,3 = R3 = −10.8, M4,3 = R3 = −10.8

for i = 4, M1,4 = R4 = +8.8, M4,4 = R4 = +8.8

for i = 5, M2,5 = R5 = −7.84, M3,5 = R5 = −7.84

for i = 6, M3,6 = R6 = −12.72, M4,6 = R6 = −12.72.

Now, the extrinsic probabilities are calculated for the check to variable node messages.

The first parity check node is connected to the first, second and fourth variable nodes.

So, according to rule (2.9), the probability from the first check node to the first variable
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node depends on the probabilities of the second and fourth variable nodes

E1,1 = 2 tanh−1
(

tanh(M1,2/2) tanh(M1,4/2)
)

= 2 tanh−1
(

tanh(5.76/2) tanh(8.8/2)
)

= 5.7133.

Similarly, the extrinsic probability from the first check node to the second variable node

depends on the probabilities of the first and fourth variable nodes

E1,2 = 2 tanh−1
(

tanh(M1,1/2) tanh(M1,4/2)
)

= −6.5309,

and the extrinsic probability from the first check node to the fourth variable node de-

pends on the LLRs sent from the first and second variable nodes to the first check

node

E1,4 = 2 tanh−1
(

tanh(M1,1/2) tanh(M1,2/2)
)

= −5.413

Repeating for all check nodes gives the extrinsic LLRs

E =




5.1733 −6.5309 . −5.143 . .

. 7.7895 −5.6423 . −5.7535 .

−7.8324 . . . 6.6377 6.3767

. . −8.7804 10.6632 . −8.6731




To save space, the extrinsic LLRs are given in matrix form, where the (j, i)-th entry

of E holds Ej,i, which is the message that is going from the jth check node to the ith

variable node. A dot entry indicates that an LLR does not exist for that i and j.

After the messages pass from the variable nodes to check nodes and return back to

variable nodes, one iteration has been completed. After every iteration, the message-

passing algorithm calculates the overall LLR for every variable node, makes a hard

decision and checks if the vector forms a codeword. The first variable node has extrinsic

LLRs from the first and third checks and an intrinsic LLR from the channel. The total
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LLR is their sum

L1 = R1 + E1,1 + E3,1 = −6.64 + 5.7133− 7.8324 = −8.7591.

Repeating for the second to sixth variable nodes gives

L2 = R2 + E1,2 + E2,2 = +7.0186

L3 = R3 + E2,3 + E4,3 = −25.2227

L4 = R4 + E1,4 + E4,4 = +14.3202

L5 = R5 + E2,5 + E3,5 = −6.9558

L6 = R6 + E3,6 + E4,6 = −15.0164.

The hard decision on the received bits is simply given by the signs of the LLRs

ĉ = [101011].

For ĉ being a valid codeword, we must have

ĉHT = 0,

which is not true for the particular ĉ, so the decoding will continue with the second

iteration and so on until either ĉ is a valid codeword either the total iterations reached.
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LDPC

3.1 Introduction

Low-density parity-check (LDPC) codes form a class of Shannon limit (or channel ca-

pacity) approaching codes. LDPC codes were invented by Gallager in the early 1960s

[5]. Unfortunately, Gallager’s remarkable discovery was mostly ignored by coding re-

searchers for almost 20 years, until Tanner’s work in 1981 [6], in which he provided

a new interpretation of LDPC codes from a graphical point of view. Tanner’s work

was also ignored by coding theorists for another 14 years, until the late 1990s, where

MacKay and other coding researchers began to investigate codes on graphs and iter-

ative decoding [7, 8]. Their research resulted in the rediscovery of Gallager’s LDPC

codes and further generalizations. Long LDPC codes have been shown to achieve error

performance near the Shannon limit [9, 10]. This makes LDPC codes important and

popular in communication systems. Some applications of LDPC codes include

• DVB-S2 standard for the satellite transmission of digital television,

• 10GBase-T Ethernet, which sends data at 10 gigabits per second over twisted-pair

cables,

• Wi-Fi 802.11 standard as an optional part of 802.11n and 802.11ac, in the High

Throughput (HT) PHY specification,

• forward error correction (FEC) system for the ITU-T G.hn standard,
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• WiMAX IEEE 802.16 for microwave communications,

• WRAN IEEE 802.22 for wireless broadband access that uses the so-called white

spaces between occupied channels in the TV frequency spectrum.

Although Gallager proposed LDPC codes for error control, he did not provide a spe-

cific method for constructing good LDPC codes. However, he proposed a method for

constructing a class of pseudorandom LDPC codes.

3.2 Matrix representation

A linear block code C of length n is uniquely specified by either a generator matrix G

or a parity-check matrix H. Suppose that the parity-check matrix H has m rows and n

columns. For the m×n parity-check matrix H, the code C is simply the null space of H.

An n-tuple c = (c0, c1, . . . , cn−1) over GF (2) is a codeword if and only if cHT = 0. This

means that the bits of a codeword must satisfy a set of parity-check equations specified

by the rows of H. If the parity-check matrix H has low density of 1s, H is said to be

a low − density parity − check matrix and the code specified by H is hence called an

LDPC code. The parity-check matrix H of a regular LDPC code has column weight

g and row weight r, where r = g(n/m) and g � m. If H has low density, but its row

and column weight are not both constant, then the code is an irregular LDPC code. In

general, low-density means that there are 10% or fewer 1s in the parity-check matrix.

3.3 Graphical representation

A Tanner Graph is a bipartite graph which includes two types of nodes and edges

connecting only different types [6]. The two types of nodes are the variable nodes,

which are denoted by VNs and the check nodes, which are denoted by CNs. For a m×n
parity-check matrix, there are m CNs in its Tanner graph, one of each equation, and n

VNs, one for each code bit. The Tanner graph of a code is drawn simply connecting CN

i to VN j if and only if Hi,j = 1.
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11 22 33 44 55 66 77 88 99 1010

11 22 33 44 55

Figure 3.1: Tanner graph of H given in (3.1).

Consider the parity-check matrix

H =

0 1 0 0 0 0 0 1 0 1

1 0 1 0 0 1 1 0 0 0

1 0 1 0 0 0 0 0 0 1

0 0 0 0 1 0 1 0 1 0

0 1 0 1 0 1 0 0 1 0






. (3.1)

The Tanner graph corresponding to H is depicted in Figure 3.1.

Observe that VNs 2, 8, and 10 are connected to CN 1 because, in the first row of the

parity check matrix, H1,2 = H1,8 = H1,10 = 1. The same applies to the check nodes

connecting to variable nodes. For example, CNs 2 and 3 are connected to VN 1 because,

in the first column of the parity-check matrix, we have H2,1 = H3,1 = 1. Moreover, if

vHT = 0, which means that the vector v is a valid codeword, we have that all the bits

of v that are connected to the same check node must sum to zero (mod 2). In Figure

3.1, we can see that there are four red and six blue edges. The red edges complete a

length-4 cycle and the blue edges a length-6 cycle. In general, a cycle in a Tanner graph

is a sequence of connected nodes which start and end at the same node and contains

other nodes no more than once. The length of a cycle is the number of edges it contains

and the girth of a graph is the size of its smallest size. We will see later that small cycles

degrade the code performance. So we want a small number of cycles and the girth of a

code to be as large as possible.

As we see in Figure 3.1, every check and variable node has not constant number of

edges. This means that the code is irregular and for convenience we introduce some
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degree distribution polynomials. Assume that an LDPC code has length n and that the

number of variable nodes of degree i is Λi, so that
∑

i Λi = n. Moreover, denote the

number of check nodes of degree i by Pi, so that
∑

i Pi = nr, where r is the design rate

of the code and r is a shorthand for 1 − r. The number of edges from check nodes to

variable nodes is equal to the number of edges from the variable nodes to check nodes

because they match up. So, we have
∑

i iΛi =
∑

i iPi. Furthermore, we introduce the

following notation

Λ(x) =

lmax∑

i=1

Λix
i, P (x) =

rmax∑

i=1

Pix
i. (3.2)

Λ(x) and P (x) are polynomials whose coefficients are equal to the number of nodes of

various degrees. So, we call Λ(x) and P (x) the variable and check degree distributions

from a node perspective. From these definitions, we can see the following relationships

Λ(1) = n, P (1) = nr, r(Λ, P ) = 1− P (1)

Λ(1)
, Λ′(1) = P ′(1).

Sometimes, we normalize distributions Λ and P as:

L(x) =
Λ(x)

Λ(1)
, R(x) =

P (x)

P (1)
.

Let us see an example. We have

Λ(x) = 2x3 + 3x2 + 5x, P (x) = 3x4 + x5. (3.3)

We can find the length of the code, n = Λ(1) = 10, and the rate of the code, r(Λ, P ) =

1− 4
10 = 0.6. Moreover, we can find the total number of the edges Λ′(1) = P ′(1) = 17,

and the normalized degree distributions from node perspective, L(x) = 1
5x

3 + 3
10x

2 + 1
2x

and R(x) = 3
4x

4 + 1
4x

5. From any particular
(
Λ(x), P (x)

)
pair, we can construct many

different codes. From our
(
Λ(x), P (x)

)
pair (3.7) , one possible parity check matrix and

its respective Tanner is depicted in Figure 3.2.

In addition to the Λ(x) and P (x), which are degree distributions from node perspective,

we have λ(x) and ρ(x), which are variable and check node degree distributions from an
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H =




1 1 1 0 0 1 0 0 0 0
1 1 0 1 0 0 1 0 0 0
1 1 0 1 1 0 0 0 0 0
0 0 1 0 1 0 0 1 1 1




11 22 33 44 55 66 77 88 99 1010

11 22 33 44

Figure 3.2: A parity check matrix from (3.7) Λ(x), P (x) pair and its particular Tanner
graph.

edge perspective

λ(x) =
∑

i

λix
i−1 =

Λ′(x)

Λ′(1)
=
L′(x)

L′(1)
, ρ(x) =

∑

i

ρix
i−1 =

P ′(x)

P ′(1)
=
R′(x)

R′(1)
. (3.4)

We can see that λi is equal to the fraction of edges that connect to variable nodes of

degree i and ρi is equal to the fraction of edges that connect to check nodes of degree i.

The inverse relationships are

Λ(x)

n
= L(x) =

∫ x
0 λ(z)dz
∫ 1
0 λ(z)dz

,
P (x)

nr
= R(x) =

∫ x
0 ρ(z)dz
∫ 1
0 ρ(z)dz

(3.5)

and the design rate is given by

r(λ, ρ) = 1− L′(1)

R′(1)
= 1−

∫ 1
0 ρ(x)dx
∫ 1
0 λ(x)dx

. (3.6)

We can convert now the (Λ, P ) pair from (3.7) and find the particular degree distributions

from edge perspective, which are

λ(x) =
6

17
x2 +

6

17
x+

5

17
, ρ(x) =

5

17
x4 +

12

17
x3. (3.7)

3.4 Introduction to encoding

We have a code C which consists of all length-8 vectors

c = [c1 c2 c3 c4 c5 c6 c7 c8]
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that satisfy the four parity-check equations

c1 ⊕ c5 ⊕ c7 ⊕ c8 = 0,

c3 ⊕ c5 ⊕ c6 = 0,

c2 ⊕ c6 ⊕ c7 = 0,

c4 ⊕ c6 ⊕ c8 = 0.

Checking the vector ĉ = [0 1 1 0 1 1 0 1], we see that

0⊕ 1⊕ 0⊕ 1 = 0,

1⊕ 1⊕ 1 = 1,

1⊕ 1⊕ 0 = 0,

0⊕ 1⊕ 1 = 0,

so ĉ is not valid codeword for this code. The codeword constraints can be re-written as

c1 = c5 ⊕ c7 ⊕ c8,

c2 = c6 ⊕ c7,

c3 = c5 ⊕ c6,

c4 = c6 ⊕ c8.

The bits c1, c2, c3, c4 are the parity bits and c5, c6, c7, c8 are the message bits. The

message bits are conventionally labeled by u = [u1, u2, . . . uk], where the vector u holds

the k message bits. Under these constraints, we can produce the codeword from the

message word. For the message u = [1 0 0 1], because c1 = 1⊕ 0⊕ 1 = 0, c2 = 0⊕ 0 =

0, c3 = 1 ⊕ 0 = 1 and c4 = 0 ⊕ 1 = 1, the codeword is c = [0 0 1 1 1 0 0 1]. These
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constraints can be written in matrix form as follows

[c1 c2 c3 c4 c5 c6 c7 c8] = [u1 u2 u3 u4]




1 0 1 0 1 0 0 0

0 1 1 1 0 1 0 0

1 1 0 0 0 0 1 0

1 0 0 1 0 0 0 1




︸ ︷︷ ︸
G

,

where the matrix G is called the generation matrix of the code. The (i, j)th entry of G

is 1 if the ith message bit plays a role in determining the jth codeword bit. Thus, the

codeword c corresponding to the binary message u = [u1 u2 u3 u4] can be found using

the matrix equation

c = uG.

For a binary code with k message bits and length n codewords, the generator matrix G

is a k × n binary matrix. The ratio k/n is called the rate of the code.

A code with k message bits contains 2k codewords. These codewords are a subset of

the total possible 2n binary vectors of length n. When the first or last k codeword bits

contain the message bits, the code is called systematic. The generator matrix for these

codes contains the k x k identity matrix Ik, as its first or last k columns.

Generally, if we have the parity-check matrix H, we can find the generator matrix G,

by performing Gauss-Jordan elimination on H to derive

H = [In−k A],

where A is an (n− k)× k binary matrix and In−k is the identity matrix of order n− k.

Then, the generator matrix is

G = [AT Ik].

The row space of G is orthogonal to H. Thus, if G is the generator matrix for a code

with parity-check matrix H, then

GHT = 0.
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Let us see an example. Suppose that we have the LDPC code with rate = 1/2 and

length = 10, which is described by the parity-check matrix

H =




0 1 1 0 1 1 0 0 1 1

1 0 0 1 0 1 1 0 1 1

1 0 1 0 1 0 1 1 0 1

0 1 1 1 0 1 1 1 0 0

1 1 0 1 0 0 0 1 1 0




.

We want to find the corresponding generator matrix. So we must perform Gauss-Jordan

elimination to make one part of H, square and invertible.

The first step is to put H into row−echelon form. In this form, the leading coefficient

of a non-zero row is always strictly to the right of the leading coefficient of the row

above it. Because of the need of having the same codeword set as the original, we

can apply only elementary row operations in GF (2), which are row interchanging or

one row adding to another modulo 2. We interchange the first and the second row.

Subsequently, for third row, we add the first and the third row and for the fourth row

we add the second and the fourth row. Then, replacing the fifth row with the sum of all

rows, we have the matrix H in row-echelon form

Hr =




1 0 0 1 0 1 1 0 1 1

0 1 1 0 1 1 0 0 1 1

0 0 1 1 1 1 0 1 1 0

0 0 0 1 1 0 1 1 1 1

0 0 0 0 1 1 0 1 1 1




.

The second step is to put parity-check matrix H into reduced row− echelon form. In

this form, every leading coefficient is 1 and is the only nonzero entry in its column. The

first and the second columns are already correct. The entry in the third column above

the diagonal is removed by replacing the second row, with the sum of the second and

third row. To clear the fourth column, we add the forth row to the first, second and

third row and to clear the fifth column, we add the fifth row to the first, second and
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forth row. Now, the matrix is in reduced row − echelon form.

Hrr =




1 0 0 0 0 0 0 0 1 1

0 1 0 0 0 1 1 1 0 1

0 0 1 0 0 1 1 0 0 1

0 0 0 1 0 1 1 0 0 0

0 0 0 0 1 1 0 1 1 1




.

We observe that the first part of the Hrr matrix is the identity matrix of order n − k.

Because GHT = 0, the generator matrix for the code is

G =




0 1 1 1 1 1 0 0 0 0

0 1 1 1 0 0 1 0 0 0

0 1 0 0 1 0 0 1 0 0

1 0 0 0 1 0 0 0 1 0

1 1 1 0 1 0 0 0 0 1




.

The drawback of this approach is the complexity. The matrix G will most likely not be

sparse and the matrix multiplication

c = uG

at the encoder, will have complexity in the order of n2 operations. Because LDPC codes

have large n, the multiplication will become very complex.

3.5 Efficient encoders based on approximate upper trian-

gulations

11

11
11

11
11

11

11

0

n - kn - k kk

n
-

k
n

-
k

Figure 3.3: H in upper triangular form.
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A better approach to encode is to avoid constructing G and use only parity-check matrix

H. The first step is as before to put H into row-echelon form. Now the matrix

is H = (Hp Hs), where Hp is square in upper triangular form and has dimensions

(n−k)× (n−k), as we see in Figure 3.3. The code consists of the set of n-tuples x such

that HxT = 0T , where x = (p, s).

The second step is to use back substitution to find the parity-check bits. More precisely,

for l ∈ [n− k] calculate

pl = −
n−k∑

j=l+1

Hl,jpj −
k∑

j=1

Hl,j+n−ksj .

According to Richardson and Urbanke in [11], there is a better way than this and we

can perform encoding with linear complexity. Firstly, we put the parity-check matrix

into approximate upper triangular form, using only row and column permutations, as in

Figure 3.4.

00
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11

11
AA BB

EE CC DD

n - k - gn - k - g gg kk

n
-

k
-

g
n

-
k

-
g

gg

Figure 3.4: H in approximate upper triangular form.

Let us name T the first part of the matrix. This is upper triangular with ones along

the diagonal and dimensions (n − k − g) × (n − k − g). The g rows of H, as we see in

the figure, are called gap and we want the gap to be as small as possible to reduce the

encoding complexity of the code. Secondly, we want to eliminate E. So, we multiply

Ht from the left by


 I 0

−ET−1 I


 to obtain

H ′ =


 I 0

−ET−1 I


Ht =


T A B

0 C − ET−1A D − ET−1B


 .

Finally, to perform encoding using H ′, the codeword c = [c1 c2 . . . cN ] is divided into

three parts, so that c = [p1 p2 s], where s = [s1 s2 . . . sk] is the k-bit message, p1

holds the first (n− k− g) parity bits and p2 the remaining g parity bits. The codeword

c = [p1 p2 s] must satisfy the parity-check equation cHT = 0. So, we have the system
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of equations

Tp1
T +Ap2

T +BsT = 0T

(C − ET−1A)p2
T + (D − ET−1B)sT = 0T .

We define φ = C − ET−1A. If φ is invertible, then the solution of the above system

gives p2
T = −φ−1(D − ET−1B)sT and p1

T = −T−1(Ap2
T +BsT ).

Let us see an example with the same parity-check matrix as the above example. We

have the parity matrix

H =




0 1 1 0 1 1 0 0 1 1

1 0 0 1 0 1 1 0 1 1

1 0 1 0 1 0 1 1 0 1

0 1 1 1 0 1 1 1 0 0

1 1 0 1 0 0 0 1 1 0




.

In the first step, we swap the first with the second row, the fourth with the third row

and the second with the fifth column. Now, the parity check matrix gap is 2 and the

matrix is

Ht =




1 0 0 1 0 1 1 0 1 1

0 1 1 0 1 1 0 0 1 1

0 0 1 1 1 1 1 1 0 0

1 1 1 0 0 0 1 1 0 1

1 0 0 1 1 0 0 1 1 0




.

In the second step, we want to set E to zero. We have


 I 0

−ET−1 I


 =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 1 0 1 0

1 0 0 0 1




,

and we perform the multiplication with Ht from the left, to give

43



CHAPTER 3. LDPC

H ′ =




1 0 0 1 0 1 1 0 1 1

0 1 1 0 1 1 0 0 1 1

0 0 1 1 1 1 1 1 0 0

0 0 0 1 1 0 0 1 0 1

0 0 0 0 1 1 1 1 0 1




.

We see that φ =


1 1

0 1


 is invertible. We want to send the message s = [1 0 1 1 0].

Thus,

p2
T = −φ−1(D − ET−1B)sT =


1 1

0 1




0 0 1 0 1

1 1 1 0 1







1

0

1

1

0




=


1

0


,

p1
T = −T−1(ApT2 +BsT ) =




1 0 0

0 1 1

0 0 1










1

0

1


+




0

0

0





 =




1

1

1


.

So, the codeword is c = [p1 p2 s] = [1 1 1 1 0 1 0 1 1 0]. This approach has almost

linear encoding complexity.
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Construction of LDPC codes

4.1 Introduction

There are many different methods to construct LDPC codes. In this chapter, we shall

preset Gallager [5], random [11, p. 78], and Progressive edge growth algorithm [12]

construction.

4.2 Gallager codes

Gallager’s original definition of a regular LDPC code was that it is a linear code whose

m × n parity-check matrix H has g � m ones in each column and r � n ones in each

row. The matrix H has the form

H =




H1

H2

...

Hg



,

where the submatrices H1, H2, . . . ,Hg have the following structure. For any integers µ

and r greater than 1, each submatrix H is µ×µr with row weight µ and column weight

1. The submatrix H1 has the following specific form: for i = 0, 1, . . . , µ− 1, the ith row
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contains all of its r 1s in columns ir to (i+ 1)r− 1. The other submatrices are obtained

by column permutations of H1. This method has easy construction and it is shown that

it has excellent distance properties, when g ≥ 3. Contrary to these advantages, the

absence of length-4 cycles in H is not guaranteed.

The following matrix is the first example given by Gallager

H =




1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1




.

It is a 15× 20 matrix with g = 3, r = 4 and µ = 5.

Example 4.2.1. In this example, we consider the performance of sum-product decoding

over Gallager (3, 6) and (5, 10) regular codes on a BI-AWGN channel. The construction

length of the matrices is 104 and 105, respectively.

We can see in Figure 4.1 that the Gallager (3, 6) codes perform better than the Gallager

(5, 10) codes.

4.3 Random construction

Given a degree distribution pair (Λ, P ), define an ensemble of bipartite graphs LDPC(Λ, P )

in the following way. Each graph in LDPC(Λ, P ) has Λ(1) variable nodes and P (1) check
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Figure 4.1: Decoding of Gallager (3,6) and (5,10) codes in the BI-AWGN channel.

nodes: Λi variable nodes and Pi check nodes have degree i. A node of degree i has i sock-

ets from which the i edges emanate, so that in total there are Λ′(1) = P ′(1) sockets on

each side. Label the sockets on each side with the elements of set [Λ′(1)] = {1, . . . ,Λ′(1)}
in some arbitrary but fixed way. Let σ be a permutation on [Λ′(1)]. Associate to σ a

bipartite graph by connecting the i-th socket on the variable side to the σ(i)-th socket

on the check side. Letting σ run over the set of permutations on [Λ′(1)] generates a set

of bipartite graphs. Finally, we define a probability distribution over the set of graphs

by placing the uniform probability distribution on the set of permutations. This is the

ensemble of bipartite graphs LDPC(Λ, P ).

Example 4.3.1. In this example, we have the comparison between the Gallager and

the regular-random codes of 104 and 105 length for the BI-AWGN.

We can see in Figure 4.2 that the random codes have slightly better performance.
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Figure 4.2: Decoding of random regular and Gallager ldpc codes in the BI-AWGN
channel.

4.4 Progressive edge growth algorithm

Progressive edge growth is an algorithm for constructing Tanner graphs with large girth

by progressively establishing edges or connections, between variable and check nodes in

an edge-by-edge manner. Given the number of check nodes m, the number of variable

nodes n and the variable node degree sequence, we place edges to keep the girth as large

as possible.

A Tanner graph is denoted as (V,E) with V the set of nodes, i.e. V = Vc ∪ Vs, where

Vc = {c0, c1, . . . , cm−1} is the set of check nodes and Vs = {s0, s1, . . . , sn−1} the set of

variable nodes. E is the set of edges such that E = Vc × Vs with edge (ci, sj) ∈ E

if and only if hi,j 6= 0, hi,j ∈ H, 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1. Denote the variable

node degree distribution by Ds = ds0 , ds1 , . . . , dsn−1 , in which dsj is the degree of symbol

node sj , 0 ≤ j ≤ n − 1 in the non decreasing order, i.e. ds0 ≤ ds1 · · · ≤ dsn−1 , and the

check node degree distribution by Dc = dc0 , dc1 , . . . , dcm−1 , in which dcj is the degree

of check node cj , 0 ≤ j ≤ m − 1 and dc0 ≤ dc1 · · · ≤ dcm−1 . Let also the set of edges
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E be partitioned in terms of Vs as E = Es0 ∪ Es1 ∪ · · · ∪ Esn−1 , with Esj containing

all edges incident on check node sj . Finally, denote the kth edge incident on sj by

Eksj , 0 ≤ k ≤ dsj − 1.

For a given symbol node sj , define its neighbor within depth l, N l
sj , as the set consisting

of all check nodes reached by a tree spreading from symbol node sj within depth l, such

as every route from a check node to another check node counts as 1. Its complementary

set, N̄ l
sj , is defined as Vc \N l

sj , or equivalently N̄ l
sj ∪N l

sj = Vc.

Algorithm 1 Progressive Edge-Growth

for j = 0 to n− 1 do

begin

for k = 0 to dsj − 1 do

begin

if k = 0 then

E0
sj ←− edge(ci, sj),where E0

sj is the first edge incident to sj , and ci is a

check node having the lowest check degree under the current graph setting

Es0 ∪ Es1 ∪ · · · ∪ Esj−1 .

else

expanding a tree from symbol node sj up to depth l under the current graph

setting such that N̄ l
sj 6= ∅ but N̄ l+1

sj = ∅, or the cardinality of N̄ l
sj stops

increasing but is less than m, then Eksj ←− edge(ci, sj), where Eksj is the

k-th edge incident to sj and cj is one check node picked from the set N̄ l
sj

having the lowest check-node degree.

end if

end for

end for

Because the low-degree variable nodes are the most susceptible to error (they receive

the least amount of neighborly help), edge placement begins with the lowest-degree of

them and progresses to variable nodes of increasing degree. The algorithm does not

move to the next variable node until all of the edges of the current variable node have

been attached. The first edge attached to a VN is connected to a lowest-degree check

node under the current state of the graph. Subsequent attachments of edges to the VN

are done in such a way that the (local) girth for that VN is maximum. Thus, if the
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current state of the graph is such that one or more check nodes cannot be reached from

the current variable node by traversing the edges connected so far, then the edge should

be connected to an unreachable check node so that no cycle is created. Otherwise, if all

check nodes are reachable from the current variable node along some number of edges,

the new edge should be connected to a check node of lowest degree that results in the

largest girth seen by the current variable node. This lowest-degree check node strategy

will yield a fairly uniform check node degree distribution.

Example 4.4.1. Let us present an example of symbol node degree Ds = {1, 1, 2, 2, 2, 3}
irregular Tanner graph. This code has 6 variable nodes and 4 check nodes. We start by

assigning degrees to the variable nodes of the empty graph (I) and we proceed according

to the progressive edge growth algorithm.

(i) (ii) (iii)

(iv) (v) (vi)

Figure 4.3: The beginning steps of progressive edge growth algorithm.
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(vii) (viii) (ix)

(x) (xi) (xii)

(xiii) (xiv) (xv)

Figure 4.3: The last steps of progressive edge growth algorithm with the creation of
cycles with lengths 4 and 8.

We see the progress of constructing a PEG parity-check matrix. The bold red edges
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show that a cycle has been created. In the subfigure (XII), the algorithm created an

8-length cycle and in the subfigure (XV) the algorithm created a 4-length cycle. The

created code has girth 4.

Example 4.4.2. Here is a decoding example with message passing algorithm for random-

regular and peg-regular codes. The length of the codes is 500 and 104 bits, respectively.

We transmit all-zero codeword through a BI-AWGN channel.
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Peg(3,6) − n=500

Random(3,6) − n=10
4
 − 26cycles

Peg(3,6) − n=10
4

Shannon Limit

Figure 4.4: Decoding of random (3,6) and peg (3,6) codes in the BI-AWGN channel.

We see that random codes created with some 4-length cycles, something that decreases

their performance against PEG codes which have no cycles of the same length. Of

course, the length plays important role and we see that the codes with larger length are

superior to these with smaller length.

Example 4.4.3. Now we construct PEG-irregular code with ensemble

L(x) = 0.477081x2 + 0.280572x3 + 0.0349963x4 + 0.0963301x5 + 0.0090884x7

+ 0.00137443x14 + 0.10055777x15.
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We can easily find the correspondent λ(x)

λ(x) =
L′(x)

L′(1)
= 0.23802x+ 0.20997x2 + 0.349199x3 + 0.12015x4 + 0.01587x6

+ 0.0048x13 + 0.376268x14.

We define the rate = 1/2 and the length of the code n = 5 × 104 and the algorithms

creates it with girth = 8. Additionally, we construct the same code with target girth =

4. To compare their performance, we create a random-irregular code from the same

ensemble, which has 582 cycles of 4-length. We keep this code and we eliminate the

4-length cycles. Here are the histograms of the codes degree distributions
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Figure 4.5: Degree distribution histograms of a random and a peg code same ensem-
ble.

So, now we are sure that they are from the same ensemble. We transmit the all-zero

codeword through the BI-AWGN channel and we decode them with the message-passing

algorithm.
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Figure 4.6: Decoding of peg and random irregular codes in the BI-AWGN channel.

We see that the waterfall region of the random codes are closer to the Shannon limit and

the elimination of 4-length cycles has improved their error floor region. For the PEG

codes, we see that they perform better in the error floor region and the PEG with girth

equal to 8 has no error floor at all.
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Analysis and Design of LDPC

Codes

5.1 Introduction

In this chapter, we examine the iterative decoding performance of LDPC code ensembles

in the low-SNR region. We show that the iterative decoding of long LDPC codes displays

a threshold effect such that communication is reliable below this threshold and unreliable

above it. The threshold is a function of the code ensemble properties and the tools

introduced in this chapter allow the designer to predict the decoding threshold and

its gap from Shannon’s limit. The ensemble properties for LDPC codes are the degree

distributions which are the design targets for the code design. Our focus is on the binary

AWGN channel.

The analysis below is based on the “local tree assumption,” which means that the girth of

the graph is large enough so that the subgraph forms a tree (there are no repeated nodes

in the subgraph). So, we can analyze the decoding algorithm straightforwardly because

incoming messages to every node are independent. Moreover, Richardson and Urbanke

have shown in their paper [13] that, for almost all randomly constructed codes and for

almost all inputs, the decoder performance will be close to the decoder performance

under the local tree assumption with high probability, if the block length of the code is

long enough.
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We assume that the all-zeros codeword c = [0 0 . . . 0] is sent. Under the BPSK mapping,

this means that the all-ones word x = [+1 + 1 · · · + 1] is transmitted over the channel.

An error will be made at the decoder after the maximum number of iterations if any

of the signs of the variable nodes LLRs, Ltotalj , are negative. Let p
(l)
v denote the pdf of

a message mv to be passed from a variable node v to some check node during the lth

iteration. So, no decision error will occur if

lim
l→∞

∫ 0

−∞
p(l)v (τ)dτ = 0.

Note that p
(l)
v (τ) depends on the channel parameter σ. Then, the decoding threshold σ∗

is given by

σ∗ = sup
{
σ : lim

l→∞

∫ 0

−∞
p(l)v (τ)dτ = 0

}
.

In Figure 5.1, we see the evolution of the BER of a regular (3,6) LDPC code with

104-length, as a function of the number of iterations l for various values of σ.

0 50 100 150
10

−4

10
−3

10
−2

10
−1

10
0

Iteration

B
E

R

 

 

sigma=0.8777

sigma=0.8779

sigma=0.8782

sigma=0.8783

Figure 5.1: Evolution of BER of a regular (3,6) LDPC code as a function of the
number of iterations l for various values of σ.

We can see that for σ = 0.8777, 0.8779, 0.8782 the error probability converges to zero,

whereas for σ = 0.8783 the error probability converges to a non-zero value. So, σ∗ ≈
0.878221.
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We recall the log-likelihood ratios (LLRs) from previous chapter and we use:

v = log
pY |X(y|x = 1)

pY |X(y|x = −1)
,

as the output message of a variable node, where x is the bit value of the node and y

denotes all the information available to the node up to the present iteration obtained

from the edges other than the one carrying u. Likewise, we define the output message

of a check node as u. Under the message passing algorithm, we recall that v is equal to

the sum of all incoming LLRs:

v =

dv−1∑

i=0

ui, (5.1)

where ui, i = 1, . . . , dv − 1, are the incoming LLRs from the neighbors of the variable

node except the check node that gets the message v, and u0 is the observed LLR of the

output bit associated with the variable node. The density of the sum of dv independent

random variables ui, i = 0, . . . , dv − 1, can be calculated by convolution of densities of

the ui’s using Fourier transform in the frequency domain.

Moreover, we recall from the message passing decoding that the processing rule for the

check nodes is:

u = 2 tanh−1



dc−1∏

j=1

tanh
(vj

2

)

 ,

or equivalently

tanh
u

2
=

dc−1∏

j=1

tanh
vj
2
, (5.2)

where vj , j = 1, . . . , dc − 1, are the incoming LLRs from the dc − 1 neighbors of a check

node, and u is the message sent to the remaining neighbor.

In [14], the authors propose modeling the messages of the BP algorithm as Gaussian

random variables based on the observations that message distributions are close to the

Gaussian distribution. Since a Gaussian is completely specified by its mean and variance,

we need to keep only these quantities during the iterations. Additionally, because of the
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symmetry condition proposed in [15], a symmetric Gaussian has mean m and variance

σ2 = 2m, which means that we need to keep only the mean.

5.2 Gaussian approximation for regular LDPC codes

We know that the LLR message u0 from the channel is Gaussian with mean 2/σ2n and

variance 4/σ2n. We denote the means of u and v by mu and mv respectively. Because

of the fact that the code ensemble is regular, all message means are equal during each

iteration. So, (5.1) becomes

m(l)
v = mu0 + (dv − 1)m(l−1)

u , (5.3)

where l denotes the l iteration and mu0 the mean of the channel message.

Now, we have to calculate the updated mean m
(l)
u . We are taking means on both sides

of (5.2):

E
[

tanh
u(l)

2

]
= E

[ dc−1∏

j=1

tanh
v
(l)
j

2

]
(5.4)

=
(
E
[

tanh
v(l)

2

])dc−1
(5.5)

where we have omitted the index j because the vj ’s are i.i.d. The variables u(l) and v(l)

are Gaussian N (m
(l)
u , 2m

(l)
u ) and N (m

(l)
v , 2m

(l)
v ), respectively. So,

E
[

tanh
u

2

]
=

1√
4πmu

∫

R

tanh
u

2
e−

(u−mu)2
4mu du.

We will now define the auxiliary function φ(x)

φ(x) =





1− 1√
4πx

∫
R

tanh u
2 exp−

(u−x)2
4x du, if x > 0

1, if x = 0.

.

Note that φ(x) need only be defined for x ≥ 0 because we assume that only +1s are

transmitted and hence all message means are positive. It can be shown that φ(x) is

continuous and decreasing for x ≥ 0, with lim
x→0

φ(x) = 1 and lim
x→∞

φ(x) = 0.
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Without much sacrifice in accuracy, the authors of [14] found a good approximation of

φ(x)

φ(x) =




e−0.4527x

0.86+0.0218, x < 10,

√
π
xe
−x

4
(1− 20

7x
), x ≥ 10.

We recall from (5.5) that

E
[

tanh
u(l)

2

]
=
(
E
[

tanh
v(l)

2

])dc−1
,

and we get

1− φ(m(l)
u ) = (1− φ(m(l)

v ))dc−1.

Now, from (5.3), we have

1− φ(m(l)
u ) = (1− φ(mu0 + (dv − 1)m(l−1)

u ))dc−1.

Finally, the update rule for m
(l)
u becomes

m(l)
u = φ−1

(
1− [1− φ(mu0 + (dv − 1)m(l−1)

u )]dc−1
)
, (5.6)

where m
(0)
u = 0 is the initial value for mu.

Example 5.2.1. Consider the (3,6)-regular code on a binary AWGN channel with 104-

length and σ = 0.8782 < σ∗. We see the evolution of densities for the messages emitted

from variable and check nodes as well as the Gaussian approximation densities.
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Figure 5.4: Exact and Gaussian approximation message densities for a regular (3,6)
LDPC code at 1st, 6th, and 11th iteration of message-passing decoding with σ < σ∗.
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Figure 5.7: Exact and Gaussian approximation message densities for a regular (3,6)
LDPC code at 31st, 51st, and 52nd iteration of message-passing decoding with σ < σ∗.
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Figure 5.9: Exact and Gaussian approximation message densities for a regular (3,6)
LDPC code at 53rd and 54th iteration of message-passing decoding with σ < σ∗.

We see that for σ < σ∗, the densities “move to the right”, indicating that the error

probability decreases as a function of the number of iterations. Furthermore, we see that

the Gaussian approximation works well for the messages output from variable nodes.

Now, we see the densities of messages emitted from variable and check nodes for σ =

0.8783 > σ∗ for various iterations.

62



5.2. GAUSSIAN APPROXIMATION FOR REGULAR LDPC CODES

-10 0 10 20 30 40
LLR

0

0.05

0.1

0.15

0.2

0.25
D

e
n

s
it
y

varToCheck - Iter No1

 Exact Messages Histogram
 Gaussian Approximate Density

-10 0 10 20 30 40
LLR

0

0.1

0.2

0.3

0.4

0.5

0.6

D
e

n
s
it
y

checkToVar - Iter No1

 Exact Messages Histogram
 Gaussian Approximate Density

-10 0 10 20 30 40
LLR

0

0.05

0.1

0.15

0.2

0.25

D
e

n
s
it
y

varToCheck - Iter No6

 Exact Messages Histogram
 Gaussian Approximate Density

-10 0 10 20 30 40
LLR

0

0.1

0.2

0.3

0.4

0.5

0.6

D
e

n
s
it
y

checkToVar - Iter No6

 Exact Messages Histogram
 Gaussian Approximate Density

-10 0 10 20 30 40
LLR

0

0.05

0.1

0.15

0.2

0.25

D
e

n
s
it
y

varToCheck - Iter No11

 Exact Messages Histogram
 Gaussian Approximate Density

-10 0 10 20 30 40
LLR

0

0.1

0.2

0.3

0.4

0.5

0.6

D
e

n
s
it
y

checkToVar - Iter No11

 Exact Messages Histogram
 Gaussian Approximate Density

Figure 5.12: Exact and Gaussian approximation message densities for a regular (3,6)
LDPC code at 1st, 6th and 11th iteration of message-passing decoding with σ > σ∗.
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Figure 5.15: Exact and Gaussian approximation message densities for a regular (3,6)
LDPC code at 51st, 101st and 150th iteration of message-passing decoding with σ > σ∗.

So, for σ > σ∗, the densities start “moving to the right,” but stop at a fixed point after

a certain number of iterations.
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Additionally, we show the decoding performance of the regular (3, 6) code with the

threshold and Shannon limit in Figure 5.16 as far as the average iterations for the

particular threshold in Figure 5.17.
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Figure 5.16: The decoding performance on a binary AWGN channel of length-104

rate-1/2 Regular(3, 6) LDPC code.
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Figure 5.17: The average number of iterations of decoding the Regular(3, 6) LDPC
code.

65



CHAPTER 5. ANALYSIS AND DESIGN OF LDPC CODES

5.3 Gaussian approximation for irregular LDPC codes

We consider an ensemble of random codes with degree distributions λ(x) and ρ(x). A

node will get iid messages from its neighbors, where each of these messages is a random

mixture of different Gaussian densities from neighbors with different degrees. Now, the

mean m
(l)
v,i of the output message of a degree-i variable node at lth iteration is given by

m
(l)
v,i = mu0 + (i− 1)m(l−1)

u , (5.7)

where mu0 is the mean of u0 and m
(l−1)
u is the mean of u at the (l − 1) iteration.

The variance of the output density is given by 2m
(l)
v,i, as in the last section. Because

a randomly chosen edge is connected to a degree-i variable node with probability λi,

averaging over all degrees i yields that at the lth iteration, an incoming message v to a

check node will have the following Gaussian mixture density f
(l)
v

f (l)v (τ) =

dv∑

i=1

λiN (τ ;m
(l)
v,i, 2m

(l)
v,i). (5.8)

In this expression, N (τ ;µ, σ2) represents the pdf for the Gaussian random variable with

mean m and variance σ2, at point τ .

Using (5.8) and the definition of φ, we have

E
[

tanh
v(l)

2

]
=

∫ +∞

−∞
tanh

v(l)

2

( dv∑

i=1

λiN (τ ;m
(l)
v,i, 2m

(l)
v,i)
)

dτ

=

dv∑

i=1

λi

∫ +∞

−∞
tanh

v(l)

2
N (τ ;m

(l)
v,i, 2m

(l)
v,i)dτ

=

dv∑

i=1

λi

(
1− φ(m

(l)
v,i)

)

= 1−
dv∑

i=1

λiφ(m
(l)
v,i). (5.9)
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Furthermore, for the message u(l) that leaves a check node of degree j, we have

E
[

tanh
u
(l)
j

2

]
=
(
E
[

tanh
v(l)

2

])j−1

⇔
(

1− φ(m(l)
uj )
)

=
(

1−
dv∑

i=1

λiφ(m
(l)
v,i)
)j−1

⇔ m(l)
uj = φ−1

(
1−

(
1−

dv∑

i=1

λiφ(m
(l)
v,i)
)j−1)

.

Finally, if we average over all check-node degrees j, we have

m(l)
u =

dc∑

j=1

ρjm
(l)
uj =

dc∑

j=1

ρjφ
−1
(

1−
(

1−
dv∑

i=1

λiφ(m
(l)
v,i)
)j−1)

=

dc∑

j=1

ρjφ
−1
(

1−
(

1−
dv∑

i=1

λiφ(mu0 + (i− 1)m(l−1)
u )

)j−1)
, (5.10)

where mu0 = 2/σ2n is the mean of the message from the channel, σ2n is the noise variance

of the AWGN channel, and the initial value of m
(0)
u is set to 0.

Equation (5.10) is the Gaussian-approximation recursion. Its notation can be simplified

as follows. Let s ∈ [0,∞), t ∈ [0,∞), and define

fj(s, t) = φ−1
(

1−
[
1−

dv∑

i=1

λiφ(s+ (i− 1)t)
]j−1)

,

f(s, t) =

dc∑

j=1

ρjfj(s, t). (5.11)

Hence, the simplified recursion is

tl = f(s, tl−1), (5.12)

where s = mu0 , tl = m
(l)
u , and t0 = 0. The threshold is

s∗ = inf
{
s : s ∈ [0,∞) and lim

l→∞
tl(s) =∞

}
.
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We can find an alternative expression to (5.11), which will be more useful. From (5.7),

we have

m
(l)
v,i = mu0 + (i− 1)m(l−1)

u

(5.10)⇔ m
(l)
v,i = mu0 + (i− 1)

dc∑

j=1

ρjφ
−1
(

1−
(

1−
dv∑

i=1

λiφ(m
(l−1)
v,i )

)j−1)

⇔ φ(m
(l)
v,i) = φ

(
mu0 + (i− 1)

dc∑

j=1

ρjφ
−1
(

1−
(

1−
dv∑

i=1

λiφ(m
(l−1)
v,i )

)j−1))
.

Averaging over all variable-node degrees i, gives

dv∑

i=1

λiφ(m
(l)
v,i) =

dv∑

i=1

λiφ
(
mu0 + (i− 1)

dc∑

j=1

ρjφ
−1
(

1−
(

1−
dv∑

i=1

λiφ(m
(l−1)
v,i )

)j−1))
.

We set rl :=
∑dv

i=1 λiφ(m
(l)
v,i) and s := mu0 . Then, for 0 < s < ∞, 0 ≤ r ≤ 1, we define

hi(s, r) and h(s, r) as

hi(s, r) =
(
s+ (i− 1)

dc∑

j=1

ρjφ
−1
(

1− (1− r)
)j−1))

(5.13)

h(s, r) =

dv∑

i=1

λihi(s, r). (5.14)

Then, (5.12) becomes equivalent to

rl = h(s, rl−1). (5.15)

The initial value of r0 is φ(s). It is easy to see that tl →∞ iff rl → 0.

For code design using Gaussian approximation, we simplify the problem and assume

that the check node degree distribution is given. Now, we only need to look for a good

variable node degree distribution. The problem now consists of maximizing the rate of

the code. We know that

r = 1−
∫ 1
0 ρ(x)dx
∫ 1
0 λ(x)dx

= 1−
∑

i ρi/i∑
i λi/i

.
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So, for fixed ρ(x), we need to maximize
∑

i λi/i. So we can design an LDPC code by

solving the following optimization problem

max

dv∑

i=2

λi/i

subject to
∑

i

λi = 1 (5.16)

r > h(s, r) ∀r ∈ (0, φ(s)).

Example 5.3.1. Consider the evolution of message densities for the binary AWGN

channel and the rate-1/2 degree distribution pair

λ(x) = 0.212332x+ 0.197596x2 + 0.0142733x4 + 0.0744898x5 + 0.0379457x6

+0.0693008x7 + 0.086264x8 + 0.00788586x10 + 0.0168657x11 + 0.283047x30,

ρ(x) = x8.

We set σ = 0.939 < σ∗, so we expect that the messages “move to the right”.
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Figure 5.18: Exact and Gaussian-mixture message densities for an irregular LDPC
code at 1st iteration of message-passing decoding with σ < σ∗.
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Figure 5.21: Exact and Gaussian-mixture message densities for an irregular LDPC
code at 6th, 11th, and 15th iteration of message-passing decoding with σ < σ∗.
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Figure 5.24: Exact and Gaussian-mixture message densities for an irregular LDPC
code at 20th, 30th and 35th iteration of message-passing decoding with σ < σ∗.
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Figure 5.25: Exact and Gaussian-mixture message densities for an irregular LDPC
code at 38th iteration of message-passing decoding with σ < σ∗.

As the iteration number is increased, the area under the curve for negative LLRs de-

creases and so the probability of error decreases. Moreover, we see that Gaussian mixture

densities and the exact densities are very close for the message emitted from variable

nodes. For the output messages of the check nodes, some Gaussian mixtures are very

different from the exact densities. However, because of the fact that the two densities

in the other direction are very close suggests that the approximation is working well.
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Chapter 6

Accumulator-Based LDPC Codes

6.1 Introduction

The accumulator-based codes that were invented first are called repeat-accumulate (RA)

codes [16]. Despite their simple structure, they were shown to provide good performance

and, more importantly, they belong to the category of efficiently encodable LDPC codes.

RA codes are LDPC codes that can be decoded as serial turbo codes, but are more

commonly treated as LDPC codes.

6.2 Repeat-accumulate codes

As shown in Figure 6.1, an RA code consists of a serial concatenation, through an

interleaver, of a single rate-1/q repetition code with an accumulator having transfer

function 1/(1 + D). The accumulator simply outputs the modulo-2 sum of the current

input bit and the previous output bit. More precisely, it provides a running sum of all

past inputs. To ensure a large minimum Hamming distance, the interleaver should be

designed so that consecutive 1s at its input are widely separated at its output. To see

this, observe that two 1s separated by (s− 1) 0s at the accumulator input, will yield a

run of s 1s at the accumulator output. So, we want s to be large, in order to achieve

large codeword Hamming weight and, consequently, large minimum distance of the code.

RA codes that transmit both the message bits and parity bits are called systematic RA

codes. Contrary to this, the RA codes that transmit only the parity bits are called
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Figure 6.1: A repeat-accumulate code block diagram.

non-systematic. In the first case, the information word u, is combined with p to yield

the codeword c = [u p], so that the code rate is 1/(1 + q). For non-systematic RA

codes, the accumulator output p is the codeword and the code rate is 1/q. The main

limitations of the RA codes are the code rate, which cannot be higher than 1/2, and

performance at small or medium lengths.

6.3 Irregular repeat-accumulate codes

The irregular repeat-accumulate (IRA) codes [17] generalize the RA codes in that the

repetition rate may differ for each of the k information bits and that linear combinations

of the repeated bits are sent through the accumulator. Further, IRA codes are typically

systematic. IRA codes provide two advantages over RA codes. Firstly, they allow

flexibility in the choice of the repetition rate for each information bit so that high-rate

codes can be designed. Secondly, their irregularity allows operation closer to the capacity

limit.

The Tanner graph for IRA codes is presented in Figure 6.2. The variable repetition

rate is accounted for in the graph by letting the variable node degrees db,i vary. The

accumulator is depicted by the lowest part of the graph. Figure 6.2 also includes the

representation for RA codes. For an RA code, each information bit node is connected

to exactly q check nodes (db,i = q) and each check node is connected to exactly one

information bit node (dc,j = 1).
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Figure 6.2: A Tanner graph (up) and encoder (down) for irregular repeat-accumulate
codes.

To determine the code rate for an IRA code, define q̄ to be the average repetition rate

of the information bits,

q̄ =
1

k

k∑

i=1

db,i,

and d̄c as the average of the degrees {dc,j},

d̄c =
1

m

m∑

j=1

dc,j .

Then, the code rate for systematic IRA codes is

R =
1

1 + q̄/d̄c
.

For non-systematic IRA codes, R = d̄c/q̄.

The parity-check matrix for systematic RA and IRA codes has the form

H = [Hu Hp], (6.1)
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where Hp is an m×m dual-diagonal matrix,

Hp =




1

1 1

. . .
. . .

1 1

1 1




. (6.2)

For RA codes, Hu is a regular matrix having column weight q and row weight 1. For

IRA codes, Hu has column weights {db,i} and row weights {dc,j}. The encoder of Figure

6.2 is obtained by noting that the generator matrix corresponding to H = [Hu Hp] is

G = [I HT
uH−Tp ],

and writing Hu as ΠTAT, where Π is a permutation matrix. Note also that

H−Tp =




1 1 · · · 1

1 1 · · · 1

. . .
...

1 1

1




, (6.3)

performs the same computation as the 1/(1⊕D) accumulator.

Given the code rate, length, and degree distributions, an IRA code is defined entirely

by the matrix Hu (equivalently, by A and Π).

6.4 Repeat-accumulate codes on the AWGN channel

In an iterative sum-product message-passing decoding algorithm, we recall that all mes-

sages are assumed to be log-likelihood ratios. The outgoing message from a variable

node to a check node is

v =

db−1∑

i=0

ui, (6.4)
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where ui, i = 1, . . . , db − 1, are the incoming LLRs from the neighbors of the variable

node except the check node that gets the message v, and u0 is the observed LLR of the

output bit associated with the variable node.

Moreover, the outgoing message from a check node to a variable node is

u = 2 tanh−1



dc+1∏

j=1

tanh
(vj

2

)



or equivalently

tanh
u

2
=

dc+1∏

j=1

tanh
vj
2
, (6.5)

where vj , j = 1, . . . , dc−1, are the incoming LLRs from dc−1 information node neighbors

of a check node, and the additional 2 are the incoming LLRs from the parity node

neighbors.

We recall that λi is the fraction of edges between the information and the check nodes

that are adjacent to an information node of degree i. Now let ρi be the fraction of such

edges that are adjacent to a check node of degree i + 2 (i.e. one which is adjacent to

i+ 1 information nodes). Then, the degree distributions from an edge perspective are

λ(x) =

db∑

i=1

λix
i−1, ρ(x) =

dc∑

i=1

ρix
i−1,

where db and dc denote the maximum information and check node degree respectively.

The rate of the IRA code for a (λ, ρ) degree distribution is given by

Rate =

(
1 +

∑
j ρj/j∑
j λj/j

)−1
. (6.6)

For the AWGN channel, we have only two possible inputs, 0 and 1. If the X is the

input, the output is Y = (−1)X +Z, with Z ∼ N (0, σ2). For a given noise variance σ2,

our objective is to find a degree distribution λ(x) such that the ensemble message error

probability approaches zero, while the rate is as large as possible. In the AWGN, we

deal with probability densities which force us to work on approximate design methods.
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6.4.1 Gaussian approximation

We recall that a Gaussian distribution f(x) is called consistent if f(x) = f(−x) expx, ∀x ≤
0. The consistency condition implies that the mean and variance satisfy σ2 = 2m. For

the sum-product algorithm, consistency is preserved at message updates of both the vari-

able and check nodes. Thus, if we assume Gaussian messages and require consistency,

we only need to keep track of the means. So, N (m, 2m) represents the pdf for a con-

sistent Gaussian random variable. Moreover, in our analysis we consider concentrated

ρ(x) = xa−1.

The expected value of tanh x
2 for a consistent Gaussian distributed random variable x

with mean m is

E
[

tanh
x

2

]
=

1√
4πm

∫

R

tanh
x

2
e−

(x−m)2

4m dx , φ(m). (6.7)

It is easy to see that φ(u) is a monotonic and increasing function of u. We denote its

inverse function by φ−1(u).

Now, let m
(l)
uI and m

(l)
uP be the means of the messages from check nodes to information

nodes and parity nodes respectively, at the lth iteration. We want to obtain expressions

for m
(l+1)
uI and m

(l+1)
uP in terms of m

(l)
uI and m

(l)
uP . A message from a degree-i information

node to a check node at lth iteration is Gaussian with

m
(l)
vI ,i

= mu0 + (i− 1)m(l−1)
uI

, (6.8)

where mu0 is the mean of channel message. So, if vI denotes the message on a ran-

domly selected information node to a check node, the Gaussian mixture density for the

information node messages is

f (l)vI (τ) =

db∑

i=1

λiN (τ ;m
(l)
vI ,i
, 2m

(l)
vI ,i

). (6.9)
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This pdf is important to us, because we will need to take the expected value of a function

of the form tanh(v/2) with respect to the pdf of v. Specifically, we have

E
[

tanh
v
(l)
I

2

]
=

∫ +∞

−∞
tanh

v
(l)
I

2

( db∑

i=1

λiN (τ ;m
(l)
vI ,i
, 2m

(l)
vI ,i

)
)

dτ

=

db∑

i=1

λi

∫ +∞

−∞
tanh

v
(l)
I

2
N (τ ;m

(l)
vI ,i
, 2m

(l)
vI ,i

)dτ

=

db∑

i=1

λiφ(m
(l)
vI ,i

)

=

db∑

i=1

λiφ(mu0 + (i− 1)m(l−1)
uI

). (6.10)

Similarly, if vP denotes the message on a randomly selected edge from a parity node to

a check node, we have

E
[

tanh
v
(l)
P

2

]
= φ(m(l−1)

uP
+mu0). (6.11)

From (6.5), we have

E
[

tanh
u(l)

2

]
=

dc+1∏

j=1

E
[

tanh
v
(l)
j

2

]
. (6.12)

Denote a message from a check node to an information node and a parity node by uI and

uP , respectively. Now, from (6.10),(6.11) and (6.12), we have the following equalities

E
[

tanh
u
(l)
I

2

]
= E

[
tanh

v
(l)
I

2

]a−1
E
[

tanh
v
(l)
P

2

]2

=
( db∑

i=1

λiφ(mu0 + (i− 1)m(l−1)
uI

)a−1(
φ(m(l−1)

uP
+mu0)

)2
, (6.13)

E
[

tanh
u
(l)
P

2

]
= E

[
tanh

v
(l)
I

2

]a
E
[

tanh
v
(l)
P

2

]

=
( db∑

i=1

λiφ(mu0 + (i− 1)m(l−1)
uI

)
)a(

φ(m(l−1)
uP

+mu0)
)
, (6.14)
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where a is the check node degree of our concentrated ρ(x) = xa−1. Using the definition

of φ(m) in (6.7), we have the following recursion for m
(l)
uI and m

(l)
uP

φ(m(l+1)
uI

) =
( db∑

i=1

λiφ(mu0 + (i− 1)m(l)
uI

)a−1(
φ(m(l)

uP
+mu0)

)2
, (6.15)

φ(m(l+1)
uP

) =
( db∑

i=1

λiφ(mu0 + (i− 1)m(l)
uI

)
)a(

φ(m(l)
uP

+mu0)
)
. (6.16)

In order to have small bit error probability, the means m
(l)
uI and m

(l)
uP should approach

infinity as l approaches infinity.

6.4.2 Design of IRA codes

We now assume that iterative decoding has reached a fixed point of (6.15) and (6.16),

so m
(l+1)
uI = m

(l)
uI = muI and m

(l+1)
uP = m

(l)
uP = muP . Denote

∑db
i=1 λiφ(mu0 + (i− 1)muI )

by x. From (6.10) we can see that 0 < x < 1 and lim
muI→∞

x = 1. From (6.15), it is easy

to show that muI is a function of x, denoted by f , so muI = f(x). Then, dividing (6.15)

by the square of (6.16) gives

φ(m(l+1)
uI

) = φ2(m(l+1)
uP

)/xa+1 = φ2(f(x))/xa+1. (6.17)

Now, replacing m
(l+1)
uI with φ−1(φ2(f(x))/xa+1) into the definition of x, we obtain the

following equation for the fixed point x

x =

db∑

i=1

λiφ
(
mu0 + (i− 1)φ−1(

φ2(f(x))

xa+1
)
)
. (6.18)

If this equation does not have a solution in the interval [0, 1], then the decoding bit error

probability converges to zero. Therefore, if we have

F (x) ,
db∑

i=1

λiφ
(
mu0 + (i− 1)φ(−1)(

φ2(f(x))

xa+1
)
)
> x, (6.19)

for any x ∈ [x0, 1), where x0 is the value of x at the first iteration, then the iterative

decoding is successful.
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Figure 6.3: The optimization table of IRA codes and the sparsity of the λ2 = 0 and
length= 1000 IRA code.

The rate of the code is given by

∑
i λi/i

1/a+
∑

i λi/i
. (6.20)

So, to maximize the rate, we should maximize
∑

i λi/i. Thus, we can design an IRA

code by solving the following linear programming problem

max

db∑

i=1

λi/i

subject to F (x) > x,∀x ∈ [x0, 1]. (6.21)

Using this linear programming methodology, the authors of [17], designed IRA codes for

rate= 0.5, which are shown in the Table of Figure 6.3.

We decode the IRA code from the table with λ2 = 0 for length n = 104, 105, 106 and we

observe the results in Figure 6.4.
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Figure 6.4: The error rate for a binary AWGN channel using sum-product algorithm
for different lengths of rate-1/2 optimized irregular repeat-accumulate codes.
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Chapter 7

Conclusion

In this thesis, we summarized fundamental concepts related with LDPC and Repeat-

Accumulate codes.

These codes can be studied using concepts from graph theory. We considered in detail the

encoding procedure as well as the decoding procedure with examples and performance

figures. We constructed codes with several methods and saw the differences of their

performance. Furthermore, we analyzed them using Gaussian approximation, something

that led us to new design methods.

Because of the limited degrees of freedom, repeat-accumulate are inferior to LDPC codes

for decoding but they are easier to encode.
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