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Abstract

We are in an era where data are constantly being generated and machine learning
can benefit from this to produce better models. Support vector machines are
a popular machine learning model, which can be adapted and used for various
tasks, such as classification, regression and clustering. We study the problem of
continuously updating L2 Support Vector Machines in a distributed environment
where new data constantly arrive in remote sites. We approach this as the
problem of tracking a convex function’s minimum over the convex hull of the
union of fully dynamic sets, each one located in one of the sites. We give
communication efficient solutions for both the exact and approximate variants
of the problem and show that they are applicable in the case of a kernelized
SVM trained in an implicit feature space. In our proposed methods, the sites
communicate only when it is necessary, that is, every time the model has been
truly outdated. Also, in case the sites are forced to communicate, we propose
two algorithms, one iterative and one with a single stage of communication.
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Chapter 1

Introduction

Huge amounts of data are constantly generated, from financial series to how we
interact with the appliances surrounding us. Their generation speed and size
makes processing them challenging. In addition, very ofter they are generated
in distributed remote sites, which makes them even harder to process. Thus,
it is of big interest to adapt machine learning’s methods to handle the rapid
nature and huge amount of generated data, in distributed settings.

Support vector machines are a machine learning algorithm which has shown
pretty good performance and has a sound theoretical foundation. Thus, in this
work, we will study the problem of distributively and continuously training an
SMV model. We will focus on the L2-SVM which, under some conditions, is
equivalent to a convex minimization over the convex hull of the data points in
the feature space.

1.1 Outline

In the rest of this chapter we will focus on describing related work and describing
the computational model we will assume.

In chapter 2 we will study the more general problem of minimizing a convex
function over the convex hull of a distributed fully dynamic set of points, which
is altered based on streams of events arriving in remote sites. This methods
will be expanded in chapter 3 to take advantage of the case of only requiring an
approximation to the minimum.

Chapter 4 discusses how this results apply in training L2 Support Vector
Machines, even for feature spaces we prefer not, or can not, explicitly address
but we can describe through a kernel function.

Finally, in chapters 5 and 6 we present some experimental results of our work
followed by a discussion.
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1.2 Related Work

Support vector machines[1] have shown a lot of promising results, but they are
characterized by a high training complexity. Many methods have been used
to train SVMs locally, such as Sequential Minimal Optimization[8] and some
geometric methods. A geometric approach was given by Tsang et al in [13]
to train L2 SVMs in large datasets by showing that L2-SVMs are equivalent
to a minimum enclosing ball problem in the feature space. Mavrofakis and
Theodoridis[7] trained a two class SVM using an iterative algorithm which finds
the two points which are closer and each one belongs in the reduced convex
hull of one class. Cauwenberghs and Poggio[9] give an iterative algorithm for
incremental and decremental training of SVMs in a local setting. Zhu et al.
introduced PSVM[14], an algorithm for training SVMs in a parallel system and
Rai et al. build a one pass SVM in[10].

Processing high speed streams has gained a lot of focus in the last years.
Sharfman[12] introduced the Geometric Method to monitor a general threshold
function over a convex combination of the distributed vectors. In [5], Lazerson
et al. generalize the Geometric Method by using convex decompositions of
the inadmissible area. Garofalakis et al.[3] generalized monitoring a threshold
function into approximately tracking a function over a convex combination of
the distributed vectors and also they extend the above methods to the case of
only keeping a sketch of the streams.

1.3 Computational Model

We consider a distributed computing environment comprised of K remote sites,
where streams of events arrive and each event is either an addition or a deletion
of a point. Each site is responsible for maintaining its set of points and it is
assumed that any deletion will arrive in the same site as the corresponding
addition, which can be easily handled by a previous stage. We are interested
in continuously keeping up-to-date the solution of minimizing a given convex
function f over the convex hull of the union of this sets.

Except from such events, queries may also reach any site, which in chapters
2 and 3 may be a query of the minimum value or a point achieving it, while in
chapter 4 it may be a query to the Support Vector Machine.

Our main focus will be in developing communication efficient methods
without excessive computational cost.
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Chapter 2

Minimization

As the first part of our work we will study the problem where each site maintains
a fully dynamic set of points and we are interested in tracking the minimum of
a convex function f over the convex hull of their union as they evolve.

2.1 Problem Description

In this chapter we consider a distributed system where stream of updates arrive
in remote sites. Each update may either be an addition or a deletion of a
vector xi. Given a differentiable function f , we are interested in distributively
computing and monitoring its minimum over every convex combination of the
data points.

More formally, given a function f : Rn → R we define the problem,

minimize
a∈RN

f (Xa)

s.t. 0 ≤ a

1Ta = 1

(2.1)

where X is the matrix whose columns are the data vectors xi. We are interested
in computing the problem’s solution and a point achieving it, as well as tracking
their values after addition and deletion of columns of X.

As Xa =
∑

i aixi, it is easy to show that problem (2.1) is equivalent to,

minimize
e∈H

f(e) (2.2)

where H = ConvexHull({xi,∀i}) = {
∑

i aixi|
∑

i ai = 1, 0 ≤ ai ≤ 1, ∀i}.

2.2 Overview

The problem consists of two subproblems, monitoring the correctness of the
current solution and updating it when necessary. Initially, in section 2.3 we will
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Figure 2.1: Circles are the data points and points of the same color are assigned to the
same site. Contours of f are also shown. The convex polygon shown in orange is the
convex hull of the points.

set up the common knowledge our remote sites have and define some notation.
In sections 2.4, 2.5 we will describe our proposals for solving the two problems.

2.3 Global Knowledge and Notation

In our approach every site has knowledge of the same vector ê which yields
the minimum of f over the convex hull of vectors xi. Also, each site stores its
set Dk of vectors xi that arrived in its stream and are not deleted. Let D be
representing the union of this sets and Mi be the points known to site i. Of
course Di ⊆ Mi, for each site i.

We will call ê the global vector. We observe that ê =
∑

i aixi. So, in high
level, it may be represented in one of two ways, either as a vector or as the convex
combination of a subset of D. Having this in mind, for the rest of the document
if not explicitly written, when referring to a set containing ê it will imply that
it either contains ê itself, or the vectors with non zero coefficients in the above
convex combination, whatever is more appropriate based on ê’s representation.
For example, if ê is represented as a convex combination, Mis will contain every
xi needed for creating ê. So, in each case, ê ∈ ConvexHull (Mi).

2.4 Monitoring

During the monitoring phase we are interested in distributively detecting when
our current global vector ê stops being an optimal point over the convex hull.
That can happen in two cases, either when the hull is expanded and at least
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one new point which obtains a lower value for the function under consideration
is introduced into it, or when the global vector gets outside the convex hull, due
to a change in the hull.

The first case only occurs when a point is added. Addition of a point may
introduce new points in the convex hull, whereas deletion will produce a hull
that is subset of the previous one. So, in this case, the minimum of f over the
new convex hull will be greater or equal to the previous one.

On the other hand, our current global vector ê may get outside of the hull
only in case of a point being deleted. When a new point is added to the hull, the
hull will either be expanded or stay unchanged, but will in no case be reduced.
So the new hull will be a superset of the previous one, thus ê will remain inside
the hull.

2.4.1 Detecting Non Optimality

We are now going to develop local constraints to detect when a new optimal
vector may have being introduced due to an event on one of the sites. As it has
already been mentioned, such an event may only be an addition of a new point
to the set of vectors.

More formaly, the task we are interested in this section is to monitor whether
a point e exists in the updated convex hull such that f(e) < f(ê). That is, we
are interested in creating local constraints that, if none is violated, will provide
a certificate that the global constraint f(e) < f(ê) is also not violated for any
e ∈ H.

Lazerson et al.[5] have studied the problem of distributively monitoring such
a constraint. They have shown that given a set of point, if the inadmissible
area produced by the constraint is convex, then there is a halfspace we can
create such that if every point of the set belongs to it, then there is no point
in the set’s convex hull which violates the global constraint. Given a global
vector ê belonging to the convex hull and its projection ê∗ to the boundary
of the inadmissible area, the halfspace is defined as the halfspace containing ê
whose boundary is the hyperplane containing ê∗ and normal the line segment
connecting ê∗ to ê.

Building on that idea, we are going to create local constraints for our prob-
lem. The inadmissible region in our case is defined as Ā = {z ∈ Rn|f(z) < f(ê)},
which is convex as it is a f(ê)-sublevel set of the convex function f . We have
defined our global vector as ê, but it already belongs to the boundary of Ā, so
its projection is itself. The normal is now defined by ∇f(ê), as the distance of
ê to its projection is 0 and thus the local constraints are ∇f(ê)T (xi − ê) ≥ 0
as proven in theorem 1.

Theorem 1. Let f : Rn → R be a convex, differentiable function, set D =
{x1,x2, . . . ,xN} ⊆ Rn and ê ∈ H ≡ ConvexHull(D). Then, ∇f(ê)T (x− ê) ≥
0, ∀x ∈ D =⇒ f(ê) ≤ f(e), ∀e ∈ H.

Proof. For any e ∈ H there exist ai ∈ [0, 1], ∀i such that e =
∑

i aixi, and∑
i ai = 1. Thus, based on theorem’s preconditions, ∇f(ê)T (aixi − aiê) ≥
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(a) No violation (b) Violation

Figure 2.2: A new point is added to the old convex hull (dotted line). The old global
vector is the black dot and the gray line is the hyperplane defined by the local constraint
(the arrow is proportional to the negative of the gradient where the global vector is).
In the left picture the local constraint for the new point is not violated, while in the
right one, it is.

0, ∀i = 1, . . . , N . Summing all the inequalities, we get ∇f(ê)T (e− ê) ≥ 0.
And due to convexity, f(e) − f(ê) ≥ ∇f(ê)T (e− ê) ≥ 0. Concluding that,(
∇f(ê)T (xi − ê) ≥ 0, ∀i

)
=⇒ f(ê) ≤ f(e),∀e ∈ H

Based on theorem 1, if for every i, ∇f(ê)T (xi − ê) ≥ 0, then the global
vector ê is an optimal point of the function over the convex hull. Also, this
conditions are local, in the sense that the site in which xi is assigned can check
this condition without any communication (it already knows the global vector).
So, as long as the local constraints hold, no communication is needed.

Theorem 2. Let f : Rn → R be a convex, differentiable function, and
∇f(ê)T (xi − ê) < 0. Then ∃a ∈ (0, 1] such that f ((1− a)ê+ axi) < f (ê)

Proof. The function f is differentiable, thus all its directional derivatives in ê

exist and so does the limit, lima→0
f(ê+a(xi−ê))−f(ê)

a = ∇f(ê)T (xi − ê) < 0. So

lima→0
f((1−a)ê+axi)−f(ê)

a < 0. Thus, there exists a > 0 small enough such that,
f((1−a)ê+axi)−f(ê)

a < 0. So, ∃a ∈ (0, 1] : f ((1− a)ê+ axi) < f(ê)

If ê and xi belong in a convex hull, so does (1− a)ê+ axi for all a ∈ [0, 1].
Thus, based on theorem 2 it has also been proven, that if one local constraint
has been violated, the global vector must be updated, as it not an optimal point
any more.

This lets us conclude that this local constraints are optimal, as a violation
will happen if and only if a global violation has happen.

2.4.2 Detecting Drop Out Of The Convex Hull

Now we are going to formulate local conditions to monitor whether the global
vector ê is still inside the convex hull.

As already mentioned, the global vector may get outside the convex hull only
after deleting a point. Initially suppose that every site knows the coefficients
of its points used in creating ê and that the point being deleted is xD. If the
coefficient aD of this point is zero, then it is obvious that the global vector ê
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is still inside the convex hull as it is already expressed as a convex combination
of the rest of the points. Thus, deleting a point with zero coefficient does not
drop the global vector out of the hull.

In case the coefficients are not available an alternative is to check whether
for the deleted point we have that ∇f(ê)T (xD − ê) > 0 which as proven in
theorem 3, implies that aD = 0. This condition is less strict, as aD = 0 does not
guarantee that ∇f(ê)T (xD − ê) > 0, as an example consider the case ê can be
expressed by two different convex combinations of D’s elements. Nevertheless,
it is a certificate that the current solution is still valid after the deletion.

Theorem 3. Let f : Rn → R be a convex, differentiable function, D ⊆ R, ê =∑
i aixi,

∑
i ai = 1, ai ≥ 0, ∀xi ∈ D and f (ê) ≤ f (e) ,∀e ∈ ConvexHull (D).

If ∇f(ê)T (xj − ê) > 0, then aj = 0.

Proof. Suppose aj ̸= 0. So aj > 0 and ∇f(ê)T (xj − ê) > 0 implies
∇f(ê)T (ajxj − aj ê) > 0. But, ∇f(ê)T (aixi − aiê) ≥ 0, ∀i ̸= j. Sum-
ming all the inequalities, ∇f(ê)T (

∑
i aixj −

∑
i aiê) > 0, which implies

∇f(ê)T (ê− ê) = 0 > 0 which is a contradiction. Thus aj = 0.

When we can not obtain one of the above certificates, we can distinguish
between two cases. Either the global vector is not included in the updated
convex hull or it can be written as a convex combination of the rest of the
elements. In the first case, our current solution is outdated and the only thing
we can do is start the update process as it will be described in section 2.5.2. In
the other case no action is needed. Unfortunately, in the general case the site
where the delete event arrived does not have the information needed to detect it.
So we can either move straight to updating our solution, and possible converge
in the same one if it is still in the hull, or we can first check if the solution is
still in the hull and proceed in updating only if necessary.

From theorem 3 it follows that only vectors xi satisfying∇f(ê)T (xi − ê) = 0
may have non zero coefficients in any representation of ê as a convex combination
of (D \ {xD})’s elements. Thus, to check whether ê is contained in the updated
convex hull, it is sufficient for the site to collect all xi ∈ D \ {xD} satisfying
∇f(ê)T (xi − ê) = 0 and try to express it as their convex combination. If it
succeeds, then no further action, rather than possibly transmitting the new
combination, is needed. Otherwise it has proven that ê is not contained in the
updated convex hull and an update is necessary. Condition ∇f(ê)T (xi − ê) = 0
can of course be checked locally in xi’s site.

2.5 Updating

When the monitoring phase detects that the global vector ê may have been
outdated, a replacement, let it be ê+, must be selected.

9



(a) Dropped (b) Not dropped

Figure 2.3: A old point is removed from the old convex hull (dotted line). The old
global vector is the black dot and the gray line is the hyperplane defined by the local
constraint (the arrow is proportional to the negative of the gradient where the global
vector is). In the left picture the global vector has been dropped out of the hull, in
contrast to the one in the right.

2.5.1 Updating Global Vector After Expansion

Let us first focus on the case of the global vector being outdated due to the
addition of a point which violated the local constraint. To update the global
vector in this case we propose two methods for the description of which we will
denote the site where the new point arrived as r and the point as xN. Note
that xN ∈ Mr.

Update Method 1

As part of the first proposed update method the following convex minimization
problem is solved locally in site r, for s = r,

minimize
aj ,∀yj∈Ms

f

 ∑
yj∈Ms

ajyj


s.t. 0 ≤ aj , ∀yj ∈ Ms∑

yj∈Ms

aj = 1

(2.3)

The point achieving the minimum is then broadcasted to all other sites and
labeled as the new global vector, replacing the old one. After that, each site
has to check if any of its points is now violating the local constraint (due to
changing the global vector). If no site has a violation, then the update process
has finished and all the sites have knowledge of the new and updated global
vector ê+ due to the last broadcast. Otherwise, one of the sites having at least
one violation is selected to locally solve (2.3) with itself as s and broadcast the
new solution, forcing every other site on rechecking the local constraint on its
points. This process is repeated until no violation is found.

Proof Of Correctness We will now go ahead and prove that the above
process converges to the correct point. It is sufficient to show that this method
makes an improvement in each step without ever dropping below the minimum

10



we are seeking and that it will terminate if and only if a point achieving the
minimum over the updated convex hull has been found.

Denote ei and Mi as the solution and the set of vectors, respectively, of the
i-th minimization problem solved while updating the global vector using the
above method. Also let e0 = ê and M0 = Mr. As already noted, the global
vector belongs to every sites’ ConvexHull (Mj), so ei−1 ∈ ConvexHull

(
Mi

)
before solving the i-th minimization problem. Thus, f (ei) ≤ f (ei−1). Also,
the site that solves the problem at each step has a vector which violates the local
constraint, thus from theorem 2 it is obvious that the inequality is strict, that
is, f (ei) < f (ei−1). In addition, f (ei) ≥ f (ê+) as

∪
s ConvexHull (Ms) ⊆

ConvexHull (
∪

s Ms), so the true minimum will never be surpassed.
Now it has only been left to show that this method will stop only when

such a point has been found. This is a direct consequence of the terminating
condition and theorem 1.

Update Method 2

The second method is based on the fact that xN is the only point in D violating
the local constraints. That is, xN ∈ S− ≡

{
x ∈ Rn

∣∣∇f(ê)T (x− ê) < 0
}

whereas D \ {xN} ⊆ S+ ∪ ∂S, where ∂S ≡
{
x ∈ Rn

∣∣∇f(ê)T (x− ê) = 0
}

and S+ ≡
{
x ∈ Rn

∣∣∇f(ê)T (x− ê) > 0
}
. Also we know that ê+ ∈ S−, as

0 > f(ê+)−f(ê) ≥ ∇f(ê)T (ê+ − ê). But, by definition ê+ ∈ ConvexHull(D),
thus ê+ ∈ ConvexHull(D) ∩ S−. This means that we only need to solve the
minimization over this set. As this set is open, we will extend it to contain its
boundary to make the analysis simpler. LetH− ≡ ConvexHull(D)∩(S− ∪ ∂S).
Minimization can now be solved over H−.

This method builds on the fact that if we can, without a lot of communica-
tion, create a representation of H− on a site, we can then solve the rest of the
problem locally. One obvious way to do it would be to gather all the points in
this site and solve the problem, this would not even require explicitly computing
H−, but it would imply huge amounts of data transfers on every update.

Fortunately, there is a more efficient way. Based on theorem 4, H− is equiv-
alent to the convex hull of {xN}∪D̂, where D̂ is the set of the points where rays
emitted from xN toward every other point of D intersect ∂S. Strictly speaking,
D̂ is defined as {zi|zi = λixi + (1− λi)xN ∈ ∂S,xi ∈ D \ {xN} , λi ∈ [0, 1]}.
We still have make no improvement over sending all the data points, but we
can make one using the fact that we do not need all the points of D̂ to create
the convex hull, but only its extremes, that is, points that can not be written
as a convex combination of the rest of the points. It worths commenting here
that while we could just send the extreme points of D to one site to do the
computation, this would imply a higher communicational cost, as an extreme
point of D̂ has been generated by an extreme point of D, but an extreme of D
does not necessarily produce an extreme on D̂.

While each site can locally compute the part of D̂ corresponding to its points
(let it be D̂i), D̂ is a distributed set and thus we can not compute its extremes
without extra cost. So we propose using an heuristic based on the fact that an
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Figure 2.4: A point which violated the local constraint and the rays emitted from it to
each other point. If red and blue are the two sites, with each one knowing only the
points of its color, then only the points corresponding to bold rays will be transmitted.

extreme of a partitioned set will be an extreme in one of its subsets. Thus, each
site can compute the extremes of its D̂i and send them. The site collecting the
extremes can optionally discard any non extremes before proceeding in solving
the minimization.

Finally, we can reduce the number of non extremes transmitted by having
each site to compute its D̂i not only based on its points, but based on all the
points it has knowledge of (Mi\{xN}). In this case, D̂is are not disjoint, so each
extreme point will be detected by at least one site. Forcing each site to transmit
only points corresponding to its stream will prevent multiple transmissions of
the same point.

Now we are ready to summarize our second proposed method for updating
the solution. Initially the site which detected the violation broadcasts the
violator (xN). Then each site locally computes D̂i, as described, and finds its
extremes using any one of the known local algorithms for this tasks. Each site
transmits the extremes it detected that correspond to points originating from
its stream to a node assigned to do the final computation. This site collects
xN and all the candidate extreme points in a set, let it be C, and optionally
discards any non extremes, deleteing them from C. This site then locally solves
the following convex optimization problem,

minimize
aj ,∀xj∈C

f

∑
xj∈C

ajxj


s.t. 0 ≤ aj , ∀xj ∈ C∑

xj∈C
aj = 1

(2.4)

The solution of this problems is the updated solution and a point achieving it
is the updated global vector ê+, so it is broadcasted to all the other sites.

Theorem 4. Let A be a set, ∂B be a hyperplane and B+, B− the two open
half-spaces created by subtracting ∂B from the space. If y is a point in B−,
A ⊆ B+∪∂B and Â ≡ {zi|zi = λixi + (1− λi)y ∈ ∂B,xi ∈ A, λi ∈ [0, 1]}, then
ConvexHull (A ∪ {y}) ∩ (B− ∪ ∂B) ≡ ConvexHull(Â ∪ {y}).

12



Proof. We will start by proving that ConvexHull (A ∪ {y}) ∩ (B− ∪ ∂B) ⊇
ConvexHull

(
Â ∪ {y}

)
. Observe that Â ∪ {y} ⊆ ConvexHull (A ∪ {y}), so

ConvexHull
(
Â ∪ {y}

)
⊆ ConvexHull (A ∪ {y}). In addition B− ∪ ∂B is

convex, so Â∪{y} ⊆ B−∪∂B implies ConvexHull
(
Â ∪ {y}

)
⊆ B−∪∂B. Com-

bining this two relations, we have concluded the first part of the proof, having

proven that ConvexHull (A ∪ {y}) ∩ (B− ∪ ∂B) ⊇ ConvexHull
(
Â ∪ {y}

)
.

Now we must also prove that the opposite relation also holds. Assume that
B− ∪ ∂B ≡

{
x ∈ Rn

∣∣pTx ≤ b
}
. For every xi ∈ A, pTxi ≥ b and pTy < b. Let

us also show that any element xi of A is mapped into one element of Â. A

xi ∈ A will be mapped to zi = λixi + (1− λi)y for λi =
pTxi−b

pTxi−pTy
. We observe

that λi ∈ [0, 1) due to space’s partition and thus zi belongs in Â.
Let z be a point in ConvexHull (A ∪ {y}) ∩ (B− ∪ ∂B). As it is contained

in the convex hull of A∪ {y}, there exist µi ≥ 0 and µy ≥ 0 such that
∑

i µi +
µy = 1 and z =

∑
i µixi + µyy. Manipulating this expression we can get that

z =
∑

i
µi

1−λi
(1− λi)xi + µyy =

∑
i

µi

1−λi
zi +

(
µy −

∑
i

µi

1−λi
λi

)
y. For each

i, µi

1−λi
≥ 0. In addition, µy −

∑
i

µi

1−λi
λi = 1 −

∑
i

1
1−λi

µi. We are only
interesting in showing that the coefficient of y is also nonnegative, thus it is

sufficient to show that 1 ≥
∑

i
µi

1−λi
=

∑
i
pTxi−pTy

b−pTy
µi =

pT z−µyp
Ty−

∑
i µip

Ty

b−pTy
.

Which is equivalent to b − pTy ≥ pT z − pTy, which is true as z ∈ B− ∪ ∂B,
thus b ≥ pT z. So we can conclude that z belongs in the convex hull of Â ∪ {y}.
Thus, ConvexHull (A ∪ {y}) ∩ (B− ∪ ∂B) ⊆ ConvexHull

(
Â ∪ {y}

)
.

We have shown that each of the two sets is subset of the other, thus they
are indeed equivalent.

2.5.2 Update after contraction

Update method 1 is also applicable in case a vector has been deleted. The
only difference is that the first time problem 2.3 is solved, it may return a
solution greater to the previous minimum. To be exact, it can not return a
lower value and if the same one is returned, then no extra iterations will be
needed. Except from that, the rest of the method stays the same and the proof
still holds, proving that this method converges. Note that xD should be deleted
from every site’s list of known points prior to using the method.
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Chapter 3

Approximate Minimization

Many tasks do not need the exact solution of the minimization problem but
only an ϵ-approximation. Thus, in this section we will extend our methods to
handle approximate minimization. More formally, if at any time a point e∗ ∈
H ≡ ConvexHull (D) minimizes f over H, we will be interested in computing
and updating a global vector ê satisfying f(e∗) ≤ f(ê) ≤ f(e∗) + ϵ. Of course
ϵ is assumed to be positive.

3.1 Approximate Monitoring

We will start relaxing our methods by discussing how the monitoring phase
changes.

3.1.1 Detecting Outdated Approximation

We will now extend theorem 1 to the approximate case.

Theorem 5. Let f : Rn → R be a convex, differentiable function, D = {xi|∀i}
and ê ∈ H ≡ ConvexHull (D). Then,

(
∇f(ê)T (xi − ê) ≥ −ϵ, ∀i

)
=⇒

f(ê) ≤ f(e) + ϵ,∀e ∈ H.

Proof. For any e ∈ H there exist ai ∈ [0, 1],∀i such that e =
∑

i aixi, with∑
i ai = 1. Thus, based on theorem’s preconditions, ∇f(ê)T (aixi − aiê) ≥

−aiϵ, ∀i = 1, . . . , N . Summing all the inequalities, we get ∇f(ê)T (e− ê) ≥
−ϵ. And due to convexity, f(e) − f(ê) ≥ ∇f(ê)T (e− ê) ≥ −ϵ. So,(
∇f(ê)T (xi − ê) ≥ −ϵ,∀i

)
=⇒ f(ê) ≤ f(e) + ϵ,∀e ∈ H

We will call ∇f(ê)T (xi − ê) ≥ −ϵ relaxed local constraint on xi. Theorem
5 states that if no local constraint is violated, f(ê) ≤ f(e) + ϵ,∀e ∈ H, but
e∗ ∈ H, thus f(ê) ≤ f(e∗) + ϵ.

Theorem 2 still holds for the relaxed local constrained, so using one of the
existing update strategies guarantees a descent step.

14



So, to make our approach support ϵ-approximate minimization, the only
change needed is to replace the local constraints by their relaxed counterparts.

3.1.2 Detecting Drop Out In The Approximate Case

In case the coefficient aD of the deleted point xD in a convex combination of
the global vector is zero or ∇f(ê)T (xD − ê) > 0, then the global vector is still
inside the hull, as in the exact case. Unfortunately, if both of this are false,
testing if the global vector is inside the hull will require knowledge of much
more points than in the exact case. Thus a simple alternative is to just move
straight forward to the update stage and let it return the same solution, if it
still is inside the convex hull.

3.2 Approximate Update

The update methods can as well be adjusted to the approximate case.

3.2.1 Approximate Update After Expansion

Both methods used in the exact case can be adapted to the approximate one.

Update Method 1

The first update method needs only two changes. First of all, when a site checks
its points for violators after an intermediate update of the global vector, it is
sufficient to check if there is any point violating the relaxed constraint. This
guarantees that the algorithm will terminate with an ϵ-approximate solution,
as a consequence of theorem 5.

Also, it is sufficient for problem 2.3 to be approximately solved. The precision
should be at least ϵ and small enough for the solver to return a solution smaller
than the previous one (with the exception of the first iteration). That guarantees
progress of the method in each step. Such a small precision is guaranteed to
exist, as it has already been proven that in case violators exist a descend step
always exists.

Update Method 2

For the second method, instead of sending the points that the rays intersect
the hyperplane ∂S, now we send the points where the rays meet the hyperplane
∂Sϵ ≡

{
x
∣∣∇f(ê)T (x− ê) = −ϵ

}
. The point xN which triggered the update is

the only one contained in S−
ϵ ≡

{
x
∣∣∇f(ê)T (x− ê) < −ϵ

}
, thus theorem 4 still

holds with ∂Sϵ as ∂B, S−
ϵ as B− and the rest of the space as B+. Based on this,

we know that the node receiving the points can fully describe and minimize over
the intersection of the updated convex hull with S−

ϵ ∪ ∂Sϵ. The result of the
minimization, let it be ec, will either lie on ∂Sϵ or on S−

ϵ . We shall discuss this
two cases separately.
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In case ec ∈ S−
ϵ , we have computed our new global vector and no point is

violating the updated relaxed constraint. Broadcasting it will end the update
phase. To prove this, observe that ec is a point achieving the minimum over
C ≡ ConvexHull (D) ∩ (S−

ϵ ∪ ∂Sϵ), thus for every point z ∈ C, it holds that
∇f(ec)

T (z− ec) ≥ 0. Also, if yi is the intersection of the ray from xN to xi ̸=
xN, then ∇f(ec)

T (yi − ec) ≥ 0 and yi = aixi+(1− ai)xN for some ai ∈ (0, 1].
In addition, for any point w ∈ ConvexHull (D) ∩ S+

ϵ , there exist λi ∈ [0, 1],
λN ∈ [0, 1] with

∑
λi + λN = 1 and w =

∑
λixi + λNxN. Substituting,

w =
∑

λi

(
1
ai
yi +

(
1− 1

ai

)
xN

)
+ λNxN = β

∑
µiyi + (1− β)xN, where

β =
∑

i
λi

ai
≥ 0 and µi = λi

aiβ
. As µi ≥ 0 and

∑
i µi = 1,

∑
µiyi ∈

C, thus β∇f(ec)
T (

∑
µiyi − ec) ≥ 0. But, ec ∈ S−

ϵ , thus any convex
coefficient representing ec has a non zero coefficient for xN so by theorem 3,
∇f(ec)

T (xN − ec) = 0. Summing this two results, we can now prove that
∇f(ec)

T (w − ec) ≥ 0, concluding a proof that any point of ConvexHull (D)
is satisfying not only the relaxed constraints, but the original ones as well and
ec is fulfilling our requirements for the global vector.

Unfortunately on the other case, where ec ∈ ∂Sϵ, no such guarantee can be
given. Because of ec ∈ ∂Sϵ we know that no point achieving the minimum can
be in S−

ϵ . Thus it must be in
{
x
∣∣∇f(ê)T (x− ê) ∈ [−ϵ, 0)

}
. Obviously, this

means that our old solution was already an ϵ-approximation to the one on the
updated convex hull. But keeping the old one breaks our monitoring conditions,
which requires that no point is violating the relaxed constrain when a new one
arrives. Thus we must fall back to the first method to reach a state we can keep
monitoring the streams in a communication efficient way.

3.2.2 Approximate update after contraction

Update method 1 for the approximate case can again be adjusted in the same
way the exact one was adjusted for the exact minimization case.

3.3 Relative Error Guarantees

In the previous sections we have assumed that ϵ is a known constant and thus
the error is absolute. Still, by substituting ϵ = ϵ̂

1+ϵ̂f (ê), we can convert the
bound into a ϵ̂ relative one, that is f(e∗) ≤ f (ê) ≤ (1 + ϵ̂) f (e∗). But, now,
ϵ should change every time a new global vector is transmitted, even if it is a
temporary one.
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Chapter 4

L2 Support Vector
Machines

In this chapter we will initially give a small introduction to Support Vector
Machines in 4.1 and then a discussion on applying our methods to L2 Support
Vector Machines will follow.

4.1 Support Vector Machines

Support vector machines[1] are a popular machine learning algorithm initially
introduced for two class classification. In the case of two class classification
they try to find a maximal separating hyperplane, that is a hyperplane which
separates the two classes with a gap as big as possible. This can only be
accomplished when the data of the two classes are linearly separable. To handle
the case of non linearly separable data, a penalty factor is introduced. Every
point which is located in the wrong side of the plane is introducing a penalty,
based on some loss function. Traditionally, this loss function is the hinge loss
but for the L2 SVMs we will use, it is the squared hinge loss function. In
addition, usually the points are mapped in to a higher dimensional space through
a function ϕ(x) and separated there. Let xi be the initial data points and
yi ∈ {±1} the label of xi, then, following [13], the formulation of the L2-SVM
is,

minimize
w,b,ρ,ξi

∥w∥2 + b2 − 2ρ+ C
∑
i

ξ2i

s.t. yi
(
wTϕ(xi) + b

)
≥ ρ− ξi

The dual of this problem can be shown to be,

minimize
a

aT Φ̂T Φ̂a+ diag
(
Φ̂T Φ̂

)
a

s.t. a ≥ 0

1Ta = 1

17
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Figure 4.1: The two loss functions. The horizontal axis is proportional to the distance
of the point from the separating hyperplane, with positives been in its classes half-space.

where Φ̂ is a matrix whose i-th column is ϕ̂(xi) = [yiϕ(xi)
T yi

1√
C
ej

T ]T .

The corresponding kernel function is k̂(xi,xj) = yiyj (k(xi,xj) + 1) + 1
C δij ,

where δij = 1 if i = j, δij = 0 otherwise.
Again, following the assumption made in [13], that ϕ(xi)

Tϕ(xi) = k, for all
xi and k is a constant, we can solve

minimize
a

aT Φ̂T Φ̂a =
∥∥∥Φ̂a∥∥∥2

s.t. a ≥ 0

1Ta = 1

instead of the dual, as if a minimum is found to be attained by a point, then this
point will be a point minimizing the dual as well. This is clearly a minimization
of the convex squared L2 norm over the convex hull of ϕ̂(xi)s.

4.1.1 One class L2 Support Vector Machine

Extending to the one class L2 SVM, the problem now is[13],

minimize
w,ρ,ξi

∥w∥2 − 2ρ+ C
∑
i

ξ2i

s.t. wTϕ(xi) ≥ ρ− ξi

and under the same assumption, the dual is the same, but with ϕ̂(xi) =

[ϕ(xi)
T 1√

C
ej

T ]T . The corresponding kernel function is k̂(xi,xj) = k(xi,xj)+
1
C δij , where δij = 1 if i = j, δij = 0 otherwise.
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4.2 L2-SVMs as Minimization Over the Convex
Hull

The dual can be solved using the previously presented methods with f(x) =

∥x∥2 to train the L2-SVM by firstly computing ϕ̂(xi) and using this as input
to the rest of the algorithm.

4.3 Minimization Using Kernels

The problem with the above approach is that ϕ̂(xi) may be of a very high
dimension, even infinitive. Also, it is pretty common not to define ϕ(xi)
explicitly. Thus, we shall show that our methods can be used in the case we
want to train our SVM through a kernel function k(xi,xj) = ϕ(xi)

Tϕ(xj).
To show the applicability of our methods, we shall show that all the

computations can be done using the kernel function.
First of all, we can no longer represent the global vector ê as a vector, but

only as a convex combination. Note that we shall consider part of the convex
combination only the vectors with non zero coefficients. Let ê =

∑
i aiϕ̂(xi).

Also, when we need to transmit a vector, for example when broadcasting the
convex combination of ê or during update, we can not transmit ϕ̂(xi), so we
transmit xi.

4.3.1 Monitoring with Kernels

For the monitoring phase we only need to test the coefficients in the convex

combination of ê and compute ∇f(ê)T
(
ϕ̂(xi)− ê

)
.

The coefficients are already known as they are part of the knowledge needed
to represent ê as a convex combination.

To compute ∇f(ê)T
(
ϕ̂(xi)− ê

)
, we shall observe that ∇f(ê) = 2ê, so

∇f(ê)T
(
ϕ̂(xi)− ê

)
=

∑
j

ajϕ̂(xj)
T ϕ̂(xi)− 2f(ê) =

∑
j

aj k̂(xj,xi)− 2f(ê)

(4.1)

where f(ê) can also be computed as
∑

j

∑
i aj k̂(xj,xi)ai if not available.

A node can still compute this quantity locally as it will known all xjs
participating in the convex combination of ê.

4.3.2 Updating with Kernels

To handle updating we need to support three operations, ray intersection,
convex hull membership and solving problems 2.3, 2.4.
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Ray Intersection

In the second update method we need the point ϕ̂(yi) where the ray from ϕ̂(xN)
to ϕ̂(xi) intersects a hyperplane of the form

{
ψ
∣∣∇f(ê)T (ψ − ê) = b

}
for some

b ≤ 0. But as ϕ̂(yi) belongs to the ray, ϕ̂(yi) = λiϕ̂(xi) + (1 − λi)ϕ̂(xN) for
some λi ∈ (0, 1]. Substituting in hyperplane’s equation we get that,

λi =

∑
j aj k̂(xj,xN)− f(ê)− 1

2b∑
j aj k̂(xj,xN)−

∑
j aj k̂(xj,xi)

(4.2)

which can be computed locally for xi, as the site will have received xN and it
knows ê. The kernel function now has as follows,

k̂(yi,xj) = k̂(xj,yi) = λik̂(xi,xj) + (1− λi)k̂(xN,xj) (4.3a)

k̂(yi,yj) = k̂(yj,yi) = λiλj k̂(xi,xj) + (1− λi)(1− λj)k̂(xN,xN)

+ (1− λi)λj k̂(xN,xj) + (1− λj)λik̂(xN,xi) (4.3b)

Convex Hull Membership

Most of the algorithms that can compute the extremes points of a set C require
a method to test if a given point ϕ̂(x) ∈ C is contained in the convex hull of
another set V ⊆ C.

In the kernelized formulation of the problem, there are at least two ways to
do accomplish it. The first one is by computing the distance of the point from
the convex hull of V by solving the quadratic minimization problem,

minimize
a

∥∥∥Ξ̂a− ϕ̂(x)
∥∥∥2

s.t. a ≥ 0

1Ta = 1

where Ξ̂ is the matrix whose columns are the vectors of V. This problem is
equivalent to,

minimize
a

∑
i:ϕ̂(xi)∈V

∑
j:ϕ̂(xj)∈V

aj k̂(xj,xi)ai − 2
∑

j:ϕ̂(xj)∈V

aj k̂(xj,x) + k̂(x,x)

s.t. a ≥ 0

1Ta = 1

If its solution is greater than zero, then ϕ̂(x) does not belong in the convex hull
of V. Otherwise, it is a convex combination of V’s elements.

An alternative is based on theorem 6. Based on this theorem we can solve
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the problem

minimize
a

ϕ̂(x)T
(
Ξ̂a− ϕ̂(x)

)
− β

s.t. a ≥ 0

1Ta = 1

Ξ̂T
(
Ξ̂a− ϕ̂(x)

)
≥ β

which is equal to,

minimize
a

∑
i:ϕ̂(xi)∈V

k̂(x,xi)ai − k̂(x,x)− β

s.t. a ≥ 0

1Ta = 1∑
i:ϕ̂(xi)∈V

k̂(xj,xi)ai − k̂(xj,x) ≥ β, ∀j : ϕ̂(xj) ∈ V

ϕ̂(x) is inside the convex hull if and only if this problem is not unbounded and
has a non-negative solution. Note that this problem is a linear program.

Theorem 6. Let p be a vector and X be a set of vector whose vectors
compromise the column of B. Then, exactly one of the following holds,

1. p ∈ ConvexHull (X )

2. ∃x ∈ ConvexHull (X ) and ∃β ∈ R such that both pT (x− p) < β and
∀x̂ ∈ X it holds that x̂T (x− p) ≥ β

Proof. Let A =

[
B
1T

]
and b =

[
p
1

]
. Then, by Farkas’ lemma, either ∃λ ≥ 0

such that Aλ = b or ∃y such that yTA ≥ 0 and yTb < 0.
The first case is equivalent to our first case.
In the second case, equivalently we have that ∃y, ys such that yTB+ ys ≥ 0

and yTp+ ys < 0.Let, z be the point of the convex hull closer to p. Then

z = argmin
x̂∈ConvexHull(X )

∥x̂− p∥2 = f(x̂)

and ∇f(x) = 2x− 2p, thus (z− p)
T
(x̂− z) ≥ 0, or equivalently, (z− p)

T
x̂−

(z− p)
T
z ≥ 0. Also, (z− p)

T
p − (z− p)

T
z = −∥z− p∥2 < 0 as p is not

in ConvexHull (X ). So, both of the inequalities are satisfied for y = z and

ys = − (z− p)
T
z. Thus, if p /∈ ConvexHull (X ), then ∃x ∈ ConvexHull (X )

and β ∈ R such that pT (x− p) < β and x̂T (x− p) ≥ β, ∀x̂ ∈ X .
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Local problems

The last thing we should show, is that we can solve the local problems 2.3, 2.4.
They are of the form,

minimize
aj ,∀ϕ̂(xj)∈C

∥∥∥∥∥∥
 ∑

ϕ̂(xj)∈C

ajϕ̂(xj)

∥∥∥∥∥∥
2

s.t. 0 ≤ aj , ∀xj ∈ C∑
ϕ̂(xj)∈C

aj = 1

(4.4)

which is equivalent to

minimize
aj ,∀ϕ̂(xj)∈C

∑
ϕ̂(xi)∈C

∑
ϕ̂(xj)∈C

ajϕ̂(xj)
T ϕ̂(xi)ai =

∑
ϕ̂(xi)∈C

∑
ϕ̂(xj)∈C

aj k̂(xj,xi)ai

s.t. 0 ≤ aj , ∀xj ∈ C∑
ϕ̂(xj)∈C

aj = 1

(4.5)
which is a quadratic program.

4.4 Answering queries

Queries to the L2-SVM can now be answered by any node, as the global vector
and the minimum are the only information needed.
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Chapter 5

Experimental Study

We simulated training a one class L2 SVM with an RBF kernel, on a chessboard
dataset where each point is uniformly at random selected in R10 such that
projecting it into any of the 5 pairs of coordinates (1-2, 3-4, 5-6, 7-8, 9-10) will
give a point belonging in a white square of a chessboard. Each point is randomly
assigned into one of the sites and the model start complete untrained, that is,
the first point is used as initialization of the model.

The global vector was represented as a convex combination, thus any
component with a non-zero coefficient in this convex combination was known to
every site. Also, every time the convex combination was updated only the new
components where transmitted.

In figure 5.1 the number of iterations before convergence of the update
method 1 is plotted. Observe that in most cases the number of iterations is
pretty small and that as the model gets trained, update is triggered less often.

In figure 5.2 the number of vector broadcasts needed for each addition is
plotted. Observe that this is also small enough. This partially happens because
in the settings used the support vectors are a significant part of the population
of data vectors, see figure 5.3.

In figure 5.4 the moving windows average (of length 100) of vector broadcasts
needed for each addition is plotted. Observe that it is pretty small for this
dataset.
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Figure 5.1: Number of iterations needed before the first update method converges after
each point addition. Zero means that monitoring decided that no update was needed,
while one means that the node where the violator arrived solved the local problem,
broadcasted the updated global vector and the algorithm converged. Number of sites is
10.
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Figure 5.2: Number of vector broadcasts (without counting broadcasting the coeffi-
cients) needed before the first update method converges after each addition. Zero means
that monitoring decided that no update was needed. Number of sites is 10.
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Figure 5.3: Number of support vector after each update. Zero means that monitoring
decided that no update was needed. Number of sites is 10.
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Figure 5.4: Moving window average of length 100 over the number of transmitted
vectors after each update. Zero means that monitoring decided that no update was
needed. Number of sites is 10.
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Chapter 6

Conclusion

Concluding, we proposed communication efficient methods for tracking the
minimum of any differentiable convex function f over the convex hull of a fully
dynamic distributed set of points. Our methods for the exact minimization
case have been extended to the approximate case, relaxing the constraints that
trigger the updates.

We also proposed a novel geometric method with only one communication
stage for updating our model, when an update is needed.

Finally, we showed that our methods can be applied to train L2 Support
Vector Machines, even in the case of an explicit feature space, making our
methods applicable for training distributed online kernelized L2 SVMs.
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