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Abstract

We consider the problem of nonnegative tensor factorization. Our aim is to derive

an efficient algorithm that is also suitable for parallel implementation. We adopt the

alternating optimization (AO) framework and solve each matrix nonnegative least-

squares problem via a Nesterov-type algorithm for strongly convex problems. We

describe two parallel implementations of the algorithm, with and without data repli-

cation. We test the efficiency of the algorithm in extensive numerical experiments and

measure the attained speedup in a parallel computing environment. It turns out that

the derived algorithm is a competitive candidate for the solution of very large-scale

dense nonnegative tensor factorization problems.
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Chapter 1

Introduction

1.1 Motivation and Related Work

Tensors are mathematical objects that have recently gained great popularity due to their

ability to model multiway data dependencies [1], [2], [3]. Tensor factorization (or decom-

position) into latent factors is very important for numerous tasks, such as feature selection,

dimensionality reduction, compression, data visualization and interpretation. Tensor fac-

torizations are usually computed as solutions of optimization problems [1], [2]. The Canon-

ical Decomposition or Canonical Polyadic Decomposition (CANDECOMP or CPD), also

known as Parallel Factor Analysis (PARAFAC), and the Tucker Decomposition are the

two most widely used tensor factorization models. In this work, we focus on nonnegative

PARAFAC, which, for simplicity, we call Nonnegative Tensor Factorization (NTF).

Alternating Optimization (AO), All-at-Once Optimization (AOO), and Multiplicative

Updates (MUs) are among the most commonly used techniques for NTF [2], [4]. Recent

work for constrained tensor factorization/completion includes, among others, [5], [6], [7]

and [8]. In [5], several NTF algorithms and a detailed convergence analysis have been

developed. A general framework for joint matrix/tensor factorization/completion has been

developed in [6]. In [7], an Alternating Direction Method of Multipliers (ADMM) algorithm

for NTF has been derived, and an architecture for its parallel implementation has been

outlined. However, the convergence properties of the algorithm in ill-conditioned cases

are not favorable, necessitating additional research towards their improvement. In [8],

the authors consider constrained matrix/tensor factorization/completion problems. They

adopt the AO framework as outer loop and use the ADMM for solving the inner constrained

optimization problem for one matrix factor conditioned on the rest. The ADMM offers

significant flexibility, due to its ability to efficiently handle a wide range of constraints.

In [9], two parallel algorithms for unconstrained tensor factorization/completion have

been developed and results concerning the speedup attained by their Message Passing

Interface (MPI) implementations on a multi-core system have been reported. Related

work on parallel algorithms for sparse tensor decomposition includes [10] and [11].
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1.2 Contribution

In this work, we focus on (dense) NTF problems. Our aim is to derive an efficient NTF

algorithm, suitable for parallel implementation. We adopt the AO framework and solve

each matrix nonnegative least-squares (MNLS) problem via a Nesterov-type (accelerated

gradient) algorithm for smooth and strongly convex problems [12]. We note that a Nesterov-

type algorithm for strictly convex MNLS problems has been used in [13] for Nonnegative

Matrix Factorization (NMF) and [14] for NTF. However, if the MNLS problem is strongly

and not, simply, strictly convex, then exploitation of strong convexity is critical for the

efficiency of the algorithm. We describe two parallel implementations of the algorithm, with

and without data replication. We test the efficiency of the proposed algorithm in extensive

numerical experiments and measure the speedup attained by its MPI implementations on

a multi-core environment. We conclude that the proposed algorithm is a strong candidate

for the solution of very large NTF problems.

1.3 Notation

Vectors, matrices, and tensors are denoted by small, capital, and calligraphic capital bold

letters, respectively; for example, x, X, and X . RI×J×K
+ denotes the set of (I × J × K)

real nonnegative tensors, while RI×J
+ denotes the set of (I × J) real nonnegative matrices.

‖ · ‖F denotes the Frobenius norm of the tensor or matrix argument, I denotes the identity

matrix of appropriate dimensions, and (A)+ denotes the projection of matrix A onto

the set of element-wise nonnegative matrices. The outer product of vectors a ∈ RI×1,

b ∈ RJ×1, and c ∈ RK×1 is the rank-one tensor a ◦ b ◦ c ∈ RI×J×K with elements

(a ◦ b ◦ c)(i, j, k) = a(i)b(j)c(k). The Khatri-Rao (columnwise Kronecker) product of

compatible matrices A and B is denoted as A � B and the Hadamard (elementwise)

product is denoted as A ~ B. Finally, inequality A � B means that matrix A − B is

positive semidefinite.
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1.4 Thesis Outline

The thesis is organized as follows :

• In Chapter 2, we briefly describe some tensor preliminaries that we are going to use.

Then, we provide an introduction to the CP decomposition problem.

• In Chapter 3, we present the Nesterov algorithm for set-constrained smooth and

strongly convex optimization problems and derive a Nesterov-type algorithm for the

MNLS problem.

• In Chapter 4, we use the algorithmic framework presentend in Chapter 3 in order to

propose an algorithm that can be used as building block for AO NTF and present

the results of the Nesterov-based AO NTF algorithm.

• In Chapter 5, we propose two new parallel implementations of the algorithm we

described in Chapter 4.

• Finally, in Chapter 6, we conclude our work and make suggestions for future work.



Chapter 2

Tensor Preliminaries

Mode 1

Mode 2

Mode 3

Figure 2.1: A 3 mode tensor

2.1 Tensors (Multi-way Arrays)

A tensor is a multi-way or multi-dimensional array. The order of a tensor is the number

of dimensions, also known as ways or modes. A tensor, as shown in [2], can be formally

defined as

Definition 2.1 (Tensor) Let I1, I2, . . . , IN ∈ N denote index upper bounds. A tensor

X ∈ RI1×I2×···×IN of order N is a N-way array, with elements X (i1, i2, . . . , in) for in ∈
{1, 2, . . . , In} and 1 ≤ n ≤ N.

Higher order tensors are generalizations of vectors and matrices. A vector is a first-order

tensor while a matrix is a second-order tensor. For example, a third-order tensor (or

three-way array) has three modes (or indices or dimensions) as shown in Figure 2.1.
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2.1.1 Norm of a Tensor

The Frobenius norm of a tensor X ∈ RI1×I2×···×IN is the square root of the sum of the

squares of all its elements, i.e.,

‖X‖F =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

[X (i1, i2, . . . , in)]2.

This is analogous to the matrix Frobenius norm, which is denoted ‖A‖F for a matrix A.

2.1.2 Rank-one Tensors

The outer product of two vectors creates a rank-one matrix. Similarly, in the tensor case,

we have the following definition from [3].

Definition 2.2 A tensor X ∈ RI1×I2×···×IN is rank one if it can be written as the outer

product of the N vectors a(1),a(2), . . . ,a(N), that is,

X = a(1) ◦ a(2) ◦ · · · ◦ a(N)

or each tensor element can be expressed as

X (i1, i2, . . . , in) = a(1)(i1) ◦ a(2)(i2) ◦ · · · ◦ a(N)(iN), for all 1 ≤ in ≤ In

Figure 2.2 illustrates X = a ◦ b ◦ c, a three-mode rank-one tensor.

=

a

b

c

Figure 2.2: Schematic of a rank-one third-order tensor.
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=

X
A

C

B

Figure 2.3: Schematic of a rank-F third-order tensor.

2.1.3 Rank of a Tensor

The rank of a matrix is the minimum number of rank one matrices needed to synthesize

the given matrix. Alternatively, rank(X) = F if and only if F is the smallest integer such

that X = ABT for some matrices A = [a1, . . . , aF ] and B = [b1, . . . ,bF ].

We now focus on a three way tensor of size I × J × K. Everything generalizes to

higher-order tensors. The rank of a tensor X is the minimum number of rank-one tensors

needed to produce X as their sum ([15]). Therefore a tensor of rank F can be written as

X = 〚A,B,C〛 =
F∑
f=1

af ◦ bf ◦ cf ,

and each tensor element can be written as

X (i, j, k) =
F∑
f=1

A(i, f)B(j, f)C(k, f),


i ∈ {1, . . . , I},

∀ j ∈ {1, . . . , J},

k ∈ {1, . . . , K},

were A = [a1, . . . , aF ], B = [b1, . . . ,bF ] and C = [c1, . . . , cF ]. In Figure 2.3, we show a

rank-F tensor.

2.1.4 Tensor Matricizations

Matricization, also known as unfolding or flattening, is the process of reordering the ele-

ments of an N -way array into a matrix ([3, pp. 5]). The mode-n matricization of a tensor

X ∈ RI1×I2×···×IN is denoted by X(n) ∈ RIn×I1I2...IN/In and arranges the mode-n slices to

create the resulting matrix. If we have given the capital letters A,B,C to our modes then
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we use the XA,XB,XC to denote the matricization. We can see an unfolding example in

Figure 2.4.

→

X

XA

X (:, :, 1) X (:, :, 2) X (:, :, I). . .

Figure 2.4: Mode one matricization of a third-order tensor.

2.2 Tensor rank and the CANDECOMP/PARAFAC

decomposition

The CP decomposition factorizes a tensor into a sum of rank-one tensors. For example,

given a third-order tensor X ∈ RI×J×K , we wish to write it as

X =
F∑
f=1

af ◦ bf ◦ cf , (2.1)

where F is a positive integer, af ∈ RI , bf ∈ RJ , and cf ∈ RK , for f = 1, . . . , F . The

factor matrices refer to the combination of the vectors from the rank-one components,

A = [a1 · · · aF ] ∈ RI×F
+ , B = [b1 · · · bF ] ∈ RJ×F

+ , and C = [c1 · · · cF ] ∈ RK×F
+ . Using

these definitions, (2.1) can be written in matricized form, given by [3], as

XA = A (C�B)T , XB = B (C�A)T , XC = C (B�A)T . (2.2)

We can formulate the CPD problem as an optimization problem

min
A,B,C

fX (A,B,C), (2.3)
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where fX is a function measuring the quality of the factorization. A common choice for

fX is

fX (A,B,C) =
1

2
‖X − 〚A,B,C〛‖2F , (2.4)

More about the CP problem and the special case of Nonnegative Tensor Factorization will

be presented in Chapter 4.



Chapter 3

Solving the Nonnegative

Least-Squares Problem

In this chapter, we present an optimization approach of the nonnegative least-squares

problem and its variations that we are going to use in this thesis. We solve the problem

with an optimal method called “Nesterov’s Accelerated Gradient Descent.” Firstly, we

start with some definitions that are going to prove useful and then we continue with the

vector case of the LS problem and then we move to the matrix case.

3.1 Strongly Convex and Lipschitz functions

In this section, we present some useful definitions that will help us better understand the

algorithms, their convergence properties, and the reason behind some decisions we are

going to make (See [16] and [17]).

Definition 3.1 [16, pp. 276] We say that f : X → R is µ-strongly convex if it satisfies

the following inequality for some µ > 0 and all x,y ∈ X :

f(x)− f(y) ≤ ∇f(x)T (x− y)− µ

2
‖x− y‖2. (3.1)

It is immediate to verify that a function f is µ-strongly convex if and only if f(x)− µ
2
‖x‖2

is convex. In particular, if f is twice differentiable, then the eigenvalues of the Hessian of

f have to be larger than µ:

µI � ∇2f(x).

For µ = 0 we recover the basic inequality characterizing convexity. We have established a

lower bound on the Hessian. We will now establish an upper bound.
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Definition 3.2 [16, pp.266] A continuously differentiable function is L-smooth if the gra-

dient ∇f L-Lipschitz, that is

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖2, ∀x,y ∈ X ⊆ Rn. (3.2)

In the same form with (3.1) we have

f(x)− f(y) ≤ ∇f(x)T (x− y) +
L

2
‖x− y‖2. (3.3)

For a twice differentiable function f , L-smoothness is equivalent to the largest eigenvalue

of the Hessian to be smaller or equal to L at any point, so we write

∇2f(x) � LI, ∀x ∈ X .

The ratio q =
L

µ
is thus an upper bound on the condition number of the Hessian matrix,

i.e. the ratio of its largest eigenvalue to its smallest eigenvalue.

3.2 Vector nonnegative least-squares

Let A ∈ Rm×n, x ∈ Rn, and b ∈ Rn and consider the nonnegative vector least-squares

problem

min
x≥0

f(x) =
1

2
‖Ax− b‖22, (3.4)

or, equivalently,

min
x≥0

f(x) =
1

2
xTATAx− bTAx +

1

2
bTb. (3.5)

The unconstrained problem arises in many fields and has many names, e.g., regression

analysis or least-squares approximation. Its analytical solution is x = A†b, where A† is

the pseudo-inverse of A. When linear inequality constraints are added, like nonnegativity

in our case, the problem is called constrained regression or constrained least-squares, and

there is no longer a simple analytical solution. So we have to recourse to iterative methods.

We know that the gradient of f is given by

∇f(x) = ATAx−ATb.

Most iterative gradient methods require the computation of the gradient in each iteration.



3.3. Optimal first-order methods for set-constrained L-smooth µ-strongly convex problems18

We look for efficient computation of the quantities that are most expensive. We note that

the quantities ATA and ATb may be computed once since they do not depend on xk.

Furthermore,

1. The term ATA ∈ Rn×n needs O(n2m) computational complexity and its storage is

O(n2) memory complexity. The term ATAxk has O(n2) computational complexity.

If n � m, then is seems beneficial to avoid the computation of ATA. Instead, we

may compute zk = AT (Axk), with O(mn) for tk = Axk and O(mn) for zk = AT tk.

If n � m, then it seems beneficial to compute once the term Z = ATA and then,

every time you need the gradient, compute zk = Zxk. This is the case that we shall

consider in this thesis.

2. It is beneficial to compute once the second part of the gradient, ATb ∈ Rn, and then

use it freely.

3.3 Optimal first-order methods for set-constrained

L-smooth µ-strongly convex problems

Let 0 < µ ≤ L <∞ and f : Rn → R be a smooth convex function, with Hessian ∇2f(x),

such that

µI � ∇2f(x) � LI, ∀x ∈ Rn. (3.6)

Then, we say that f is an L-smooth µ-strongly convex function, denoted as f ∈ S1,1
µ,L [12,

p. 63]. Let Q be a closed convex set. Our aim is to solve problem

min
x∈Q

f(x), (3.7)

within accuracy ε > 0, using only first-order, i.e., gradient, information. The accuracy of

the solution is defined as follows. Let f ∗ := min
x∈Q

f(x). A point x̄ ∈ Q solves problem (3.7)

within accuracy ε > 0 if f(x̄)−f ∗ ≤ ε. It has been shown in [12, Chapter 2] that the black-

box first-order oracle complexity of this class of problems is O
(√

L
µ

log 1
ε

)
. An algorithm

that achieves this complexity, and, thus, is first-order optimal, is given in Algorithm 1 (see

[12, pp. 80, 81, 90]). If the projection onto set Q is easy to compute, then this algorithm

is very efficient in practice. We note that, in general, constants µ and L are unknown and,

thus, should be estimated.
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Algorithm 1: Nesterov algorithm for set-constrained L-smooth and µ-strongly con-
vex optimization

Input: x0 ∈ Rn, µ, L. Set y0 = x0 and β =
√
L−√µ√
L+
√
µ
.

1 k-th iteration

2 xk+1 = ΠQ
(
yk − 1

L
∇f(yk)

)
3 yk+1 = xk+1 + β(xk+1 − xk).

We note that, if problem (3.7) is strictly but not strongly convex, the optimal algorithm

differs from that presented in Algorithm 1 and the corresponding complexity becomes

O
(

1√
ε

)
. This is the framework that has been adopted in [13] and [14]. However, if

relation (3.6) is true, then exploitation of strong convexity is crucial for the efficiency of

the algorithm.

In order to apply Algorithm 1 to problem 3.4 we must initialize the values Z = ATA

and w = ATb. We obtain µ and L from the highest and lowest eigenvalues of Z. An

example is shown in Figure 3.1. We can see that the convergence properties of the problem

are strongly depended on the condition number of the problem.

3.4 Nesterov-type algorithm for strongly convex

MNLS

In this subsection, we apply the approach of Nesterov to strongly convex Matrix non-

negative least-squares (MNLS) problems. We assume that X ∈ Rm×k, A ∈ Rm×n, and

B ∈ Rk×n and consider the problem

min
A≥0

f(A) :=
1

2
‖X−ABT‖2F . (3.8)

The gradient of f is given by

∇f(A) = −
(
X−ABT

)
B. (3.9)

If BTB is nonsingular, then problem (3.8) is L-smooth and µ-strongly convex, with L and

µ being, respectively, equal to the largest and smallest eigenvalue of BTB.
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Iterations

0 50 100 150 200 250 300 350

‖f
∗
−
f
‖2

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

10 4

q=50

q=100

q=500

Figure 3.1: The convergence of Nesterov algorithm, for the vector NNLS problem for
different conditions q = 50, 100, 500. The problem dimension is n = 1000.
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Algorithm 2: Nesterov-type algorithm for MNLS

Input: X ∈ Rm×k, B ∈ Rk×n, A0 ∈ Rm×n, tol > 0.
1 Compute W = −XB, Z = BTB.
2 Compute L = max(eig(Z)) µ = min(eig(Z)).

3 Set Y0 = A0, β =
√
L−√µ√
L+
√
µ
, k = 0.

4 while (1) do
5 ∇f(Yk) = W + AkZ;
6 if (max(|∇f(Yk) ~ Yk|) < tol) then
7 break;
8 else
9 Ak+1 =

[
Yk − 1

L
∇f(Yk)

]
+

;

10 Yk+1 = Ak+1 + β (Ak+1 −Ak);
11 k = k + 1;

12 return Ak.

Terminating condition If Λ denotes the Lagrange multiplier matrix associated with

the matrix element-wise nonnegativity constraints in (3.8), then the Karush-Kuhn-Tucker

(KKT) conditions for problem (3.8) are

∇f(A)−Λ = 0, A ≥ 0, Λ ≥ 0, Λ ~ A = 0. (3.10)

From (3.10), we obtain that∇f(A)~A = Λ~A = 0. This equality can be used in a termi-

nating condition. For example, we may terminate the algorithm if max {|∇f(A) ~ A|} <
tol, for a small real number tol > 0, where the operator max is applied element-wise.

A Nesterov-type algorithm for the solution of the MNLS problem (3.8) is given in Algo-

rithm 2, where [·]+ denotes projection onto the set of matrices with nonnegative elements

(see [18]).



Chapter 4

Alternating Optimization for

Nonnegative Tensor Factorization

4.1 Nonnegative tensor factorization

Let tensor X o ∈ RI×J×K
+ admit a factorization of the form

X o = 〚Ao,Bo,Co〛 =
F∑
f=1

aof ◦ bof ◦ cof , (4.1)

where Ao = [ao1 · · · aoF ] ∈ RI×F
+ , Bo = [bo1 · · · boF ] ∈ RJ×F

+ , and Co = [co1 · · · coF ] ∈ RK×F
+ .

We observe the noisy tensor X = X o + E , where E is the additive noise. Estimates of Ao,

Bo, and Co can be obtained by computing matrices A ∈ RI×F
+ , B ∈ RJ×F

+ , and C ∈ RK×F
+

that solve the optimization problem

min
A≥0,B≥0,C≥0

fX (A,B,C), (4.2)

where fX is a function measuring the quality of the factorization and the inequalities are

element-wise. A common choice for fX is

fX (A,B,C) =
1

2
‖X − 〚A,B,C〛‖2F . (4.3)

If Y = 〚A,B,C〛, then its matrix unfoldings, with respect to the first, second, and third

dimension, are given by (2.2)

YA = A (C�B)T , YB = B (C�A)T , YC = C (B�A)T .
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Thus, fX can be expressed as

fX (A,B,C) =
1

2

∥∥XA −A (C�B)T
∥∥2
F

=
1

2

∥∥XB −B (C�A)T
∥∥2
F

=
1

2

∥∥XC −C (B�A)T
∥∥2
F
.

(4.4)

These expressions form the basis for the AO NTF in the sense that, if we fix two matrix

factors, then we can update the third by solving an MNLS problem. For reasons related

with the conditioning of the MNLS problem, we propose to add a proximal term. More

specifically, if Ak, Bk, and Ck are the estimates of A, B, and C, respectively, after the

k-th AO iteration, then Ak+1 is given by

Ak+1 := argmin
A≥0

1

2

∥∥∥XA−A(Ck �Bk)
T
∥∥∥2
F

+
λ

2
‖A−Ak‖2F , (4.5)

where λ ≥ 0 determines the weight assigned to the proximal term. If (Ck �Bk) is a well-

conditioned matrix, then it is reasonable to put small weight on the proximal term and

compute Ak+1 that leads to a large decrease of the function fX (A,Bk,Ck). If, on the other

hand, (Ck �Bk) is an ill-conditioned matrix, then it is reasonable to put large weight on

the proximal term, leading to a better conditioned problem and easy computation of Ak+1

that improves the fit in fX (A,Bk,Ck) but is not very far from Ak. This is the strategy

we shall follow for the solution of problem (4.2) (see also [5], [19]).

The computational efficiency of the AO NTF heavily depends on the algorithm we use

for the solution of problem (4.5). In this work, we adopt the approach of Nesterov for the

solution of smooth and strongly convex problems. The derived algorithm is optimal under

the (worst-case) black-box first-order oracle framework [12, Chapter 2] and is very efficient

in practice. Furthermore, it leads to an AO NTF algorithm that is suitable for parallel

implementation.

4.2 Nesterov-type algorithm for MNLS with

proximal term

In this section, we present a variation of Algorithm 2 for the MNLS problem with prox-

imal term. We have already pointed out that strong convexity is very important for the
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Algorithm 3: Nesterov-type algorithm for MNLS with proximal term

Input: X ∈ Rm×k, B ∈ Rk×n, A∗ ∈ Rm×n, λ, tol > 0.
1 W = −XB− λA∗, Z = BTB + λI.
2 L′ = max(eig(BTB)), µ′ = min(eig(BTB))
3 L = L′ + λ, µ = µ′ + λ

4 Y0 = A∗, β =
√
L−√µ√
L+
√
µ
, k = 0

5 while (1) do
6 ∇f(Yk) = W + AkZ
7 if (max(|∇f(Yk) ~ Yk|) < tol) then
8 break
9 else

10 Ak+1 =
(
Yk − 1

L
∇f(Yk)

)
+

11 Yk+1 = Ak+1 + β (Ak+1 −Ak)
12 k = k + 1

13 return Ak.

algorithms efficiency. In order to avoid losing the strong convexity we use a proximal term.

This algorithm will be the basic building block of the AO NTF algorithm of the next

section.

4.2.1 Nesterov-type algorithm for MNLS with proximal term

In this subsection, we apply the approach of Nesterov to the MNLS problem with proximal

term. Let X ∈ Rm×k, A,A∗ ∈ Rm×n, B ∈ Rk×n, and consider the problem

min
A≥0

f(A) :=
1

2
‖X−ABT‖2F +

λ

2
‖A−A∗‖2F . (4.6)

As we mentioned in Section 4.1, the main reason we introduce the proximal term into the

cost function is the improvement of the conditioning of the MNLS problem (and guarantee

of strong convexity).

Problem (4.6) is L-smooth and µ-strongly convex, with L = L′ + λ and µ = µ′ + λ,

where L′ and µ′ are, respectively, the largest and smallest eigenvalue of BTB. We note that

the values of L and µ are necessary for the development of the Nesterov-type algorithm,

thus, computation of L′ and µ′ is imperative.1

1An alternative to the direct computation of µ and L is to estimate L using line-search techniques and
overcome the computation of µ using heuristic adaptive restart techniques [20]. However, in our case, this
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Interestingly, if we consider problem (4.6) under the framework of the AO NTF algo-

rithm, then we may use L′ and µ′ for adjusting the value of λ. More specifically, if BTB is

a well-conditioned matrix and our main interest lies in the computation of A that satisfies

approximate equality X ≈ ABT as accurately as possible, then we may set λ to a small

positive value, say, λ / 10−2, putting small weight on the proximal term. If, on the other

hand, BTB is an ill-conditioned matrix, then we may set λ ' 1, putting more weight on

the proximal term and improving the conditioning of the problem.

The gradient of f , at point A, is

∇f(A) = −
(
X−ABT

)
B + λ(A−A∗). (4.7)

If Λ denotes the Lagrange multiplier matrix associated with the matrix element-wise non-

negativity constraints in (4.6), then the Karush-Kuhn-Tucker (KKT) conditions for prob-

lem (4.6) are

∇f(A)−Λ = 0, A ≥ 0, Λ ≥ 0, Λ ~ A = 0. (4.8)

From (4.8), we obtain that ∇f(A)~A = Λ~A = 0. This equality can be used in a termi-

nating condition. For example, we may terminate the algorithm if max {|∇f(A) ~ A|} <
tol, for a small real number tol > 0, where the operator max is applied element-wise.

A Nesterov-type algorithm for the solution of the MNLS problem (4.6) is given in

Algorithm 3, where (·)+ denotes projection onto the set of matrices with nonnegative

elements. For notational convenience, we denote lines 2 to 13 of Algorithm 3 as

Aopt = Nesterov MNLS(W,Z,A∗, λ, tol).

We note that, in Algorithm 3, quantity λ is assumed to be an input. As we mentioned, an

alternative is to adjust λ based on the values of L′ and µ′.

Computational complexity of Algorithm 3

Quantities W and Z are computed once per algorithm call and cost, respectively, O(mkn)

and O(kn2) arithmetic operations. Quantities L and µ are also computed once and cost

at most O(n3) operations. ∇f(Yk), Ak, and Yk are updated in every iteration with cost

O(mn2), O(mn), and O(mn) arithmetic operations, respectively.

alternative is computationally demanding, especially for large-scale problems, and shall not be considered
in this work.
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Algorithm 4: Nesterov-based AO NTF

Input: X , A0 ≥ 0, B0 ≥ 0, C0 ≥ 0, λ, tol.
1 Set k = 0
2 while (terminating condition is FALSE) do
3 WA = −XA(Ck �Bk)− λAk, ZA = (Ck �Bk)

T (Ck �Bk) + λI
4 Ak+1 = Nesterov MNLS(WA,ZA,Ak, λ, tol)
5 WB = −XB(Ck �Ak+1)− λBk, ZB = (Ck �Ak+1)

T (Ck �Ak+1) + λI
6 Bk+1 = Nesterov MNLS(WB,ZB,Bk, λ, tol)
7 WC = −XC(Ak+1 �Bk+1)− λCk, ZC = (Ak+1 �Bk+1)

T (Ak+1 �Bk+1) + λI
8 Ck+1 = Nesterov MNLS(WC,ZC,Ck, λ, tol)
9 (Ak+1,Bk+1,Ck+1) = Normalize(Ak+1,Bk+1,Ck+1)

10 (Ak+1,Bk+1,Ck+1) = Accelerate(Ak+1,Ak,Bk+1,Bk,Ck+1,Ck, k)
11 k = k + 1

12 return Ak, Bk, Ck.

4.3 Nesterov-based AO NTF

In Algorithm 4, we present the Nesterov-based AO NTF. We start from point (A0, B0,C0)

and solve, in a circular manner, MNLS problems with proximal terms, based on the previous

iteration.2 In our algorithm, we incorporate two features borrowed from routine parafac of

the N-way toolbox [21], implemented by functions termed “Normalize” and “Accelerate.”

Function “Normalize” normalizes each column of Bk+1 and Ck+1 to unit Euclidean

norm, putting all the power on the respective columns of Ak+1.

Function “Accelerate” implements an acceleration mechanism which can be briefly de-

scribed as follows. At iteration k + 1 > k0, after the computation (and normalization) of

Ak+1, Bk+1, and Ck+1, we compute

Anew = Aold + sk+1(Ak+1 −Aold), (4.9)

where Aold is the (normalized) output of the k-th AO iteration, and sk+1 is a small positive

number; a simple choice for sk+1 is sk+1 = (k + 1)
1
n , where n is initialized as n = 3 and its

value may change as the algorithm progresses. In an analogous manner, we compute Bnew

and Cnew. If fX (Anew,Bnew,Cnew) ≤ fX (Ak+1,Bk+1,Ck+1), then the acceleration step is

successful, and we set Ak+1 = Anew, Bk+1 = Bnew, and Ck+1 = Cnew. If the acceleration

fails to decrease the cost function, then the acceleration step is ignored and we use Ak+1,

2Of course, we do not need to use separate variables WA, WB, and WC; we did this for the reader’s
convenience (the same applies to the Z’s).
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Bk+1, and Ck+1 as input to the next AO update. If the acceleration step fails for n0

iterations, then we set n = n + 1, thus, decreasing the exponent of the acceleration step.

Typical values of k0 and n0 are k0 = 5 and n0 = 3. This acceleration scheme has been

proven very useful, especially in ill-conditioned cases.

We can use various termination criteria for the AO NTF algorithm, based on either

the (relative) change of the cost function values and/or the latent factors, or the KKT

conditions. In our numerical experiments, we use a terminating criterion based on the

relative change of the latent factors, that is,

‖Mk+1 −Mk‖F
‖Mk‖F

< tolAO, for M = A,B,C, (4.10)

where tolAO is a small positive real number.

It has been shown in [19] that the AO NTF algorithm with proximal term (without ac-

celeration) falls under the block successive upper bound minimization (BSUM) framework,

which ensures convergence to a stationary point of problem (4.2). Our extensive numer-

ical experiments have shown that acceleration can significantly improve the convergence

speed in practice. We therefore include acceleration and aim to parallelize the accelerated

algorithm.

4.4 Numerical experiments

In this section, we compare the performance of a Matlab implementation of the proposed

algorithm with routines parafac of the N-way toolbox [21] and sdf nls of tensorlab [22].3

Our aim is to provide some general observations about the difficulty of the problems and

the behavior of the algorithms and not a strict ranking of the algorithms.4

The parafac routine essentially implements an AO NTF algorithm, where each MNLS

problem is solved via the function fastnnls, which is based on [23, §23.3]. It also incor-

porates the normalization and acceleration schemes briefly described in Section 4.3. The

sdf nls routine for NTF first applies a “squaring” transformation to the problem variables

[24] and then solves an unconstrained problem via an AOO-based Gauss-Newton method.

3We note that we omit the presentation of numerical results concerning the Nesterov-type algorithm
for strictly convex problems [14] because it needs a much larger number of iterations for the solution of
each MNLS problem than the Nesterov-type algorithm for strongly convex problems.

4For our experiments, we run Matlab 2014a on a MacBook Pro with a 2.5 GHz Intel Core i7 Intel
processor and 16 GB RAM.
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Table 4.1: Average, over 10 realizations, cputime and maximum relative factor error for
Nesterov-based AO NTF, sdf nls, and parafac, for true latent factors with i.i.d. entries

Size F σ2
N AO-Nesterov sdf nls parafac

cputime MRFE× 104 cputime MRFE× 104 cputime MRFE× 104

1000× 100× 100 15 10−2 20 80 56 79 35 85
10−4 21 12 52 13 53 8

50 10−2 49 89 220 91 191 91
10−4 49 15 227 23 234 9

500× 500× 100 15 10−2 56 37 135 37 68 41
10−4 55 9 137 10 100 4

50 10−2 103 41 341 44 259 44
10−4 105 10 341 18 344 4

300× 300× 300 15 10−2 57 29 82 27 70 35
10−4 56 10 78 7 100 3

50 10−2 100 31 176 32 219 34
10−4 106 10 186 14 279 4

Table 4.2: Average, over 10 realizations, cputime and maximum relative factor error for
Nesterov-based AO NTF, sdf nls, and parafac, for true latent factors with correlated
entries

Size F σ2
N Bottleneck AO-Nesterov sdf nls parafac

cputime MRFE× 104 cputime MRFE× 104 cputime MRFE× 104

300× 300× 300 50 10−4 A 106 73 189 79 340 69
A,B 168 125 268 188 412 129

A,B,C 207 254 412 859 933 156

In our experiments with synthetic data, we focus on the cputime and the Maximum,

over the three latent factors, Relative Factor Error (MRFE), which is computed via function

cpd err of tensorlab.

In all the experimental results we shall present in the sequel, the terminating conditions

are determined by the parameter values Tol = 10−5 for parafac, TolFun = 10−9 for

sdf nls, and tol = 10−2 and tolAO = 10−4, for the Nesterov-based AO NTF. These values

have been chosen such that the resulting average MRFEs are approximately the same for

all algorithms; of course, this is not always possible with one set of parameter values.

Parameter λ of our AO NTF algorithm is adjusted based on the condition number of
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Table 4.3: cputime and relative factorization error for Nesterov-based AO NTF, sdf nls,
and parafac, for real-world data

Size F AO-Nesterov sdf nls parafac

cputime RFE cputime RFE cputime RFE

1021× 1343× 33 10 143 0.2349 2600 0.2422 130 0.2361
20 244 0.1750 2330 0.2267 352 0.1744
30 512 0.1445 2414 0.2180 699 0.1441

matrix BTB of each MNLS problem, K′ := L′

µ′
. More specifically, we set

λ =


10−1.5, if K′ < 104,

10−1, if 104 < K′ < 106,

100, if 106 < K′.
(4.11)

All algorithms start from the same triple of random matrices, A0, B0, and C0, which have

independent and identically distributed (i.i.d.) elements, uniformly distributed in [0, 1].

4.4.1 True latent factors with i.i.d. elements

We start with synthetic data by assuming that the true latent factors consist of i.i.d.

elements, uniformly distributed in [0, 1]. The additive noise is zero-mean white Gaussian

with variance σ2
N .

In Table 4.1, we present the average, over 10 realizations, cputime and MRFE for

various tensor “shapes,” ranks F = 15, 50, and noise variances σ2
N = 10−2, 10−4. We

observe that the Nesterov-based AO NTF is very competitive in all cases, in the sense that

it converges fast, achieving very good accuracy in most of the cases.

4.4.2 True latent factors with correlated elements

It is well-known that, if some columns of (at least) one latent factor are almost collinear,

then convergence of the AO algorithm tends to be slow (these cases are known as “bot-

tlenecks”) [25]. In the sequel, we test the behavior of the three algorithms in cases with

one, two, and three bottlenecks. More specifically, we generate the true latent factors with

i.i.d. elements as before and we create a single “bottleneck” by modifying the last two

columns of one latent factor so that each become highly correlated with another column
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of the same latent factor (the correlation coefficient is larger that 0.98). In an analogous

way, we generate double and triple “bottlenecks.”

In Table 4.2, we focus on the case I = J = K = 300, F = 50, σ2
N = 10−4, and present

the average, over 10 realizations, cputime and MRFE. We observe that the problems

become more difficult as the number of bottlenecks increases, in the sense that both the

cputime and the MRFE increase as the number of bottlenecks increases. Again, the

Nesterov-based AO NTF algorithm is very efficient in all cases. Analogous observations

have been made in extensive numerical experiments with other tensor shapes and noise

levels.

4.4.3 Real-world data

In order to test the behavior of the aforementioned algorithms with real-world data, we use

the tensor with size 1021×1343×33 derived from the hyperspectral image “Souto Wood Pile”

[26]. Since, in this case, there are no true latent factors known, we focus on the cputime

and the Relative Factorization Error (RFE), defined as

RFE(A,B,C) :=
‖X − 〚A,B,C〛‖F

‖X‖F
. (4.12)

In Table 4.3, we present the average cputime and RFE for ranks F = 10, 20, 30. The

averages are with respect to the initial points (A0,B0,C0), which are random with i.i.d.

elements uniformly distributed in [0, 1], and are computed over 5 realizations. We observe

that the Nesterov-based AO NTF is very efficient in these cases as well.

4.4.4 Overmodeling

By “Overmodeling” we name the case where the true rank of the tensor is smaller than

the assumed rank F (which is a parameter of the algorithm). In this case, after some

iterations, the factors tent to have linear dependent columns. This makes the condition

number very big since the µ parameter is zero. Our algorithm, thanks to the proximal

term, is tolerant in such problems. In Figures 4.1 and 4.2, we see the inner iteration count

for a exact rank and overmodeling problem.
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Figure 4.1: The inner versus the outer iterations of Nesterov-based AO-NTF for tensor
size 300× 300× 300 with F = 10 exact rank.
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Figure 4.2: The inner versus the outer iterations of Nesterov-based AO-NTF for tensor
size 300× 300× 300 with F = 10 + 2 overmodeling.



Chapter 5

Parallel Nonnegative Tensor

Factorization

5.1 Parallel implementation of AO NTF

In the sequel, we consider the implementation of the Nesterov-based AO NTF algorithm on

a system with Np ≥ 1 processing elements, and describe two variations, with and without

data replication. For our exposition, we use a pseudo-language, which we hope is able to

highlight the basic algorithmic and communication requirements of the algorithms.

Data replication arises if we generate the tensor matricizations and, then, appropriately

distribute their parts among the processing elements. On the other hand, data replication

is avoided if we partition the tensor and appropriately distribute its parts among the

processing elements. From a memory usage perspective, it seems preferable to adopt the

latter approach. However, as we shall see in the sequel, in this case, the communication

cost is slightly increased.

We start by partitioning matrices Ak+1, Bk+1, and Ck+1 in block-rows as

Ak+1 =
[ (

A1
k+1

)T · · ·
(
A
Np

k+1

)T ]T
, (5.1)

with An
k+1 ∈ R

I
Np
×F

, for n = 1, . . . , Np, and analogous partitionings for Bk+1 and Ck+1.

In both variations we shall describe, the n-th processing element computes the n-th block

row of Ak+1, Bk+1, and Ck+1, for n = 1, . . . , Np.

We note that, in order to keep the presentation simple and focus on the most important

algorithmic aspects, in the Algorithms we shall present in the sequel, we do not include

the details of the parallel implementation of the acceleration scheme. However, we shall

briefly discuss this topic later.
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XA =

XB =

XC =

· · ·

· · ·

...

X (:, :,K)

X (:, :, 1)

X (:, :,K)

X (:, :,K)TX (:, :, 1)T

X (:, :, 1)

vec (X (:, :, 1))
T

vec (X (:, :,K))
T

Figure 5.1: Tensor X and its matricizations XA, XB, and XC, in terms of the frontal slices
X (:, :, k), for k = 1, . . . , K.

5.1.1 Data replication

We create the matrix unfoldings of tensor X , XA, XB, and XC, and partition each of

them into Np block-rows of the same size, that is,

XA =
[

(X1
A)

T · · ·
(
X
Np

A

)T ]T
, (5.2)

with Xn
A ∈ R

I
Np
×JK

, for n = 1, . . . , Np, and analogous partitionings for XB and XC. Then,

we allocate blocks Xn
A, Xn

B, and Xn
C to the n-th processing element, for n = 1, . . . , Np.

Under these assumptions, a parallel implementation with data replication of Algorithm

4 is given in Algorithm 5. The algorithm proceeds as follows. All processing elements

work in parallel. The n-th processing element uses its local data Xn
A, as well as the whole

matrices Bk and Ck, and computes the n-th block-row of matrix Ak+1, An
k+1. Then, each

processing element broadcasts its output to all other processing elements; this operation

can be implemented via the MPI statement MPI Allgather. At the end of this step,

all processing elements possess the whole new Ak+1. Then, we compute Bk+1 and Ck+1

with analogous computations, completing one iteration of the AO NTF algorithm. The

algorithm continues until convergence.

The communication requirements of this implementation consist of one Allgather op-

eration per MNLS problem, implying gathering of terms with IF , JF , and KF elements
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per outer iteration.

Algorithm 5: Parallel Nesterov-based AO NTF with data replication

Input: Processing element n, for n = 1, . . . , Np, knows Xn
A, Xn

B, Xn
C, A0, B0, C0,

λ, tol.
1 Set k = 0
2 while (terminating condition is FALSE) do
3 In parallel, for n = 1, . . . , Np, do
4 Wn

A = −Xn
A(Ck �Bk)− λAn

k , ZA = (Ck �Bk)
T (Ck �Bk) + λI

5 An
k+1 = Nesterov MNLS(Wn

A,ZA,A
n
k , λ, tol)

6 All gather(An
k+1)

7 In parallel, for n = 1, . . . , Np, do
8 Wn

B = −Xn
B(Ck �Ak+1)− λBn

k , ZB = (Ck �Ak+1)
T (Ck �Ak+1) + λI

9 Bn
k+1 = Nesterov MNLS(Wn

B,ZB,B
n
k , λ, tol)

10 All gather(Bn
k+1)

11 In parallel, for n = 1, . . . , Np, do
12 Wn

C = −Xn
C(Ak+1 �Bk+1)− λCn

k , ZC = (Ak+1 �Bk+1)
T (Ak+1 �Bk+1) + λI

13 Cn
k+1 = Nesterov MNLS(Wn

C,ZC,C
n
k , λ, tol)

14 All gather(Cn
k+1)

15 k = k + 1

16 return Ak, Bk, Ck.

5.1.2 No data replication

We partition tensor X and distribute its parts among the Np processing elements, avoid-

ing data replication (see, also, [9]). An interesting question is which partitioning of the

tensor leads to the most (memory- and/or computation- and/or communication-) efficient

implementation? In our experience, the answer to this question is not clear beforehand, as

it depends on the tensor size and the computing environment, among other factors.

In the sequel, we describe an implementation where we assume that the third tensor

dimension, K, is large enough1 and allocate to the n-th processing element K
Np

successive

frontal slices of tensor X , that is, X (:, :, (n− 1) ∗K/Np + 1 : n ∗K/Np), for n = 1, . . . , Np.

This implies that the n-th processing element contains K
Np

successive blocks of (block)

matrices XA and XB, and K
Np

successive rows of (block) matrix XC (see Figure 5.1).

Under these assumptions, a parallel implementation of Algorithm 4 with no data repli-

cation is given in Algorithm 6. We recall that the n-th processing element computes An
k+1,

1Of course, we can reorder the tensor modes if necessary to bring the longest dimension in the third
mode.
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Bn
k+1, and Cn

k+1, for n = 1, . . . , Np. Towards this end, it needs quantities Xn
A(Ck � Bk),

Xn
B(Ck �Ak+1), and Xn

C(Ak+1 �Bk+1). Based on the assumed data allocation, the n-th

processing element

1. computes partial sums related with XA(Ck �Bk) and XB(Ck �Ak+1). These par-

tial sums must be added and the results must be appropriately scattered to the

processing elements. These operations can be implemented via the MPI statement

MPI Reduce scatter;

2. computes the n-th block-row of XC(Ak+1 � Bk+1), that is, Xn
C(Ak+1 � Bk+1). In

this case, no further operation is necessary.

The communication cost per outer iteration consists of (i) three All gather operations,

one for each MNLS problem, which is exactly the same as in the first implementation, and

(ii) two Reduce scatter operations of matrices with IF and JF elements, respectively.

Algorithm 6: Parallel Nesterov-based AO NTF with no data replication

Input: Processing element n, for n = 1, . . . , Np, knows
X (:, :, (n− 1) ∗K/Np + 1 : n ∗K/Np), A0, B0, C0, λ, tol.

1 Set k = 0
2 while (terminating condition is FALSE) do
3 In parallel, for n = 1, . . . , Np, do
4 Compute n-th partial sum of WA = −XA(Ck �Bk)− λAk,

ZA = (Ck �Bk)
T (Ck �Bk) + λI

5 Reduce scatter(WA)
6 An

k+1 = Nesterov MNLS(Wn
A,ZA,A

n
k , λ, tol)

7 All gather(An
k+1)

8 In parallel, for n = 1, . . . , Np, do
9 Compute n-th partial sum of WB = −XB(Ck �Ak+1)− λBk,

ZB = (Ck �Ak+1)
T (Ck �Ak+1) + λI

10 Reduce scatter(WB)
11 Bn

k+1 = Nesterov MNLS(Wn
B,ZB,B

n
k , λ, tol)

12 All gather(Bn
k+1)

13 In parallel, for n = 1, . . . , Np, do
14 Wn

C = −Xn
C(Ak+1 �Bk+1)− λCn

k , ZC = (Ak+1 �Bk+1)
T (Ak+1 �Bk+1) + λI

15 Cn
k+1 = Nesterov MNLS(Wn

C,ZC,C
n
k , λ, tol)

16 All gather(Cn
k+1)

17 k = k + 1

18 return Ak, Bk, Ck.
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5.1.3 Acceleration scheme

In both parallel implementation variations we described, after the (k+ 1)-st AO iteration,

each processing element knows Ak+1, Bk+1, Ck+1, as well as Aold, Bold, and Cold, and

can compute Anew, Bnew, and Cnew (see (4.9)). The computation of the cost function fX

at points (Ak+1,Bk+1,Ck+1) and (Anew,Bnew,Cnew) is implemented collaboratively. More

specifically, each processing element computes its “local contribution” to the cost function,

and then, via an All reduce statement, the value of the cost function becomes known to all

processing elements. Based, on the values of the cost function at the two aforementioned

points, all processing elements make the same decision about the success or failure of the

acceleration step.

5.1.4 Experimental results - MPI

In this subsection, we present results obtained from the MPI programs implementing the

variations described in section 5.1.

The programs are executed on a CentOS system with four AMD Opteron(tm) Processor

6376 (in total, 64 cores at 2.3 Gz) and 500 GB RAM. For many matrix operations, we use

routines of the GSL library.

We assume a noiseless tensor X , whose true latent factors have i.i.d elements, uniformly

distributed in [0, 1]. For the variation with data replication, we construct the matriciza-

tions, XA, XB, and XC, and appropriately allocate their block-rows to the Np processing

elements. For the variation without data replication, we partition X , in terms of its frontal

slices, and appropriately allocate the parts to the Np processing elements. The timer that

counts the program execution duration starts counting after the data allocation to the

processing elements.

In Figure 5.2, we plot the achieved speedup for tensor with I = J = K = 1000, rank

F = 15, 30, 50, and parameters tol = 10−2, and tolAO = 10−4, for the variation with data

replication (denoted as DR) and the variation with no data replication (denoted as NDR),

respectively. We observe that

1. in all cases, we attain significant speedup;

2. for fixed rank, we attain slightly higher speedup with data replication; this happens

because the communication cost is lower in this case;
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3. for both variations, the speedup decreases for increasing rank, due to increased com-

munication cost.
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Figure 5.2: Speedup diagram of the Nesterov-based AO NTF algorithm, for rank F =
15, 30, 50, with data replication (DR) and with no data replication (NDR). The tensor size
is 1000× 1000× 1000 (8 Gb).



Chapter 6

Discussion and Future Work

6.1 Conclusion

We considered the NTF problem. We adopted the AO framework and solved each MNLS

problem via a Nesterov-type algorithm for strongly convex problems. In extensive numeri-

cal experiments, the derived algorithm was proven very efficient. We presented two parallel

implementations, with and without data replication, and measured the attained speedup

for large-scale dense NTF problems. We concluded that the proposed algorithm is a strong

alternative to state-of-the-art algorithms for the solution of very large-scale dense NTF

problems.

6.2 Future work

In recent years, NTF is one of the tools for analysing nonnegative multi-way data. We

suggest some future extensions in our work.

6.2.1 Higher-order tensors

We can extend and test our algorithms to higher order tensors (N > 3). The idea is

the same but some of the details may change. We must find efficient ways to do the

computations and avoid duplicated computations. The Parallel implementation may be

prove useful.

6.2.2 Tensor completion

One other of the immediate extensions of NTF is working with tensors with missing data.

We can test our algorithm in the case of missing elements. If the right factors are retrieved

then we can find the missing elements easily. The completion problem for a 3-order tensor
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can be formulated as follows

fW(A,B,C) :=
1

2
‖W ∗ (X − [A,B,C])‖2F

=
1

2
‖WA ∗ (XA −A(C�B)T )‖2F

(6.1)

where W is the the indicator tensor where

W(i, j, k) =

1, if X (i, j, k) exists,

0, if X (i, j, k) is missing.

6.2.3 Effective rank estimation

Another topic is the effective rank estimation of a tensor. We have observed that when we

apply the proposed algorithm on a tensor and the true rank is smaller than the one we use

in the algorithm, then the condition of the problem grows because of the correlation of the

columns of factors. If we can detect that then we can propose an algorithm that finds the

real rank of a tensor based on the data only.

Another way to detect the rank is to apply the decomposition with an l1 regularization

over the rank.

6.2.4 Online NTF

Todays datasets are often dynamically changing over time. Tracking the CP decomposition

for such dynamic tensors is a crucial but challenging task. We can extend our algorithm

to an online version like the recently published [27]. Let us consider the main idea of

online CP decomposition problem. A third-order tensor X ∈ RI×J×{told+tnew} is used as

an example, where X is expanded from Xold ∈ RI×J×{told} by appending a new chunk

of data Xnew ∈ RI×J×{tnew} in its last mode. The problem is to efficiently find the CP

decomposition of X by knowing the factors of Xold.
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