
	

Page	|	1	

	

TECHNICAL UNIVERSITY OF CRETE	

School of Electronic and Computer Engineering (ECE)	

	

	

Virtual Machine Deployment and Migration on

Heterogeneous Cloud Platforms	

	

by	

Dimitrios G. Kargatzis

	

Dissertation Thesis

Thesis Committee:

Professor Euripides Petrakis

Assistant Professor Vasilis Samoladas

Research Collaborator Dr. Stelios Sotiriadis
	

	

Chania, 73100, Greece	

	

 	

	

Page	|	2	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Page	|	3	

	

Abstract	

Cloud computing offers an innovative business model for organizations to adopt IT

services at a reduced cost with increased reliability and scalability. Adopting a cloud

solution means binding to a specific platform and vendor, using specific protocols,

standards and tools of the cloud and finally, running into a vendor lock-in situation.

The fear of vendor lock-in is often cited as a major impediment to cloud service

adoption. If the provider decides to raise its prices or change its security policies, the

customer may have to consider to move his workloads to another provider. In this

work we focus on the automatic migration requirements in Openstack systems and as

a use case we present a mechanism for Virtual Machine (VM) migration (or of their

running instances) between Openstack and KVM virtualization and another cloud

platform that runs a different Virtualization engine (Stratogen and VMware is our

case). The standards approach is to freeze the running instance of a VM and restart it

under the new environment. We examined the requirements for successful migration

and the conclusion is that migration is not always fully automatic as it might need lots

of parameter tuning depending on differences in the type of virtualization engines

used at source and target environments (a task that can be performed by a specialized

expert). To alleviate the requirement of human intervention in the loop, we suggest

using containers as the underlying virtualization technology. We propose a

mechanism that implements migration using containers in a few steps and we run a

series of experiments to show proof of concept. As a conclusion, the later technology

proved to be feasible and more promising although it is still not fully supported by

infrastructure (operating system) tools that allow migration independent of the state of

the underlying operating system kernel at the time of transfer.	

	

Page	|	4	

	

Περίληψη

Το υπολογιστικό Νέφος προσφέρει ένα καινοτόµο επιχειρηµατικό µοντέλο στους
οργανισµούς για να υιοθετήσουν υπηρεσίες πληροφορικής µειώνοντας το κόστος, µε
µεγαλύτερη αξιοπιστία και επεκτασιµότητα. Επιλέγοντας µία συγκεκριµένη λύση στο
υπολογιστικό Νέφος η επιχείρηση είναι άµεσα συνδεδεµένη µε τον συγκεκριµένο
πάροχο, τα πρωτόκολλα, τα πρότυπα και τα εργαλεία που χρησιµοποιεί µε
αποτέλεσµα να µη µπορεί να καταφύγει σε διαφορετική λύση στο µέλλον. Αυτός
είναι ο κυριότερος λόγος για τον οποίο οι επιχειρήσεις δεν υιοθετούν υπηρεσίες
υπολογιστικού Νέφους. Αν ο πάροχος αλλάξει την πολιτική ασφαλείας ή αυξήσει τις
τιµές για τους πόρους που παρέχει, η επιχείρηση πρέπει να έχει τη δυνατότητα να
µεταφέρει τις εργασίες της σε άλλον πάροχο. Σε αυτή τη δουλειά, εστιάσαµε στις
απαιτήσεις της αυτοµατοποιηµένης µεταφοράς των εργασιών µίας επιχείρησης από
έναν πάροχο σε κάποιον άλλον και συγκεκριµένα παρουσιάσαµε ένα µηχανισµό για
τη µεταφορά εικονικών µηχανών από περιβάλλον Openstack σε VMware (Stratogen).
Η βασική προσέγγιση είναι να πάρουµε ένα στιγµιότυπο µαις εικονικής µηχανής από
ένα περιβάλλον και να το µεταφέρουµε σε ένα άλλο περιβάλλον. Εξετάσαµε τις
απαιτήσεις για την επιτυχηµένη µεταφορά και το συµπέρασµα είναι ότι η διαδικασία
δεν είναι πλήρως αυτοµατοποιηµένη πάντα, απαιτώντας αρκετή παραµετροποίηση
ανάλογα µε τον τρόπο που γίνεται η εικονοποίηση στο κάθε περιβάλλον (µία
διαδικασία που απαιτεί εξειδικευµένες γνώσεις). Για να γίνει όσο το δυνατόν
περισσότερο αυτοµατοποιηµένη η διαδικασία, προτείνουµε τη χρήση ¨containers”
στους παρόχους. Σχεδιάζουµε ένα µηχανισµό που υλοποιεί µεταφορά µε τη χρήση
¨containers” σε λίγα µόνο βήµατα και τρέχουµε µία σειρά από πειράµατα για να
αποδείξουµε αυτή την παραδοχή. Συµπεραίνοντας, η κανούργια τεχνολογία φαίνεται
να ειναι πολλά υποσχόµενη αλλά ακόµα δεν υποστηρίζεται πλήρως από τα εργαλεία
που στοχεύουν στη µεταφορά ανεξάρτητα του λειτουργικού συστήµατος.

	

Page	|	5	

	

Contents
Chapter 1 – Introduction 	

1.1. Cloud Computing

1.2. Cloud Computing for Enterprises

1.3. Problem Definition

1.4. Proposed Solution

Chapter 2 – Background & Related Work 	

2.1. Cloud Computing Architecture

2.1.1. Service Models	

2.1.2. Virtualization	

2.1.3. Hypervisor 	

2.1.4. Image	

2.1.4.1. Disk Formats	

2.1.4.2. Container Format 	

2.1.5. Cloud Hosting	

2.1.6. Image Conversion Tools		
2.2. Containers in Cloud Computing

2.2.1. Container-based Virtualization 	

2.2.2. Docker	

2.2.3. Kubernetes	

2.3. Migration in Cloud Computing

2.3.1. Virtual Machine Migration

2.3.2. Process Migration using CRIU

2.3.3. Container-based Migration

2.4. Other Technologies

2.4.1. Representation State Transfer (REST)

2.4.2. Client URL Library (cURL)

2.4.3. Extensible Markup Language (XML)

2.4.4. JavaScript Object Notation (JSON)

	

Page	|	6	

	

Chapter 3 – Virtual Machine Migration	

3.1. Migration between Cloud Providers

3.1.1. Homogeneous Migration 	

3.1.2. Heterogeneous Migration 	

3.2. Migration Service

3.2.1 Service Model

3.3. Service Functionality

3.3.1. Source Cloud Procedure 	

3.3.2. Target Cloud Procedure 	

3.4. Service Model

3.5. User Interface

Chapter 4 – Implementation	

4.1. Implementing Homogeneous Migration

4.2. Implementing Heterogeneous Migration

4.3. Performance Analysis

Chapter 5 – Conclusions & Future Work 	

5.1. Conclusions

5.2. Future Work

5.2.1. Container-based migration	

References 	
	

	

	

	

	

	

	

	

Page	|	7	

	

	

	

	 	

	

Page	|	8	

	

Chapter 1	

Introduction	

1.1 Cloud Computing

Cloud computing is a type of Internet-based computing that provides shared computer

processing resources, services and data to computers and other devices on demand.

Nowadays, cloud technology is not only for scientific use but also for commercial

use. Companies or individuals may need large amounts of computing power or

storage for limited time. Possessing the hardware and software for their operation is

not the optimal solution in many cases in terms of capital investment or in terms of

human resources required for maintenance. In these cases, cloud computing offers a

pay-per-use solution thus minimizing investment in terms of capital and human

resources. Cloud technology can be also used in many other ways in order to provide

a suitable and affordable solution in many use scenarios by exploiting features such

as:	

Elasticity: The ability of cloud computing adjusts computing resources (i.e. CPU,

memory, bandwidth) to the actual (possibly varying in time) needs of an application

and apply a business model to take this into account. A consumer can be charged by

the resources he consumes and is able adjust the amount of resources according to his

needs. 	

On-demand self-service: A consumer can adjust his computing resources, without

human interaction. 	

Broad network access: The ability to use the cloud over the internet, any time and

from anywhere. The interaction between user and cloud is realized by means of Web

interfaces and APIs and other established technologies adopted by existing client

platforms like smartphones, laptops etc.	

Resource pooling: This enables serving multiple customers by dynamically

	

Page	|	9	

	

allocating the resources according to demand. Typically, customers allocate

computing power over the Web without caring about the ownership or physical

location of the resources. The offered services become more reliable due to the fact

that if a physical component fails, the system dynamically switches to another.	

Measurable services provision: A business model is applied and ensures clouds'

sustainability. A business model applies a pricing model which is realized by means

of additional tools for resource utilization and resource monitoring (e.g., utilization of

CPU power and memory).	

Quality of Service (QoS): Except reliability, which is an important aspect of Quality

of Service [1], other criteria must be met by a cloud provider ensuring the quality of

services to customers including, response time, throughput, packet loss frequency,

CPU load etc. Furthermore, Cloud systems are a valid choice for a wide scope of

applications not only for offering desirable computational characteristics but also for

its economics [2]:	

Pay per use: The consumer can pay for exactly the resources he/she uses, meaning

that he/she can scale up or down according to his needs without the risk of over or

under pricing.	

Cost Reduction: A consumer achieves cost reduction, not only with the pay per use

scheme but also, without having to maintain or upgrade the infrastructure or software

that he/she uses. There are no idle machines (virtual or not) due to the automatic

scaling of allocated resources according to processing load.	

Computing is ideal for a wide audience of consumers. For example, a small or startup

business can lease computing power and storage space without risking with the

procurement of expensive hardware, software or paying maintenance costs. Apart

from large or small business, there are also examples of individuals that can be also

benefited from cloud technology (e.g., by using cloud storage such as Dropbox1,

																																																													
1	https://www.dropbox.com/	

	

Page	|	10	

	

Google Drive2, iCloud3 etc.). The applications that are using cloud computing

technology are many and their number keeps growing.	

	

1.2 Cloud Computing for Enterprises

Cloud computing is becoming a game changer for Small-Medium Enterprises (SMEs)

by offering scalable infrastructure and capabilities available as services [3]. In an

enterprise that needs complex and expensive IT technology to support its business

processes, cloud provides an attractive alternative by which the compute resources are

made available at a fraction of the cost and without to get IT services without being

concerned with the details of how this is done.	

Adopting cloud computing can save money, but it is important to choose the right

cloud hosting service and the right cloud solution for your business needs.

Determining which provider is best for a business depends largely on what you the

business needs in terms of services, time of use, degree of required control over

hardware and software for application development or hosting. Additional factors that

may affect a decision are provider's current security accreditations in which case an

evaluations of the encryption options the company supports is mandatory prior to

taking a decision to select a provider.	

	

1.3 Problem Definition

Adopting a cloud solution means binding with the specific protocols, standards and

tools of the cloud provider (vendor lock-in). Enterprises may leave the opportunity

open to migrate to different clouds. If the provider decides to raise its prices or change

its security policies, the customer may consider to move his workloads to another

provider. However, the complexity of the problem depends on the way a cloud

																																																													
2	https://www.google.com/drive/	
3	https://www.icloud.com/	

	

Page	|	11	

	

provider tweaks its infrastructure (heterogeneity), making migration difficult and

expensive. Basic migration constraints between heterogeneous cloud providers are

architecture, hypervisors, container formats and disk formats. 	

	

1.4 Proposed Solution

There are many platforms and tools to migrate from a cloud provider to another with

the same infrastructure. In this work we focus on the problem of migrating workloads

between different cloud infrastructures. We propose an implementation that will

transfer and deploy an instance or a service from Openstack4 to VMware5. The

implementation consists of three modules, the first is responsible for downloading the

instance from source cloud provider, the second is responsible for solving migration

constraints and the last one is responsible for uploading and deploying the instance on

the target cloud provider. We focus on the automatic migration requirements in

Openstack systems and as a use case we present a mechanism for Virtual Machine

(VM) migration (or of their running instances) between Openstack and KVM

virtualization and another cloud platform that runs a different Virtualization engine

(Stratogen and VMWARE is our case). The standards approach is to freeze the

running instance of a VM and restart it under the new environment. We examined the

requirements for successful migration and the conclusion is that migration is not

always fully automatic as it might need lots of parameter tuning depending on

differences in the type of virtualization engines used at source and target

environments (a task that can be performed by a specialized expert). To alleviate the

requirement of human intervention in the loop, we suggest using containers as the

underlying virtualization technology. We propose a mechanism that implements

migration using containers in a few steps and we run a series of experiments to show

proof of concept. As a conclusion, the later technology proved to be feasible and more

promising although it is still not fully supported by infrastructure (operating system)

																																																													
4	https://www.openstack.org/	
5	https://www.vmware.com/	

	

Page	|	12	

	

tools that allow migration independent of the state of the underlying operating system

kernel at the time of transfer.	

Chapter 2	

Background and Related Work

2.1 Cloud Computing Architecture

Cloud computing architecture refers to the layers and components required for cloud

computing. Cloud architecture can be divided into 4 general layers that map to the

available business models: the hardware layer, the infrastructure layer, the platform

layer and the application layer (Figure 1). For research and developing purposes,

each layer can be divided into sub layers. Infrastructure is the lowest layer and is a

means of providing processing, storage, networks, and other fundamental computing

resources as standardized services. Cloud providers’ clients can deploy and run

operating systems and software for their underlying infrastructures. The platform

layer provides higher abstractions and services to develop, test, deploy, host, and

maintain applications in the same integrated development environment. This layer

provides a runtime environment and middleware to deploy applications using

programming languages and tools the cloud provider supports. The application layer

is the highest layer and features a complete application offered as a service [4]. 	

	

Page	|	13	

	

	

Figure 1 – Cloud Computing Layers	

2.1.1 Service Models

Cloud computing services are offered in three different service models:	

● Infrastructure as a Service (IaaS)	

The consumer leases hardware such as storage, computing power or network. The

consumer is responsible for installing and maintaining the operating system and other

software, but the responsibility of upgrading or maintaining the hardware resides to

the provider. Examples of storage clouds are Amazon S36, SQL Azure. 	

● Platform as a Service (PaaS)	

The cloud provider provides a software platform (with all basic tools and software

services such as Generic Enablers in the case of FIWARE-LAB7) for deploying their

applications. The consumer gets a functional virtual machine with an operating

system of his choice and he can use it for deploying services without worrying about

upgrades or maintenance. Examples of such services are Google App Engine8,

																																																													
6	https://aws.amazon.com/s3/	
7	https://account.lab.fiware.org/	
8	https://cloud.google.com/appengine/	

	

Page	|	14	

	

Windows Azure9 (Platform) and FIWARE-LAB.	

● Software as a Service (SaaS)	

This is the most usable cloud service. It allows a consumer to use services provided

by a cloud provider or even other consumers (e.g. Google Docs). The consumer has

no control over the service’s software or hardware and he can only use it thought

provided APIs or interfaces by the service provider. In addition, he is not required to

maintain or upgrade the hardware or the software. Examples are Google Docs,

Dropbox.

2.1.2 Virtualization

Virtualization provides a layer of abstraction between the hardware and the software.

Hardware or platform virtualization refers to the creation of a virtual machine (VM)

that acts like a real computer with an operating system. The main difference from the

tradition computer is that it allows definition of multiple VMs with different operating

systems over the same hardware. The host machine is the actual machine on which

the virtualization takes place and the guest machine is the virtual machine created by

hypervisor (Virtual Machine Manager).

A cloud provider typically has a specific amount of computing resources to share but

virtualization enables optimal sharing and use of resources among a large number of

consumers with diverse service demands (e.g. each one may use different operating

system). As a result of virtualization, clouds are able to efficiently exploit their

computing power. 	

	

2.1.3 Hypervisor

Hypervisor is the software responsible for creating the virtual environment where the

virtual machines operate and for dynamically allocating hardware resources to them.

Also known as Virtual Machine Manager (VMM), is the program that allows multiple
																																																													
9	https://azure.microsoft.com/	

	

Page	|	15	

	

operating systems to share a single hardware host [5]. Each virtual machine appears

to have the host’s processor, memory and other resources all for itself. However, it is

actually controlling the host processor and other resources, allocating what is needed

to each operating system and making sure that the guest machines (virtual machines)

can’t disrupt each other. It can be one of two types (Figure 2). This type of hypervisor

is referred to as type 1 hypervisor also known as native or bare metal hypervisor.

Typically, there is a “light” software operating directly on the system hardware to

control the hardware and to manage guest operating systems. Instead, type 2

hypervisors, need a full host operating system to run onto but this affects the overall

performance of the hypervisor.	

	

.	

Figure 2 – Hypervisor types	

	

The following are the main hypervisors of choice in use.	

● KVM	

KVM10 runs on most Linux distributions today and is perceived as the default

hypervisor to be used in all virtualization and cloud products offered by most
																																																													
10	https://www.linux-kvm.org/page/Main_Page	

	

Page	|	16	

	

Linux vendors, probably making it one of the most widely used hypervisors in the

world. KVM is an open source hypervisor.	

● XEN	

Xen11 an open source hypervisor, The project started in University of Cambridge,

then moved to Xensource, then acquired by Citrix, and finally to its current place

of residence – the Linux Foundation. Amazon Web Services (AWS)12 is the

biggest cloud provider that uses Xen today. Xen offers a number of advantages

over KVM such as the efficiency of paravirtualization (an efficient and

lightweight virtualization technique), which exceeds what is available in KVM

due to the closer access Xen has to the physical hardware, and the fact that it is a

more mature product. Xen is not actually part of the Linux Operating system,

whereas KVM is part of the Linux kernel.

● ESXI	

ESXI13 is a product of VMware. It is the feature-rich hypervisor that many enterprises

use is ESXI (vSphere). It supports any operating system, be it Linux or Windows,

with almost any kind of distribution that you could imagine covered by ESXi. 	

● Hyper-V	

Ηyper-V14 is a Microsoft product. However, there are free versions available but

with many limitations built-in. Hyper-V and Microsoft have always feud with

VMware. Over the past few years, they have managed to cut away from

VMware’s market share by providing a native hypervisor that does most of what

vSphere (a VMware product) can do and at a more attractive price. 	

2.1.4 Image

An image is a virtual hard disk file that is used as a template for a virtual machine

(VM). An image is a template because it doesn’t have the specific settings that a
																																																													
11	https://www.xenproject.org/	
12	https://aws.amazon.com/	
13	http://www.vmware.com/products/vsphere-hypervisor.html	
14	https://technet.microsoft.com/en-us/library/mt169373(v=ws.11).aspx	

	

Page	|	17	

	

configured virtual machine has, such as the computer name, network, or user account

settings. In simple words it is a software implementation of a machine (i.e. a

computer) that executes programs like a physical machine. Image may contain a boot

loader, an operating system and a root file system that is necessary for starting an

instance, data files and applications just like your personal computer. 	

	
Snapshot is a “point in time image” of a virtual guest operating system (VM). That

snapshot contains an image of the VMs disk, RAM, and devices at the time the

snapshot was taken [6]. With the snapshot, you can return the VM to that point in

time. All changes made after the snapshot was taken may be based on that snapshot

information (they are incremental changes). You can take snapshots of your VMs, no

matter what guest OS you have and the snapshot functionality can be used for features

like performing image level backups of the VMs without ever shutting them down.

Snapshots can be taken in just about every virtualization platform available.	

2.1.4.1 Disk Formats

The disk format of a virtual machine image is the format of the underlying disk

image.

RAW format has the advantage of being simple and easily exportable to all other

emulators [7]. It has no metadata associated and it is as fast as possible.	

ISO was created by the International Standards Organization’s 9660 standard. An ISO

archive is a CD/DVD image. Creating a package as an ISO image allows you to

install a pre-configured virtual machine image using a CD ROM drive [8].	

VHD (Virtual Hard Disk) is another file format which represents a virtual hard disk

drive (HDD). It may contain what is found on a physical HDD, such as disk

partitions and a file system, which in turn can contain files and folders. It is typically

used as the hard disk of a virtual machine [9]. It is supported by Hyper-V and Xen

	

Page	|	18	

	

hypervisors and was initially used by Microsoft Azure and thereafter by Rackspace15

and other cloud providers. 	

VMDK (Virtual Machine Disk) is one of the disk formats used in the Open

Virtualization Format (OVF) for virtual appliances. Initially developed

by VMware for its virtual appliance products like VMware Workstation16 or

VirtualBox17.

Qcow used by a virtual machine monitor (QEMU18). An image format like Qcow has

the largest overhead compared to raw images, when it needs grow, the image. This

allows for smaller file sizes than raw disk images, which allocate the whole image

space to a file, even if parts of it are empty. Qcow2 [10] is an updated version of the

Qcow format.	

2.1.4.2 Container Formats

There are several container formats for packaging and distributing a pre-configured

virtual machine image (virtual appliance) to run on a hypervisor. The container format

refers to whether the virtual machine image is in a file format that also contains

metadata about the actual virtual machine such as architecture and hypervisor type

[11].

Bare indicates there is no container or metadata envelope for the image. It is safe to

specify bare as the container format if you are unsure about image metadata.

Open Virtualization Format (OVF) describes an open, standard, secure, portable,

efficient and extensible format for the packaging and distribution of software to be

run on VMs. It is not tied up with any particular hypervisor. OVF consists of several

files placed in one directory and contains exactly one OVF descriptor (XML) which

describes metadata about virtual machine image, such as name, hardware

																																																													
15	https://www.rackspace.com/	
16	http://www.vmware.com/products/workstation.html	
17	https://www.virtualbox.org/	
18	http://www.qemu-project.org/	

	

Page	|	19	

	

requirements and references to the other files in the OVF package. May typically

contain one or more disk images and optionally certificate files. Furthermore, OVA is

a tar file with the OVF directory inside [12].	

Amazon Machine Image (AMI) provides the information required to launch an

instance. AMI19 includes a template for the root volume for the instance (an operating

system and applications) and a block device mapping that specifies the volumes to

attach to the instance when it's launched.

Docker container format isn’t a format for packaging and distributing virtual machine

images. Docker containers wrap a piece of software in a complete filesystem that

contains everything needed to run, code, runtime, system tools, system libraries [15].

It’s a different architectural approach that is not tied with any specific infrastructure. 	

2.1.5 Cloud Hosting

Openstack and VMware are the industry’s most popular full infrastructure suite that

deliver comprehensive virtualization, management, resource optimization, application

availability and operational automation capabilities is an integrated offering.

Some Cloud Hosting enterprises build their environment with Openstack and

VMware infrastructures to provide compute capacity in the cloud. Furthermore, there

are Cloud Hosting enterprises which build their own software for virtualization,

management and resource optimization to provide compute capacity in the cloud,

such as Amazon20, Microsoft and Google21.

	
The following figure (3) shows the standards of most popular Cloud Providers.

																																																													
19	http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html	
20	https://aws.amazon.com/ec2/	
21	https://cloud.google.com/	

	

Page	|	20	

	

 Figure 3 – Most popular Cloud Providers standards	

2.1.6 Image Conversion Tools

QEMU is a generic and open-source machine emulator (also called software

virtualizer, emulate the complete hardware in software) and virtualizer (also called

hardware virtualizer, both the host and guest share some of physical hardware). It also

provides a set of tools to create and convert disk images and supports many image file

formats that can be used with virtual machines as well as with any of the tools

(like qemu-img) [13], including	

● QCOW2 (KVM, Xen)	
● Raw	
● VDI (VirtualBox)	
● VHD (Hyper-V)	
● VMDK (VMware)	

	
OVF Tool is a command line utility that helps users to generate OVA packages (is a

part of OVF standard and contains all the files of a virtual machine) and convert

formats supported by vSphere22, vCloud23 Director, VMX hypervisors or OVF to any

format supported by the hypervisors above [8].

																																																													
22		http://www.vmware.com/products/vsphere.html	
23	http://www.vmware.com/products/vcloud-suite.html	

	

Page	|	21	

	

Supported File and Package Types for OVF Tool Input and Output	

● OVF	
● OVA	
● VMX	
● VMDK	
● ISO	

	

2.2 Containers in Cloud Computing	

Containers are an attempt to abstract applications from the underlying OS to enable

faster development and easier deployment. And unlike virtual machines, containers

execute directly on the host OS, sharing the kernel with other containers. Container

manager allocates resources to containers dynamically and they are able to operate

with the minimum amount of resources to perform the task they were designed for,

that means you can buy less hardware, build or rent less data center space.	

	

2.2.1 Container-based virtualization

Container-based virtualization, also called operating-system-level virtualization, is an

approach in which the virtualization layer runs as an application within the operating

system. In traditional hardware virtualization, a hypervisor (either software or bare

metal) can run one or more guest operating systems. Each operating system acts as if

it is in control of the entire machine. In container-based virtualization approach, the

operating system’s kernel runs on the hardware node with several isolated guest

containers. Unlike with hypervisors, there is no emulation layer, just a thin layer

controls resource access.	

The key point is that hypervisors are an abstraction at the hardware level and

containers are an abstraction at the OS kernel level. Anything you can do with

hardware, you can do with a hypervisor but some things are incredibly hard to do with

hardware, like memory hot unplug. With containers we actually virtualizing at the

level of the kernel, that means in a containerized system everything that runs shares

	

Page	|	22	

	

the same kernel. Resource management becomes easy because a single kernel is

managing the memory in the system.

The following figure (4) shows the architecture differences between hardware and

container-based virtualization.	

	

Figure 4 – Virtualization Types	

	

2.2.2 Docker

Is an open-source project that automates the deployment of applications inside

software containers. Docker24 kicked off the container trend by standardizing the

packaging and APIs for Linux containers, providing an additional layer of abstraction

and automation of operating-system-level virtualization on Linux. Docker uses the

resource isolation features of the Linux kernel to allow independent "containers" to

run within a single Linux instance, avoiding the overhead of starting and

maintaining virtual machines. Docker containers wrap a piece of software in a
																																																													
24		https://www.docker.com/	

	

Page	|	23	

	

complete filesystem that contains everything needed to run: code, runtime, system

tools, system libraries [15]. You may package your application into standardized unit

to run on all major Linux distributions, on Microsoft Windows and on top of any

infrastructure.	

2.2.3 Kubernetes

Is also an open-source system for automating deployment, scaling, and management

of containerized applications. It is a project created to manage a cluster of Linux

containers as a single system, managing and running Docker container across multiple

hosts, offering co-location of containers, service discovery, and replication control

[16]. It was started by Google and now is supported by RedHat, Microsoft, IBM, and

Docker.	

Kubernetes25 serves two purposes: It scales and starts containers across multiple

Docker hosts, balancing the containers across them. It also adds a higher level API to

define how containers are logically grouped, allowing defining pools of containers

and loading balancing.

2.3 Migration in Cloud Computing

The process of moving our workload between cloud providers is referred as migration

in cloud computing. There are three types of migration, virtual machine migration,

process migration and container-based migration. There are techniques and tools to

achieve each type of migration but also there are limitations for each one.

2.3.1 Virtual Machine Migration

The process of moving a running instance from one cloud providers to another called

virtual machine migration. In virtual machine migration, transferred data contains

everything an application would find in host, including the OS, middleware and

virtual versions of the devices. Because of virtual machine applications are depended

																																																													
25		https://kubernetes.io/	

	

Page	|	24	

	

on cloud provider specifications, virtual machine migration is difficult. Cloud

provider specifications may differ in hypervisor type, image format, container format,

tools and APIs. A virtual machine is tied up with cloud provider specifications and we

can’t migrate to a cloud provider with an alternate infrastructure. To achieve virtual

machine migration between heterogeneous cloud environments we have to use a

middleware to bridge the specification gaps between cloud providers.

2.3.2 Process Migration using CRIU

The process of moving a running application to a different host referred as process

migration. CRIU26 is a software tool for Linux operating system to freeze a running

application (or part of it) and checkpoint it as a collection of files on disk [17].

Specifically, this tool lets you store a state of a process and restore it as it was during

the time of freeze on the same or another host with the initial PID. CRIU separates the

application from the underlying OS and freeze all the processes which are associated

with this application. All information related to the process is stored in one or more

image files. These image files contain information, such as memory maps, pipes, file

descriptors, inter-process communication, etc.

The initial purpose of this tool was to avoid application data loss caused by system

failures. In this thesis, we examined how CRIU tool could achieve a successful

process migration from one host to another.

Process migration is a kernel level migration and requires Linux kernel v3.11 or

newer, with some specific options set. Depending on application functionality, some

kernel configurations are required. Assuming that our system supports all

dependencies of process migration we have to use CRIU command tool with various

parameters. Checkpoint process is not a straightforward process, differs depending on

the application we want to migrate and requires knowledge of operating system to use

the appropriate parameters.

Beyond kernel configuration and the appropriate checkpoint parameters, CRIU has
																																																													
26	https://criu.org/Main_Page	

	

Page	|	25	

	

some limitations. The basic limitation is that for a successful migration both the

source and destination system must have the same versions of libraries. Also restore

process fails if the PID is in use on destination system. Furthermore, checkpoint

process freezes the process and its process tree, we can’t checkpoint and restore a

process on its own [18].

2.3.3 Container-based Migration

Container-based migration is also a software level migration. In contrast virtual

machine applications, the host OS and some middleware are shared and transferred

data in container-based migration contains only the application and some system

libraries. Applications designed for containers are forced to be compatible in most

systems that deploy applications in containers. Docker uses CRIU tool to checkpoint

and restore a container [19].

Blue outline in figure (5) below shows the data that transferred during virtual machine

and container-based migration process.

	

Page	|	26	

	

Figure 5 – Transferred data during virtual machine and container-based migration

respectively

 	

2.4 Other Technologies

2.4.1 Representation State Transfer (REST)

REST is an architectural style based on a set of principles that describe how data

objects or resources can be defined and addressed on the internet. Clients and servers

are separated from REST operations and communicate by transferring representations

of resources through an interface, which improve client code portability. REST’s

decoupled architecture and light weight communications between server and client,

make REST a popular building style for cloud-based APIs. REST runs over Hypertext

Transfer Protocol (HTTP) and has constraints such as stateless existence, cache and

layered system leverage.

2.4.2 Client URL Library (cURL)

cURL is a library for transferring data using various protocols. Users use this library

in order to simplify the development of RESTful web services in PHP. We used this

library to make HTTP requests to achieve client-server communication.	

2.4.3 Extensible Markup Language (XML)

In computing, XML is a markup language that defines a set of rules for encoding

documents in a format that is both human-readable and machine-readable. The design

goals of XML empathize simplicity, generality and usability across the internet. It is

textual data format and it is widely used for the presentation of arbitrary data

structures such as those used in web services. 	

2.4.4 JavaScript Object Notation (JSON)

An alternative to XML, Json is also a human – readable data format that is mainly

	

Page	|	27	

	

used for communication between client – server or between web applications. Json is

a language independent data format which originated from JavaScript and is

consisting of attribute – value pairs same as JavaScript objects. Json is easy to read

and write also it is shorter than XML because it does not require end tags which are

some advantages over XML.

Chapter 3	

Virtual Machine Migration	

3.1 Migration between Cloud Providers	

Cloud to cloud (C2C) migration is the process of moving physical or virtual machines

along with their associated configuration, operating systems, applications and storage

from a cloud environment to another. In any case, successful migration to another

environment may require the use of middleware, such as a cloud integration tool. 	

3.1.1 Homogeneous Migration	

Virtual machine migration from a node / zone to another in any cloud environment or

virtual machine migration between two cloud environments with the same

architecture is a straightforward process. There are no gaps because of the use of the

same protocols and standards. We have to move a running instance between clouds

or nodes in a cloud while maintaining its hardware, software and network

configurations [20]. 	

3.1.2 Heterogeneous Migration	

Heterogeneous migration process is more complicated. In this case, we have to move

an instance from a cloud environment to another with different architecture, protocols

and standards. So have to use a middleware to bridge the gaps between these

environments. The migration restrictions between heterogeneous cloud platforms

may are on hypervisor, image, virtual machine description (meta-data) they use.

	

Page	|	28	

	

3.2 Migration Service

This section presents our approach to virtual machine migration between

homogeneous but also heterogeneous cloud environments. Our service utilizes the

Openstack’s and VMware’s REST API to allow users to perform migration.

3.2.1 Service Model

The service is designed as a modular cloud PaaS in order to allow easy deployment

using API interfaces. The user uses a web interface to provide required information

which will be used by the service for a successful migration. The migration service is

responsible for transferring a running instance from one cloud environment to

another. In heterogeneous case, the service is also responsible for configuring the

instance to be portable on target cloud environment.

The model composed by the user that interacts with the service through the front-end

interface (using GUI), the service that performs VM migration include all needed

actions and the back-end system that includes the source and target cloud as

demonstrated in Figure 6.

	

Figure 6 – Service Model	

	

Page	|	29	

	

The following list details the specification of each component.

- The UI allows user to interact with the service to provide information and achieve a

successful migration. The user, through the GUI, uses the migration tool in order to

transfer an instance among the target cloud.

- The migration tool composed by two modules, one for the download procedure from

source cloud and one for upload procedure for target cloud. The migration tool guides

the user to perform an instance migration between two homogenous or heterogeneous

clouds in a few steps. On each step, the user provides required information and the

migration tool performs the corresponding action on the cloud.

- The image conversion tool is responsible to convert the downloaded image to a

portable format for the upload procedure on target cloud.

- The instance configuration tool performs an action on target cloud to initiate the

virtual machine. Specifically, the tool uploads a XML file (OVF descriptor) on target

cloud with initial instance details.

- The back-end of the service offers all the functionality of the service. The back-end

stores temporarily the image until to be portable by the image conversion tool and

uploaded on target cloud.

	

3.3 Service Functionality	

The service guides the user to migrate virtual machines or services with a few easy

steps. Currently, it offers this functionality for Fi-Lab, Intellicloud27 and Stratogen28

environments. Fi-Lab and Intellicloud built their environment based on Openstack

infrastructure and Stratogen built its environment based on VMware infrastructure. At

the same time, the service performs automated actions to bridge the gaps between

these infrastructures. 	
																																																													
27		http://cloud.intellicloud.tuc.gr/	
28	http://www.stratogen.net/	

	

Page	|	30	

	

With this service anyone can migrate an existing virtual machine from Intellicloud to

Fi-Lab and vice versa or migrate an existing virtual machine from one of these

Openstack environments to Stratogen. It does not require any special knowledge other

than the basic process to launch a new instance from Openstack dashboard or

VMware dashboard. User Interface guides the user with the steps below to achieve the

migration, we present one use case scenario for homogeneous cloud environments

(Intellicloud and Fi-Lab) and one for heterogeneous cloud environments (Fi-Lab and

Stratogen).	

3.3.1 Homogeneous Migration

1. Authentication: User provides his username, password and tenant name to be

authenticated on Intellicloud. Authenticating generates a unique token for every user

for which is being in every action user performs on the source cloud. 	

2. Get Instances: The service retrieves all existing instances registered to this user.	

3. Get Images: The service retrieves a list of public images and images registered to

this user including snapshots.

4. Create Snapshot: User selects an existing running instance for migration.

Snapshot makes a copy of this instance, also contains all the hardware configuration

of the instance.	

5. Download Image: User selects an existing public image or a snapshot for

downloading.

6. Authentication: User provides his username, password and tenant name as the

source cloud authentication to be authenticated on Fi-Lab cloud.	

7. Select Fi-Lab Region: User selects the region which wants to transfer his virtual

machine.	

8. Upload: The user provides provides the name of the new image and the service

performs actions automatically to upload the image or snapshot which user

	

Page	|	31	

	

downloaded earlier.

- It creates a new blank image with the name provided by the user.

- It uploads the data of downloaded image to the blank image which created

above and the initial instance is read to deploy on Fi-Lab cloud. 	

3.3.2 Heterogeneous Migration	

1. Authentication: User provides his username, password and tenant name to be

authenticated on Fi-Lab cloud. Authenticating generates a unique token for every user

for which is being in every action user performs on the source cloud. 	

2. Select Fi-Lab Region: User selects the region which has his workload. 	

3. Get Instances: The service retrieves all existing instances registered to this user.	

4. Get Images: The service retrieves a list of public images and images registered to

this user including snapshots.	

5. Create Snapshot: User selects an existing running instance for migration.

Snapshot makes a copy of this instance, also contains all the hardware configuration

of the instance.	

6. Download Image: User selects an existing public image or a snapshot for

downloading.

7. Authentication: User provides his username, password to be authenticated on

Stratogen cloud. Authenticating generates a unique token for every user for which is

being in every action user performs on the source cloud.	

8. Create vApp: User creates a new vApp which is necessary to deploy a new virtual

machine.	

9. Upload OVF descriptor: VMware vApps operate on the Open Virtualization

Format (OVF) and also are exported in OVF format. User uploads the OVF descriptor

to initiate this vApp template which contains virtual machine’s meta-data such as

	

Page	|	32	

	

hardware configuration and virtual machine image size.	

10. Upload Image: If the previous step is done successfully user uploads the

reference file (VMDK image) and user’s virtual machine is ready to deploy on

Stratogen source cloud.

- The service performs automatically the conversion of downloaded image to

VMDK format.

	

3.5 User Interface	

	

Figure 7 – Fi-Lab Authentication

	

	

Page	|	33	

	

	

Figure 8 – List of images	

	

Figure 9 – Stratogen Authentication	

	

Page	|	34	

	

 Figure 10 – List of vApp templates	

 Figure 11 – Upload OVF descriptor	

	

Page	|	35	

	

 Figure 12 – Upload File reference	

	

	

	

	

Chapter 4	

Implementation	

The abstract flow of process of the service is that it interacts with source and target

environments through XML or JSON API. It uses information in order to perform

actions on two clouds by communicating with the cloud’s REST API. 	

4.1 Implementing Homogeneous Migration	

The communication with the clouds is done by performing calls on Openstack APIs.

STEP 1. Intellicloud Authentication

	

Page	|	36	

	

REQUEST	TYPE	 POST	

URL	 http://cloud.lab.fi-ware.org:4730/v2.0/tokens	

HEADERS	 {“Content-Type”:		“application/json”}	

	

BODY	

{	
				"auth":	{	
								"tenantName":	"user	cloud",	
								"passwordCredentials":	{	
												"username":	"user@mail.com",	
												"password":	"********"			}	
				}	
}	

	

Description: The service prepares and performs the call for authentication by the

Intellicloud. The Openstack identity service generates and returns a token that

represents the authenticated identity of a user and grants authorization on a specific

project or domain.

STEP 2. Retrieve the list of instances

REQUEST	TYPE	 GET	

URL	 http://147.27.50.1:8774/v2/$tenant-id/servers	

HEADERS	 {“Content-Type”:		“application/json”,	“X-Auth-Token”:	“$token”}	

	

Description: The service retrieves and displays the list of instances owned by the

user.

STEP 3. Create Snapshot

	

Page	|	37	

	

REQUEST	TYPE	 POST	

URL	 http://147.27.50.1:8774/v2/$tenant_id/servers/$server_id	/action	

HEADERS	 {“Content-Type”:		“application/json”,	“X-Auth-Token”:	“$token”}	

BODY	
{	
		"createImage":		
								{"name":	"Snapshot",	"metadata":	{}}	
}	

	

Description: The user selects one instance (running or idle) which he wants to

migrate and creates a snapshot of.

STEP 4. Retrieve the list of images

REQUEST	TYPE	 GET	

URL	 http://147.27.50.1:8774/v2/$tenant_id/images	

HEADERS	 {“Content-Type”:		“application/json”,	“X-Auth-Token”:	“$token”}	

	

Description: The service retrieves and displays the list of images. This list contains

public images that published either from other users or from cloud environment and

user’s private images.

STEP 5. Download Snapshot

REQUEST	TYPE	 GET	

URL	 http://147.27.50.1:9292/v2/images/$image_id/file	

	

Page	|	38	

	

HEADERS	 {“Content-Type”:		“application/json”,	“X-Auth-Token”:	“$token”}	

	

Description: The user selects an image which he wants to download, in our case the

snapshot that created earlier.

STEP 6. Fi-Lab Authentication

REQUEST	TYPE	 POST	

URL	 http://cloud.lab.fi-ware.org:4730/v2.0/tokens	

HEADERS	 {“Content-Type”:		“application/json”}	

	

BODY	

{	
				"auth":	{	
								"tenantName":	"user	cloud",	
								"passwordCredentials":	{	
												"username":	"user@mail.com",	
												"password":	"********"			}	
				}	
}	

	

Description: The service prepares and performs the call for authentication by the

cloud. The Openstack identity service generates and returns a token that represents the

authenticated identity of a user and grants authorization on a specific project or

domain.

STEP 7. Create new Image

REQUEST	TYPE	 POST	

URL	 http://	147.27.60.1:9292/v2/images	

	

Page	|	39	

	

HEADERS	 {“Content-Type”:		“application/json”,	“X-Auth-Token”:	“$token”}	

	

BODY	

{	
	 "name":	"$name	",		
	 "container_format":	"bare",	
	 "disk_format":	"qcow2",	
	 "visibility":	"public"	
}	

	

Description: The cloud creates a new image with the properties we include in the

request body and returns the image id.

STEP 8. Upload the image reference file

REQUEST	TYPE	 PUT	

URL	 http://147.27.60.1:9292/v2/images/$image_id/file	

HEADERS	 {“Accept:application/octet-stream”,	“X-Auth-Token”:	“$token”}	

	

Description: The service uses the image id that returned in the previous step to

upload the reference file for the snapshot.

4.2 Implementing Heterogeneous Migration	

In this case the procedure is different. The communication with the clouds is done by

performing calls on Openstack APIs, furthermore, the service has to perform actions

such as image conversion and instance details configuration.

STEP 1. Fi-Lab Authentication

REQUEST	TYPE	 POST	

	

Page	|	40	

	

URL	 http://cloud.lab.fi-ware.org:4730/v2.0/tokens	

HEADERS	 {“Content-Type”:		“application/json”}	

	

BODY	

{	
				"auth":	{	
								"tenantName":	"user	cloud",	
								"passwordCredentials":	{	
												"username":	"user@mail.com",	
												"password":	"********"			}	
				}	
}	

	

Description: The service prepares and performs the call for authentication by Fi-Lab

cloud. The Openstack identity service generates and returns a token that represents the

authenticated identity of a user and grants authorization on a specific project or

domain.

STEP 2. Retrieve the list of instances

REQUEST	TYPE	 GET	

URL	 http://147.27.60.1:8774/v2/$tenant-id/servers	

HEADERS	 {“Content-Type”:		“application/json”,	“X-Auth-Token”:	“$token”}	

	

Description: The service retrieves and displays the list of instances owned by the user

on a specific region. Specifically, the first part of URL (147.27.60.1) specifies the

region which the service performs requests.

STEP 3. Create Snapshot

	

Page	|	41	

	

REQUEST	TYPE	 POST	

URL	 http://147.27.60.1:8774/v2/$tenant_id/servers/$server_id	/action	

HEADERS	 {“Content-Type”:		“application/json”,	“X-Auth-Token”:	“$token”}	

BODY	
{	
		"createImage":		
								{"name":	"Snapshot",	"metadata":	{}}	
}	

	

Description: The user selects one instance (running or idle) which he wants to

migrate and creates a snapshot of.

STEP 4. Retrieve the list of images

REQUEST	TYPE	 GET	

URL	 http://147.27.60.1:8774/v2/$tenant_id/images	

HEADERS	 {“Content-Type”:		“application/json”,	“X-Auth-Token”:	“$token”}	

	

Description: The service retrieves and displays the list of images. This list contains

public images that published either from other users or from cloud environment and

user’s private images.

STEP 5. Download Snapshot

REQUEST	TYPE	 GET	

URL	 http://147.27.60.1:9292/v2/images/$image_id/file	

	

Page	|	42	

	

HEADERS	 {“Content-Type”:		“application/json”,	“X-Auth-Token”:	“$token”}	

	

Description: The user selects an image which he wants to download, in our case the

snapshot that created earlier.

STEP 6. Stratogen Authentication

REQUEST	TYPE	 POST	

URL	 http://mycloud.statogen.net/api/sessions	

HEADERS	 {“Accept”:		“application/*+xml;version=5.1”}	

BASIC		AUTH	
			HEADERS	

	
{username@organization_name:password}	
	

	

Description: The first thing user needs to do is login and get the authentication token.

The service needs to use this authentication token as a header in all subsequent API

calls.

STEP 7. Create a new vApp

REQUEST	TYPE	 GET	

URL	 http://mycloud.statogen.net/api/org/$organization_id	

HEADERS	 {“Accept”:“application/*+xml;version=5.1”,“x-vcloud-authorization”:	

“$token”	}	

	

Page	|	43	

	

	

Description: The service explodes the organization id from the authentication

response body and makes a get request to the cloud with this organization id as URL

parameter. The response body provides links to various attributes and actions to do

with the organization.

 	

REQUEST	TYPE	 POST	

URL	 http://mycloud.statogen.net/api/$new_vdc_link	

HEADERS	 {“Accept”:“application/*+xml;version=5.1”,”Content-Type”:	

“application/vnd.vmware.vcloud.uploadVAppTemplateParams+xml”,“x-

vcloud-authorization”:	“$token”	}	

	

BODY	

<?xml	version="1.0"	encoding="UTF-8"?>	
	 <UploadVAppTemplateParams	 	
	 name="$vapp_name"	 	
	 xmlns="http://www.vmware.com/vcloud/v1.5"	 	
	 xmlns:ovf="http://schemas.dmtf.org/ovf/envelope/1">	 	
	 <Description>Ubuntu	vApp	Template</Description>	 	
	 </UploadVAppTemplateParams>	

	

Description: The service explodes from a previous response body the link for the

new vApp and makes a POST request to initiate this new vApp with some properties.

STEP 8. Upload OVF Descriptor

REQUEST	TYPE	 PUT	

URL	 http://mycloud.statogen.net/api/$ovf_link	

	

Page	|	44	

	

HEADERS	 {“Accept”:“application/*+xml;version=5.1”,“x-vcloud-authorization”:	

“$token”	}	

	

Description: The response body of vApp creation request contains the link for the

OVF descriptor. The OVF descriptor is a XML file which contains initial instance

properties such as virtual disk name and size, virtual disk information (capacity),

virtual machine information (name, OS type) and virtual hardware requirements

(resources, controllers, network).

STEP 9. Convert Image

$ qemu-img convert -f qcow2 -O vmdk image.qcow2 image.vmdk

Description: The service executes the above command to convert the downloaded
image to a portable format for the target cloud.	

STEP 10. Upload Reference File

REQUEST	TYPE	 PUT	

URL	 http://mycloud.statogen.net/api/$file_link	

HEADERS	 {“Accept”:“application/*+xml;version=5.1”,“x-vcloud-authorization”:	

“$token”	}	

	

Description: The response body of vApp creation request also contains the link for

the reference file. If the upload of OVF descriptor succeeded, user needs to upload the

reference file and the snapshot is ready to deploy on Stratogen cloud.

4.2 Performance Analysis

	

Page	|	45	

	

The migration service implemented its functionality in homogeneous environments

but also in heterogeneous environments as shown in section above. Specifically,

homogeneous migration implemented its functionality in Openstack environments

with Intellicloud of the Technical University of Crete29 as source cloud and Fi-Lab as

target cloud and heterogeneous migration implemented its functionality in Fi-Lab as

source cloud and Stratogen as target cloud. Stratogen infrastructure is based on

VMware platform. The performance evaluation of the service involves two

experimental use cases that demonstrate the time required for each instance migration

procedures, homogeneous and heterogeneous.

For homogeneous procedure, the assumption is that the user performs a migration of

an instance from Intellicloud to Fi-Lab system. Figure 13 demonstrates the variation

among the required calls. We used an image of Centos 7 (958.4 MB) and an image of

Ubuntu 12.04LTS-64 (243.6 MB) to deploy two small flavors virtual machines.

																																																													
29	http://www.tuc.gr/index.php?id=5397	

	

Page	|	46	

	

Figure 13 – Homogeneous migration performance

For heterogeneous procedure, the assumption is that the user performs a migration of

an instance from Fi-Lab to Stratogen system. Figure 14 demonstrates the variation

among the required calls. We used an image of Centos 7 (896.6 MB) and an image of

Ubuntu 12.04 (458.8 MB) to deploy two small flavors virtual machines.

	

Page	|	47	

	

Figure 14 – Heterogeneous migration performance

We observed that the size of the snapshot is bigger than the size of the initial image.

Specifically, in Fi-Lab the initial size of Centos 7 image is 896.6 MB and the size of

the snapshot is 1.9 GB and the initial size of Ubuntu 12.04 image is 458.8 MB and the

size of the snapshot is 1.3 GB.

Finally, it should be mentioned that the service executes most of the APIs calls related

with configurations but the time required for downloading and uploading increases

significantly the total time of migration, actions that depend to the image size and on

the bandwidth speed.

Chapter 5	

	

Page	|	48	

	

Conclusions & Future Work	

5.1 Conclusions

Looking back, the problem we tried to address was the “vendor lockin”. In this thesis

we present an implementation of virtual machine migration with two case scenarios

and the problem still exists because there are many heterogeneous cloud

environments. Also if one of these cloud providers decides to update its tools and API

or change standards, specific protocols, our implementation may not achieve a

successful migration. So, it’s not effective to add more use case scenarios in this

implementation because the procedure for each use case scenario may differs and

image conversion may be impossible. Process migration abstracts applications from

the underlying OS and may bridge the heterogeneity gaps. Because of these

limitations we describe in section 2.3.2, we can’t achieve a process migration

successfully. As a conclusion, the later technology proved to be feasible and more

promising although it is still not fully supported by infrastructure (operating system)

tools that allow migration independent of the state of the underlying operating system

kernel at the time of transfer.

5.2 Future Work

5.2.1 Container-based migration

We want compare hardware virtualization and container-based (operating-system-

level) virtualization and examine how container-based virtualization could avoid the

heterogeneity in cloud computing. Applications designed for containers are forced to

be compatible in most systems that deploy applications in containers. We built

containers such as mongodb30 and Cassandra31 on Google compute engine32 and we

achieved a successful transfer of our workload to a different zone through Google

																																																													
30	https://www.mongodb.com/	
31	http://cassandra.apache.org/	
32	https://cloud.google.com/compute/	

	

Page	|	49	

	

compute engine console. In a future work, we will propose a mechanism that

implements migration using containers in a few steps and we will run a series of

experiments to show proof of concept. As a conclusion, the later technology proved to

be feasible and more promising.

	

Page	|	50	

	

 References

[1] Schubert L, Jeffery K, Neidecker-Lutz B (2010) “The Future of Cloud

Computing – Opportunities for European cloud computing beyond 2010”,

European Commission, http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-

final.pdf

[2] Amid Khatibi Bardsiri, Seyyed Mohsen Hashemi, “QoS Metrics for Cloud

Computing Services Evaluation”, http://www.mecs-press.org/ijisa/ijisa-v6-

n12/IJISA-V6-N12-4.pdf

[3] The Open Group, “Maximizing the Value of Cloud for Small-Medium

Enterprises”, http://www.opengroup.org/cloud/cloud_sme/		

[4] Linkedin , “Cloud Computing Architecture”,

https://www.linkedin.com/pulse/20140621112709-142734032-cloud-computing-

part-3-architecture	

[5] Wikipedia, “Hypervisor”, https://en.wikipedia.org/wiki/Hypervisor

[6] Virtualization Admin, “What is the Snapshot”,

http://www.virtualizationadmin.com/faq/snapshot.html

[7] Qemu Project “Disk Image File Formats”, http://download.qemu-

project.org/qemu-doc.html - disk_005fimages_005fformats

[8] VMware “OVF Tool User’s Guide”,

https://www.vmware.com/support/developer/ovf/ovf420/ovftool-420-

userguide.pdf

[9] Wikipedia “VHD File Format”,

https://en.wikipedia.org/wiki/VHD_(file_format)

[10] KVM “Qcow2”, http://www.linux-kvm.org/page/Qcow2

[11] Openstack “Disk and Containers Formats”,

	

Page	|	51	

	

https://docs.openstack.org/developer/glance/formats.html

[12] Wikipedia “Open Virtualization Format”,

https://en.wikipedia.org/wiki/Open_Virtualization_Format

[13] Openstack “Converting between Image Formats”,

https://docs.openstack.org/image-guide/convert-images.html

[14] Openstack “Converting between Image Formats”,

https://docs.openstack.org/image-guide/convert-images.html

[15] Docker “What is a Container”, https://www.docker.com/what-container

[16] Kubernetes “Building High-Availability Clusters”,

https://kubernetes.io/docs/admin/high-availability/

[17] CRIU “Checkpoint / Restore”, https://criu.org/Checkpoint/Restore

[18] Redhat “Checkpoint / Restore in User Space”,

https://access.redhat.com/articles/2455211

[19] CRIU “Docker”, https://criu.org/Docker

[20]	 Vakanas, L., Sotiriadis, S. and Petrakis, E. (2015) "Implementing the Cloud
Software to Data approach for OpenStack environments",
http://www.intelligence.tuc.gr/~petrakis/publications/ARMS-CC2015.pdf	

