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Abstract 
 

The rise and evolution of optical light microscopes is inevitable, as microscopy 
constitutes a key diagnostic and imaging tool for many fields of science, such as 
medicine, biology, chemistry as well as for many applications in industry. 
However, the internationally accepted technology residue regards to the physical 
limitations of the microscopes’ resolution and the biological limitations of the 
examiners’ perception, quest the improvement of imaging ability in microscopy. 
In addition, the evaluation of the imaging information of diagnostic importance 
urges the development of computational methods that will highlight and measure 
it quantitatively.  
In this thesis, a novel method is reported for measuring and enhancing imaging 
resolution in microscopy, based on a single measurement of one-dimensional 
modulation transfer function combined with Wiener deconvolution algorithm. 
Additionally, for the first time in the relevant literature to the best of our 
knowledge, a computational method is presented for improving diagnostic 
accuracy of leukemia, using optical light microscopes along with spectral imaging. 
A set of spectral indices are introduced that have been extracted and measured 
quantitatively, through chemometrics regression algorithm combined with spectral 
imaging of peripheral blood smears.  
The proposed methods are capable to achieve enhanced optical resolution of up 
to 176% for a brightfield microscope at 23.8x of total optical magnification, beyond 
microscope’s optical limit. Furthermore, they achieve 100% sensitivity with 
98.91% specificity in cases of Acute Lymphoblastic Leukemia, by detecting 
lymphoblasts accurately and 74.86% sensitivity with 96.94% specificity in cases of 
Chronic Lymphocytic Leukemia, by differentiating and indicating abnormal 
lymphocytes from the normal ones quantitatively. Thus, the proposed methods 
can be easily employed as additional analytical tools for minimizing errors and 
increasing accuracy, either in the diagnosis and in the classification of ALL and 
CLL leukemia. 
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1 Introduction 
 
 Over the last four centuries, the rise and evolution of optical light 
microscopes was inevitable, as microscopy constitutes an integral diagnostic and 
imaging tool for many fields of science, such as medicine, biology, chemistry as 
well as for many applications in industry [1]. Starting back in 17th century, when 
Dutch scientist Antonie van Leeuwenhoek developed the bi-convex lenses of small 
focal length, in order to achieve high magnifications of small objects [2]. Since 
then, the design of optical microscopes evolved in their todays’ form of compound 
setups. 
However, concurrently with optical light microscopy, the need for advanced 
observations of specimens has led to the development of new setups that are able 
to reveal specific characteristics and structures of samples under examination. 
Indicatively, fluorescence microscopes are capable to image specific cellular 
structures (e.g., intracellular skeleton structures, nucleus organelles, elements of 
genetic material, etc.), using a combination of appropriate fluorophores and 
monochromatic illuminations [3]. It is a fact that microscopes are not used as mere 
observation devices, but employed as major diagnostic instruments in a wide range 
of biological and medical procedures, such as cytology, pathological anatomy, 
biopsy or even leukemia diagnosis [4]. 
The progress on the improvement of optical light microscopes’ imaging ability is 
necessary, as well as on the development of computational methods that are 
capable to highlight and measure the important diagnostic information 
quantitatively, while microscopy remains a wide applied, accessible and 
inexpensive method of examination [5]. More specifically, an optical light 
microscope is capable to provide optical magnifications of up to 2000x by an 
appropriate combination of objectives, ocular lenses and immersion oils, while 
physical phenomena and production imperfections are restricting the retrieved 
resolution considerably, at these levels of magnification. Additionally, the human 
eye as organ of visual perception is unable to fully perceive, differentiate and 
quantify significant diagnostic information, especially in cases as leukemia 
diagnosis. 
The internationally accepted technology residue regards to the physical limitations 
of the microscopes’ resolution and the biological limitations of the examiners’ 
perception and quantification of the imaging information of diagnostic importance 
[6] is the motivation of this master thesis. This thesis reports, for the first time in 
the relevant literature to the best of our knowledge, a method for post capturing 
enhancement of resolution for color and spectral images, beyond the microscopes 
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imaging limitations based on a single measurement of one-dimensional modulation 
transfer function combined with Wiener deconvolution algorithm. Additionally, a 
novel method for improving diagnostic accuracy of Acute Lymphoblastic and 
Chronic Lymphocytic Leukemia is introduced, based on new spectral indices that 
are capable to identify and classify cells of diagnostic importance quantitatively. 
This thesis is organized in three main chapters. The first chapter includes an 
extensive analysis of the theoretical background used for the development of the 
aforementioned methods. The second chapter presents the methods for measuring 
and improving imaging resolution in microscopes, while the third and last main 
chapter introduces the novel spectral indices for improving Acute Lymphoblastic 
and Chronic Lymphocytic Leukemia diagnosis and classification. 
  



2 Theoretical Background 
 

In this chapter, the theoretical background is analyzed that underlies every 
main research area of this thesis. Firstly, an introduction is made to concepts of 
common electro-optical (EO) imaging systems and more precisely how electro-
magnetic radiation (EMR) is transformed into digital images and why digital 
images are degraded due to systems’ imperfections and physical limiting 
phenomena. Consequently, the main aspects of microscopy are explained along 
with its most widely used applications, as well as methods for analyzing stained 
microscopy samples quantitatively. Finally, a deep introduction is performed to 
the procedure of human hematopoiesis and the corresponding types of blood 
cancers. 
 

2.1 Electro-Optical Imaging Systems 
 

Electro-magnetic radiation (EMR) is a form of radiant energy that has 
characteristics of both waves and photon particles, a property called as wave-
particle duality, and propagating through space. In vacuum, EMR is propagated 
with a characteristic speed, the speed of light, normally in straight lines. EMR is 
emitted and absorbed by charged particles. As an electromagnetic wave, it has 
both electric and magnetic field components, which oscillate in a fixed relationship 
to one another, perpendicular to each other and perpendicular to the direction of 
energy and wave propagation [Figure 2.1]. 
 

 
Figure 2.1: Electro-magnetic wave components. 
 
The characteristics of an electromagnetic wave are the wavelength λ (physical 
length of a full oscillation) and the frequency v (number of oscillations per second). 
Electro-magnetic radiant energy is a continuous flow of particles or wave energy 
packages, called photons [7]. Photon’s energy is calculated as Ephoton=h∙v=h∙ c

λ
, 

where h is the Planck’s Constant and c equals to the speed of light in empty space. 
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Depending on wavelength, the EMR is divided into several different bands (also 
known as spectral bands), and every band interacts with matter in a different way 
[7]. All those bands together form the electro-magnetic spectrum [Figure 2.2]. 
 

 
Figure 2.2: Electro-magnetic radiation spectrum. 
 
Common electro-optical (EO) imaging systems convert EMR of specific optical 
wavelengths to electrical signals for source detection and/or analog/digital visual 
display. They extend human vision in wavelength, signal sensitivity, distance, and 
environmental conditions. An image of a scene is relayed on a focal plane that has 
an imaging sensor, which performs the transduction of light to video signals [8]. 
In general, every electro-optical imaging modality is composed by 1) an optical 
assembly (i.e. a set-up of optical elements such as lenses, prisms, filters, etc.), that 
has the ability to collect, limit and focus EMR rays of selected wavelengths onto 
focal plane, 2) a detection medium that converts photons to electrical signal (for 
example, a CMOS sensor that is sensitive in Vis-NIR wavelengths) and 3) a digital 
processing and storage system that is capable to display and save digital images 
(i.e. a computer, the body of a digital camera, etc.) [Figure 2.3]. 
 

 
Figure 2.3: Common electro-optical imaging system capable to operate within 
visible part of spectrum. 
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2.1.1 Point Spread Function Model 
 

An image of an object/real scene is composed by imaging a countless number 
of light-emitting point sources that apart the objects/scene under observation. 
However, those sources are not imaged as points of light, but as extended patterns 
of intensity distribution. This effect is known as diffraction of light [9], i.e. 
interference effect of the diffracted waves. As a result, light energy directed 
towards focal point is spread into a cone of converging energy focusing into a 3-D 
pattern of energy distribution (known as Airy’s Pattern) that sets the limit to 
image contrast and resolution in an aberration-free and circular aperture optical 
system. 
This pattern of wave interference that consists of a bright central disc surrounded 
by several rapidly fading concentric rings and normalized to 1 at its peak, is also 
known as the Point Spread Function (PSF) of the optical system. 
Physical size of the diffraction pattern in the plane of best focus is inversely 
proportional to the relative aperture 1

F
, with the first minima radius given by 

rAD=1.22∙λ∙F, where λ denotes the wavelength of EMR, F the focal ratio f
D
, and ƒ 

and D denotes the imaging system’s focal length and diameter, respectively [10]. 
In addition, the area from PSF’s peak to first minima is also called as Airy’s Disc 
[Figure 2.4]. 
 

  
Figure 2.4: Example of PSF and its relationship with Airy Disc. 
 
The PSF can be Fourier transformed in two dimensions to yield the two 
dimensional Optical Transfer Function (OTF) of the optical system {2.1}. OTF 
is a complex-valued function, having both magnitude and phase [11]. The 
magnitude is also referred as the Modulation Transfer Function (MTF) and the 
phase as the Phase Transfer Function (PhTF) {2.2}. In cases of well-corrected 
optical systems (i.e. abberation-free) that are illuminated by incoherent light 
sources, the OTF would be symmetric and real for all spatial frequencies and thus, 
the phase part can be considered as negligible [5]. 
 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥,𝑦𝑦)
ℱ
→ 𝑂𝑂𝑂𝑂𝑂𝑂(𝑢𝑢, 𝑣𝑣) (2.1) 

 



 
 

Theoretical Background 18 

where x, y are spatial coordinates and u,v frequency coordinates. 
 

𝑂𝑂𝑂𝑂𝑂𝑂(𝑢𝑢, 𝑣𝑣) = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑢𝑢, 𝑣𝑣) ∙ 𝑒𝑒𝑖𝑖∙𝑃𝑃ℎ𝑇𝑇𝑇𝑇(𝑢𝑢,𝑣𝑣) (2.2) 
 
where 𝑀𝑀𝑀𝑀𝑀𝑀(𝑢𝑢, 𝑣𝑣) = |𝑂𝑂𝑂𝑂𝑂𝑂(𝑢𝑢, 𝑣𝑣)|, 𝑃𝑃ℎ𝑇𝑇𝑇𝑇(𝑢𝑢, 𝑣𝑣) = arg [𝑂𝑂𝑂𝑂𝑂𝑂(𝑢𝑢, 𝑣𝑣)] and arg[] 
corresponds to phase part of complex-valued function. 
 
2.1.2 Modulation Transfer Function Model 
 

Modulation Transfer Function is a measure of the transfer of modulation 
(i.e. transfer of contrast) from the object/scene under observation to the captured 
(optical or even digital) image. In addition, measuring MTF is the most widely 
accepted method (in industry and academia) for evaluating electro-optical imaging 
systems’ performance [12]. 
When an object is observed through an optical system, the resulting image will 
be degraded due to inevitable aberrations and diffraction phenomena, as presented 
previously. The amount of that degradation can be measured quantitatively and 
be described using the model of MTF. MTF is characterized by two key 
parameters of imaging performance; resolution and contrast (i.e. modulation) [13]. 
 
2.1.2.1 Resolution 
Resolution [14] is an electro-optical imaging system's ability to distinguish object 
details. It is often expressed in terms of line-pairs per millimeter (where a line-
pair is a sequence of one black line and one white line). This measure of line-pairs 
per millimeter (lp/mm) is also known as spatial frequency. The inverse of the 
frequency yields the spacing in millimeters between two resolved lines. Bar targets 
with a series of equally spaced, alternating white and black bars (for example, a 
1951 USAF target [Figure 2.5]) are ideal for measuring resolvable resolution in 
line pairs per millimeter.  
 

 
Figure 2.5: 1951 USAF bar target. 
 
For all EO systems, when imaging such a pattern, perfect line edges become 
blurred to a degree [Figure 2.6]. High-resolution images are those that exhibit a 
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large amount of detail because of minimal blurring. Conversely, low-resolution 
images lack fine detail. 

 
Figure 2.6: Perfect line edges before and after EO imaging system. 
 
In addition, in an EO imaging system, two camera sensor pixels are needed for 
imaging each line-pair, one pixel is dedicated to the colored (black) line and the 
other to the blank space between pixels [Figure 2.7]. Thus, the maximum possible 
resolvable resolution is limited by the camera sensor size, and it is equal to twice 
its pixel size. This is the Nyquist frequency of the sensor, beyond which the 
sensor’s response is useless. 
 

 
Figure 2.7: Imaging of line pairs with a common sensor. 
 
In addition, the resolved resolution of the observed object or scene is calculated 
by taking into consideration the measured resolution (in μm {2.3} or lp/mm {2.4}) 
and the total magnification (TMAG) factor of the system [15]. 
 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝜇𝜇𝑚𝑚) =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝜇𝜇𝑚𝑚)

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
(2.3) 

 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑙𝑙𝑙𝑙/𝑚𝑚𝑚𝑚) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑙𝑙𝑙𝑙/𝑚𝑚𝑚𝑚)  ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (2.4) 
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2.1.2.2 Contrast/Modulation 
Contrast [16] or modulation of an EO imaging system can be described as how 
faithful the minimum and maximum intensity values are transferred from object 
plane to image plane. More specifically, normalizing the gray-scaled intensity of a 
measured bar target by assigning a maximum value to the white bars and zero 
value to the black bars and plotting these values results in a square wave, from 
which the notion of contrast can be more easily seen [Figure 2.8].  
 

 
Figure 2.8: Contrast/modulation as an ideal square wave. 
 
Mathematically, contrast/modulation is calculated as in {2.5}: 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

 (2.5) 

 
According to this explanation, the intensity pattern of [Figure 2.6] will seem after 
imaging as in [Figure 2.9]. 
 

 
Figure 2.9: Contrast of a bar target at object plane and image plane. 
 
2.1.2.3 Definition of MTF as a measure of optical performance 
Considering the above, MTF is defined as in {2.6}: 
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𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓) =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

=
𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓)
𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑓𝑓)

(2.6) 

 
where Mimage and Mobject is the modulation (contrast) of captured object (i.e. on 
image plane) and the modulation (contrast) of original object (i.e. on object plane) 
respectively, and f the different measured spatial frequencies (in lp/mm or um) 
[13]. 
Now, that the concepts of modulation (contrast), resolution and spatial frequency 
are well defined, it can easily be understood that an MTF curve describes the 
amount of modulation (i.e. contrast) (in y-axis) that an EO imaging system can 
represent (i.e. transfer) across various spatial resolutions (in x-axis) [Figure 2.10]. 
 

 
Figure 2.10: Graphical explanation of a MTF plot. 
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An ideal EO imaging system would have high modulation values below the 
Nyquist frequency and low modulation values for equal or greater frequencies. fC 
is the cut-off frequency of the EO imaging system and is spotted at the frequency 
where modulation reaches zero. However, if the Nyquist frequency is smaller that 
defines the cut-off frequency and it is calculated as 𝑓𝑓𝑁𝑁 = 1

(2 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)� . A 

common point for evaluating and comparing different EO imaging systems is 
where modulation drops at 50% and frequencies where modulation is less than 
15% are irresolvable by humans [17]. 
Usually, in EO imaging systems the components with lower responses are the 
optical elements (such as lenses, prisms, etc.) and not the imaging sensor because 
optical elements’ geometry affects more the ability of reproducing high quality 
images. Specifically, in a common EO imaging system MTF is affected by the lens 
diameter (D), the focal length (f), the f-stop (f/#), the size of imaging sensor, the 
field position and from the wavelength of illumination [18]. Finally, the total 
measured MTF response of a system is the multiplication of all individual MTF 
responses from different components of the system (such as lens, prisms, imaging 
sensor, digital processing units, even atmosphere, etc.), as depicted in [Figure 2.11] 
briefly. 
 

 
Figure 2.11: Overall MTF degradation throughout an imaging system. 
 
2.1.3 Image Degradation Model 
 

In subsection 2.1.1, it was analyzed how Point Spread Function corresponds 
to the physical phenomenon of diffraction. However, even the most perfect 
procedures cannot produce completely aberration-free optics. Thus, the existence 
of different types of optical aberrations are common in the optical parts (such as 
defocus, tilt, spherical aberration, astigmatism, coma, distortion, etc.) [19]. In 
addition, user-infused abnormalities during capturing (such as motion blur, poor 
focus, bad illumination), aberrations due to simultaneous illumination with 
different wavelengths (such as in color imaging) or even physical limitations of 
used digital sensor (such as size or type), can alter the system’s PSF with result 
serious degradation of image quality. 
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Figure 2.12: Different types of optical aberrations. 
 
However, PSF encapsulates every possible reason of image’s quality degradation 
and in fact describes the response of an imaging system to a point source or a 
point object. In non-coherent imaging systems such as fluorescent microscopes, 
telescopes, optical microscopes and commercial imaging systems, image formation 
process is linear in power and described by linear systems’ theory [20]. This means 
that when two objects A and B are imaged simultaneously, the result is equal to 
the sum of the independently imaged objects. In other words, the imaging of A is 
unaffected by the imaging of B and vice versa, owing to the non-interacting 
property of photons. Thus, the image of a complex object can then be seen as a 
convolution of the true object and the PSF, a fact that leads to the following 
model of image degradation by an imaging system. 
An observed image g(x, y), neglecting additive noise due to electronics, can be 
estimated to be the two-dimensional convolution of the true image f(x, y) with a 
linear shift-invariant kernel h(x, y), also known as PSF of the imaging system. 
That is, 
 

𝑔𝑔(𝑥𝑥,𝑦𝑦) = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) ∗ ℎ(𝑥𝑥, 𝑦𝑦) = � 𝑓𝑓(𝑛𝑛,𝑚𝑚) ∙ ℎ(𝑥𝑥 − 𝑛𝑛,𝑦𝑦 −𝑚𝑚)
(𝑛𝑛,𝑚𝑚)

(2.7) 

 
where x, y are spatial coordinates. In a graphical representation, the operation of 
image degradation can be depicted as: 
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Figure 2.13: Image degradation model. 
 
The kernel in {2.7} can depend on (x, y) (spatially-varying), or can be constant 
across the image plane (spatially-invariant). Spatially-invariant blur is more 
common as spatial variations in the kernel are negligible, across optical 
microscopes’ field. 
 

2.2 Microscopy 
 

Microscopy [21] is an imaging technique for visualizing and analyzing 
objects/areas that cannot be seen by the naked eye (objects/areas that are not 
within the resolution range or vision capabilities of the normal eye). Microscopes 
are instruments designed to produce magnified visual or digital images of objects 
too small to be seen by the naked eye. 
A microscope must accomplish three tasks:  
1. Produce a magnified image of the specimen, 
2. Separate the fine details in the image, and  
3. Render the details visible to the human eye or camera. 
The working principle of every microscope is the magnification, as microscopes 
produce magnified images of the objects upon are focused.  
 

2.2.1 Compound System Design 
 

Every compound microscope contains multiple lens elements and parts 
[Figure 2.14]. The three basic components of a microscope are the eyepieces (or 
ocular lenses), the objectives lenses and the illumination unit (consisted from light 
source, condenser, and aperture). The objective, located closest to the object, 
relays a real image of the object to the eyepiece (on real image plane a.k.a. 
intermediate image plane). This part of the microscope is needed to produce the 
basic magnification. The eyepiece, located closest to the eye, projects and 
magnifies this real image of the object [21]. 
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Figure 2.14: Anatomy of a compound microscope. 
As the microscope magnifies into steps, the magnifying effect is multiplied and 
the overall magnification of the system can be calculated according to {2.10}: 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∙ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (2.10) 
 
However, accompanying with eyepieces, digital imaging sensors (such as CCD, 
CMOS or even DSLR body) are mounted on microscopes, in order to view, store 
and analyze further digital images of specimens under examination [Figure 2.15]. 
In such cases, images appear extremely large on the observation monitor. The 
overall magnification is normally very hight indeed and can be calculated very 
easily; it is the product of the optical and electronic magnification [22]. 

1. The optical magnification is: MAGNOptical = MAGNObjective · MAGNAdapter. 
2. The electronic magnification is the ratio of the monitor diagonal to the 

diagonal of the active area of the imaging sensor: MAGNelectronic = 
MonitorDiagonal / SensorDiagonal. 

3. The overall magnification then is: MAGNoverall = MAGNoptical · 
MAGNelectronic. 

 

 
Figure 2.15: A compound microscope combined with an imaging sensor. 
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2.2.1.1 Key Components 
 

• Eyepieces 
Eyepieces (or ocular lenses) hold a major role in microscopes’ design, due to the 
fact that they are one of the two key components for magnifying the object under 
examination. Microscope eyepieces generally consist of several lens elements in a 
housing, with a barrel on one end.  By switching eyepieces, the user can adjust 
what is viewed. For instance, eyepieces will often be interchanged in order to 
increase or decrease the magnification of a microscope. 
 

• Objectives 
Objectives allow microscopes to provide magnified, real images and are, perhaps, 
the most complex component because of their multi-element design. Objectives 
are available with magnifications ranging from 2x – 200x. They are classified into 
two main categories: the traditional refractive type and reflective type. 
In a refractive design light passing through the system is refracted, or bent, by 
the optical elements. Each optical element is typically anti-reflection coated to 
reduce back reflections and improve overall light throughput [Figure 2.17]. On the 
other hand, reflective objectives utilize a reflective, or mirror-based design. 
Reflective objectives consist of a primary and secondary mirror system [Figure 
2.16] to magnify and relay the image of the object under inspection. 
 

 
Figure 2.16: Reflective objective design. 
 

 
Figure 2.17: Refractive objective design. 
 



 
 

Theoretical Background 27 

2.2.1.2 Common Microscopy Techniques 
 

• Brightfield Microscopy 
Many microscopes utilize backlight illumination compared to traditional direct 
light illumination because the latter usually over-saturates the object under 
inspection. A specific type of backlight illumination used in microscopy 
applications is bright-field illumination [23]. In bright-field illumination, incident 
light from an illumination source, such as a halogen lamp, floods the object under 
inspection with light from behind [Figure 2.18]. It employs a lens called condenser, 
in order to aim the source’s light. The condenser usually contains an aperture 
diaphragm to control and focus light on the specimen. 
 

 
Figure 2.18: Brightfield microscopy illumination system. 
 
Bright-field illumination is designed to provide bright and even illumination on 
the object plane and on the image plane. In bright-field illumination, the 
specimen’s background appears bright [Figure 2.19]. 
 

  
Figure 2.19: Sample under brightfield illumination. 
 

• Darkfield Microscopy 
Dark-field illumination creates contrast between the object and the surrounding 
field of view. As the name implies, the background is dark and the object is bright. 
An annular stop is used to create a cone of oblique illumination, thus with no 
specimen present all the light from the condenser misses the objective entirely, 
giving a dark background [23]. However, if a specimen containing reflective 
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structures is placed into the path of this illumination, light that hits such a 
structure will be reflected at all angles [Figure 2.20]. Some of this light will now 
reach the objective and so will appear bright. 
 

  
Figure 2.20: Darkfield microscopy illumination system. 
 
This method produces a great deal of glare; therefore the specimen often appears 
as a bright silhouette rather than a bright object, of which little detail can be 
determined [Figure 2.21].  
 

 
Figure 2.21: Sample under darkfield illumination. 
 

• Fluorescence Microscopy 
A fluorescence microscope [24] is an optical microscope that uses fluorescence, or 
in addition to, reflection and absorption to study properties of specimens. The 
specimen is illuminated with light of a specific wavelength (or wavelengths) which 
is absorbed by the fluorophores, causing them to emit light of longer wavelengths 
(i.e., of a different color than the absorbed light). The illumination light is 
separated from the much weaker emitted fluorescence through the use of a spectral 
emission filter. Typical components of a fluorescence microscope are a light source 
(xenon arc lamp or mercury-vapor lamp are common; more advanced forms are 
high-power LEDs and lasers), the excitation filter, the dichroic mirror (or dichroic 
beam splitter), and the emission filter [Figure 2.22]. The filters and the dichroic 
mirror are chosen to match the spectral excitation and emission characteristics of 
the fluorophore used to label the specimen. In this manner, the distribution of a 
single fluorophore (color) is imaged at a time. 
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Figure 2.22: Basic optical design of a fluorescence microscope. 
 
Multi-color images of several types of fluorophores must be composed by 
combining several single-color images [Figure 2.23]. 
 

  
Figure 2.23: Sample under fluorescence microscopy. 
 
2.2.2 Method for Quantitative Analysis of Stained 

Microscopy Samples 
 

A biomarker, or biological marker [25], is in general a substance used as an 
indicator of a biological state. It is a characteristic that is objectively measured 
and evaluated as an indicator of normal biological processes, pathogenic processes, 
or pharmacologic responses to a therapeutic intervention. Biomarkers of diagnostic 
importance can be highlighted with the use of biomedical stains and it is a common 
practice during examination of biological samples under light microscopes. 
An integral part of this thesis, is the usage of a method for analyzing stained 
biological samples under microscopy examination quantitatively, in order to 
determine the absolute abundance (often expressed as concentration) of the 
several biological stains present in the sample. The exact and accurate knowledge 
of the concentration of these stains is exploited further, in order to introduce new 
indices for improving specific diagnostic procedures, as is explained in future 
chapter. 
To handle the aforementioned challenge, methods of spectral unmixing are 
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employed, in order to achieve the desired quantitative analysis of the stained 
samples under examination. Thus, in this subsection are presented key concepts 
of this methodology. 
 
2.2.2.1 Spectral Imaging and Classification 
Spectral imaging (SI) is a modality, hybrid between imaging and spectroscopy, 
and has been applied to numerous areas of science, now emerging in biomedical 
engineering. The main idea is acquiring two dimensional images across a wide 
range of electro-magnetic spectrum (for example UV, Visible, Infrared) using a 
two-dimensional imaging sensor (i.e., CCD or CMOS). Then, a three-dimensional 
dataset of spatial and spectral information is gathered. That dataset is called 
spectral cube. With the spatial information, it is located more accurately the 
light’s interaction with the object under examination, pixel by pixel [26]. 
It is assumed that each pixel, depending on the light it collected from the object 
on each wavelength, has its own spectral signature (measurement of emitted, 
reflected or absorbed EMR at specific wavelengths which can uniquely identify an 
object), as shown in [Figure 2.24]. 
 

 
Figure 2.24: Spectral signatures extracted from spectral cube. 
 
The images of the spectral cube, can be used to extract unique data concerning 
the object by classifying the pixels using the spectral signatures pixel by pixel. 
When light propagates through a biological tissue or sample, undergoes multiple 
scattering and absorption. Scattering and absorption characteristics are unique for 
each kind of tissue and when a pathological condition is present, they seem to 
change depending on the condition’s progression. Capturing that reflected or 
transmitted light with the right tools, in different wavelengths and processing 
those data, may result to quantitative and significant diagnostic information about 
the specific biological target’s pathology. 
As mentioned, for any given material, when exposed to light, the amount of 
radiation absorbed, reflected, transmitted varies with the wavelength, as shown 
in picture above. This property of matter gives the opportunity to uniquely 
identify different physical or chemical substances and separate them using their 
spectral signatures [27]. This separation is also known as spectral classification. 
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2.2.2.2 Chemometrics 
Chemometrics is the use of statistical and mathematical techniques in order to 
extract information from chemical systems using multivariate statistics and 
applied mathematics. Chemometrics usually involves linear algebra methods to 
make qualitative or quantitative measurements of chemical data [28]. 
In this thesis, chemometrics are used in combination with acquired spectral cubes, 
in order to unmix and estimate the concentrations of the different stains on stained 
blood microscopy samples. These concentrations are measured in Molarity (units: 
mol/L or M), which represents the number of moles of a dissolved substance per 
liter of solution [29]. The algorithm used is a Statistically Inspired Modification of 
the Partial Least Square algorithm (SIMPLS), widely used in chemometrics [30], 
faster than classical PLS implementation and with the same predictive efficiency 
[31]. The SIMPLS algorithm produces a predictive model as described in {2.11}: 
 

𝑌𝑌 = 𝐵𝐵 ∙ 𝑋𝑋 + 𝑒𝑒 (2.11) 
 
where X are the absorbance data extracted from acquired spectral cube, Y are the 
estimated concentrations of the stains under decomposition, e is the dumped 
components of the system and B is the matrix of coefficients that describe the 
linear relations between concentrations and absorbances of the stains on the 
sample under examination. 
 
2.2.2.3 Generalization of Beer-Lambert Law 
The assumption that the concentrations of the stains in the microscopy samples 
are related in a manner to the data from a measurement technique (i.e., the cubes 
from spectral imaging) is the key to quantitative analysis. 
Beer-Lambert Law defines a linear relationship between the spectrum and the 
composition of a sample [32]. It forms the basis of nearly all other chemometrics 
methods for spectroscopic data. Simply stated, the law claims that when a sample 
is placed in the beam of a spectrometer, there is a direct and linear relationship 
between the amount (concentration) of its constituent(s) and the amount of 
energy it absorbs [Figure 2.25]. 
 

 
Figure 2.25: Graphical representation of Beer-Lambert law. 
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In mathematical terms, Beer-Lambert Law is defined as in {2.12}: 
 

𝐴𝐴 = log �
𝐼𝐼0
𝐼𝐼1
� = − log(𝑇𝑇) = log �

1
𝑇𝑇�

= 𝑎𝑎 ∙ 𝑙𝑙 ∙ 𝐶𝐶 (2.12) 

 
where:  
A: Absorbance 
I0: Intensity of the incident light. 
I1: Intensity of the transmitted light. 
T: Transmittance, usually expressed as a percentage %T. 
C: Concentration of the sample's solution measured in mol/L or M (molarity). 
l: Path length that the light beam has travelled inside the sample (in cm). 
a: Molar absorptivity of the solution, which is a constant number also proportional 
to the respective absorbance wavelengths. 
Finally, it should be noted that the Beer-Lambert law is valid under the following 
conditions: 

• The solutions are not dense (absorbance is between: 0.1 ≤ A ≤ 0.9). 
• The only mechanism for the interaction between a dissolved substance and 

radiation is absorption. 
• The incident radiation to a sample is monochromatic. 
• The sample is in a cuvette (quartz glass in our case) with a uniform 

intersection. 
• The absorbing molecules act individually (no chemical reactions between 

substances). 
 

2.3 Human Blood and Leukemic Abnormalities 
 

Human Blood [33] is a constantly circulating fluid, the most important in 
humans for their lives, that is responsible for several vital operations. Briefly, 
blood conducts the transportation of oxygen and nutrients between different 
organs and parts of human body, of the metabolic wastes in order to get eliminated 
as well as for the distribution of various hormones. In addition, it is responsible 
for the regulation of body’s temperature, tissue’s pH and for the prevention of 
infections through its immune mechanisms. 
The lifelong production of human blood and its cells, occurs in haemopoietic tissue 
and organs as part of a process called hematopoiesis [34]. This procedure is based 
in a very high level of cells’ turnover, demanded by the need to replace mature 
circulating blood cells at a rapid rate, and is necessitated by the limited lifespan 
of the mature blood cells. 
However, the procedure of hematopoiesis can be disturbed during its different 
stages, with result serious abnormalities to the production of mature blood cells 
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[35]. Lymphoma is a category of blood abnormal condition, considered as a form 
of blood cancer, in which a specific category of blood cells multiply abnormally 
inside lymph nodes and other tissues. The enlarging tissues and disruption of 
blood's functions, can eventually cause organ failure. In advanced stages, a 
lymphoma may be transformed to leukemia, an advanced form of blood cancer, in 
which the same category of blood cells multiply abnormally and circulate through 
the blood system. A delayed diagnosis and application of the appropriate 
treatment, can end up to death with high probability. 
 
2.3.1 Eukaryotic Cell Structure 
 

A cell is the basic structural, functional and biological unit of all known 
living organisms. It is the smallest unit of life that can be replicated independently. 
Before explaining further various aspects of human’s blood physiology, it is 
necessary to present the basic structure and components of a eukaryotic cell [36], 
in which category belongs every human blood cell. 
 

 
Figure 2.26: Eukaryotic cell structure. 
 

1. Nucleoli (consists of RNA chromatin). 
2. Nucleus (consists of DNA and RNA chromatin). 
3. Ribosome. 
4. Cyst. 
5. Rough Endoplasmic Reticulum. 
6. Golgi Apparatus. 
7. Cytoskeleton. 
8. Smooth Endoplasmic Reticulum. 
9. Mitochondria. 
10. Vacuole. 
11. Cytoplasm (consists of acidic components). 
12. Specific Granules of Immune System Cells (Azurophilic, Neutrophilic, 

Eosinophilic, Basophilic). 
13. Centerpieces in the Central Unit. 
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Finally, the entire cell is surrounded by a cellular membrane structure. 
 
2.3.2 Blood Physiology 
 

Blood is considered as a connective tissue anatomically, due to its origin in the 
bones and its function. The two major components of blood are [Figure 2.27]: 

1. Plasma, which makes up 55% of blood volume. 
2. Formed cellular elements, which combine to make the remaining 45% of 

blood volume. The formed cellular elements are divided further into two 
major subcategories; the buffy coat and the erythrocytes. 

 

 
Figure 2.27: Main parts of human blood. 
 
2.3.2.1 Plasma 
Plasma [33] is made up of 90% water, 7-8% soluble proteins, 1% carbon-dioxide 
and 1% elements in transit. One percent of the plasma is salt, which helps with 
the pH of the blood. The largest group of solutes in plasma contains three 
important proteins. Those are; albumins (60-80%), globulins, and clotting 
proteins. 
Plasma also carries respiratory gases; CO2 in large amounts (about 97%) and O2 
in small amounts (about 3%), various nutrients (glucose, fats), wastes of metabolic 
exchange (urea, ammonia), hormones and vitamins. 
 

 
Figure 2.28: Human blood parts separation after centrifugation. 
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2.3.2.2 Buffy Coat 
Buffy coat [33] is made up of leukocytes and platelets.  
 

• Leukocytes 
Leukocytes [37] (or White Blood Cells - WBC) are usually the larger cellular 
elements of human blood (10-14 μm in diameter) with concentrations of 7 
million/mL of blood and they are translucent, since they do not contain 
hemoglobin. WBC main purpose is for immune response and they are classified 
into two major subcategories; Granulocytes and Agranulocytes. 
Granulocytes are separated into three different types; Neutrophils (60-70% of 
WBC), Eosinophils (1-4% of WBC) and Basophils (0.25-0.5% of WBC). In 
addition, agranulocytes are separated into Monocytes (2-6%) and Lymphocytes 
(25-33%), while the last are distinguished further to T-Cells, B-Cells and Natural 
Killers. 
All these kinds of cells are involved in processes of inflammation and fighting 
infections and they are existing into peripheral blood normally. On the other hand, 
various types of precursor cells, such as Myeloblasts, Promyelocytes, Myelocytes, 
Metamyelocytes, etc. are present in peripheral blood only in case of pathological 
conditions. A complete presentation of each kind of peripheral blood’s WBC with 
their properties is following: 
 

i. Neutrophils 
The Neutrophilic Granulocytes are typically circular, with low nuclear to 
cytoplasmic ratio and a diameter of about 14μm. The granules are stained neutral 
(very light lilac) and the cytoplasm pinkish. Neutrophils subdivision is based on 
the structure of their nucleus; Band Neutrophils and Segmented Neutrophils. The 
band neutrophils, are less developed and more immature than the segmented type, 
which is mature and divided into 3 to 5 lobes connected by thin chromatin 
filaments. The nucleoli are absent. 
Lack of neutrophils is called neutropenia, while increased number is called 
neutrophilia. One of the main functions of neutrophils is to protect against 
bacterial infections, phagocytosing and destroying pathogens. Neutrophils can 
leave the bloodstream and migrate to surrounding tissues, to fight infections. 
Neutrophilia has several causes. The mobilization of adherent neutrophils is 
typical stress characteristic (stress leukocytosis). Acute infections and 
inflammations may result to mobilization of neutrophils from the bone marrow. 
Neutropenia is associated with a pharmacological treatment of infections (e.g., 
parvoviruses, malaria) and autoimmune diseases (e.g. systemic lupus 
erythematosus). The presence of increased hyper-segmented neutrophil count is 
usually evidence of lack of vitamin B12 or folic acid (megaloblastic anemia). 
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Figure 2.29: Stained band neutrophil (left) and segmented neutrophil (right). 

ii. Eosinophils 
The Eosinophilic Granulocytes are typically circular, with low nuclear to 
cytoplasmic ratio and a diameter of about 16μm. Their granules are stained as 
red-orange and they are very densely packed. Nucleus is mature and usually with 
two lobes connected by thin chromatin filament and nucleoli are absent. 
Eosinophils are rarely found in the peripheral blood smears. 
The eosinophils have an important role in allergy and parasitic infections. Like 
neutrophils, they are able to phagocytose and migrate. The increased number of 
eosinophils is characterized as eosinophilia, while reduced number as eosinopenia. 
Eosinophilia mainly caused by allergy and parasitic diseases. Many 
pharmacological treatments can also cause eosinophilia. Some neoplastic diseases 
(e.g. Hodgkin’s neoplasia) occasionally cause eosinophilia. The cases where 
eosinophilia’s reason is not detectable, are referred as idiopathic eosinophilia 
syndromes. Eosinophilia is often detected in cases of stress and acute infections. 
 

 
Figure 2.30: Stained eosinophil. 
 
iii. Basophils 

The Basophilic Granulocytes are typically circular, with low nuclear to 
cytoplasmic ratio and a diameter that ranges from 10μm to 14μm. The granules 
stained as dark purple, are very densely packed (obscuring the underlying nucleus 
and cytoplasm), while nucleoli are absent. They are very rarely encountered in 
peripheral blood smears.  
Basophils are important in hypersensitivity reactions. They can leave the 
bloodstream and migrate to surrounding tissues. Increased number of basophils is 
characterized as basophilia. Basophilia is observed in cases of chronic myelocytic 
leukemia and other myeloproliferative syndromes. 
 

 
Figure 2.31: Stained basophil. 
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iv. Monocytes 
The Monocytes are typically circular, with a diameter of 15μm to 20μm. They are 
the largest group of peripheral blood cells and they have a lower nuclear to 
cytoplasmic ratio because of their increased cytoplasm. They have a “kidney 
shaped” indented nucleus with mature chromatin (clumped). Cytoplasm is 
abundant, stained as gray to pale blue and with rare to no granules, while vacuoles 
are commonly noted in cytoplasm. 
Increased number of monocytes is known as monocytosis, and decreased number 
as monocytopenia. Monocytes have the very special ability of immigration. When 
migrating to the tissues they are called macrophages. Monocytes play an 
important role in acute and chronic infections. They are important components of 
cell-mediated immunity. The monocytosis associated with various chronic 
infections (such as tuberculosis, typhoid fever) and malignant diseases (such as 
Hodgkin’s). Monocytosis is observed in acute and chronic myelomonocytic 
leukemia. Monocytopenia occurs in bone marrow aplasia, in hairy cell leukemia 
and after therapy treatment with steroids. 
 

 
Figure 2.32: Stained monocyte. 
 

v. Lymphocytes 
Lymphocytes have a round to oval nucleus, usually with high nuclear to 
cytoplasmic ratio and a diameter of about 10μm. Cytoplasm is scant, stained as 
light blue and lacks granules. However, the quantity of the cytoplasm to each 
lymphocyte can vary greatly and that is the cause of the process of separation of 
lymphocytes in small and large ones. This difference reflects the different 
lymphocyte activation phases. Lymphocytes are classified in two main 
morphological types; The cells of one type are relatively small, usually have no 
granules and therefore exhibit a large nucleus to cytoplasm ratio and the cells of 
the other type, known as Large Granular Lymphocytes (LGL), are larger, have a 
smaller nucleus to cytoplasm ratio and contain cytoplasmic basophilic granules. 
They constitute a percentage of 5-10% of lymphocytes. In addition, there is no 
morphological distinction between T-Cells and B-Cells. 
Lymphocytes are mediators of cellular and humoral immunity. Lymphopenia is 
observed in cases where the number of lymphocytes is lower than usual, whereas 
lymphocytosis in cases where the number of lymphocytes is increased. 
Lymphocytosis observed in lymphoproliferative syndromes, and lymphopenia in 
cases of infections (such as HIV, tuberculosis, etc.), after radiation treatment and 
during treatment with immunosuppressive drugs. 
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Figure 2.33: Stained lymphocyte. 
 

• Platelets 
Platelets, also called thrombocytes, are responsible to stop bleeding by clumping 
and clotting blood vessel injuries [38]. Platelets have no cell nucleus; they are 
fragments of cytoplasm that are derived from the megakaryocytes of the bone 
marrow, and then enter the circulation. These inactivated platelets are biconvex 
discoid (lens-shaped) structures, with 2μm to 3μm in greatest diameter and a 
concentration of 250000 cells per square millimeter of peripheral blood. On a 
stained peripheral blood smear, platelets appear as small dark purple spots, about 
20% the diameter of erythrocytes. 
 

 
Figure 2.34: Stained platelets (marked with arrows). 
 
2.3.2.3 Erythrocytes 
Erythrocytes [39], also known as Red Blood Cells (RBC), are the most common 
type of blood cell and their role is to deliver oxygen to the body’s tissues and 
organs via blood flow through the circulatory system. The cytoplasm of RBC is 
rich in hemoglobin, an iron-containing biomolecule that can bind oxygen and is 
responsible for the red color of the cells. The cell membrane is composed of 
proteins and lipids, and this structure provides properties essential for 
physiological cell function such as deformability and stability while traversing the 
circulatory system and specifically the capillary network. Mature RBCs are 
flexible and oval biconcave disks, with concentrations of 5 million cells per square 
millimeter of peripheral blood. They lack a cell nucleus and most organelles, in 
order to accommodate maximum space for hemoglobin. On a stained peripheral 
blood smear, RBCs appear as light reddish disks. 
 

 
Figure 2.35: Stained erythrocytes. 
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2.3.3 Hematopoiesis 
 

Hematopoiesis [40] is a set of processes that are responsible for generating 
new, mature blood cells. All such cells ultimately derive from a single progenitor 
cell termed the Multipotential Hematopoietic Stem Cell (HSC) or Hemocytoblast, 
which undergoes a process of highly regulated division and differentiation that 
produces the gamut of mature blood cells [Figure 2.36].  
During fetal life of humans, hematopoiesis begins in the yolk sac followed by 
phases in the liver and spleen, and by birth and throughout adult life it takes 
place in the bone marrow mainly and in the thymus for the development of T-
Cells (a subcategory of lymphocytes). 
 

 
Figure 2.36: The procedure of hematopoiesis in humans. 
 
2.3.3.1 Bone Marrow 
Bone marrow [41] is the flexible tissue in the interior of bones. In humans, during 
the process of hematopoiesis, erythrocytes are produced by cores of bone marrow 
in the heads of long bones. Statistically, bone marrow constitutes 4% of the total 
body mass of humans. The hematopoietic components of bone marrow produce 
approximately 500 billion blood cells per day. These cells use the bone marrow 
vasculature as a gate to the body's systemic circulation. Bone marrow’s role is 
significant also in lymphatic system, producing the lymphocytes that support the 
body's immune system. 
The bone marrow has two parts; the red marrow that consists mainly of 
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hematopoietic tissue, and the yellow marrow that is mainly made up of fat cells. 
Most of WBCs, RBCs and platelets arise from red marrow [Figure 2.37].  
 

 
Figure 2.37: Structure of human bone marrow. 
 
2.3.3.2 Hematopoietic Series 
As HSC divides, its descendants begin to differentiate down to particular 
pathways toward mature blood cells, akin to traveling from a tree trunk, down 
progressively thinner branches, toward a particular leaf [Figure 2.36]. As these 
cells differentiate toward a particular cell type, they progressively lose their 
capacity to develop into the other cell types found in other branches of the 
differentiation tree. 
The overall architecture of this differentiation tree largely matches the basic 
categories of blood cells with pathways dedicated to making erythrocytes 
(erythropoiesis), lymphocytes (lymphopoiesis), granulocytes (granulopoiesis), 
monocytes (monocytopoiesis), and platelets (thrombopoiesis). These basic 
pathways and the intermediate cell types that define that differentiation pathway 
are called as Hematopoietic Series [42]. 
 
2.3.3.3 Blasts 
The first cell stages committed to any hematopoietic series are typically termed 
as "blasts". Blasts committed to the major differentiation pathways have some 
unique morphological characteristics; however, in general all blasts are fairly 
similar and appear as large cells with large nuclei. Blasts are also characterized 
by extremely rapid cell division rates. As differentiation progresses, the rate of cell 
division declines and the cells acquire the morphological characteristics unique to 
their ultimate mature cell type. The progressive development of these unique 
morphological characteristics is used to define stages of differentiation. 
In certain pathological scenarios, such as acute leukemia, genetic lesions appear 
to block the differentiation of these blast cells, thus generating a neoplastic clone 
of undifferentiated cells with rapid mitotic rates. 
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2.3.4 Leukemia 
 

Leukemia, is a group of cancers of the blood cells. It is the situation in 
which bone marrow fails to produce healthy and mature leukocytes and as a result, 
high numbers of abnormal leukocytes are entered the circulation of peripheral 
blood. These leukocytes are not fully developed and are called “blastic cells” or 
“leukemia cells” or simpler as “blasts”. Normally, the bone marrow barrier does not 
permit the presence of blastic cells in the peripheral blood. The suppression of this 
barrier may be present only in sever abnormal disorders, in which belong the 
leukemic abnormalities.  
Symptoms may include bleeding and bruising problems, feeling tired, fever, and 
an increased risk of infections. Diagnosis is made by peripheral blood tests or bone 
marrow biopsy and examination under light microscope. Clinically and 
pathologically, leukemia is subdivided into a variety of large groups.  
The first division is between its acute and chronic forms; 

• Acute leukemia is characterized by a rapid increase in the number of 
immature blood cells. The crowding that results from such cells makes the 
bone marrow unable to produce healthy blood cells. Immediate treatment 
is required in acute leukemia because of the rapid progression and 
accumulation of the malignant cells, which then spill over into the 
peripheral blood and spread to other organs of the body. Acute forms of 
leukemia are the most common forms of leukemia in children. 

• Chronic leukemia is characterized by the excessive buildup of relatively 
mature, but still abnormal, WBCs. Typically taking months or years to 
progress, the cells are produced at a much higher rate than normal, 
resulting in many abnormal white blood cells. Chronic leukemia mostly 
occurs in older people, but can occur in any age group. 

The second division is between to which type of blood cell is affected; 
• Lymphoblastic or lymphocytic leukemia takes place in a type of marrow 

cell that normally goes on to form lymphocytes, which are infection-fighting 
immune system cells. Most lymphocytic leukemias involve a specific 
subtype of lymphocyte, the B-Cells. 

• Myeloid or myelogenous leukemia takes place in a type of marrow cell that 
normally goes on to form RBCs, some other types of WBCs, and platelets. 

Combining these two classifications provides four main categories as presented in 
[Table 1]. 
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Form 
Cell Type 

Acute Chronic 

Lymphocytic 
(or Lymphoblastic) 

Leukemia 

Acute Lymphoblastic 
Leukemia (ALL) 

Chronic Lymphocytic 
Leukemia (CLL) 

Myelogenous 
(or Myeloid) 
Leukemia 

Acute Myelogenous 
Leukemia (AML) 

Chronic Myelogenous 
Leukemia (CML) 

Table 1: Major types of leukemic diseases. 
 
2.3.4.1 Acute Lymphoblastic Leukemia 
Acute Lymphoblastic Leukemia (ALL) [43] comprises 75% of acute leukemias, and 
is one of the most successfully treated type of childhood leukemia. Clinical 
symptoms include fever, weakness or feeling tired, bruising or bleeding easily, 
pinpoint spots under the skin from bleeding, bone pain, and loss of appetite. ALL 
occurs from an abnormality during the procedure of lymphopoiesis, where 
lymphoblasts, one of the first cells in lymphoid series, fails to differentiate further 
as in [Figure 2.38], get hyper-accumulated in bone marrow and finally enters the 
circulation of peripheral blood as in [Figure 2.39]. 
Currently for the classification of acute leukemias apart from the morphologic 
characteristics, cytochemical, cytogenetic, molecular methods and 
immunophenotyping are necessary. Morphologically according to French–
American–British (FAB) system, three categories of Lymphoblasts are defined; 

• L1 morphology blasts are usually smaller, with scant cytoplasm and 
inconspicuous nucleoli.  

• L2 morphology blasts are larger and they demonstrate considerable 
heterogeneity in size, prominent nucleoli, and more abundant cytoplasm. 

• L3 morphology blast are notable for their deep cytoplasmic basophilia, are 
large cells and frequently display prominent cytoplasmic vacuolation. They 
are morphologically identical to Burkitt’s lymphoma. 

Approximately 85% of children with ALL have predominantly L1 morphology, 
14% have L2, and 1% has L3 [44]. The limited heterogeneity of the cells in the 
light microscope makes usually difficult the morphological distinction of the ALL 
subtypes. In many cases, even the distinction of L1 lymphoblasts (which are the 
most common) from normal lymphocytes is also difficult. 
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Figure 2.38: ALL abnormality in lymphoid series. 
 

 
Figure 2.39: Stained lymphoblasts in peripheral blood smear. 
 
2.3.4.2 Chronic Lymphocytic Leukemia 
Chronic Lymphocytic Leukemia (CLL) [4] is the most common type of leukemia 
in adults, comprising 25% of all cases diagnosed in North America and Europe. 
Its incidence increases with age with a median age of 55 years at diagnosis, and is 
more common in males. Patients are often asymptomatic at the time of diagnosis, 
especially in the early stages of the disease, but they are progressively more at 
risk for infection because of defects in humor and cell-mediated immune systems. 
Clinical symptoms include bone marrow failure due to anemia, thrombocytopenia 
and neutropenia, lymphadenopathy and hepatosplenomegaly. In addition, 
systemic symptoms such as sweats, weight loss, thirst and bruising are common 
in CLL. 
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CLL develops primarily from a malignant clone of lymphocytes (specifically, B-
Cells) as in [Figure 2.40], which are increased massively in peripheral blood 
(usually >85% of total WBC), a clinical case also known as lymphocytosis. 
Specifically, CLL lymphocytes are matured but morphologically abnormal, with 
very low cytoplasm to nucleus ratio, clumped nuclear chromatin and size 
comparable to erythrocytes [45]. In addition, the existence of smudged WBCs in 
peripheral blood smears, are typical in CLL as in [Figure 2.41]. 
 

 
Figure 2.40: CLL abnormality in lymphoid series. 
 

 
Figure 2.41: Abnormal lymphocytes (1) and smudge cells (2) in CLL. 
 

(1) 

(2) 
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2.3.5 Blood and Bone Marrow Samples Staining and 
Examination 

 
The most common and widely used diagnostic procedure of blood 

abnormalities and diseases, such as leukemia, is through identification of 
morphologic characteristics and differential counting of blood cells. In order to 
achieve that, blood drawn from peripheral veins (i.e. peripheral blood) alongside 
with bone marrow samples are stained and examined under light microscopes. 
 
2.3.5.1 May Grünwald – Giemsa Stain 
A carefully stained smear is fundamental for the observation and evaluation of 
blood’s cellular morphology. Thus, Romanowsky stain (mainly used in United 
States) or May Grünwald – Giemsa stain (mainly used in European countries) are 
the most often utilized stains for peripheral blood and bone marrow samples.  
The May Grünwald – Giemsa (MG-G) stain [4] combines the effect of acidic Eosin-
Y and basic Methylene Blue (present in May Grünwald), alongside with the 
metachromatic basic stain of Azure-B (present in Giemsa, which also contains 
Eosin-Y) as in [Figure 2.42]. 
The purple color of the cells’ nuclei, is due to the molecular interaction between 
Eosin-Y, Azure-B and Methylene Blue with the DNA complex. Τhe basophil 
granules are negative charged so they attract the basic stains (Methylene Blue 
and Azure-B). Their final color after staining ranges between several shades of 
blue. In addition, the hemoglobin of the RBCs and the eosinophil granules are 
positive charged therefore they attract the acidic stain (Eosin-Y). Their final color 
after staining ranges between several shades of red. There also exists granules that 
attract portions of every stain of the solution (i.e., Eosin-Y, Azure-B and 
Methylene Blue). Their final color ranges between purple and red and are known 
as neutrophil grains [46]. The staining effects of MG-G stain are summarized in 
[Table 2]. 
 

 
Figure 2.42: Peripheral blood smear stained with MG-G. 
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Component 
Stain 

Nucleoli Nucleus Cytoplasm 

Eosin-Y --- 
Chromatin (DNA, 
RNA, Proteins) 

Hemoglobin 
Eosinophil Granules 
Neutrophil Granules 

Azure-B RNA 
Chromatin (DNA, 
RNA, Proteins) 

Basophil Granules 
Neutrophil Granules 

Methylene Blue RNA 
Chromatin (DNA, 
RNA, Proteins) 

Basophil Granules 
Neutrophil Granules 

Table 2: MG-G staining effects on blood cells components. 
 
2.3.5.2 Microscopy Examination Procedure 
After staining protocol, samples are ready for examination under microscope 
following a predetermined procedure. During this process [4]: 

• First, a low magnification objective (5x – 10x) is selected, to achieve a large 
field of view from the smear. The smear is scanned horizontally, in order 
to locate the point where monolayer of blood cells begins (i.e. areas where 
blood cells are not overlapped) [Figure 2.44]. 

• Then, a higher magnification objective (20x – 30x) is selected, to locate 
areas with relatively high concentration of WBC. 

• After locating desired region of interest, a high magnification objective 
(>40x) is selected, in order to have a clear and detailed image of cells’ 
morphology. 

• Finally, the last step is repeated, in a “meander-like” movement [Figure 
2.43], until the whole smear gets scanned. 

  

 
Figure 2.43: Meander-like movement, during examination of blood smears. 
 

 
Figure 2.44: Examination areas of a blood smear. 
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3 Method for Measuring and Enhancing 
Imaging Resolution in Microscopy 

 
As explained in Chapter 2, every electro-optical imaging system (such as 

light or fluorescence microscopes), has limited imaging resolution due to physical 
phenomena (such as diffraction), as well as due to technical imperfections (e.g. 
poor focus, color aberrations, etc.). 
However, unsupervised and computational diagnostic procedures that are based 
on examination of cells’ morphology and pixel-level spectral imaging, as the one 
developed in this thesis, requires spectral and color images of superior resolution, 
in order to provide precise and highly accurate analytical and classification results. 
For those reasons, a novel method was developed for measuring and afterwards 
using that knowledge for enhancing microscopy imaging, in terms of optical 
resolution. 
 

3.1 MTF Estimation via Slanted Edge Analysis 
 

The standardized method in industry and academia [47] for measuring 
Modulation Transfer Function of EO imaging systems is based on the analysis of 
slanted edge [12]. As slanted edge is defined a resolution test target, originally 
developed by United States Air Force, which contains a dark squared area with 
sharp edges tilted in front of a bright background and with respect to the 
horizontal and vertical imaging planes. The optimal orientation [47] of the slanted 
edge is between 2o to 5o degrees [Figure 3.1]. 
 

 
Figure 3.1: Example of a slanted edge target. 
 
3.1.1 Method’s Analysis 
 

The underlying idea behind analysis of slanted edge can be most clearly 
seen by considering an example from area of electronics. The MTF (in the sense 
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of a plot of modulation against spatial frequency) is quite parallel to the matter 
of the “frequency response” of an electronic amplifier, where the gain of the 
amplifier is calculated as a function of frequency. 
The classical technique for determining the frequency response involves presenting 
the amplifier with signals of known voltage at different frequencies, and in each 
case, measuring the output power. But there is a way to determine this with a 
“one shot” test by submitting to the amplifier what is called an impulse. When 
this is done, a certain waveform comes out of the amplifier. It is called the impulse 
response of the amplifier and from this waveform is determined the entire voltage 
gain function (gain as a function of frequency) because the impulse contains energy 
at all frequencies (in theory, up to infinity), with a uniform distribution.  
Now, if the Fourier transform of the output waveform is taken, the result is a 
description of the frequency content of that waveform. Given that the input signal 
contains “all frequencies”, uniformly, that description will be the voltage gain 
function (or “voltage frequency response”). However, because an “impulse response” 
is impractical to get applied on an electronic system, variation of that theme is 
used, where instead of using an impulse as input it is used a step function. 
Similarly, in case of EO imaging systems, a “zero-width” bright line, is the optical 
equivalent of the impulse in the electronic scenario. Unless the EO system has 
“infinite resolution”, the image of that line on the focal plane will be a pattern of 
non-zero width, across which the illuminance varies in some way. This is called 
the Line Spread Function (LSF) of the EO system. By taking its Fourier 
transform, occurs the modulation as a function of spatial frequency (i.e., the 
MTF).  
However, this “zero width” line is impractical to make, so an appropriate test 
target is used that is black up to a straight-line boundary and white beyond it - 
the optical equivalent of the electrical step function (i.e. a sharp edge). The plot 
of illuminance across that boundary is called the Edge Spread Function (ESF) of 
the EO system. By measuring this illuminance pattern and taking its first 
derivative, it occurs the same LSF that described previously. Afterwards by taking 
its Fourier transform, it occurs again the MTF but through a different way, as 
depicted in [Figure 3.2]. 
 

 
Figure 3.2: Calculation procedure of MTF using a slanted edge target. 
 
One last challenge to address is the fact that the imaging sensor is not capable to 
discern illuminance pattern of the ESF with sufficient resolution. As depicted in 
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[Figure 3.3], a hypothetical ESF profile (left) that is projected on to an imaging 
sensor plane (right), lacks serious precision to its representation, due to the finite 
number of pixels alongside direction of edge pattern. One way to overcome this 
problem is by increasing the number of pixels, in order to achieve higher 
resolution. 
 

 
Figure 3.3: Real edge (left) and imaged edge (right). 
 
Alternatively, using a slanted version of the edge [Figure 3.4] (i.e. the case of 
slanted edge analysis) gives the ability to project a different aspect of the edge on 
every row of pixels (assuming that the edge is identical alongside its vertical 
dimension). Afterwards, binning pixels vertically into equal sized groups and using 
these groups as new pixel intensities [Figure 3.4], gives a super-resolved estimation 
of the ESF, which is sufficient for accurate estimation of system’s MTF. 
 

 
Figure 3.4: Projection of a slanted edge on sensor plane. 
 
3.1.2 Method’s Algorithm 
 

The algorithm of slanted edge MTF estimation method is consisted of ten 
different steps as presented in the flowchart of [Figure 3.6]. 
Initially, the algorithm receives as inputs a captured image of the slanted edge 
target, on which a desired Region of Interest (ROI) is selected, in order to apply 
the analysis, as well as the pixel size of the sensor, in order to calculate the Nyquist 
frequency of the system (i.e. the upper resolution limit). An appropriate ROI is 
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selected by the user, that contains an equally spaced black and white area of the 
imaged target, with slope between 2o to 5o, contrast of 1:4 minimum and without 
saturated pixels. Before proceeding to calculations, if the target’s image is colored, 
the luminance information must be extracted (i.e., convert it to grayscale), using 
the equation of {3.1}. 
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 0.213 ∙ 𝑅𝑅(𝑥𝑥,𝑦𝑦) + 0.715 ∙ 𝐺𝐺(𝑥𝑥, 𝑦𝑦) + 0.072 ∙ 𝐵𝐵(𝑥𝑥,𝑦𝑦) (3.1) 
 
where x, y are pixels coordinates and R, G, B are the channels of the color image. 
Afterwards, the 1st derivative of the selected ROI is computed, by applying a 1D 
kernel {3.2} on every row of pixels, in order to find the pixels where the edge is 
located. 
 

1𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = [−0.5 0.5] (3.2) 
 
Since the pixels of the edge are not located on the same column (because the edge 
is slanted) and that the 1st derivative does not return only one non-zero value 
alongside the direction of the edge, then the centroid of each row of pixels is 
computed as in {3.3}, and a line is fitted through the locations of these centroids.  
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 =
∑ 𝑖𝑖 ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖,𝑗𝑗)
𝑗𝑗
1

∑ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖,𝑗𝑗)
𝑗𝑗
1

(3.3) 

 
where i are rows and j are columns of pixels in edge’s image. 
Using this line to locate the edge, the pixels’ values on both sides of the edge are 
projected as a 1D plot along the edge direction and binned in four groups of pixels 
for every column of the selected ROI. This projection represents a super-resolved 
plot of the edge, which correspond to the ESF. Then, applying again the 1st 
derivative kernel of {3.2} on this ESF, the corresponding LSF is extracted. Finally, 
calculating the Discrete Fourier Transform of the LSF and taking its modulus, 
gives the desired MTF estimation. Those steps are depicted via images and plots 
of [Figure 3.5]. 
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Figure 3.5: Visual representation of MTF estimation algorithm. 
 
It must be noted that an important parameter for the correct estimation of MTF 
in terms of spatial frequencies, is that the total magnification factor of the system 
must be taken into consideration. MTF without considering magnification 
represents the transferred modulation in terms of spatial frequency on the image 
plane (i.e. sensor plane). In order to “translate” those spatial frequencies to the 
real plane (i.e. object/target plane), spatial frequencies must be multiplied with 
the total magnification factor of the system. 
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Figure 3.6: Flowchart of slanted edge MTF algorithm. 
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3.1.3 Algorithm Implementation 
 

The algorithm of slanted edge MTF estimation method has been developed 
as a standalone program, using Mathworks Matlab R2016b. The program receives 
as inputs the desired image of the slanted edge target, the pixel size of the imaging 
sensor and the total magnification factor of the EO system.  
Afterwards, the user is called to define an appropriate ROI on the target’s image 
and then the program executes the algorithm of subsection 3.1.2., in order to 
calculate the MTF curve of the system. Alongside with the MTF curve, the 
resolved resolutions of the system at 50% and 15% of modulation (in lp/mm), on 
object plane (i.e. on target) as well as on image plane (i.e. on sensor), are 
calculated. An example of the execution flow of the developed program is depicted 
in [Figure 3.7].  
 

 
Figure 3.7: Execution flow of slanted edge MTF program. 
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3.1.4 Evaluation of Implementation 
 

For the evaluation of the accuracy of the developed program, a series of 
experimental measurements were conducted, using a real scientific light 
microscope, with known resolution through manufacturer’s datasheet. The 
program’s accuracy was examined in terms of calculated resolution and 
measurements repeatability with existence of noise. 
The microscope used was a Zeiss Axio Scope A1 Series [Figure 3.8] combined with 
three Zeiss EC Plan-Neofluar objectives of 5x, 10x and 40x magnification [Figure 
3.9]. As target, a custom-made slanted edge MTF target for microscopes was used, 
manufactured by Thor Labs [Figure 3.10]. This target had a 5o slanted and L-
Shaped pattern of edge that is ISO 12233:2014 compatible. It was printed on a 
soda lime glass using photolithography method and chrome-on-glass as design 
material, that allows a printing precision of 0.1μm enough even for a 40x objective 
with 0.5μm resolving power. This target was used for every slanted edge MTF 
measurement with microscope, in this thesis. 
   

 
Figure 3.8: Zeiss Axio Scope A1 Series. 
 

 
Figure 3.9: Zeiss EC Plan-Neofluar objectives. 
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Figure 3.10: Custom-made slanted edge MTF target for microscopes by Thor 
Labs. 
 
According to manufacturer’s datasheet [48], the microscope’s maximum 
resolutions (where MTF tends to zero) in μm and lp/mm on object plane (i.e. on 
target) as well as on image plane (i.e. on sensor) for every tested objective are 
summarized in [Table 3].  
 

Resolution 
Objective 

μm (object 
plane) 

lp/mm 
(object 
plane) 

μm (image 
plane) 

lp/mm 
(image 
plane) 

Zeiss EC Plan-
Neofluar 5x 

1.8 555.56 9 111.12 

Zeiss EC Plan-
Neofluar 10x 

1.1 909.09 11 90.9 

Zeiss EC Plan-
Neofluar 40x 

0.5 2000 20 50 

Table 3: Resolutions of Zeiss EC Plan-Neofluar objectives based on 
manufacturer. 
 
In comparison, the maximum resolutions estimated using the developed program 
are summarized in [Table 4]. As depicted, the estimated resolutions are almost 
identical to those in manufacturer’s datasheet, with a maximum deviation of 8.3% 
for maximum magnification power. Those minor deviations are expected because 
the program calculates as maximum resolvable power the frequencies where MTF 
equals to 5%, which expected to be slightly less than manufacturer’s calculated 
resolution (where MTF tends to zero). 
 

Resolution 
Objective 

μm (object 
plane) 

lp/mm 
(object 
plane) 

μm (image 
plane) 

lp/mm 
(image 
plane) 

Zeiss EC Plan- 1.91 523 9.55 105 
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Neofluar 5x 
Zeiss EC Plan-
Neofluar 10x 

1.13 880 11.3 88 

Zeiss EC Plan-
Neofluar 40x 

0.54 1840 21.6 46 

Table 4: Measured resolution of Zeiss EC Plan-Neofluar objectives with 
developed program. 
 
Finally, the developed program has been tested for the repeatability of its 
measurements with existence of noise. The analysis ran in five captured frames of 
the same target for every one of the three objectives. Those frames were captured 
with 30 seconds delay between each other and all the parameters of the 
experimental setup were unaffected.  
As depicted in [Figure 3.11], [Figure 3.12] and [Figure 3.13], the calculations of 
MTF are almost identical between different frames (every color represents a 
different frame) and any differences exist for modulation values greater than 5%, 
where the fine details of the image are irresolvable and any information are due 
to the sensor’s electronics noise. 
 

 
Figure 3.11: MTF measurements repeatability for 5x objective. 
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Figure 3.12: MTF measurements repeatability for 10x objective. 
 

 
Figure 3.13: MTF measurements repeatability for 40x objective. 
 

3.2 Deconvolution for Enhancing Microscopy 
Imaging Resolution 

 
Since its introduction in 1983, deconvolution microscopy has become a key 

image processing tool for visualizing the cellular structures of fixed and living 
specimens in three dimensions and increase microscopes imaging at a sub-
resolution scale. The last 20 years have seen the development of many different 
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applications based on deconvolution microscopy, including a wide variety of 
optical setups and deconvolution methods, such as Wiener filtering, nearest 
neighbors’ estimation algorithms, constrained iterative algorithms, statistical 
algorithms and blind deconvolution algorithms [49].  
As deconvolution microscopy provides, in essence, a means of overcoming the 
limits and distortions of optical microscopy, in this thesis Wiener deconvolution 
is employed, as a non-iterative and fast algorithm to enhance microscopy images, 
a key preparatory step for acquiring spectral and color images of superior 
resolution.  
A crucial parameter for the characterization of any EO imaging system and a 
preliminary task for image deconvolution in microscopy, is the appropriate 
determination of PSF [49]. The PSF can be determined in three ways, namely 
experimental, theoretical and analytical [50]. In the experimental approach, 
fluorescent sub-resolution microspheres are used for this purpose [51], a method 
applicable only to fluorescence and confocal microscopy. This is methodologically 
difficult to do and such microspheres are not usable in brightfield and darkfield 
microscopes. The theoretical determination, in turn, responds to a set of 
mathematical equations that describe the physical model of the optics, as studied 
indicatively in [52] [53] [54]. The model’s parameter values are filled with the 
instrument data-sheet and the capture conditions. The modeling of certain 
aberrations and the absence of noise are its main advantages, however complex 
optical setups cannot be modeled accurately. The third way to determine PSF 
was originated from parametric blind deconvolution algorithms; it has the 
advantage of estimating the model parameters from real data, but again some 
knowledge about the PSF is necessary [55]. 
Thus, we developed and present, for the first time in the relevant literature to the 
best of our knowledge, a novel method for extracting the complete two-
dimensional PSF of an optical microscope experimentally, based on a single 
measurement of one-dimensional MTF curve, alongside with the experimental 
compensation of noise effects during the process of deconvolution. 
 
3.2.1 Wiener Deconvolution Model 
 

Wiener deconvolution [56] is an application of the Wiener filter to the noise 
problems inherent in deconvolution. It is utilized in the frequency domain, given 
by the DFT of the image and attempts to minimize the impact of deconvolved 
noise at frequencies, which have a poor signal-to-noise ratio (SNR). 
The mathematical formulation of the Wiener filter is defined as in {3.4}: 
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𝑃𝑃(𝑢𝑢, 𝑣𝑣) =
1

𝑂𝑂𝑂𝑂𝑂𝑂(𝑢𝑢, 𝑣𝑣) · �
|𝑂𝑂𝑂𝑂𝑂𝑂(𝑢𝑢, 𝑣𝑣)|2

|𝑂𝑂𝑂𝑂𝑂𝑂(𝑢𝑢, 𝑣𝑣)|2 + 𝐾𝐾𝑁𝑁𝑁𝑁𝑁𝑁
� (3.4) 

 
where OTF(u,v) is the two-dimensional optical transfer function of the system 
(i.e. the PSF in the frequency domain), u and v are the frequency coordinates and 
KNSR is an a priori calculated constant related to the noise-to-signal ratio of the 
EO imaging system.  
The operation of Wiener deconvolution is relative easy to be perceived. Equation 
in {3.4} contains two fractions; the left fraction outside brackets is the ideal 
inverse filter, as Wiener filter tries to minimize the root mean square error between 
the original and the restored image. As an accurate estimation of OTF is required, 
this RMSE error can be minimized through simple inverse filtering. 
The right fraction inside brackets is for suppression of noise’s effect. Wiener filter 
is unable to reconstruct frequency components that have been degraded by noise, 
but only to suppress them. As the noise increases, the noise-to-signal ratio 
increases too (i.e., the KNSR). Then, the term inside the square brackets drops but 
inversely proportional to the magnitude of frequency components.  
High signal-to-noise ratio will result to high attenuation in corrupted frequencies 
and low signal-to-noise ratio will result to low attenuation. However, if there is 
zero noise (i.e. zero noise-to-signal ratio), the term inside the square brackets 
always equals to 1, which means that the Wiener filter is simply the inverse of the 
system, as expected. 
Finally, the restored image is defined as the Inverse Discrete Fourier Transform 
of {3.5}: 
 

𝑅𝑅(𝑢𝑢, 𝑣𝑣) = 𝐼𝐼(𝑢𝑢, 𝑣𝑣) ∙ 𝑃𝑃(𝑢𝑢, 𝑣𝑣) (3.5) 
 
where R(u,v) is the restored image in frequency domain and I(u,v) is the degraded 
image in frequency domain. 
 
3.2.2 Two-Dimensional OTF Extraction Method 
 

The MTF determined by slanted edge analysis is one-dimensional. 
However, to restore images based on PSF compensation (or OTF according to 
{2.1}, if working in frequency domain), a two-dimensional approach must be 
employed. As explained in subsection 2.1.2., in cases of well-corrected optical 
systems (i.e. mainly existance of defocus and color abberations) that are 
illuminated by incoherent light sources, the OTF is considered as symmetric and 
real for all spatial frequencies and thus, the imaginery part of  OTF is negligible 
[5]. Based on that, one-dimensional MTF equals to one-dimensional OTF and 



 
 
Method for Measuring and Enhancing Imaging Resolution in Microscopy 60 

thus, the two-dimensional OTF can be determined by multiplying the vertical-
orbit MTF by horizontal-orbit MTF detractively [57], using {3.6}: 
 

𝑂𝑂𝑂𝑂𝑂𝑂(𝑢𝑢, 𝑣𝑣) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑣𝑣 ∙ 𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢 (3.6) 
 
where MTFu is the MTF value at spatial frequency v and MTFv is the MTF value 
at spatial frequency v. Due to OTF symmetry, vertical and horizontal MTFs are 
equal each other.  
Before multiplication of {3.6} the MTF values must be mirrored beyond the 
Nyquist frequency, as OTF spectrum is symmetrical around its DC component 
(i.e. its zero frequency). In adittion, the MTF values below 5% of modulation are 
smoothed with smoothing spline [59], as any fluctuations in MTF values are 
existed due to the influence of noise. The steps of this method are presented in 
[Figure 3.14]. 
 

 
Figure 3.14: Visual representation of 2D OTF estimation method. 
 
3.2.3 Noise to Signal Ratio Estimation Method 
 

The amount of noise in microscopy images, can be estimated using the 
following experimental approach. It is known that NSR is defined as the ratio of 
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power of a signal (meaningful information) and the power of background noise 
(unwanted signal), as in {3.7}.  

𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

(3.7) 

 
In the case of imaging, undesirable signal is the deviation of pixel values due to 
imaging sensor’s noise and the meagingful information is the pixel values of the 
imaged object. Thus, an alternative approach to definition of NSR is as the 
reciprocal of the coefficient of variation, i.e., the ratio of standard deviation to 
mean, of an imaged test field [58], as in {3.8}. 
 

𝑁𝑁𝑁𝑁𝑁𝑁 =
𝜇𝜇
𝜎𝜎

(3.8) 

 
where μ is the signal mean or expected value and σ is the standard deviation of 
the noise. In this thesis, a direct way to calculate this ratio is by imaging an empty 
field through microscope, where the signal mean is simply the average value of 
pixels intensity of the empty imaged field and standard deviation of the noise is 
the standard deviation of the pixels intensities around the mean value, due to the 
sensor’s noise. One important point for the accuracy of the measurements is that 
the imaged field must be flatted (i.e., there must be no variations to pixels 
intensities due to different distribution of illumination, field of view, etc.). After 
calculating NSR using this method, is simply employed in equation {3.4} of 
Wiener Filter as KNSR constant. 
 
3.2.4 Implementation and Results 

 
The method described previously was developed as a standalone procedure, 

using Mathworks Matlab R2016b, combined and tested using a prototype 
microscope setup, with brightfield, spectral and fluorescence imaging capabilities 
along with a zoom-based magnification via a single objective. This is the Lumnia 
Series BF-FL-Hem Multi-Modal Microscope developed by Holoptica P.C. and 
depicted in [Figure 3.15]. 
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Figure 3.15: Lumnia BF-FL-Hem Multi-Modal microscope by Holoptica P.C. 
 
This microscope provides together with the captured images, information about 
the overall magnification power of the system, the camera settings (i.e., gain in 
dB and shutter in ms) and the wavelength of illumination. In the developed 
program, the standalone procedure was calibrated for differenent magnifications, 
wavelengths and camera settings, in order to provide completely unsupervised 
deconvolution results. 
 
3.2.4.1 OTF Calibration over Magnifications and Wavelengths 
Calibration was performed for optical magnifications ranging from 10x up to 24x, 
in which the fine details retrieved by the Lumnia Microscope are visible for further 
resolution enhancement and the Field of View (FOV) is enough to have flat 
illumination across the whole image. 
The calibration of the proposed method is based on a priori calculated one-
dimensional MTF curves, across consequence magnifications and for every 
wavelength of illumination available from the microscope’s LED light source. 
Those MTF curves are stored into look-up tables, that are available during 
initialization phase of method’s execution, and based on that the corresponding 
two-dimensional OTF is calculated using {3.6}.  
The one-dimensional MTF curves had been estimated using the implementation 
of subsection 3.1.3 and the custom-made slanted edge of [Figure 3.10]. MTF was 
measured experimentally, for magnifications between 10x - 24x and using a step 
of 0.5x approximately, as depicted in [Figure 3.16]. Afterwards, based on measured 
modulation values and for every spatial frequency up to Nyquist Limit, the 
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intermediate values of modulation were estimated, using cubic spline data 
interpolation [59]. This procedure provided a detailed estimation of MTF curve 
for every possible magnification of the microscope (specifically, for every different 
ADC value of microscope’s zoom sensor).  
In addition, this calibration procedure had been executed for every wavelength of 
illumination separately (i.e., for 465nm, 505nm, 530nm, 600nm, 640nm, 685nm), 
as well as for every one of the three sensor’s channels using broadband white LED. 
Finally, before storing MTF curves into look-up tables, an appropriate smoothing 
spline [59] was applied for frequencies where modulation was less than 5%, in order 
to reduce the effect of noise in MTF measurements as explained in subsection 
3.1.4, while preserving MTF dropping trend.  
 

 
Figure 3.16: Measuring of MTF on Lumnia Microscope. 
 
The outcome of the described calibration procedure were six two-dimensional look-
up tables (i.e., one for every monochromatic LED), where rows are the modulation 
values for frequencies up to Nyquist Limit and columns are the different 
magnifications of the microscope. An additional three-dimensional look-up table 
was calculated for the broadband white LED, where the third dimension 
represents the three different channels of the imaging sensor. An example of 
measured MTF curves between 10x to 24x with the corresponding interpolated 
MTF curves using the proposed procedure, are depicted in [Figure 3.17] and 
[Figure 3.18] respectively. 
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Figure 3.17: Measured MTF curves across different magnifications, using 530nm 
LED. 
 

 
Figure 3.18: Interpolated MTF curves across different magnifications, using 
530nm LED. 
 
3.2.4.2 KNSR Calibration over Camera Sensor Gains and Channels 
As explained in subsection 3.2.1, Wiener filter contains an appropriate additive 
parameter for minimizing the impact of deconvolved noise at frequencies where 
NSR is poor. This parameter, the KNSR constant, had been estimated using the 
method described in subsection 3.2.3. 
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The calibration is based on a priori measured values of KNSR for different gain 
settings of the imaging sensor, which is the main source of noise [60]. In addition, 
as the imaging sensor of Lumnia Microscope is colored and it is known that every 
channel has different response to gain settings (i.e., different amount of noise per 
channel), the corresponding KNSR had been measured across consequence gain 
settings, for every different wavelength of illumination and for every sensor’s 
channel separately. Those KNSR values are stored into look-up tables again, that 
are available during deconvolution phase of execution. 
KNSR was measured experimentally, for gains between 0dB – 200dB and using a 
step of 10dB. Afterwards, based on measured KNSR values, the intermediate values 
were interpolated, using cubic spline data interpolation [59]. This procedure 
provided a detailed estimation of KNSR curve for every possible gain setting of the 
microscope’s imaging sensor. 
The outcome of the described calibration procedure were seven two-dimensional 
look-up tables again (i.e., one for every monochromatic LED and one for the 
broadband white LED), where rows are the KNSR values for gain settings up to 
200dB and columns are the three different channels. An example of measured 
KNSR curves between 0dB to 200dB using the broadband white LED, is depicted 
in [Figure 3.19]. 
 

 
Figure 3.19: Measured KNSR curves across different gain settings, using 
broadband white LED. 
 
3.2.4.3 Method Implementation and Flowchart  
The developed program, except its usability as an add-on procedure via Matlab 
functions callbacks, it provides a graphical user interface [Figure 3.20]. The 
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program receives as input the desired image for resolution enhancement, that was 
captured using the Lumnia Microscope. It retrieves the corresponding illumination 
wavelength, gain setting and the total magnification factor of the system during 
acquisition, that are stored in a text file with the image. Afterwards, the program 
executes the procedure as depicted in flowchart of [Figure 3.21] and it displays 
the deconvolved image alongside with the initial image. Finally, it provides the 
options to store the result and to visualize the corresponding 3D surface plot of 
PSF used during deconvolucion. 
 

 
Figure 3.20: Program execution for enhancing imaging resolution in microscopy. 
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Figure 3.21: Algorithm flowchart for enhancing resolution in microscopy. 
 
3.2.4.4 Brightfield and Fluorescence Deconvolution Examples 
The proposed procedure has been evaluated with real microscope samples, in color, 
spectral and fluorescence imaging modes. In the case of color imaging, a sample 
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of MG-G stained peripheral blood smear was imaged using the broadband white 
LED and in the case of spectral imaging using the 530nm LED. Additionally, in 
the case of fluorescence, a stained sample of cell series with Alexa 555 fluorophore 
was imaged, using a narrowband LASER light source at 532nm excitation 
wavelength. Three visual examples of resolution enhancement using the proposed 
deconvolution method are presented in [Figure 3.23], [Figure 3.22] and [Figure 
3.24]. 
 

 
Figure 3.22: Deconvolution results on spectral image of 530nm. 
 

 
Figure 3.23: Deconvolution results on color image. 
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Figure 3.24: Deconvolution results on fluorescence image of 532nm excitation 
wavelength. 
 
In addition, in order to evaluate the performance of our algorithm in terms of 
optical resolution quantitatively, brightfield and spectral images captured at four 
different magnifications were deconvolced. The corresponding resolutions were 
compared in terms of lp/mm at 50% of modulation using slanted edge analysis, 
between original and deconvolved images. The results are presented in [Table 5].  
It is depicted that the proposed method is capable of enhancing the imaging 
resolution of the microscope beyond its optical limits, at least by 111% in terms 
of retrieved optical resolution and thus reveals important features of the samples 
(such as, organelles of cells nucleus and fine cytoskeletal structures). This sets a 
solid basis to produce spectral and color images of superior resolution, in order to 
provide precise and highly accurate analytical and classification results for 
leukemia samples, using the method developed and presented in Chapter 3. 
 

Magnification 
530nm LED White LED 

Original 
(lp/mm) 

Deconvolved 
(lp/mm) 

Improvement 
(%) 

Original 
(lp/mm) 

Deconvolve
d (lp/mm) 

Improvement 
(%) 

20.5x 369 943 156% 389 820 111% 
21.4x 356 877 146% 363 813 124% 
23x 338 862 155% 358 798 123% 

23.8x 310 855 176% 333 785 136% 
Table 5: Quantitative results of the proposed method for enhancing imaging 
resolution in microscopy (all resolutions correspond to object plane). 
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4 Method for Improving Leukemia 
Diagnosis 

 
The diagnosis of leukemia relies upon a multiparametric approach involving 

a number of different examinations. Nowadays, common diagnostic procedures for 
identification of leukemic abnormalities are based on routine morphological 
examination and evaluation of peripheral blood and bone marrow samples, along 
with repeated complete blood counts (CBC), differential blood counts (DBC) and 
clinical observations of the symptoms. In addition, more advanced and sensitive 
diagnosis is conducted through identification of immunologic, cytogenetic and 
molecular characteristics, which are increasingly employed to help refine diagnosis, 
establish prognosis and determine the most appropriate treatment, including 
rational therapies targeting the underlying genetic lesion [61].  
However, morphological distinctions of the abnormal WBCs using light 
microscopy, remains the mainstream examination modality to identify and classify 
different types of leukemia, along with cytochemistry tests and flow cytometry 
procedures [62]. On the other hand, pathologists’ criteria for leukemias diagnosis 
based on light microscopy images, are mostly qualitative and highly depended to 
their expirience and their analytical skills. This fact may lead to errors, albeit 
infrequently in modern times, either in the diagnosis or classification of leukemia 
[6]. A misdiagnosis of leukaemia subjects patients to the risks of cytotoxic therapy 
and the risk of mistakes is reduced by a collaborative approach to diagnosis in 
which there is systematic clinical and morphological review of all possible cases of 
leukemia by senior members of staff and by recognising the circumstances in which 
diagnostic problems may occur.  
In the past, several studies tried to identify the spectral signatures of the WBCs 
across various types of leukemia, in order to improve its diagnostic accuracy. 
Indicatively, studies were conducted for spectral morphometric characterization 
of abnormal lymphocytes in CLL [63], for identification of “blastic cells” using 
color images analysis [64], or even for spectral characterization of ALL in 
childhood [43]. 
It is understandable that the development of a computational method, based on 
spectral examination of blood cells, is capable to provide highly accurate 
quantitative parameters for improving leukemia diagnosis. Thus, for the first time 
in the relevant literature to the best of our knowledge, we developed and introduce 
a method that identifies and indicates “blastic cells” and differentiates normal from 
abnormal lymphocytes, which are present in ALL and CLL diseases respectively, 
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based on novel quantitative spectral indices of peripheral blood smears, measured 
using optical light microscopy. 

 

4.1 Presentation of Microscope System 
 

As presented in subsection 3.2.4., the microscope setup where the proposed 
method developed, deployed and tested is the Lumnia Series BF-FL-Hem Multi-
Modal Microscope as depicted in [Figure 3.15]. This microscope has a multi-
wavelength tunable LED light source, which combined with a six-megapixel 
imaging sensor, creates an excellent setup for spectral imaging on peripheral blood 
smears.  
Along with the microscope, a prototype spectral unmixing program for estimating 
the pseudocolor images of concentrations for every component on samples stained 
with MG-G, has been developed in the past [65] [66]. This program utilizes the 
SIMPLS algorithm presented in subsection 2.2.2.2, in order to calculate the 
concentrations for every one of the three components (i.e., Methylene Blue, Azure 
B, Eosin Y) with pixel-level accuracy. The microscope is capable to acquire 
spectral images on 465nm, 505nm, 530nm, 600nm, 640nm and 685nm, the exact 
same wavelengths where the SIMPLS algorithm has the greatest weights for 
estimating the concentrations of MG-G components, as studied and developed in 
[66].  
In addition, a seventh spectral band of 980nm is employed, in order to measure 
the transmitted light I0, for precise application of Beer Lambert’s Law as analyzed 
in subsection 2.2.2.3 and as presented in [65]. The outcomes of the aforementioned 
program are three monochrome pseudocolor images (i.e., one for every stain 
componenent) with pixel intensities between 0 to 255, which correspond from the 
lowest to the highest possible concentrations of these components on the sample 
[Figure 4.1]. These pseudocolor images along with the six spectral images were 
used as inputs to the proposed method. 
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Figure 4.1: Spectral unmixing procedure and concentrations estimation, using 
SIMPLS algorithm, on MG-G stained samples. 
 

4.2 System Training with Experimental MG-G Stain 
Mixtures 

 
A critical step before proceeding to the development of the proposed method, 

was the appropriate training of the system (i.e., of the spectral unmixing 
program), with an experimental dataset of absorbance spectra based on real 
mixtures of the MG-G components, which are used by hematologists. Originally, 
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the spectral unmixing program was trained based on bibliographic absorbance 
spectra of the Methylene Blue, Azure B and Eosin Y components separately [66], 
and based on those spectra the corresponding spectra of their mixtures had been 
estimated algorithmically, in order to simulate different mixtures of the 
components. 
In this thesis, in order to achieve precise training of the system, we ordered [67], 
[68], [69] and prepared in the lab, mixtures of the exact same components that are 
used by the hematologists, when applying the MG-G staining protocol. The 
experimental design used, was the Full Factorial Design [31] according to which 
the response variables (here the absorbances) are measured for all possible 
combinations of highest and lowest concentrations of the components.  
The number of possible combinations, in order to form an experimental dataset 
according to full factorial design is 2m where m is the number of factors (i.e., 
number of components). A more representative example of full factorial design for 
three components is displayed in [Table 6]. For the highest possible concentration, 
'H' was set and for the lowest admissible one 'L', which correspond to 
concentrations that gives absorbance of 0.9 and 0.1 respectively (in order to be 
within the linear limits of Beer Lambert’s Law as explained in 2.2.2.3). 

 
Combination Methylene Blue Azure B Eosin Y 

1 H H H 
2 H H L 
3 H L H 
4 H L L 
5 L H H 
6 L H L 
7 L L H 
8 L L L 

Table 6: Full Factorial Design for MG-G components. 
 
Additionally, along with the eight combinations of the above mixtures, the 
absorbance spectra of every component were measured separately and for 
concentrations that have absorbance between 0.1 and 0.9 and with a step of 0.1. 
These 27 pure absorbance spectra (9 spectra for every of the 3 components in MG-
G), along with the 8 mixtures absorbance spectra, were used as experimental 
training set for the SIMPLS algorithm, in order to calculate the B regression 
coefficients matrix in {2.11}, with high accuracy. 
The laboratory setup [Figure 4.2] that was used for measuring these absorbance 
spectra was employed two halogens lamps with emission spectrum from 400nm up 
to 1000nm and an Ocean Optics USB4000-VIS-NIR spectrometer [70] that is 
sensitive to measure between 350nm and 1000nm.  
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Figure 4.2: Laboratory setup for measuring MG-G components absorbance 
spectra. 
 
Finally, in [Figure 4.3], [Figure 4.4] and [Figure 4.5] are presented the measured 
pure absorbance spectra of Methylene Blue, Azure B and Eosin Y respectively 
and in [Figure 4.6] the measured absorbance spectra of the mixtures that resulted 
according to full factorial design. 
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Figure 4.3: Methylene Blue measured absorbance spectra. 
 

 
Figure 4.4: Azure B measured absorbance spectra. 
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Figure 4.5: Eosin Y measured absorbance spectra. 
 

 
Figure 4.6: MG-G components mixtures measured absorbance spectra. 
 

4.3 Method for Identification and Separation of 
Blood Cells 

 
The first part of the developed procedure performs identification and 

separation of WBCs and RBCs in a blood smear under microscope examination 
and it decomposes WBCs in their two primary components (i.e., the nucleus and 
the cytoplasm) for further examination as presented in subsection 4.4. In addition, 
it performs and provides CBC statistics for WBCs and RBCs, giving an immediate 
knowledge for the amount of the basic blood cells in the examined hematological 
sample. A detailed flowchart of the proposed method is presented in [Figure 4.7], 
followed by a detailed analysis of every module separately. 
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Figure 4.7: Flowchart of blood cells identification and separation method. 
 
The proposed method is composed from four processing modules, each one of them 
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performing distinct steps towards the precise estimation of critical masks and 
information for the analysis and classification performed next. The method 
receives eleven inputs; the color image, the six spectral images, the three 
pseudocolor images and the overall magnification with which the area under 
examination had been captured. 
 
4.3.1.1 WBCs Nuclei Binary Mask Estimation Module 
The first module of the proposed method estimates a binary mask that indicates 
the nuclei of the lymphocytes. This is accomplished by fusion of spectral 
information available in images captured at 465nm, 530nm and 685nm.  
On 465nm, the observed differences between the red blood cells and the 
lymphocytes are minimal. Hemoglobin of red blood cells absorbs almost the same 
amount of light as the nuclei and cytoplasm of lymphocytes. The 530nm is a key 
spectral band of the analysis. The WBC’s nucleus absorbs strongly and thus 
becomes dark and formed clearly. The RBCs are darkened too, as Eosin Y works 
as a counterstain, but the real change is on the nucleus of the WBCs. Finally, at 
685nm only some parts of the WBCs remain relative dark due to absorbance of 
nucleus chromatin (stained with Methylene Blue), while the RBC have again 
similar absorbance as in 465nm. 
Combining these three spectral images as in {4.1}, an enhanced image of WBCs 
nuclei is estimated as depicted in [Figure 4.8]. Afterwards, using an appropriate 
thresholding technique, a binary mask that indicates the exact location of WBCs 
nuclei is exported. The Maximum Entropy threshold [71] was used, which tries to 
select the appropriate pixel intensity value t, which divides the image in two 
classes, with every class maximizing the metric of entropy in it {4.2}. Thus, the 
one class contains pixels of high intensity values that are close each other (i.e., 
the pixels of WBCs nuclei) and the other class contains pixels of low intensity 
values that again are close each other (i.e., the pixels of the rest image). 
 

𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖, 𝑗𝑗) =
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼465𝑛𝑛𝑛𝑛(𝑖𝑖, 𝑗𝑗) + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼685𝑛𝑛𝑛𝑛(𝑖𝑖, 𝑗𝑗)

2 ∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼530𝑛𝑛𝑛𝑛(𝑖𝑖, 𝑗𝑗)
(4.1) 

 
where i, j are coordinates of pixels. 
 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = −�𝑃𝑃𝑗𝑗 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2�𝑃𝑃𝑗𝑗�
𝑗𝑗

(4.2)  

 
where Pj is the probability that the difference between two adjacent pixels of the 
class is equal to j. 
 
As this procedure may identify small objects of the sample (mostly platelets and 
speckles due to noise), a final step of thresholding is applied at the binary mask. 
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This step rejects connected components with area less than 25MAGN pixels, 
which relate to 8 pixels connectivity. Here, the total magnification of the system 
is taken into consideration, in order to discard small objects dynamically, as their 
area in pixels cannot be thresholded by a constant, due to the fact that is directly 
proportional to the magnification. Finally, existed “holes” inside detected nuclei 
are filled using 8 pixels encirclement as filling criterion, as they are areas that did 
not identified as parts of nuclei successfully. 
 

 
Figure 4.8: Steps of WBC nuclei binary mask estimation module. 
 
4.3.1.2 Blood Cells Contours Binary Mask Estimation Module 
The second module of the proposed method estimates a binary mask that indicates 
the contours of WBCs and RBCs of the sample. This is accomplished by using 
spectral information available in image captured at 530nm. 
As explained previously, the spectral information available at 530nm is the most 
meaningful, due to the fact that all components of blood are at their peak 
absorbance. Thus, applying a threshold using Otsu’s Method [71] results a binary 
mask that contains the blood’s components separated from the background. 
Specifically, Otsu’s Threshold tries to select the appropriate pixel intensity value 
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t, which divides the pixels of an image into two classes and minimizes the intra-
class variance simultaneously. In the case of the proposed method, the two classes 
contain pixels with high intensity values (i.e., the background) and pixels with 
lower intensity values (i.e., the blood components that absorb light) respectively, 
as depicted in [Figure 4.9]. 
Additionally, as in the first module, a final step of thresholding is applied at the 
binary mask, in order to reject connected components with area less than 
25·MAGN pixels, which are encircled with 8 pixels. Finally, at the remained 
binary image, every pixel that relates to other pixels with 4 pixels connectivity, is 
eliminated. This procedure returns an image that contains only the contours of 
the blood’s components. 
 

 
Figure 4.9: Steps of blood cells contours binary mask estimation module. 
 
4.3.1.3 Complete WBCs and WBCs Cytoplasm Binary Masks 

Estimation Module 
The third module of the proposed method concentrates on the estimation of a 
binary mask that indicates the cytoplasm of WBCs. Due to the previous 
knowledge of WBCs nuclei and blood cells contours, this procedure is almost 
straightforward.  
The logic is to start from the nucleus, which is centered inside WBC and by 
dilating its mask repeatedly, the corresponding binary mask of the complete WBC 
to occur. The repetition of dilation is terminated when a total of 4·MAGN joined 
pixels between the dilated mask and the contour mask is met (i.e., the mask of 
contours acts as a fragment factor for the repeating dilation). This procedure is 
performed for every leukocyte separately, which is easy to do as by having a binary 
mask that contains all WBCs’ nuclei, the different leukocytes can be located as 
many isolated components of this mask [Figure 4.10]. For the procedure of 
dilation, a circular object with radius of 5 pixels was used as structural element. 
A vulnerable aspect of this approach is that for leukocytes with non-circular nuclei 
(such as Neutrophils, Eosinophils, Basophils and Monocytes) may occur 
incomplete masks, due to the dilation of their nuclei’s masks. In order to overcome 
this problem, an additional step is applied, with which a close-up is performed 
around the detected leukocytes. This close-up is based on the calculation of the 
convex hull on the outer perimeter of every leukocyte, which represent the final 
binary mask of the complete WBC, as depicted for the lymphocyte at the bottom 
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of [Figure 4.10]. 
 

 
Figure 4.10: Steps for estimation of complete WBC binary mask. 
 
A final and optional step of this module, that is executed after request of the user, 
performs the further separation of joined leukocytes. It is common in samples of 
CLL, a huge number of leukocytes to be existed, which may be joined on their 
perimeter. The proposed method analyzes and classify every WBC separately, 
thus it is important, the binary mask of WBCs, not to contain joined leukocytes. 
To handle scenarios like that, the proposed method can perform cells segmentation 
by applying the watershed transform [72] on complete WBCs’ binary mask. 
Specifically, as the watershed transform cannot be applied on binary images 
directly, first the distance transform [73] of the complement of the binary mask is 
computed, in order to create texture inside leukocytes, based on pixels’ Euclidean 
distance from the first non-zero pixels on their perimeter. Then, the watershed 
transform is calculated on the image that contains the distances, as depicted in 
[Figure 4.11] and by that, the binary mask is estimated with the separated cells.  
 

 
Figure 4.11: Watershed transform on joined leukocytes. 
 
Along with the binary mask of the complete WBCs, the binary mask of the WBCs 
cytoplasm can be calculated by subtracting the one of the WBCs nuclei from the 
one of the completed WBCs, as in [Figure 4.12]. 
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Figure 4.12: WBC cytoplasm binary mask extraction. 
 
4.3.1.4 RBCs Binary Mask Estimation Module 
The fourth and last module of the proposed method estimates a binary mask that 
indicates the RBCs of the sample. The mask of this module is useful only for 
reasons of cytometry, as explained in the next subsection. 
The extraction of RBCs binary mask is simple relatively, as from module two, an 
initial blood cells binary mask is existed and from module three, a complete WBCs 
binary mask. Thus, using those two masks and subtracting the second from the 
first one, the desired RBCs mask is estimated. 
However, as depicted in [Figure 4.9], for high values of magnification, the 
transmitted light penetrates through the slim central cavity of RBCs and thus 
those areas have pixel intensities almost identical with the background values. 
This phenomenon has as a result the thresholding procedure to fail and the 
extracted binary mask to contain holes in the center of RBCs.  
In order to overcome this problem, an additional step is applied, with which areas 
smaller than 50·MAGN are filled using 8 pixels encirclement as filling criterion, 
while the ability for manual refinement of this threshold is given to the user. 
Afterwards, using the same method of watershed transform as in 4.3.1.4, the joined 
RBCs are separated and finally small objects (such as platelets and speckles due 
to noise) are rejected, if they have area less than 25MAGN pixels. The procedure 
of this module and the corresponding steps are presented in [Figure 4.13]. 
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Figure 4.13: Steps of RBCs binary mask estimation module. 

 

4.4 Method for Stains Uptake Analysis and WBC 
Classification 

 
The second part of the developed procedure performs quantitative analysis 

of the uptake of the MG-G stain’s components on every leukocyte separately. In 
addition, it provides cytometry statistics for the area under examination as an 
approach for conducting basic CBC through microscope images. Finally, based on 
the aforementioned analysis, it classifies the WBC of the lymphoid series 
quantitatively, in classes of lymphoblastic cells, abnormal and normal 
lymphocytes. As in 4.3, first a detailed flowchart of the proposed procedure is 
presented in [Figure 4.14], followed by a detailed analysis of every module 
separately. 
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Figure 4.14: Flowchart of leukocytes classification and stains uptake analysis 
method. 
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4.4.1.1 Cytometry Statistics Calculation Module 
The first module of the proposed method performs a series of calculations that 
correspond to a basic CBC, in terms of WBCs and RBCs amount existed in the 
area under examination. More precisely, it calculates their absolute number, their 
percentage and their amount per square millimeter. As for the last one calculation 
(i.e. number of cells per mm2), the method takes into consideration the current 
magnification and the FOV of the system. These calculations are straightforward 
to be performed, as from the method of blood cells separation, binary masks are 
available that indicate the WBCs and RBCs precisely.   
 
4.4.1.2 Stains Uptake Indices Calculation Module 
The second module is the most important. It performs a complete uptake 
measurement of the MG-G stain’s components (i.e. Methylene Blue, Azure B and 
Eosin Y) on detected WBCs nuclei, with pixel-level accuracy. As the cellular 
differences between blastic cells in ALL, abnormal lymphocytes in CLL and 
normal lymphocytes are indicated in cell’s nucleus mainly, the proposed method 
performs this analysis in pixels that correspond to leukocytes’ nuclei. Since, the 
WBCs nuclei binary mask is available through module presented in subsection 
4.3.1.1, this analysis can be performed directly and with high accuracy.  
For every WBC, five indices are calculated for every MG-G’s component, which 
mapping the uptake behavior in the cell’s nucleus. These indices are: 

• Peak Uptake, which measures the concentration of the stain’s component 
with the higher presence in the nucleus. 

• Peak Percentage, which measures the percent of the nucleus area that has 
the aforementioned peak uptake. 

• FWHM (Full Width at Half Maximum), which depicts how susceptible is 
the cell’s nucleus in the stain’s component. Malignant cells (such those in 
CLL) are expected to have narrower FWHM, in comparison with that in 
normal cells. 

• Mean Uptake, which measures the average concentration of the stain’s 
component in the cell’s nucleus. 

• SD Uptake (Standard Deviation), which describes how much the 
concentrations are diverging from the mean uptake. 

The aforementioned indices are calculated through concentrations provided per 
pixel by pseudocolor images and which take values between 0 to 255. These values 
of pixel intensities are related directly to concentrations expressed in mol/L or M, 
but they are preferred in the calculation procedures. 
 
4.4.1.3 WBCs Classification Module 
The third and last module of the proposed method refers to the classification 
algorithm of leukocytes, based on a subgroup of the aforementioned quantitative 
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uptake indices.  
The proposed algorithm targets to differentiate the abnormal lymphocytes in a 
blood smear from the normal ones and to locate blastic cells (i.e., lymphoblasts). 
That way, users (i.e., hematologists) have except of a set of 15 quantitative indices 
for WBCs and an additional characterization of leukocytes in four classes of 
interest; Normal Lymphocytes, Abnormal Lymphocytes, Lymphoblasts and Other 
WBC. 
As in ALL the presence of lymphoblasts in the peripheral blood is an immediate 
indication of this leukemic abnormality as explained in 2.3.4.1, and the presence 
of abnormal lymphocytes (such as small with clumped chromatin as described in 
2.3.4.2) is an immediate indication of CLL disease, this classification provides an 
instantaneous characterization of the clinical situation of the patient’s sample 
under examination, even in cases when this is not feasible through the judgement 
of doctors.  
The algorithm is consisted of two parts. The first part tries to differentiate the 
leukocytes of lymphoid series (i.e., lymphocytes and lymphoblasts) from the rest 
of the WBC. This is achieved by employing a metric that we call as Lymphoid 
Ratio, presented in {4.3}.  

𝐿𝐿𝑦𝑦𝑦𝑦𝑦𝑦ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
# 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

# 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ℎ𝑢𝑢𝑢𝑢𝑢𝑢
(4.3) 

This ratio takes values from 0 to 1. The numerator refers to the area covered by 
the leukocyte’s nucleus and the denominator refers to the convex hull that encloses 
this area. For cells of lymphoid series, nucleus is expected to be shaped as circular 
or elliptical and thus its convex hull will cover a similar area with the nucleus, 
resulting to a high ratio. On the other hand, in the rest of WBCs (such as 
monocytes and polymorphonuclear granulocytes), the irregular, kidney-shaped or 
lobes-shaped morphology of their nucleus will result to convex hull with significant 
difference in the area from that covered by the nucleus, resulting to a mid to low 
ratio. 
The second part of the algorithm tries to differentiate the normal lymphocytes 
from the abnormal lymphocytes and to identify the lymphoblasts. For the 
lymphoblasts, as it is expected to have lower concentrations of Eosin Y in 
comparison with matured lymphocytes (in [43] is proved that lymphoblasts have 
significant lower absorption in 540nm in comparison with lymphocytes, almost 
the same spectral band where Eosin Y has its absorption peak), the Eosin’s Y 
Mean Uptake will be lower. Thus, the identification is conducted based on this 
parameter. Additionally, as abnormal lymphocytes are characterized from many 
small rims and points of clumped chromatin which is stained with Eosin Y and 
Azure B mainly as presented in [Table 2], the concentrations of these components 
on abnormal lymphocytes nuclei, are expected to be higher. Thus, the 
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differentiation is conducted based on fusion of Eosin’s Y FWHM and Azure’s B 
Peak Uptake indices. The pseudocode of the proposed algorithm is: 

WBC Classifier 
start 

if (Lymphoid_Ratio < 0.88) then 
Class  ‘Other WBC’ 

else 
if (Eosin_Y_Mean_Uptake ≤ 69) then 

Class  ‘Lymphoblast’ 
else 

if (Eosin_Y_FWHM ≥ 27) or (Azure_B_Peak_Uptake ≥ 60) then 
Class  ‘Abnormal Lymphocyte’ 

else 
Class  ‘Normal Lymphocyte’ 

end 
end 

end 
finish 

The exact thresholds of the WBC Classifier algorithm were identified, after 
detailed examination and analysis of leukemic and normal samples, as presented 
in 4.6. 

4.5 Method Implementation 

The method described in the aforementioned subsections had been developed 
as a standalone program, using Mathworks Matlab R2016b and Mathworks 
Matlab GUIDE for GUI design, combined and tested on Lumnia Microscope. In 
the developed program, all the information and indices described, are available 
through different partitions of the program’s window, as depicted in [Figure 4.15]. 
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Figure 4.15: Developed program for blood cells identification, separation and 
classification. 

As seen above, the program is divided in eight partitions. The first partition on 
the upper left part of the window corresponds to basic controls. From these push 
buttons, the user has the ability to select folders with images that correspond to 
the desired areas for analysis, he can restart the program, save the current results 
of analysis and classification in a .xlsx file and of course to terminate the program. 
By selecting a desired folder for analysis, the program initiates its execution and 
performs the procedures presented in subsection 4.3., in order to estimate the 
binary masks of WBCs and RBCs. 
The truncated color images using these masks are displayed in a partition named 
“Blood Cells Identification” in the upper center part of the window, alongside with 
the original color image for reference in a partition named “Reference Image”. 
During these estimations, the user is asked by the program, if WBCs and RBCs 
are requiring separation, as explained in subsections 4.3.1.3 and 4.3.1.4 
respectively. If so, the user clicks on “Yes” and the program performs these 
separations via watershed algorithm. In addition, the user has the ability to refine 
the threshold used for filling holes inside RBCs mask as described in 4.3.1.4, using 
the controls on the middle left partition of the window. 
After the completion of binary masks estimation, the program provides the 
cytometry results for WBCs and RBCs on the upper right partition of the window, 
named as “Cytometry”. Alongside with these numbers, the Lower Reference Level 
(LRL) and the Upper Reference Level (URL) are provided, which have been 
estimated after analysis of normal samples, as presented in the following 
subsection 4.6.1. 
Furtherly, the stains uptake analysis and classification of detected leukocytes are 
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performed using the procedures in subsection 4.4. The five quantitative indices for 
every MG-G’s component (i.e., Eosin Y, Azure B and Methylene Blue) alongside 
with the corresponding Reference Levels [74] of normal lymphocytes, are presented 
in the center-lower right partition of the window named as “Stains Uptake 
Analysis”, while the classification results in a centered partition named as “WBC 
Class”. 
Finally, a plot that depicts the distribution in nucleus of the uptake for the three 
MG-G’s components of a selected WBC, is presented in the lower center partition 
of the window named as “Stains Uptake Plot”. By selecting a desired WBC from 
the drop-down list in the upper left part of this partition, the program calculates 
and plots the different uptake intensities in relation to the percentages of the 
WBC’s nucleus area that have those intensities. In addition, it marks with a “*” 
the peak value of the every component and with a horizontal line the FWHM 
range of every component, as depicted in [Figure 4.16]. 

Figure 4.16: Example of stains uptake plot, for a normal lymphocyte.

In the developed program, the detected leukocytes are marked with green numbers 
in their color image, as references. Those numbers correspond to indexed rows of 
the tables with stains uptake indices and classification results. Also, the indices of 
the lymphocytes that lay outside the reference ranges are marked with red color 
(if they are above the corresponding URL), with blue color (if they are below the 
corresponding LRL) or with green color (if they are within the corresponding 
reference range). 

4.6 Results on Leukemic Samples 

The evaluation of the proposed method, in terms of sensitivity and 
specificity, was measured using several samples of peripheral blood smears from 
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patients with Chronic Lymphocytic Leukemia and Acute Lymphoblastic 
Leukemia. In addition, for the establishment of the normal reference ranges of the 
stains uptake indices for normal lymphocytes and for the cytometry statistics, a 
set of peripheral blood smears were analyzed from normal persons. 
More specifically, samples from 4 patients ailing with CLL, 2 patients ailing with 
ALL and 3 normal persons, were analyzed. Those samples were collected and 
characterized, in cooperation with hematologists from General Hospital of 
Thessaloniki “G. Papanikolaou” and were analyzed with the proposed method 
using Lumnia Microscope. For every sample, 20 different areas of interest were 
selected within monolayer region. An overview of the used dataset, is presented 
in [Table 7]. 

Analyzed Normal Persons 3 
Analyzed ALL Patients 2 
Analyzed CLL Patients 4 
Total Analyzed Areas 180 

Table 7: Used dataset overview. 

4.6.1 Analysis of Normal Population 

The indices of MG-G’s components uptake on lymphocytes identified by 
our algorithm inside analyzed areas of normal population, were used to determine 
the lower and upper limits of the corresponding reference ranges. Reference ranges 
[74] is a solid basis for comparison for a physician or other health professional to
interpret a set of test results for a particular patient. In medicine, reference ranges
are used for blood tests extensively and their limits for a desired metric using a
set of n samples, are calculated as in {4.4}, {4.5}:

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑚𝑚− 𝑡𝑡 ∙ �
𝑛𝑛 + 1
𝑛𝑛

∙ 𝑆𝑆𝑆𝑆 (4.4) 

𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑚𝑚 + 𝑡𝑡 ∙ �
𝑛𝑛 + 1
𝑛𝑛

∙ 𝑆𝑆𝑆𝑆 (4.5) 

where m is the mean value of the metric, SD is the standard deviation of the 
metric and t is the Student’s t-distribution value [75] for the 97.5% percentile with 
(n-1) degrees of freedom. 
In [Table 8], the calculated reference ranges of MG-G’s components uptake indices 
are presented, based on the lymphocytes of normal population. Additionally, the 
complete results of uptake analysis per lymphocyte in normal population, can be 
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found in [Table 14] of Appendix A. 

Stain Component URL LRL 

Eosin Y 

Peak Uptake 5.7 3.4 
Peak Percent 95 75 

FWHM 26 14 
Mean Uptake 90 74 
SD Uptake 15 8 

Azure B 

Peak Uptake 2.8 1.2 
Peak Percent 60 38 

FWHM 71 27 
Mean Uptake 55 38 
SD Uptake 24 14 

Methylene Blue 

Peak Uptake 1.9 0.6 
Peak Percent 88 44 

FWHM 113 45 
Mean Uptake 88 52 
SD Uptake 44 19 

Table 8: Reference ranges of lymphocytes from normal population, for MG-G's 
components uptake indices. 

Finally, as for the results of cytometry, the corresponding reference ranges of 
detected leukocytes and erythrocytes per mm2, inside analyzed areas of normal 
population is presented in [Table 9], while the complete cytometry results per 
analyzed area and normal person, can be found in [Table 15] of Appendix A.  

Cells per mm2 URL LRL 
WBC 21 6 
RBC 1517 1043 

Table 9: Reference ranges of detected leukocytes and erythrocytes amount, 
within normal population. 

4.6.2 Acute Lymphoblastic Leukemia Results 

For the diagnosis of ALL, the proposed method tries to identify any 
lymphoblast existed in the sample under examination, based on Eosins’ Y Mean 
Uptake, which clearly takes very low values in comparison with lymphocytes (refer 
to [Table 14], [Table 17] and [Table 19] in Appendixes A, B and C). In [Table 10], 
the results of this case are presented. 
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Identification Method 
Proposed Algorithm 

Lymphocytes Lymphoblasts 

Hematology Atlas 
Lymphocytes 273 3 
Lymphoblast

s 
0 32 

Table 10: Confusion matrix for identification of lymphoblasts over lymphocytes. 

It is shown that the proposed algorithm, from a total of 308 leukocytes of lymphoid 
series (i.e., normal lymphocytes, abnormal lymphocytes and lymphoblasts) across 
all analyzed areas available, identified lymphoblasts with high accuracy, resulting 
to sensitivity of 100% and specificity of 98.91%. As validation to the results of the 
proposed algorithm, every leukocyte was identified manually, using morphological 
hematology atlases as reference [4]. Indicatively, a characteristic pattern of MG-
G’s components uptake on a lymphoblast’s nucleus, is presented in [Figure 4.17]. 

Figure 4.17: Lymphoblast’s characteristic pattern of MG-G's components uptake in 
nucleus. 

Additionally, the complete results of uptake analysis per lymphocyte and 
lymphoblasts within ALL samples, can be found in [Table 16] and [Table 17] of 
Appendix B. Finally, in terms of cytometry, the complete results per analyzed 
area and patient ailing with ALL, can be found in [Table 18] of Appendix B.  

4.6.3 Chronic Lymphocytic Leukemia Results 

As CLL is characterized by the existence of high amounts of mature but 
abnormal lymphocytes, the proposed method tries to locate abnormal lymphocytes 
and to differentiate them from the normal ones, that are existed in the samples 
under examination.  
The differentiation between normal and abnormal lymphocytes is based on that 
within CLL samples, there are normal lymphocytes alongside to abnormal ones. 
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Thus, after defining the reference ranges of normal lymphocytes as presented in 
4.6.1, exclusion of normal lymphocytes is possible through uptake indices within 
those ranges. Then, the remaining lymphocytes can be considered as potentially 
abnormal and by selecting appropriate thresholds for WBC Classifier algorithm, 
quantitative differentiation is feasible from the normal ones. In [Table 11], the 
results of this case are presented. 

Identification Method 
Proposed Algorithm 

Normal 
Lymphocytes 

Abnormal 
Lymphocytes 

Hematology Atlas 

Normal 
Lymphocytes 

95 3 

Abnormal 
Lymphocytes 

44 131 

Table 11: Confusion matrix for differentiation of normal from abnormal 
lymphocytes. 

It is shown that, the proposed algorithm, from a total of 273 lymphocytes (i.e., 
normal lymphocytes and abnormal lymphocytes) across all analyzed areas 
available, identified abnormal lymphocytes very accurately, resulting to sensitivity 
of 74.86% and specificity of 96.94%. Indicatively, a characteristic pattern of MG-
G’s components uptake on an abnormal (CLL) lymphocyte’s nucleus, is presented 
in [Figure 4.18], alongside with [Figure 4.19], where a normal (mature) 
lymphocyte’s nucleus is presented. 

Figure 4.18: Abnormal (CLL) lymphocyte's characteristic pattern of MG-G's 
components uptake in nucleus. 
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Figure 4.19: Normal (mature) lymphocyte's characteristic pattern of MG-G's 
components uptake in nucleus. 

Again, the complete results of uptake analysis per lymphocyte within CLL 
samples, can be found in [Table 19] of Appendix C. Finally, in terms of cytometry, 
the complete results per analyzed area and patient ailing with CLL, can be found 
in [Table 20] of Appendix C. 

4.6.4 Overall Classification Results 

Before closing, the efficiency of the proposed algorithm was studied, to 
differentiate leukocytes of lymphoid series from the rest leukocytes using ratio in 
{4.3}. The results of this case are presented in [Table 12], where is depicted that 
the algorithm’s specificity is 98.09% and sensitivity is 86.78%. 

Identification Method 
Proposed Algorithm 

Lymphoid 
WBC 

Rest WBC 

Hematology Atlas 
Lymphoid 

WBC 
308 6 

Rest WBC 16 105 
Table 12: Confusion matrix for differentiation of lymphoid from rest WBCs. 

Indicatively, a characteristic pattern of MG-G’s components uptake on a 
neutrophil’s nucleus (Rest WBC), is presented in [Figure 4.20]. 



 Method for Improving Leukemia Diagnosis 95 

Figure 4.20: Neutrophil’s (Rest WBC) characteristic pattern of MG-G's 
components uptake in nucleus. 

Finally, in [Table 13] are presented the overall results of classification for the 
proposed algorithm, across normal lymphocytes, abnormal lymphocytes, 
lymphoblasts and rest WBCs. 

Identification Method 
Proposed Algorithm 

Normal 
Lymphocytes 

Abnormal 
Lymphocytes 

Lymphoblasts Rest 
WBC 

Hematology 
Atlas 

Normal 
Lymphocytes 

95 3 0 0 

Abnormal 
Lymphocytes 

44 131 3 4 

Lymphoblasts 0 0 32 2 
Rest WBC 5 11 0 105 

Table 13: Confusion matrix of overall classification results. 
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5 Conclusions and Future Work 

In the first part of this thesis, a novel method was developed and evaluated 
for measuring the performance of microscopes, in terms of retrieved optical 
resolution. The standardized method in industry and academia [43] for evaluating 
optical performance in EO imaging systems is through the analysis of slanted edge 
for estimation of MTF, a key parameter of imaging performance. 
Driven by this fact, the proposed approach for estimating MTF via slanted edge 
analysis in optical microscopy was through the implementation of ISO 12233:2014 
method and using a custom-made slanted edge MTF target for brightfield 
microscopes. It was shown that the proposed approach estimates resolution very 
accurately and with deviations of 8.3% maximum, from the resolution values 
provided by the manufacturer of the microscope used in the evaluation procedures. 
Additionally, by employing the knowledge of this approach, a post capturing 
enhancement was made feasible for color and spectral images, in order to achieve 
superior resolution beyond the optical limits of the used microscopes, as a key 
preparatory step for the accurate and quantitative study and diagnosis of leukemic 
diseases. 
Towards this target, it was introduced for the first time in the relevant literature 
to the best of our knowledge, a method for extracting the complete two-
dimensional optical transfer function of a microscope system, through a single 
measurement of 1D MTF, using this a priori knowledge estimated by the 
aforementioned approach. In addition, the compensation of 2D OTF was achieved, 
through image deconvolution in frequency domain, by using Wiener 
deconvolution. It was measured that the proposed method achieved enhanced 
optical resolution of up to 176% for a brightfield microscope at 23.8x of total 
optical magnification, which corresponds to at least 50% distinctive ability at 855 
lp/mm of spatial frequency. 
In the second part of this master thesis, a novel method was developed and 
presented based on spectral imaging and quantitative measurement of stain 
components’ uptake in blood smears stained with May Grünwald - Giemsa 
mixture. This method introduces, for the first time in the relevant literature, 
spectral indices extracted through chemometrics regression algorithm combined 
with spectral imaging, for mapping the uptake behavior of MG-G’s stain 
components on leukocytes in a peripheral blood sample under examination, 
alongside with CBC statistics using optical microscopy. 
Summarizing, our method is capable to identify and separate leukocytes and 
erythrocytes in a microscopy blood smear and their sub-parts (i.e. nucleus and 
cytoplasm), while it uses spectral information exclusively, in order to locate and 
differentiate them. Furthermore, an algorithm was introduced that takes 
advantage of these spectral mapping indices and blood cells separation. It was 
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trained and evaluated on samples with Acute Lymphoblastic Leukemia and 
Chronic Lymphocytic Leukemia, in terms of identifying and differentiating critical 
cells for the diagnosis of these diseases. It was concluded that the proposed 
algorithm achieves 100% sensitivity and 98.91% specificity in cases of ALL by 
detecting lymphoblasts accurately and sensitivity of 74.86% and specificity of 
96.94% in cases of CLL by differentiating and indicating abnormal lymphocytes 
from the normal ones. Thus, the presented methods can be easily employed as an 
additional analytical tool for minimizing errors and increasing accuracy, either in 
the diagnosis and in the classification of ALL and CLL leukemia [6].  
In the future, this study could be extended to perform diagnosis also for additional 
types of leukemia (such as Acute Myelogenous or Chronic Myelogenous) or even 
for critical types of lymphomas, which may evolve into leukemia and through this 
approach contribute in the early diagnosis and treatment. Additionally, an 
alternative interesting and important case of study would be the potential 
correlation between the proposed spectral indices and the diagnostic 
characteristics revealed by molecular and more sensitive examinations, as light 
microscope remains a wide used, accessible and inexpensive method of diagnosis. 
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Appendix A: Normal Population Samples 
Analysis 
 

 
Table 14: Analysis of MG-G stain’s components uptake for lymphocytes in 
normal population. 
 
 

Peak (%) Peak (Int.) FWHM (Int.) Mean (Int.) STD (Int.) Peak (%) Peak (Int.) FWHM (Int.) Mean (Int.) STD (Int.) Peak (%) Peak (Int.) FWHM (Int.) Mean (Int.) STD (Int.)
A 2 5.8 83 16 81 9 2.3 45 40 42 16 1.2 72 85 76 32 1
A 2 4.4 91 21 88 12 1.7 50 51 48 21 1.2 89 78 89 35 3
A 3 4.5 83 20 80 11 2.1 43 41 40 18 1.2 82 81 86 33 1
A 4 4.6 82 20 81 9 2.1 51 42 45 18 1.0 65 98 72 36 1
A 4 4.2 85 21 84 12 1.5 49 65 49 23 1.0 69 96 73 37 2
A 5 4.1 97 21 92 14 1.5 49 61 48 22 1.0 90 98 93 37 1
A 7 4.3 86 21 82 12 1.8 44 53 41 19 1.0 81 99 84 36 2
A 11 4.6 82 20 79 10 1.9 51 46 47 18 0.9 64 105 72 39 2
A 11 4.5 78 22 77 10 2.2 54 38 47 18 0.9 49 108 65 40 3
A 12 4.9 77 20 76 9 1.9 49 50 45 19 1.0 55 103 64 36 2
A 14 4.7 87 19 84 11 2.6 52 38 48 16 1.7 63 52 70 27 1
A 15 5.0 81 19 80 10 2.1 57 40 51 19 1.1 61 89 68 33 1
A 15 5.3 84 17 80 11 1.6 47 59 46 21 1.3 68 77 72 31 2
A 15 4.7 78 19 75 11 1.8 48 53 46 20 1.3 62 77 66 32 3
A 17 3.6 76 26 74 11 2.4 41 38 40 15 1.4 62 70 65 27 1
A 17 4.9 81 19 79 9 2.1 46 43 41 18 1.4 64 65 73 31 2
A 18 4.0 87 22 83 13 2.0 52 48 49 20 1.3 60 73 65 30 2
A 19 4.9 83 19 80 10 2.5 56 33 49 18 1.2 61 80 70 35 2
A 20 4.8 81 20 80 9 2.1 44 39 42 18 1.0 36 91 55 36 1
B 1 4.5 81 20 78 11 1.8 46 52 43 19 1.0 58 102 65 35 1
B 1 4.4 89 20 85 13 1.7 45 57 45 20 1.2 72 85 74 33 2
B 1 4.6 80 20 79 10 2.4 40 41 39 16 1.8 57 51 58 23 3
B 3 3.7 90 24 86 13 1.8 45 53 43 18 1.4 70 67 76 31 1
B 4 4.2 88 22 84 11 2.4 46 39 44 15 1.7 63 53 66 24 1
B 5 4.8 94 18 89 13 1.6 54 56 49 21 1.0 80 103 84 39 1
B 6 4.3 89 21 86 11 1.9 51 48 48 19 1.1 79 87 80 34 1
B 6 5.2 85 18 81 11 2.3 47 39 45 16 1.7 66 55 68 24 2
B 7 4.6 90 19 86 12 1.6 55 58 51 22 1.1 73 91 76 33 2
B 8 5.2 91 17 87 11 1.8 48 50 45 19 1.2 70 85 75 33 1
B 8 4.8 88 19 85 10 3.0 54 29 50 15 1.8 53 50 59 27 3
B 9 4.6 91 20 88 11 1.5 51 61 48 22 1.2 64 83 72 34 1
B 9 4.7 88 18 84 12 2.0 50 46 46 19 1.3 71 76 72 30 2
B 10 4.8 86 19 84 10 1.9 46 47 44 18 1.1 77 90 78 35 2
B 11 4.5 93 18 86 16 1.3 55 80 54 26 1.0 72 94 76 36 2
B 11 5.0 86 17 81 12 2.3 42 42 40 16 1.6 66 59 71 26 4
B 11 4.3 85 21 81 11 2.4 47 38 45 17 1.5 63 64 64 26 5
B 13 4.9 94 18 90 12 1.6 49 61 46 21 1.0 74 96 79 35 1
B 14 3.9 91 22 86 14 2.6 45 38 44 14 2.2 70 43 69 17 1
B 14 5.2 90 17 86 11 1.6 51 57 47 21 1.0 75 96 77 36 2
B 14 4.8 86 19 83 11 2.0 53 46 50 19 1.3 64 71 68 31 3
B 17 5.6 86 17 83 9 3.1 50 30 47 14 2.6 49 35 49 16 2
B 19 5.6 87 15 83 10 2.2 40 40 37 15 1.5 52 60 62 32 1
B 20 5.7 87 16 84 10 1.8 52 54 48 20 1.2 57 82 63 32 2
C 1 5.5 78 18 76 9 2.0 58 46 51 20 1.2 54 80 59 30 1
C 2 4.3 83 21 79 12 1.5 52 63 49 22 1.2 69 81 69 32 1
C 2 3.6 80 26 78 11 1.5 59 64 55 23 1.0 61 91 64 35 2
C 3 4.8 80 18 76 11 2.8 61 31 55 18 1.8 47 50 53 26 3
C 7 4.5 84 20 80 12 1.8 62 53 57 21 1.1 52 92 62 36 2
C 8 4.7 85 18 81 12 1.7 40 54 40 19 1.2 83 83 81 31 1
C 10 3.4 90 23 80 18 1.7 40 55 43 21 1.2 81 82 82 32 2
C 11 4.6 84 19 79 13 2.1 43 45 43 18 1.3 71 73 73 29 2
C 12 3.9 81 23 77 13 2.3 45 41 43 17 1.5 68 63 70 29 3
C 13 3.1 79 31 77 13 2.2 45 45 47 18 1.3 60 72 63 30 4
C 14 3.7 89 25 85 12 1.4 43 67 44 22 1.0 76 95 78 34 1
C 15 4.6 79 21 77 10 2.1 44 45 41 17 1.2 62 86 65 32 3
C 16 3.3 87 26 83 14 1.8 48 54 46 20 1.2 71 75 76 35 1
C 17 4.9 79 19 77 10 2.2 52 39 47 19 1.2 58 79 61 29 1
C 17 4.0 77 23 75 11 2.8 49 33 50 15 1.6 51 60 52 23 2
C 18 3.9 86 25 85 11 1.4 55 72 53 24 1.0 63 96 70 36 2
C 19 5.3 86 17 83 11 1.5 48 66 49 23 1.2 86 82 79 33 1
C 20 3.6 80 26 78 12 1.6 52 61 53 22 1.1 56 85 63 2 1

Sample Area
Normal Population - Lymphocytes

Eosin Y Azure B Methylene Blue
Cell Index
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Table 15: Cytometry statistics for normal population. 

# WBC # RBC % WBC % RBC #/mm2 WBC #/mm2 RBC
A 1 5 218.00 1.85 98.15 25.94 1131.04
A 2 3 199.00 1.63 98.37 15.56 1032.47
A 3 2 294.00 1.31 98.69 10.38 1525.35
A 4 2 279.00 1.21 98.79 10.38 1447.53
A 5 4 223.00 1.86 98.14 20.75 1156.98
A 6 3 211.00 2.09 97.91 15.56 1094.72
A 7 3 198.00 1.69 98.31 15.56 1027.28
A 8 2 278.00 1.38 98.62 10.38 1442.34
A 9 3 284.00 1.98 98.02 15.56 1473.47
A 10 2 244.00 1.90 98.10 10.38 1265.94
A 11 3 227.00 2.93 97.07 15.56 1177.74
A 12 2 246.00 1.55 98.45 10.38 1276.31
A 13 3 270.00 1.90 98.10 15.56 1400.83
A 14 3 260.00 2.00 98.00 15.56 1348.95
A 15 3 262.00 1.82 98.18 15.56 1359.33
A 16 3 213.00 2.01 97.99 15.56 1105.10
A 17 3 243.00 1.59 98.41 15.56 1260.75
A 18 3 271.00 2.01 97.99 15.56 1406.02
A 19 2 259.00 1.45 98.55 10.38 1343.76
A 20 2 272.00 1.38 98.62 10.38 1411.21
B 1 3 241.00 1.86 98.14 15.56 1250.37
B 2 2 251.00 1.39 98.61 10.38 1302.26
B 3 3 256.00 1.60 98.40 15.56 1328.20
B 4 2 246.00 1.22 98.78 10.38 1276.31
B 5 2 262.00 1.36 98.64 10.38 1359.33
B 6 2 279.00 1.05 98.95 10.38 1447.53
B 7 3 253.00 1.89 98.11 15.56 1312.63
B 8 3 257.00 1.72 98.28 15.56 1333.39
B 9 3 235.00 2.00 98.00 15.56 1219.24
B 10 2 257.00 1.40 98.60 10.38 1333.39
B 11 5 261.00 2.63 97.37 25.94 1354.14
B 12 2 252.00 1.87 98.13 10.38 1307.44
B 13 2 265.00 1.39 98.61 10.38 1374.89
B 14 3 253.00 1.79 98.21 15.56 1312.63
B 15 2 252.00 1.79 98.21 10.38 1307.44
B 16 2 281.00 1.80 98.20 10.38 1457.90
B 17 2 244.00 2.08 97.92 10.38 1265.94
B 18 2 246.00 2.17 97.83 10.38 1276.31
B 19 2 244.00 1.72 98.28 10.38 1265.94
B 20 2 216.00 2.04 97.96 10.38 1120.67
C 1 2 232.00 1.45 98.55 10.38 1203.68
C 2 2 240.00 1.04 98.96 10.38 1245.18
C 3 4 219.00 2.46 97.54 20.75 1136.23
C 4 2 229.00 1.48 98.52 10.38 1188.11
C 5 2 260.00 1.09 98.91 10.38 1348.95
C 6 2 282.00 1.74 98.26 10.38 1463.09
C 7 2 228.00 1.45 98.55 10.38 1182.93
C 8 3 253.00 2.45 97.55 15.56 1312.63
C 9 3 258.00 4.81 95.19 15.56 1338.57
C 10 2 179.00 1.43 98.57 10.38 928.70
C 11 2 232.00 1.32 98.68 10.38 1203.68
C 12 3 224.00 2.75 97.25 15.56 1162.17
C 13 4 246.00 3.31 96.69 20.75 1276.31
C 14 2 242.00 1.05 98.95 10.38 1273.16
C 15 3 259.00 2.73 97.27 15.56 1343.76
C 16 2 254.00 1.16 98.84 10.38 1317.82
C 17 2 222.00 1.08 98.92 10.38 1151.80
C 18 2 248.00 1.13 98.87 10.38 1270.12
C 19 2 266.00 1.76 98.24 10.38 1380.08
C 20 2 234.00 1.18 98.82 10.38 1214.06

Sample Area
Normal Population
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Appendix B: Acute Lymphoblastic 
Leukemia Samples Analysis 
 

 
Table 16: Analysis of MG-G stain’s components uptake for lymphoblasts in ALL 
samples. 
 

 
Table 17: Analysis of MG-G stain’s components uptake for lymphocytes in ALL 
samples. 
 

Peak (%) Peak (Int.) FWHM (Int.) Mean (Int.) STD (Int.) Peak (%) Peak (Int.) FWHM (Int.) Mean (Int.) STD (Int.) Peak (%) Peak (Int.) FWHM (Int.) Mean (Int.) STD (Int.)
D 2 3.3 66 30 67 11 3.8 43 24 43 14 2.0 40 45 42 19 1
D 5 4.1 70 22 69 12 2.8 42 33 39 14 2.0 51 46 56 21 1
D 16 4.6 66 21 67 9 2.6 50 31 45 17 1.2 36 80 54 36 1
D 21 2.8 70 34 69 15 2.4 59 40 57 17 1.6 38 57 45 27 1
D 25 3.5 70 27 67 12 3.2 59 28 55 15 1.7 42 59 45 22 1
E 1 5.6 69 17 67 9 2.2 37 44 37 16 1.6 60 60 59 25 1
E 3 5.0 54 19 53 8 2.4 38 40 37 15 2.2 34 41 38 22 1
E 4 5.2 69 18 67 10 1.6 41 56 39 19 0.9 64 113 70 37 1
E 7 4.6 67 20 66 10 2.1 55 40 49 19 1.1 41 84 53 33 1
E 8 8.1 44 12 44 6 4.3 30 20 28 10 2.9 32 30 39 19 1
E 9 8.5 46 11 46 8 4.4 35 18 33 10 3.6 26 21 39 27 1
E 9 7.2 47 13 47 7 3.7 31 24 31 11 3.9 32 22 39 20 2
E 10 4.6 66 20 64 10 1.8 44 52 42 19 1.2 52 88 56 29 1
E 10 6.3 64 15 62 8 1.8 36 53 35 17 1.2 55 83 58 29 2
E 11 8.2 46 11 45 7 3.6 33 24 31 10 2.1 29 40 41 26 1
E 12 4.0 71 24 69 12 1.7 53 56 49 21 1.2 45 89 52 29 1
E 12 4.2 51 24 51 9 3.1 46 27 41 14 1.5 24 61 42 30 3
E 13 5.2 42 18 45 10 3.3 37 27 35 12 2.5 21 36 31 23 1
E 14 5.7 53 16 53 9 2.2 43 39 40 17 1.3 35 76 51 33 2
E 14 6.0 53 15 55 8 2.2 44 36 41 16 1.1 20 87 53 37 3
E 17 5.7 46 16 50 9 3.6 40 22 37 13 2.6 20 24 42 32 1
E 18 3.5 72 25 68 14 1.7 38 54 39 19 1.1 67 90 73 37 1
E 19 4.8 47 20 49 9 2.9 38 33 37 13 2.9 28 29 35 22 1
E 20 6.1 50 16 50 7 4.7 29 20 28 9 3.5 44 26 46 16 2
E 21 7.2 52 14 51 7 5.2 35 17 34 10 3.7 38 24 42 16 1
E 22 6.7 54 14 56 9 3.7 44 24 42 12 2.6 32 31 44 30 1
E 22 7.0 50 14 50 6 4.1 34 23 35 10 3.5 37 26 40 14 2
E 24 6.1 68 16 67 7 2.6 40 37 39 15 1.9 45 54 45 19 2
E 25 3.3 70 31 69 11 2.5 48 39 46 15 1.5 45 68 45 23 1
E 26 8.2 51 12 51 5 5.4 35 16 33 9 3.5 35 26 39 18 2
E 28 7.4 58 13 58 7 3.9 42 21 38 12 2.4 33 34 47 29 1
E 29 4.6 73 19 68 12 2.3 37 36 36 16 1.5 42 58 51 31 1
E 29 5.5 56 16 59 10 3.8 28 21 27 10 2.2 21 34 39 30 2
E 30 6.9 49 13 52 11 3.5 39 24 38 13 3.0 30 26 44 33 2

Cell 
Index

Sample Area
Acute Lymphoblastic Leukemia - Lymphoblasts

Eosin Y Azure B Methylene Blue

Peak (%) Peak (Int.) FWHM (Int.) Mean (Int.) STD (Int.) Peak (%) Peak (Int.) FWHM (Int.) Mean (Int.) STD (Int.) Peak (%) Peak (Int.) FWHM (Int.) Mean (Int.) STD (Int.)
D 1 4.0 71 25 70 10 3.0 46 30 44 14 2.1 44 45 46 19 1
D 4 5.2 73 18 72 9 2.2 49 40 45 18 1.2 49 83 56 31 1
D 6 4.4 88 21 86 13 1.4 60 69 58 25 1.0 80 96 77 35 1
D 6 5.0 82 18 79 11 2.2 66 37 60 22 1.2 48 82 62 36 2
D 8 2.0 76 48 71 19 2.1 67 41 61 21 1.2 53 83 59 30 1
D 9 3.5 83 27 81 12 2.1 65 42 59 21 1.3 58 70 61 31 1
D 10 4.8 90 19 86 13 1.6 63 59 61 24 1.2 70 78 71 33 1
D 11 3.5 85 24 82 15 1.7 60 59 60 22 1.1 70 84 71 32 1
D 12 3.9 76 23 72 13 2.3 66 38 59 20 1.3 49 72 56 30 1
D 12 5.7 107 13 101 12 1.3 87 77 85 30 1.5 76 66 78 27 2
D 13 2.8 82 35 78 14 1.6 55 60 54 23 1.1 79 88 80 33 1
D 13 3.4 86 27 83 13 1.7 63 59 63 23 1.4 68 65 71 31 2
D 14 3.7 82 23 77 15 1.7 65 57 61 23 1.2 67 77 71 32 1
D 15 5.3 86 15 82 13 2.0 82 42 72 25 1.3 47 77 53 28 1
D 17 5.0 77 18 74 11 3.0 57 32 56 13 2.2 48 44 49 18 1
D 18 4.1 76 22 75 12 2.1 63 41 57 21 1.6 51 60 55 24 1
D 19 4.4 87 19 80 13 1.5 68 65 66 24 1.1 65 92 70 34 1
D 19 6.1 95 16 94 8 1.8 98 48 88 28 1.0 70 95 77 38 2
D 20 3.1 85 27 78 17 2.1 80 45 78 19 1.2 48 82 55 30 1
D 22 3.3 78 29 76 14 2.3 65 41 65 19 1.7 42 56 47 24 1
D 23 3.3 82 27 80 14 1.3 52 76 55 28 1.5 50 68 52 24 1
D 23 5.6 78 17 76 10 2.2 68 38 59 22 1.2 47 85 55 30 2
D 23 3.7 75 27 75 10 2.0 61 46 57 21 1.8 43 52 47 22 3
D 26 2.7 78 33 73 17 2.4 72 38 66 19 1.3 47 80 54 29 1
D 27 4.7 83 21 83 9 2.3 71 37 62 21 1.5 49 64 57 28 1
D 27 4.5 90 20 86 13 2.0 64 47 61 21 1.4 70 67 69 28 2
D 28 3.5 81 25 76 14 3.0 70 28 62 19 1.6 50 59 56 26 1
D 29 3.8 72 25 73 11 2.3 52 40 49 18 1.9 42 47 46 22 1
D 30 3.7 73 27 73 11 0.8 61 98 74 45 1.1 32 78 53 38 1
E 6 4.1 73 24 72 10 1.3 54 80 51 25 1.1 66 89 67 32 1
E 20 3.1 78 30 73 15 1.3 37 76 43 24 1.1 80 83 77 35 1
E 23 3.9 81 24 80 11 1.6 67 58 61 24 1.1 64 91 70 36 1
E 23 6.2 78 13 74 10 2.0 53 48 49 19 1.3 65 78 67 29 2
E 24 3.7 71 26 71 11 2.7 39 35 39 14 1.8 51 54 54 21 1
E 25 4.3 77 22 75 11 2.0 52 48 50 19 1.4 57 71 60 27 2

Cell 
Index

Sample Area Eosin Y Azure B Methylene Blue
Acute Lymphoblastic Leukemia - Lymphocytes
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Table 18: Cytometry statistics for ALL samples. 

# WBC # RBC % WBC % RBC #/mm2 WBC #/mm2 RBC
D 1 1 302.00 1.47 98.53 5.19 1566.86
D 2 1 197.00 2.08 97.92 5.19 1022.09
D 3 1 138.00 3.79 96.21 5.19 715.98
D 4 1 274.00 1.10 98.90 5.19 1421.59
D 5 1 367.00 1.12 98.88 5.19 1904.09
D 6 2 313.00 1.63 98.37 10.38 1623.93
D 7 1 363.00 1.26 98.74 5.19 1883.34
D 8 1 253.00 1.25 98.75 5.19 1312.63
D 9 1 215.00 0.93 99.07 5.19 1115.48
D 10 1 230.00 0.68 99.32 5.19 1193.30
D 11 1 205.00 0.69 99.31 5.19 1063.60
D 12 2 193.00 1.44 98.56 10.38 1001.34
D 13 2 197.00 1.19 98.81 10.38 1022.09
D 14 1 189.00 0.73 99.27 5.19 980.58
D 15 2 192.00 1.50 98.50 10.38 996.15
D 16 1 230.00 0.87 99.13 5.19 1193.30
D 17 1 359.00 1.03 98.97 5.19 1862.59
D 18 1 191.00 0.97 99.03 5.19 990.96
D 19 2 178.00 1.07 98.93 10.38 923.51
D 20 1 164.00 1.31 98.69 5.19 850.88
D 21 1 189.00 2.23 97.77 5.19 980.58
D 22 1 136.00 2.94 97.06 5.19 705.60
D 23 3 213.00 2.76 97.24 15.56 1105.10
D 24 1 277.00 1.11 98.89 5.19 1437.15
D 25 1 227.00 1.17 98.83 5.19 1177.74
D 26 1 254.00 1.17 98.83 5.19 1317.82
D 27 2 300.00 1.33 98.67 10.38 1556.48
D 28 1 252.00 1.55 98.45 5.19 1307.44
D 29 1 371.00 1.25 98.75 5.19 1924.85
D 30 1 230.00 0.64 99.36 5.19 1191.24
E 1 1 494.00 0.60 99.40 5.19 2563.01
E 2 1 505.00 0.57 99.43 5.19 2620.08
E 3 1 496.00 0.94 99.06 5.19 2573.38
E 4 1 568.00 0.65 99.35 5.19 2946.94
E 5 1 589.00 0.76 99.24 5.19 3055.89
E 6 2 500.00 1.22 98.78 10.38 2594.13
E 7 1 450.00 0.57 99.43 5.19 2334.72
E 8 1 382.00 1.26 98.74 5.19 1981.92
E 9 2 354.00 2.48 97.52 10.38 1836.65
E 10 3 371.00 2.44 97.56 15.56 1924.85
E 11 1 314.00 1.38 98.62 5.19 1629.12
E 12 3 337.00 3.98 96.02 15.56 1748.45
E 13 2 298.00 4.07 95.93 10.38 1546.10
E 14 3 340.00 3.27 96.73 15.56 1764.01
E 15 2 331.00 2.15 97.85 10.38 1717.32
E 16 1 3.00 0.43 99.57 5.19 15.56
E 17 1 481.00 1.01 98.99 5.19 2495.56
E 18 2 494.00 1.28 98.72 10.38 2563.01
E 19 2 552.00 1.50 98.50 10.38 2863.92
E 20 3 640.00 2.19 97.81 15.56 3320.49
E 21 1 666.00 0.97 99.03 5.19 3455.39
E 22 2 593.00 1.76 98.24 10.38 3076.64
E 23 2 592.00 0.82 99.18 10.38 3071.46
E 24 2 353.00 1.35 98.65 10.38 1831.46
E 25 2 588.00 1.18 98.82 10.38 3050.70
E 26 2 521.00 2.22 97.78 10.38 2703.09
E 27 2 477.00 1.57 98.43 10.38 2474.80
E 28 1 626.00 0.76 99.24 5.19 3247.86
E 29 3 504.00 2.01 97.99 15.56 2614.89
E 30 2 328.00 1.54 98.46 10.38 1701.75

Acute Lymphoblastic Leukemia
Sample Area
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Appendix C: Chronic Lymphocytic 
Leukemia Samples Analysis  
 

 

Peak (%) Peak (Int.) FWHM (Int.) Mean (Int.) STD (Int.) Peak (%) Peak (Int.) FWHM (Int.) Mean (Int.) STD (Int.) Peak (%) Peak (Int.) FWHM (Int.) Mean (Int.) STD (Int.)
F 1 3.1 90 27 83 17 2.0 65 47 66 20 1.5 63 63 63 27 1
F 1 3.3 80 30 79 12 3.5 43 28 41 12 1.6 64 60 67 25 2
F 2 5.6 90 16 86 12 1.3 37 78 40 22 0.9 93 108 95 38 2
F 2 5.0 90 18 86 13 1.5 55 60 50 23 1.0 90 93 93 38 3
F 2 6.3 90 14 86 11 1.8 49 49 47 19 1.2 78 79 85 35 5
F 3 3.2 75 31 74 13 2.3 53 39 51 18 1.3 48 74 56 31 2
F 3 4.7 79 19 78 11 2.2 45 43 43 16 1.7 61 57 62 23 4
F 4 5.1 84 18 81 11 2.3 52 43 51 16 1.7 60 58 59 23 1
F 4 4.6 85 20 82 12 2.3 54 42 51 18 1.3 62 74 64 29 2
F 4 2.9 91 31 85 16 1.7 62 55 59 23 1.1 71 85 73 34 3
F 4 4.8 89 18 85 12 2.0 49 45 48 19 1.5 68 60 72 30 4
F 6 4.2 86 22 83 13 2.3 46 45 46 16 1.6 68 59 66 24 1
F 6 2.8 82 34 78 16 2.1 55 47 55 18 1.4 54 67 58 28 2
F 6 3.3 82 27 79 15 2.5 50 39 48 16 1.3 59 75 64 30 4
F 6 3.1 80 30 78 14 2.2 46 46 45 17 1.2 61 79 64 30 5
F 7 3.1 84 31 82 14 2.3 49 44 47 16 1.4 65 69 68 27 1
F 7 5.4 95 16 91 12 1.3 51 74 53 26 0.9 91 105 92 40 2
F 7 4.9 94 17 87 14 1.0 47 93 49 26 0.9 94 110 96 42 5
F 8 5.1 71 19 70 9 2.7 42 35 40 14 1.6 52 61 56 26 1
F 8 4.9 85 19 82 10 2.5 48 40 47 15 1.8 62 54 63 22 2
F 8 3.7 82 25 79 12 2.0 47 48 46 19 1.4 67 67 67 27 3
F 8 3.8 76 24 75 11 2.9 46 32 46 15 1.7 54 57 56 23 4
F 9 3.7 80 27 79 11 2.2 49 44 48 18 1.3 60 73 62 27 1
F 9 2.9 82 33 80 14 2.0 43 47 42 17 1.3 71 70 76 30 2
F 9 4.2 83 23 81 11 1.9 59 47 54 21 1.2 53 87 59 31 3
F 10 4.8 89 19 86 11 2.1 49 46 46 19 1.5 71 65 73 28 1
F 10 3.3 86 28 86 13 2.2 56 43 54 18 1.4 64 67 68 31 2
F 11 4.8 85 19 82 11 2.2 46 45 44 17 1.4 67 70 67 27 1
F 11 3.3 87 29 86 12 1.4 69 64 64 27 1.0 58 103 67 37 2
F 12 4.3 87 20 84 13 2.0 48 48 47 19 1.3 69 78 71 30 2
F 13 5.3 85 17 83 11 1.7 56 55 54 22 1.1 61 89 67 34 2
F 13 4.1 82 23 79 11 1.8 59 55 57 21 1.5 48 64 51 25 3
F 14 4.3 70 22 70 9 4.3 41 21 39 10 1.9 51 49 55 22 1
F 14 4.0 82 25 81 10 1.7 49 53 48 20 1.0 68 101 72 36 2
F 15 5.8 85 16 83 10 2.2 44 42 40 17 1.8 68 56 70 21 1
F 15 4.0 72 25 70 11 3.5 45 27 46 13 1.6 47 61 49 22 2
F 15 6.4 81 14 79 9 3.1 53 28 49 15 2.1 48 40 57 26 4
G 1 3.4 82 27 80 14 1.3 59 71 56 26 1.0 40 92 59 40 1
G 1 4.1 85 22 84 12 1.7 61 52 55 22 1.1 56 95 61 31 2
G 1 5.0 89 19 88 10 1.5 74 61 69 25 0.9 42 102 58 37 3
G 1 4.3 91 20 89 13 1.7 74 55 65 25 1.1 65 86 68 33 4
G 1 4.0 86 24 86 10 1.4 65 69 65 27 0.9 51 105 58 33 5
G 2 4.5 77 20 75 12 2.3 50 41 47 16 1.3 52 73 55 28 2
G 2 3.9 86 23 82 13 1.2 55 81 54 26 1.0 79 88 76 35 3
G 2 3.5 92 27 90 13 1.5 59 64 59 24 1.0 71 93 73 36 4
G 2 5.5 93 17 91 9 1.3 66 74 62 27 0.9 73 109 79 43 5
G 2 3.8 79 22 72 14 1.2 54 73 53 26 0.8 70 127 77 42 8
G 3 3.4 84 30 83 12 1.4 70 64 64 25 0.8 60 121 70 41 1
G 3 3.4 83 28 81 13 1.4 62 67 59 25 1.0 58 90 63 35 2
G 3 3.1 85 30 82 14 1.5 62 65 59 24 1.1 61 82 62 32 3
G 3 4.1 85 21 84 13 1.6 56 59 55 23 1.2 58 85 63 33 4
G 3 3.7 80 23 77 15 1.4 44 66 46 24 1.0 94 93 96 39 5
G 3 5.6 92 15 91 12 1.3 68 77 65 26 1.0 64 109 68 37 6
G 4 4.2 85 22 83 12 1.7 61 57 58 22 1.0 60 94 64 34 1
G 4 3.7 82 25 81 13 1.5 64 60 60 24 1.1 57 92 63 34 2
G 4 4.0 93 23 91 12 1.7 76 59 71 23 1.2 58 78 62 29 3
G 4 3.9 84 22 80 16 1.4 68 68 65 26 1.0 65 93 66 33 4
G 4 2.8 84 33 81 15 1.2 66 76 62 27 0.9 59 110 68 39 5
G 5 4.4 83 20 83 12 1.4 69 69 65 26 1.0 59 100 64 34 2
G 5 3.7 79 25 79 13 1.5 64 64 59 24 0.9 40 104 58 36 3
G 5 3.2 71 30 70 14 2.2 59 41 55 19 1.2 45 88 52 30 4
G 5 2.9 85 32 84 14 1.8 73 53 68 23 1.2 66 78 69 34 5
G 5 2.5 92 36 86 20 1.4 71 71 69 26 1.1 75 87 77 33 6
G 6 5.6 83 13 76 13 1.2 66 77 61 28 0.9 55 120 70 42 1
G 6 3.5 95 24 90 16 2.3 76 40 77 20 1.2 77 80 76 31 3
G 6 3.5 89 28 87 13 1.3 69 71 63 27 1.1 61 89 63 33 5
G 6 3.3 83 29 81 12 1.4 64 65 59 24 0.9 58 109 68 39 6
G 7 3.2 85 29 84 15 1.5 71 61 67 26 1.2 58 80 61 29 2
G 7 3.7 76 23 72 14 1.4 54 71 53 24 0.9 67 100 69 36 3
G 7 5.2 76 17 74 11 1.7 43 55 44 19 1.2 64 82 66 31 4
G 7 4.1 81 24 83 10 1.8 55 51 52 22 1.2 39 81 51 32 5
G 7 5.1 84 17 83 13 1.6 69 61 66 24 1.3 60 72 66 32 6
G 8 3.6 85 25 81 15 1.8 63 49 62 22 1.1 57 84 63 34 1
G 8 3.2 77 31 76 13 1.4 51 68 50 23 0.9 80 104 80 41 2
G 8 4.8 75 18 70 13 1.5 52 56 47 22 0.9 59 111 67 37 3
G 8 3.8 76 23 74 14 1.4 57 62 54 23 0.8 68 126 77 43 4
G 8 3.1 84 31 81 14 1.5 58 66 55 23 1.0 66 94 68 35 5
G 8 5.4 80 15 78 13 1.8 56 50 54 21 1.1 57 83 65 36 6
G 8 4.3 94 22 92 11 1.3 66 74 67 29 1.0 78 88 79 37 7
G 9 3.2 83 29 81 13 1.6 59 53 55 22 1.0 61 88 69 38 1
G 9 3.6 79 26 78 12 1.5 64 59 60 24 1.0 52 102 61 35 2
G 9 4.1 81 22 78 13 1.4 55 71 51 24 1.0 70 93 72 35 3
G 9 4.3 80 20 78 12 1.4 48 67 49 23 1.0 68 92 70 36 4
G 9 3.7 74 23 70 14 1.9 49 48 45 19 1.1 60 91 64 32 5
G 9 3.5 77 27 76 13 1.4 49 61 48 23 1.0 61 94 65 34 6
G 9 4.0 84 24 83 11 1.3 64 73 60 27 1.1 56 89 59 30 7
G 9 3.4 72 28 70 13 1.6 57 61 53 23 1.1 43 95 55 34 8
G 10 3.4 96 28 93 12 1.6 79 56 77 27 1.0 62 100 69 36 1
G 10 3.6 86 25 81 15 1.3 62 71 62 26 1.0 68 92 69 33 2
G 10 3.2 84 30 83 12 1.5 63 64 60 24 1.1 59 90 62 33 3
G 10 3.4 71 27 70 12 1.8 52 52 48 20 1.0 62 106 66 36 4
G 10 3.5 81 26 79 13 1.5 63 65 59 24 1.1 59 94 63 33 5
G 10 3.6 80 26 78 14 1.3 57 72 56 26 0.9 56 114 64 36 6
G 10 3.9 82 24 82 12 1.6 67 59 63 25 1.1 47 89 53 29 7
G 11 3.5 67 27 66 12 1.8 55 53 53 21 1.0 42 93 54 33 2
G 11 3.7 76 23 73 14 1.3 72 71 67 28 1.0 48 98 57 33 4
G 11 3.4 74 29 74 13 1.8 56 51 55 22 1.2 48 76 55 30 5
G 11 4.8 76 18 72 13 1.6 68 57 63 25 1.0 52 102 60 34 6
G 12 4.6 72 19 69 12 2.4 40 36 38 15 1.2 61 82 67 34 1
G 12 3.8 68 24 68 12 2.3 45 41 43 17 1.3 51 75 58 30 2
G 12 4.2 90 21 89 11 1.5 66 63 63 26 1.2 78 71 85 38 3
G 13 3.8 87 24 84 12 1.4 53 70 51 24 1.3 69 68 71 31 1
G 13 4.1 78 22 74 13 1.6 40 56 41 20 1.1 78 86 75 34 2
G 13 3.2 81 28 78 14 1.5 45 64 45 22 1.1 75 90 77 35 3
G 13 3.9 77 22 75 14 1.6 46 51 43 20 1.0 73 96 79 39 4
G 13 3.8 85 24 81 13 1.4 55 68 52 23 0.9 65 104 72 40 5
G 14 3.3 80 28 77 13 1.5 50 60 49 22 1.1 66 84 68 34 2
G 14 4.3 86 23 85 10 1.5 61 63 56 23 1.1 57 92 61 33 3
G 14 4.5 77 20 74 11 1.5 44 63 44 21 1.0 73 98 75 37 4
G 14 3.8 85 26 84 12 1.3 49 79 51 25 0.9 66 116 72 40 5

  Ασθενής  Περιοχή
Χρόνια Λεμφοκυτταρική Λευχαιμία

Eosin Y Azure B Methylene Blue Cell 
Index
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Table 19: Analysis of MG-G stain’s components uptake for lymphocytes in CLL 
samples. 

G 15 3.0 80 30 75 15 2.0 38 48 36 17 1.1 77 87 81 35 1
G 15 3.2 76 31 75 13 1.6 46 57 45 21 0.9 73 103 76 38 2
G 15 2.8 80 34 79 14 1.3 55 70 52 24 0.9 63 111 70 39 3
G 15 3.0 79 32 77 14 1.3 39 77 42 23 1.0 76 99 78 38 4
G 15 3.3 83 26 78 16 1.9 36 53 36 18 1.2 81 81 82 32 5
G 15 2.5 77 37 80 18 1.2 42 76 43 23 0.8 70 113 87 55 6
H 1 5.6 89 15 84 12 2.5 48 39 48 16 1.6 63 59 62 24 2
H 1 6.3 84 14 82 9 2.3 53 42 54 17 2.1 49 44 48 19 3
H 1 5.2 85 18 82 10 2.2 42 41 44 18 1.8 59 50 61 28 4
H 1 3.5 76 27 74 11 3.1 41 30 41 14 2.8 45 33 45 16 5
H 2 5.3 79 17 77 10 2.4 56 39 54 16 2.3 45 39 48 25 1
H 2 4.6 87 19 84 11 2.2 51 44 50 18 1.7 57 57 57 22 2
H 3 4.7 86 18 80 13 1.5 67 60 62 25 1.1 72 91 75 36 1
H 3 5.4 79 16 78 10 1.9 53 50 53 20 1.8 47 52 50 26 2
H 3 4.4 82 21 80 11 3.0 54 33 54 13 2.3 48 42 49 18 3
H 4 5.0 83 18 81 10 2.6 56 36 56 16 1.8 49 51 53 24 2
H 4 3.8 85 25 85 12 2.5 62 38 59 17 1.6 50 57 56 28 3
H 4 3.8 76 25 75 11 2.3 56 40 52 18 1.5 51 63 55 27 4
H 4 4.2 81 22 79 11 2.0 62 43 56 22 1.2 51 80 56 29 5
H 5 4.3 86 22 84 10 2.4 81 33 71 24 1.2 37 76 51 34 2
H 5 4.8 88 18 84 13 2.0 67 43 63 22 1.3 49 73 57 32 5
H 6 4.4 87 21 84 12 1.6 64 57 60 23 0.9 58 114 66 36 1
H 6 3.7 89 25 87 14 1.2 58 76 59 28 0.9 73 118 77 40 4
H 7 3.6 100 25 96 14 1.3 83 71 80 29 1.0 71 94 75 38 1
H 7 4.1 100 21 94 14 1.7 87 55 81 25 1.3 65 67 68 31 2
H 7 4.6 95 19 91 13 1.5 73 63 71 26 1.2 76 81 75 31 3
H 7 2.8 89 35 88 15 1.5 77 58 71 27 0.9 60 108 67 36 4
H 7 6.4 99 14 97 10 1.5 89 64 86 25 1.1 60 91 63 33 5
H 8 3.6 90 24 87 14 1.6 76 60 70 25 1.0 61 101 67 36 2
H 8 3.3 92 29 90 13 1.2 78 83 76 29 1.0 63 89 69 36 4
H 8 3.3 87 29 85 13 2.0 83 42 74 25 1.0 56 107 63 35 5
H 9 4.2 109 21 103 14 1.3 96 73 95 29 1.0 80 97 83 37 3
H 9 3.5 94 27 93 13 1.4 90 68 84 29 0.9 68 111 75 40 5
H 9 4.9 104 19 103 11 1.2 101 84 99 33 0.8 53 132 76 47 8
H 10 3.9 86 24 86 11 1.8 67 48 61 23 1.2 51 81 60 33 1
H 10 4.7 83 19 81 11 2.4 65 36 60 20 1.7 53 56 58 25 2
H 10 4.0 87 24 85 11 1.8 82 47 74 26 1.0 27 90 53 35 4
H 11 4.1 89 22 86 13 1.6 81 65 76 23 1.0 48 99 57 33 1
H 11 4.2 94 22 91 12 1.2 73 78 72 29 1.0 67 99 74 38 5
H 11 3.2 96 28 91 16 1.5 84 65 81 27 1.0 58 103 67 37 6
H 12 6.0 87 14 82 12 2.8 67 33 63 17 1.7 52 56 54 24 4
H 13 4.0 97 23 94 11 1.2 88 83 85 32 1.0 65 88 74 39 1
H 13 2.8 89 34 86 15 1.3 78 77 75 28 1.0 70 93 73 36 3
H 13 4.1 93 22 90 12 1.6 90 60 87 27 1.1 56 82 66 37 4
H 13 3.6 89 25 87 13 1.1 73 87 71 32 0.8 77 134 83 47 5
H 14 4.3 84 22 81 11 1.4 72 73 67 26 1.0 58 98 64 35 1
H 14 4.6 96 21 94 10 1.4 82 71 79 27 1.0 63 103 71 38 2
H 14 5.0 77 19 75 10 2.2 60 41 56 19 1.6 52 60 56 29 4
H 14 3.9 82 25 82 11 1.7 65 59 61 21 1.0 56 97 63 35 5
H 14 4.9 88 18 87 11 1.6 69 60 66 24 1.0 60 106 71 39 6
H 14 4.0 88 23 84 13 1.8 80 51 73 23 1.3 54 72 60 31 8
H 15 4.0 77 23 75 12 2.7 49 36 49 15 1.6 55 61 56 24 2
H 15 3.9 87 22 82 15 2.8 49 34 48 14 1.5 65 64 66 25 3
H 15 3.9 90 22 85 15 2.1 50 47 49 18 1.4 73 69 71 29 5
I 2 4.1 83 22 80 11 1.9 49 52 48 20 1.8 63 52 62 22 2
I 3 4.5 89 21 87 11 1.9 53 50 53 20 1.4 68 67 69 27 1
I 4 4.5 81 21 80 9 2.7 52 34 50 16 1.6 64 59 64 23 1
I 4 4.7 86 20 85 9 2.4 62 37 59 20 1.5 56 60 62 29 3
I 6 4.5 76 21 75 10 2.7 47 36 44 14 1.8 57 53 59 23 1
I 6 3.9 78 25 78 11 2.1 58 40 53 21 1.2 57 82 63 31 2
I 6 4.3 72 23 71 9 2.9 50 32 48 15 1.6 51 60 53 24 3
I 7 4.7 79 20 77 10 2.6 52 37 53 15 1.7 57 56 57 23 1
I 7 4.3 83 21 80 11 1.4 53 67 49 23 0.9 65 119 70 38 3
I 8 4.9 83 19 82 10 1.8 56 50 50 21 1.1 63 92 71 34 2
I 9 5.2 74 19 73 8 3.5 53 24 48 14 1.7 50 51 54 26 2
I 9 6.2 84 15 82 8 1.8 62 46 58 22 1.2 55 82 63 34 3
I 10 4.3 86 23 85 10 2.1 67 46 65 19 1.4 55 70 57 28 2
I 10 6.3 85 15 83 9 2.2 61 37 53 21 1.3 56 69 66 33 3
I 11 5.0 81 19 79 9 2.0 54 43 50 19 1.4 57 68 63 30 1
I 12 4.5 82 21 81 10 1.9 53 47 49 19 0.9 61 109 71 40 1
I 12 3.8 82 26 81 10 2.3 60 41 57 17 1.4 60 72 60 27 2
I 13 4.3 73 23 72 9 3.2 57 29 55 15 1.5 47 63 52 27 1
I 13 4.4 72 22 72 10 3.2 58 28 55 14 1.2 41 83 52 32 2
I 15 4.2 87 22 85 10 2.3 63 41 59 18 1.5 55 66 58 27 3
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Table 20: Cytometry statistics for CLL samples. 

# WBC # RBC % WBC % RBC #/mm2 WBC #/mm2 RBC
F 1 2 256.00 2.00 98.00 10.38 1328.20
F 2 6 311.00 3.07 96.93 31.13 1613.55
F 3 4 291.00 3.60 96.40 20.75 1509.79
F 4 4 259.00 2.29 97.71 20.75 1343.76
F 5 3 240.00 1.67 98.33 15.56 1245.18
F 6 5 303.00 2.74 97.26 25.94 1572.05
F 7 5 225.00 2.74 97.26 25.94 1167.36
F 8 4 296.00 2.82 97.18 20.75 1535.73
F 9 3 283.00 1.85 98.15 15.56 1468.28
F 10 3 285.00 2.25 97.75 15.56 1478.66
F 11 2 298.00 1.26 98.74 10.38 1546.10
F 12 2 262.00 1.66 98.34 10.38 1359.33
F 13 3 285.00 2.44 97.56 15.56 1478.66
F 14 2 231.00 1.66 98.34 10.38 1198.49
F 15 4 218.00 4.46 95.54 20.75 1131.04
G 1 5 239.00 2.93 97.07 25.94 1240.00
G 2 8 233.00 5.12 94.88 41.51 1208.87
G 3 6 236.00 3.11 96.89 31.13 1224.43
G 4 5 238.00 2.73 97.27 25.94 1234.81
G 5 6 226.00 2.97 97.03 31.13 1172.55
G 6 7 256.00 4.25 95.75 36.32 1328.20
G 7 6 234.00 2.73 97.27 31.13 1214.06
G 8 7 216.00 3.68 96.32 36.32 1120.67
G 9 8 233.00 4.50 95.50 41.51 1208.87
G 10 7 258.00 3.48 96.52 36.32 1338.57
G 11 6 225.00 4.06 95.94 31.13 1167.36
G 12 3 257.00 2.11 97.89 15.56 1333.39
G 13 7 220.00 4.88 95.12 36.32 1141.42
G 14 5 228.00 2.77 97.23 25.94 1182.93
G 15 6 229.00 3.58 96.42 31.13 1188.11
H 1 5 254.00 3.97 96.03 25.94 1317.82
H 2 2 238.00 1.64 98.36 10.38 1234.81
H 3 3 252.00 2.60 97.40 15.56 1307.44
H 4 5 252.00 3.23 96.77 25.94 1307.44
H 5 5 208.00 3.98 96.02 25.94 1079.16
H 6 4 207.00 2.63 97.37 20.75 1073.97
H 7 5 213.00 2.15 97.85 25.94 1105.10
H 8 6 218.00 4.38 95.62 31.13 1131.04
H 9 8 188.00 4.37 95.63 41.51 975.39
H 10 5 185.00 4.06 95.94 25.94 959.83
H 11 6 174.00 4.43 95.57 31.13 902.76
H 12 4 217.00 3.61 96.39 20.75 1125.85
H 13 5 200.00 3.10 96.90 25.94 1037.65
H 14 8 234.00 5.45 94.55 41.51 1214.06
H 15 6 224.00 4.02 95.98 31.13 1162.17
I 1 2 266.00 1.69 98.31 10.38 1380.08
I 2 3 276.00 2.81 97.19 15.56 1431.96
I 3 3 252.00 1.96 98.04 15.56 1307.44
I 4 5 258.00 2.30 97.70 25.94 1338.57
I 5 2 266.00 1.69 98.31 10.38 1380.08
I 6 3 318.00 1.89 98.11 15.56 1649.87
I 7 3 302.00 1.45 98.55 15.56 1566.86
I 8 2 257.00 1.34 98.66 10.38 1333.39
I 9 3 276.00 2.54 97.46 15.56 1431.96
I 10 3 295.00 2.23 97.77 15.56 1530.54
I 11 3 299.00 1.98 98.02 15.56 1551.29
I 12 3 267.00 2.79 97.21 15.56 1385.27
I 13 2 275.00 1.57 98.43 10.38 1426.77
I 14 2 267.00 1.86 98.14 10.38 1385.27
I 15 4 288.00 2.78 97.22 20.75 1494.22

Sample Area
Chronic Lymphocytic Leukemia


	Acknowledgements
	Abstract
	Table of Contents
	List of Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	2 Theoretical Background
	2.1 Electro-Optical Imaging Systems
	2.1.1 Point Spread Function Model
	2.1.2 Modulation Transfer Function Model
	2.1.2.1 Resolution
	2.1.2.2 Contrast/Modulation
	2.1.2.3 Definition of MTF as a measure of optical performance

	2.1.3 Image Degradation Model

	2.2 Microscopy
	2.2.1 Compound System Design
	2.2.1.1 Key Components
	2.2.1.2 Common Microscopy Techniques

	2.2.2 Method for Quantitative Analysis of Stained Microscopy Samples
	2.2.2.1 Spectral Imaging and Classification
	2.2.2.2 Chemometrics
	2.2.2.3 Generalization of Beer-Lambert Law


	2.3 Human Blood and Leukemic Abnormalities
	2.3.1 Eukaryotic Cell Structure
	2.3.2 Blood Physiology
	2.3.2.1 Plasma
	2.3.2.2 Buffy Coat
	2.3.2.3 Erythrocytes

	2.3.3 Hematopoiesis
	2.3.3.1 Bone Marrow
	2.3.3.2 Hematopoietic Series
	2.3.3.3 Blasts

	2.3.4 Leukemia
	2.3.4.1 Acute Lymphoblastic Leukemia
	2.3.4.2 Chronic Lymphocytic Leukemia

	2.3.5 Blood and Bone Marrow Samples Staining and Examination
	2.3.5.1 May Grünwald – Giemsa Stain
	2.3.5.2 Microscopy Examination Procedure



	3 Method for Measuring and Enhancing Imaging Resolution in Microscopy
	3.1 MTF Estimation via Slanted Edge Analysis
	3.1.1 Method’s Analysis
	3.1.2 Method’s Algorithm
	3.1.3 Algorithm Implementation
	3.1.4 Evaluation of Implementation

	3.2 Deconvolution for Enhancing Microscopy Imaging Resolution
	3.2.1 Wiener Deconvolution Model
	3.2.2 Two-Dimensional OTF Extraction Method
	3.2.3 Noise to Signal Ratio Estimation Method
	3.2.4 Implementation and Results
	3.2.4.1 OTF Calibration over Magnifications and Wavelengths
	3.2.4.2 KNSR Calibration over Camera Sensor Gains and Channels
	3.2.4.3 Method Implementation and Flowchart
	3.2.4.4 Brightfield and Fluorescence Deconvolution Examples



	4 Method for Improving Leukemia Diagnosis
	4.1 Presentation of Microscope System
	4.2 System Training with Experimental MG-G Stain Mixtures
	4.3 Method for Identification and Separation of Blood Cells
	4.3.1.1 WBCs Nuclei Binary Mask Estimation Module
	4.3.1.2 Blood Cells Contours Binary Mask Estimation Module
	4.3.1.3 Complete WBCs and WBCs Cytoplasm Binary Masks Estimation Module
	4.3.1.4 RBCs Binary Mask Estimation Module

	4.4 Method for Stains Uptake Analysis and WBC Classification
	4.4.1.1 Cytometry Statistics Calculation Module
	4.4.1.2 Stains Uptake Indices Calculation Module
	4.4.1.3 WBCs Classification Module

	4.5 Method Implementation
	4.6 Results on Leukemic Samples
	4.6.1 Analysis of Normal Population
	4.6.2 Acute Lymphoblastic Leukemia Results
	4.6.3 Chronic Lymphocytic Leukemia Results
	4.6.4 Overall Classification Results


	5 Conclusions and Future Work
	References and Bibliography
	Appendix A: Normal Population Samples Analysis
	Appendix B: Acute Lymphoblastic Leukemia Samples Analysis
	Appendix C: Chronic Lymphocytic Leukemia Samples Analysis

