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Abstract

Effective utilization of energy in buildings is receiving significant attention. This interest
is justified on the observation that buildings account for a significant portion of end-energy
use. In Europe 40% of the total energy consumed is used for the operation of buildings with a
significant part of that energy used for conditioning occupied spaces. Thus the value of
effective energy utilization during the building operational phase is undisputed both in terms
of achieving good occupant comfort and in reducing energy consumption.

In energy management of buildings, Building Management Systems (BMS) (or Building
Automation and Control Systems (BACS)) play an essential role in managing buildings by
providing some monitoring and control capability for multiple sub-systems including the
Heating Ventilation and Air Conditioning (HVAC) system. Very often, the installation and
commissioning of a BMS system is viewed largely as a quality control process, and more
specifically the target is proper installation and ensuring a minimum-level of functionality,
rather than good operational performance. This has enabled the utilization of flexible and
scalable BMS solutions. Here, the BMS is divided into two parts: Local and Remote. The
local part is responsible for managing local control loops (usually PID), data collection and
transfer, and very simple analytics; and the remote layer is responsible for providing more
advanced services. The availability of such a cloud-based platform enables the development
and utilization of advanced building energy management services, which cannot be deployed
in local hardware due to their computational requirements and allow for semi-automatic
intelligent control.

One of the most recent and widely-applied methodologies for designing intelligent
building control strategies is Model Predictive Control (MPC). Here, a model of the building
is available and using available weather and occupancy forecasts an optimization process
determines a set of control actions to be applied to the building for a pre-defined period of
time (e.g. 24 hours). The different control strategies are evaluated in the optimizer on the
basis of a cost function and a set of (visual, thermal, etc.) comfort constraints. Then, the first
control command is applied to the building and the whole process repeats. This approach has
certain limitations, mainly regarding the inability to incorporate in a structured manner more
elaborate thermal comfort indices, such as the Fanger index, and the requirement for linear or
bi-linear building models, in order to define a convex optimization task.

The methodology developed in this thesis tries to address these limitations while
maintaining the benefits of the MPC paradigm. We have developed a framework to deliver
optimized and integrated operation of all energy-influencing components of a building that
include generation, distribution and emission elements. First, a set of parametric control
functions (controllers) are identified for each emission/distribution/generation system,
following guidelines available in international standards. Next, given (weather, occupancy,
etc.) forecasts for a predefined time window, say three days, a surrogate-based stochastic
optimization algorithm is used to create candidate controller parameters to be applied to the
building, and a detailed thermal simulation model (designed using detailed thermal simulation
software like e.g. EnergyPlus or TRNSYS) is used to evaluate these candidate solutions. The
evaluation is performed on the basis of a defined cost function and a set of (visual, thermal,
air-quality, etc.) comfort constraints. The final, improved controllers are communicated to the
building-side and are applied to the building.

In order to verify the efficiency of the proposed methodology, a hierarchy of experiments
has been designed, facilitating simulation-based studies and real building experiments in two
study buildings located in Greece and Germany. The simulation-based studies are used to

v



evaluate the potential of the proposed approach in a controlled and disturbance-free
environment, while the goal of the real building experiments is to study the behavior of the
control design process under real-world conditions, influenced by user- and weather-induced
disturbances.

In all our experiments the proposed methodology was able to outperform the baseline
control strategy of the buildings (usually hard-coded in a set of pre-defined rules) in terms of
total energy consumed, while preserving comfortable interiors. This is because a static, rule-
based controller is unable to properly account for all the predicted and un-predicted
disturbances (e.g. weather conditions, occupancy, setpoint tracking errors, etc.), whereas the
model-based control design approach, utilizing the thermal simulation model of the building
and the automated control design setup, was able to make informative decisions and control
the building in an efficient manner.

An important aspect investigated through the experiments is the topic of (thermal)
comfort-based control, since it was clear from the results that a discussion on energy
efficiency seems untimely when discussed without any reference to comfort as there is a clear
trade-off between comfort and energy. Having methods that allow the automated selection of
building operation to desired levels of comfort is both desirable and can have significant
implications. On the other hand, in existing state of the art, comfort is often synonymous with
the temperature in the building zones being maintained within certain (prescribed) limits. As
we investigate in the thesis this assumption while true in certain cases, in many cases is not
sufficient to ensure true comfort for the building occupants, with detrimental effects to health
and productivity (when office buildings are considered). In the proposed approach, we define
comfort based on ISO 7730, which supports the definition and use of the Fanger index which
captures, among other parameters, the influence of air and radiant temperatures along with
humidity.

Keywords: Energy Efficient Buildings, Model-assisted Control, Surrogate-based Stochastic
Optimization, Bayesian Optimization, Design of Experiments, Thermal Comfort
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Hepiinyn
(Extended Abstract in Greek)

Ta televtaia ¥pdvia, n PerTioTonOiNGT TG EVEPYELOKNG amdd0oNg KTNpimv €yel AdPet
ONUOVTIKT] TPOGOYN. AVTO TO €VOPEPOV givor dtkotoloynuévo, oG Kot o KTiplo eivot
vevuva yuo £vo LEYEAO TOGOGTO TNG TEAIKNG KATOVAAMONG EVEPYELOG. LVYKEKPEVA, GTNV
Evpann to 40% 1tng oMknG KOTavAA®ONG EVEPYELNG XPTOLOTOLEITOL YioL TN AELTOVPYio TOV
KINpilov, eved €vo PeydAo TOGOGTO OO aVTH TNV EVEPYELD YpNoLoTOLEiTaL Yo TV emitevén
OepLuKng AveEONG GTOVG E0MTEPIKOVG XDPOoLS. Emopévamg 1 Beltictomoinon tng evepyelokng
0mOd00NG KTNPI®V KATA TN SIUpKELD TNG ¥PNONS TOVG €XEL TOAAMTAG OQEAN KOl TTPOG TNV
KkatevBvuvorn ¢ pelmong TG GLVOAIKNG KOTAVAAMONG EVEPYEWS KOL TPOG TV KatevBuvon
g Bertimong g BepUIKNG AVESTG TV YPNOTDV.

Xmv evepyewkn Olayeipion tov Kmpiov, kevipikd poro mailovv 1o XvoThipoTo
Awyeiprong Knpiov (Building Management System (BMS)) 1 Zvotquato AVTORATIGHOD
kot EAéyyov Kmpiov (Building Automation and Control Systems (BACS)). Ta cvtiuata
aVTd TPOGEEPOVY AerTovpYieg mapakoilovBnong tng amddoong tov Krnpiov, KOOMOG Kot
Aertovpyieg eAEyyoV OA@V TV cvotnuatov Oépuavong, Yoéng kot Khapoatiopod (Heating
Ventilation and Air Conditioning (HVAC)). ITokv cuyvd 1 eykatdotacn Kot 1) Tapddocn tomv
BMS ctoygbel 6tV 006N £YKATAGTAGT TOL EE0TAIGUOD KOl 6TNV €MiTELEN KAmolag PactKng
AELTOVPYIKOTNTOG GTOV MIKPOTEPO duvaTd YPOVO Kot Ol oTNV PEATIOTOTOINGN TNG OAIKNG
Aertovpyiog tov cvotqprotos. o to tedevtaio, £govv avamtuyBel EMEKTAGIUO Kol EVEAIKTA
ocvotiuata BMS. Edd 10 BMS yopiletar 6e 600 d1okpitd pHépn: oV TOTIKN £YKOTAGTOCT
KO GTNV OMOUAKPLOUEVT €YKoTAoTaoT. H Tomkn eykatdotoon mepiiapfavel Tnv dwyeipion
TOV TOmK®OV PBpoyov eléyyov (yio mopadetypo PID eleyktéc), kabdc kot T cvAloyn
OEJOUEVOV KOl TNV OIOGTOAN TOVUG GTO OMOUOKPLOUEVO cOoTNUe. To OmOUaKPLGUEVO
CUGTNUO LE TN GEWPA TOL givol VIeEVBVVO yloL TNV EKTEAEST TO TOADTAOK®V VANPECIDV,
ocuvnbwg o éva mepifdiiov voloyiotikod vépovg (cloud-based). H dabecyuotnto piog
TETOLOC VTOAOQYIOTIKNG TAOTQPOPUOG EMTPENEL TNV VAOTOINom kot ypnon eéelyuévov kot
TOAOTAOK®V VINPECUDV EVEPYELNKNG Olayeiptong kmnpiov, mov dev Ba pmopovoav va
avantuybodv otov e£omMopnd mov givarl SteBEcIHOC GTNY TOTIKY E€YKOTACTACT, AOY® TNG
VTOAOYIGTIKNG TOVG TOAVTAOKOTNTOG,

Av1o 10 TTEPIPAIAOV gvvoel kot TNV avamtuén e€edtyuévav aiyopifuwmv/uebodoroyidv
gvepyelokng dtayeipiong knpiov. Mo omd Tig o diadedouévec pebodoroyieg té€tolov TOTOV
gtvan o IpoPrentikdc ‘Ereyyog pe xpnon Movtérwv (Model Predictive Control (MPC)). Edcd
éva LOVTEAD TOVL KTNPiov, KoM Kot TPOPAEWELS Yo TIC LEALOVTIKEG KOl KALPIKEG GLVONKES
Kol TNV TANPOTNTA TOov Ktnpiov, eivar Sabéoyo. Xpnoonowwvrag ovtég Tig drabéoipeg
TAnpoeopiec, pmopel vo. oplotel évo mPOPANUA PedTioTomoinoNg OOTE Vo GYEOIAGOVE
BeATIOTOTOMUEVEG OTOPAGEIC EAEYYOL Y10 OAOL TO. GLGTNUOTO TOL KTNPIOV KOl Yot OPICUEVO
xPOoVIKO Sdotnuo oto pEAAOV (m.y. Yo Tig emdpeves 24 dpec). Ot Sopopetikés aTEG
oTpatNYIKéG EAEYYOL a&loAoyobvtal e PAOM TO LOVTEAD MG TTPOG UIK OPIGLEVT) GLUVAPTNON
KOGTOVG (). 1| GUVOAIKT KATOVAAWDGT EVEPYELNG TOV KTNPIOL) KOl £VOL GUVOLO TEPLOPICUDYV
oV (BepLukn, ONTIKY], OKOVOTIKY], K.A.TT.) AVEGN TOV YPNOTMOV TOV KTNPiov. XTN GUVEYELX,
uoévo n mpotn omdPact eAEYYOL €QUPUOLETOL GTO GLOTALATO TOV KTNpiov Kot 11 OAn
dwadikacio emavaiapfiverat.

H xhaocwn exdoyny avmg g pebodoroyiog oto medio TG evepyslokng dlayeipiong
KINPlov £(El GLYKEKPIUEVE, PLELOVEKTAIOTA, KUPIMG G TPOG TNV KAVOTNTO VO, GUUTEPIAGPEL
He yevikd TpOmO Mo TOAVTAOKOLG dgikteg Beplikng dveong, Omwg givar o dgiktng Fanger,
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KaBMG Kol 1 omaiTnon Y YPOUMUKA 1 OUypOppIKG HovTEAD KTnpimv, OCTE TO TEAIKO
TpoPANua PedtioTonoinong va eivat kuptd (convex).

H pebBodoroylia mov avomtoynke otnv mapodoa epyacio €xel cav G1OXO Vo
OVTULETOMICEL QVTO TO. PUEOVEKTNLATO, OLLTPOVTOG TOPAAANAQ KOl TO TAEOVEKTILOTO TOV
MPC. H ovykexpyévn pebodoroyia €xel ) Svvatotnto va oxedidlel Peltictomompuéveg
ATOPAGCELS ELEYYOL Yo OAQ TO. GLGTHLOTO TOV KTNPiov TavTdYpova. ApyiKd, oyedtdleTal Eva
0T amd TOPAUETPIKODS EAEYKTEC Yio OACL TO. GUOTAUATA TOV KTNPiov, okolovboviog To
oyeTika tpoéTuTa ot PiPAoypapio. Xt cuvEKED — Kol PE OESOUEVEG TIC TPOPAEYELS YOl TIC
Kopikég ouvnkeg Kot v mAnpdTNTA TOV KINPoL — £€vaG GTOYXOOTIKOG 0aAyopOuog
BocIoUEVOC GE UETA-UOVTEAD YPTCLULOTOIEITOL Y10 VO, OXEONGTODY VITOYNPIEG CTPOTIYIKEG
eréyyov i to Ktpro. Ot oTpatnyIkéG AVTES AEIOA0YOVVTOL YPNGLOTOLOVTOS EVO AETTOUEPES
MOVTELO TPOCOUOIMoNG Tov KTnpiov (mov &xel dnuovpynbel xpNOIUOTOIOVTAS AOYICUIKA
Oepukng mpocopoimong Ktnpiov o0nmg yuo mapdderypo to EnergyPlus kow to TRNSYS).
Téhog, n tehikn (Pertiotomompévn) oTpatnykn EAEYYOV OTOCTEALETOL GTO KTNPLO DGTE VA
EQOPUOCTEL GTOL GLOTHLATO TOV KTNPIOV.

Mo v emaAnBevon TG amoTEAEGUOTIKOTNTAG TNG TPOTEWVOUEVNG peBodoroyiag, o
oelpd MEWPAPATOV GYESICTNKE KOl EKTEAEGTNKE TOGO G EMIMEDO TPOGOUOIMONG OGO KOl GE
TPOYUATIKEG GUVONKEC, ¥PNCLOTOIOVTOC 600 KTNpla, Eva atnv Kpnt kot éva ot lepuavia.
Ta mepapoto oe mepiPdAlov mpocopoiwong ypnoedovy dote v damotmbel m
OTOTELECUATIKOTN T TNG UeBOOOL oe eleyyouevo mepiPdilov, ywpic Tuyoieg petaforés, evad
TO. MEWPAUOTA GE TPOYUOTIKEG GUVONKEG KOATAOEIKVOOLV TNV OTOTEAECUATIKOTITO KOl TN
otafepdmTa TG mpotevOuevng HeBddov oe Tpaypotikég ovvinkeg, OmOL  EMOPOLV
OTOYOOTIKEG dOTOPAYEG OTO GUOTNUN TOCO ONO TIC KOUPIKEG oLVONKEG 000 Kol amd TIG
EVEPYELEG TMV YPTOTAV.

Ye Oho o mEWPOaTa 1 TPOTEWOUEVT ueBodoroyia KOTAPEPE VO OTOSMGEL GMIOVTIKG
KOADTEPO. GUYKPLTIKA HE TNV LAAPYOVGO OCTPATNYIKY EAEYXOL TOV KINpimv, 1 omoin
YPNOLoTOLEiTOL GOV onpeio avaeopds. Avtd copPaivel yloti ot 6TatTiKéG Kol BOCIOUEVES O
éva GUVOLO TPOKADOPIGUEVOV KOVOVOV DITAPYOVGES GTPUTNYIKES EAEYYOL dev gival og Béom
VO OVTIHETOTIo0VY OAEG TIG TPOPAETOUEVES KOl U1 SLOTAPALYES TTOV EMOPOVY GTO GUOTNUA. ZE
avtibeon, n mpotewduevn pebodoroyiol pe Tn ¥pNOM TOL AVOALTIKOD HOVTEAOL Oepuikng
npocopoinong, Kabmg kot ¢ pebddov PBertictomoinong sivar oe Béon va oyedialel mo
OTTOOOTIKEG OTPOTNYIKEG EAEYYOV, TPOGOUPLOCUEVEG OTIC OVALEVOUEVEG LEALOVTIKEG GUVONKEG.

Mo, GNUOVTIKN TOPAUETPOC TTOL dlEPELVHONKE HECH TOV TEWPANATOV gival To OEu TOV
eléyyov Paociopévov otnv Beppiky dveon Tov ypnotodv, pog kot eivor EekdbBapo amd ta
amoteléouarta oG Mo oteipa ov{nmon ya eowovounocn evépyelag sival dotoyn yopig
capn avaeopd oty Beplukn dveon TV ¥pNoTOV, KOO VIGpPYEL Eva GOPEG AVTICTAOUIOUO
petadd tov dvo (etvar aviayoviotikd kprmpia). H avértuén pebddov mov emirpémovy v
avtopaTn POOUIoT TG OEPIIKNG AVEGTC GTOVG ECMTEPIKOVG YDPOLS KTNpiv eival Eva omd Ta
KOpla otoryeio tov eEelypévaov BMS. Ao v aAin mhevpd, oD cuyva n Oeppkn dveon
opifetar cav po Tpokabopiopévn meployr TIL®V g Oeppokpaciog Tov aépa og Kabe Lmvn
OV KTNPiov. Onmg KaTOdEKVOOUY T OMOTEAECUATO, TNG TOPOVGOC EPYACING, OV KOl QUTH M
vdBeon givar aAndng oe cuykekpipéva ktpla kot HVAC cuotiuato, ot yevikn tepintwoon
dev apkei yia vo eEao@olicel mpaypotikn Oepuikn dveon yio TOVG ¥PNOTEC TOL KTNPiov, Ue
eMENUES EMATOGELS GTNV VYEIN KOl TNV OTOS0TIKOTNTO, TV ¥PNOTAOV. LTIV TOPOLGH EPYACIN
ypnoyomolovpe tov Ogiktn Fanger, o omoiog eival évag opiopdg Beppixig dveong mov
nepEyetan oto mpdtumo (ISO) 7730. O deiktng awtdc cvvLmoAoYilel — OVAUESH Kol GE GAAESG
TOPOUETPOVS — TIG EMIMIOOES Tng Oepuoxpaciog aépo kot g Oeppokpaciog AdOY®
axtivoPoiiag, kabdc Kot TG VYPUGING GTOVE YOPOVS TOL KTNPIOV.
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Chapter 1

Introduction

1.1 Overview

Effective utilization of energy in buildings is receiving significant attention. This interest is justified
on the observation that buildings account for a significant portion of end-energy use: in Europe
40% of the total energy consumed is used for the operation of buildings (Pérez-Lombard et al.,
2008) with a significant part of that energy used for conditioning occupied spaces. Energy retrofits,
properly selected and executed, can yield appreciable reduction in energy demands. But the value
of effective energy utilization during the building operational phase is undisputed both in terms of
achieving good occupant comfort and in reducing energy consumption.

In energy management of buildings, Building Management Systems (BMS) (or Building Automa-
tion and Control Systems (BACS)) play an essential role in managing buildings by providing some
monitoring and control capability for multiple sub-systems including HVAC, electrical systems, fire
systems, security systems and others at minimal cost. Traditionally BMSs are offered to customers
as products, comprising a software and a hardware component. Typically the purchase of a BMS
product occurs at the same time as the purchase of other sub-systems (HVAC equipment, lighting,
fire and security systems). Configuration and software installation happens during the installation
and commissioning phases before handing the system to the building manager.

Functionality in most BACS is delivered in three hierarchical layers (see Figure 1-1):

* Field layer comprises primarily sensing (temperature, humidity, interior air quality, occu-
pancy detectors, etc.) and actuation components (valves, light switches, etc.);

* Automation layer consists of controllers whose logical functions may range from the single
input single output (SISO) closed-loop control at the base level, to plant-level control and
supervisory control at the upper level. At the supervisory level, logic related to energy man-
agement and integrated system operation is implemented as a set of rules in Programmable
Logic Controllers (PLCs);

* Management system layer provides capabilities for monitoring and centralized management
of the building.

Very often, the installation and commissioning of the BMS system is viewed largely as a quality
control process, and more specifically the target is proper installation and ensuring a minimum-
level of functionality, rather than good operational performance. As such emphasis is placed on the
lower field and automation layers. Energy-management and related functionalities — presumably key
components in making a building smart or intelligent — are only seen as sub-products of installing the
controller hardware and are typically addressed by installation of simple software that can provide



* Interactive dashboards
* Advisoryservices
* Monitoringapplications y

~
* Supervisory controllers

* Plant-level controllers
* Base level controls

* Sensors

Fkld * Actuators

* Meters

Figure 1-1: Functional layers of Building Management Systems

various advisory services for the people involved in daily operation, such as service technicians,
engineers, or facility managers.

The above shortcomings have enabled the utilization of flexible and scalable BMS solutions, like
e.g. the Johnson’s Controls METASYS®. Here, the BMS is divided into two parts: Local and
Remote. The local part is responsible for managing local control loops (usually PID), data collection
and transfer, and very simple analytics; and the remote layer is responsible for providing more
advanced services. The availability of such a cloud-based platform enables the development and
utilization of advanced building energy management services, which cannot be deployed in local
hardware due to their computational requirements.

On the other hand, even with a solution that offers high flexibility, a question that arises is which
actuating elements of the building should be controlled and how, in order to achieve energy-efficient
operation. In this direction, EN15232 (Comite Europeen de Normalization (CEN), 2010) which
evolved in ISO 16484-7 provides a generic description of efficient BACS. According to the standard,
a BACS has access to the following three layers (Figure 1-2)

* The Generation layer, which schedules the operation of all available energy providers/generators;

* The Distribution layer, which regulates the energy transferred from the generators to the build-
ing spaces;

* The Emission layer, which schedules the operation of all terminal units in all building spaces.

Depending on the specific sub-systems consisting each of these layers, the goal is to design an intel-
ligent BACS that would take into account the properties of the installed HVAC and the interactions
among the layers, to operate in an energy-efficient manner. Here, the EN15232 standard is an effort
to identify and enumerate the functional components that influence the building performance, and
thus identify functionalities that a BACS should address. The BACS is divided into two parts: the
Building Automation and Control (BAC) functions and the Technical Building Management (TBM)
functions. The BAC functions directly affect the energetic performance of the building, by adjusting
the operation of selected emission, distribution and generation systems, while TBM functionalities
have an indirect effect to this direction by identifying discrepancies, thus assisting towards efficient
operation. This set of enumerated control and TBM functions provides all the necessary building
blocks towards designing and deploying a BACS suitable for any building, facilitating any combi-
nation of commonly found HVAC and energy systems.
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Shown in Figure 1-3 is a schematic of a high-performance BACS according to EN15232. In this
figure E,...,E) are controller functions (often physical control devices with embedded logic)
for emission elements; similarly Dy,...,Dy are controller functions for distribution elements; and
G1,...,Gg are controller functionalities for generation elements. Here, according to the standard,
the BMS is a basic entity in energy management and comprises of a set of standard control schemes
(controllers), such as thermostats, on/off controllers, scheduled tasks, etc. The initial configura-
tion (or tuning) of these controllers is performed by the BMS installation team based on expert
knowledge, while the building maintenance staff periodically re-configures the parameters of few
high-level controllers (e.g. thermostat setpoints and operational schedules), usually on seasonal ba-
sis. Thus, the building administrator is tasked to study historical data of the building performance
and/or the occupant behavior and manually adapt the control logic (tuning controller parameters)
following common rules.

It is very often the case that these decisions are not good enough: it is estimated (Roth et al., 2005)
that up to 20% of the energy used for HVAC and lighting system operation is lost due to poor con-
figuration, wrong operational assumptions during the design and commissioning phases, or system
faults that go undetected. Even in the case of good configurations, it is very hard to encapsulate good
strategies within a static set of simple rules. Also tuning of individual controller parameters might
not (and probably will not) result in good performance of the overall control strategy. The situation
can be particularly egregious for buildings with complex energy concepts or when renewable energy
systems are installed, where, in the former case, the complexity of integration becomes formidable
as all the systems have to operate harmoniously together, while in the latter case generation patterns
strongly depend on weather conditions. It is conceivable that such a manual configuration pro-
cess can be a laborious and error-prone non-trivial task. In addition, in locations characterized by
high weather variability between days or weeks during specific periods (e.g. spring), more frequent
adaptation of the control parameters is required.
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1.2 Model-assisted Control Design

In current research efforts, this manual tuning process is replaced by a methodology called model-
assisted control design and is developed following two axes:

* Predictions vs study of historical data: here instead of gathering and analyzing historical
data from the building to improve the efficiency of BAC functions, (weather, occupancy,
equipment gains, etc.) forecasts are utilized to determine the (near-) future state (e.g. comfort
conditions, demand, etc.) of the building. This allows for a constant adaptation of the control
logic to the (predicted) needs of the building and the microclimatic conditions of each site —
a process that needs to be iterative.

* Automated control strategies: since using predicted data for BAC functions optimization im-
plies frequent design intervals (e.g. once a day), it is practically infeasible to tune all these
functions by hand. Thus, an optimization process is defined to design efficient controllers in
an automated and laborious-free manner.

A schematic of the proposed enhancements, as described above, is shown in Figure 1-4. Here the
user defines the control logic tuning problem (cost function and constraints) and the optimizer gener-
ates new sets of parameters. The new block is in charge of continuous monitoring and improvement
of the control logic.

Even though this formulation seems trivial, the associated complexity can be formidable. In order
to highlight this complexity, we will use as an example the building shown in Figure 1-5, which is
a typical mid-sized office building, located in Valladolid, Spain (Rovas et al., 2014a). The building
has two floors and 15 heated spaces according to the schematics (11 offices and laboratories and 4
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Figure 1-4: Desired functionality of an Intelligent Building Automation and Control System

common areas).

At the generation level, a gas boiler is available and is combined with a solar-thermal installation
and a heat storage. The boiler operates within a pre-defined time schedule (from 2 a.m. to 12 p.m.).
In addition, once the water in the tank reaches a pre-defined temperature, a valve bypasses the boiler
and uses the water heated from the solar-thermal installation.

At the distribution level, a three-way valve controlled by a PID controller is installed, allowing the
hot water entering from the generation side to be cooled at any temperature.

The emission system is underfloor heating with Thermally Activated Building Systems (TABS) and
in each heated area, different number of heating circuits are included. There is a temperature sensor
in each thermal zone and its measurements are provided as input to the PID controllers regulating
the hot water flow in all circuits of the zone. In addition to this, there is a rotary switch in all offices
and laboratories, so the users can change the heating setpoint of each room.

Now let’s take this typical building example and try to examine the complexity of designing new
control actions for all controllable elements for one day. If we assume for simplicity that the boiler
schedule and the strategy of using hot water from the solar-thermal installation remain fixed, and we
send new control actions to all controllable elements every one hour, then we define the following
controllers:

* 10 setpoints (one per hour for the 10-hour availability of the boiler) for each heating zone, i.e.
10 x 15 = 150 decision variables; and

* 10 setpoints (one per hour for the 10-hour availability of the boiler) for the hot water temper-
ature in the distribution circuit. i.e. another 10 decision variables.

This means that the optimization problem defined (and will be required to be solved every few



minutes or hours as we will see next) comprises of 160 decision variables, while if we select to
also optimize the operation schedule of the boiler and the use of the hot water from the solar-
thermal installation, the complexity of the problem increases significantly. To add to this, we are
also dealing with several stochastic disturbances, since e.g. the weather forecasts are not always
accurate, different people have different heating preferences, we have noisy sensor measurements,
etc.
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Figure 1-5: CARTIF office building in Spain (Rovas et al., 2014a)

1.2.1 Occupant Thermal Comfort

An important question in this automated setup is to determine the desired outcome of the process.
Here, although in the majority of cases building owners expect to see “energy-saving operation,”
it is important to emphasize that the goal for “energy-savings” is untimely if treated separated and
isolated from parameters, like user thermal comfort; the final target of an intelligent BAC functions
optimization mechanism should not only be the minimization of a performance index, such as the
total energy consumption or the operational cost, but should also ensure smooth building operation,
taking into account user comfort. For example, in a real building, a newly-installed BACS can
consume more energy than the existing system, in order to improve user comfort levels.

A wide range of methodologies for indoor thermal comfort estimation exist: from simple dry-bulb
temperature-tracking (Ma et al., 2012a; Oldewurtel et al., 2012) to more elaborate indices (Azer
and Hsu, 1977; Fanger et al., 1970; Gagge, 1971). The most widely accepted models, as evidenced
by their adoption in indoor climate thermal comfort standards are: i) Fanger’s Predictive Mean
Vote (PMV) model (Fanger et al., 1970) used in ISO 7730 (International Organization for Stan-
dardization, 2005) and ASHRAE 55 (ASHRAE, 2010) standards; ii) the Adaptive Comfort Model
of the ASHRAE Standard 55-2010 (ASHRAE, 2010); and iii) the Adaptive Comfort Model of the
European Standard EN 15251 (CEN, 2007).

These methodologies can be put into two broad categories: i) human body heat balance approaches (Azer



and Hsu, 1977; Fanger et al., 1970; Gagge, 1971); and, ii) thermal adaptation approaches (ASHRAE,
2010; CEN, 2007). The first category applies to buildings with mechanical Heating, Ventilation and
Air Conditioning (HVAC) systems where the building occupants are allowed to control the inter-
nal environment to desired levels of air temperature, while the second category applies to naturally
ventilated buildings.

1.2.1.1 Fanger Predicted Mean Vote model

Fanger’s Predicted Mean Vote (PMV) model is based on human body heat-balance considerations.
Taking into account that thermal sensation is influenced by environmental (air temperature, radiant
temperature, humidity and air velocity) and personal factors (activity and clothing), the PMV index
predicts the thermal comfort on a seven-point sensation scale ( -3 cold, -2 cool, -1 slightly cool, 0
neutral, +1 slightly warm, +2 warm and +3 hot). The Fanger Predicted Percentage of Dissatisfied
(PPD) people index, derived by the PMV index, predicts the percentage of a large group of people
likely to be thermally (dis-)satisfied with their environment.

Precise quantification of personal factors is a challenging task, due to the difficulty associated with
making robust measurements. Instead, metabolic rate estimation methods and predefined clothing
insulation values are used. Methods for metabolic rate estimation are divided into four levels in
ascending order of accuracy (International Organization for Standardization, 1989). At Levels 1
(screening) and 2 (observation), look-up tables are used to estimate metabolic rates for various oc-
cupation and activity types. At Level 3 (analysis), the metabolic rate is estimated using an empirical
correlation to the total heart rate. The total heart rate is the sum of the heart rate at rest and it’s
increase under specified conditions. When the total heart rate is known a linear relationship can be
established between the two parameters. At Level 4 (expertise), the metabolic rate is determined
by measuring oxygen consumption and carbon dioxide production rates. Level 3 and 4 methods
require measurements that might be hard to collect and the improvement in accuracy (£20% error
for Level 2 vs. £5% error for Level 4) does not significantly impact the results of our study as a
simple sensitivity analysis might show.

The role of clothing as an insulating material is captured by the thermal resistance, and typically
measured in units of clo. In many applications constant values of 0.5 clo are used during the cooling
season, and 1.0clo during the heating season. To account for the fact that humans adjust their
clothing based on prevailing conditions, three predictive clothing insulation models are proposed
ASHRAE 55-2013 (Schiavon and Lee, 2013); in all these models, the clothing insulation varies as a
function of outdoor air temperature measured early in the morning (at 6:00) and the indoor operative
temperature.

Concerning environmental factors, air temperature, humidity and air velocity are relatively easy to
measure, and low-cost sensors are readily available and installed in many buildings. Radiant temper-
ature measurements are not frequently performed, except in experimental buildings (both buildings
in our study are equipped with such sensors). In cases where sensed measurements of radiant tem-
perature are missing, two methods are commonly used to estimate radiant temperature: the space
averaged radiant temperature, calculated assuming that the occupant is at the center of a space; and
the angle-factor radiant temperature, calculated based on angle factors between a person’s location
and the different surfaces of a space. As can be inferred from the discussion above evaluation of
the PMV index is not easy, since many of the parameters have to be estimated or require sensing
modalities that may not be available. For this reason, both ASHRAE 55 and ISO 7730 introduce
simplified calculation methodologies to define acceptable limits for thermal comfort.

In ISO 7730 the simplification is based upon an operative temperature of 24.5°C in summer and
22.0°C in winter. These recommendations correspond to zero values of the PMV index, under
standard assumptions on the metabolic rate (1.2 met, corresponding to sedentary activity), clothing



level (0.5 clo in summer and 1 clo in winter), relative humidity (60% in summer and 40% in winter),
and air velocity (as in the Table 1.1). Three different comfort categories are introduced in ISO
7730 with varying ranges, corresponding to varying percentages of the PPD index: i) Category A
is recommended for buildings occupied by people with special thermal comfort requirements (e.g.
very young children, elderly); ii) Category B is suitable for most new buildings and renovations;
and iii) Category C is suitable for existing, less energy efficient, buildings.

Table 1.1: Acceptable operative temperature and operative temperature band for thermal comfort in
office buildings based on ISO 7730 (International Organization for Standardization, 2005)

Category Thermal Comfort Indices | Operative Temperature (°C) | Max Air Velocity (m/s)
PPD (%) PMV Summer Winter Summer Winter
A <6 [-0.2,4+0.2] 245+1.0 220+ 1.0 0.12 0.10
B <10 [-0.5,+0.5] 245+ 1.5 22.0+20 0.19 0.16
C <15 [-0.7,+0.7] 245+25 220+£3.0 0.24 0.21

In ASHRAE 55 acceptable ranges of operative temperature (defined as the average of radiant and
dry-bulb air temperature) and humidity ratio are defined. In Figure 1-6, comfort ranges (shaded
polygons) are illustrated for heating season (clothing value = 1.0clo) and cooling season (clothing
value = 0.5 clo), for occupants under light activity (1.2 met). The limits for each season are defined
for a value of PPD = 10% (corresponding to —0.5 < PMV < 0.5), where 10% of the users are
expected to express discomfort with their environment. The discomfort levels approach a PPD =
10% level near the edges of the polygons and approximate a value of PPD = 5% (or PMV = 0) as
we move towards the center of the shaded areas. We can move to the right of the diagram by heating
a space, to the left by cooling it, upwards by humidifying a space and downwards by dehumidifying
1t.
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1.2.2 State-of-The-Art Analysis and Limitations

State-of-the-Art research in the field of generating automatically optimized control strategies for
efficient building operation is based on the Model Predictive Control (MPC) paradigm. Here, as
shown in Figure 1-7, we assume that a model of the process (of the real building in our case), as
well as (weather, occupancy, etc.) forecasts for a predefined time window are available. This way
a constrained optimization problem is formulated and solved for a predefined period in the future,
generating a control signal (or control strategy) which is optimized for the system on the basis of a
defined cost function and a set of (visual, thermal, air-quality, etc.) comfort constraints.

r Weather Forecasts 1
| Internal Gains l
Prediction

Optimization
— [Model; <
Constraints]

Apply First Measurements
Control Input

v

—> Real Building
KPls

Figure 1-7: MPC scheme for building climate control (adapted from (Oldewurtel et al., 2012))

To account for modeling/prediction errors and unpredicted disturbances like user actions, this strat-
egy is then applied to the building for a shorter period of time and the whole process re-initiates —
see Figure 1-8 for a schematic.
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Figure 1-8: Moving Horizon Definition of the Optimization Problem
As the body of literature regarding MPC techniques in the control of HVAC systems has grown

huge over time, in this thesis we do not provide an exhaustive literature review of all available
research papers in the field; instead, we refer the interested reader to (Afram and Janabi-Sharifi,
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2014) for an overview of the application of MPC setups in energy efficient building operation and
in (Sturzenegger et al., 2016) for a comprehensive list of real-world model-based building control
applications, while we reference selected publications in the remainder of the Section to highlight
the limitations of existing approaches and determine the contributions of the approach presented
here.

A first limitation of classical MPC approaches, which require physics-based models of special lin-
ear or quasi-linear structure — see (Cigler and Privara, 2010; Ma et al., 2011; Morosan et al., 2010;
Nghiem and Pappas, 2011; Oldewurtel et al., 2012; Siroky et al., 2011) for successful implemen-
tation — is the treatment of thermal comfort constraints. As we aspire to save energy by exploiting
the inherent trade-off between energy consumption and thermal comfort, with the latter acting as
a constraint defining a theoretical and practical upper bound on potential energy savings (Ghahra-
mani et al., 2016; Oldewurtel et al., 2012; Pichler et al., 2011; Zavala, 2012). It is conceivable that
different definitions for comfort yield different energy saving potential (Kontogianni et al., 2013;
Morales-Valdés et al., 2014), while improper definitions — favoring higher energetic benefits — can
lead to dissatisfied users and productivity loss (Akimoto et al., 2010; Fisk, 2000). Thus the abil-
ity to estimate (or predict) thermal comfort is critical for parsimonious and cost-efficient building
operation.

Despite the active research effort towards better understanding and estimating thermal sensation,
which is distilled in international standards, as analyzed in the previous Section, as well as the
expressed need for proper comfort definitions on building control from both the research community
(Cigler et al., 2012; Donaisky et al., 2007; Drgona et al., 2013; Freire et al., 2008; Katsigarakis et al.,
2016; Kontes et al., 2014) and the industry (Mafik et al., 2011), current practice in BACS design and
performance evaluation facilitates defining comfort as a region (or band) of air temperature upper
and lower limits (Ma et al., 2012b) around a target set point (e.g. 22°C 4+2°C).

Changing the set point or increasing the dead band can lead to significant energy savings (Atam
and Helsen, 2016; Ghahramani et al., 2016; Hoyt et al., 2015; Ma et al., 2012b; Moon and Han,
2011), but is also evident from field experiments in spaces with dry-bulb temperature control that
users tend to act upon the controllable elements of a building — such as windows, blinds, lights and
thermostats — in response to their feeling of thermal discomfort (IEA Annex 66, 2013), with po-
tentially detrimental effects to energy performance (Azar and Menassa, 2015; D’Oca et al., 2014; Li
et al., 2014). One of the main reasons for this, is that zone dry-bulb air temperature measurements
when used in isolation might not always by suggestive of the actual thermal sensation of the occu-
pants due to all other factors also affecting thermal comfort in building spaces, such as the effect
of solar radiation or humidity (International Organization for Standardization, 2005). In view of
this, the effect of solar radiation in thermal comfort has been studied extensively (Kang et al., 2010;
Marino et al., 2015), while in (Feng et al., 2015; Gwerder et al., 2008, 2009; Lehmann et al., 2007)
controllers able to compensate this effect in buildings with Thermally Activated Building Systems
(TABS) were presented

Since the majority of MPC applications in buildings follows the temperature bound approach, the
resulting optimization problem is solved using traditional optimal control or convex optimization
techniques by linearisation of the model around feasible regions (Oldewurtel et al., 2012). As a
consequence of strict requirements on the models, the arduous task of developing purpose-built
models has to be addressed (Sturzenegger et al., 2014). For the model construction, one approach is
to use first principle models (Oldewurtel et al., 2012), but for large buildings the problem can prove
to be intractable (Privara et al., 2011). To overcome this problem, many data-driven approaches
have been introduced, based on system identification methods (Cigler and Privara, 2010; Garnier
et al., 2013; Kolokotsa et al., 2009; Privara et al., 2011; Vana et al., 2010), but the excitation process
of the system has to be designed carefully, in order not to disturb the occupants of the building (Vana
et al., 2010; Zacekovi et al., 2014), thus leading to models with poor extrapolation properties. To
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that direction, some approaches (Privara et al., 2011) use a thermal simulation model of the building
for the identification process — which remains a difficult process necessitating expert knowledge.
In addition, also in this case, the requirements of the models limit the potential to include more
realistic thermal comfort indices, like the Fanger index, defined in relevant standards (International
Organization for Standardization, 2005). Formulations that use approximation of the Fanger index
by linear functions within a limited band of weather and indoor conditions (Cigler et al., 2012) or
simplified building models (Klauco and Kvasnica, 2014) have been recently reported. Still what is
more commonly observed is to define comfort as a region of the operative (Oldewurtel et al., 2012)
or air temperature (Ma et al., 2012b) of each building zone.

In an effort to overcome the arduous task of defining models with special structure manually for
every test building, selected publications utilize detailed thermal simulation models using ther-
mal simulation software like EnergyPlus (Crawley et al., 2001) and TRNSYS (Klein et al., 1976).
These models can be available from the design phase of the building or can be generated semi-
automatically using available Building Information Models (Bazjanac et al., 2011; Lilis et al., 2015).

Here, a first approach is to utilize the simulation model as a surrogate model offline, and facilitating
a large number of simulations to create a reduced model, used for the online optimization phase
(Eisenhower et al., 2012; Privara et al., 2011). In this setup, the assumption is that the simulation
model assimilates perfectly the real building, for all the different combinations of weather conditions
and occupants actions, but from our experience with real-building setups, the simulation model is
capable of providing accurate predictions for the indoor conditions in each room of a building for a
short period of time (e.g. few days or weeks) and provided that the initial thermal conditions of the
building are correctly estimated. Another source of inaccuracy is the incorporation of occupant’s
behavior (control actions and occupancy schedule) and of internal gains in a static manner, following
a set of guidelines, but in practice, the behavior of the occupants in specific spaces can prove to be
different compared to the one anticipated during the design phase. In the end, the effect of these
two assumptions can largely affect the accuracy of the generated reduced model and we may end up
with a model that provides accurate predictions for specific occupancy and weather conditions.

A second approach that addresses these problems, is to use the simulation model online, i.e. re-
placing the linear or bi-linear model used in classical MPC by a detailed thermal simulation model.
Some early work here (Coffey et al., 2010; Henze et al., 2005) utilizes optimization approaches such
as Genetic Algorithms, where each objective function and constraint evaluation is a single simula-
tion call. It is conceivable that the computational burden of such approaches is enormous (and grows
exponentially with the number of posed comfort constraints (Henze et al., 2005)), making this setup
prohibitive for realistic, large-scale predictive control applications.

Newer approaches (Baldi et al., 2014; Giannakis et al., 2011; Karagevrekis et al., 2014; Kontes
et al., 2012, 2014, 2013; Korkas et al., 2015; Pichler et al., 2011) utilize the available simulation
model to construct a simple meta-model online, able to predict the behavior of the building only
for the prediction horizon. This meta-model is used for the optimization of the control strategy, in
an effort to reduce the number of simulation calls to the “expensive” simulation model. The prob-
lem with most of these approaches stems from the formulation of the optimization algorithm (Baldi
et al., 2014; Kontes et al., 2014), since due to computational complexity constraints, the objective
function to be optimized needs to contain one term for the energy consumption and one term for the
collective comfort constraint for the entire building, properly weighted. In large-scale real-world
setups, finding a proper weighting between the active constraints is not a trivial task. For example,
in an office building with 30 offices, where thermal and visual comfort constraints need to be met,
minimizing the energy consumption of the building while giving priority to thermal over visual
comfort constraints requires: i) proper normalization between the energy consumption, the thermal
comfort and visual comfort constraints values so no term is dominating the combined cost function
(Luenberger and Ye, 2008); and ii) adjusting the relative importance of visual over thermal comfort
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constraints. Hand-tuning a set of weights able to enforce this relative importance between the terms
in a real, large-scale building application and being generic enough to capture all the real-world
variations (e.g. varying daily consumption and constraints values, etc.) is a formidable task. In ad-
dition, in most cases average discomfort values for all offices are calculated, in contrast to normative
guidelines (ASHRAE, 2010; CEN, 2007; International Organization for Standardization, 2005). We
have to note here, that simulation model-free versions of these algorithms have been reported (Baldi
et al., 2015; Michailidis et al., 2016), but they suffer from the same drawbacks described above, as
well as the danger of “poor excitation,” as with any data-driven approach (Zacekovi et al., 2014).

1.2.3 The Proposed Methodology

The methodology developed in this thesis tries to address the limitations of the approaches de-
scribed in the previous version, while maintaining the benefits of the MPC paradigm. Therefore,
we utilize detailed thermal simulation models for online model-based control, but in the heart of
our methodology lies a constrained surrogate-based stochastic optimization algorithmic setup, able
to treat every (thermal, visual, etc.) comfort constraint as separate constraint. Obviously the degree
to which our methodology can achieve good performance depends on the quality of prediction of
the disturbances. To reduce their adverse effects (in case of false predictions) we adopt parametric
feedback controllers for all the controllable generation, distribution and emission elements of the
building, instead of open-loop control strategies as in typical MPC approaches. Thus the building
performance optimization task is transformed to a task of optimizing a set of control parameters —
a process called Control Design (CD).

The overall methodology is shown in Figure 1-9. Here, an optimization algorithm facilitates several
simulation calls with different sets of control parameters and the model, utilizing forecasts for the
weather conditions and the occupancy, predicts the performance of each control parameters set in
terms of total energy consumption and user comfort.

In the remainder of the Section, the requirements and the properties of each component of our
methodology is presented, while in the following Chapter, the different versions of the proposed
stochastic optimization approach are analyzed.

1.2.3.1 Controller Functions

The selection of proper parametric control functions is a key ingredient towards efficient building
operation. These functions should be rich enough to be able to capture the complexity of the control
task on one hand, but on the other hand the number of the control parameters should be kept as
small as possible, to reduce the computational burden of the optimization algorithm. In this direc-
tion, the BAC functions defined in EN 15232 provide a comprehensive list and enables a generic
BAC selection process suitable for many buildings, supporting common HVAC and energy systems.
While the list describes (to a good level of detail) the function blocks, it does provide little by way
of implementation on the logic behind each function.

Thus, it is clear that a first knowledge-based step/task is required towards applying the Control De-
sign process on a study building. This step requires an expert to determine the parametric controller
functions to be applied in each controllable element, along with all their properties (e.g. inputs,
outputs, execution interval, etc.). These controllers can be the default controllers of the building in
parametric form (e.g. ug]‘;k =—0 Tkamb + 65, with Tkamb the average outside ambient temperature of
the last 24 h, calculated at time k for a standard heating curve regulating the supply water tempera-
ture in a heating system, as shown in Figure 1-10) or new, more complex controllers like a heating
curve including also the solar radiation and the office temperatures.
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Figure 1-9: Model-assisted adaptive BACS design using detailed thermal simulation models

This parametric representation of the controllers allows our approach to be able to adapt in any
control configuration of a given building (since for a given building equipped with a set of emis-
sion, distribution and generation systems, different providers can contribute controller libraries that
define different control functions over the same controllable elements), while being able to han-
dle controllers with special structure (e.g. Finite State Machines) in contrast to the classical MPC
approaches.

1.2.3.2 Simulation Model Requirements

The proposed methodology relies on the availability of accurate enough models, able to predict the
thermal state of the building and encapsulate all the relevant dynamics of the emission, distribu-
tion and generation systems. Of course, the level of accuracy cannot be quantified, since it varies
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Figure 1-10: An example of a supply water temperature curve (Figure from GEOTABS project
(Arteconi et al., 2014))

depending on the dynamics of the application building, the properties of the available HVAC and
energy systems, as well as the expected fidelity of the BACS. Nevertheless, the model should be
able to capture the relevant sensitivities and trends of the physical system and at the same time
facilitate reduced simulation times, suitable for control design tasks. The balance between these
requirements depends on the calculation methodologies utilized in each model type. From a generic
point of view, Figure 1-11 illustrates the utilization of a model, facilitating a specific calculation
methodology. Here, a set of inputs is provided to the model (typically control actions for all emis-
sion, distribution and generation systems) and a set of outputs reflecting the quality of the controller
with respect to the cost function and the constraints defined for the problem.

Control Actions . Cost Function
> Calculation >
| |
Methodology ,
Constraints

Figure 1-11: Simulation model view in this work

The complexity of building simulation stemming from the multitude of intertwined parameters
along with the many and varying typology of energy-influencing and consuming elements makes
the development of accurate simulation models a challenging and oftentimes formidable task. It
is becoming quite common, especially during the design (or subsequent retrofitting) phases of a
building lifecycle, that simulation models are employed to prognosticate energy performance and
help identify salient problems with respect to energy design. The calculation methodologies used
can range from “simple” quasi-steady-methods, as defined in ISO 13790:2008 (ISO, 2008) and re-
lated standards; to dynamic, implemented in energy-performance simulation zonal-type software
like EnergyPlus or TRNSYS. Each calculation method supports different use cases and, as such,
the modeling assumptions and the associated inputs can vary greatly in the levels of detail and in-
formation that has to be provided. In an attempt to rationalize the medley approaches one could
use multiple classification criteria: the resolution of the spatial and temporal discretization, the
mathematical structure of the models used, whether these models are created from data or using
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first-principles, etc.

In general, building thermal and energy simulation programs use mass and energy balances (Moss,
2015) as a basis for estimation of the evolution of the values of variables referring to internal condi-
tions (temperature, humidity, CO, concentration, luminance) and energy needs (total energy, max-
imum power demands) of building interiors. Energy conservation laws are used to investigate ther-
mal energy transfers and exchanges among building elements, spaces, and systems, while mass con-
servation is used for evaluation of vapour-water transfers (humidity). Implicit in all the methodolo-
gies is the discretization of the pertinent conservation equations over pre-determined time intervals.
Based on time-resolution criteria calculation methodologies can be classified into two categories:

* Static or quasi-static calculation methodologies. These methods assume average parameter
values for a long period of time (typically a month or a season), and account for dynamic ef-
fects using empirical correlations and averaging correction factors. These types of calculation
methods are especially useful for estimation on energy performance on an annual basis.

* Transient calculation methodologies. Transient calculation methodologies take a more gran-
ular approach using a time resolution which is comparable to the time-scale of time-varying
effects that are being modelled. Consequently these methods are capable of capturing tran-
sient phenomena such as weather changes, occupancy variations, thermal loading effects, or
the effects of building energy management systems.

The monthly-based calculation methodology described in ISO 13790:2008 is a prime example of
a quasi-static calculation methodology. This fully-prescribed calculation methodology has been
adapted — in the context of activities for the implementation of the EPBD (Maldonado et al., 2011)
— by many EU member states to form at a national level an accepted calculation methodology for
computing energy performance. In certain conditions, the calculation methodology can be validated
against reality and relatively small deviations can be observed for annual predictions, but on the
monthly scale these deviations can be significant. The sensitivity to input data is also discussed:
uncertainties in the estimation of thermal properties or other input parameters can contaminate the
results, and the propagation of these errors can yield sizable deviations in the end results. For this
reason, in many cases, the calculation methodology is used to establish an ordering relation, that
allows for meaningful comparisons (and thus establishing the rating system used in many countries),
but with lesser expectations with regards to prognostication of real performance.

In the case where dynamic effects are important, like in the Control Design process defined in our
methodology, the temporal resolution of a month is not sufficient to capture all relevant dynamics.
In this case, smaller time steps are required and a different approach is essential. This has obvious
benefits: certain physical effects like transfer of heat from building thermal masses or the dynamic
effects of the operation of active climate control HVAC components happen on a time-scale which is
comparable to the simulation time-step. It is then possible to use more detailed models that capture
these dynamic interactions and there is no longer any need for averaging or using correlations and
other correction factors. On the other hand the need for defining boundary conditions, at each time
steps means that in many cases the problem definition has to be more detailed (at each time step)
requiring, at this level of detail, information which may not be available.

An example of such model is the dynamic one described in (ISO, 2008). Here, as shown in Figure
1-12, a zone is represented as a thermal circuit with 5 thermal resistances and 1 thermal capacitance
(5R1C). The thermal capacitance models thermal storage effects in the zone. The mathematical
formulation of the problem in this case is an Ordinary Differential Equation to model the evolution
of the temperature as a function of time. Upon discretization of the equation using a finite-difference
scheme, e.g. an implicit scheme like the Crank-Nicolson method, one gets the equations for the
evolution in time of the relevant temperature parameter. One obvious benefit in the model above is
the ability to model the temperature in the walls and therefore it becomes possible to have estimates
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of thermal comfort (as the radiant temperature is an important parameter for thermal comfort). In
a multi-zone configuration one needs to set individually for each of these nodes the thermal system
and combine it to form the overall thermal network. The number of capacitances in this case is
proportional to the number of zones, and a system of Ordinary Differential Equations has to be
integrated in time. In ISO 13790 such a methodology is described and the boundary conditions are
selected to ensure compatibility between the monthly and dynamic models.
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Figure 1-12: SR1C Representation of a zone (ISO, 2008)

A similar approach is followed in TRNSYS 16: TRNSYS has a modular and extensible structure
where different models for the building and its systems (called Types in TRNSYS lingo) are com-
bined to form the problem description. Type 56, implements the multi-zone building model. There
the geometrical and connectivity information for the zonal splitting is provided along with parame-
ters for describing opaque and transparent building materials. The models used for the multi-zone
building are more detailed than the simple RC above, including a star-shaped topology for ap-
proximating radiant exchange between zone surfaces along with the transfer function method for
modelling transient conductive exchanges through walls. The integration time step can vary from
1 min to 1h. This higher level of simulation detail is especially useful when one considers the cou-
pled interaction of the building and energy systems; for this reason it has been extensively used as a
simulation-aid tool for energy systems development and testing.

On the other hand, when predilection for temperatures in the zones or other dynamic effects exists,
accurate modeling of thermal gains is essential. This is particularly important in cases of buildings
with high solar gains e.g. due to a high glazing-wall ratio or due to the presence of solar atriums. To
compute correctly solar gains and the evolution of temperature variables, a detailed consideration
of the three-dimensional building geometry is necessary. For such reasons, state-of-the-art building
simulation software today, uses the 3-D information of the building elements, to define geometri-
cally the building spaces and surfaces, and uses this information to compute in more detail radiative
transfer, e.g. due to solar gains. Examples of tools which implement such calculation methodologies
are TRNSYS 17 and EnergyPlus. Both of these tools use detailed three-dimensional representation
of geometric objects-building elements, and use detailed methods to compute such exchanges. At
this level of modeling detail, obvious advantages are the capability to capture correctly radiant heat
gains and exchanges. It also becomes possible to include the shading effects of neighbouring build-
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ings, represented as external shading surfaces. Thus, for the work presented here, these types of
models are utilized.

Shown in Figure 1-13 are the calculation methodologies discussed, on a diagram with the spatial
and temporal discretization on its two axes. The classification based on the spatial discretization is
important as it determines the level of modelling detail and the amount of information that has to be
prescribed as input, when defining the geometry and other related information. The temporal dis-
cretization dimension is also important as it determines the integration time step, and consequently
the granularity in which dynamically changing data (occupancy, weather, etc.) should be defined.
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Figure 1-13: Comparison of different model types

1.2.3.2.1 Co-Simulation To facilitate the integration of different controllers within our Con-
trol Design approach, in each iteration of the algorithm (Figure 1-9) a different set of controllers
has to be “injected” into the simulation model. This functionality is achieved using co-simulation
and more specifically utilizing an actor-based library called Buildings Control Virtual Test Bed
(BCVTB) (Wetter, 2011), which is based on Ptolemy II (Brooks et al., 2005) heterogeneous design
and actor-oriented modeling open source environment. In Ptolemy, actors are hierarchical software
entities (can include other actors) that execute concurrently and are able to communicate via mes-
sages through communicating ports. Here, the controllers are defined as actors in ptolemy (see for
example an implementation of a simple heating curve in Figure 1-14) and they are evaluated at
each simulation time-step to yield the new control action to be applied in the simulated building.
These actions are sent through the co-simulation interface to the simulator and are included in the
simulation of the building dynamics. This situation closely mimics what happens in the real build-
ing; the controller functions are evaluated at regular intervals at a supervisory level and the result is
communicated to low-level control loops that implement this actuation command.

Next, the defined controllers need to be coupled with the simulation model in the BCVTB environ-
ment. The simulation models can be included as actors in BCVTB, thus we can define a composite
actor containing the simulation model and the controllers, as shown in Figure 1-15. Note that the
model calculates the cost function and the constraints and accepts control actions for each control-
lable element (e.g. valves, blinds, etc.) as inputs through an external interface.
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Figure 1-15: Coupling between the simulation model and the controller actors

In the final step, the Control Design process is setup as a BCVTB actor (e.g. implemented in Mat-
lab). In this actor, the properties of the optimization algorithm are defined, such as the termination
criterion and the bounds defining allowed values for the control parameters. The Control Design
process is initiated either in scheduled intervals either as a response to an event and communicates
the optimized controller parameters to the building.

1.2.3.2.2 The Warming-Up Process The iterative nature of the optimization algorithm (as shown
in Figure 1-9), requires evaluating a number of candidate controllers in the simulator and generating
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Figure 1-16: The Actors of the Model/Controllers and the Control Design in BCVTB

the meta-model in each iteration. Towards ensuring model accuracy, the initial thermal state of the
building at the beginning of the Control Design process needs to be determined. Addressing this
need is achieved again by the use of co-simulation, in which interfaces are introduced to allow data
exchange between the simulation engine and external tools. The co-simulation is used to virtually
“warm-up” the simulation model so that a correct estimate of the initial thermal condition of the
building can be obtained.

In more detail, generally, the initial thermal state of the building can not be measured. While zone
temperature and external condition information might be available from in-building sensors, the
loading of the thermal masses and the wall temperatures are not known. To correctly estimate this
state the actual simulation starts some days before the period of interest. So even though the period
of interest is e.g. = [0, 7], the simulation is performed for a larger interval Iy = [T, T]; T,, is the
warming up period and depends on the building time constant. For the period [—T,,,0] sensed data
regarding zone temperature and weather conditions are passed through the co-simulation interface
to the model. This allows for uncertainties related to the loading of the building thermal mass to
disappear and a correct estimation of the initial thermal state of the building. Then, for the period
from [0, 7' the building is simulated using the controller functions and available forecast data.

1.3 Novelty and Contributions of the Thesis

The contributions of the thesis, are inspired by the following fundamental questions:

1. Can existing thermostat-based controllers in buildings ensure comfortable interiors for the
occupants (and save energy at the same time)?

2. Can we use detailed thermal simulation models in an on-line MPC setup?

3. Is continuous adaptation/re-design of the high-level supervisory control necessary (as in clas-
sical MPC) or for certain types of buildings and HVAC systems longer control design intervals
(e.g. once per day) can be used?

4. Is MPC a viable technology option for any building?
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In an effort to explore the above points, we have developed a model-based control design optimiza-
tion methodology and framework, able to utilize detailed thermal simulation models of the building
as surrogate models. In the heart of our framework lies a surrogate-based stochastic optimization
scheme that is based on design-of-experiments principles, in order to facilitate a small number of
calls to the simulation model.

We have applied our methodology to two office buildings with contrasting characteristics and differ-
ent HVAC systems. Extensive experiments in both simulation and real world proved the efficiency
of the proposed approach, while also led to significant insights regarding the posed research ques-
tions.
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Chapter 2

Surrogate-based Stochastic
Optimization

2.1 Formal Definition of the Optimization Problem

As described in the previous Section, the control design process utilizes an available model of the
system, as well as forecasts for the weather conditions and occupancy patterns. This process is
tasked to design energy-efficient controllers adapted to the thermal needs of the occupants of the
building, by defining and solving a constrained optimization problem. To obtain the discretized
equations we assume that the design process is to start at time fy and the prediction horizon is 7.
We select a set of N — 1 points {z1,...,ty—1} with t; € I = (to,t0+T),i € {1,...,N — 1} such that
fh<th <t <..<ty_j<ty=ty+T. Therefore a partition .# of I in N intervals [ = (ty_1,%),k €
1,2,...,N is introduced. Then we can represent the simulation model as:

X1 = m(Xg, ug, dy), 2.1

where x;, is the vector of observable system states, u; is the control vector, d; are external to the
system disturbances, like weather conditions and occupant actions, and k the discrete-time index.
The goal is to discover series of control vectors that lead the system to optimized — with respect to
a performance function J — behaviour.

Moreover, we assume a parametric smooth vector function 7 to represent the control law applied to
the system at time k as follows:
up = (0 xy, dy.); (2.2)

here 6 € R is the vector of control parameters. A typical example of such parametric controller,
is the heating curve adjusting the hot water temperature in buildings equipped with Thermally-
Activated Building Systems (TABS) (Gwerder et al., 2008). Here, the sending water temperature

u}fw at time k is obtained by the following equation:

™ =0T + 6, (2.3)

with Tkamb the running average of the ambient temperature for the last 24 h. In this context, while
the goal of the optimization process is to find a series of control vectors that lead the system to
optimized — with respect to the cost function and the constraints — behaviour, this problem, under
the effect of the control law (Eq. 2.2), is in turn transformed into the problem of discovering an
optimal set of control parameters 8* (e.g. parameters 6; and 6, of the heating curve defined above),
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and leads directly to the definition of the following optimization problem:

N
6" = argmin Z J (xg, uy),
Rl k=]

subject to:

up = 7(0;5x%,dy), 2.4)
X1 = m(xg, ug, d),

u, €U,

xp € X,

C(x) <0,

where X C R™, U C R" are constraint sets; and C(x;) a set of non-linear vector functions imposing
the user comfort constraints.

Due to the utilization of detailed thermal simulation, solving this optimization problem can be a dif-
ficult task, since in many simulation engines interfaces for low-level access to simulation may not
be available and optimization approaches exploiting low-level model information (Akesson et al.,
2010; Zavala, 2012) cannot apply. The system model is viewed as a black box function implement-
ing a computationally expensive calculation procedure to compute state variables and evaluate the
cost function and the constraints in the optimization process.

Due to the computational complexity of the high-fidelity models used (one simulation run can take
up to 2 minutes) the use of global optimisation algorithms, like e.g. Genetic Algorithms (Arango
et al., 2013), can be prohibitively expensive. To properly accommodate for the potentially high
computational costs of evaluating the simulation models, we rely upon methods, such as trust-region
(Wild and Shoemaker, 2013) and response-surface (Khuri and Mukhopadhyay, 2010) algorithms. In
such methods, a less complex surrogate model (also referred to as response surface model or meta-
model) of the (computationally expensive) simulation model is created, providing an approximation
of the underlying function and assisting towards identifying optimized parameters to be evaluated
on the expensive simulation model in the next iteration of the optimization algorithm. Utilizing
the evaluation of these points, the region of the exploration and its “size” are constantly adapted,
leading to a (local) optimum after a small number of simulation model calls (Regis and Shoemaker,
2005).

A high-level schematic of the optimization approach is shown in Figure 2-1. Here, an initial con-
troller, as well as an initial size of the trust-region are provided and in each iteration of the algo-
rithm: i) a set of control parameters is evaluated on the expensive simulation model with respect
to the cost function and constraint values; ii) the meta-model(s) is(are) constructed using the avail-
able parameters-evaluation pairs; and iii) an optimization task is defined and solved on the meta-
model(s), with the entire process being repeated until a termination condition is reached.

The definition of the algorithm does not pose any restrictions on the number of constraints. For ex-
ample, we can define a complex building performance optimization task, requiring the minimization
of the total energy consumption in the presence of thermal and visual comfort constraints. In such
task, the controller would combine the control of the Heating, Ventilation and Air-Conditioning
system of the building as well as daylight control, where separate models for the detailed thermal
simulation and visual comfort (e.g. Radiance (Raphael, 2011)) could be utilized. Once the control
design process is complete, the optimized control parameters 8* are communicated to the building
and the parameters of the controllers of the real building are updated with the new ones (e.g. the 8°s
in Eq. 2.3).

It is conceivable that the selection of a proper approximator plays crucial role on the efficiency of the
approach. The approximators need to be accurate, with low computational complexity for training
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Figure 2-1: Flow-diagram of the Optimization Algorithm

and prediction, and should be “generic” enough to require minimum configuration when deployed
in different buildings. For these reasons, we employ two non-parametric approximators: the Support
Vector Machines (SVM) for regression, also known as Support Vector Regression (SVR) (Scholkopf
and Smola, 2002; Vapnik, 2000; Vapnik et al., 1997)), and the Gaussian process (GP) models (Ras-
mussen and Williams, 2006). Using these approximation approaches, the constrained optimization
problem of Eq. 2.4 is solved using two methodologies that are tailored to each estimator type: the
Cognitive Adaptive Optimization with Constraints (CAO-C) algorithm (Kontes et al., 2014) for the
SVM and the Bayesian Optimization (BO) algorithm (Shahriari et al., 2016), adapted to the GPs.

We have selected to use non-parametric models for constructing the surrogates. Here, in contrast
to parametric models that assume a fixed model structure and a finite set of parameters (like e.g.
polynomial functions or neural networks), thus bounding the expressiveness of the model, non-
parametric models assume an infinite-dimensional vector of parameters, where the amount of in-
formation that can be captured from the model grows as the amount of data grows. In addition,
non-parametric models allow us to use the same models in all the experimental setups, regardless
of the type of the building, the specifics of the HVAC system, the modeled quantity (e.g. energy
consumption or Fanger values), etc., whereas in the case of parametric models, a laborious manual
model selection process has to be performed.
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2.2 Cognitive Adaptive Optimization with Constraints (CAO-C)

2.2.1 Support Vector Machines as Meta-Models

Let’s assume that we have a sequence of [ training samples [(z1,y1),.. ., (z;,y1)], with z € R? and
y € R. In general, we are required to design a regression function j(z) that predicts the targets y
with at most € deviation from the actual values, neglecting prediction errors smaller than €, and
at the same time assuring that the function is as smooth as possible. In the simple case of linear
regression, the formulation of the regression function would be the following:

$(z) = (w,2) +b, (2.5)

withw € R?, b € R and (-, -) denoting the inner-product operation defined in R?. The regularization
requirement for this function corresponds to small w, thus, more formally, we can construct the
following convex optimization problem:

o 1 2
minimize EHWH,

~ yi—y(zi) <e&
subject to A
! { V(@) —yi <€,

(2.6)

with $(z;) = (w,z;) + b from (Eq. 2.5). Since this problem can be infeasible, we introduce slack
variables & + & and penalize inaccurate target predictions using the €-sensitive loss function:

!é\s:{ 0 if|c <& 2.7)

|E| — €, otherwise.

This leads to the definition of an €-sensitive loss tube (shown in Figure 2-2), while the introduction
of the slack variables leads to the following formulation of the problem:

] l :
minimize > HwHZ—i—CZ (éi—i—fi) ,
i=1

vi—¥(a) <e+& (2.8)
$ai) —yi<e+&

&, 6i>0

€>0.

subject to

Here, §(z;) = (w,z;) + b from (Eq. 2.5) as before, while C > 0 is a parameter regulating the trade-off
between the flatness of the regression function and the “tolerance” to predictions with deviation
larger than €.

While this problem is well-posed, it is usually difficult in practice to determine a suitable loss
function parameter €, without knowledge on the desired accuracy of approximation a-priori. Due to
this, in the present work we use the v-SVR variation of the SVR process defined in (Scholkopf et al.,
2000), where a new parameter 0 < v < 1 is introduced to regulate the trade-off between the size of
€ tube, the model complexity and the slack variables. In (Scholkopf et al., 2000) it is proven that v
is an upper bound on the fraction of errors and a lower bound of the fraction of Support Vectors (i.e.
of samples that lie on or outside the £-sensitive tube). This way, the following new optimization
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x
Figure 2-2: The &-sensitive tube
problem is defined:
TVE BN C{ o

minimize 5 [lw||* + Cve + 7; (éﬁ—é) :
yi—3(z) <e+&; (2.9)
(7)) —v: < .

subject to y(zl) ViSEtG
gia éi >0
e>0.

This problem can be solved in its dual form, introducing Lagrange multipliers a;,d;, W;, (L, B > 0
and defining the Lagrangian:

XZ%HWHZ"" Z 51""5 Z(nulgl_'_;ulél)
+Cve—[38—Zai(£+§i+)7(zi)—yi) (2.10)
i=1

Z 8+§l Zl) +)’z)

~

After calculating the saddle point of the Lagrangian (Bertsekas et al., 1999) and substituting to the
dual problem, we get the v-SVR Optimization Problem (Scholkopf and Smola, 2002), where, by
applying the Karush-Kuhn-Tucker conditions (Bertsekas et al., 1999), the final estimator J(z) is
given by the equation:

!
9(2) = Y (@i —ai)(ziz) +b. 2.11)

The exact solution process of the Lagrangian is beyond the scope of this work, but we refer the
interested reader to (Scholkopf and Smola, 2002) for a detailed description.

Moving one step forward, in order to provide non-linear properties to the regression function, a
first approach would be to pre-process the training data z; by a map @ : R? — .% in some feature
space, as in (Kosmatopoulos, 2009). Here, in contrast, noting that the algorithm depends only on
the inner-products between the z;” s (Scholkopf and Smola, 2002) implies that it suffices to know
the kernel function J#(z;,z;) : (®(z;),®(z;)) rather than & explicitly. This allows to reformulate
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the problem and acquire the kernelized version of (Eq. 2.11):

MN

P(x) =Y (a;i—a;)H (zi,2) + . (2.12)

1

The most popular kernel functions are the linear, the polynomial, the sigmoid and the radial-basis
functions (RBF), but for our approach we use the RBF kernel, defined as:

H (z1,2) = exp(—Yllzi — z|]%). (2.13)

From the problem definition described above, it is obvious that the accuracy of the estimator de-
pends on the selection of the parameters C, v and y. Calculating these parameters by hand can
be rather difficult, since proper values might vary during each step of the algorithm, thus, in order
to approximate appropriate values for the parameters, model selection is applied. As suggested in
(Lin et al., 2001), a “grid” with exponentially growing parameters (e.g. C = [2713 2714 .. 215])
is defined and each tuple of parameter values is tested using n-fold cross validation (Kohavi, 1995;
Mosteller, 2006). In this setting, the dataset is divided into n subsets: n — 1 of them are used as
a training set and the remaining one as a test set. The process is repeated n times and finally, the
tuple with the best performance (e.g. with the lowest Mean Square Error) is used for the training of
the estimator. The grid search method is preferred over other more sophisticated parameter search
methods, since for small datasets is fairly fast, could be more accurate (due to thorough search over
the parameter space) and is easily parallelizable (Lin et al., 2001).

The importance of the model selection process becomes clear in Figure 2-3. Here, the SVM re-
gression functions for different values of the the hyper-parameters C, v and y are shown, indicating
that proper selection of the parameters is crucial for the prediction quality of the regressor. Apart
from that, Figure 2-3 also illustrates another appealing property of the SVM regression, since SVM
regressors approximate the area far from the data samples with an unbiased flat line, thus preventing
selection of parameters that can lead to poor performance.

180 I I I
o Real Data
-x-~v=0.0156,C = 1,v = 0.7
---v=0.1,C=1,vr=05
160 | -x-~v=0.1,C =100,y =05 ||
v =0.01,C = 1000,v = 0.5
140 | s

120

100

Figure 2-3: SVM regression with different values of the hyper-parameters C, v and y
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2.2.2 Optimization over the Support Vector Machines Meta-Models

Since the proposed algorithm is iterative (as shown in Figure 2-1), we define n € {0,1,...,N,} as
an index over the iterations and construct the meta-model of the cost function, as follows:

N

Ju(60) =01 ,0(6,), (2.14)

where J,, denotes the approximation/estimation of J, generated at the n-th iteration, ¢ denotes the
RBF kernel functions and ¢, ; denotes the vector of model parameter estimates calculated at the
n-th iteration. In the same way, we can define one surrogate model for each (comfort) constraint
posed to the system, as follows:

N,
Co(60) =Y Wity 0 (6n): (2.15)
i=1

C, denotes the approximation/estimation of C, generated at the n-th iteration; i is an index over
all different N, constraints; ¢ denotes the RBF kernel functions as before; 9, ;c denotes the vec-
tor of model parameter estimates calculated at the n-th iteration for each constraint; and w; is a
normalization factor, indicating the relative importance of each constraint.

From here, we can optimize over the SVM meta-models using either local search or utilizing gradi-
ent information for efficiency.

2.2.2.1 Local Search Algorithm

Once the estimators are constructed, a local optimization task over the meta-models is defined, in
which the best parameter vector (as predicted by the surrogate models) needs to be discovered and
subsequently evaluated on the expensive simulation model. This optimization task is defined in
an area with radius p, around the current parameter set — following the trust-region methodology
paradigm — with the radius decreasing in each iteration. In order to solve this optimization problem,
traditional stochastic approximation techniques can be used. The low computational complexity of
meta-model evaluation allows performing an exhaustive search over the trust region, by selecting
M (a large number) candidate parameter sets, normally distributed around the current parameter set
and within the current trust region:

0. ={0V16,+ g, je {1,....M}, & ~ #(0,1),]|6Y) — 6,]| < p.}. (2.16)

All candidate solutions in ®, are evaluated on the surrogate models of the cost function and the
constraints and the best parameter vector are evaluated in the next iteration over the simulation
model. The process repeats until convergence or a maximum number of iterations has been reached.

A detailed sketch of the process is shown in Algorithm 2.2.1. Here, the initial parameters set (6y),
the maximum number of iterations (N,) and the initial size of the trust region (pg > 0) are provided
(line 1). Subsequently, for each iteration of the algorithm, the current set of parameters is evaluated
on the simulation model, thus acquiring the cost function and constraints values for the current
iteration (lines 3—4). Then, the SVM meta-models for the cost function and the constraints are
constructed, using all previous evaluations on the simulation model (lines 5-6), while the size of
the trust region is reduced appropriately (line 7). Inside this region, a set including a large number
of candidate solutions is generated randomly (lines 8-9) and the best parameters of this set (as
evaluated on the meta-models) is selected (line 10) to be evaluated on the simulation model during
the next iteration of the algorithm. The best parameter set is determined using the process shown in
lines 14-27. Initially, the parameters that perform best on the cost function meta-model are selected
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(line 17). If these parameters do not violate the constraints (as predicted by the constraints meta-
model) the process terminates, while if a constraint is violated, the parameter set is removed from
the set and the process repeats (lines 18-22). If all candidate parameter sets violate the constraints,
the parameters that give the fewest violations are selected (lines 24-26). Note here that in line 17
we do not solve a new optimization problem in each iteration of the inner loop. The list of control
parameters is pre-sorted based on their performance on the cost function and in each iteration the
parameter set with the lowest value is selected.

Algorithm 2.2.1 Random-search-based Cognitive Adaptive Optimization with Constraints Algo-
rithm

1: Input: 6y,N,,po >0,
2: forn=0:N,do

> Initial parameters

3 J, =J(6y) > Evaluate cost on the simulator
4: C,=C(6y) > Evaluate constraints on the simulator
5: J.(6,) = 19,{7 70 (6y,) > SVM meta-model of the cost function
6 Co(6,) = XN w; Oy 0 (6,) > SVM meta-model of the constraints
7 Pn = ﬁ Po > Trust region size update
8: 0. = {66, + aC,Ej), je{l,....M},... > Generate candidate parameter sets
o G~ (01,1100~ 6,] < pu}

10: 6,41 = BESTCONTROLLER(®,., J,,, C,, M) > New controller

11: end for

12: Output: 6y, > The final controller

13:

14: function BESTCONTROLLER(®,, J,, C,, M)

155 ©.=0,

16: for j=1:Mdo

17: 6 = argminJ,(6,) > The parameter set with the minimum value for J,,

6.€0,

18: if C,(8) > 0) then > If a constraint is violated
19: 0.=0.—{06} > Remove that element from the set

20: else

21: break;

22: end if

23: end for

24: if © = 0 then > If all 6, violate the constraints

25: 6 = argminC,(6,) > Choose the one with the less violations

6,€0;
26: end if
27 Return: 6

28: end function

Note here, that usually a set of initial parameter vectors is generated to assist to construct an accurate
enough initial meta-model. These initial samples can be either randomly selected or generated in a
more structured manner, (e.g. using Latin Hypercube Sampling (LHS) (Tang, 1993) in our case).

2.2.2.2 Gradient-based Algorithm
On the other hand, and since a local optimal solution is pursued, the Kiefer-Wolfowitz stochastic
approximation or Finite-Difference Stochastic Approximation (FDSA) algorithm (Kiefer and Wol-

fowitz, 1952) can be applied. Here, in each iteration n of the algorithm, the gradient of the control
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parameters towards the minimum is estimated using finite differences and a line-search on the di-
rection of the gradient is performed.

A sketch of the process is shown in Algorithm 2.2.2. Again, as in Algorithm 2.2.1, the initial param-
eters set (6p), the maximum number of iterations (N,) and the initial boundaries of the trust region
(pin > 0 and py'™* > 0) are provided (line 1). Subsequently, for each iteration of the algorithm,
the current set of parameters is evaluated on the simulation model, thus acquiring the cost function
and constraints values for the current iteration (lines 3—4). Then, the SVM meta-models for the cost
function and the constraints are constructed, using all previous evaluations on the simulation model
(lines 5-6). In line 7 the finite difference widths are adapted, while in lines 8 and 9, a new objective
function is defined, combining the cost function and the constraint, and its gradient is calculated.
Using this gradient information, in line 11 a set of candidate controllers, residing along the line
defined by the gradient of the objective function and inside the adapted trust-region limits (line 10)
are generated. The best controller of the set (calculated as before in lines 17-30) is used for the next
iteration of the algorithm (line 13) and the process repeats until the termination criterion applies.
Again, we generate a set of initial samples using Latin Hypercube Sampling (LHS).

Algorithm 2.2.2 Gradient-based Cognitive Adaptive Optimization with Constraints Algorithm
1: Input: 6y, N,, pi" > 0,pM™ > 0, @, a1, o
2: forn=0:N,do

> Initial parameters

3: Jy=J(6y) > Evaluate cost on the simulator
4: C,=C(6,) > Evaluate constraints on the simulator
5: J.(6,) = )0 (6,) > SVM meta-model of the cost function
6: Ci(6,) = Zfi | Wi 19,1 9 (6,) > SVM meta-model of the constraints
7. A8 =5 > Finite Difference widths
8: Gn(en) =0, (6,) + aC, (6,) > Construct combined objective function
9: VoGn(6,) = G(9”+A9”)A_Of(9"_A9") > Gradient Estimation

10.  pmin = (njrl) pgin pmax — (n}rl) pax > Trust region size update

11: 0. ={0Y]6,4+ a79Gn(6,)},j € {1,...,M},... > Generate candidate parameter sets

12: Lpyin<|[6U) - 6,|| < py}

13: 0,+1 = BESTCONTROLLER(OQ,, Jo, C, M) > New controller

14: end for

15: Output: Oy, > The final controller

16:

17: function BESTCONTROLLER(®,, J,, C,,, M)

18 0O,=0,

19: for j=1:Mdo

20: 0= argminfn(Gc) > The parameter set with the minimum value for J,

6.€0,.

21: if C,(6) > 0) then > If a constraint is violated

22: 0.=0.—{06} > Remove that element from the set

23: else

24: break;

25: end if

26: end for

27: if ® = 0 then

28: 6 = argminC,(6,)
0.c0.

> If all 6, violate the constraints
> Choose the one with the less violations

29: end if
30: Return: 6
31: end function
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2.2.3 Comparison to Previous CAO Versions

Previous versions of CAO algorithm! have been reported in the literature (Kosmatopoulos, 2009;
Kouvelas et al., 2011). There, the meta-model is a manually-designed Polynomial-Like Universal
Approximator (PLUA) (Kosmatopoulos et al., 1995) and the optimization over this model is per-
formed using random sampling, as in Algorithm 2.2.1. In this version of the algorithm, there is
no explicit handling of constraints, with the exception of application in multi-robot coordination
(Renzaglia, 2012), where the random samples that fell on constrained regions of the sample space
were either rejected or simply projected to the feasible region. The latter is not a viable option in
our case, since a set of controller parameters that satisfy the constraints is not know a-priory or a set
of such parameters may not even exist, i.e. the HVAC system is not able to satisfy all the (thermal,
visual, etc.) comfort constraints.

In comparison to the original version of CAOQ, the utilization of SVM regression functions as the
meta-model in our approach provides a more suitable estimator compared to the PLUA approxi-
mators. In fact, the semi-automatic construction of the v-SVR allows defining the meta-models in
a laborious-free manner, without necessitating a priori knowledge on the nature of the underlying
function or manually tuning estimator parameters (e.g. the number of the coefficients in the PLUA
approximator) beforehand. In addition, even though many approximators (e.g. the PLUA) tend to
exhibit poor extrapolation properties outside the hypercube where samples are available, SVM re-
gressors approximate the area far from the data samples with an unbiased flat line, thus preventing
selection of parameters that can lead to poor performance. as shown in Figure 2-3.

To add to this, the random sampling for the local search algorithm in the original version of CAO can
be less efficient when a large number of control parameters are to be optimized and/or the optimiza-
tion task has many constraints. This is due to the random generation of the candidate controllers
(lines 8-9 of Algorithm 2.2.1), which can lead to a rejection of a large number of candidates that
violate the constraints. To address this issue, the gradient-based optimization approach provides a
more robust alternative.

2.3 Bayesian Optimization

In Algorithms 2.2.1 and 2.2.2 (and in all trust-region approaches in general), the size of the trust
region is used to balance the exploration/exploitation trade-off. The problem here is that the initial
size of the trust region and the properties that regulate the adaptation of this size in each iteration
are ad-hoc parameters that require fine-tuning. As pointed out in (Frean and Boyle, 2008): “a more
sophisticated search method might attempt to capture regularities about the nature of the search
space (rather than merely fitting the existing data), and then use that model more sensibly than sim-
ply suggesting the highest predicted point for the next sample. The tendency to explore uncharted
territory and collect new information about the problem’s structure once local territory has been
mapped should be an emergent property of a good search algorithm, not a heuristic to be wired
in as a quick fix for premature convergence. This naturally leads us to consider statistical models,
where we have a full predictive distribution rather than a single prediction at each search point.” GP
models inherently support these properties (Frean and Boyle, 2008).

2.3.1 Gaussian Processes as Meta-Models

A Gaussian Process is a collection of random variables, any finite number of which have a joint
Gaussian distribution and is completely specified by its mean function and covariance function.

I Also called Adaptive Fine Tuning (AFT) in some publications
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The mean and covariance functions of a process f(z) are defined as (Rasmussen and Williams,
2006) :
m(z) = E[f(z)],

, , , 2.17)
k(z,7) =E[(f(z) —m(2)(f(Z) —m(Z))]
and we write the Gaussian Process as (Rasmussen and Williams, 2006) :
f(2) ~9 P (m(2),k(z,2)). (2.18)

As stated in (Brochu et al., 2010), we can consider that GPs are analogous to functions, but instead
of returning a scalar f(z) for any z, a GP returns the mean and variance of a normal distribution
(Figure 2-4) over the possible values of f(-) at z.

2z )—o(Zy)

21 22 3

Figure 2-4: A simple GP with three observed points (Brochu et al., 2010).

Let’s assume a dataset & consisting of [ pairs of [(z1,y1), ..., (z,1)], with z € R? and y € R. If we
want to sample from the prior, we choose z;.;; and sample the values of the function at these indices
to produce the pairs (z;.,9(z1.)), where $(z1.;) = f(z1.7). The function values are drawn according
to a multivariate normal distribution .4 (0, K)?, where the kernel matrix is given by:

k(zi,21), ., k(z1,2)
K= : : . (2.19)
k(Zl7ZI)’ teey k(Zl,Zl)

Now, if we want to evaluate the value §(z;;1) of a new point 1, then f(z;,;) and f(z;4) are jointly

gaussian:
k .
[ Zzl:_ll ] [ , with

Zl+17Zl—&-1) (2.20)
k= [k(zi+1,21); -, k(zi41,21)]-

From here, we can arrive at an expression for the predictive distribution (Rasmussen and Williams,

ZFor simplicity we will assume a zero mean function in this Section.
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2006):
P(f(z10)|Z10,201) = A (ti(zis1), 07 (z141) ) , with

w(zs1) =k'K !, and (2.21)

o} (z141) = k(z141,241) — K K 'k.

The choice of the covariance function is crucial, as it determines the smoothness properties of the
samples and encodes prior assumptions on the underlying function. Although the simplest and most
commonly used is the Squared Exponential (SE) covariance function, defined as:

2
ksg = exp <_2dz> , (2.22)

a plethora of covariance functions are available (Rasmussen and Williams, 2006), while it is also
possible to design new covariance functions by combining existing ones (Duvenaud, 2014). This
implies that the selection of a proper covariance function is a non-trivial task, even though some
semi-automatic selection processes have been reported (Duvenaud et al., 2013).

In all the tests we have performed with synthetic benchmarks and building simulation models we
have found that the rational quadratic covariance function was able to tackle efficiently any approx-
imation task. The Rational Quadratic (RQ) covariance function is defined as:

2\
kro(r) = (1 +2ad2> , (2.23)

with d,a > 0 being the hyperparameters. This covariance function is equivalent to an infinite sum
of squared exponential covariance functions with different length-scales d.

2.3.2 Optimization over the GP Meta-Models

In the GP setup, the problem of balancing the exploration/exploitation trade-off is treated in a struc-
tured and semi-automatic manner through the use of acquisition functions. The role of an acquisition
function is to guide the search for the optimum (Brochu et al., 2010). Typically, acquisition func-
tions are defined such that high acquisition corresponds to expected high values of the objective
function, either because the prediction is high, or because the uncertainty is high, or both. Max-
imizing the acquisition function is used to select the next point at which to evaluate the function.
In our methodology, we use the Expected Improvement (EI) (Mockus et al., 1978) and the Upper
Confidence Bound (UCB) (Srinivas et al., 2009) acquisition functions.

For the Expected Improvement (Frean and Boyle, 2008), we define the predicted improvement at a
point z; as 1(z;) = f(zi) — Yvest for a maximization problem, with ypes being the sample with the best
value (maximum) so far. The prediction at z; is normally distributed (f(z;) ~ A" (m(z;), 6%(z))
from Eq. 2.21), thus the improvement should follow the same distribution:

1(z;) ~ N (Ii (zi) = Ybest, o’ (Zi)) . (2.24)

Now, the expected improvement at z; can be computed analytically (Brochu et al., 2010; Frean and
Boyle, 2008; Jones et al., 1998) as follows:

Elnax(zi) = 0(2i) [u®(u) + ¢ ()], with

”(Zi) — Ybest (2.25)

YT o)
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The functions ®(-) and ¢(-) are the normal cumulative distribution and the normal cumulative
function respectively:

D(u) = %erf <\2> + % o (u) = \/lzin_exp (—”j) . (2.26)

In case we are only allowed few iterations of the BO algorithm (as in our application in buildings
due to the online nature of the Control Design process), we may need to favor exploitation over
exploration after some iterations. To achieve this, and in contrast to the approach followed in (Jones,
2001; Lizotte, 2008), we define a convex combination of the expected function value at z; and the
mean of the GP prediction at z;, as follows:

yA(Zi) = p(ybest +Elmax(zi)) + (1 - p),u(Z,'). (2.27)

Here, p is defined as:
I
p=(%-8). (2.28)

with [ the samples in the dataset. In all our experiments in buildings, we use 6 = 0.99, y €
[0.95,0.98] and B depends on the size of the dataset. This treatment is an analogy to the classi-
cal trust-region approach.

In the Upper Confidence Bound (UCB), we can define our confidence on the expected function
value on a point z; as:

V(@) = u(zi) + k0 (z)- (2.29)

Here, although a methodology for tuning k based on multi-armed bandit setups has been reported
(Srinivas et al., 2009), we have successfully used the same function for x as with p in Eq. 2.28.

The intuition behind the semi-automatic exploration of the parameter space using the two acquisi-
tion functions can be summarized as follows:

* The value of the acquisition function is maximum when the GP model predicts a larger value
compared to the best value in the dataset and the variance is high;

* The value of the acquisition function is high when the GP model predicts a high value com-
pared to the best value in the dataset and the variance is high.

* The value of the acquisition function is low when the GP model predicts a low value compared
to the best value in the dataset and the variance is low;

A detailed sketch of the BO process is shown in Algorithm 2.3.1. Since BO algorithm is also
iterative, we define n € {0, 1,..., N, } as an index over the iterations. Here, in line 1 the initial control
parameters (6p) are provided. Subsequently, for each iteration of the algorithm, the current set of
parameters is evaluated on the simulation model, thus acquiring the cost function and constraints
values for the current iteration (lines 3—4). Following, one GP meta-model is constructed for the cost
function and each of the constraints, using all previous evaluations on the simulation model (lines
5-6). Note that in contrast to the CAO setup (Algorithms 2.2.1 and 2.2.2) the constraints in this
approach are not combined to form a single constraint function. In line 7, the best controller of the
entire process (with the “best” controller evaluated as in the CAO setup), along with the acquisition
functions of all GP meta-models are passed to a commercial constrained non-linear optimization
solver in line 8.

For the last part, we use the Matlab function implementing the constrained Sequential Quadratic
Programming algorithm defined in (Spellucci, 1998; Tone, 1983). Utilizing this commercial pack-
age allows for better constraint handling (no need to define proper weights over each constraint),
while enables parallel execution, speeding-up the control design process.

37



Algorithm 2.3.1 Bayesian Optimization Algorithm

1: Input: 6y,N,

2: forn=0:N,do

3 J,=J(6y)

4 C,=C(6y)

5 An en) = ge@nJ (Gn)

. Ail,z,...,NC} (6,) = gf@i.]c’z’"”NC} (6,)
7

8

9

~

6, = BESTCONTROLLER(6,,, J,,, C,))
6,11 = SQP(6), Acq(J, (6,)), Acq(Cy

11:

12: end for

13: Output: Oy,

14:

15: function BESTCONTROLLER(®,, J,, C,))

16 0O,=0,

17: for j=1:ndo

18: 6 = argminJ,(6,)
PASCH

19: if C,(8) > 0) then

20: 0.=0.—{06}

21: else

22: break;

23: end if

24: end for

25: if © = 0 then

26: 6 = argminC,(6,)
6.0,

27: end if

28: Return: 6

29: end function

A{12,..,

> Initial parameters

> Evaluate cost on the simulator
> Evaluate constraints on the simulator
> GP meta-model of the cost function

> GP meta-model of the constraints

> Get best simulated controller so far

Ne} (6,))) > Use Sequential Quadratic Pro-
> -gramming to generate new

> controller. Acq(+) is the Acquisition

> function defined in Eq. 2.27 or Eq. 2.29

> The final controller

> The parameter set with the minimum value for J,

> If a constraint is violated
> Remove that element from the set

> If all 6, violate the constraints
> Choose the one with the less violations
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Chapter 3

Experiments

In order to verify the efficiency of the proposed methodology, a hierarchy of experiments has been
designed, facilitating simulation-based studies and real building experiments in two study build-
ings. The simulation-based studies are used to evaluate the potential of the proposed approach in a
controlled and disturbance-free environment, while the goal of the real building experiments is to
study the behaviour of the control design process under real-world conditions, influenced by user-
and weather-induced stochasticity.

The two buildings used for the experiments has been chosen carefully, in order to cover as many
different types of buildings and HVAC systems as possible. Thus, the first building is located in
Crete, in a region characterized by long-hot summers and cool/cold-humid winters and long periods
of sunlight for most of the year. It is a lightweight building, with high infiltration rates, and served
by radiators for heating and AC units for heating and cooling. The second building is located in
Kassel, Germany, and represents the archetype of a heavyweight building, with high thermal mass.
It is equipped with TABS systems for heating. This diverse portfolio of buildings will help identify
the performance of the algorithm under different building and HVAC system dynamics, varying
microclimatic conditions, different user culture, etc.

3.1 Description of the Test Buildings

3.1.1 TUC Building

The Technical Services Building is located at the Campus of the Technical University of Crete in
Chania, Greece. The region is characterized by long-hot summers and cool/cold-humid winters and
long periods of sunlight for most of the year. The heating period starts in late November and ends
in March, while the cooling period begins in May and ends in September.

The building has two floors and a basement with a total surface area of 450m? and it hosts the
offices of the Technical and Building Services Department of the University. As can be seen in the
building plans (Figure 3-1), the building is divided in 10 offices and has an unusual triangular shape
with a corridor running along its longer side, it has large openings and an atrium. The external
walls are constructed by concrete, brick and stone wool as insulation material with the exception of
some specific parts in the front and back of the building that are constructed by concrete only. Some
of the internal partitions are brick, some concrete and others added later on to separate the space
are constructed by gypsum plastering. The U-values of the external, internal walls and windows
are relatively high which makes for a lightweight construction, easily affected by external weather
variations.
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plugin

(c) Ground floor plan view

Figure 3-1: The TUC building

The ventilation and infiltration are based on window openings and cracks, expressing the air tight-
ness of the building. A low air tightness is assumed for TUC building due to its construction and
its exposure to high (mostly northerly) winds. The low insulation standards combined with a so-
lar atrium contribute to overheating during the summer months and moderate (because of the mild
climate) heating demands during the winter months. Concerning the efficiency of the building, in
addition to thermal-comfort problems for the building users, the energy consumption is high, at
130kWh/m?a based on energy audits and simulation results.

3.1.1.1 HVAC System and Available Sensing Infrastructure

A set of radiators is installed in each office for heating, with the heating demands being covered by
a campus-wide district heating system. The connection between the campus-wide boiler and TUC
building is achieved through underground pipes in two central points and then from these points
hot water is distributed from the pipes to the radiators of each zone. To isolate the operation of
each thermal radiator, a manually operated valve is located at the inlet node of each radiator. For
the experiments conducted in this thesis, thermoelectric hot water valves installed on each of the
water loops allow independent control of hot water flow, where each loop consists of thermal bodies
(radiators) connected in series by pipes, as shown in Figure 3-2.

In normal operation mode there is no building-level control of the heating system, but heating de-
pends upon hot water supply by the central campus boiler. In the particular building, two bypass
three-way valves are installed (on each side), to isolate the building (when no heating demands are
there) and in addition, thermoelectric valves installed on each of the water loops permit a more
detailed control of heating supply to the associated radiator elements. Based on measurements and
actual operation, the availability schedule of the central heating system is from (approx.) 5:30 in the
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Figure 3-2: Central heating system branches and the corresponding flow valves (T1-T8)

morning to pre-heat the building and hot water supply is turned off at 11:30-12:00. This schedule is
applied for “cold” days during the heating period. In heating mode, the AC units are activated only
when the capacity of the radiators is not sufficient to reach the desired the thermal comfort level
within a zone. That means that whenever the employees do not feel comfortable, they operate the
split-type unit even if the radiators are heating the zone.

In summer, cooling is provided by Air Conditioning (AC) units. There is one available AC in each
office and their operational schedule and the setpoint temperature are manually determined by the
occupants. That means that whenever the users feel uncomfortable, they switch-on the AC unit and
choose the desired setpoint temperature. For the experiments conducted in this thesis, the following
operating parameters in each AC unit were controllable:

e On/Off;
* Set-point [18,19,...,30]°C;
* Function mode (heating or cooling);
* Fan speed [0, ...,100] %.
Finally, in each office room of the TUC building the following sensing elements were installed:
* Radiant and ambient temperature sensors;
* Relative Humidity sensor;
¢ Presence detection sensor;
¢ Contact sensors in all windows and doors;

» Single-phase energy meters for measuring the electrical power consumption of each AC unit.

3.1.1.2 Building Performance Optimization Potential

The availability schedule of the boiler is controlled by one person in charge who decides whether
the heating should be on and for how long. This is far from optimal for a number of reasons: heating
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might be supplied when it is relatively warm outside; due to differing thermal losses, demands on
a per building or a per zone are not correctly accounted for; and unoccupied spaces or offices are
heated according to the central schedule. This is the situation applicable to all buildings in the TUC
campus. In addition, many winter days in Crete are characterized by relatively cold and humid
mornings, where heating is required, followed by warmer and sunny afternoons, where no heating
is necessary. In these cases, continued heating according to a fixed schedule leads systematically to
overheating. In the absence of a forecast, it is hard to a priori determine when the heating system
should be turned off.

Regarding the AC units operation, measurements have shown that in warm days of summer, the
occupants set the temperature at low levels leading to overcooling of the building. The main reason
for this behaviour is the fact that during peak hours, high solar gains greatly increase the radiant
temperature in each office which correlates with the thermal comfort of the occupants. The reaction
of the occupants is to reduce the setpoint to a low value in order to cool the space as fast as possible.
Next, when the office gets too cool for their preferences, they increase the setpoint to a higher value.
This manually-tuned bang-bang control is repeated throughout the day, leading to increased energy
consumption and poor thermal comfort conditions.

The methodology presented in this thesis can assist towards alleviating the energy- and comfort-
related problems of the building. The availability of a thermal simulation model, along with weather
and occupancy forecasts and the automatic design of the control strategy can be utilized towards
predicting and optimizing the operation of TUC building, by controlling the building in a proactive
manner.

3.1.1.3 Available Thermal Simulation Model

The building is simulated using EnergyPlus simulation engine (Crawley et al., 2001). A detailed
representation of its geometry was created according to the floor plans, presented in Figure 3-1,
using OpenStudio plugin for SketchUp, a user interface of EnergyPlus thermal simulation engine,
which allows for the automatic creation of the idf (EnergyPlus input) files. To account for shading
from nearby buildings the shapes of nearby buildings were introduced. Furthermore, based on the
building construction data, templates were created for each of the walls (internal partitions, external
walls, roof etc.) detailing thermal characteristics.

Heat gains due to infiltration and ventilation can be significant and as such a detailed modeling
of the infiltration/ventilation was performed using EnergyPlus Airflow Network (Walton, 1989).
The Airflow Network model provides the ability to calculate multizone airflow driven by outdoor
wind and forced air during HVAC system operation. To correctly account for internal gains due
to occupant presence and their thermal sensation, activity data were collected for the building and
imported. The types of data imported include occupant density (people/ m?) on each zone, metabolic
rates for office activities and occupants’ clothing insulation. Computer and equipment gains were
also introduced for each zone of the building while, lighting data were imported regarding the type
of lights, energy requirement, visible and radiant fractions.

The indoor relative humidity is affected by five factors: internal moisture gains, ventilation, infiltra-
tion, removal with space - conditioning equipment, and moisture absorption into (or desorption out
of) the materials; however, the last term is often neglected by building thermal simulation models
(Woods et al., 2013). Towards a more accurate prediction of indoor relative humidity, the effective
capacitance (EC) method is adopted in TUC buildings’ thermal simulation model, estimating the
moisture absorption into the materials; here, a moisture capacitance multiplier equal to 15 was used
to combine this term with the zone air (Woods et al., 2013).

For providing a simplified simulation model for control design purposes, the building is divided into
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three sub-buildings, as shown in Figure 3-3, each simulated separately in parallel, using as bound-
ary condition for each sub-building contact surface the temperature of the corresponding surface,
resulting from the adjacent sub-building’s simulation. In other words, suppose that wall A is a com-
mon surface of sub-buildings 1 (A1) and 2 (A2). Then, at the end of sub-building:1 simulation, the
temperature profile of surface Al is applied as boundary condition to surface A2 so as to simulation
of sub-building:2 run. More information regarding the simplified simulation model can be found in
(Giannakis et al., 2013).

Sub-building: 1

‘Whole Building

Sub-building: 3

Figure 3-3: Simplified TUC simulation model for control

3.1.2 ZUB Building

The three-floor ZUB building located in Kassel (Germany), shown in Figure 3-4, has as main orien-
tation a 20° SE. It is a low-energy office building, characterized by high thermal mass, sufficient air
tightness and a south facing facade with a high glazing ratio (62 %). It is a well insulated building,
since the U-value of the exterior walls is 0.11 W/m?K and the windows are triple glazed with a
U-value of 0.6 W/m?K.

(a) External view of ZUB bulldmg (b) Full-scale simulation model of ZUB building

Figure 3-4: ZUB building and simplified Tower model views
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3.1.2.1 HVAC System and Available Sensing Infrastructure

The ZUB building is equipped with radiant slabs situated in ceilings and floors of each room (Figure
3-5) with the two systems operated independently, and in combination with the Air Handling Unit
that control the external air renovations.
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Figure 3-5: Schema of the radiant distribution in ZUB building

Both systems share a common distribution system that delivers cooling from an active ground ex-
changer during warm periods and heating provided by the Kassel’s University district heating ring
during the cold season.

The baseline TABS control strategy is generated by a simple set of rules. Here, the central building
setpoint is set at 21°C constantly and only the inlet water temperature of the TABS varies and is
calculated based on the 24 hours running average external temperature using a predefined curve, as
seen in Figure 3-6.
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Figure 3-6: Supply water temperature curve for ZUB building
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The underlying assumptions behind this control strategy are: i) that the 24-hour average of the
outside temperature is indicative of the future external conditions, as days tend to have similar
weather conditions — an assumption which is not always valid; and ii) that the average outside
temperature can be an indicator of the building heating demand. The first assumption is invalidated
on “turning days,” i.e. consecutive days with large variations of the average temperature. In these
days the building can be under- or over-heated, as the sending temperature is higher or lower than the
one required leading to an undersized or oversized system . The second assumption fails to include
two critical factors affecting the heating demands of ZUB building: the solar radiation (which in the
case of ZUB affects the thermal behaviour of the building more than the external temperature) and
an estimation of the current thermal state (loading of the thermal mass) of the building. The latter
is useful in cases the building is already heated (or even under-heated) in order adjust the strategy
accordingly.

The following controllable elements are available to the occupants:

 Setpoint offset (&2 °C in each office. This setpoint modifies the central setpoint of the build-
ing and regulates the operation of the radiant slab’s 2-way valves;

* blind angle and position;

Finally, two office rooms (106 and 206) have been equipped with additional sensors for research
purposes. In these rooms, the following sensors have been installed:

* three temperature sensors at different heights inside the room to evaluate stratification;
* arelative humidity sensor;

* aradiant temperature sensor.

3.1.2.2 Building Performance Optimization Potential

The building is designed in a way that permits the effective utilization of solar radiation that passes
through the glass facade in cold winter days; this energy is stored into the heavy masses that sur-
round the occupied space. This design characteristic leads to low energy demands for space heating
during the winter heating season which starts in November and continues to April. A downside is
that in case there are many sunny days during the heating period, the building might overheat. This
situation is particularly egregious on days with cold nights followed by sunny afternoon. In this
case, heating is required during the night (even when the building is unoccupied) to ensure proper
thermal loading of the thermal mass, so that when occupants enter the offices in the morning com-
fort requirements are met. Heating for longer period than required can easily lead to overheating
problems during noon, forcing the users to open the windows, and leading to unnecessary energy
use.

One of the control inefficiencies of the building is the manual operation of the blinds. In this case,
when the offices are occupied, the users can either completely take down the blinds, effectively
blocking solar radiation using the mechanical shading systems, or progressively adjust the angle of
the shading and manually open the window in an effort to maintain indoor thermal comfort. During
weekends there typically is no occupancy and therefore the blinds are not operated. In addition, the
configuration of the BMS resets the blinds during the weekend according to a pre-defined seasonal
rule. Without the user intervention over the weekend, the position of the blinds can lead to harvesting
solar energy when it is not really required and may lead to overheating and discomfort on Mondays.

Apart from the manual operation of the blinds, another non-trivial task occurring during weekends
is the proper operation of the central system. The system is active during unoccupied periods; this
prevents the building from getting too hot or too cold during weekends. This way, large peaks on
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Monday mornings for heating or cooling the building can be largely avoided. This strategy would
make sense on certain very cold days as the capacity of the system would not be sufficient to cover
the increased Monday-morning demands of all the buildings in the district heating loop. But, on
the other hand, depending on the specific weekend weather conditions, the defined setpoint can
increase energy losses, while for milder days a small peak on Monday morning may be preferred
over operating the system over the entire weekend. The problem becomes more complex since
the delivery of energy inside the building rooms is mostly realized through radiant systems, active
floors and ceilings, which have a long time constant, thus the reaction time on operational control
decisions is quite long, which makes difficult to maintain the internal comfort levels through a
hand-tuned control strategy that ignores weather forecasts.

Again here, the availability of a thermal simulation model, along with the automatic design of
the control strategies can assist towards operating the TABS system in an intelligent and proactive
manner, thus saving energy and preventing comfort-related problems.

3.1.2.3 Available Thermal Simulation Model

As detailed simulation of indoor temperatures of the full-scale model increases computational com-
plexity, a “tower” of three offices upon each other is cut-out, since the whole building can be viewed
as a parallel expansion of the simple “tower” sub-model in one dimension. Here, the outer surfaces
are actually adjoining rooms’ surfaces, which are defined as “boundary walls,” and the adjacent con-
structions that have a shading effect on the tower, but are not included in the thermal simulation, are
modeled as shading groups. The tower is shown in Figure 3-7. It consists of 3 offices (25 m? each)
and an adjacent Atrium. Here, the East and West walls of the building are modeled as heavy external
walls with a total thickness of 0.5 m and U-value of 0.113 W/m?K, with the same construction also
used for the side walls of the Atrium.

An identical occupancy schedule is assumed for all 3 offices of the Tower model from Monday to
Friday. The offices are occupied with 2 persons each from 8:00 to 17:00, while the internal gains
are set according to the VDI 2078 (class 1 at 23°C) (Verein Deutscher Ingenieure, 1977). More
information regarding the simplified simulation model can be found in (Giannakis et al., 2013).
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Figure 3-7: South-East view of the Tower model with external shading groups

3.2 Thermal Comfort Study

In current practice, the operative temperature values defined in ISO 7730 comfort limits (Table 1.1)
are used as reference values for programming room thermostats, with the difference that the mea-
sured temperature is usually not the operative temperature but rather the dry-bulb air temperature.
This practice is based on two assumptions: i) the values of air and operative temperatures in each
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building space are (more or less) identical; and ii) maintaining the operative temperature within
some predefined bounds throughout occupied periods suffices to ensure thermal comfort for the
occupants, since usually still-air internal environments with moderate humidity levels are assumed.

Both of these assumptions are not without issues. First, the assumption that air temperature can be
a proxy for operative temperature is true only if the radiant temperature which is linked to building
surfaces temperatures is not too different. This is very frequently the case in buildings with TABS
systems; in this case local discomfort can be minimized and an almost uniform vertical temperature
distribution can be achieved that matches the ideal comfort temperature profile. Even in this case
solar and internal gains can lead to discrepancies between radiant and air temperature. Second,
the assumption that pre-defined and static bounds for the operative temperature alone suggests that
this is the dominant factor, but neglecting other personal (clo value) and environmental (humidity)
factors can be pernicious.

In order to investigate the ability of thermostats controlling the indoor air temperature to maintain
comfortable interiors in our test buildings, an experimental protocol is designed in simulation level.
Working in simulation will allow us to evaluate the results under the same boundary conditions
and without having any deviations due to specific thermostat control settings. In addition, we have
intentionally selected two buildings that represent the two “extrema” of the spectrum regarding
their thermal characteristics. This will allow us to quantify the significance of thermal mass in
the air/operative temperature mismatch (and in maintaining comfortable interiors in general). Our
research findings could be generalized for all the building types in between.

3.2.1 The Experimental Setup

Summer and winter operation simulation experiments were performed for the TUC building. In
each mode, two numerical experiments were performed: one assuming a thermostat which regulates
heating or cooling based on dry-bulb air temperature measurements, representing current practices;
and one, based on operative temperature control. In winter operation, heating is delivered to the
spaces using radiators, whereas in summer operation, cooling is delivered by the AC units in each
office. These experiments provide some insights to the first assumption in Section 3.2.1, namely
quantify the impact on thermal comfort when air temperature is used as a proxy. Also the discussion
contributes to development of some understanding on the effect different types of systems (radiant
or air-based) have on thermal comfort.

In the case of the ZUB building only winter experiments were performed; in summer the building
is naturally ventilated and set point control is not relevant. Heating is delivered using the TABS
system that can be independently controlled in each office; a ventilation system is serving all offices,
maintaining acceptable indoor air quality. This allows us to evaluate the effect of internal and solar
gains on the comfort conditions in the offices.

For both buildings, the Fanger PPD index is utilized to evaluate the thermal comfort levels, with the
values of the Fanger index at each time step of the simulation being a simulation output for both
EnergyPlus and TRNSYS simulation engines. Even though according to ISO 7730 both buildings
should belong to Class C (see Table 1.1), as they are existing buildings, the thermal properties of
ZUB building allow to reach Class A comfort levels, at least in simulation where the internal gains
and occupant behaviour are deterministic. This means that for the experiments below, we define a
15% Fanger PDD limit for TUC building and a 6% Fanger PPD limit for ZUB building.

For all the experiments both in TUC and ZUB building, we have selected to operate the heating sys-
tem continuously during night and day. This is due to the simple structure of the controllers applied,
which can lead to poor tracking of the temperatures when switching to different comfort bounds
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during the transition between unoccupied to occupied periods, due to the inability to incorporate
weather and occupancy predictions (Maasoumy and Vincentelli, 2014).

In the remainder of the Section, the results from all the experiments for TUC and ZUB building are
illustrated.

3.2.1.1 TUC Building

For the summer experiments, the period between July 1% and July 16" was examined, using a
meteonorm weather file (Remund et al., 1999) for the simulation. This period is characterized by hot
days, with the average temperature at 26.9 °C, the minimum temperature at 20.4 °C and maximum
temperature at 35°C. The blinds and the windows of the building are considered always closed
and the operative/air thermostat temperature set point (controlling the AC units in each office) is set
at 24.5°C for the entire simulation period (day-night), following the mean operative temperature
shown in Table 1.1 for summer.

For the winter experiments, the period between January 1* and January 16" was selected using the
same weather file. Here, we have some sunny days, with the average temperature at 11.9 °C, the
minimum temperature at 5.6 °C and the maximum temperature at 17 °C. The windows in all offices
are considered closed, but the blinds are always open to exploit the solar gains for heating. The
operative/air temperature set point (controlling the radiators in each office) is set at 22 °C for the
entire simulation period (day-night), again according to the mean operative temperature provided in
ISO 7730 (Table 1.1) for winter.

The results of offices 04 and 08 are presented in the ensuing discussion. The two offices selected are
representative of the thermal behaviour of other offices in the building: office 04 is south-facing and
receives high solar gains both during summer and winter, while office 08 is north-facing, is more
exposed to wind and receives the least amount of solar gains of all offices.

Starting with the summer experiments, Figure 3-8 illustrates the results for office 08 using the
air temperature thermostat control, where it is obvious that the selected control strategy manages
to maintain comfort at acceptable limits, as indicated by the Fanger PPD values. Note that the
operative temperature is higher compared to the air temperature, as expected, due to the lightweight
construction of the building and the type of the HVAC system (air and not radiant system): here the
air system cools the zone air but the radiant temperature remains higher, leading to higher operative
temperatures.
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Figure 3-8: Summer results for office 08 using air temperature thermostat set at 24.5°C
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Figure 3-9 shows the results from the same experiment for office 04. Similar behaviour with respect
to both comfort levels and the incompatibility of air and operative temperatures as with office 08
is observed, but in this case the operative temperature values exhibit higher variability, fluctuating
between day and night, due to the significantly higher solar gains that office 04 receives compared
to office 08.

Office 04
30 -

et ettt ..’ Gt =B~ Lower Operative Temp Limit (°C)
= 4= Upper Operative Temp Limit (°C)
% Fanger PPD Limit (%, Class C)
== Air Temperature (°C)
20 - === Operative Temperature (°C)
== Fanger PPD (%)

» 4
3 v - -y " - ad L O N
25 ke Teat Cao® 00 Ve Yt T gs CaetTA e e

15%

Values over the day

10

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400

Timesteps (10-min)
Figure 3-9: Summer results for office 04 using air temperature thermostat set at 24.5 °C

For operative temperature control in the summer experiments, where the thermostat control mode
has been modified properly to enable operative, instead of air, temperature control (set point values
refer to the desired operative temperatures), the results for Office 08 are shown in Figure 3-10. It
is obvious that the operative temperature is still higher compared to the air temperature, but also
attains lower values compared to the results of the air temperature control shown before (Figure
3-8). Here, the Fanger PPD values lay on the upper comfort bound due to over cooling.
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Figure 3-10: Summer results for office 08 using operative temperature thermostat set at 24.5°C

Controlling the operative instead of air temperature leads to similar results for Office 04 as well
(Figure 3-11), where the control strategy is characterized by higher discomfort than before (Figure
3-9), again due to overcooling.

The fact that even though the operative temperature in both offices is set equal to the design tem-
perature suggested in the ISO 7730 (shown in Table 1.1) leads to overcooling should not come as
a surprise. The acceptable temperature and comfort bands in the ISO example tables have been
calculated under specific assumptions for all other influencing factors, namely clo value, metabolic
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Figure 3-11: Summer results for office 04 using operative temperature thermostat set at 24.5 °C

rate and relative humidity levels (constant at 60%). For the experiments presented here, although
personal factors are defined according to similar assumptions, the relative humidity levels are not
constant, but dynamically calculated by the EnergyPlus simulation engine, resulting to relative hu-
midity values between 40% and 48% approximately for the entire simulation period. These values
are substantially lower compared to the relative humidity level assumed in Table 1.1. Here, higher
values of the PPD index are due to the fact that Fanger comfort model takes into account the heat
loss by evaporation of sweat from the human body skin; due to sweating effects, when the relative
humidity gets higher, occupant thermal sensation is expected to be hotter than the actual tempera-
ture.

Towards further investigating the impact of relative humidity to the desired operative temperature
for thermal comfort, we use the psychometric chart of Figure 1-6 as a guideline. Here, taking
into account the shaded polygon corresponding to the cooling season (clo = 0.5), we can see that
for lower relative humidity values, operative temperature values higher than 24.5°C are required
in order to move closer to the center of the polygon. Thus, we perform another experiment using
25.5°C as the setpoint to the operative temperature thermostat. Results shown in Figs 3-12 and 3-13
highlight the better comfort levels for both offices, a fact which indicates that taking into account the
humidity levels in a building when designing the respective operative temperature comfort bounds
is crucial for capturing the actual thermal comfort profile of the specific building.
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Figure 3-12: Summer results for office 08 using operative temperature thermostat set at 25.5 °C
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Figure 3-13: Summer results for office 04 using operative temperature thermostat set at 25.5 °C

For the winter experiments, Figure 3-14 illustrates the results obtained for Office 08, where Fanger
PPD values are within the acceptable limit for this type of building most of the time. Note here
that the operative temperature is lower compared to the air temperature throughout the simulation
period. This is expected, since even though the HVAC system is based on radiant heating (radiators)
and a part of the heating energy is absorbed by the walls, the lightweight construction and the poor
insulation of the building lead to lower wall temperatures (thus lower radiant temperature) compared
to the air temperature of the zone. The relative humidity in the office varies from 30% to 50%
depending on the external conditions, thus affecting the comfort as with the summer experiments,
with this effect being more obvious in the first two days of the experiment, where the relative
humidity is around 30%.
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Figure 3-14: Winter results for office 08 using air temperature thermostat set at 22 °C

Office 04 results for the same experiment are shown in Figure 3-15, leading to the same conclusions:
Fanger PPD values remain within acceptable limits for most of the time, while the air temperature
is higher compared to the operative temperature. On the other hand, we can notice some spikes on
both air and operative temperatures, which are due to the high solar gains office 04 is exposed to
(unlike office 08) on days with clear sky. Note that for the first two days of the experiment, relative
humidity is around 30%, thus leading to increased discomfort as in the case of office 08 above.

As with the summer set of evaluations, the same experiments are conducted controlling the operative
temperature instead of the zone air temperature. Here, as illustrated in Figure 3-16 for Office 08,
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Figure 3-15: Winter results for office 04 using air temperature thermostat set at 22 °C

the air temperature is higher than the operative temperature as with the air temperature thermostat
control, but both naturally acquire higher values compared to the previous experiment for the same
office (Figure 3-14), which leads to more comfortable interior conditions as indicated by the Fanger
PPD levels.
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Figure 3-16: Winter results for office 08 using operative temperature thermostat set at 22 °C

The same comfort improvement due to the increased values of operative temperature, is also ob-
served in Office 04 results (Figure 3-17). Of course, as with the previous winter experiment control-
ling the air temperature in the same office (Figure 3-15), both operative and air temperatures show
periodic increments due to the high solar gains on less cloudy days.

The results from these experiments confirm our initial hypotheses: i) controlling the air temperature
does not provide a structured method for controlling the operative temperature; and ii) the suggested
operative temperature comfort band calculated in ISO 7730 for fixed clo value, metabolic rate and
relative humidity levels needs to be adapted to the particularities of each target building.

In order to provide a clear illustration of the difference in the thermal comfort conditions between
air and operative temperature control in TUC building, a parametric study for the same summer and
winter days as before and with different air and operative temperature setpoints has been performed.
The impact on comfort is evaluated using both the percentage of comfort violations and the average
Fanger PPD values in the entire experimental period. For the latter, the standard deviation of the
Fanger PPD values is also presented to provide an estimate on the variability of the comfort levels
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Figure 3-17: Winter results for office 04 using operative temperature thermostat set at 22 °C

throughout the experiment. The results for all cases are shown in Figs 3-18 and 3-19 for Offices 04
and 08 as before and for summer and winter respectively.

For the summer study, the in-equivalence of the two control strategies (air over operative temper-
ature) is apparent, since for the air temperature control all setpoints between 24 °C and 26 °C lead
to comfortable interiors for both offices, while for the operative temperature this interval is shifted
between 25 °C and 27 °C.
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Figure 3-18: Summer Experiments with different setpoints
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The same conclusion is derived from the winter results, since here the best air temperature setpoint
is 25°C, while it is 24 °C for the operative temperature. Apart from this, another interesting ob-
servation here is the high variability of the Fanger PPD values (as indicated by the high standard
deviation) due to the internal occupant and equipment gains and — mostly for Office 04 — the solar
gains throughout the entire simulation period, as well as the slow dynamics of the heating system
(radiators).
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Figure 3-19: Winter experiments with different setpoints

Concluding with the experiments conducted in TUC building, we have been able to confirm the
inability of widely-used air temperature control methodologies to provide a structured and system-
atical way of representing and controlling thermal comfort in buildings, as well as the necessity
to constantly adapt thermal comfort constraints based on the actual environmental (humidity) and
personal (e.g. clo value) influencing factors, rather than myopically adopting the — calculated under

steady-state conditions — operative temperature constraints in the example tables included in ISO
7730.

3.2.1.2 ZUB Building

In ZUB building, only winter experiments are performed using air temperature thermostat control.
The period between January 25 and February 4 is selected, while a meteonorm weather file
(Remund et al., 1999) is used. In this period we have some days with clear sky, with the average
temperature at 3.3 °C, the minimum temperature at -5.4 °C and the maximum temperature at 9.3 °C.

In contrast to the experiments conducted in TUC building, ZUB building is intended to serve as
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a testbed complying with the assumptions leading to Table 1.1 of ISO 7730. In this direction, an
ideal ventilation system with a fixed airflow of 50% relative humidity has been implemented in
all offices and the Atrium. In order to not affect the room temperature and the energy balance,
the ventilated air (with an air-change rate of 0.7 1 /h) has the same temperature as the respective
room temperature. In reality, the building is not equipped with a de-/humidification system, so this
approach is a theoretic workaround to obtain the desired humidity levels. In the same direction,
although an airflow model (TRNFlow) of the building is available, it is disabled for this study to
limit the disturbances affecting comfort. Instead, an infiltration rate of 0.1 1/h has been set for all
offices due to cracks and openings in the building. Finally, the same clo value assumed in ISO 7730
has been defined in all experiments.

Here, a simple control approach was chosen. Each room has an on/off differential controller which
is acting as a thermostat. The controller tries to maintain a user-defined set temperature within
a certain dead band (£1°C) by switching the TABS-massflow on or off. An internal hysteresis
is used to prevent oscillation, while the hot water sending temperature in this case depends on the
mean ambient temperature over the last 24 h through a heating curve defined for the building (Rovas
et al., 2014a).

In these experiments, windows are considered always closed, while the blinds are activated when
the total radiation on the main facade rises above 500 W /m? and are deactivated when it falls below
300 W /m?. Here, closed blinds result in a reduction of the solar radiation in an office by 70%. The
air temperature thermostat setpoint is set at 21 °C (lower limit for class A buildings according to
ISO 7730 — see Table 1.1), implemented using the controller described above.

For ZUB building, two sets of air temperature control experiments are conducted, with the results
shown in Figure 3-20, only for Office 107. The first setting forces the blinds always closed and
no internal gains in order to ensure steady-state operation of the TABS, while the second includes
internal gains and uses the default blinds control strategy of the building as described earlier. For
both cases the air and operative temperatures coincide, due to the dynamics of the system and the
heavy construction and insulation of the building. On the other hand, Figure 3-20(b) reveals the
well-known overheating problem of buildings equipped with TABS due to internal and solar gains
(Gwerder et al., 2008; Olesen et al., 2002), indicating the utilization of solutions facilitating weather
and occupancy forecasts (Gwerder et al., 2008; Kontes et al., 2014; Oldewurtel et al., 2012) as an
attractive option for control.

3.2.2 Conclusions

In this Section, an investigation on the ability of room thermostats to ensure comfortable building in-
teriors has been performed. The wide use of such controllers is mainly based on two assumptions: i)
that the operative temperature limits for comfortable interiors defined in ISO 7730 suffice to ensure
user thermal comfort; and ii) that air and operative temperatures of building interiors coincide.

Regarding the first assumption, simulation results for an existing building in Crete indicate that
neglecting other parameters influencing thermal sensation and designing controllers based on the
indicative operative temperature limits of ISO 7730 can lead to invalid thermal sensation estimates.
More importantly, the necessity for controlling (or at least accounting for) the humidity in building
spaces has proven a crucial ingredient towards accurate estimation of thermal sensation, and thus
towards efficient control of building indoor climate.

For the second assumption, experimental validation on the same building revealed an appreciable
mismatch between indoor air and operative temperatures for both summer and winter tests, due to
the dynamics of the HVAC system in each case (radiators for heating and AC for cooling season)
and the construction and thermal properties of the building. On the other hand, we observed similar
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Figure 3-20: Results for office 107 of ZUB building

air and operative temperature values on a heavy construction building equipped with TABS leading
to the conclusion that for specific construction and HVAC system dynamics, the air temperature
measurements provide an accurate enough estimation of the operative temperature. Here, we can
generalize that for buildings with hight thermal mass this assumption holds, if proper care is taken
to account for solar and internal gains in the control strategy, while as we move to buildings with
lower thermal mass, there can be an considerable mismatch between air and operative temperatures
in building spaces.

Due to the trade-off between energy consumption and thermal comfort, it is crucial to be able to
represent (or predict) thermal sensation of the building’s occupants under different HVAC operation
strategies — from all available comfort preserving strategies the one that requires the least amount
of energy should be preferred. This suggests that the ability to calculate comfort indices such as
Fanger, or even the ability to build personalized comfort models for the building occupants (Daum
et al., 2011; Ghahramani et al., 2015; Lee et al., 2017; Malavazos et al., 2014; Sadeghi et al., 2017)
should be features of an intelligent BACS.
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3.3 Experiments on TUC Building

In this Section, the simulation-based and real experiments performed in TUC building are pre-
sented. The experimental process for the real experiments (also followed in the simulation-based

experiments) is shown in Figure 3-21 and can be divided in three parts:

* The warming-up phase: here, historical sensor and weather data are collected by accessing
the database, and using the co-simulation module are injected to the simulation model, to

properly estimate the initial thermal state of the building;

* The control design phase: here, weather and occupancy forecasts are provided to the simu-
lation model, thus enabling accurate evaluation of the candidate controllers produced by the
optimization algorithm. The outcome of this phase is a new controller to be applied to the

real building;

* The control application phase: here, the controller service is invoked and utilizing sensed
data from the building and the weather station, calculates new control actions for all actuating

components.

As can be witnessed from the results of this Section, conducting experiments on real buildings and
evaluating the results can be quite complicated because of the many parameters and uncertainties
involved. An important aspect in conducting the real experiments has been the ability to store
and manipulate building data in a transparent way. This has been achieved using a middleware
component that was developed for the purposes of the real experiments in TUC, the details of which

are reported (Rovas et al., 2014b).
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Figure 3-21: The Experimental Setup
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3.3.1 Real Heating Experiment with Radiators

In this experiment, the heating demands are met by radiators, supplied with hot water from two in-
lets. The main objective of the test case is to verify applicability of the algorithm and to evaluate the
“rationality” of the generated heating strategy, compared to the default operation. The experiment
is not performed to the entire building, but to Offices 4 and 5, shown in Figure 3-22.

“-.(Office: 05)  (Office: O4 ...

(a) Ground floor including test zones — Offices (b) First floor
04 and O5

Figure 3-22: Floor plan of the experimental building and test zones

3.3.1.1 Experimental Setup

Two valves (T1, T2) are controlled, determining hot water flow to the radiators of offices O4 and
OS5 with total capacity 5.8kW and 4.2kW respectively (Figure 3-23). Even though the experimental
setup does not include the entire building, it provides a demanding task, capable of evaluating the
potential of the proposed approach. Office O4 is also served by a second line (T7 in Figure 3-
23), which is considered uncontrollable for our experiment and is set to its default state (open).
In this way, the algorithm needs to identify that there is another heating source in the room (a
radiator of capacity of 1448 W) and schedule the controllable line to maintain acceptable comfort
conditions and save energy at the same time. Moreover, as analyzed in Section 3.1.1, the central
campus boiler is located outside of the building and serves a number of other facilities before the
hot water reaches the Maintenance building. It is conceivable that the heating demands of the
other buildings cannot be estimated without further information, thus the hot water temperature that
reaches the building can fluctuate from the fixed value set to the thermal model. Here, the algorithm
has to exploit actual in-building information in order to define control strategies able to overcome
these disturbances. Finally, apart from the stochastic nature of the inlet hot water temperature,
the proposed methodology needs to be able to react to all other unmodeled discrepancies, such as
inexact weather and occupancy predictions and stochastic occupant behaviour.
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Figure 3-23: Central heating system branches and corresponding flow control valves

3.3.1.2 Formulation of the Control Design Problem

For the experimental setting above, the problem is related to determining the operation of the valves
(open or closed) on each of the controllable lines (T1 and T2). Even though reliable weather and
occupancy forecasts are available for periods longer than one day, a prediction horizon of one day
(T = 24h) has been selected; selecting larger 7 has no impact to the solution because of the low
thermal capacity along with the poor insulation and air tightness of the building.

We build upon Eq. (2.4), to make the formulation of the optimization problem in the specific setup
more precise. Let i € {1,2} be an index indicating the controllable line, or correspondingly the
room that this serves (Office 5 for i = 1, and Office 4 for i = 2), as shown in Figure 3-23. This way,
we can define one controller for each line i as follows:

if— 1
g <0

otherwise

0,
50,

u (3.1

with u}c the position of each valve i (0: fully closed and 50: fully open) set at time instant k, and ' a
set of coefficients for linearly combining a set of features g(xy). Here, g; is the outside temperature,
g» the outside humidity, g3 the global solar radiation, g4 the wind speed, g5 the wind direction, g¢
the occupancy, g7 the office temperature, gg the office humidity and g9 and g;o the square values
of the office temperature and office humidity respectively. Since two lines are controlled in this

1
experiment, = (g;) € R, and uy = m(0;x;,dy) = (Zé) in Eq. (2.4).
k

For the comfort constraint, the Fanger PPD index is used, but we allow as a relaxation parameter in
the solution of the optimization problem, values of the comfort index in each office to surpass this
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limit for 15% of the time'. This way, the comfort constraint for each office i is defined as follows:

o 1 & .
@) =1= s - D' <0,
N&
with ; (3.2)
pv_ [0 ifF—F <0
k 1, otherwise.

here Fki is the Fanger PPD value at room i, F; is the Fanger PPD limit for both rooms (15% for
occupied periods and 100% for unoccupied), Fki"v is 1 if the limit value is violated and O otherwise,
D' is the relaxation parameter for each room i, set to the maximum allowed discomfort time (15%)
for both rooms and £ contains the states generated by the evolution of the model for all timesteps
k=1...N.

Eq. (2.4) becomes for the particular problem:

N
0" = argmin Z Ey,
0cRY (=1
subject to:
. 0, if—1—<05
wy =14 1~ (00780%) = , withi=1,2 (3.3)

50, otherwise

X1 = m(xg, ug, dy),

2
C(£) =Y wic'(£) <0;
i=1

with Ej the energy consumption of the building? and C(£) < 0 a function combining the comfort
constraints of Eq. (3.2), with w; = 0.5, i = 1,2. An initial parameter vector (6y) is provided to
Algorithm 2.2.1 and in each iteration a set of new parameters is generated and evaluated on the
simulation model with respect to the total energy consumption and comfort constraints. Solution of
Eq. (3.3), results in a set of controller parameters (8*) which are used to generate the controllers
u = m(0*;x¢,dy) to be applied to the actual building and the control design process restarts.

Algorithm 2.2.1 is used to solve the posed optimization problem. As the search space can be large,
an intelligent selection of the initial set of parameters 8y can help accelerate convergence. In our
case Oy was selected to mimic a behaviour functionally “near” the initial knowledge-based controller
designed for the building at hand. This is achieved by performing an initial simulation following
the existing rule-based control strategy and generating 6y by least-squared fitting over the simulated
control actions (i) and simulated building states (¥).

3.3.1.3 Results

For our experiment, a less cold week has been selected for the experiments in the real building, with
the outside temperature fluctuating between 10°C and 15°C.

The control strategies produced by the proposed approach are evaluated against the performance of

I'This relaxation is only used for the solution of the optimization problem. The evaluation of the optimized controller
is performed without posing this relaxation.

2We can only measure energy flows to the entire building and cannot determine the individual consumption in each
study room. Note here though that using the same deterministic weather and in-building states in each iteration, only the
different control decisions on Offices 4 and 5 can influence the total consumption of the building.
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the actual rule-based strategy applied to the heating system of the building. Here, the central heating
system serving all campus buildings is switched on every day at 05:30 to preheat the buildings and
is switched off at 11:30-12:00, depending on the external conditions, while the valves controlling
the lines inside each building remain open. This means that controllable elements of this experiment
(T1, T2) would normally follow the centrally-selected strategy, thus the rule-based control strategy
can be replicated and meaningful comparison between the two strategies can be made.

In addition to the controllable heating system shown in Figure 3-23, a collection of controllable
elements manually operated by the users is also available in the building. These components include
the doors and a number of openable windows in each office, blinds in all windows, as well as an
AC split unit in each office. This implies that apart from providing the model with forecasts for the
weather conditions and the occupancy, some assumptions have also to be made for the operation
of these elements, acting as uncontrolled disturbances to the system. Blinds are assumed always
open to exploit solar gains, while the same applies to the AC units, which are treated as back-up
heating system operated by the users when feeling uncomfortable. We have to emphasize here that
the above forecasts on the operation of the uncontrollable elements are inputs to the model used
to estimate the future thermal state of the building. Any deviation from the predicted behaviour is
considered disturbance and is treated by adjusting the behaviour of the system through the feedback
control.

The heating experiment was initiated on February 26" and the system operated for 4 days. Given
the physical constraints posed by the actuators (thermoelectric valves require 10min to change state)
and the slow dynamics of the terminal units (radiators), actuation commands are sent every 30 min.
Note that by solving the optimization problem new parameters 60* are generated every 45 min, while
Eq. (2.2) is evaluated with the current set of 6* every 30 min to compute new valve positions.

The resulting control strategies are compared to the centrally-designed rule-based controller on the
basis of total energy consumption and user comfort levels. For energy consumption, the compar-
ison is performed at a simulation level, taking into account the total amount of time each strategy
operates the radiators in each office, while for the user comfort the comparison is performed both
at the simulation level — evaluating the Fanger PPD index values in each office using the detailed
simulation model — and at the physical level, by determining if the users utilized the backup heating
system (AC units).

In the remaining of the section, a comparison between the proposed methodology and the default
campus-wide control strategy is provided. Here, the operating schedules for the valves are illustrated
(with O: fully closed and 50: fully open), along with the internal (simulated) and external tempera-
tures (in °C), the actual occupancy of each office (scaled, with O=no occupancy and 15=occupancy)
and the predicted Fanger PPD levels ([0-100]%).

For room O4, the system selects to close the valve serving the controlled radiator (Figure 3-24),
allowing the second radiator to cover the heating demands of the office. Comparing the resulting
control strategy to the rule-based controller shown in Figure 3-25, it can be observed that both
manage to maintain similar comfort levels throughout the entire study period (see also Figure 3-28
for a summary of the results), but the proposed methodology manages to save a significant amount
of energy at the same time. This is due to the fact that the proposed approach correctly identifies
that one radiator suffices for the heating demand of room O4 for the specific period, by utilizing
information on the weather predictions and using the detailed thermal model of the building and
past sensor data.

For room O3, the resulting strategy allows water flow for shorter periods (Figure 3-26) compared to
the respective rule-based controller (Figure 3-27). During the entire availability period, the valve is
opened only in the last (colder) day, where heating is necessary to maintain comfort, as predicted by
the model. On 27/02 and 28/02 the system is operated in the morning only, while on 26/02 the room
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Figure 3-24: Optimized operation for Office O4

is heated only for a short period of time, when discomfort levels begin to rise. Overall, the proposed
approach manages to effectively exploit the availability of the model and weather forecasts in order
to predict — and treat when necessary — future discomfort.
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Figure 3-25: Rule-based control for Office O4

The rule-based controller on the other hand, would operate the heating system during the entire
availability period, without achieving significant comfort improvement compared to the proposed
approach, as shown in Figure 3-27. Both control strategies maintain comfort at acceptable levels,
but in our approach the system was active for 32.2% less time (Figure 3-28).

Figure 3-28 summarizes the results of the heating experiment, comparing the control strategy pro-
duced by the proposed approach to the rule-based controller applied to the building. Both strategies
prevent discomfort in both office rooms, but the methodology presented here managed to fulfill the
task by closing the controllable valve of O4 for the entire test period and opening the valve in O5
for a total of 16.8 h in four days, while the rule-based controller would open both valves for 24.8 h
on the same period. This intelligent operation of the two valves leads to 10.12% energy savings for
the whole building, as computed using the validated detailed simulation model.

Regarding energy savings, the control strategy designed by the algorithm is evaluated against the
performance of the actual rule-based strategy applied to the heating system of the building on the
basis of the building total fuel (oil) consumption. Nevertheless, the controllable elements (valves

62



CAO Setpoints ——— Zone 05

setpoint
Out Temp
Zone Temp
—— Occupancy
80H Fanger

8

Values over the day
(2]
o
A
\ 4
4

1511 5|
1 0 7 \H\—)“
5 H
0 | L | L L | : | L L ) (-l
22/02 23/02 24/02 25/02 26/02 27/02 28/02 01/03

time

Figure 3-26: Optimized operation for Office O5
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Figure 3-27: Rule-based control for Office O5

T1, T2 serving office O5 and O4 respectively) during the experiment, regulate the water flow in only
two of a total of eight central heating system branches and as such, the result is not representative
of the actual energy savings at the building level. Thus, apart from the total fuel consumption in
the building, hot water energy supply at each controllable branch is also a criterion to evaluate the
efficiency of the system.

Figure 3-29 depicts the hot water energy supply at each branch, as well as the hot water energy sup-
ply in offices O4, O35, for both the proposed approach and the rule-based controller. The proposed
solution leads to 57.77% and 34.85% savings for offices O4 and OS5, respectively.

Finally, it is important to emphasize that apart from the demonstrated savings and the user comfort
evaluation on the simulation level, the backup AC units were not operated by the users at any time.
This fact, combined with interviews with the occupants indicate that comfortable indoor conditions
were achieved throughout the experiment.

3.3.1.4 Conclusions

Application of the proposed setup in TUC building has achieved 35% — 57% energy savings in
two offices, compared to the default heating strategy of the building, while maintaining similar

63



® Proposed approach #RB
30 4

25 A

20 4

o

15 A

10 A

|\ [
Discomfort 04 (h) Discomfort O5 (h) Operation Time O4 Operation Time O3
Consumption (KWh / (h) (h)
10)

Figure 3-28: 22/02/2013 — 01/03/2013 real-building heating experiment results

B Proposed approach =RB

20 A

Consumption (kWh)

.

Office 4

Q
ER

T1 branch T2 branch

Figure 3-29: Heating experiment results — hot water consumption

indoor comfort conditions. While such high energy savings would not be realizable in an annual
basis — and can, partly be attributed to the improper operation of the heating system under normal
conditions (a situation which is very common in this and many other buildings), — what is perhaps
more important is that the Control Design process managed to identify correct operational strategies.
Nevertheless, the potential for inefficiency identification, along with the opportunities offered for
balancing between thermal comfort and energy consumption offer a promising methodology for
automatic design of BACS.

3.3.2 Real Heating Experiment with AC Units

A second real heating experiment was performed in TUC building, using the Air Conditioning (AC)
units in each office for covering the heating demands, while the radiant system was inactive.
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3.3.2.1 Experimental Setup

Our approach was applied on February 14, 2014 in the building. On that day, the morning was
relatively cold and humid, with heating required, followed by a warmer and sunny afternoon, with
no heating necessary. On similar past days, the offices would be very cold in the morning causing
comfort problems in the first hours of occupancy. The users would turn on the AC units upon arrival,
very often selecting a very high setpoint, and would keep them operational until later in the day even
when heating was no longer necessary, thus leading both to comfort problems (in the morning) and
unnecessary energy consumption (later in the day).

The occupancy forecast assumes a fixed occupancy from 8 a.m. to 4 p.m., in agreement with the
regular working hours of the building occupants. Weather forecasts are obtained from an external
source by polling at regular intervals a web-service provided by the forecast provider. Uncontrol-
lable elements (doors, windows and shading devices) are assumed fixed to either closed (doors and
windows) or open (blinds) for the duration of the day. These forecasts are used as part of the sim-
ulation and control design process. In addition, a fault-detection module is monitoring occupancy
in each of the rooms and turns-off the AC unit if users leave their office for a period of more than
three minutes.

To accommodate user preferences, a setpoint correction interface with a rotary knob is activated
in each room. A virtual sensor is introduced in the system that would receive an analogue value
[0,270]° (knob angle) and by mapping to the interval [—3,3] and rounding to the closest integer
would return a discrete value in the range (—3,—2,...,+3°C)). For the heating experiments de-
scribed here, the value of —3 °C would indicate a preference by the user to turn off the AC unit. In
all other cases, the setpoint communicated to the AC was the setpoint generated by our algorithm
offset by the correction value provided by the corresponding virtual sensor.

Out of all the offices, three offices are selected for performing the active regulation experiments,
while all other offices are assumed (in the simulation) to be operated by a simple “reasonable” rule
based controller. The offices chosen for control by our algorithm are Offices 2, 4 and 5, shown in
Figure 3-22. Office 2 is on the north side of the building and receives a small fraction of direct solar
radiation, thus requires significant heating even during sunny winter days. Office 4 requires heating
during the morning when the users enter, but receives high solar gains during noon that can lead to
overheating, while office 5 is in between of the other offices in terms of heating demands. The differ-
ent office characteristics, require our optimization algorithm to discover a different control strategy
for each office, due to the different amount of solar gains. Un-modelled disturbances, and inexact
weather and occupancy predictions along with stochastic user behaviour influence the quality of the
controllers generated but to a smaller extend compared to open loop control approaches.

3.3.2.2 Formulation of the Control Design Problem

In each room the AC mode is set to “heating” and the fan speed to 50%. The setpoint is then
calculated by the following controller function:

= OYT" + 01 + 5T + 0 (3.4)
with i an index over the controlled offices, u,; = ,f’set the AC set point for office i at time %, TkOllt
the outside temperature at k, T}, '™ the indoor air temperature of office i at k, Sy the global horizontal
radiation measured by the weather station and 6 the tunable control parameters (weights). As
a starting point for the optimisation the following parameters are used: 6; = 6; = 6, = 0 and

Gé =23°C, i € {2,4,5}, representing a controller that maintains the internal temperature at 23 °C
for the entire occupancy period.
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A warming-up period (as described in Section 1.2.3.2.2) of three days (7;, = 72h) and a prediction
horizon of one day (7}, = 24h) are selected. Even though reliable weather and occupancy forecasts
for longer than one day periods were available, for the lightweight building at hand and given
the poor insulation and air tightness, longer prediction periods have no influence on the solution.
In each control design cycle, historical office temperature and weather data are retrieved for the
warming-up phase, while weather and occupancy forecasts are used for predicting the future thermal
behaviour of the building. Once the control design process finishes and optimized controllers are
generated (i.e. optimized weights 6*), they are communicated to the building-side. There, every
30 minutes the controller service is invoked, and utilizing sensed data from the building and the
weather station, using Eq. 3.4, new setpoints are calculated for each office. The actual temperature
communicated to the AC units, is obtained from the calculated setpoint properly offset according to
the user preferences in the manner described above.

For the experiment presented here, the task is to minimize the total electric consumption of the
building while not violating the posed comfort constraints as expressed by the Fanger PPD index.
Following the ISO recommendations for existing buildings of class C — like the TUC building — an
acceptable limit for the Fanger PPD is 15%. In the experiment presented here, we formulate the
thermal comfort constraints as stochastic constraints (Oldewurtel et al., 2012). First, we define the
probability of discomfort Pj for each office i as follows:

;. #of occupied timesteps with Fk" > 15%
Pd -

35
# of occupied timesteps ’ (3-5)

where F is the Fanger PPD value in office i at time k. Next, we define the comfort constraint C' for
each office i as:

. _pi  if1_ pi
O:{11%1ﬂ Pi<a 3.6)

1, if1—P >«
Here, we set oo = 0.9. Finally, we construct one constraint involving all offices, as required by the
algorithm (Kontes et al., 2014) (2.2.2), as follows:

3

c=1-J]c" (3.7)

i=1

For evaluating the results measured values from the offices are used: for the energy consumption
measurements from the installed energy meters are collected, while for the calculation of the Fanger
PPD index, in-room (air temperature, radiant temperature and relative humidity) and weather station
(barometric pressure) measurements, along with default values for sensor measurements that are not
available (e.g. indoor air velocity, clothing values, etc.) are combined. For a detailed analysis on
the Fanger PPD calculations for TUC building please refer to (Rovas et al., 2014a).

3.3.2.3 Results

Starting with office 2, it is clear that the algorithm discovers that pre-heating is required to ensure
comfortable interior when users (are predicted to) enter at 8 a.m. Therefore, the room is heated from
7 a.m. to 8 a.m. and the Fanger PPD values reach the acceptable limits (Figure 3-30). On the other
hand, from the time the occupant enters the room (at 8:30 a.m.) and for the rest of the day, comfort
levels are violated as Fanger PPD values range between 30% and 40% during occupancy period.

A closer look to the in-room conditions (Figure 3-31) reveals that although the radiant temperature
reaches relatively high values during the pre-heating period and remains at the same levels through-
out the day, the air temperature remains constant in significantly lower values. A review with the
office user revealed that the office door remains open throughout the day, which results in the inabil-

66



AC Operation
160 T T T T
—— Fanger PPD
© == Occupancy x 15
-6~ Power / 10

140

120

100

80

60

Values over the day

40

20

@
O]
O]
©

1 1
11AM  12PM 1PM 2PM 3PM PM PM

[oplen)

7AM = SAM  9AM 10AM

Figure 3-30: AC operation and comfort levels for Office 2

ity of the AC system to cover the heating demands, especially when not operating in full fan speed.
This leads both in significant energy consumption and thermal discomfort as shown in Figure 3-30.
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Figure 3-31: Weather and in-room conditions for Office 2

In Office 4 the optimized controller also applies a pre-heating strategy between 7 a.m. and 8 a.m., as
shown in Figure 3-32, which terminates due to false occupancy signals from the occupancy sensor
of the office between 7 a.m. and 8 a.m. On the other hand, when the users enter the office around
8:15 a.m. they open the door and windows as shown in Figure 3-33. A review with the users
revealed that they naturally ventilate the office every morning (if weather conditions permit) — a
strategy that cancels the effects of pre-heating and leads to unnecessary energy consumption. For
the remaining of the day the optimized controller generates set points that lead to minimum use of
the AC, since thermal comfort is preserved due to the high solar gains the zone receives.
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Figure 3-33: Door and windows opening schedules for Office 4

In office 5 the users cancel our system from the previous day by using the set point correction
functionality, thus there is no heating operation during morning, as shown in Figure 3-34. The users
allow the system to control the AC unit between 9 a.m. and 10 a.m., where the controller heats the
room leading to comfortable interior.

Table 3.1 shows the overall energy consumption and comfort levels during occupied periods in each
room. A significant amount of energy is consumed in office 2 without leading to improved comfort,
since the office door remains open throughout the day. The users in office 5 did not allow any pre-
heating in the morning, thus a small amount of energy is consumed in the office, accompanied by
high discomfort levels. Office 4 is characterized by good comfort levels, as it receives high solar
gains, and requires energy only for preheating in the morning — energy which is wasted by the
occupant’s practice to naturally ventilate the office. What is also important, is that user acceptance
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Figure 3-34: AC operation and comfort levels for Office 5

of the system has been good, with the occupants stating that indoor comfort in their offices has been
better compared to the manual operation of the system in days with similar conditions, mostly due
to the pre-heating in the morning.

Table 3.1: TUC AC heating experiment results

Office 2 Office 4 Office 5
Energy Comfort Energy Comfort Energy Comfort
Consumption | Fanger PPD | Consumption | Fanger PPD | Consumption | Fanger PPD
(kWh) (%) (kWh) (%) (kWh) (%)
6.05 33.7 1.01 10.4 0.42 29

3.3.2.4 Conclusions

The effect of the user disturbances dictates the need for fault detection services that will complement
the control design functionality. Here, analytics that would prevent heating the room if a door or
window is left open would have reduced energy consumption in office 2, while services predicting
user occupancy schedules and user behavior (such as opening the doors and windows systematically
in the morning) would have prevented the pre-heating of office 4.

The philosophy and potential of our approach are evident in office 4 results. Here, the thermal
simulation model of the building, using information from the weather forecast service, manages
to predict the effect of the solar and internal gains in the thermal state of the office and in user
comfort, with user comfort defined according to ISO 7730 and not as ad hoc upper and lower air
temperature bounds. The control design service, utilizing the detailed model, is able to generate
controllers (optimized parameters 6*), that are able to achieve comfortable interiors with moderate
energy consumption.

Nonetheless, despite this experiment is affected by the behaviour of the users and equipment faults,
still indicates the rationality of the solution generated by the proposed approach. Here, in office 4
the model accurately predicts that the solar and internal gains suffice to cover the heating demand
after 9 a.m. and the algorithm generates control parameters that lead to minimum AC usage for this
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space. In addition, for office 2, even though the model assumes the office door closed and predicts
different heating demand for the office throughout the day, the closed-loop nature of the controller
allows to recover from the unpredicted event (open door) by heating the office.

3.3.3 Simulation-based Evaluations with AC Units

Since the real heating experiment in TUC using the ACs has been affected by user-induced and
sensor faults, we setup two experiments, one for winter and one for summer where we apply the
Control Design process in simulation, to evaluate the potential of the methodology. In both these
experiments, the application of CAO algorithm (Algorithms 2.2.2 and 2.2.1) with the constraints
defined for the real experiment above (Eq. 3.7) failed, due to the inability of the approach to handle
the large number of constraints. Thus, the simulation-based evaluations have been performed using
the Bayesian Optimization approach (Algorithm 2.3.1).

3.3.3.1 Control Design for one Winter Day

This experiment is setup for January 4 using a meteonorm weather-file for Athens and 3 days
for the warming-up period, while new setpoints are sent to the AC units every 10 minutes. The
controllers used for the setpoint of each AC unit are:

Ul = BLTE" + 0], + 63T ™ + 6% (3.8)

with i € {1,2,...,10} an index over the controlled offices, “Z € [18,30]°C the AC set point for
office i at time k adjusted every 10 minutes, 7,>"* the outside temperature at k, T,j’in the indoor air
temperature of office i at k, Sy the global horizontal radiation measured by the weather station and
6 € R* the tunable control parameters (weights).

The users enter the building at 8 a.m. and exit at 4 p.m. and the controllers are applied one hour
earlier to account for pre-heating, thus the building schedule (or Occupancy Mode) is defined be-
tween 7 a.m. and 4 p.m. For the rest of the day (Setback Mode), the setpoint is set at 30° C. For
comparison, a standard rule-based controller is formulated, with the following logic:

i { 23°C, In Occupancy Mode (3.9)

e = 30°C, In Setback Mode

The task for the control design process is to minimize the total energy consumption of the building,
while maintaining comfortable interiors according to Fanger index. Following the ISO recommen-
dations for existing buildings of energy class C — like the TUC building — the acceptable limit for
the Fanger PPD is 15%. In the experiment presented here, we formulate the thermal comfort con-
straints as stochastic constraints. First, we define the probability of discomfort Pé for each office i

as follows:

pi # of occupied timesteps with Fki > 15%
d ==

3.10
# of occupied timesteps (3.10)

where F} is the Fanger PPD value in office i at time k. Next, we define the comfort constraint C' for

each office i as: _ .
C'=1-P<a (3.11)

For this experiment we study the performance of the algorithm under different values for the con-
straint relaxation, that is we set oo = {0.8,0.85,0.9,0.95,1.00}.

Figure 3-35 illustrates the results of the experiment. The RB controller (constant setpoint during
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occupancy) is unable to utilize information on weather conditions and building properties (i.e. ther-
mal properties, orientation, glazing area, etc.), thus leads to high discomfort to offices that do not
receive high solar gains. The control design setup on the other hand, leads to similar comfort levels
for all offices, but of course requires more energy to compensate for the comfort improvement.

TUC Building Performance Optimization

Office 3 Constraint

<! Office 2 Constraint

R \ —RB
~—_ €=0.80
Office 4 Constraint 1 — C=0.85
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p 0.75
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Office 1 Constraint,

Office 5 Constraint

0.7%

Office 11 Constraint !
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1

Office 13 Constraint

} } } Energy Consumption

190 200 220

Office 9 Constraint

1

o Office 8 Constraint

Office 10 Constraint
Figure 3-35: CAO controller performance for TUC building simulation study

The trade-off between energy and comfort is shown clearly in Figure 3-36, where the energy con-
sumption that the proposed approach achieved for different constraint limits is illustrated. Here, the
plotted value for the constraint is the average constraint for all offices.

3.3.3.2 Control Design for the Summer Period

A second simulation-based evaluation of the proposed approach has been performed (July — Septem-
ber), using the same meteonorm weather file for Athens and the centralized approach of Algorithm
2.3.1 for the solution of the optimization problem. Here, the controllers used for the setpoint of each
AC unit are the same as in Eq. 3.8:

u, = 64T + Sy + 65T + 61 (3.12)

with i € {1,2,...,10} an index over the controlled offices, u} € [18,28]°C the AC set point for
office i at time k adjusted every 10 minutes, 7,>"* the outside temperature at k, Tk”m the indoor air
temperature of office i at k, Sy the global horizontal radiation measured by the weather station and

6 € R*0 the tunable control parameters (weights).

The users enter the building at 8 a.m. and exit at 4 p.m. and the controllers are applied one hour
earlier to account for pre-cooling, thus the building schedule (or Occupancy Mode) is defined be-
tween 7 a.m. and 4 p.m. For the rest of the day (Setback Mode), the setpoint is set at 28° C. For
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Figure 3-36: Energy consumption — Comfort trade-off

comparison, the same rule-based controller as in Eq. 3.9 is used, but here the setpoint in Occupancy
mode is set at 24 °C, while for the Setback mode is set at 28 °C.

The task for the control design process is to minimize the total energy consumption while maintain-
ing comfortable interiors in all offices. For the comfort, the constraint of Eq. 3.11 is used, while we
require comfortable interiors for 90% of the occupied time, thus we set & = 0.9.

Note here the limited flexibility of the control design process, since the generated controller is
allowed to interact with the building only during the Occupancy Mode, while setting a constant
setpoint for the rest of the day. In addition to this, the warming-up period for each day has been
considered to be the same as applying the Rule-Based controller, assuming that due to the low
thermal mass of the building and the high infiltration, the building thermally “resets” at night. Both
these restrictions have been enforced to reduce the computational burden of the entire experiment,
allowing distributed control design tasks.

Despite these constraints though, the energy consumption in almost all offices is reduced as shown
in Figure 3-37, with the total reduction being around 17%.

3.3.3.3 Conclusions

In this set of experiments, the potential of the control design approach is evident. If there are
no disturbances from the occupants, the proposed methodology is able to manage the trade-off
between energy consumption and user comfort in a transparemt and principled manner. In addition,
the ability of the Bayesian Optimization algorithm to handle multiple constraints in a structured
manner, compared to the manually-tuned weighting of CAO algorithm has become evident.
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Figure 3-37: Simulation study on the efficiency of BO vs RB controller for the whole cooling season
for TUC

3.4 Experiments on ZUB Building

3.4.1 Simulation-based Experiments on ZUB Building

A set of simulation-based control design experiments are performed on the Tower model of ZUB
building (Figure 3-7), using a meteonorm weather file from an area with similar climatic conditions
to Kassel (Frankfurt am Main).

3.4.1.1 Experimental Setup

The building is considered occupied between 9 a.m. and 6 p.m. A standard rule-based controller is
used to provide a baseline comparison to the efficiency of the controllers generated by the control
design process. This controller adjusts: (i) the hot water sending temperature of the TABS system;
(ii) the setpoint in each office, used as input to a low-level logic that controls the position of the
valves in each circuit of the TABS; and (iii) the opening of the blinds in each office. In detail, for
the water temperature the following heating curve is used:

Uiy = —0.8(T™ +6) + 38, (3.13)

with T,f‘mb the average outside ambient temperature of the last 24 h, calculated at time k. A new
water temperature is calculated every 2 h.

For the zone setpoint of each controllable office i, the following controller is applied:

s { 21°C, In Occupancy Mode (3.14)

“RBA T 1 18°C, In Setback Mode.

The Occupancy Mode is defined between 5 a.m. and 5 p.m. and the controller generates a new
setpoint every 1h. Note that the controller regulates the position of the TABS valves in each office
and is a proportional controller with a deadband of 1°C.
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For the blinds, controlled every 2 h, a simple rule is used to define their state:

. S 2
b { Close, IfS} >300W/m (3.15)

“RBA 1 Open, IfS? < 120W/m?,

with S,f the 2-hour running average of the solar radiation on the south facade calculated at time k.
Note here that closed blinds result in a reduction of solar radiation by 70%, i.e. the blinds cannot
block the solar radiation completely.

In the control design setup, more complex controllers are formulated, while the sampling interval
for each controller is the same as with the rule-based control. Here, the sending water temperature
is controlled by the following heating curve:

. 1S
ucp =05 LM+ 0 S+ 07" 2 Y T+ 66 (3.16)
i=1

with Tkamb the 24-hour running average outside air temperature, Sy the 2-hour running average of the
global horizontal radiation and 7}/ the 24-hour running average of the zone air temperature of zone i,
all calculated at time k. The water temperature setpoint is limited in the interval uflYy, € [23,38]°C.

The zone setpoint of each controllable office i, is calculated as:
sio_ 935":Tkamb + 928’iS,§ + 91“Tk’ + Gg’i, In Occupancy Mode 317
Ucp k P I (3.17)

’ s n Setback Mode,

with Tkamb the 24-hour running average outside air temperature, Sy the 2-hour running average of the
global horizontal radiation and Tki the 24-hour running average of the zone air temperature of zone
i, all calculated at time k. During Occupancy Mode the setpoint is limited in the interval [15,28]°C,
while during Setback Mode it is bounded in the interval [10,28]°C.

The controller of the blinds is based on the rule-based controller formulation, with:

b {Close, If S5 > o G3.18)

u = .
Dk Open, IfS < 6"

Here S,§ is the 2-hour running average of the solar radiation on the south facade calculated at time k.

3.4.1.2 Formulation of the Control Design Problem

The task for the control design process is to minimize the total energy consumption of the build-
ing, while maintaining comfortable interiors according to Fanger index, by discovering optimized
parameters for the controllers of the building (i.e. 8 € R?®). Following the ISO recommendations
for existing buildings of energy class B — like ZUB — an acceptable limit for the Fanger PPD is
10%. In the experiment presented here, we formulate the thermal comfort constraints as stochastic
constraints. First, we define the probability of discomfort Pé for each office i as follows:

. #of occupied timesteps with F{ > 10%

1
d =

3.19
# of occupied timesteps ’ (3-19)

where F} is the Fanger PPD value in office i at time k. Next, we define the comfort constraint C' for
each office i as: _ .
C'=1-P<a (3.20)
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Since one of the main goals of this experiment is to study both the efficiency of the control design
approach in buildings with TABS and the thermal characteristics of ZUB building, different control
design configurations are utilized, with o € {0.85,0.90,0.95,1}.

A control design task is initiated for four winter (January 16" — January 19'") and four spring days
(March 19" — March 22"?), characterized by a varying temperature profile and high solar gains (see
Figure 3-38). The control design process is performed for different levels of constraint relaxation,
using Bayesian Optimization (Algorithm 2.3.1) with the Expected Improvement criterion for the
acquisition function (Eq. 2.25).

‘Weather Conditions
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(a) Ambient temperature and global solar radiation during the test days of the January experiment
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(b) Ambient temperature and global solar radiation during the test days of the March experiment

Figure 3-38: Weather data for the two simulation-based experiments on ZUB
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3.4.1.3 Results

An overview of the results for each experiment are shown in Figure 3-39. Here the y-axis represents
the average probability of comfort for all three offices. A more detailed illustration of the energy
consumption and probability of comfort for each office is shown in Figures 3-40 and 3-41.

In winter experiments, the optimized controllers manage to achieve similar comfort levels with the
rule-based control strategy in all offices, while consuming less energy (approx. 22.8% savings), as
shown in Figures 3-39(a) and 3-40(b). On the other hand, a significant amount of energy is required
to ensure comfortable interiors (according to ISO 7730) with probability 1 at all times (see Figures
3-39(a) and 3-40(d)).
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Figure 3-39: Performance of ZUB under different levels of chance constraint relaxation, for the
simulation-based evaluations on ZUB building

A key insight on the efficiency of the proposed control design methodology is provided through
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the analysis of Figure 3-40(a). Here, the simulation model has correctly identified that office 107
requires less heating compared to the other two offices, since it is on the first floor and surrounded by
heated neighboring spaces, while offices 207 and 007 have cold boundaries with the external air and
the ground respectively. Using this information, the control design process generates controllers that
result in a control strategy that does not heat office 107, but the required level of comfort is achieved
only through the effect of the internal and solar gains affecting the office.
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Figure 3-40: Performance of each office of ZUB under different levels of chance constraint relax-
ation for the January Experiment

In March experiments on the other hand, the rule-based controller is not capable of reaching the
lowest comfort criterion in all three offices, as shown in Figure 3-41, thus the control design process
generates controllers that consume more energy to ensure comfortable interior in all building spaces,
as shown in Figures 3-39(b) and 3-41.

Note here that a formulation of the comfort constraint as in Algorithm 2.2.1, that is requiring the
average constraint of all spaces to be satisfied could have led to high discomfort for some of the
offices. This is obvious in the case of the rule-based controller, where the average probability
of comfort is close to the lower bound (see Figure 3-39(b)), but offices 007 and 207 have high
discomfort, as shown in Figure 3-41(a) for example.

The in-room conditions for the two test cases and for different constraint relaxation levels are shown
in the remaining of the Section. Starting with January, the RB controller of the building ensures
comfortable interiors for 90% of the occupied time, while leading to discomfort during the morning
hours of the first and third controller days in all three offices, as shown in Figures 3-43, 3-44 and
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Figure 3-41: Performance of each office of ZUB under different levels of chance constraint relax-
ation for the March Experiment

3-45.

This means, that setting o = 0.85 for the first Control Design task, we allow more discomfort
compared to the RB controller (15% of the occupied time), leading to a control strategy with high
energy savings. Here, the water temperature is set to the minimum allowed temperature for the
entire control period (23°C as shown in Figure 3-42), but in all offices the setpoint during the
Setback Mode is higher compared to the Occupancy Mode setpoint. This allows maintaining the
offices heated during the night with less energy, while exploiting the internal and solar gains during
the day for heating.

Setting oc = 0.90 means we allow the same amount of violations to the RB controller of the building
(see Figure 3-40(b)). On the other hand, the Control Design process designs controllers that lead to
a control strategy that saves 22.8% energy compared to the default building strategy, by lowering
the hot water temperature after the first day (Figure 3-42) and discovering optimized schedules for
the setpoints of the offices, as shown in Figures 3-43, 3-44 and 3-45.

In the case of o = 0.95, an interesting property of the stochastic formulation of the constraint
emerges. Here, the Control Design process generates controllers that lead to comfortable interiors
for all offices on the first day (Figures 3-43, 3-44 and 3-45), by setting high water temperatures
(Figure 3-42) and high setpoints during the morning hours of that day. On the other hand, the
discomfort levels during the third day are similar as before. This is due to the formulation of the
constraint, which requires a certain level of probability of comfort for the entire occpied period
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Figure 3-42: Hot water temperature under different levels of chance constraint relaxation, for the
January Experiment

(four days in our case), thus not forcing “even” comfort levels in all days.

Finally, for ¢ = 1.00, the water temperature follows similar trend with the temperature profile gen-
erated by the RB controller (Figure 3-42) and we have higher setpoints in all offices, as shown in
Figures 3-43, 3-44 and 3-45. Of course this strategy corresponds to significantly higher energy
consumption.

A close look in the operation of the blinds in all offices and for all comfort relaxation levels reveals
that the blinds become active (i.e. close) around noon for most days and for all offices to prevent
overheating.

For the March case, the RB controller manages to maintain comfort in office 107, but leads to high
discomfort in offices 207 and 107, as shown in Figures 3-47, 3-48 and 3-49.

Here, for oc = 0.85, the Control Design process generates controllers that set the water temperature
in the lowest allowed level as for the Winter case (see Figure 3-46). Office 107 (as with the RB
case) requires no heating, but for offices 207 and 007 higher setpoints during the night are required
to achieve comfortable interiors (Figures 3-47, 3-48 and 3-49) — a strategy that leads to higher
energy consumption in these two offices compared to the default controller of the building (Figure
3-41(a)).

For o = 0.90, office 107 still requires no heating. Here, as with the Winter case, the water tempera-
ture is high during the morning hours of the first day (Figure 3-46) and, combined with the setpoint
levels of offices 207 and 007 the strategy leads to less comfort violations, especially for the first day.

For o0 = 0.95, the schedule of the water temperature follows the same pattern to the previous case
(Figure 3-46), but the setpoints of all offices are significantly higher, as shown in Figures 3-47, 3-48
and 3-49. For o = 1.00, the resulting control strategy is quite similar, since the water temperature
drops to the lowest limit after the second day, while offices have high setpoints to ensure comfortable
interiors, especially during mornings.

Finally, note that in this case the blinds are activated less times compared to the Winter experiment.
Here, the blinds are closed around noon for all offices during the last two days to prevent overheat-
ing, since these days are characterized by high solar gains (see Figure 3-38(b)). In contrast, during
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Figure 3-43: Indoor climate conditions for Office 207, under different levels of chance constraint
relaxation, for the January Experiment

the first two days the blinds remain mostly inactive to allow exploitation of the heat gains from the
sun.

3.4.1.4 Conclusions

In this set of experiments, the control design process has managed to effectively regulate the trade-
off between energy consumption and user comfort — compared to static rule-based controllers that
have limited flexibility — by exploiting information on the future thermal state of the building from
the high-fidelity simulation model of the building, using occupancy and weather forecasts. This is
achieved by controlling both distribution and emission systems of the building, as well as the blinds
in each office, in a holistic and synergistic manner.

On the other hand, the effect of the complexity of the control functions becomes apparent. Here,
more complex control functions (e.g. using a linear controller function during the Setback Mode
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Figure 3-44: Indoor climate conditions for Office 107, under different levels of chance constraint
relaxation, for the January Experiment

too in the ZUB building experiment) that provide higher flexibility could have led to more en-
ergy savings, but come with higher computational load, since they require more iterations of the
simulation-based control design algorithm.

Finally, the slow dynamics of the building are reviled, which are typical for heavy buildings equipped
with TABS (Gwerder et al., 2008, 2009). In such buildings if during pre-heating (i.e. during the
Setback Mode) less or more heating is applied to the room, this systematically leads to either com-
fort problems in the morning due to under-heating either to over-heating around noon (especially
for sunny days) respectively, since it is very difficult to compensate for the faulty control strategy
during the day. This means that in such buildings frequent re-design of the controller is not crucial;
instead what is important is to correctly account for the effect of the predicted solar and internal
gains in the future thermal state of the building.
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Figure 3-45: Indoor climate conditions for Office 007, under different levels of chance constraint
relaxation, for the January Experiment
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Figure 3-47: Indoor climate conditions for Office 207, under different levels of chance constraint
relaxation, for the March Experiment
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Figure 3-48: Indoor climate conditions for Office 107, under different levels of chance constraint
relaxation, for the March Experiment
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Figure 3-49: Indoor climate conditions for Office 007, under different levels of chance constraint
relaxation, for the March Experiment
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3.4.2 Real Experiments in ZUB Building

After completing the simulation-based evaluations for ZUB building and getting an understanding
of the building and HVAC dynamics, a set of real heating experiments is performed in ZUB during
the winter of 2015 — 2016. Here, two types of controllers are deployed: i) a knowledge-based
controller and a model-based controller.

The knowledge-based controller follows the same logic as the baseline control strategy, i.e. a heat-
ing curve is calculated based on the external temperature and a building setpoint remains constant
throughout the experiment. The difference is that the building setpoint and the heating curve are
adjusted to save energy compared to the baseline strategy. The model-based controller is designed
using the Bayesian Optimization algorithm (Algorithm 2.3.1) and following the MPC paradigm.

The comparison between the two control approaches will indicate whether there are tangible ben-
efits from applying a model-based control design solution over hand-tuned rule-based controllers,
designed using not only expert knowledge but also knowledge about the dynamic behavior of the
building.

The experiments presented here were performed within the BaaS FP7 project and the communica-
tion withe the building was achieved through ICT infrastructure developed within BaaS, thus we
use specific naming convention (BaaS knowledge-based and BaaS model-based controllers) in the
illustration of the results. An overview of the ICT platform architecture is shown in Figure 3-50.
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Figure 3-50: BaaS Platform — Core Components (Rovas et al., 2014b)

3.4.2.1 Experimental Setup

For designing the knowledge-based controller, we build upon the baseline strategy. Here, the base-
line controller uses a heating curve to generate a new water temperature setpoint every one hour,
and maintains the building setpoint at 21 °C constantly. The input of the heating curve is the 24-h
running average of the outside air temperature. By reviewing the building inefficiencies using his-
torical data we know that this strategy can lead to overheating of the first floor, especially for cold,
sunny winter days. Thus, we have designed a different heating curve that generates lower water
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temperatures for higher outside air temperatures, compared to the baseline strategy. In addition, we
set the building setpoint to a lower value (19.8 °C) compared to the baseline strategy.

For the model-based control design on the other hand, the sending water temperature is controlled
by the following heating curve:

1 &
uchy = GleTkamb+92HWSk+93HWNZT/§+9fw, (3.21)
i=1

with Tkamb the 24-hour running average outside air temperature, Sy the 2-hour running average of the
global horizontal radiation and Tk’ the 24-hour running average of the zone air temperature of zone i,
all calculated at time k. The water temperature setpoint is limited in the interval ug]gv_ « € [23,38]°C.

In contrast to the simulation-based evaluations of the previous Section, in the real building it is not
possible to control the setpoint of each office individually. Instead, the base setpoint for the whole
building, is calculated as:

ugp . = 0, T + 6587 + 65, (3.22)

with Tkamb the 24-hour running average outside air temperature and S; the 2-hour running average
of the global horizontal radiation, all calculated at time k. During Occupancy Mode the setpoint
is limited in the interval [19,25]°C. The final setpoint in each office is calculated by adding the
setpoint offset set by the users in each room to the base setpoint of the whole building.

Note here that for the winter experiments we do not control the blinds of the building, a decision
made due to the lack of occupancy sensors in the offices. Since there is no way of knowing when
an office is occupied, we would be forced to utilize the building occupancy schedule (8:00 — 17:00)
for the blinds control configuration. This implies that even if an office is empty, the blinds will
be operated in a proper manner to preserve visual comfort, i.e. blocking the solar radiation when
required. On the other hand, if an office is empty, we would like to harvest as much solar radiation
as possible for two reasons: i) use less energy to heat it up, assuming that occupants will arrive
later on the day (e.g. after a lunch break); and ii) to aid heating the neighbouring offices using less
energy.

3.4.2.2 Formulation of the Control Design Problem

The task for the control design process is to minimize the total energy consumption of the building,
while maintaining comfortable interiors according to Fanger index, by discovering optimized pa-
rameters for the controllers of the building (i.e. @ € R”). Note here that since the ground floor hosts
conference rooms and a small kitchen, our task is to maintain comfort on the office located on the
first and second floors. Following the ISO recommendations for existing buildings of energy class
B — like ZUB - an acceptable limit for the Fanger PPD is 10%. In the experiment presented here,
we formulate the thermal comfort constraints as stochastic constraints, as before. First, we define
the probability of discomfort Pé for each office i as follows:

. # of occupied timesteps with Fki > F!

1]
d=

3.23
# of occupied timesteps (3-23)

where Fki is the Fanger PPD value in office i at time k and F' is the Fanger PPD value. Next, we
define the comfort constraint C' for each office i as:

C'=1-P <a. (3.24)
Due to the inability to control the setpoint of each floor individually, it is impossible to achieve
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similar comfort conditions on the first and second floor, since the top floor is exposed to the external
weather conditions, while the middle floor is surrounded by heated offices. Thus, the comfort-
related requirements from an optimized controller would be to maintain comfortable interiors on
the offices of the second floor, while avoiding overheating in the offices of the first floor. In order to
assist towards this direction, and in cooperation with the maintenance team of the building, we set
F! = 10% for the constraints of the first floor and F! = 15% for the constraints of the second floor.
Finally, we set oo = 0.1 for both constraints.

3.4.2.3 Results

The knowledge-based controller is applied from 10/12/2015 to 21/02/2016, while the model-based
controller from 22/02/2016 to 15/03/2016. For both strategies, a new value for the inlet water
temperature is calculated every one hour. For the model-based control design approach, a new set
of optimized control parameters (6*) is designed and communicated to the building every 2.5 hours,
while the prediction horizon is set at three days and the warming-up period at 20 days, due to the
high thermal mass of the building.

The behavior of the baseline controller is shown in Figure 3-51. It is characterized by a smooth
control strategy, due to the 24-hour averaging of the external temperature and from constant building
setpoint. The peak on Monday morning is due to the high-water temperature entering from the
district network on the beginning of the week, which causes a spike on the inlet water temperature
Sensor.
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Figure 3-51: Baseline control of ZUB heating distribution system (12/11/2015 — 17/11/2015)

Figure 3-52 shows similar behavior for the knowledge-based controller too. Here, the heating curve
generates lower supply temperature values for the TABS compared to the baseline controller, while
the baseline setpoint for the building is reduced by 1.2 °C.
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Figure 3-52: Knowledge-based control of ZUB heating distribution system (10/12/2015 -
15/12/2015)

The controller generated by the model-based control design process on the other hand, exhibits
radically different behavior, as shown in Figure 3-53. The building is systematically pre-heated on
Sunday evening up until Monday morning and then it free-floats for the rest of the week (or some
small amount of heating is provided if needed), utilizing the internal gains from the equipment and
the occupants, as well as solar gains, for preserving comfortable interiors. This strategy exploits the
high thermal mass and air tightness of the building and was discovered automatically by the control
design algorithm.

The energy savings compared to the baseline controller for the period of the experiments are evalu-
ated within BaaS project following the IPM VP protocol (Efficiency Evaluation Organization, 2010)
and are calculated at (Martin et al., 2016): 11% savings for the knowledge-based controller and
33% savings for the model-based controller for the entire building. Regarding the comfort-related
efficiency of the two controllers, Figure 3-54 illustrates the percentage of occupied time a space
was in a certain comfort class in offices 106 and 206 of ZUB, for the baseline, the knowledge-based
and model-based control strategies, taking into account all occupied periods and the comfort class
classification of ISO 7730, using Fanger PMV index. We have to clarify here that the evaluation
of thermal comfort is performed only in these two offices, since they are equipped with the proper
sensing infrastructure that allows calculation of the actual values of Fanger during the experiment,
as well as in the baseline period. Complementing this representation, Figure 3-55 illustrates the
same information, but not as time-fractions in a comfort class, but using the Fanger PMV values
throughout the days of the experiments. Here, every line is a daily “trajectory” of Fanger PMV
values, PMV values greater than zero implying users feeling warm, while PMV values lower than
zero that users feel cold.

Both Figures 3-54 and 3-55 lead to the same results. Here, in the baseline strategy the facility
management team decides to allow systematic overheating on the first floor of the building (as rep-
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Figure 3-53: Model-based control of ZUB heating distribution system (03/03/2016 — 08/03/2016)
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Figure 3-54: Thermal Comfort sensation according to ISO 7730 comfort classes for ZUB building
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resented by Office 106), in order to maintain acceptable comfort conditions on the second floor
(represented by Office 206). This is illustrated more clearly on Figure 3-54: here the baseline strat-
egy causes Room 106 to be in comfort class C for a significant fraction of time, due to overheating,
while Room 206 has good comfort properties. For the knowledge-based controller, even though the
designed controllers exhibit good behavior and lead to energy savings, their inability to properly
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account for all the predicted and un-predicted disturbances (e.g. weather conditions, occupancy,

setpoint tracking errors, etc.) leads to higher discomfort levels compared to the baseline control
strategy.
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Figure 3-55: Thermal Comfort sensation according to ISO 7730 comfort classes for ZUB building
during winter — daily illustration. The solid lines indicate the Fanger PMV limits for comfort

classes A, B and C and each dashed line represents the measured PMV values for one day of the
experiment.

For the model-based control design strategy, as discussed in the previous Section, we set the PMV
limit in the +0.5 region (comfort class B) for the first floor offices and the PMV limit to the £0.75
region (comfort class C), while also allowing some discomfort for a small fraction of time. The
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resulting control strategy, leads to Class C comfort levels for some amount of time in Room 206,
due to under-heating, and Room 106 has satisfactory comfort conditions. The discovered solution
yields significant energy savings.

Even though the model-based control design strategy managed to discover an energy-efficient and
comfort-preserving strategy, some stability problems have been noticed throughout the experiment.
First of all, the ICT infrastructure was not robust for the entire duration of the experiment, since
in several occasions the values for the sensor measurements were not logged. As a result, the
controllers were receiving false 24-hour measurements (usually lower if the platform was down
during the night without the facility management team noticing), leading to some mild overheating
for few days during the model-based control experiment (see the final row of Figure 3-55).

In addition, as shown in Figure 3-54), there is some heating in Friday night, when it is not required.
This is caused by the limited expressiveness of the linear controllers, along with the three-day
prediction horizon. Here, the algorithm generates a strategy that will be able to cover the heating
demands on Monday morning, but due to the linear nature of the controllers, the designed control
parameters result in heating the building on Friday night too. This effect was addressed by manually
setting the heating curve and the building in the lowest allowed values (23 °C and 19 °C respectively)
from Friday afternoon to Saturday noon and then the model-based control strategy would take over
again.

3.4.2.4 Conclusions

A real experiment is performed in ZUB building using: i) a knowledge-based controller designed
taking into account the dynamics of the building and the HVAC system; and ii) a model-based con-
troller designed using Bayesian Optimization and following the MPC paradigm. Both controllers
achieved significant energy savings compared to the baseline controller of the building, but the
knowledge-based controller compromised comfort in several days. This is because a static, rule-
based controller is unable to properly account for all the predicted and un-predicted disturbances
(e.g. weather conditions, occupancy, setpoint tracking errors, etc.), where as the model-based con-
trol design approach, utilizing the thermal simulation model of the building and the automated
control design setup, was able to make informative decisions and control the building in an efficient
manner.
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Chapter 4

Conclusions and Future Work

In the present thesis, we have developed a framework to deliver optimized and integrated opera-
tion of all energy-influencing components of a building that include generation, distribution and
emission elements. First, a set of parametric control functions (controllers) are identified for each
emission/distribution/generation system, following guidelines available in international standards.
Next, given (weather, occupancy, etc.) forecasts for a predefined time window, say three days, a
surrogate-based stochastic optimization algorithm is used to create candidate controller parameters
to be applied to the building, and a detailed thermal simulation model is used to evaluate these can-
didate solutions. The evaluation is performed on the basis of a defined cost function and a set of
(visual, thermal, air-quality, etc.) comfort constraints. The final, improved controllers are commu-
nicated to the building-side and are applied to the building.

An important aspect investigated in this thesis, which is also evident on the experimental results,
is the topic of (thermal) comfort-based control. A discussion on energy efficiency seems untimely
when discussed without any reference to comfort as there is a clear trade-off between comfort and
energy. Having methods that allow the automated selection of building operation to desired levels of
comfort is both desirable and can have significant implications. On the other hand, in existing state
of the art, comfort is often synonymous to the temperature in the building zones being maintained
within certain (prescribed) limits. As we investigate in the thesis this assumption while true in cer-
tain cases, in many cases is not sufficient to ensure actual comfort for the building occupants, with
detrimental effects to health and productivity (when office buildings are considered). In the pro-
posed approach, we define comfort based on ISO 7730, which supports the definition and use of the
Fanger index which captures, among other parameters, the influence of air and radiant temperatures
along with humidity.

The developed framework has been evaluated on a set of experiments conducted under both sim-
ulated and real conditions. These experiments indicate that the designed controllers can lead to
improved building operation, with the efficiency of the methodology depending on the accuracy
of the simulation model, the complexity of the controller functions and the quality of the initial
controller to be optimized.

Apart from results illustrating the performance of the proposed methodology, the real-building ex-
periments conducted helped to shape a clear view on the properties and best application practices
of model-based control algorithms in buildings. The main conclusion is that there has to be a clear
separation between low-level and supervisory-level control. The best strategy is to determine the
supervisory control strategy to be applied in the building and then re-visit the low-level controllers
and perform targeted adjustments in order to support the higher-level logic. Attempting to optimize
all low-level (e.g. PID gains of valves) and supervisory-level (e.g. operation schedules) control
parameters at the same time, can lead to sub-optimal control strategies or even to safety problems
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of the building sub-systems.

Regarding supervisory-level control, open-loop controllers (e.g. controllers that generate actions
based on the time of day) often fail to capture the effect of very important features (like the solar
radiation in a specific day or the actual in-building thermal conditions) and thus can lead to energy-
or comfort-related problems, such as overheating. Closed-loop control schemes on the other hand,
that utilize sensor feedback, can account for most of the influencing factors/disturbances affecting
the building (like weather conditions) and adjust the operation of the controllable elements of the
building in order to compensate for their effect.

A counter-intuitive conclusion from the model-based control design process applied in ZUB build-
ing is that frequent dynamic updating of the control strategies may not be a critical aspect of an
efficient BMS. Especially for buildings with slow dynamics, what is important for the control algo-
rithm is to identify a set of dominant features (such as the solar radiation in the case of ZUB) and
adjust the parameters of all building controllers properly. This can lead to a scheme where a specific
controller selected from a set of pre-defined control parameters is loaded to the BMS every day.
The selection can be based on measured exogenous (e.g. daily weather predictions) and in-building
(e.g. estimation of the thermal loading of the building) features. This claim is also supported by the
resulting control strategy generated by the model-based control design process in ZUB (and can also
be generalized for most buildings with good construction and equipped with HVAC systems with
high time-constant). This strategy, in essence, attempts to discover an optimal pre-heating schedule
for the entire building. This makes sense, since any change in the control actions (e.g. changing
the heating setpoint of an office) has no effect in the indoor climate conditions of the offices in real
time, due to the time-delay of the actuating system (TABS). Thus, the best strategy is to pre-heat
the building to ensure comfortable interiors early in the morning, but stop heating in time to avoid
over-heating in the afternoon.

The analysis on the control properties of the previous paragraph is also a valid argument on why
we did not utilize weather predictions as inputs to the controllers designed in our experiments,
but used historical data instead. First of all, the use of accurate weather predictions is critical
only in the control of slow-reacting buildings (like ZUB), where accurate predictions on e.g. solar
radiation can help to determine the optimal pre-heating schedule of the building. In addition, we
have verified during the deployment that the quality of the weather predictions can be very low,
thus the estimation of the micro-climate in the area of each study building is a strong pre-requisite
towards utilizing weather predictions in the control strategy. Finally, another reason is the desire to
have future collaboration with building automation solutions providers and encapsulate the designed
control parameters in embedded hardware controllers. In this case, there are only few product lines
by specific companies with the ability to provide access to external weather forecast services.

Another important aspect of the deployment analysis, is that we have verified the suggestions pro-
vided in EN 15232 and ISO 16484 regarding BAC functionalities. Here, indeed controlling all
layers of the building systems (generation/distribution/emission) in a coordinated manner can lead
to improved building performance compared to control solutions restricted to specific building sub-
systems. In addition, higher flexibility and richer collection of controllable elements can lead to
more efficient control strategies. The latter has been evident in the case of ZUB, where there was
only one setpoint applied to the entire building, preventing us from controlling the offices of the first
and second floors independently.

Due to the trade-off between energy consumption and thermal comfort, it is crucial to be able to
represent (or predict) thermal sensation of the building’s occupants under different HVAC operation
strategies — from all available comfort preserving strategies the one that requires the least amount
of energy should be preferred. This suggests that the ability to calculate comfort indices such as
Fanger, or even the ability to build personalized comfort models for the building occupants (Baker
and Hoyt, 2016; Daum et al., 2011; Ghahramani et al., 2014, 2015; Lee et al., 2017; Malavazos
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et al., 2014; Romero et al., 2016) should be features of an intelligent BACS.

In addition, the entire deployment and assessment phases of the BAC functionalities have high-
lighted the significance of TBM functionalities. Fault Detection analytics are crucial for the proper
operation of the building, as well as for exploiting the full potential of any advanced control algo-
rithms, since there is no benefit from controlling in an intelligent manner a malfunctioning system.

Finally, an important outcome of this thesis was the realization that an MPC-like controller is not
the most viable option for all types of building. A clear example here is the TUC building, heated
or cooled by the AC units in each office. In this case, the dynamics of the system are fast, while the
construction properties of the building (lightweight building with small insulation and high infiltra-
tion) do not allow for intelligent demand-shaping strategies, such as pre-cooling. To add to this, the
nature of the HVAC system (AC units) allows the users to override the designed control strategy
easily, making the actions of the occupants a critical factor affecting the successful application of
an intelligent BACS. In such cases, the cost of developing a simulation model and applying a so-
phisticated model-based solution cannot be justified. Instead, a collection of TBM functionalities
preventing energy-prone user actions (e.g. like switching off the AC unit in an office if a door or a
window of the respective office is open) can provide tangible benefits in the energy consumption,
with much less development and deployment costs.

In terms of future plans, potential simplifications of the proposed methodology can be investigated.
Here, one approach is to initiate a control design process in larger time intervals (e.g. once per day
or per week), especially for buildings with high thermal mass and for periods with similar weather
conditions for several days (e.g. summers in Crete). Moreover, the outcome of simulation-based
control design evaluations (e.g. designing one controller for each day of the year using a meteonorm
weather file) could be utilized to avoid designing the controllers online.

Finally, in cases where a simulation model does not exist, it might still be possible to derive em-
pirical approaches that can lead to improved operational efficiencies. These data-driven approaches
have weaker requirements in terms of data and preparatory work, but can not achieve the full per-
formance potential.
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