
Virtual Reality Multitracking
Interaction with 3D Characters for
Immersive Training Applications

Salva Kirakosian

A thesis presented for the degree of
Diploma of Science in Electrical and Computer

Engineering

School of E.C.E.
Technical University of Crete

Greece
29.09.2017

Virtual Reality Multitracking Interaction with 3D

Characters for Immersive Training Applications

Salva Kirakosian

Abstract

This thesis implements a Virtual Reality (VR) Multitracking interaction with 3D
Characters resulting in an Immersive dance training application using the Occulus
Rift HMD system and the Leap Motion hand tracking Controller. The player, who is
placed in the main scene, is trained by the 3D white light scanned human character
in a virtual environment which is designed and developed in Unity3D. Realistic
animations were applied to the character using a complex Inverse Kinematics (IK)
system applied to the rigged 3D Human Model. Characters are rigged with custom
skeletons using 3D geometrical bones and IK solvers. Motion Capture data were re-
targetted so that animations of the 3D character are produced. The Motion Capture
data, derived from the tracking device Kinect v2, were applied to the rigged 3D
model to create realistic dance animations. Rendering optimization techniques such
as Baked GI, were applied in the scene to reduce the GPU rendering load and to
increase the frame rate per second (FPS) of the VR Application.

The project features a tutorial guide process, so that the users familiarize them-
selves with the user interface (UI) being prepared for their VR dance training.
During this process, the users are allowed to modify the sound volume and restart
the training through the Settings UI panel. The 3D character is standing just below
the UI tutorial guide in front of the users guiding them in relation to the training
functionality. This procedure allows the users to practice their actions by interacting
with UI panels using gestures such as thumb and waving hands, combining touches
and pinch actions. Users with VR experience can skip this pre-training procedure
and continue with the main Dance Tutorial, where they can select from the main UI
tutorial panel, one out of three basic options. The training process starts with the
first option named ”Basic Steps” of the Salsa Latin dance which includes the ”Basic
A”, the ”Side Steps” and the ”Right Turn” dance routine. By selecting the ”In-
teraction” option, the users can practice dance by leading the 3D model to execute
the ”Side Steps” and the ”Turn” animation. Finally, the users can select the last
”Dance” option, where they can improvise and dance, leading the 3D character to
basic ”Side Steps” and ”Turn” while they execute the basic steps they have learned,
during the first option.

2

Acknowledgements

It is never late to make changes in our life, changes that make us realize the pleasure
of living. We have to believe in ourselves that we can make from nothing everything.
Give love to them that surround us, be honest, do not create fear in our mind for
every backward step we make, move on when we are ready. Thanks to all friends
that was next to me during my stay in Chania. For all the people that made my life
in this city be like a holiday. Especially to Christos Birakis and Katerina Mania,
Emmanuel Maravelakis and his Lab for the White Light scanning procedure and
Jose Alberto Rodriguez a famous Latin dancer and instructor for being a 3D model
in our project.

Thanks to my family that believe in me and never loose their faith.

I love you mama

3

Contents

1 Introduction 6

1.1 Scope . 6

1.2 Thesis Outline . 7

2 Background 9

2.1 The Reality-Virtuality Continuum . 9

2.2 Virtual Reality . 11

2.2.1 VR Immersion . 11

2.2.2 Frame Rate . 12

2.3 Head Mounted Displays (HMDs) . 13

2.3.1 History of HMDs . 13

2.3.2 Virtual Reality in the 21st century. 16

2.4 Motion Capture . 18

2.4.1 Methods and Systems . 19

2.4.2 Hand Tracking . 20

2.5 3D Computer Graphics . 21

2.5.1 3D Rendering . 21

2.5.2 Global Illumination (GI) . 22

2.6 Game Engines . 23

2.7 Character Animation . 26

2.8 Latin Dance . 27

2.8.1 Introduction . 27

2.8.2 Salsa Styles . 28

2.8.3 Rythm . 28

3 Cross platform Game Engine Software 30

3.1 Unity Game Engine . 30

3.1.1 Hierarchy . 30

3.1.2 Project . 31

3.1.3 Console . 32

3.1.4 Scene . 33

3.1.5 Game . 33

3.1.6 Inspector . 33

3.1.7 Project structure in Unity3D 33

3.1.8 Navigation and Pathfinding 35

3.1.9 Scripting . 36

3.2 3D Modeling and Animating . 38

4

4 User View 40
4.1 Game Play . 40

4.1.1 Main Scene . 40
4.1.2 Gestures . 41
4.1.3 Tutorial UI . 42
4.1.4 Switch Character . 43
4.1.5 Settings UI . 44

4.2 3D Virtual Scene . 44
4.2.1 Character Modeling . 45

4.2.1.1 White light Scanning 46
4.2.2 Environment modeling . 48

5 Implementation 50
5.1 UI implementation . 50
5.2 Animation . 52

5.2.1 Character Animation . 52
5.2.1.1 Motion Capture . 53

5.2.2 Ui Animation . 55
5.3 Controllers . 56

5.3.1 3D Character Animation Controller 57
5.3.2 UI Animation Controller . 59
5.3.3 Script Handling . 60

5.4 Interaction . 61
5.4.1 Gestures . 61
5.4.2 Hand Model . 61
5.4.3 Gesture Logic . 62

5.5 Inverse Kinematics (IK) . 63
5.5.1 Implementation . 63

5.6 AI Navigation . 65
5.7 Audio . 66
5.8 Optimization . 67

6 Evaluation 69
6.1 Evaluation method . 69

6.1.1 Procedure . 73
6.2 Evaluation Goals & Result . 74
6.3 Conclusion of Evaluation . 76

7 Conclusion 78
7.1 Main Contributions . 78
7.2 Future Work . 78

7.2.1 Recommendations for Developers 79

5

Chapter 1

Introduction

1.1 Scope

The world is acknowledging and accepting the concept of Virtual Reality for fun
but also for training. Imagine attending lectures in a amphitheater at the Technical
University of Crete sitting in your room, or watching the game of your favorite sport
from the VIP section from your home. All this is now possible and achievable with
Virtual Reality (VR). For those who thought VR was only confined to gaming, it
is already being applied to innovative and brilliant training applications such as
in Medical Science, Science and Nuclear Reality, Military, Entertainment, Fashion,
Business and Marketing, Journalism, Real Estate and Architecture, Sports, Public
Speaking and Investigating Crime Scenes, to name a few.

Nowadays, the proliferation of social media and the frequent use of mobile devices
have affected the socialization of people. People can not be easily in contact with
other people that they don’t know or even dance with them. For this reason, the
presented VR application offers a chance to the user to learn dancing routines in a
simulated world, and subsequently be able to make a first step towards socializing in
a real world dance community. The goal of this project was to create an immersive
interactive training application offering dance tutorials so that users learn basic steps
of the Salsa Latin dance. All of the above will be explained in greater detail in the
following chapters.

This thesis implements a Virtual Reality (VR) Multitracking interaction with 3D
Characters resulting in an Immersive dance training application using the Occulus
Rift HMD system and the Leap Motion hand tracking Controller. The player, who is
placed in the main scene, is trained by the 3D white light scanned human character
in a virtual environment which is designed and developed in Unity3D. Realistic
animations were applied to the character using a complex Inverse Kinematics (IK)
system applied to the rigged 3D Human Model. Characters are rigged with custom
skeletons using 3D geometrical bones and IK solvers. Motion Capture data were re-
targetted so that animations of the 3D character are produced. The Motion Capture
data, derived from the tracking device Kinect v2, were applied to the rigged 3D
model to create realistic dance animations. Rendering optimization techniques such
as Baked GI, were applied in the scene to reduce the GPU rendering load and to
increase the FSP of the VR Application.

The project features a tutorial guide process, so that the users familiarize them-
selves with the user interface (UI) being prepared for their VR dance training.

6

During this process, the users are allowed to modify the sound volume and restart
the training through the Settings UI panel. The 3D character is standing just below
the UI tutorial guide in front of the users guiding them in relation to the training
functionality. This procedure allows the users to practice their actions by interacting
with UI panels using gestures such as thumb and waving hands, combining touches
and pinch actions. Users with VR experience can skip this pre-training procedure
and continue with the main Dance Tutorial, where they can select from the main UI
tutorial panel, one out of three basic options. The training process starts with the
first option named ”Basic Steps” of the Salsa Latin dance which includes the ”Basic
A”, the ”Side Steps” and the ”Right Turn” dance routine. By selecting the ”In-
teraction” option, the users can practice dance by leading the 3D model to execute
the ”Side Steps” and the ”Turn” animation. Finally, the users can select the last
”Dance” option, where they can improvise and dance, leading the 3D character to
basic ”Side Steps” and ”Turn” while they execute the basic steps they have learned,
during the first option.

1.2 Thesis Outline

This thesis is divided into seven main chapters based on their content. The first
chapter is an introduction to the thesis. The following chapter contains general
background information and knowledge, to help the reader understand the subject
of this thesis. A detailed description of the development of the project follows,
along with a description on how the different parts of the application, were put
together. The final chapter explains how the system was evaluated based on users’
feedback. Our conclusions and suggested future work are included in the end of
the last chapter. The structure of the thesis, is explained in greater detail, in the
following paragraphs.

Chapter 2 – Background: This chapter acts as a prologue, to explain the
fundamental principles of Virtual Reality (VR). It defines the term and the back-
ground of Virtual Reality, i.e. what exactly VR is and how people experience it.
Afterwards, a background analysis of Head Mounted Display (HMD) technology is
presented, followed by a description of existing HMDs in 2017 and their most impor-
tant features are explained. We, then, present the most common Motion Capture
techniques and Game Engines as well as 3D modeling and animation methodologies.
At the end, we introduce general info about the Salsa music and dance.

Chapter 3 – Cross platform Game Engine Software: The third chapter
presents the software platforms employed for the development of the dance training
application. A detailed description of the utilized platform Unity 3D is provided
including its most important components, focusing on programming geometry be-
haviors, UIs and integration of multiple hardware components. A brief description
of two industry-standard 3D modeling software, e.g., 3Ds Max and Motion builder,
is offered used for editing and creating the 3D models required for our project.

Chapter 4 – User View: In this section, a detailed description of the dance
training is offered. Initially, a description of the pre-tutorial process is analyzed,
where users adapt to the VR environment and the interaction with the UI panels.
The main tutorial comes next where users can select from the Main UI tutorial panel
one out of three basic options, starting with the first option ”Basic Steps” of the
Salsa Latin dance which includes the ”Basic A”, the ”Side Steps” and the ”Right

7

Turn”. By selecting the next ”Interaction” option, the users can practice dance by
leading the 3D model to execute the ”Side Steps” and the ”Turn” animation. Finally,
the last ”Dance” option is described, where they can improvise and dance, leading
the 3D character to basic ”Side Steps” and ”Turn” while they execute the basic
steps, during the first option. At the end of this section, we describe the design and
implementation of the 3D Virtual Scene and the minimum PC requirements needed
for the best VR experience.

Chapter 5 – Implementation: In this section, a detailed description of the
UI implementation and environmental modeling is put forward. In this section,
the implementation of the main 3D Scene and tutorials are explained. Next, the
development of the animations is analyzed as well as how the interaction with the
UI is handled. A detailed description follows related to the gestures that are used
in this project for intuitive interaction, which are the ”Thumb Up” and ”Waving
hand” gestures. Next, it is shown how the interaction between the user and the
training application itself, is achieved. The realistic dance animations of the 3D
humanoid character are also explained, which are implemented based on motion
capture applying In-versed Kinematics to the rigged 3D model. Finally, a description
of the Artificial Intelligence (AI) navigation offered in order for the 3D Character
to follow the user, is included.

Chapter 6 - Evaluation: In this chapter, a description of the procedure that is
used to explore the users’ level of immersion or presence as well as potential motion
sickness symptoms, is described. Users complete standard questionnaires after the
VR training experience has occurred. Users also offer feedback in relation to their
overall impression after using the dance training application signifying perceptual as
well as usability issues. Finally, the results of the evaluation process are presented
at the end of this section.

Chapter 7 – Conclusions & Future Work: This chapter contains the main
conclusions, as well as hints about potential future work that could possibly extend
this thesis. Finally, certain technological suggestions and feedback of best practice
are communicated to future VR developers.

8

Chapter 2

Background

This chapter aims to offer to the reader background knowledge relevant to this
thesis. A definition of Virtual Reality (VR) is provided. A brief history of Head
Mounted Displays (HMD) follows from 1930 till today. HMDs at the present time
are described in order to show how much they evolved since the previously available
devices a few years ago. Game Engines which provide the software framework for
the creation and development of 3D interactive applications, are also discussed in
this chapter. Furthermore, the reason why the modeling and animation are such
important elements of Virtual Reality experiences, is described in detail.

2.1 The Reality-Virtuality Continuum

There is a fair amount of confusion about the differences between Augmented Reality
(AR) and Virtual Reality (VR). In news reports and in the blogosphere, these terms
are not always used distinctly. A conceptual framework established more than 35
years ago may be useful to establish clarity [1],[2].

In the early 1990s, researchers Paul Milgram, Haruo Takemura, Akira Utsumi,
and Fumio Kishino introduced a concept called the Reality-Virtuality (RV) con-
tinuum (Milgram, 1994). While the researchers originally designed the Reality-
Virtuality continuum to address mixed reality and the display technologies of the
era, the original framework is still quite useful. They defined mixed reality en-
vironments as those in which “real world and virtual world objects are presented
together. . . ”. Their definition of mixed reality served as an umbrella term that
encompassed both Virtual and Augmented Reality technologies.

The term ‘mixed reality’ has since largely fallen out of use. Since the companies
in this space have staked their branding and functional identities in one medium or
the other, there has been little reason to use the term.

9

Figure 2.1: The Reality-Virtuality Continuum

According to Milgram et al., there are many variations of technology-altered
forms of reality beyond the four listed in Figure (2.1).

They chose, however, to highlight four prominent versions in what they called
their “simplified representation of a[n] RV Continuum”.

Differences Between Augmented Reality and Virtual Reality

• First, there is unadorned, unaltered reality with a capital R. A real envi-
ronment is “any environment consisting solely of real objects, and includes
whatever might be observed when viewing a real-world scene either directly
in person, or through. . . some sort of video display.” Note that simply viewing
a real environment through digital means, such as through a phone, tablet or
computer does not make it virtual.

• Second, there is Augmented Reality which consists of a primarily real envi-
ronment with digital and virtual data, images and objects superimposed or
layered upon the real world. An example of Augmented Reality companies
would be Magic Leap and Blippar.

• Third, there is also Augmented Virtuality (a term not currently in use but
descriptive of the technologies on the horizon), which consists of spaces that
are primarily virtual with some real objects, images, and data introduced into
the virtual world. As an aside, if virtual objects are superimposed or layered
upon real environments as in the case of augmented reality, how should we
describe real objects introduced into primarily virtual environments as in the
case of Augmented Virtuality?

• Fourth, the Milgram definition of virtual environments/Virtual Reality in-
cludes both immersive virtual worlds as well as those that are only monitor-
based so long as the simulations consist “solely of virtual objects.” This defi-
nition is cumbersome and outdated because Virtual Reality environments can
now be launched through a variety of hardware technologies.

For the purpose of the current thesis, a Virtual Reality immersive application
was implemented, displayed on a modern HMD (the Oculus Rift) to simulate a 3D
dance training environment.

10

2.2 Virtual Reality

Virtual Reality (VR) has been notoriously difficult to define over the years. Many
people take ”virtual” to mean fake or unreal, and ”reality” to refer to the real world.
This results in an oxymoron. The actual definition of virtual, however, is ”to have
the effect of being such without actually being such”. The definition of ”reality” is
”the property of being real”, and one of the definitions of ”real” is ”to have concrete
existence”. Using these definitions ”Virtual Reality” means ”to have the effect of
concrete existence without actually having concrete existence”, which is exactly the
effect achieved in a good Virtual Reality system. There is no requirement that the
virtual environment match the real world. Inspired by these considerations, for the
virtual dance lessons simulator we adapt the following definition:

Virtual Reality is the use of computer technology to create the effect
of an interactive three-dimensional world in which the objects have a
sense of spatial presence.

In this definition, ”spatial presence” means that the objects in the environment
effectively have a location in three-dimensional space relative to and independent of
user’s position. It should be noted that this is an effect, not an illusion. The basic
idea is to present the correct cues to the user perceptual and cognitive system so that
his brain interprets those cues as objects ”out there” in the three-dimensional world.
These cues have been surprisingly simple to provide using computer graphics: simply
render a three-dimensional object (in stereo) from a point of view which matches
the positions of users’ eyes as they move about. If the objects in the environment
interact with the user then the effect of spatial presence is greatly heightened. The
immersive environment can be similar to the real world in order to create a lifelike
experience grounded in reality or sci-fi. Some applications the sense of immersion
is highly desirable. The main point of Virtual Reality, and the primary difference
between conventional three-dimensional computer graphics and Virtual Reality is
that in Virtual Reality the user is working with things as opposed to pictures of
things.

Virtual Reality is an artificial environment that is created with software and
presented to the user in such a way that the user suspends belief and accepts it as a
real environment. On a computer though, Virtual Reality is primarily experienced
through two of the five senses: sight and sound. Virtual Reality means creating
immersive, computer-generated environments that are so convincing users that they
will react the same way they would in real life. The idea is to block out the sensory
input from the outside and use the visual and auditory cues to make the virtual
world seem more real. While the concept is simple, actually building Virtual Reality
systems has proven difficult to do, until recently.

2.2.1 VR Immersion

Immersion is basically an unique experience that is connected with the world of
Virtual Reality. Over here the user whole exploring the three dimensional world of
Virtual Reality will simply immerse into this make believe world as the real world.
It is basically a feeling of involvement of the user in the virtual world intelligently

11

designed by experts.
They have the power to interact with this world. This unique combinations where

the user can immerse as well interact with the simulations is known as Telepresence.
This is devise by the famous computer scientist Jonathan Steuer. Thus the user
forgets about his real world scenario, forgets his present identity, situation and life
and is immersed in a world of imagination, adventure and exploration. He/She gets
more focused about this newly created identity inside the Virtual Reality world.
Immersion is made up of two main components as stated by Jonathan Steuer. They
are:

• Depth of Information

• Breadth of Information

While a user is using simulations and interaction between the user and the vir-
tual environment takes place then some amount of quality of data are received in
the signals. These information are termed as Depth of Information. Depth of infor-
mation can necessarily include anything and everything starting from the resolution
of the display unit, the graphics quality, the effectiveness of the audio and video etc.

Jonathan Steuer also defines breadth of information as a number of sensory
dimensions presented simultaneously. Any virtual environment can be designated as
having a wider breadth of information whenever it stimulates all the human senses.
The user should get fully focused onto the new identity and world he explores. The
audio and visual effects are the mostly researched area in creating a good virtual
environment. These are considered as the main factors that can stimulate user’s all
sensory organs. The sense of touch is been given more and more priority as it has
become the dominating factor to stimulate a human. Those systems that allow the
users to interact through touch are known as Baptic Systems.

It is also necessary from the users’ perspective to explore the life –sized virtual
environment fully and effectively. This will prove how effective is Immersion. The
perspectives also need to be changed seamlessly. Say for example there is a room in
the virtual environment and it contains a pedestal right in the middle of the room
then the pedestal should be visible to the user from any angle of the room. The
point of view will also move accordingly wherever the angle of the user is changing.
However Dr. Frederick Brooks, a legend in VR technology and theory comments
that displays must project a frame rate of at least 20 – 30 frames per second in order
to produce an efficient user experience. [3]

2.2.2 Frame Rate

Frame Rate, commonly measured and referred to as frames-per-second (FPS), is the
frequency at which a hardware device is able to draw or capture consecutive images
, called frames. The term is usually used when describing technical specifications
of film and video cameras, computer graphics and motion capture systems.It is also
a measure of performance of games and 3d applications. In video, film computer
graphics and even more in Virtual Reality, Frame Rate output is critical, as it decides
whether consecutive frames will be perceived by the brain as separate images or not,
thus giving the desired illusion of motion. Although the human visual system can
theoretically process 1000 different images a second, studies show that untrained
eyes can hardly tell any difference above 60fps or 100fps, depending on the display

12

device and usage. For example Virtual Reality devices usually require a higher
than usual fps rate to create the pleasant illusion of smooth motion.Finally, it is
essential to note that achieving high frame rates is usually not an easy task , as
it requires hardware with substantial processing power and thoughtful application
programming.

In our project we used a minimal polygonal design displaying a low polygon
environment, achieving a frame rate of more than 100 FSP in order to offer a super
realistic motion flow to the end user with a very low rate of lag while interacting
(dancing) with the 3D character.

2.3 Head Mounted Displays (HMDs)

Virtual Reality has beginnings that preceded the time that the concept was coined
and formalized. In this detailed history of Virtual Reality we look at how technology
has evolved and how key pioneers have paved the path for Virtual Reality as we know
it today.

2.3.1 History of HMDs

Early attempts at Virtual Reality

Panoramic paintings. If we focus more strictly on the scope of Virtual Reality
as a means of creating the illusion that we are present somewhere we are not, then
the earliest attempt at virtual reality is surely the 360-degree murals (or panoramic
paintings) from the nineteenth century. These paintings were intended to fill the
viewer’s entire field of vision, making them feel present at some historical event or
scene.

1838 - Stereoscopic photos & viewers. In 1838 Charles Wheatstone’s research
demonstrated that the brain processes the different two-dimensional images from
each eye into a single object of three dimensions. Viewing two side by side stereo-
scopic images or photos through a stereoscope gave the user a sense of depth and im-
mersion. The later development of the popular View-Master stereoscope (patented
1939), was used for “virtual tourism”. The design principles of the Stereoscope is
used today for the popular Google Cardboard and low budget VR Head Mounted
Displays for mobile phones.

13

Over time mankind has been slowly but surely creating ever richer ways to stimu-
late our senses. Things really began to take off in the 20th century, with advent of
electronics and computer technology.

1930s – Science fiction story predicted VR. In the 1930s a story by science
fiction writer Stanley G. Weinbaum (Pygmalion’s Spectacles) contains the idea of a
pair of goggles that let the wearer experience a fictional world through holographics,
smell, taste and touch. In hindsight the experience Weinbaum describes for those
wearing the goggles are uncannily like the modern and emerging experience of Vir-
tual Reality, making him a true visionary of the field.

14

1968 – Sword of Damocles. In 1968 Ivan Sutherland and his student Bob
Sproull created the first VR / AR Head Mounted Display (Sword of Damocles) that
was connected to a computer and not a camera. It was a large and scary looking
contraption that was too heavy for any user to comfortably wear and was suspended
from the ceiling (hence its name). The user would also need to be strapped into the
device. The computer generated graphics were very primitive wireframe rooms and
objects.

1993 – SEGA announce new VR glasses. Sega announced the Sega VR head-
set for the Sega Genesis console in 1993 at the Consumer Electronics Show in 1993.

15

The wrap-around prototype glasses had head tracking, stereo sound and LCD screens
in the visor. Sega fully intended to release the product at a price point of about
200atthetime, orabout322 in 2015 money. However, technical development difficul-
ties meant that the device would forever remain in the prototype phase despite
having developed 4 games for this product. This was a huge flop for Sega.

1999 – The Matrix. In 1999 the Wachowski siblings’ film The Matrix hits the-
atres. The film features characters that are living in a fully simulated world, with
many completely unaware that they do not live in the real world. Although some
previous films had dabbled in depicting Virtual Reality, such as Tron in 1982 and
Lawnmower Man in 1992, The Matrix has a major cultural impact and brought the
topic of simulated reality into the mainstream.

2.3.2 Virtual Reality in the 21st century.

The first fifteen years of the 21st century has seen major, rapid advancement in the
development of Virtual Reality. Computer technology, especially small and powerful
mobile technologies, have exploded while prices are constantly driven down. The
rise of smart-phones with high-density displays and 3D graphics capabilities has
enabled a generation of lightweight and practical Virtual Reality devices. The video
game industry has continued to drive the development of consumer Virtual Reality
unabated. Depth sensing cameras sensor suites, motion controllers and natural
human interfaces are already a part of daily human computing tasks. Recently
companies like Google have released interim Virtual Reality products such as the
Google Cardboard in Figure (2.2a), a DIY headset that uses a smartphone to drive
it. Companies like Samsung have taken this concept further with products such as
the Galaxy Gear, which is mass produced and contains “smart” features such as
gesture control.

Developer versions of final consumer products have also been available for a few
years, so there has been a steady stream of software projects creating content for
the immanent market entrance of modern Virtual Reality.

16

It seems clear that 2016 was a key year in the Virtual Reality industry. Multi-
ple consumer devices that seem to finally answer the unfulfilled promises made by
Virtual Reality in the 1990s are already available to market since that time. These
include the pioneering Oculus Rift (Figure 2.2b), which was purchased by social
media giant Facebook in 2014 for the staggering sum of $2BN. An incredible vote of
confidence in where the industry is set to go. The Oculus Rift release in 2016 com-
petes with products from Valve corporation and HTC (Figure 2.2c), Microsoft as
well as Sony Computer Entertainment. These heavyweights are sure to be followed
by many other enterprises, should the market take off as expected.

Many current generation HMDs come with features such as positional-tracking,
head-tracking, hand-tracking and even eye-tracking. The more sophisticated the
HMD, the more of the above technologies are incorporated, providing users remark-
able simulation experiences.

In our project, we developed our application based on the Oculus Rift CV1,
which works perfectly with most industry standard game engines, especially with
Unity3D.

(a) Google cardboard (b) Oculus Rift (c) HTC Vive

Figure 2.2: VR Devices in 2017

Positional tracking. This technology allows the HMD and/or the computer to
have knowledge of real-time positioning of a user in real 3D space. This can be
very useful for certain applications or games, as someone could move in the virtual
world by simply walking or moving around in reality. This is achieved by constantly
measuring distance and angles between fitted sensors inside the HMD in respect
to one or more base stations located in a room. Then, mathematical calculations
translate the measurements to the exact position of the user in the room (Figure
2.3).

Our game makes use of the positional tracking in setting the transform of the
user in the virtual environment through his real-world movements.

Orientation tracking. Orientation tracking is one of the most important features
of an HMD. This is what allows the user to look-around a virtual world by simply
moving/tilting the head as we normally do in our lives, without the need of separate
controllers, thus giving the illusion of presence in the virtual environment. A head-
tracking system typically consists of components such as accelerometers, gyroscopes
and magnetometers,which are also used in nowadays smart-phones. An external
stationary sensor may also be used (see Figure 2.3).

17

Head tracking as well as positional tracking has been employed in the presented
dance training application. The movements and the rotation of the player’s head is
used to move and rotate the Camera in the VR 3D scene.

Figure 2.3: Position and Orientation Tracking

2.4 Motion Capture

The use of motion capture for computer character animation is relatively new, having
begun in the late 1970’s, and only now beginning to become widespread.

Motion capture is the recording of human body movement (or other movement)
for immediate or delayed analysis and playback. The information captured can be as
general as the simple position of the body in space or as complex as the deformations
of the face and muscle masses. Motion capture for computer character animation
involves the mapping of human motion onto the motion of a computer character.
The mapping can be direct, such as human arm motion controlling a character’s arm
motion, or indirect, such as human hand and finger patterns controlling a character’s
skin color or emotional state.

The idea of copying human motion for animated characters is, of course, not
new. To get convincing motion for the human characters in Snow White, Disney
studios traced animation over film footage of live actors playing out the scenes. This
method, called rotoscoping, has been successfully used for human characters ever
since. In the late 1970’s, when it began to be feasible to animate characters by
computer, animators adapted traditional techniques, including rotoscoping. At the
New York Institute of Technology Computer Graphics Lab, Rebecca Allen used a
half-silvered mirror to superimpose videotapes of real dancers onto the computer
screen to pose a computer generated dancer for Twyla Tharp’s ”The Catherine
Wheel.” The computer used these poses as keys for generating a smooth animation.
Rotoscoping is by no means an automatic process, and the complexity of human
motion required for ”The Catherine Wheel,” necessitated the setting of keys every
few frames. As such, rotoscoping can be thought of as a primitive form or precursor
to motion capture, where the motion is ”captured” painstakingly by hand. [4]

18

2.4.1 Methods and Systems

Motion tracking or motion capture started as a photogrammetric analysis tool in
biomechanics research in the 1970s and 1980s, and expanded into education, train-
ing, sports and recently computer animation for television, cinema, and video games
as the technology matured. Since the 20th century the performer has to wear mark-
ers near each joint to identify the motion by the positions or angles between the
markers. Acoustic, inertial, LED, magnetic or reflective markers, or combinations
of any of these, are tracked, optimally at least two times the frequency rate of the
desired motion. The resolution of the system is important in both the spatial resolu-
tion and temporal resolution as motion blur causes almost the same problems as low
resolution. Since the beginning of the 21st century and because of the rapid growth
of technology new methods were developed. Most modern systems can extract the
silhouette of the performer from the background. Afterwards all joint angles are
calculated by fitting in a mathematic model into the silhouette. For movements you
can’t see a change of the silhouette, there are hybrid Systems available who can
do both (marker and silhouette), but with less marker. A range of suits are now
available from various manufacturers and base prices range from $1,000 to $80,000
USD. [5]

(a) Kinect v1 (b) Kinect v2

Figure 2.4: Microsoft Kinect Devices

Optical Systems

Kinect (codenamed Project Natal during development) is a line of motion sens-
ing input devices by Microsoft for Xbox 360 (Figure 2.4a) and Xbox One (Figure
2.4b) video game consoles and Microsoft Windows PCs that uses Depth Sensor.
Based around a webcam-style add-on peripheral, it enables users to control and in-
teract with their console/computer without the need for a game controller, through
a natural user interface using gestures and spoken commands. [6]

19

Figure 2.5: Version2 and Version1 comparison

Depth sensor - An infrared projector and a monochrome CMOS (complimentary
metal-oxide semiconductor) sensor work together to ”see” the room in 3-D regardless
of the lighting conditions.

For the purpose of this thesis we started to use the Kinect V1 because of its
direct compatibility with the animation software we used to create and edit the
dance motions. After the upgrade we made to Kinect V2 we realized that there
was no way to import real-time tracking data from the device to the 3D animation
modeling software. The only way was to have a middle software such as the Kinect
animation studio created from Antonio Carlos Furtado which is freeware software
recording the raw data out of the Kinect V2 and store the motions we take separately.
After a record we take only then we import the animation to Editor software.

2.4.2 Hand Tracking

Hand-tracking describes the process of constantly capturing users’ hands and move-
ments in real 3D space. Although this technology is still making its first steps in
the Virtual Reality field, HMD manufacturers are beginning to adopt it, as it opens
up new horizons and opportunities for VR users and developers. It is very obvious
that being able to interact with a virtual environment by simply using your hands
will bring the realism and interactivity of Virtual Reality to a whole new level. It
usually works by allowing the user to see a 3D computer generated replica of his
hands in the virtual world, according to their current position and rotation in real
3D space. For example, a user could point his (real) finger to touch a virtual button,
thrust his hand forward to punch a virtual enemy or make a gesture to trigger an
event.

There is two different way we cant have a hand-tracking movements:

• The first technique requires the user constantly hold special controllers
with his hands, which act as positional-tracking devices for each individual
hand. A similar process to positional-tracking is followed by measurements
taken between the controllers and base stations in a room. Then, the position
of each hand can be calculated in relativity to the head and room and be
projected in the virtual world.

20

Figure 2.6: Vive and Oculus Touch controllers

• The second technique involves a design similar to eye-tracking which in-
cludes image capturing and image processing. One or more camera sensors
located on the HMD point towards the users hands , capturing their move-
ment in several frames per second. Then advanced mathematical and image
processing algorithms analyze each image/frame, producing a 3d representa-
tion of how the device sees the hands.

Figure 2.7: Leap Motion IR Controller

For this project, we selected the second technique using the Leap Motion device
as it can mount to the HMD, thus, allowing the users hands to be free for the dance
interaction. The Leap Motion device allow users to make realistic touch movements
while interacting with the UI and 3D character. Generally the Kinect and the
LeapMotion are both tracking devices. In the current project we needed to use both
tracking devices. The reason is that the Kinect has minimum tracking distance at
60cm so it was not possible to track finger movements accurately especially when
the user turns around and hands are not visible to tracking device. Because of the
Kinect’s size, it was not possible for it to be mounted the HMD. For this reason, the
Leap Motion was mounted onto the HMD so that tracking data are independent of
the orientation and position of the user thanks to the tiny size of this device.

2.5 3D Computer Graphics

2.5.1 3D Rendering

Converting information about 3D objects into a graphics image that can be dis-
played is known as rendering. It usually requires considerable memory and pro-
cessing power. It is the process of adding realism to computer graphics by adding
three-dimensional qualities such as light, shadows and variations in color and shade.
This process is usually performed using 3D computer graphics software. There are

21

many rendering methods that have been developed, each one appropriate for specific
applications. There is the non photo-realistic rendering, which gives the effect of
painting, drawing or cartoons, and the rendering methods aiming to achieve high
photo-realism. Another categorization is suitability for real time rendering and non
real time rendering. Non real time rendering is implemented in non interactive media
such as films and video. In this case, the rendering process can take huge amounts
of time. That is because non real time rendering has the advantage of very high
quality even with limited processing power due to the absence of real time response,
which makes the time for the rendering process not considerable. A method suitable
for non real time rendering is ray tracing, which simulates the path of a single light
ray as it would be absorbed or reflected by various objects in the scene. Real time
rendering is implemented in interactive media such as games and simulations. The
calculations and the display are happening in real time. The primary goal is to
achieve an as high as possible degree of photo-realism at an acceptable rendering
speed. This is 24 frames per second, as that is the minimum the human eye needs
to see to successfully create the illusion of movement.

2.5.2 Global Illumination (GI)

Global illumination (shortened as GI) or indirect illumination is a general name for
a group of algorithms used in 3D computer graphics that are meant to add more
realistic lighting to 3D scenes. Such algorithms take into account not only the light
which comes directly from a light source (direct illumination), but also subsequent
cases in which light rays from the same source are reflected by other surfaces in the
scene, whether reflective or not (indirect illumination).

Figure 2.8: Global Illumination effect

Images rendered using global illumination algorithms often appear more photo-
realistic than images rendered using only direct illumination algorithms. However,
such images are computationally more expensive and consequently much slower to
generate. One common approach is to compute the global illumination of a scene and

22

store that information with the geometry, e.g., radiosity. That stored data can then
be used to generate images from different viewpoints for generating walkthroughs
of a scene without having to go through expensive lighting calculations repeatedly.

Radiosity, ray tracing, beam tracing, cone tracing, path tracing, Metropolis light
transport, ambient occlusion, photon mapping, and image based lighting are exam-
ples of algorithms used in global illumination, some of which may be used together
to yield results that are not fast, but accurate. These algorithms model diffuse
inter-reflection which is a very important part of global illumination; however most
of these (excluding radiosity) also model specular reflection, which makes them more
accurate algorithms to solve the lighting equation and provide a more realistically
illuminated scene, see Figure (2.8).

In our project we applied Global Illumination on the decoration boxes appearing
in the 3D environment. We applied baked lights for optimization so that we improve
the FPS of the game play.

2.6 Game Engines

Unity 3D
Unity programming environments supports both 2D and

3D app development, which is quite unusual for a game en-
gine. That said, Unity was really designed for 3D games with
2D support bolted on afterwards; the 2D features were ini-
tially just for building menus and other 2D screens needed
in a 3D game, to avoid the need for an external tool. The
features were quite generic and developers started building
games with them; probably due to the broad cross-platform support. To their
credit, Unity has supported this and continue to invest in the area.

Three development languages are officially supported: C#, UnityScript (basi-
cally JavaScript with type annotations) and Boo. The last of these, Boo is not
widely used and probably best avoided. The Unity’s development kit community
has widely adopted C# and the majority of plugins and examples use it. If anyone
prefers JavaScript and only has a very simple project in mind then UnityScript is
a good option. After starting using plugins written in C# that potentially need to
call back into UnityScript code, issues will probably come up with compilation order.

Additionally, Unity has a lot of great futures such as:

• Strong community of asset and plugin creators – there are a lot of free and
reasonable priced content available.

• Visual editing tools are excellent and the editor can be extended with plugins.

• It supports a wide range of asset formats and converts automatically to optimal
formats for the target platform.

• It supports a very wide range of platforms: mobile, desktop, web and console.

• Deployment to multiple platforms is very easy to manage.

23

• The 3D engine produces high quality results without any complex configura-
tion.

• There is a free license that covers the majority of features.

• Paid licenses are very affordable for most professional developers, available on
subscription for $75 per platform currently (some platforms are free).

On the other hand, there are some consequences, such as:

• Collaboration is difficult. Unity has an expensive asset server product to
help teams collaborate. If somebody does not use it, sharing code and assets
between team members can be painful. The best option is to enable and
use external source control but there are several binary files that cannot be
merged and updating assets often causes them to break things in scenes, losing
connections to scripts and other objects.

• Performance is not great until very recently Unity ran almost entirely in a
single thread and made almost no use of the extra cores in most mobile devices
– this is improving in Unity 5. The compilers are not at all well optimized
for the ARM processors in almost all mobile devices – Unity have decided to
transpire to C++ and use LLVM to get a more optimized build rather than
solve this problem directly in future releases.

• The engine source code is not available. Even paying users do not get to see
the Unity source code, which means if users come across a bug in the engine
they have to wait for them to fix it or work around it. It is always going to be
more critical for users than it is for them. This also limits the ways in which
user can extend or customize the engine.

Unreal Engine

Unreal is one of the most popular game engines to develop
high-end triple-A titles for years now. Gears of War, Batman:
Arkham Asylum, Mass Effect, and many other blockbuster
games were developed with this engine. Below are its pros
and cons.

Some of the best features of Unreal Engine are:

• With so many developers using it, Unreal offers the largest community support.
Several lifetime hours of video tutorials and assets are available.

• Best support and update mechanism of all engines, with a new tool introduced
with each new update.

• There is widest range of easy to maneuver tools up under its sleeve. There are
few tools that can be maneuvered even by a school kid.

24

• Compatible with diverse operating platforms including iOS, Android, Linux,
Mac, Windows, and most game consoles.

• The new licensing terms of $19 a month and a 5 percent royalty only if user’s
game makes over $5,000 make Unreal Engine 4 much more competitive than
it had been in the past.

On the contrary, there are some developers who complain a lot about the un-
friendly tools that involve a bit of a higher learning curve.

CryEngine

This game engine has received praise for beautiful graph-
ics output. If somebody has a knack for pretty game visuals,
this can be the ideal game engine for him. But this powerful
game engine has its problems, too. Some of the pros are:

• CryEngine makes the game ambience pretty with its
artist-level programming capability in its Flowgraph
tool.

• It has the most powerful audio tool, Fmod, inside it, so
sound designers love this engine as well as programmers.

• The game engine also offers the easiest A.I. coding of
any tech on the market.

• For a beginning developer, UI scale form comes handy.

On the other hand, there are some cons too:

• The free version of the game engine lacks proper customer support.

• Being relatively new to the industry, the engine is yet to find a robust com-
munity.

• Learning curve is pretty challenging for a starter.

There are a lot of game engines that offer a plethora of features to users such
as: HeroEngine, Rage Engine, Project Anarchy, GameSalad, GameMaker: Studio,
App Game Kit, Cocos 2D and more, but these are not going to be presented in the
context of this thesis.

Unreal Engine and Unity are currently ahead of the competition as the two most
popular game engines available to the public. This is due to the fact that they both
succeed in providing high-end graphics, a large variety of usable tools, great support
for platforms and devices, without compromising usability and efficiency. It is im-
portant to note that these 2 Game Engines offer a large community support, which
is also something that has to be considered when choosing the right Game Engine.
CryEngine is also great and powerful engine with remarkable capabilities, however
its complicated structure and smaller community excluded it from our consideration.

In conclusion, taking into account the advantages and disadvantages of each en-
gine, Unity proved to be the ideal choice for this project, mainly due to its efficiency,
large community support and ease of use.

25

2.7 Character Animation

Animation in 3D applications usually happens in two primary ways (Keyframe
animation and Motion Capture). In major productions, both may be used.

Keyframe animation - Keyframe animation, or keyframing, is the most well-
known and oldest style of animation. In fact, there are examples of frame-by-
frame animation dating all the way back to 1600 B.C. Egypt! Modern keyframing
techniques date back to the early cartoons created by animation pioneers like Winsor
McCay and Walt Disney. What may surprise you is that keyframing techniques have
not changed much since the early 1900’s - most of the basic principles still apply
today. What has changed is that 3D software packages have made keyframing much
easier to accomplish, meaning a broader scope of artists can learn how to animate.

Keyframing is essentially changing the shape, position, spacing, or timing of an
object in successive frames, with major changes to the object being the key frames.
In traditional 2D animation, each frame is usually drawn by hand. When frames are
shown in succession, as in a movie, the slight differences in each frame of animation
create the illusion of motion. 3D software packages make keyframe animation easier
by interpolating, or ”tweening,” the in-between frames. When animating a falling
ball, for example, one key frame might be of the ball in mid-air, the next key frame
may be the ball touching the ground, and the key frame after that would be the
ball squishing down as the impact deforms its shape. All of the in-between frames
are then calculated by the software automatically, including the squish at the bot-
tom, making actual process of animation a matter of creating a few great key frames.

Motion Capture - Motion capture, or mocap, was first used sparingly due
to the limitations of the technology, but is seeing increased acceptance in every-
thing from video game animation to CG effects in movies as the technique matures.
Whereas keyframing is a precise, but slow animation method, motion capture offers
an immediacy not found in traditional animation techniques. Mocap subjects, usu-
ally actors, are placed in a special suit containing sensors that record the motion
of their limbs as they move. The data is then linked to the rig of a 3D character
and translated into animation by the 3D software such us (Autocad 3DSMax,
MotionBuilder, Maya).

There are a couple downsides to motion capture which make it difficult for be-
ginning 3D animators to learn. Firstly is the cost of mocap technology, which can
run several thousands or even tens of thousands of dollars whitch use markers (see
Figure 2.9a) while more cheaper technologies exist like capture artist motions with-
out markers using depth sensor cameras (see Figure 2.9b). This means that most
new 3D artists must learn to incorporate this animation style by importing mocap
data into a project from a commercially available mocap library.

26

(a) Marker based mocap (b) Marker less

Figure 2.9: Motion Capture of Character

The other downside to mocap is that the end-result is often far from perfect;
mocap animation usually requires clean-up from key-frame artists to make it look
more realistic, especially if the character being animated does not have an anatomy
or proportions similar to those of a human.

In this project, we used both techniques applying the key frame animations to
the UI components of the 3D environment and Motion Capture animations to cap-
ture human motions.

Inverse Kinematics

Most animation is produced by rotating the angles of joints in a skeleton to
predetermined values. The position of a child joint changes according to the rotation
of its parent and so the end point of a chain of joints can be determined from the
angles and relative positions of the individual joints it contains. This method of
posing a skeleton is known as Forward Kinematics (FK).

However, it is often useful to look at the task of posing joints from the opposite
point of view - given a chosen position in space, work backwards and find a valid way
of orienting the joints so that the end point lands at that position. This can be useful
when you want a character to touch an object at a point selected by the user or
plant its feet convincingly on an uneven surface. This approach is known as Inverse
Kinematics (IK) and is supported in Mecanim for any humanoid character with
a correctly configured Avatar.[7]

2.8 Latin Dance

2.8.1 Introduction

In many styles of salsa dancing, as a dancer shifts their weight by stepping, the
upper body remains level and nearly unaffected by the weight changes. Weight
shifts cause the hips to move. Arm and shoulder movements are also incorporated.
The Cuban Casino style of salsa dancing involves significant movement above the
waist, with up-and-down shoulder movements and shifting of the ribcage.

The arms are used by the ”lead” dancer to communicate or signal the ”follower,”
either in ”open” or ”closed” position. The open position requires the two dancers
to hold one or both hands, especially for moves that involve turns, putting arms

27

behind the back, or moving around each other, to name a few examples. In the
closed position, the leader puts the right hand on the follower’s back, while the
follower puts the left hand on the leader’s shoulder.

In the original Latin American form, the forward/backward motion of salsa is
done in diagonal or sideways with the 3-step weight change intact.

In some styles of salsa, such as the New York style, the dancers remain mostly
in front of one another (switching places), while in Latin American styles, such as
Cuban style, the dancers circle around each other, sometimes in 3 points. This
circular style is inspired by Cuban Son, specifically to the beat of son montuno in
the 1920s. However, as it is a popular music, it is open to improvisation and thus
it is continuously evolving. Modern salsa styles are associated and named to the
original geographic areas that developed them. There are often devotees of each
of these styles outside of their home territory. Characteristics that may identify a
style include: timing, basic steps, foot patterns, body movement, turns and figures,
attitude, dance influences and the way that partners hold each other. The point in
a musical bar music where a slightly larger step is taken (the break step) and the
direction the step moves can often be used to identify a style.

Incorporating other dance styling techniques into salsa dancing has become very
common, for both men and women: shimmies, leg work, arm work, body movement,
spins, body isolations, shoulder shimmies, rolls, even hand styling, acrobatics and
lifts.

Latin American styles originate from Puerto Rico, Cuba and surrounding Caribbean
islands.

2.8.2 Salsa Styles

Salsa’s roots are based on different genres such as Puerto Rican rhythms, Cuban
Son, specifically to the beat of Son Montuno in the 1920s. However, as it is a popular
music, it is open to improvisation and thus it is continuously evolving. New modern
salsa styles are associated and named to the original geographic areas that developed
them. There are often devotees of each of these styles outside of their home territory.
Characteristics that may identify a style include: timing, basic steps, foot patterns,
body rolls and movements, turns and figures, attitude, dance influences and the way
that partners hold each other. The point in a musical bar music where a slightly
larger step is taken (the break step) and the direction the step moves can often be
used to identify a style.

• Afro-Latino style

• Colombian / Cali style

• Cuban style / Casino

• Los Angeles style

• New York style (on2)

2.8.3 Rythm

For salsa, there are four types of clave rhythms, the 3-2 and 2-3 Son claves being
the most important, and the 3-2 and 2-3 Rumba claves. Most salsa music is played

28

with one of the Son claves, though a Rumba clave is occasionally used, especially
during Rumba sections of some songs. As an example of how a clave fits within the
8 beats of a salsa dance, the beats of the 2-3 Son clave are played on the counts of
2, 3, 5, the ”and” of 6, and 8.

There are other aspects outside of the Clave that help define salsa rhythm: the
cowbell, the Montuno rhythm and the Tumbao rhythm.

The cowbell rhythm emphasizes the ”on-beats” of salsa: 1, 3, 5 and 7 while
the conga rhythm emphasizes the ”off-beats” of the music: 2, 4, 6, and 8. Some
dancers like to use the strong sound of the cowbell to stay on the Salsa rhythm.
Alternatively, others like to use the conga rhythm to create a jazzier feel to their
dance since strong ”off-beats” are a jazz element.

Tumbao is the name of the rhythm that is played with the conga drums. It
sounds like: ”cu, cum.. pa... cu, cum... pa”. Its most basic pattern is played
on the beats 2, 3, 4, 6, 7 and 8. Tumbao rhythm is helpful for learning to dance
contra-tiempo (”On2”). The beats 2 and 6 are emphasized when dancing On2, and
the Tumbao rhythm heavily emphasizes those beats as well.

The Montuno rhythm is a rhythm that is often played with a piano. The Mon-
tuno rhythm loops over the 8 counts and is useful for finding the direction of the
music. By listening to the same rhythm, that loops back to the beginning after eight
counts, one can recognize which count is the first beat of the music.

The basic Salsa dance rhythm consists of taking three steps for every four beats
of music. The odd number of steps creates the inherent syncopation to the Salsa
dancing and ensures that it takes 8 beats of music to loop back to a new sequence of
steps. Different styles employ this syncopation differently. For ”On1” dancers this
rhythm is described as ”quick, quick, slow, quick, quick, slow.” For ”On2” dancers
this rhythm is ”quick, quick, quick, pause, quick, quick, quick, pause.” In all cases,
only three steps are taken in each 4-beat measure (or 6 total over 8 beats).[8]

29

Chapter 3

Cross platform Game Engine
Software

Since the system as well as the demo training VR application are built using the
Unity game engine, certain basic theory concepts about 3D graphics, utilized in
this thesis, must be presented. 3D computer graphics (in contrast to 2D computer
graphics) are graphics that utilize a three-dimensional representation of geometric
data that is stored in the computer for the purposes of performing calculations
and rendering 2D images. 3D computer graphics creation falls into three basic
phases. The process of forming a computer model of an object’s shape known as
3d modelling, the placement and movement of objects within a scene as well as
the computer calculations that, based on light placement, surface types, and other
qualities, generate the image. This image generating process is called the rendering
process.

3.1 Unity Game Engine

For the purposes of this project, the Unity game engine has been selected to provide
the development environment. Unity was selected because of its ease of use, the nu-
merous online guides/tutorial, the ability to create 2D graphics for user interfaces,
the familiar scripting language (C#), the Unity’s Asset Store, where it is easy to
find objects without having to create everything from scratch, the thriving and sup-
portive community and last but not least the ability to use the full range of Game
Engine tools and programming capabilities for free. The main components/windows
of Unity Game Engine see Figure 3.1: Hierarchy window, Project window, Console
window, Scene window, Game window, Inspector window,Toolbar, and most im-
portantly, Scripting mechanisms. A more detailed description of each component
follows.

3.1.1 Hierarchy

The Hierarchy window (see Figure 3.2 contains a list of every GameObject in the
current Scene. Some of these are direct instances of Asset files (like 3D models),
and others are instances of Prefabs, which are custom objects that make up most of
the game. As objects are added in and removed from the Scene, they appear and
disappear from the Hierarchy as well.

30

Figure 3.1: Main Layout of Unity Engine: 1.Scene, 2.Game, 3.Hierarchy, 4.Project,
5.Inspector, 6.Toolbar

By default, objects are listed in the Hierarchy window in the order they are
created. Re-ordering of objects can be done easily by dragging them up or down, or
by making them “child” or “parent” objects. For instance, in Figure 3.2 the Object
1 is the parent object and Object 2, Object 3 are children of it.

3.1.2 Project

In this window (see Figure 3.3), the user can access and manage the assets that
belong to his project. It consists of two panels. The left panel of the browser shows
the folder structure of the project as a hierarchical list. When a folder is selected
from the list by clicking, its contents will be shown in the panel to the right panel.
The user can click the small triangle to expand or collapse the folder, displaying any
nested folders it contains.

The individual assets are shown in the right panel as icons that indicate their
type (script, material, sub-folder, etc.). The icons can be re-sized using the slider at
the bottom of the panel; they will be replaced by a hierarchical list view if the slider
is moved to the extreme left. The space to the left of the slider shows the currently
selected item, including a full path to the item if a search is being performed.

Just above the panel is a “breadcrumb trail” that shows the path to the folder
currently being viewed. The separate elements of the trail can be clicked for easy
navigation around the folder hierarchy. When searching, this bar changes to show
the area being searched (the root Assets folder, the selected folder or the Asset
Store) along with a count of free and paid assets available in the store, separated by
a slash.

There is an option in the General section of Unity’s Preferences window to disable
the display of Asset Store hit counts if they are not required.

31

Figure 3.2: Hierarchy Window

Figure 3.3: Project Window

3.1.3 Console

The Console Window shows errors, warnings and other messages generated by Unity.
To aid with debugging, the user can also show his own messages in the Console
using the implemented functions of Unity (Debug.Log, Debug.LogWarning and De-
bug.LogError).

The toolbar of the console window has a number of options that affect how
messages are displayed. The Clear button removes any messages generated from
user’s code but retains compiler errors. The user can also arrange for the console
to be cleared automatically whenever he runs the game by enabling the Clear on
Play option. There is also the opportunity to change the way messages are shown
and updated in the console. The Collapse option shows only the first instance of an
error message that keeps recurring. This is very useful for runtime errors, such as
null references, that are sometimes generated identically on each frame update. The
Error Pause option will cause playback to be paused whenever Debug.LogError is
called from a script. Finally, there are two options for viewing additional information
about errors. The Open Player Log and Open Editor Log items on the console tab

32

menu access Unity’s log files which record details that may not be shown in the
console.

3.1.4 Scene

The Scene window (see Figure 3.1 1.Scene) is the interactive view into the world
that the user is creating. Scene View can be used to select and position scenery,
characters, cameras, lights, and all other types of Game Objects. Being able to
Select, manipulate and modify objects in the Scene View are some of the first skills
somebody will need to begin his first steps in Unity.

The Scene Gizmo is in the upper-right corner of the Scene View. This displays
the Scene View Camera’s current orientation, and allows the user to quickly modify
the viewing angle and projection mode.

In order to Move, Rotate, Scale, or Transform individual GameObjects, the user
can use the four Transform tools in the toolbar (see Figure 3.1 6.Toolbar). Each has
a corresponding Gizmo that appears around the selected GameObject in the Scene
view. To alter the Transform component of the GameObject, the user can use the
mouse to manipulate any Gizmo axis, or type values directly into the number fields
of the Transform component in the Inspector.

3.1.5 Game

The Game window (see Figure 3.1 2.Game) is rendered from the Camera in user’s
game. It is representative of the final, published game. It is required for the user
to use one or more Cameras to control what the player actually sees when they are
playing the game.

3.1.6 Inspector

Projects in the Unity Editor are made up of multiple GameObjects that contain
scripts, sounds, meshes, and other graphical elements such as lights. The Inspector
window (sometimes referred to as “the Inspector”) displays detailed information
about the currently selected GameObject (see Figure 3.1 5.Insperctor), including
all attached components and their properties, and allows the user to modify the
functionality of GameObjects in the Scene. The user can use the Inspector to
view and edit the properties and settings of almost everything in the Unity editor,
including physical game items such as GameObjects, assets, and materials, as well
as in-editor settings and preferences. When a GameObject is selected in either the
Hierarchy or Scene view, the Inspector shows the properties of all components and
materials of that GameObject. Actually, the Inspector can be used to edit the
settings of these components and materials.

3.1.7 Project structure in Unity3D

Unity is defined by its component based architecture. Its workflow builds around
the structure of components. Each component has its own specific job, and can
generally accomplish its task or purpose without the help of any outside sources.

Each game or application created in Unity is called a project. Each project
consists of one or more scenes. Scenes contain the objects of the game. They can

33

be used to create a main menu, individual levels, and anything else. Every scene is
considered as a unique level. In each scene, the user can position the 3D models,
construct the environment and essentially design most of the functionality. Every
object placed in a scene is considered a GameObject. GameObject sconsist of
one or more Components. Components are Unity’s fundamental elements, which
are used to define properties, behavior and characteristics of a GameObject. The
user can add a wide variety of components in a GameObject to achieve the desired
functionality. Some of the most commonly used components in Unity are presented
next:

• Transform Component. Every GameObject contains a Transform Compo-
nent. When creating a GameObject a transform component is added auto-
matically. It is impossible to create a GameObject without one or remove it.
The Transform Component is one of the most important and most frequently
accessed Component. It defines a GameObject’s position, rotation, and scale
in the game world based on the x,y,z coordinate system.These parameters are
initialized by hand and/or can modified in runtime by script to make objects
move, rotate and more. It is important to note that when scripting function-
ality such as movement, Unity considers the Z axis as forward/backwards, Y
axis as up/down and X axis as left/right.

• Mesh Component. Physics components allow the user to give objects real-
istic motion and reaction to collisions by simulating physics laws. Unity has
NVIDIA PhysX physics engine built-in. A physics engine is computer software
that provides an approximate simulation of physical systems. This allows for
unique realistic behavior and has many useful features. A rigidbody compo-
nent makes the object that is attached to be affected by gravity or linear and
angular forces and collide with other objects. There is also a variety of collider
components (mesh, box, sphere, wheel collider) which surround the shape of
an object for the purposes of detecting physical collisions. In this project, due
to its simulation nature, a physics component was attached on the Aircraft
GameObject.

• Rendering Component. These are the components that have to do with
rendering in-game and user interface elements, as well as lighting and spe-
cial effects. The camera component is essential as it is used to capture and
display the world to the player. It can be customized and manipulated to
fulfill the requirements of the users application. The GUI Texture and GUI
Text components are made especially for user interface elements, buttons, or
decorations as well as displaying text on screen. Another important rendering
component is the light component. It brings a sense of realism. Lights can be
used to illuminate the scenes and objects, to simulate the sun, flashlights, or
explosions just to name a few.

• Audio Component. These components are used to implement sound. The
most important component here, is the Audio Source component, which as
the name suggests, plays a sound file at the location of the GameObject it is
attached to. The developer can set parameters such as sound volume, pitch
and change the sound file to be played at any time. These parameters can also
be changed by script during run-time.

34

• Script Component. The script component is used to attach a script onto
a GameObject. Scripts are often attached to objects, to define their behav-
ior and trigger effects upon specified conditions. More about scripts in the
following section.

• Materials and Shaders. Materials and shaders are crucial components that
are categorized in the asset component group. There is a close relationship
between materials and shaders. Materials are used in conjunction with mesh
renderers and other rendering components used in Unity. They play an es-
sential part in defining how the object is displayed. The properties that a
materials inspector displays are determined by the shader that the material
uses. A shader is a specialized kind of graphical program that determines how
texture and lighting information are combined to generate the pixels of the
rendered object onscreen. In other words, it tells the graphics hardware how
to render surfaces.The user can select which shader each material will use.
Specifically, a material defines which texture and color to use for rendering,
whereas the shader defines the method to render an object.

3.1.8 Navigation and Pathfinding

Figure 3.4: Navigation Mesh Overview

35

The navigation system allows you to create characters that can intelligently move
around the game world, using navigation meshes that are created automatically from
your Scene geometry. Dynamic obstacles allow you to alter the navigation of the
characters at runtime, while off-mesh links let you build specific actions like opening
doors or jumping down from a ledge.

The Navigation System allows you to create characters which can navigate the
game world. It gives your characters the ability to understand that they need to
take stairs to reach second floor, or to jump to get over a ditch. The Unity NavMesh
system consists of the following pieces:

• NavMesh (short for Navigation Mesh) is a data structure which describes the
walkable surfaces of the game world and allows to find path from one walkable
location to another in the game world. The data structure is built, or baked,
automatically from your level geometry.

• NavMesh Agent component help you to create characters which avoid each
other while moving towards their goal. Agents reason about the game world
using the NavMesh and they know how to avoid each other as well as moving
obstacles.

• Off-Mesh Link component allows you to incorporate navigation shortcuts
which cannot be represented using a walkable surface. For example, jumping
over a ditch or a fence, or opening a door before walking through it, can be
all described as Off-mesh links.

• NavMesh Obstacle component allows you to describe moving obstacles the
agents should avoid while navigating the world. A barrel or a crate controlled
by the physics system is a good example of an obstacle. While the obstacle
is moving the agents do their best to avoid it, but once the obstacle becomes
stationary it will carve a hole in the navmesh so that the agents can change
their paths to steer around it, or if the stationary obstacle is blocking the path
way, the agents can find a different route.

3.1.9 Scripting

Scripting is an essential part of Unity as it defines the entire behavior of the game
or application. Even the simplest game needs a script to respond to user’s input.
Scripts can be used for several reasons such as: to create graphical effects, to control
physical behavior of objects or characters, to trigger effects upon specified conditions
or even implement a custom AI system for characters in the game.

The behavior of GameObjects is controlled by the Components that are attached
to them. Although Unity’s built-in Components can be very versatile, the program-
mer will soon find he needs to go beyond what they can provide to implement
custom game play features. Unity allows the user to create custom Components
using scripts. These trigger game events, modify Component properties over time
and respond to user input in any way he could probably want to.

Unity supports two programming languages natively, the C#, an object oriented
programming language similar to Java or C++ and the UnityScript, a language
designed specifically for use with Unity and modelled after JavaScript. The scripts
can be written and edited in MonoDevelop, which is an integrated development

36

environment (IDE) within Unity or in any other IDE like Visual Studio. An IDE
combines a text editor with additional features for debugging, auto-complete and
other project management tasks.

A script makes its connection with the internal workings of Unity by implement-
ing a class which derives from the built-in class called MonoBehavior. The reader
can think of a class as a kind of blueprint for creating a new Component type that
can be attached to GameObjects. Each time the programmer attaches a script
component to a GameObject, it creates a new instance of the object defined by
the blueprint. The name of the class is taken from the name that the programmer
supplied when the file was created. The class name and file name must be the same
to enable the script component to be attached to a GameObject.

Thus, components can be accessed or modified by script at any time to achieve
desired behavior and functionality. When a script is created, there are two functions
automatically declared in it, the Start() function and the Update() function. The
Update function is the right place to write code that will handle the frame update for
the GameObject. This might include movement, triggering actions and responding
to user input, basically anything that needs to be handled over time during game
play. To enable the Update function to do its work, it is often useful to be able to
set up variables, read preferences and make connections with other GameObjects
before any game action takes place. The Start function will be called by Unity when
a script is enabled and will be called exactly once in its lifetime. The Start function
is the ideal place where initialization occurs. It is used to initialize an object’s
position, state and properties or load other scripts and GameObjects for later use.

A script in Unity is not like the traditional idea of a program where the code runs
continuously in a loop until it completes its task. Instead, Unity passes control to a
script intermittently by calling certain functions that are declared within it. Once
a function has finished executing, control is passed back to Unity. These functions
are known as event functions since they are activated by Unity in response to events
that occur during game play. Unity uses a naming scheme to identify which function
to call for a particular event. For instance, we have already mentioned the Update
function (called before a frame update occurs) and the Start function (called just
before the object’s first frame update). Many more event functions are available in
Unity; the following are some of the most common and important event.

• Regular Update Events: These events can make changes to position, state
and behavior of objects in the game just before each frame is rendered. The
Update function is the main place for this kind of code in Unity. Update is
called before the frame is rendered and also before animations are calculated.
For physics update, like adding force to a GameObject, the best option is to
place the code in the FixedUpdate function which updates more frequently
than the Update function. Sometimes the best place to write code is the
LateUpdate function in order to be able to make additional changes at a point
after the Update and FixedUpdate functions have been called for all objects in
the scene and after all animations have been calculated.

• Initialization Events: It is often useful to be able to call initialization code
in advance of any updates that occur during game play. The Start function
is called before the first frame or physics update on an object. The Awake
function is called for each object in the scene at the time when the scene loads.

37

Note that although the various objects’ Start and Awake functions are called in
arbitrary order, all the Awakes will have finished before the first Start is called.
This means that code in a Start function can make use of other initialization
previously carried out in the awake phase.

• GUI Events: Unity has a system for rendering GUI controls over the main
action in the scene and responding to clicks on these controls. This code is han-
dled somewhat differently from the normal frame update and so it should be
placed in the OnGUI function, which will be called periodically. For instance,
a set of OnMouseXXX event functions (e.g., OnMouseOver, OnMouseDown)
is available to allow a script to react to user actions with the mouse. For
example, if the mouse button is pressed while the pointer is over a particular
object then an OnMouseDown function in that object’s script will be called if
it exists.

• Physic Events: The physics engine will report collisions against an object
by calling event functions on that object’s script. The OnCollisionEnter, On-
CollisionStay and OnCollisionExit functions will be called as contact is made,
held and broken. The corresponding OnTriggerEnter, OnTriggerStay and On-
TriggerExit functions will be called when the object’s collider is configured as
a Trigger (i.e., a collider that simply detects when something enters it rather
than reacting physically). These functions may be called several times in suc-
cession if more than one contact is detected during the physics update and so
a parameter is passed to the function giving details of the collision (position,
identity of the incoming object, etc.).

Except for the functions that Unity provides, the developer can create his/her
own functions in order to control or determine the behavior of a GameObject, change
the properties of a component or altering the overall state of the application. In
order for these custom functions to be executed, they have to be called inside a
Unity event function, like the Update. The most commonly used functions were
presented briefly above, as well as the concept of how they are used. The basic
notion of the Unity scripting is that the scripts are components that can control the
GameObject. Each component property corresponds to a script variable and the
scripts can access not only the components of the GameObjects they are attached
to, but also other GameObjects.

3.2 3D Modeling and Animating

For the purposes of this project, two 3D modeling tools have been used in or-
der to create/modify or animate GameObjects and characters as well as for the
Character Rigging. This tools are 3DSmax and MotionBuilder which offer free Aca-
demic/student licence.

Character Rigging is a very tedious process. It requires creativity, precision,
and an eye for detail. As such, character riggers are responsible for using computer
programs to form skeletons by creating a series of bones that deform and animate
specific parts of the character.

38

• 3Dsmax : 3D modeling and rendering software 3ds Max helps you create
massive worlds in games, stunning scenes for design visualization, and engaging
Virtual Reality (VR) experiences.

Figure 3.5: 3DsMax

• MotionBuilder : MotionBuilder is a professional 3D character animation
software produced by Autodesk. It is used for virtual production, motion
capture, and traditional keyframe animation.

Figure 3.6: MotionBuilder

39

Chapter 4

User View

4.1 Game Play

VR Dance Lessons: The presented VR Training application will immerse the user in
a Latin dance studio in VR. The Training application puts users in the heart of the
basic knowledge of the Latin dance Salsa. The users guided to go through a series
of tutorials provided by the current application and interact with the laser scanned
3D model representing the famous Spanish Latin dancer Alberto Rodriguez. After
completing the interaction process, users can perform an interactive dance with this
3D model by leading the 3D character to execute the basic steps learned.

4.1.1 Main Scene

As users start the game, their profiles appear in the Main tutorial VR scene. Users
see a UI dialog in front of them. This UI dialog prepares the users to take a brief
pre-tutorial guide and to get familiar with the scene, gesture and UI interaction.
This dialog offers them useful instructions about the game play. Users with more
experience in VR games and generally in VR interaction, can skip this pre-tutorial
procedure and go directly to Main Tutorial UI. See Figure (4.1).

40

Figure 4.1: Main Scene

4.1.2 Gestures

Gestures are very useful in our application and serve as an interaction and feedback
mechanism between the users required to interact with the pre-tutorial process,
and the dance training system. For this reason, feedback and interaction based on
gestures, was implemented. There are two types of Gestures in the Training
Application:

• 1: Right Thumb Gesture (Figure 4.2a). Users form a thumb Gesture every
time they are asked by the pre-tutorial guide panel to continue to the next
dialog.

• 2: ”Wave Hand” Gesture (Figure 4.2b). Users form a wave hand Gesture in
order to interact with the 3D character that is in front of them. When the
”Wave Hand” gesture is successfully activated, the 3D humanoid character
responds with the same ”Wave Hand” movement.

(a) Thumb Gesture (b) Shake Hand

Figure 4.2: Gestures

41

4.1.3 Tutorial UI

During the Main UI Tutorial process, users are presented with three types of tutorial
stages that they can select, see (4.4). The first option is ”Basic Steps”. When
the”Basic Steps” stage is selected, there is an extra UI panel that appears in the
scene. While interacting with this UI panel, users can select and learn three types of
basic steps (”Basic A”, ”Side Steps”, ”Right Turn”) of Latin dance, see figure (4.5).
Next option is ”Interaction”, which is located at the Main UI, see (4.4). During the
”Interaction” stage, users interact with the 3D character by learning to lead the 3D
character following the basic steps. In order to achieve the ”Side Step” leading of
the 3D character, users have to move their left hand to the left, or execute the basic
”Side Step” to the left transferring their axis to the left side. The 3D character
can recognize the users hand movement to the left and only then the 3D character
executes the ”Side Step” animation. For the execution of the ”Turn” animation,
users must rise their left hand up. The 3D character recognizes the elevation of the
user’s left hand and executes the basic right ”Turn” animation. The last option
is a ”Dance” where the music is playing and users try to improvise and do some
basic steps leading the 3D character to a series of basic step combinations. In order
to complete all leading operations, the user must be in the ”Interaction Zone”, see
Figure (5.21).

Figure 4.3: Return button

The users can select ”Return” whenever they want to return from the ”Basic
Steps” to the ”Main Tutorial” UI panel. The selection is achieved with the pinching
action, see Figure (4.3).

Figure 4.4: Tutorial UI

42

Figure 4.5: Basic Steps

4.1.4 Switch Character

When users execute the tutorial lessons, they can switch between a male human re-
alistic 3D character and a female humanoid robot. In order to switch 3D characters,
users must pinch the switch icons that are on the left side of the Main UI Tutorial
Panel as shown in a Figure (4.6). Users can switch the character throughout the
game play. After the switching action is registered, the selected 3D character is
initialized to the default position under the UI Tutorial panel.

Figure 4.6: Character Switch UI

43

4.1.5 Settings UI

Main features on Setting UI are: (Figure 4.7)

• 1: Adjust the volume of music: Users can adjust the volume of the current
playing music through the UI setting. The adjustment can be conducted by
sliding the green button on the slide bar of the UI Setting panel. The sliding
can be achieved by touching the green button or by pinching it while the user
is far away from the panel. Interacting with the UI setting panel, users can
also Zoom in and Zoom out by touching the background of the panel.

• 2: Mute the music: Users can also Mute the playing music by pressing the tog-
gle button on the UI Setting panel. The selection of this event can materialize
with the touch and pinch action.

• 3: Restart the Game: Users can restart the game by pressing or pinching
the ”Restart button” on the UI Setting panel. The training application starts
from the beginning, allowing Users to skip this pre-Tutorial procedure.

public void hardRestartGame()

{

SceneManager.LoadScene(SceneManager.GetActiveScene().name);

}

Figure 4.7: Settings UI

4.2 3D Virtual Scene

This section describes the implementation of the current VR Scene (User View) of
the VR Interactive Dance Lesson application.

44

4.2.1 Character Modeling

Character modeling is developed with industry standard 3D modeling software called
3DsMax based on a student license (see Figure 3.5). The first attempt to create a
3d Character was a male humanoid 3d Model (see Figure 3.5). For the purpose of
this project we tried to slice the character into separate objects (hands, body, legs,
head...) and connect these objects with joints through Unity. This attempt was a
complete failure because no realistic humanoid interaction could be applied to this
sliced model while the complexity of controlling the realistic animation was very
high.

Figure 4.8: First Attempt

To achieve a humanoid realistic interaction for this project we used an existed
robot model where we applied skeleton rigging using cross platform 3d modeling
software 3DSMAX and MotionBuilder so that sliced hierarchy was created applying
physics and interactive animations.

45

Figure 4.9: Final

4.2.1.1 White light Scanning

To create a more realistic humanoid 3d character in this project we collaborated
with Technological Educational Institute of Crete - School of Applied Sciences with
Manolis Maravelakis (see Figure 4.10a). In addition, we invited the professional
Spanish Latin dancer Alberto Rodriguez(see Figure 4.10b) who was used as a 3d
Model in our project.

(a) Manolis Maravelakis (b) Alberto Rordriguez

Figure 4.10: Collaborators

For the scanning process, the latest lase scanning technology was used collaborat-
ing with the experienced team led by Prof. Manolis Maravelakis in their laboratory
located at the Technological Educational Institute of Crete. The White Light scan-
ning equipment that was used is manufactured by the company Artec3D product
model Artec Eva (see Figure 4.12).

46

https://www2.chania.teicrete.gr
https://my.teicrete.gr/uploadedCVs/41826gr.pdf
https://www.facebook.com/Etnia.Nueva?hc_ref=ARSxBZ0MMD7GBSYqDFxzM7wiMcjWcGWArgGpdvv9O6x2oxoxEzj14wldCcR43q3DESs&fref=nf
https://www.artec3d.com/3d-scanner/artec-eva

Figure 4.11: Process of white light scanning

Figure 4.12: Artec Eva white light scanning machine

The method that we followed for scanning a model so that the final 3d humanoid
model was produced, consisted of four steps (Figure 4.13):

• 1: Scanning a physical person: The physical model was standing on a T
pose while the white light scanning machine operator Prof. Michalis Marave-
lakis was moving around the physical model scanning all parts of the body.

• 2: Repair 3D model using 3D modeling software: Because of the faulty
scan of some parts of a scanned body, a separate scanning of specific parts was

47

needed to repair the initially failed scanned parts. After the separate scanning
was completed, a manual repair and connection of these parts was needed.
The 3D modeling platform 3DSmax was used to complete this task.

• 3: Optimize using 3D modeling software: After the white light scanning
was completed and all parts of the body were connected, the 3D model included
more than 1 million vertices. Through 3DSmax, we reduced the resolution
(amount of vertices) by 90% lower than the original scanned model, trying to
keep details of a face so that the user could intuitively perceive that the 3D
character represents a realistic human model.

• 4: Biped Rigging using 3DSmax: Finally, we added bones to the skin of
our scanned 3D model so that animations could be applied. This procedure is
described in the following chapters.

Figure 4.13: Procedure for white light scanning

4.2.2 Environment modeling

The 3D environment in this project adopted a minimal design style by simulating
the default scene of the Occulus Rift. The main purpose of the minimal style was
to have minimum geometrical complexity and computational cost of the 3D scene
rendering, so that the power of the graphics card (GPU) could be applied while the
3D character is rendered.

Baked GI - Traditionally, video games and other real-time graphics applications
have been limited to direct lighting, while the calculations required for indirect
lighting were too slow so they could only be used in non-real-time situations such as
CG animated films. A way for games to work around this limitation is to calculate
indirect light only for objects and surfaces that are known ahead of time to not move
around (that are static). That way the slow computation can be done ahead of time,
but since the objects don’t move, the indirect light that is pre-calculated this way
will still be correct at run-time. Unity supports this technique, called Baked GI
(also known as Baked Lightmaps), which is named after “the bake” - the process in
which the indirect light is precalculated and stored (baked). In addition to indirect
light, Baked GI also takes advantage of the greater computation time available to
generate more realistic soft shadows from area lights and indirect light than what
can normally be achieved with real-time techniques.

48

(a) No Decoration (b) with decoration

Figure 4.14: Minimal Environment

In relation to the environment where the dance action takes place, a set of
lightened boxes was added to the scene. A special texture was created applied to
the boxes with bright edges rendered on them. In order to optimize the shadow
calculation from the main light source, we used baked light in order not to calculate
every frame of the light path for the static objects. A real-time calculation of
direction lighting was added to the scene only to affect the 3D character model and
the user’s 3D hands model (see Figure 4.14, 4.15).

(a) Jose dance view (b) Robot dance view

Figure 4.15: Game Play interaction scene

49

Chapter 5

Implementation

5.1 UI implementation

The dance tutorial will be conducted by inexperienced users. The development of
a simple and intuitive User Interface (UI) was necessary. When developing the UI,
several guidelines of HCI (Human Computer Interaction) such as the semantics of
the colors and the ideal positioning of the interface elements, were taken into con-
sideration. Each selection included in the UI canvas represents a touchable button
that the user can touch through the 3d hand model visualized for interaction. For
this project three different UI Panels were created:

• 1: UI Dialog: While interacting with this UI, the user gets a brief introduc-
tion to the game. This procedure prepares and guides users through certain
steps while user gestures and virtually touching buttons are used to interact
with the UI canvas (see Figures 5.1,5.2). While the text is being displayed in
the dialog UI, sound and speech connected with typing for each step is playing.

Figure 5.1: UI Dialog

50

Figure 5.2: UI Typing sound & Speech

• 2: UI Menu Tutorial: This UI consist of 2 levels (Main Menu and Basic
Steps). While interacting with the first level (see Figure 5.3a), users are able
to select between three options (Basic Steps, Interaction, Dance). If the ”Basic
Steps” option is selected, then the second level of UI appears (see Figure 5.3b)
and users could select between three additional options reflecting Salsa’s basic
steps (”Basic A”, ”Side Steps” and ”Turn”).

(a) Fist Level (b) Second Level

Figure 5.3: Minimal Environment

• 3: UI Settings: While interacting with this UI, the user controls certain
basic settings such as ”Game Restart” or adjust the Music volume that is
located at the GameObject ” scripts ” (see Figure 5.4).

51

Figure 5.4: UI Dialog

In order to show and control globally the UI Dialog and UI Menu Tutorial
a central UI Canvas GameObject was created, the position of which is initialized
when the game starts. Every time the UI Dialog or the UI Menu Tutorial is enabled,
this UI becomes a child of the Central UI Canvas, taking the parent’s position.

In order to enhance the feeling of VR presence, a shadow and sound feedback on
the UI buttons were added, to appear when a button is pressed utilizing the user’s
3D hand model.

5.2 Animation

Moreover, the implementation of realistic animation movement was created. We will
describe the process we followed to create certain basic realistic animations that were
applied to the main 3D Character and UI GameObjects in the following chapters.

5.2.1 Character Animation

The main application scene is populated by two characters, the first is the user
(users can see their hands which are represented by 3D hand models) and the second
character is a 3D humanoid model that users interact with. Animations are applied
to the 3D humanoid model. In order to animate a 3D humanoid character we needed
a model that is rigged as we described in (Figure 4.13) step 4. For this project, we
used two distinct ways to create animations for the character. The first was to take
existed animations such as ”Idle state” , ”Flexing state” , ”Walk state”, ”Turn state”
where certain parameters of animations such as speed were edited employing Motion
Builder platform and the Unity itself. The second way was to capture motions of a
real human with a tracking device and then transfer this data onto the 3D humanoid
model producing a realistic animation of movement.

52

5.2.1.1 Motion Capture

There are two ways to capture real human movement and transfer this data to the 3D
humanoid rigged model. The first one is motion capture of real human movement.
This data is not directly connected to the main 3D model but to the general skeleton
while the record mode was enabled through the Motion Builder platform. After the
recording is finished, we optimized the animations by smoothing the jitters. Finally,
the animation was ready to be applied to the humanoid rigged 3D characters in
Unity, see (Figure 5.5a).

(a) Motion Capture with Kinect v2 (b) Edit Animation with Motion Builder

Figure 5.5: Mocap

The second way was to capture the motion and transfer data to the main scene
in real time. This technique was applied for the real-time tracking of the users
hands. For this purpose, a motion tracking device named Leap Motion was needed,
see (Figure 5.6). No tracking data is stored in the application. Any transformation
that happens to the physical hands is reflected to the transformation of the user’s
3D hand models. This type of motion capture was needed so that the user interacts
with the UIs and characters while immersed in the main scene.

53

Figure 5.6: Leap Motion tracking device

Some of the animations that were applied in our project to the 3D humanoid
character, already existed in Unity’s Asset store. One of these animations was the
”Turn state”. The ”Turn state” was impossible to be captured utilizing the available
equipment in our lab, by only one Kinect sensor, see (Figure 5.8a). The problem
was that the Kinect device captures only a projection of the view, see (Figure 5.7).

Figure 5.7: Error on 360 turn with Kinect with 1 sensor

Therefore, in order to capture the 360 rad motion, we must use more than one
sensor. To achieve the best motion capture, a four sensor system setup that is shown
in the Figure (5.8b), is suggested. In the current project, only one sensor was used.

54

(a) Single sensor Setup (b) Multiple sensor setup

Figure 5.8: Kinect Topology

5.2.2 Ui Animation

In order to create additional visual effects visualized onto the Settings Menu UI, (see
Figure 4.7) we added an animation to canvas. Whenever the user wants to make a
selection or view buttons from a close position, the UI menu is moving towards the
user on demand by zoom-in and zoom-out, see (Figure 5.10).

In order create the UI animation, we used a different technique compared to the
3D humanoid character animation we described above. The method we used was
the creation of animation through Unity itself, using Animation View windows. The
Animation view is linked to the Hierarchy view, the Project window, the Scene
View, and the Inspector window. Like the Inspector, the Animation View shows the
time-line and key frames of the Animation for the currently selected GameObject
or Animation Clip Asset.

Figure 5.9: Animation View

The implementation controlling the UI Animations and 3D character animations
will be described in the next section.

55

Figure 5.10: UI Setting Menu Animation

5.3 Controllers

In order to control the multiple animations included in this project, we used An-
imator controllers combined with scripting in C#. Animator Controller allows
you to arrange and maintain a set of animations for a character or other animated
GameObjects.

The controller has references to the animation clips used within it, and manages
the various animation states and the transitions between them using a so-called
State Machine, which could be thought of as a kind of flow-chart, or a simple
program written in a visual programming language within Unity.

Animation State Machines. It is common for a character or other animated
GameObject to have several different animations that correspond to different actions
it can perform in the game. For example, a character may breathe or sway slightly
while idle, walk when commanded to and raise its arms in panic as it falls from a
platform. A door may have animations for opening, closing, getting jammed, and
being broken open. Mecanim uses a visual layout system similar to a flow-chart, to
represent a state machine to enable you to control and sequence the animation clips
that you want to use on your character or object. This section gives further details
about state machines we used for the animations in the current application.

56

5.3.1 3D Character Animation Controller

For this project we created a dedicated control of animations for a 3D character using
the Animator Controller with a State Machine that can apply to any Humanoid
character in the scene.

Figure 5.11: 3D animation State Machine Base Layer

Animation Parameters are variables that are defined within an Animator
Controller that we access and assign values from scripts (see Figure 5.12a). Some of
the functions that access those parameters will be described in the Scripting section.

Animation Layers. Unity uses Animation Layers for managing complex state
machines for different body parts of a 3D character. For example, in this project,
we have a lower-body layer for idle state, and an upper-body layer for the waving
hand state. This technique allows the 3D character to wave a hand while in the idle
mode. We can manage animation layers by interacting with the Layers Widget in
the top-left corner of the Animator Controller see Figure 5.12b.

57

(a) Parameters (b) Layers

Figure 5.12: Animator Controller

In order to create realistic animation transitions we used Avatar Mask to separate
animations for the different parts of 3D character body.

Avatar Mask allows you to discard some of the animation data within a clip,
allowing the clip to animate only parts of the object or character, rather than the
entire thing. For example, in this project, the 3D character may have a standard
idle animation that includes both arm and leg motion, but if a character is waving a
hand then we would’t want the arms to use an idle animation movement. However,
we could still use the standard idle animation while waving hand by using a mask
to only animate the upper body part (only right hand) of the ”waving” animation
over the top of the ”idle” animation.

Figure 5.13: Mask Parameters

58

5.3.2 UI Animation Controller

For the UI animation we used a simplified State Machine, controlled in the Animator
Controller. We used only three states with one parameter ”zoom” type trigger (see
Figure 5.14).

Every time the user touches the UI Settings menu Canvas, a trigger parameter
”Zoom” is being activated and a state is changing. The UI Setting Canvas starts
to animate every time the ”Zoom” trigger parameter is activated. The animation
translate the UI forward and backward on the X axis of the scene.

(a) Parameters (b) UI Canvas Button Event

Figure 5.14: UI Setting Mecanim

59

5.3.3 Script Handling

In our project we created a GameObject named Scripts that controls some of
the main GameObjects in our scene. There are five main scripts included as a
components in this Scripts GameObject which controls the game play of the VR
Dance:

• Tutorial Stage Script: This Script controls the Dialog panels at the begin-
ning of the VR Game. It is in charge of show/hide the main UI of the game.
Also we added a function that allows to simulate a machine typing sound when
characters (text) appear in the Dialog UI.

• Game Control Script: This script is used for loading game stages and reload
game on user demand.

• Character Mechanics Script: This script controls the parameters of the
Animator Controller of the humanoid 3D Character we want to animate, see
example (5.15). We also use a simple AI in this script that we will describe
on our AI Section.

Figure 5.15: Accessing the idle trigger parameter in Animator controller

• My Gesture Detection Script: This script controls the available gestures.
After a gesture activation, the script produces a sound and goes to the next
stage, see example (5.16).

Figure 5.16: Play Sound when Gesture ”Thumb up” is activated

• Character Switch Controller This is the script that we use for switching 3D
characters between ”Jose” and ”Beat” while we are in the training application
on play mode. Here is a sample of a code that switches (initialize the main
Avatar) to ”Jose”, see example (5.17).

60

Figure 5.17: Switch Avatar to ”Jose”

5.4 Interaction

The Interaction Engine is a layer that exists between the Unity game engine and
real-world hand physics. In order to make object interactions work in a way that
satisfies human expectations, it implements an alternate set of physics rules that
take over when hands are embedded inside a virtual object.

The Interaction Engine endeavours to make the integration quick and easy. How-
ever, it also allows a high degree of customization across a wide range of features.
The developer can modify the properties of an object interaction, including desired
position when grasped, moving the object to the desired position, determining what
happens when tracking is momentarily lost, throwing velocity, and layer transitions
to handle how collisions work.

In our project, we use touches and gestures to interact with the UI GameObjects
as described in the ”UI Implementation” section.

5.4.1 Gestures

Interaction occurs through gestures. The Leap Motion software recognizes certain
movement patterns as gestures which could indicate a user intent or command. The
Leap Motion software reports gestures observed in a frame in the same way that it
reports other motion tracking data such as fingers and hands.

5.4.2 Hand Model

We used a pair of humanoid realistic shape hands coloured grey color so that they
will be neutral for all users. In order to enhance immersion, it was decided that a
universal colored hand is preferable rather than a specific color because the real color
of their hands may be different from the VR. For example, if we have a real person
with hairy hands in physical space, but in VR, we may not be able to represent
that.

61

Figure 5.18: Grey color Hand of a User

5.4.3 Gesture Logic

In order to activate gesture,s we created a GameObject named ”Thumb Up” and
”Waving Hands” and we added as a component 3 Leap Motion Detection Utilities
Scripts, see example (5.19). :

• Finger Detection Detector Here, we declare the fingers direction of the
user’s hand model we want to detect. In our project, we look for a detection
event for 1 finger of a right hand of the user, specifically for the Thumb Gesture.
So if the user extends his right thumb finger we have an Activation event of
this script.

• Extended Finger Detector Here, we declare which fingers of the user’s
hand model we want to detect. In our project, we look at a detection event
for the thumb finger of the right hand of the user. So if a user extends the
thumb finger of the right hand upwards relative to the camera, then an event
activation is registered.

• Detector Logic Gate In this Component, we assign in the Detector pa-
rameters the Finger Detection Detector Script and Extended Finger Detector
Script with an AND Gate. So if we have the right hand thumb extended and
the direction is UP, we have activation of the ThumbsUP Gesture. The same
logic we use for the WavingHands Gesture.

62

Figure 5.19: Logic of Activating Thumb Gesture

5.5 Inverse Kinematics (IK)

In order to achieve the interaction with a humanoid 3D character in our project, we
used the Inversed Kinematics technique. Before we explain this, we need to mention
the differences between Forward and Inverse Kinematics, e.g. being similar to a
function and its inverse. In robotics for example, this normally refers to calculating
the relations between end-effectors and joint angles. So for Forward Kinematics, the
joint angles are the inputs, the outputs would be the coordinates of the end-effectors.
On the other hand, for Inverse Kinematics, the given inputs are the coordinates of
the end-effectors, however, the outputs to calculate are the joint angles. For a
multiple DOF robot, the Forward Kinematics is quite straightforward. But inverse
kinematics could be tricky in relation to the same end-effectors coordinates, lacking
a unique configuration, especially when the system is redundant.

For this project, we created Inversed Kinematics for the 3D humanoid characters
to control mainly hands motions interactions. In order to enhance the feeling of
presence and real interaction, we added Inversed Kinematics on the 3D character so
that the 3D character looks always at the user.

5.5.1 Implementation

In order to implement the Inversed Kinematics (IK), we created a script called
IK Scr where we control all IK options for the parts of the body we need:

• Right Hand IK

• Left Hand IK

• Upper Body IK

63

Figure 5.20: Interaction Zone

Right Hand IK In order to implement the interaction between the 3D humanoid
character and the user’s 3D hand model, we created a GameObject named Left-
IKControl and added this object to the Left 3D Hand model of the User. This
LeftIKControl contains a child GameObject named Lsphere. Lsphere has a col-
lider and Rigid-body component inside. We will use this Lsphere GameObject as a
reference in IK of the Right Hand of 3D Humanoid Character.

To import Lsphere as a reference to the IK Scr script we added a Tag named
”LeftSphere” to Lsphere GameObject. When the GameObject with Tag ””Left-
Sphere” enters the 3D Humanoid characters zone of interaction (Sphere collider
that we use as a trigger see example 5.20), a function, OnTriggerEnter activates and
the Right IK is set to Enable.

Figure 5.21: Activation of RightIK

As long as the the reference of the users hand is in the Interaction zone

Left Hand IK In order to implement the interaction between the 3D humanoid
character and the user’s 3D hand model we created a GameObject named RightIK-
Control and added this object to the Right 3D Hand model of the User. The
LeftIKControl contains a child GameObject named Rsphere. Lsphere includes a
collider and Rigid-body component inside. We will use the Rsphere GameObject as
a reference in IK kinematics of the Left Hand of 3D Humanoid Character.

64

In order to import Rsphere as a reference to the IK Scr script we added a Tag
named ”RightSphere” to Rsphere GameObject. When the GameObject with the
tag ”RightSphere” enters the 3D Humanoid characters zone of interaction (Sphere
collider that we use as a trigger see example 5.20), the function OnTriggerEnter is
activated and the Left IK is set to Enable.

Figure 5.22: Activation of LeftIK

Upper Body IK In this part, we created IK control for the upper body of the 3D
humanoid character to force the humanoid character always look at the user. These
are complex IK movements that were applied to all upper bones of the character
so that the 3D character rotates the upper body realistically staring at the user.
Depending on the part of the body, we apply different weight of the rotation, see
example 5.23.

(a) IK disabled (b) IK enabled

Figure 5.23: Upper body IK for ”Look At User” option

5.6 AI Navigation

The navigation system allows us to create characters that can intelligently move
around the game world, using navigation meshes that are created automatically
from the scene geometry. Dynamic obstacles allow altering the navigation of the
characters at run-time. In our project, we do not have any obstacles and the reason
is that we needed to minimize the distance the user needs to reach the 3D humanoid
character, by guiding the 3D character move towards the user. We assigned the stop
distance to 4 units in order give to the user a chance to walk with a minimum amount
of steps to the interaction zone (Figure 5.20 we described before. The navigation
mesh region of this project is shown in the Figure 5.24 visualized by the blue color.

65

Figure 5.24: Navigation Mesh

5.7 Audio

A game would be incomplete without some kind of audio, be it background music
or sound effects. Unity’s audio system is flexible and powerful. It can import most
standard audio file formats and has sophisticated features for playing sounds in 3D
space, with optional effects like echo and filtering applied. Unity can also record
audio from any available microphone on a users machine for use during game play
or for storage and transmission. In this project, it is common that many distinct
sound effects are played at the same time. For example , the user can hear the
typing sound of the UI dialog canvas and Salsa music at the same time. Therefore,
many audio sources are required. Even each GameObject has its own audio source.
All main AudioSources are generated in Scripts GameObject. There is one Audio
Listener located in CenterEyeAnchor (Camera) and 1 Main Audio Sources:

• Salsa Rythm Located in Scripts and start to play in the begging of the
tutorial. The properties of volume is controlled with the Slide bar of the UI
Settings.

• Typing Sound Is generated with the script component with name Tutorial-
StageScript that is located in Scripts . We initialize the Sound Source (see
Figure 5.25) and add the Audio Clip to it when the game starts. Every time
we want to show the message of the UI Dialog, we will play the clip for every
letter of the Dialog text with a specific delay (see Figure 5.26).

66

Figure 5.25: Sound Initialization

Figure 5.26: Sound Play for every char

• Achievement Sound Is generated based on the script component named
MyGestureDetection that is located in Scripts . We initialize the Sound
Source once the game starts and we add the Audio Clip. The sounds play
every time a Thumb Up gesture is activated (see Figure 5.27).

Figure 5.27: Sound Play for Thumb Up Gesture

5.8 Optimization

In this project, optimization plays an important role, especially when it comes to
Virtual Reality which puts a big strain on the GPU compared to simple games that
are displayed on a desktop monitor. Furthermore, a high frame rate is required.
Developers have found several tricks to reduce the load on the GPU and this is
basically conducted by rendering as few objects as possible. This is one of the main
reasons low poly games have become so widespread in the VR gaming communities.

Lighting Baking Lightmapping calculates the lighting for static geometry and
saves it in textures. The benefits are, that it has awesome lighting effects, such as
light bouncing, Ambient Occlusion and Area lights. This means that lighting will
look better without having to do much work. We can select between single and dual
lightmaps. Single means it replaces any dynamic shadows and lighting, only using
the baked maps. This increases performance quite a bit, but reduces what you can

67

do with lighting dynamically. With dual lighmaps, Unity bakes both lightmaps with
shadows and without. It then uses the shadow distance to determine where to fade
between lightmap shadows and real-time shadows. We used the dual method in this
thesis.

68

Chapter 6

Evaluation

This chapter shows the evaluation of the current VR training application by various
users. In particular, users evaluated this VR application investigating their perceived
level of immersion and presence as well as any motion sickness symptoms they
experienced.

6.1 Evaluation method

For the system evaluation, we used the Experience of Immersion in Games and the
Simulator Sickness Questionnaire to determine the degree of immersion perceived
and possible symptoms of dizziness and discomfort respectively.

The evaluation process consisted of 20 users (12 men and 8 women) aged 21-30
years old. The majority of the users were students (undergraduates, graduates) of
the Technical University of Crete.

69

70

71

72

6.1.1 Procedure

The survey was performed as an online form that consisted of 3 pages; the first was
an introduction containing the requirements for participation in the study, followed
with the Defining an Experience of Immersion Questionnaire and Simulator Sickness
Questionnaire.

73

6.2 Evaluation Goals & Result

The above assessment consisted of two phases. First, the aim was to examine the
degree of immersion in the Virtual Reality environment and secondly, to ascertain
whether and to what extent symptoms of discomfort have been caused to users after
exposure.

Defining an Experience of Immersion (IEQ) consists of 6 different types of
questions, which are described by the indicators below. The questions were rated
from [min = 1 to Max =5], with 1 signifying the minimum grade and 5 the maximum.
[9]

• Attention: Relative to how much the user was concentrated (1, 2, 3, 4).

• Temporal Disassociation: Lack of sense of time during simulation (5, 6, 7,
8, 9, 10).

• Temporal Transportation: The extent to which the user felt he was more
part of the game than the real environment (11, 12, 13, 14, 15, 16).

• Challenge: Relates to the game play of the game (fl ow) (17, 18, 19, 20, 21).

• Emotional Attachment: Emotional Attack, due to the feeling of being part
of the virtual environment (22,23,24).

• Enjoyment: The extent to which the user was happy (25, 26, 27,28).

After users self-report answering the 6 questions above, we calculated the re-
sponse averages and the exported results are shown below:

Figure 6.1: IEQ Mean results

Result of the Evaluation:

74

• Total Mean Attention = 4.37

• Total Mean Temporal Disassociation = 2,97

• Total Mean Temporal Transportation = 3,62

• Total Mean Challenge = 3,42

• Total Mean Emotional Attachment = 4,46

• Total Mean Enjoyment = 4,40

• Total Mean Immersion = 3,87

Figure 6.2: IEQ Results

Simulator Sickness Questionnaire The Simulator Sickness Questionnaire (SSQ)
has so far been the standard for measuring motion sickness risks that a simulation
can cause in a Virtual Reality environment. The SSQ includes a list of 16 symptoms
that can be caused by exposure to a simulator. For each of the 16 symptoms, there
are four possible options depending on the level to which users have experienced
them [None=0, Slight = 1, Moderate=2, Severe=3]. A final simulation symptom
score is produced.

In any case, zero represents the absence of stimulant disease symptoms, and
the higher the score, the more severe the symptoms are. After completing the
questionnaires, the Total mean value was calculated for each disease symptom for
all users:

The sickness symptoms of the simulation is generally the result of the inconsis-
tency between the simulation of movement within the virtual environment and the

75

Figure 6.3: SSQ Results

sensation resulting from the vestibular system. In many simulations, the visual sys-
tem receives information related to movement, but the vestibular system interprets
a static state that can not be synchronized with the visual perception of motion.
This difference is causing symptoms of Simulator Sickness to many people, at varied
levels.

6.3 Conclusion of Evaluation

After the evaluation of the IEQ and the SSQ, in addition to users’ comments after
the evaluation process was ended, we conclude:

• Immersive Experience Questionnaire The results obtained from this ques-
tionnaire are quite satisfying. Users were generally very satisfied with the ap-
plication, which is confirmed by the above indicators. The Mean Immersion
is 3,87 with the lowest value 3,6 and the highest value 4,18. Most of the users
enjoyed playing this game while their Mean Attention was very high (4,37).

• Simulator Sickness Questionnaire The SSQ results show that all partici-
pants had even a minor amount of motion sickness symptoms. However, cer-
tain of potential symptoms presented in the Questionnaire, were not reported
as perceived during and after the evaluation.

Comments Users were generally very impressed and excited by the dance train-
ing experience, especially the interaction that they had with the 3D humanoid charac-
ter. Some of them said that they would consider buying the dance training application
in Steam VR. The gameplay learning curve was also easy. Additional possibilities

76

of interaction were desired, such as assigning to the 3D humanoid character more
complex movements.

The most interesting observation we acquired, is that after completing the evalu-
ation, users reported feeling more confident asking a stranger for a dance at a social
event.

77

Chapter 7

Conclusion

7.1 Main Contributions

The effectiveness of a Virtual Environments for training has often been linked to
the sense of presence reported by the users. Presence is defined as the subjective
experience of being in one place or environment, even when one is physically situated
in another. Virtual Reality is on a good track in getting into our lives, not only
for entertainment, but also for other purposes, such as education, medicine and
simulations. As the technology grows people get less socialized and a person to
person contact gets more difficult for them. Dancing makes people more happy and
social. In this project we took the first step in aiding a user feel more comfortable
participating in social dances.

7.2 Future Work

The implementation of this project as well as the experiments described in detail in
Chapter 6, are formally designed. However, certain improvements could be accom-
plished if the following actions materliaze:

• Realistic scene & Characters. Because of the performance of our PC, we did
not aim to produce a high quality of graphics, so that the VR game has no
lags during the game-play. The alternative was to create a realistic game with
real time shadows and light for all objects in the scene, if computational power
was available.

• It would be a great idea if we analyze every music clip we add in the game,
to count the tempo and the beats of the soundtrack. If we do that, we can
synchronize the animations with the tempo of the music so that a 3D humanoid
character would execute animations based on the tempo of the music selected
by the user and not just offer pre-installed music clips.

• Animations could be more complex, if motion capture systems available to us
could record motion in higher resolution. There are complex combinations of
motion which can be imported in the tutorial allowing a developer to create
animations without editing them with another program. Simply, the range of
actions would be to execute the motion combination, capture it and apply it
to the tutorial.

78

7.2.1 Recommendations for Developers

With the widespread availability and affordability of VR headsets, the number of
people developing VR experiences has grown dramatically in recent years. Most VR
developers to date have significant experience in the video game industry, where their
skills and experience in developing games and game engines are “ported over” to
VR. In some cases, simple adaptations are sufficient, but game developers have been
repeatedly surprised at how a highly successful and popular game experience does
not translate directly to a comfortable, or even fun, VR experience. The reason for
this would be a lack of understanding of human physiology and perception. As the
field progresses, developers are coming from an increasing variety of backgrounds,
including cinema, broadcasting, communications, social networking, visualization,
and engineering. Artists and hobbyists have also joined in to produce some of the
most innovative experiences.This section provides certain useful recommendations
based on the principles covered in this thesis. The vast majority of VR experiences
to date are based on successful 3D video games, which is evident in the kinds of
recommendations being put forward by developers today. Most of the recommen-
dations below link to prior parts of this thesis providing scientific motivation.

Virtual worlds

• Set units in the virtual world to match the real world so that scales can be
easily matched. For example, one unit equals one meter in the virtual world.
This helps with depth and scale perception.

• Make sure that objects are fully modeled so that missing parts are not no-
ticeable when the user looks at them from varied viewpoints which would not
been possible when graphics are displayed on a screen.

• Design the environment so that less locomotion is required.

• Consider visual and auditory rendering performance issues and simplify the
geometric models as needed to maintain the desirable frame rates on targeted
hardware.

Visual rendering

• Never allow words, objects, or images to be fixed to parts of the screen; all
content should appear to be embedded in the virtual world.

• Be careful when adjusting the field of view for rendering or any parameters
that affect lens distortion that so the result does not cause further mismatch.

• The rendering system should be optimized so that the desired virtual world
can be updated at a frame rate that is at least as high as the hardware.
requirements (for example, 90 FPS for Oculus Rift and HTC Vive); otherwise,
the frame rate may decrease and vary, which causes discomfort.

79

• Avoid movements of objects that cause most of the visual field to change in
the same way; otherwise, the user might feel as if moving.

• Determine how to cull away geometry that is too close to the face of the user;
otherwise, substantial vergence-accommodation mismatch will occur.

• Unlike in games and cinematography, the viewpoint should not change in a
way that is not matched to head tracking, unless the intention is for the user
to feel as if moving in the virtual world, which itself can be uncomfortable.

• For proper depth and scale perception, the interpupillary distance of the user
in the real world should match the corresponding viewpoint distance between
eyes in the virtual world.

• In comparison to graphics on a screen, reduce the brightness and contrast of
the models to increase VR comfort.

Tracking and the matched zone

• Never allow head tracking to be frozen or delayed; otherwise, the user might
immediately perceive self-motion

• Make sure that the eye viewpoints are accurately located.

• Beware of obstacles in the real world that do not exist in the virtual world; a
warning system may be necessary as the user approaches an obstacle.

• Likewise, beware of obstacles in the virtual world that do not exist in the real
world. For example, it may have unwanted consequences if a user decides to
poke his head through a wall.

• As the edge of the tracking region is reached, it is more comfortable to grad-
ually reduce contrast and brightness than to simply hold the position fixed.

Interaction

• Consider interaction mechanisms that are better than reality by giving people
superhuman powers, rather than applying the universal simulation principle.

• For manipulation in the virtual world, try to require the user to move as little
as possible in the physical world; avoid giving the user a case of gorilla arms.

User interfaces

• If a floating menu, web browser, or other kind of virtual display appears, then
it should be rendered at least two meters away from the user’s viewpoint to
minimize vergence-accommodation mismatch.

• Such a virtual display should be centered and have a relatively narrow field of
view, approximately one-third of the total viewing area, to minimize eye and
head movement.

• Embedding menus, options, game status, and other information may be most
comfortable if it appears to be written into the virtual world in ways that are
familiar.

80

Audio

• Be aware of the difference between a user listening over fixed, external speak-
ers versus attached headphones; sound source localization will not function
correctly over headphones without tracking.

• The Doppler effect provides a strong motion cue.

Self appearance

• The feeling of being present in the virtual world and the ability to judge scale
in it are enhanced if the user is able to see her corresponding body in VR.

• A simple virtual body is much better than having none at all; the presence of
user’s hands enhances the feeling of immersion.

• Unexpected differences between the virtual body and real body may be alarm-
ing. They could have a different gender, body type, or species. This could
lead to a powerful experience, or could be an accidental distraction.

• If only head tracking is performed, then the virtual body should satisfy basic
kinematic constraints, rather than decapitating the user in the virtual world.

• Users’ self-appearance will affect their social behavior, as well as the way people
around them react to them.

81

Bibliography

[1] Khullani M. Abdullahi. The reality-virtuality continuum.

[2] H. Takemura A. Utsumi F. Kishino Milgram, Paul. Augmented reality: A class
of displays on the reality-virtuality continuum. Proceedings of Telemanipulator
and Telepresence Technologies, pages 2351–34, 1994.

[3] Steuer Jonathan. Defining virtual reality: Dimensions determining telepresence.
Journal of Communications, 42(4):73–93, 1992.

[4] SIGGRAPH 94. Character motion systems course 9.

[5] Wiki. Methos and systems of mocap.

[6] Wiki. Microsoft kinect.

[7] Unity Technologies. Inverse kinematic.

[8] Wiki. Salsa (dance).

[9] P Cairns S Dhoparee A Epps T Tijs A Walton C Jennett, AL Cox. Quantifying
the experience of immersion in games. International journal of human-computer
studies, 66(9):641–661, 2008.

82

	Introduction
	Scope
	Thesis Outline

	Background
	The Reality-Virtuality Continuum
	Virtual Reality
	VR Immersion
	Frame Rate

	Head Mounted Displays (HMDs)
	History of HMDs
	Virtual Reality in the 21st century.

	Motion Capture
	Methods and Systems
	Hand Tracking

	3D Computer Graphics
	3D Rendering
	Global Illumination (GI)

	Game Engines
	Character Animation
	Latin Dance
	Introduction
	Salsa Styles
	Rythm

	Cross platform Game Engine Software
	Unity Game Engine
	Hierarchy
	Project
	Console
	Scene
	Game
	Inspector
	Project structure in Unity3D
	Navigation and Pathfinding
	Scripting

	3D Modeling and Animating

	User View
	Game Play
	Main Scene
	Gestures
	Tutorial UI
	Switch Character
	Settings UI

	3D Virtual Scene
	Character Modeling
	White light Scanning

	Environment modeling

	Implementation
	UI implementation
	Animation
	Character Animation
	Motion Capture

	Ui Animation

	Controllers
	3D Character Animation Controller
	UI Animation Controller
	Script Handling

	Interaction
	Gestures
	Hand Model
	Gesture Logic

	Inverse Kinematics (IK)
	Implementation

	AI Navigation
	Audio
	Optimization

	Evaluation
	Evaluation method
	Procedure

	Evaluation Goals & Result
	Conclusion of Evaluation

	Conclusion
	Main Contributions
	Future Work
	Recommendations for Developers

