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Abstract— This paper is devoted to the development of
adaptive control schemes for uncertain discrete-time systems,
which guarantee robust, global, exponential convergence to
the desired equilibrium point of the system. The proposed
control scheme consists of a nominal feedback law, which
achieves robust, global, exponential stability properties when
the vector of the parameters is known, in conjunction with
a nonlinear, dead-beat observer. The obtained results are
applicable to highly nonlinear, uncertain, discrete-time systems
with unknown constant parameters. The applicability of the
obtained results to real control problems is demonstrated by the
rigorous application of the proposed adaptive control scheme
to uncertain freeway models. A provided example demonstrates
some features of the approach.

I. INTRODUCTION

Adaptive control for discrete-time systems has been stud-
ied in many works (see, for instance, [1], [2], [3], [4]) and
in many cases it is a direct extension of adaptive control
schemes for continuous-time systems (see, [5]). Although
discrete-time systems allow a direct study of the limitations
of adaptive control schemes (see, for example, [6]), the
major shortcoming of many adaptive control methodologies
is that the closed-loop system does not exhibit an exponential
convergence rate to the desired equilibrium point of the
system, even if the nominal feedback law achieves global
exponential stability properties when the parameters are
precisely known.

This work is devoted to the development of adaptive
control schemes for uncertain, discrete-time systems, which
guarantee robust, global, exponential convergence to the
desired equilibrium point of the system. The idea is sim-
ple: use a nominal feedback law, which achieves robust,
global, exponential stability properties when the vector of
the parameters is known, in conjunction with a nonlinear,
dead-beat observer. The dead-beat observer (designed using
an extension of the methodology described in [7]) achieves
the precise knowledge of the vector of unknown parameters
after a transient period; then the states of the closed-loop
system are robustly led to the desired equilibrium point
with an exponential rate by the nominal feedback law. The
proposed adaptive scheme does not require the knowledge
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of a Lyapunov function for the closed-loop system under the
action of the nominal feedback stabilizer.

The obtained results are applicable to highly nonlinear,
uncertain discrete-time systems with unknown constant pa-
rameters. The applicability of the obtained results to real
control problems is demonstrated by the rigorous application
of the proposed adaptive control scheme to uncertain freeway
models. However, it can also be applied to uncertain discrete-
time systems arising from other application fields, such as
fluid flow networks and robotics.

Traffic congestion in freeways leads to serious degradation
of the infrastructure causing excessive delays, impacting traf-
fic safety and the environment. Extensive research has been
conducted to investigate and develop traffic control measures
which can tackle this phenomenon. It is well known, that the
efficiency of traffic operations can be enhanced by explicit
feedback control approaches applied via ramp-metering or
other control measures. For instance, the pioneering I-type
regulator ALINEA [8] and its extensions [9], [10], as well as
other proposed feedback control algorithms (see, e.g., [11],
[12]) are explicit feedback control strategies that should guar-
antee local stability properties for the desired Uncongested
Equilibrium Point (UEP) of a freeway model.

A Lyapunov approach was adopted in [13], which led to
the robust, global exponential stabilization of the UEP of
a nonlinear freeway model via an explicit feedback law.
However, the nonlinear feedback stabilizer demands the
knowledge of several model parameters, which are usually
unknown. The present work proposes an adaptive control
scheme, which is based on a dead-beat nonlinear observer
and guarantees the robust, global exponential convergence
rate to the desired UEP of the freeway model. The nonlinear
freeway model considered in this work is a generalization of
various freeway models (see [14], [15]).

The structure of the paper is as follows. Firstly, in Section
II the robust, global, exponential, adaptive control scheme
for nonlinear, uncertain, discrete-time systems is described.
Then, in Section III, the obtained results are applied to
uncertain freeway models while in Section IV, an illustrating
example of a freeway model is presented, where it is shown
that the proposed adaptive control scheme is robust, even if
the vector of the unknown parameters is not constant. The
concluding remarks of the paper are given in Section V.

Due to space limitations, all proofs are omitted and can
be found in [16].

Definitions and Notation: Throughout this manuscript, we
adopt the following notation and terminology:



• For every set S, Sn =

n times︷ ︸︸ ︷
S × ...× S for every positive

integer n. For certain sets S1, S2, ..., Sn, the set S1 ×
S2×...×Sn is denoted by

∏n
i=1 Si. Moreover, if <+ :=

[0,+∞), then, <n
+ := (<+)n.

• Let x ∈ <n. By |x| we denote the Euclidean norm of
x ∈ <n and by x′ we denote the transpose of x ∈ <n.

• When R is an index set, then by (xi; i ∈ R) we denote
a vector with components all xi ∈ < with i ∈ R, in
increasing order. For example, if R = {2, 5, 10}, then
(xi; i ∈ R) = (x2, x5, x10)′.

• We denote by y(p)(t) = (y(t−1), y(t−2), ..., y(t−p))
for certain positive integer p > 0 the “p-history” of the
signal y(t) (defined for all t ≥ p).

Consider the discrete-time system:

z+ = F (d, z), z ∈ X ⊆ <n, d ∈ D, (1)

where X ⊆ <n is a non-empty closed set with z∗ ∈ X ,
D ⊆ <l is a non-empty set, F : D × X → X is a locally
bounded mapping with F (d, z∗) = z∗ for all d ∈ D. In this
work we adopt the following robust, exponential stability
notion (see similar notions in [17], [18], [19]).

Definition 1.1: We say that z∗ ∈ X is Robustly Globally
Exponentially Stable (RGES) for system (1) if there exist
constants M,σ > 0 such that for every z0 ∈ X , {di ∈
D}∞i=0, the solution z(t) of (1) with z(0) = z0 corresponding
to {di ∈ D}∞i=0 satisfies |z(t)− z∗| ≤M exp(−σt)|z0− z∗|
for all t ≥ 0.

II. EXPONENTIAL STABILIZATION OF SYSTEMS WITH
UNKNOWN PARAMETERS

We consider discrete-time systems with uncertain constant
parameters and outputs. Consider the discrete-time system:

x+ = f(d, θ, x, u), x ∈ S, d ∈ D,u ∈ U, (2)

where S ⊆ <n, D ⊆ <l, U ⊆ <m, Θ ⊆ <q are non-empty
sets and f : D × Θ × S × U → S is a locally bounded
mapping. In this setting, x ∈ S denotes the state of the
system (2), d ∈ D is an unknown, time-varying input, u ∈ U
is the control input and θ ∈ Θ denotes the vector of unknown,
constant parameters. The measured output of the system is
given by

y(t) = h(d(t), θ, x(t)), (3)

where h : D ×Θ× S → <k is a locally bounded mapping.
We assume that x∗ ∈ S is an equilibrium point for system
(2) and d ∈ D is a vanishing perturbation, i.e., there exist
vectors y∗ ∈ h(D×{θ}×S) such that f(d, θ, x∗, u∗) = x∗,
y∗ = h(d, θ, x∗) for all d ∈ D. Moreover, let Y ⊆ <k be a
set with h(D ×Θ× S) ⊆ Y .

The main result of this section provides sufficient condi-
tions for dynamic, robust, global, exponential stabilization of
the equilibrium point x∗ ∈ S. The stabilizer is constructed
under the following assumptions.

(H1) Suppose that there exists a mapping k : Θ × Y → U
such that x∗ ∈ S is RGES for the closed-loop system (2),
(3) with u = k(θ, y).

(H2) Suppose that there exist a positive integer p > 0, a
mapping Ψ : Y ×A→ Θ and a set A ⊆ Y p which contains
a neighborhood of (y∗, ..., y∗), such that for every sequence
{(d(t), θ̂(t)) ∈ D×Θ}∞t=0 and for every x0 ∈ S, the solution
x(t) of (2), (3) with u = k(θ̂, y), initial condition x(0) = x0
corresponding to inputs {(d(t), θ̂(t)) ∈ D ×Θ}∞t=0 satisfies
θ = Ψ(y(t), y(p)(t)) for all t ≥ p with y(p)(t) ∈ A.
(H3) There exists a positive integer m > 0, such that for
every sequence {(d(t), θ̂(t)) ∈ D × Θ}∞t=0 and for every
x0 ∈ S, the solution x(t) of (2), (3) with u = k(θ̂, y), initial
condition x(0) = x0 corresponding to inputs {(d(t), θ̂(t)) ∈
D × Θ}∞t=0 satisfies y(p)(t − i(t)) ∈ A for some i(t) ∈
{0, 1, ...,m} and for all t ≥ m+ p.

Assumption (H1) is a standard assumption, which guaran-
tees the existence of a robust, global, exponential stabilizer
when the vector of the parameters θ ∈ Θ is known.
Assumptions (H2), (H3) are equivalent to complete, robust
observability assumption of θ from the output given by (3)
(see also [7]).

Now, we are ready to state the main result of this section.

Theorem 2.1: Consider system (2) with output given by (3)
under assumption (H1), (H2), (H3). Moreover, suppose that
the sets f(D × Θ × S × U), Y , Θ are bounded. Finally,
assume that there exist a constant L ≥ 0, neighborhoods
N1 ⊆ <n of x∗, N2 ⊆ <k of y∗, N3 ⊆ <q of θ, such that the
inequalities |f(d, θ, x, k(θ̂, h(d, θ, x)))− x∗|+ |h(d, θ, x)−
y∗| ≤ L|x − x∗| + L|θ̂ − θ| and |Ψ(h(d, θ, x), w) − θ| ≤
L|x−x∗|+L

∑p
i=1 |wi−y∗| hold for all x ∈ N1∩S, d ∈ D,

θ̂ ∈ N3∩Θ, wi ∈ N2∩Y (i = 1, ..., p) with w = (w1, ..., wp).
Then, the dynamic feedback stabilizer

w+
1 = y,

w+
2 = w1,

...

w+
p = wp−1, (4)

θ̂+ =

{
θ̂ if w 6∈ A
Ψ(y, w) if w ∈ A

u = k(θ̂, y),

where w = (w1, ..., wp) ∈ Y p and θ̂ ∈ Θ, achieves the
following:
1) There exist constants M,σ > 0 such that for every
sequence {d(i) ∈ D}∞i=0 and for every (x0, w0, θ̂0) ∈
S×Y p×Θ, the solution (x(t), w(t), θ̂(t)) of the closed-loop
system (2), (3) with (4), initial condition (x(0), w(0), θ̂(0)) =
(x0, w0, θ̂0) corresponding to input {d(i) ∈ D}∞i=0 satisfies

|x(t)− x∗|+
p∑

i=1

|wi(t)− y∗|+ |θ̂(t)− θ| ≤

M exp(−σt)
(
|x(0)− x∗|+

p∑
i=1

|wi(0)− y∗|+ |θ̂(0)− θ|
)

(5)
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Fig. 1. Scheme of the freeway model.

for all t > 0.
2) For every sequence {d(i) ∈ D}∞i=0 and for every
(x0, w0, θ̂0) ∈ S × Y p × Θ the solution (x(t), w(t), θ̂(t))
of the closed-loop system (2), (3) with (4), initial condition
(x(0), w(0), θ̂(0)) = (x0, w0, θ̂0) corresponding to input
{d(i) ∈ D}∞i=0 satisfies θ̂(t) = θ, for all t ≥ m+ p+ 1.

Remark: The dynamic feedback stabilizer (4) achieves dead-
beat estimation of the vector of unknown parameters θ ∈ Θ.
More specifically, the variable θ̂ provides an estimation of
the vector of unknown parameters θ ∈ Θ. Due to the dead-
beat estimation, the exponential convergence property for the
closed-loop system is preserved, as estimate (5) shows.

III. APPLICATION TO FREEWAY TRAFFIC CONTROL

This section focuses on the application of the proposed
adaptive control scheme to freeway traffic control. The ob-
jective of the control strategy is to stabilize the corresponding
closed-loop system to the desired UEP.

A. The freeway model

We consider a freeway which consists of n ≥ 3 compo-
nents or cells; typical cell lengths may be 200-500 m. Each
cell may have an external inflow (e.g., from corresponding
on-ramps), located near the cell’s upstream boundary; and an
external outflow (e.g., via corresponding off-ramps), located
near the cell’s downstream boundary (Fig.1). The number of
vehicles at time t ≥ 0 in component i ∈ {1, ..., n} is denoted
by xi(t). The total outflow and the total inflow of vehicles
of the component i ∈ {1, ..., n} at time t ≥ 0 are denoted
by Fi,out(t) ≥ 0 and Fi,in(t) ≥ 0, respectively. All flows
during a time interval are measured in [veh]. Consequently,
the balance of vehicles (conservation equation) for each
component i ∈ {1, ..., n} gives:

xi(t+ 1) = xi(t)− Fi,out(t) + Fi,in(t), t ≥ 0. (6)

Each component of the network has storage capacity
ai > 0 (i.e. xi ∈ [0, ai] for each i = 1, ..., n). Based on
(6) and the assumption that the outflows of every cell are
constant percentages of the total outflow from the same cell
as proposed in [14], we obtain the freeway model:

x+1 = x1 − s2f1(x1) + min(q1, c1(a1 − x1), v1)

= x1 − s2f1(x1) +W1v1,
(7)

x+i = xi − si+1fi(xi)

+ min(qi, ci(ai − xi), vi + (1− Pi−1)fi−1(xi−1))

= xi − si+1fi(xi) +Wivi + si(1− Pi−1)fi−1(xi−1),

i =2, ..., n− 1,
(8)

x+n = xn − fn(xn)

+ min(qn, cn(an − xn), vn + (1− Pn−1)fn−1(xn−1))

= xn − fn(xn) +Wnvn + sn(1− Pn−1)fn−1(xn−1),
(9)

where fi, denote the attempted outflow from cell i to cell
i+ 1, illustrating what in the specialized literature of Traffic
Engineering (see, e.g., [15]) is called the demand part of the
fundamental diagram of the ith cell. Moreover, qi ∈ (0,+∞)
denotes the maximum flow that the ith cell can receive (or
the capacity flow of the ith cell) and ci ∈ (0, 1] (i = 1, ..., n)
is the jam velocity of the ith cell. The variables vi(t) ≥ 0 de-
note the attempted external inflow to cell i ∈ {1, ..., n} from
regions out of the freeway and the variables Wi(t) ∈ [0, 1]
indicate the percentage of the attempted external inflow to
cell i ∈ {1, ..., n} that becomes actual inflow. The variables
si(t) ∈ [0, 1], for each i = 2, ..., n, indicate the percentage
of the attempted outflow and they are given by the following
formula:

si(t) = (1− di(t))

min

(
1,max

(
0,

min(qi, ci(ai − xi(t)))− vi(t)
(1− Pi−1)fi−1(xi−1(t))

))

+di(t) min

(
1,

min(qi, ci(ai − xi(t)))
(1− Pi−1)fi−1(xi−1(t))

)
,

(10)

where di(t) ∈ [0, 1], i = 2, ..., n, t ≥ 0 are time-
varying parameters denoting all possible cases for the relative
priorities of the inflows (see, [13]). The constants Pi are
the well-known exit rates of the freeway, for which we
assume that Pn = 1, Pi < 1 for i = 1, ..., n − 1, and that
all exits to regions out of the network can accommodate
the respective exit flows. Furthermore, notice that vi(t),
i = 2, ..., n, correspond to external on-ramp flows which
may be determined by a ramp metering strategy. For the
very first cell 1, we assume for convenience, that there is
just one inflow, v1. All the above are illustrated in Fig.1. For
a more complete justification of the derivation of the above
models, see [13].

We next make the following assumption for the functions
fi : [0, ai]→ <+, (i = 1, ..., n):

(H) There exist constants δi ∈ (0, ai] and ri ∈ (0, 1) such
that fi(z) = riz for z ∈ [0, δi]. Moreover, there exists a
positive constant fmin

i > 0 such that fi(δi) = riδi ≥
fi(z) ≥ fmin

i for all z ∈ [δi, ai].

Assumption (H) is a technical assumption that allows
a very general class of demand functions (which are also
allowed to be discontinuous). A more general assumption
than assumption (H) was used in [13] (the demand functions
fi : [0, ai] → <+, (i = 1, ..., n) was not necessarily linear
on the corresponding intervals [0, δi]), but therein, it was
assumed that all parameters of the model were known.

B. Global Exponential Stabilization of Freeway Models

Define the vector field F̃ : D×S× (0,+∞)×<n−1
+ → S

for all d = (d2, ..., dn) ∈ D = [0, 1]n−1, x ∈ S =



∏n
i=1(0, ai] and v ∈ (0,+∞)×<n−1

+ such that:

F̃ (d, x, v) = (F̃1(d, x, v), ..., F̃n(d, x, v))′ ∈ <n

with

F̃1(d, x, v) = x1 − s2f1(x1) + min(q1, c1(a1 − x1), v1),

F̃i(d, x, v) = xi − si+1fi(xi)+

min(qi, ci(ai − xi), vi + (1− Pi−1)fi−1(xi−1))

i = 2, ..., n− 1,

F̃n(d, x, v) = xn − fn(xn)+

min(qn, cn(an − xn), vn + (1− Pn−1)fn−1(xn−1)),

si =

(1− di) min

(
1,max

(
0,

min(qi, ci(ai − xi))− vi
(1− Pi−1)fi−1(xi−1)

))

+ di min

(
1,

min(qi, ci(ai − xi))
(1− Pi−1)fi−1(xi−1)

)
.

(11)

Notice that, using definition (11), the control system (7),
(8), (9) can be written in the following vector form:

x+ = F̃ (d, x, v), x ∈ S, d ∈ D, v ∈ (0,+∞)×<n−1
+ . (12)

Consider the freeway model (12) under assumption (H).
Let v∗ = (v∗1 , ..., v

∗
n) ∈ (0,+∞) × <n−1

+ be a vector that
satisfies:

v∗1 < min(q1, c1(a1 − δ1), r1δ1),

v∗i +

i−1∑
j=1

v∗j

( i−1∏
k=j

(1− Pk)
)
< min(qi, ci(ai − δi), riδi).

(13)

Any inflow vector that satisfies (13), defines an UEP x∗ =
(x∗1, ..., x

∗
n) ∈

∏n
i=1(0, δi) with the following form:

x∗1 = r−11 v∗1 ,

x∗i = r−1i

(
v∗i +

i−1∑
j=1

v∗j

( i−1∏
k=j

(1− Pk)

))
, i = 2, ..., n.

(14)

The UEP is not globally exponentially stable for arbitrary
v∗1 > 0, v∗i ≥ 0 (i = 2, ..., n); indeed, for relatively large
values of inflows v∗i , (i = 1, ..., n), other equilibria for model
(12) (congested equilibria) may appear, for which the cell
densities are large and can attract the solution of (12).

The following (see, [13]) is the main result in feedback
design that provides the nominal feedback for the adaptive
control scheme that we intend to use. It shows that a
continuous, robust, global exponential stabilizer exists for
every model of the form (12) under assumption (H).

Theorem 3.1: Consider system (12) with n ≥ 3 under
assumption (H) for each i = 1, ..., n. Then there exist a
subset R ⊆ {1, ..., n} of the set of all indices i ∈ {1, ..., n}
with v∗i > 0, constants σ ∈ (0, 1], bi ∈ (0, v∗i ) for i ∈ R

and a constant τ∗ > 0 such that for every τ ∈ (0, τ∗) the
feedback law k : S → <n

+ defined by:

k(x) = (k1(x), ..., kn(x))′ ∈ <n with

ki(x) = max

(
bi, v

∗
i−τ−1(v∗i − bi)Ξ(x)

)
for all x ∈ S, i ∈ R,

ki(x) = v∗i for all x ∈ S, i /∈ R,

(15)

where

Ξ(x) :=

n∑
i=1

σi max(0, xi − x∗i ), for all x ∈ S, (16)

achieves robust global exponential stabilization of the UEP
x∗ of system (12), i.e., x∗ is RGES for the closed-loop system
(12) with v = k(x).

The result of Theorem 3.1 (see, [13]) is based on the
construction of a Control Lyapunov function for system (12)
under a more general assumption than assumption (H). The
feedback law provides values for the controllable inflows vi,
i ∈ R, in the interval [bi, v

∗
i ] for all i ∈ R, where bi ∈ (0, v∗i )

for i ∈ R are the minimum allowable inflows. Since the proof
of Theorem 3.1 is constructive, criteria for the selection of
the index set R ⊆ {1, ..., n} and the constants σ ∈ (0, 1],
bi ∈ (0, v∗i ) for i ∈ R and τ∗ > 0 are provided.

In what follows, we assume that x∗ = (x∗1, ..., x
∗
n) ∈∏n

i=1(0, µi − ε] (where µi ∈ (0, δi)), v∗i ∈ [bi + ε, vi,max]
(where vi,max is the maximum admissible inflow value for
the ith cell, see, also, [16]) for i ∈ R and for some ε ∈
(0, 1/2) and v∗ ∈ (0, v1,max] ×

∏n
i=2[0, vi,max]. Moreover,

we assume that Pi ∈ [0, 1 − ε] for i = 1, ..., n − 1 and
ri ∈ [ε, 1− ε] for i = 1, ..., n.

Another feature of the present problem is that the selection
of the UEP may be made in an implicit way. For example,
we may want the UEP that guarantees the maximum outflow
from the freeway. In such cases, the equilibrium position
of the controllable inflows is determined as a function of
the nominal values of the uncontrollable inflows and the
parameters of the freeway, i.e., there exists a smooth function

g : Dg →
∏
i∈R

[bi + ε, vi,max],

where Dg = [0, 1 − ε]n−1 ×
∏

i/∈R[0, vi,max] × [ε, 1 − ε]n,
such that:

(v∗i ; i ∈ R) = g(P, v∗i ; i /∈ R, r), (17)

where P = (P1, ..., Pn−1)′ ∈ [0, 1 − ε]n−1 and r =
(r1, ..., rn)′ ∈ [ε, 1− ε]n.

C. Measurements and Unknown Parameters

Let m ∈ {1, ..., n} be the cardinal number of the set R and
let u ∈ U =

∏
i∈R[bi, vi,max] ⊆ (0,+∞)m be the vector of

all controllable inflows vi with i ∈ R.
The model parameters which are (usually) unknown or

uncertain are: the exit rates Pi ∈ [0, 1) for i = 1, ..., n −
1, the uncontrollable inflows v∗i ∈ <+ for i /∈ R and the
demand coefficients ri ∈ (0, 1) for i = 1, ..., n. All these



parameters will be denoted by θ = (P, v∗i ; i /∈ R, r) and
are assumed to take values in a compact set Θ := [0, 1 −
ε]n−1×

∏
i/∈R[0, vi,max]× [ε, 1−ε]n, for some ε ∈ (0, 1/2).

Therefore, the control system (7), (8), (9) can be written in
the following vector form:

x+ = F̄ (d, θ, x, u),

x ∈ S, d ∈ D,θ ∈ Θ, u ∈ U =
∏
i∈R

[bi, vi,max]. (18)

Notice that the feedback law defined by (15) is a feedback
law of the form u = k(θ, x): the feedback law depends on
the unknown parameters through x∗ and (v∗i ; i ∈ R) (recall
(14) and (17)). It follows that assumption (H1) holds for
system (18). An explicit definition of the feedback law k :
Θ × S → U is given by the following equations for all
θ̂ = (P̂ , v̂∗i ; i /∈ R, r̂) ∈ Θ, x ∈ S with r̂ = (r̂1, ..., r̂n)′ ∈
[ε, 1− ε]n, P̂ = (P̂1, ..., P̂n−1)′ ∈ [0, 1− ε]n−1:

(v̂∗i ; i ∈ R) = g(P̂ , v̂∗i ; i /∈ R, r̂), (19)

x̂∗1 = min(r̂−11 v̂∗1 , µ1 − ε),

x̂∗i = min

(
r̂−1i

(
v̂∗i +

i−1∑
j=1

v̂∗j

( i−1∏
k=j

(1− P̂k)

))
, µi − ε

)
,

for i = 2, ..., n,
(20)

u = k(θ̂, x), with

ki(θ̂, x) = max(bi,v̂
∗
i − τ−1(v̂∗i − bi)Ξ(θ̂, x)),

for all x ∈ S, i ∈ R,
(21)

Ξ(θ̂, x) :=

n∑
i=1

σi max(0, xi − x̂∗i ), for all x ∈ S. (22)

The measured quantities are the cell densities x ∈ S and
the outflows from each cell. We have two kinds of outflows
from each cell: the outflow to regions out of the freeway

Qout = (Q1,out, ..., Qn,out)
′ ∈ <n

+,

Qi,out = Pisi+1fi(xi), i = 1, ..., n− 1,

Qn,out = fn(xn),

(23)

and the outflows from one cell to the next cell
Q = (Q1, ..., Qn−1)′ ∈ <n−1

+ ,

Qi =(1− Pi)si+1fi(xi), i = 1, ..., n− 1.
(24)

Therefore, the measured output is given by:

y = h(d, θ, x) = (x,Qout, Q) ∈ S ×<n
+ ×<n−1

+ . (25)

Assumption (H) guarantees that h(D ×Θ× S) ⊆ Y where
Y := S ×

∏n
i=1[0, ai]×

∏n
i=1[0, ai] is a bounded set.

Next, define a mapping Ψ : h(D × Θ × S) × Y →
Θ for which θ = (P1, ..., Pn−1, v

∗
i ; i /∈ R, r1, ..., rn)′ =

Ψ(y(t), y(t − 1)) for all t ≥ 1 with y(t − 1) ∈ A, where
A ⊆ Y is the set for which:

w = (w1, w2, w3) ∈ A⇔

(w1,w2, w3) ∈ Y,w1 ∈ Ω =

n∏
i=1

(0, µi)

and w2,i + w3,i > 0 for i = 1, ..., n− 1.

(26)

The mapping Ψ : h(D ×Θ× S)× Y → Θ is defined by

θ̂ = (P̂1, ..., P̂n−1, v̂
∗
i ; i /∈ R, r̂1, ..., r̂n)′ = Ψ(y, w), (27)

with

P̂i = min

(
1− ε, w2,i

w2,i + w3,i

)
, i = 1, ..., n− 1, (28)

v̂∗i = max(0,min(vi,max, xi − w1,i

+ w3,i + w2,i − w3,i−1)), i ∈ {2, ..., n− 1}\R,
(29)

v̂∗n = max(0,min(vn,max,xn − w1,n + w2,n − w3,n−1)),

if n /∈ R,
(30)

v̂∗1 = max(0,min(v1,max,x1 − w1,1 + w3,1 + w2,1)),

if 1 /∈ R,
(31)

r̂i = max

(
ε,min

(
1− ε, w2,i + w3,i

w1,i

))
, i = 1, ..., n− 1,

(32)

r̂n = max

(
ε,min

(
1− ε, w2,n

w1,n

))
. (33)

Using assumption (H), (13), (14) and (25), it follows that
there exists y∗ ∈ Y with y∗ = h(d, θ, x∗) for all d ∈ D. By
virtue of our assumption x∗ = (x∗1, ..., x

∗
n) ∈

∏n
i=1(0, µi)

and v∗ ∈ (0, v1,max] ×
∏n

i=2[0, vi,max], (26), we conclude
that A contains all w ∈ Y in a neighborhood of y∗. It follows
that (H2) holds with p = 1 for system (18) with output given
by (23), (24), (25).

The fact that Assumption (H3) holds for the system (18)
with output given by (23), (24), (25) is a direct consequence
of the following proposition.

Proposition 3.2: Suppose that bi > 0 (i ∈ R) and vi,max

(i /∈ R) are sufficiently small and that τ > 0 is sufficiently
small (τ ≤ ε2σn mini∈R

(
(vi,max − bi)

−1)). Then, there
exists an integer m ≥ 1 such that for every sequence
{
(
d(t), θ̂(t)

)
∈ D×Θ}∞t=0 and for every x0 ∈ S, the solution

x(t) of (18), (25) with u = k(θ̂, x), initial condition x(0) =
x0 corresponding to inputs {

(
d(t), θ̂(t)

)
∈ D × Θ}∞t=0

satisfies y(t − 1 − i(t)) ∈ A for some i(t) ∈ {0, 1, ..,m}
and for all t ≥ m+ 1.

The main result for the freeway model is a consequence
of Theorem 2.1 and the fact that all functions are sufficiently
smooth in a neighborhood of the equilibrium.

Corollary 3.3: Consider system (18) with output given by
(23), (24), (25). Suppose that bi > 0 (i ∈ R) and vi,max(i /∈
R) are sufficiently small and that τ > 0 is sufficiently small.
Then the dynamic feedback law given by:

w+
1 = x,w+

2 = Qout, w
+
3 = Q, (34)



P̂+
i =

 P̂i if w 6∈ A

min

(
1− ε, w2,i

w2,i+w3,i

)
if w ∈ A

,

i = 1, ..., n− 1,

(35)

(v̂∗i )+ =

 v̂∗i if w 6∈ A
max(0,min(vi,max, xi − w1,i

+w3,i + w2,i − w3,i−1))
if w ∈ A

,

if i ∈ {2, ..., n− 1} \R,
(36)

(v̂∗n)+ =

 v̂∗n if w 6∈ A
max(0,min(vn,max, xn − w1,n

+ w2,n − w3,n−1))
if w ∈ A

,

if n /∈ R,
(37)

(v̂∗1)+ =

 v̂∗1 if w 6∈ A
max(0,min(v1,max, x1 − w1,1

+ w3,1 − w2,1))
if w ∈ A

,

if 1 /∈ R,
(38)

r̂+i =


r̂i if w 6∈ A

max

(
ε,min

(
1− ε, w2,i+w3,i

w1,i

))
if w ∈ A

,

i = 1, ..., n− 1,
(39)

r̂+n =


r̂n if w 6∈ A

max

(
ε,min

(
1− ε, w2,n

w1,n

))
if w ∈ A

, (40)

with (19)-(22), P̂ = (P̂1, ..., P̂n−1), P = (P1, ..., Pn−1),
r̂ = (r̂1, ..., r̂n), r = (r1, ..., rn), w = (w1, w2, w3), v̂∗ =
(v̂∗1 , ..., v̂

∗
n), achieves the following:

1) There exist constants M,σ > 0 such that for every
sequence {d(i) ∈ D}∞i=0 and for every (x0, w0, P̂0, v̂

∗
j,0; j /∈

R, r̂0) ∈ S × Y × Θ, the solution of the closed-
loop system (18), (25) with (34)-(40), (19)-(22), ini-
tial condition (x(0), w(0), P̂ (0), v̂∗j (0); j /∈ R, r̂(0)) =

(x0, w0, P̂0, v̂
∗
j,0; j /∈ R, r̂0) corresponding to input {d(i) ∈

D}∞i=0 satisfies for all t ≥ 0:

|x(t)− x∗|+ |w(t)− y∗|+ |r̂(t)− r|+ |P̂ (t)− P |+

|v̂∗(t)− v∗| ≤Mexp(−σt)
(
|x(0)− x∗|+ |w(0)− y∗|

+ |r̂(0)− r|+ |P̂ (0)− P |+
∑
i/∈R

|v̂∗i (0)− v∗i |
)
.

(41)

2) There exists an integer N ≥ 1 such that for every
sequence {d(i) ∈ D}∞i=0 and for every (x0, w0, P̂0, v̂

∗
j,0; j /∈

R, r̂0) ∈ S × Y × Θ, the solution of the closed-
loop system (18), (25) with (34)-(40), (19)-(22), ini-
tial condition (x(0), w(0), P̂ (0), v̂∗j (0); j /∈ R, r̂(0)) =

(x0, w0, P̂0, v̂
∗
j,0; j /∈ R, r̂0) corresponding to input {d(i) ∈

D}∞i=0 satisfies P̂ (t) = P , r̂(t) = r, v̂∗(t) = v∗, for all
t ≥ N .

IV. AN ILLUSTRATING EXAMPLE

The following example illustrates the application of the
results of the previous section to a specific freeway model.

Consider a freeway model of the form (7), (8), (9), (10)
with n = 5 cells. Each cell is 0.5 km and it has 3 lanes,
an on-ramp and an off-ramp. The first and the third on-
ramp are assumed to be controllable, hence R = {1, 3} and
u = (v1, v3). The inflows from the rest of the on-ramps
are assumed to be unknown and therefore they will have to
be estimated. Furthermore, we assume that di(t) ≡ 0, thus
the on-ramp inflows have absolute priority over the internal
inflows. The simulation time step is set to be T = 15s and
the cell capacities are ai = 170 [veh] for i = 1, ..., 5. Note
that, since all flows and densities are measured in [veh],
the cell length, the simulation time step and the number of
lanes do not appear explicitly, but they are only involved
implicitly in the value of every variable and every constant
(e.g. critical density, jam density, flow capacity, wave speed
etc.) corresponding to density or flow.

The formulas of the demand functions are given by the
following equations:

fi(z) =

{
( 5
11 )z z ∈ [0, 55]

25− ( 7
115 )(z − 55) z ∈ (55, 170]

(i = 1, ..., 4),

f5(z) =

{
( 4
11 )z z ∈ [0, 55]

20− ( 3
115 )(z − 55) z ∈ (55, 170]

. (42)

Assumption (H) holds with δi = 55 [veh] for i = 1, ..., 5,
ri = 5/11, fmin

i = 18 for i = 1, ..., 4, r5 = 4/11
and fmin

5 = 17. Thus, every cell has the same critical
and jam density which correspond to 36.7 [veh/km/lane]
and 113.3 [veh/km/lane], respectively, in common traffic
units, with the above settings. Definitions (42) guarantee
that the demand functions for i = 1, ..., 4 lead to 20%
higher flow capacity than the flow capacity of the fifth cell
(fi(δi) = 25 [veh], i = 1, ..., 4, and f5(δ5) = 20 [veh],
corresponding to 2000 and 1600 [veh/h/lane] respectively)
and therefore the last cell is a bottleneck for the freeway. The
capacity drop phenomenon has been taken into account by
considering a linearly decreasing demand function for over-
critical densities xi ∈ (55, 170] (similar to the one proposed
in [20]). The congestion wave speeds are ci = 0.22 for
i = 1, ..., 5, corresponding to 26.4 [km/h], while the cell flow
capacities qi for i = 1, ..., 5 satisfy the inequalities qi ≥ ciai
for i = 1, ..., 5 and therefore, they play no role in the model.

Our goal is to globally exponentially stabilize the system
at an UEP which is as close as possible to the critical
density (due to the fact that the flow value at the critical
density is largest). Therefore, we selected as the upper
bound for the equilibrium densities and for each cell to
be the µi = δi − ε (i = 1, ..., 5), where ε = 10−4.
The vectors of the exit rates and the maximum admissible
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Fig. 2. Time evolution of the states of the open-loop system (dashed lines
correspond to the UEP for constant inflows v∗ = [17.29316, 1, 4, 2, 2.5]
[veh]) with fully congested initial condition x0 = (a1, a2, a3, a4, a5)′.

inflows are set to be P = [0.04, 0.15, 0.08, 0.1] and vmax =
[25, 1.3, 4, 2.3, 2.8] respectively. The uncontrollable inflows
are constant and equal to v∗2 = 1, v∗4 = 2 and v∗5 = 2.5.
Summarizing, the vector of the parameters θ becomes θ =
[P1, ..., P4, v

∗
2 , v
∗
4 , v
∗
5 , r1, ..., r5].

The function

g : Dg →
∏
i=1,3

[bi + ε, vi,max],

with Dg = [0, 1− ε]4 ×
∏

i=2,4,5[0, vi,max]× [ε, 1− ε]5 and
b1 = b3 = 0.2, involved in (19) has been selected in such
a way so that the 3rd inflow takes its maximum admissible
value (v∗3 = v3,max = 4), while the inflow from the 1st

cell is formed in such a way so that the outflow from the
last (5th) cell is approximately maximized: Then, the UEP
is x∗ = [38.045, 38.723, 41.715, 42.778, 54.9997] for v∗ =
[17.29316, 1, 4, 2, 2.5], P = [0.04, 0.15, 0.08, 0.1] and r =
[5/11, 5/11, 5/11, 5/11, 4/11].

The above UEP is not globally exponentially sta-
ble due to the existence of additional (congested) equi-
libria. This is shown in Fig.2, where the solution of
the open-loop system, with constant inflows v∗ =
[17.29316, 1, 4, 2, 2.5], is attracted by the congested equi-
librium [96.19, 94.6, 87.73, 85.22, 82.33]′ leading to much
lower outflow than the capacity flow of the last cell. There-
fore, if the objective is the operation of the freeway with
largest outflow, then a control strategy will be needed.

We are in a position to guarantee global exponential
attractivity of the UEP for the freeway model that was
described above by using Corollary 3.3. Indeed, Corollary
3.3 guarantees that there exist constants σ ∈ (0, 1], b1, b3 > 0
and τ > 0 such that, the feedback law k : Θ×S → U defined
by:

k1(θ̂, x) =

max
(
b1, v̂

∗
1 − τ−1(v̂∗1 − b1)

5∑
i=1

σi max(0, xi − x̂∗i )
)
,

k3(θ̂, x) =

max
(
b3, v̂

∗
3 − τ−1(v̂∗3 − b3)

5∑
i=1

σi max(0, xi − x̂∗i )
)
,

(43)

(v∗1 , v
∗
3) = g(P̂ , v̂∗i ; i 6∈ R, r̂), (44)
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Fig. 3. (a) The Euclidean norm of the deviation x(t) − x∗ of the state
from the UEP, i.e., |x(t)−x∗|, (b) The weighted norm ‖θ̂(t)− θ‖n of the
deviation of the estimated parameters from the nominal parameters vector,
for the closed-loop system (18), (25),(34)-(40), (43),(44),(20), (22) for x0 =
(10, 15, 10, 15, 10)′ (red line), x0 = (70, 85, 64, 120, 100)′ (blue line)
and x0 = (a1, a2, a3, a4, a5)′ (green line).

for the closed-loop system (18), (23), (24), (25)
with (34)-(40), (43), (44), (20) and (22), achieves
global exponential attractivity of the UEP x∗ =
[38.045, 38.723, 41.715, 42.778, 54.9997].

We tested various values of the constants σ ∈ (0, 1] and
τ > 0. Low values for σ ∈ (0, 1] require small values for τ >
0 in order to guarantee global exponential stability for the
closed-loop system. All the following tests, were conducted
with the same values σ = 0.7 and τ = 10.

All the following simulation tests were conducted with
the same initial conditions for the observer states w1,i(0) =
100 [veh], w2,i(0) = 20 [veh], w3,i(0) = 20 [veh] for i =
1, ..., 5, p̂i(0) = 0 for i = 1, ..., 4, v̂∗i (0) = 0 for i = 2, 4, 5
and r̂i(0) = 0.7 for i = 1, ..., 5.

Fig.3(a) shows the evolution of the Euclidean norm of the
deviation x(t)−x∗ of the state from the UEP, i.e., |x(t)−x∗|,
for the closed-loop system with the proposed feedback reg-
ulator (34)-(40), (43), (44), (20) and (22) for three different
initial conditions. The first initial condition corresponds to
very low densities (x0 = (10, 15, 10, 15, 10)′), the second
initial condition corresponds to congested states with high
deviations between each other (x0 = (70, 85, 65, 120, 100)′),
while the third initial condition corresponds to the state
where the density of every cell has its maximum value,
i.e. ai (i = 1, ..., 5). For the same simulation test, Fig.3(b)
depicts the evolution of the weighted norm ‖θ̂(t) − θ‖n of
the deviation of the estimated parameters from the nominal
parameters vector, which is defined by:

‖θ̂(t)− θ‖n =

∣∣∣∣( 1

1− ε
(P̂ (t)− P ),

v̂∗2(t)− v∗2
v2,max

,
v̂∗4(t)− v∗4
v4,max

,

v̂∗5(t)− v∗5
v5,max

,
1

1− ε
(r̂(t)− r)

)∣∣∣∣.
(45)
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Fig. 4. (a) The Euclidean norm of the deviation x(t) − x∗ of the state
vector from the UEP, (b) The weighted norm ‖θ̂(t)−θ(t)‖n of the deviation
of the estimated parameters from the nominal parameters vector, for the
closed-loop system (18), (25), (34)-(40), (43),(44),(46),(20), (22) for x0 =
(10, 15, 10, 15, 10)′ (red line), x0 = (70, 85, 64, 120, 100)′ (blue line)
and x0 = (a1, a2, a3, a4, a5)′ (green line).

Indeed, Fig.3 shows that the proposed feedback stabilizer
achieves dead-beat estimation of the vector θ, preserving the
exponential convergence property for the closed-loop system.

We also tested the performance of the proposed feedback
stabilizer under the effect of periodic uncontrollable inflows
with different frequencies and different amplitudes, given by:

v∗2 = 1 + 0.3 cos
(3πt

2

)
, v∗4 = 2 + 0.1 cos(πt) and

v∗5 = 2.5 + 0.2 cos
(πt

4

)
.

(46)

Figures 4(a) and 4(b), depict the evolution of the Euclidean
norm of the deviation x(t) − x∗ and the evolution of the
weighted norm ‖ · ‖n defined by (45) for the deviation
θ̂(t)− θ(t), respectively, with respect to the unknown time-
varying uncontrollable inflows (46) and under the proposed
feedback regulator. The initial conditions were the same as
in the previous case. Again, the proposed regulator achieved
to lead the system to the equilibrium state.

V. CONCLUDING REMARKS

Novel results for adaptive control schemes for uncer-
tain discrete-time systems, which guarantee robust, global,
exponential convergence to the desired equilibrium point
of the system, were provided in the present work. The
proposed adaptive scheme did not require the knowledge of
a Lyapunov function for the closed-loop system under the
action of the nominal feedback stabilizer and is directly ap-
plicable to highly nonlinear, uncertain discrete-time systems
with unknown constant parameters. The applicability of the
obtained results to real control problems was demonstrated
by the rigorous application of the proposed adaptive control
scheme to uncertain, freeway models. Simulation results
showed the efficacy of the proposed adaptive control scheme
even under the presence of time-varying parameters.
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