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 1 

ABSTRACT 2 

The calibration and validation of second-order macroscopic traffic flow models constitutes a 3 

difficult task; and in fact, relatively few calibration results for such macroscopic traffic flow 4 

models have been reported so far. This work evaluates a multi-lane second-order macroscopic 5 

gas-kinetic traffic (GKT) flow model and its numerical discretization, using real traffic data from 6 

a motorway network in the U.K.; where recurrent congestion originated from high on-ramp 7 

flows during the morning peak hours is occurring. In the model, the lane-changing terms, 8 

simulating lane-changes due to vehicle interactions as well as spontaneous ones, are introduced 9 

as source and sink terms in the model equations. The model provides the ability to use different 10 

calibration parameters per lane. A high-order finite volume scheme is implemented for spatial 11 

discretization, while time integration is based on a high-order implicit-explicit Runge-Kutta 12 

method. A relatively new optimization algorithm, namely a parallel, metamodel-assisted 13 

Differential Evolution (DE) algorithm, is employed for the calibration of the model parameters 14 

by searching for the global optimal solution. Numerical simulations demonstrate that the 15 

proposed model is reasonably accurate in reproducing traffic dynamics in the multi-lane 16 

framework, while the DE algorithm can be effectively used for its calibration, as well as for other 17 

similar macroscopic models. 18 

 19 

 20 

 21 

 22 

Keywords: Macroscopic Traffic Flow Model, Multi-Lane, Calibration, Validation, Differential 23 

Evolution Algorithm 24 

  25 
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INTRODUCTION 1 

In the last few decades, traffic flow theory, modeling, and simulation have gained considerable 2 

attention since overall traffic demand has increased and more data as well as easy access to 3 

computing power has become available. Moreover, this growing interest to traffic flow modeling 4 

stems also from the need for reliable traffic management, so as to optimize traffic efficiency and 5 

safety under various traffic flow conditions. One of the main issues, regarding traffic flow 6 

models, is their level of proximity to reality and its representation. Hence, to ensure the validity 7 

of any model in performing real-world simulations and provide results that are reliable, the 8 

application of calibration and validation processes is deemed mandatory. 9 

 10 

Traffic simulation models can be classified depending on which aspects of traffic modeling one 11 

is interested in. Specifically, microscopic simulation models describe traffic flow behavior at a 12 

high level of detail, by capturing the behavior of each individual vehicle; while macroscopic 13 

approaches represent traffic in lesser detail by using aggregated variables, such as flow, density, 14 

and mean speed (1). Further, the existence of multiple lanes (with possible lane-drops), on- and 15 

off-ramps, and intersections, necessitates the development of proper multi-lane models, which 16 

may effectively simulate vehicle lane changes and overtaking maneuvers. 17 

 18 

No matter which approach is used, accurate modeling of traffic flow requires three types of data: 19 

model inputs, model parameters and observed outputs. Model inputs involve the demand-side 20 

data, for which a traffic simulation is performed. Model parameters involve different types of 21 

supply-side parameters used in the traffic simulation, depending on the level of complexity in 22 

modeling. This is true for both microscopic and macroscopic models, since they all contain in 23 

their structure some set of parameters, whose values represent the particular road network’s 24 

traffic flow features. The output data observed in real-world is required to compare model 25 

outputs and evaluate the accuracy of the models.  Macroscopic models call for a relatively small 26 

number of parameters, compared to microscopic ones, which results in significantly less 27 

demanding and computationally expensive, but by no means trivial, calibration, and validation 28 

processes and, therefore, in a more versatile model development for real-world applications. 29 

 30 

Macroscopic traffic flow models, depending on the number of differential equations they 31 

involve, can be categorized as first-, second- or higher-order models. The approaches of the class 32 

of first-order models, originally developed by Lighthill–Whitham–Richards (LWR model) (2), 33 

consist of the continuity equation to represent the evolution of traffic density. However, these 34 

models suffer from several limitations and they prove inadequate to describe complicated 35 

dynamics of traffic flow; in particular, they do not allow for variations of speed around the 36 

equilibrium fundamental diagram and they fail to replicate some non-linear phenomena observed 37 

in real traffic, such as the hysteresis and capacity drop, the stop-and-go waves at bottlenecks, as 38 

well as the diffusion of traffic platoons. The second- or higher-order models, with the pioneering, 39 

among them, Payne model (3), utilize an additional evolution equation, the momentum one, to 40 

describe flow/speed dynamics. Although such models have the potential to reproduce the above-41 

mentioned non-linear phenomena with higher accuracy when compared with real traffic data, 42 

they include a higher number of parameters; and small changes to them may result in quite 43 

different predictions; consequently, they call for a complex but compulsory calibration process to 44 

enhance their prediction accuracy. 45 

 46 

As pointed out in (4) and (5), the validation process is the ultimate criterion for assessing the 47 

accuracy of representing real traffic phenomena, and hence the usefulness of an existing or new 48 
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macroscopic traffic flow model as a practical tool for efficiently simulating and optimizing 1 

traffic flow for specific infrastructures.  Compared to microscopic models, relatively few works, 2 

which also include methods for solving the involved parameter estimation problem, are available 3 

for the calibration and validation process of macroscopic models. Employed algorithms include 4 

the deterministic complex algorithm of Box in (6-10), the deterministic Nelder-Mead algorithm 5 

employed in (11, 12), the genetic algorithm in (13, 14), the stochastic cross-entropy method 6 

utilized in (15), and stochastic collocation in (16).  It is important to note here that, in terms of 7 

validating macroscopic multi-lane or lane-changing models, very few works exist, and these 8 

usually involve first-order models, we refer for example to (17). To the best of our knowledge, 9 

there are virtually no published works involving the calibration and validation of second-order 10 

`multi-lane macroscopic models. This is probably due to the complexity involved in the 11 

modeling but also to the increased number of parameters that need to be calibrated.  12 

Furthermore, as it was pointed out in (15), different combinations of the set of parameters may 13 

result in a large number of local optima, hence classical gradient-based methods may not be 14 

effective. 15 

 16 

The goal of the present study is to validate a recently presented (single-class) multi-lane second-17 

order gas-kinetic traffic flow (GKT)  model (18) with respect to its accuracy in the reproduction 18 

of the congestion created at freeways close to on/off-ramps, using real traffic data from a three-19 

lane freeway stretch in the U.K. Both interactive and spontaneous lane changes are explicitly 20 

taken into account by the proposed multi-lane model, which aims to describe the behavior of 21 

driver-vehicle units regarding overtaking, deceleration/acceleration, and lane changing 22 

maneuvers.  A high-resolution relaxation finite-volume scheme is utilized for the numerical 23 

approximation, in space and time, of the underlying partial differential equations (19), which 24 

constitutes an essential ingredient in the simulation process as well as in the calibration and 25 

validation procedures. The optimization method employed is a recently developed parallel 26 

surrogate-model-assisted Differential Evolution algorithm (20, 21). We emphasize that this 27 

optimization algorithm is applied for the first time for the calibration purposes of a second-order 28 

multi-lane macroscopic traffic flow model, where its parameter estimation constitutes a hard 29 

(constrained) continuous multi-extremal optimization problem. 30 

 31 

THE MULTI-LANE GKT MODEL 32 

In this section, we briefly present the multi-lane second-order GKT model, recently developed in 33 

(18). In general, continuous models that simulate multi-lane traffic flow dynamics, are based on a 34 

nonlinear system of conservation laws with additional source/sink terms, in order to take into 35 

account lane-changes due to vehicle interactions, as well as spontaneous ones. Hence, assuming 36 

a highway with 𝑁 lanes, which are numbered by 𝑙 = 1, 2, … , 𝑁, the multi-lane GKT model can 37 

be written in vector form (for each lane, 𝑙), supplied with initial conditions, as follows 38 

 39 

𝜕𝑡𝒖𝑙 + 𝜕𝑡𝒇(𝒖𝑙) = 𝒔(𝒖𝑙) + 𝒘𝑙(𝒖1, … , 𝒖𝑁),  

 (1) 

𝒖𝑙(𝑥, 0) = 𝒖𝑙,0(𝑥),  
 40 

where the functions 𝒖𝑙, 𝒇(𝒖𝑙) and 𝒔(𝒖𝑙) ∈ ℝ2 with 𝒖𝑙 = [𝑢𝑙
1, 𝑢𝑙

2]T = [𝜌𝑙 , 𝑞𝑙]T, 𝒇(𝒖𝑙) =41 

[𝜌𝑙𝑢𝑙 , 𝜌𝑙𝑢𝑙
2 + 𝜃𝑙𝜌𝑙]

T and 𝒔(𝒖𝑙) =  [𝑟𝑟𝑚𝑝,1, (𝜌𝑙𝑉𝑒
∗ − 𝜌𝑙𝑢𝑙) 𝜏⁄ + ℎ𝑟𝑚𝑝,1]T. The variables 𝜌𝑙 and 𝑢𝑙 42 

are the traffic density (number of vehicles per unit length) and the average speed of vehicles at 43 

the 𝑙-th lane, for 𝑙 = 1, 2, … , 𝑁, respectively, whereas 𝑞𝑙 is the traffic flow rate (number of 44 
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vehicles per unit of time), given as 𝑞𝑙 = 𝜌𝑙𝑢𝑙; the pressure-like term 𝜃𝑙  is a density-dependent 1 

fraction 𝐴(𝜌𝑙) of the squared velocity 𝜃𝑙 =  𝐴(𝜌𝑙)𝑢𝑙
2, where 𝐴(𝜌𝑙) is given by the Fermi 2 

function as 3 

 4 

𝐴(𝜌𝑙) = 𝐴0,𝑙 + 𝛿𝐴𝑙 [1 + tanh (
𝜌𝑙 − 𝜌𝑐𝑟,𝑙

𝛿𝜌𝑙
)], (2) 

  5 

in which 𝜌𝑐𝑟,𝑙 is the critical density in the 𝑙-th lane, reflecting the boundary for the transition 6 

from the free flow to congested traffic, with 𝐴0,𝑙 and 𝐴0,𝑙 + 2𝛿𝐴𝑙 the variance pre-factors 7 

between the aforementioned two states, while 𝛿𝜌𝑙 is the width of the transition region. Typical 8 

ranges of values for the constant parameters 𝐴0,𝑙, 𝛿𝐴𝑙, and 𝛿𝜌𝑙, along with other typical used 9 

model parameters for the GKT model can be found in (19). 10 

 11 

Furthermore, terms 𝑟𝑟𝑚𝑝,1 and ℎ𝑟𝑚𝑝,1 reflect the impact of traffic flow from on-ramps (or to off-12 

ramps) on the first lane and take non-zero values only for the corresponding lane. Specifically, 13 

the term 𝑟𝑟𝑚𝑝,1 denotes the effective source density that is only active within the merging 14 

(diverging) sections with length 𝑙𝑟𝑚𝑝 and inflow 𝑞𝑟𝑚𝑝,1 > 0 from (or outflow 𝑞𝑟𝑚𝑝,1 < 0 to) the 15 

ramps, determined as  16 

 17 

𝑟𝑟𝑚𝑝,1(𝑥, 𝑡) = {

𝑞𝑟𝑚𝑝,1(𝑡)

𝑙𝑟𝑚𝑝
   𝑖𝑓 𝑥 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑚𝑒𝑟𝑔𝑖𝑛𝑔 𝑧𝑜𝑛𝑒 ,

0           𝑒𝑙𝑠𝑒𝑤𝑒𝑟𝑒,

 (3) 

 18 

while the term ℎ𝑟𝑚𝑝,1 describes changes of the macroscopic local speed by assuming that on-19 

ramp vehicles merge to the main road at speed 𝑢𝑟𝑚𝑝 < u. On the contrary, the drivers considered 20 

to leave the main road reduce their speed to 𝑢𝑟𝑚𝑝 before they diverge to the off-ramp. Hence, 21 

this term can be expressed as 22 

 23 

ℎ𝑟𝑚𝑝,1(𝑥, 𝑡) =
𝑞1 ∙ 𝑟𝑟𝑚𝑝,1

𝜌1
+

(𝑢𝑟𝑚𝑝 − 𝑢1)|𝑞𝑟𝑚𝑝,1|

𝑙𝑟𝑚𝑝
. (4) 

 24 

The model also includes a traffic relaxation term that maintains the concentration of velocity in 25 

equilibrium state, with 𝑉𝑒
∗(𝜌𝑙 , 𝑢𝑙 , 𝜌𝛼,𝑙, 𝑢𝛼,𝑙) being the dynamic equilibrium speed, with relaxation 26 

time 𝜏, depending not only on the local density 𝜌𝑙 and mean speed 𝑢𝑙, but also on the non-local 27 

traffic state (𝜌𝛼,𝑙, 𝑢𝛼,𝑙). Thus, the non-local and dynamic equilibrium speed, toward which the 28 

average speed relaxes, is determined as 29 

 30 

𝑉𝑒
∗ = 𝑢𝑚𝑎𝑥,𝑙 [1 −

𝜃𝑙 + 𝜃𝛼,𝑙

2𝐴(𝜌𝑚𝑎𝑥,𝑙)
(

𝜌𝛼,𝑙  𝑇𝑙

1 − 𝜌𝛼,𝑙 𝜌𝑚𝑎𝑥,𝑙⁄
)

2

𝐵(𝛿𝑢𝑙)]. (5) 

 31 

According to Equation (5), the dynamic equilibrium speed is given by the maximum desired 32 

speed, denoted as 𝑢𝑚𝑎𝑥,𝑙, reduced by a braking non-local term in response to necessary 33 

deceleration maneuvers in traffic flow at the downstream interaction location 𝑥𝛼,𝑙 = 𝑥𝑙 +34 



Porfyri, Delis, Nikolos, Papageorgiou   6 

 

𝛾𝑙(1 𝜌𝑚𝑎𝑥,𝑙 + 𝑇𝑙 ∙ 𝑢𝑙⁄ ), with 𝑇𝑙 being the desired time gap, 𝜌𝑚𝑎𝑥,𝑙 the maximum density and 𝛾𝑙 a 1 

scale factor. Finally, 𝐵(𝛿𝑢𝑙) is a so-called Boltzmann factor that contains the standard normal 2 

distribution and the Gaussian error function, given as  3 

 4 

𝐵(𝛿𝑢𝑙) = 2 [𝛿𝑢𝑙

𝑒−𝛿𝑢𝑙
2 2⁄

√2𝜋
+ (1 + 𝛿𝑢𝑙

2) ∫
𝑒−𝑦2 2⁄

√2𝜋

𝛿𝑢𝑙

−∞

𝑑𝑦]. (6) 

 5 

This term describes the dependence of the braking interaction on the dimensionless velocity 6 

difference 𝛿𝑢𝑙 = (𝑢𝑙 − 𝑢𝑎,𝑙) √𝜃𝑙 + 𝜃𝛼,𝑙⁄ , taking into account the velocity and variance at the 7 

actual location 𝑥𝑙 and the interaction location 𝑥𝛼,𝑙, respectively. 8 

 9 

Further, according to model Equations (1) for the multi-lane traffic, the source term 10 

𝒘𝑙(𝒖1, … , 𝒖𝑁) ∈ ℝ2 represents the sources and sinks due to lane-changing, resulting in a weakly 11 

coupled system of 2𝑁equations (18). The components of the lane-changing terms are defined as 12 

 13 

𝑤𝑙
1,2 = (

1

𝑇𝑙−1
𝐿 𝑢𝑙−1

1,2 −
1

𝑇𝑙
𝑅 𝑢𝑙

1,2) (1 − 𝛿𝑙1) + (
1

𝑇𝑙+1
𝑅 𝑢𝑙+1

1,2 −
1

𝑇𝑙
𝐿 𝑢𝑙

1,2) (1 − 𝛿𝑙𝑁), (7) 

 14 

with 
1

𝑇𝐿 and 
1

𝑇𝑅 being the lane changing rates from lane 𝑙 to left 𝑙 + 1 and right 𝑙 − 1, 15 

respectively, and 𝛿𝑖𝑗 the Kronecker delta. The lane changing rates are defined as 16 

 17 

1

𝑇𝑙
𝐿 = 𝑃𝐿(𝜌𝑙+1)𝑣(𝜌𝑙) + 𝑆𝑙

𝐿  

 (8) 
1

𝑇𝑙
𝑅 = 𝑃𝑅(𝜌𝑙−1)(1 − 𝑃𝐿(𝜌𝑙+1))𝑣(𝜌𝑙) + 𝑆𝑙

𝑅 ,  

 18 

where the terms 𝑃𝑅,𝐿(𝜌𝑙) are the lane-changing probabilities in response to vehicle interactions 19 

and 𝑣(𝜌𝑙) = 𝜈𝑓(1 − 𝜌𝑙)𝜌𝑙
2 are the interaction frequencies regarding deceleration and 20 

acceleration; for simplicity, considered that 𝑃𝑅(𝜌) = 𝑃𝐿(𝜌). The shape of  𝑃𝑅,𝐿(𝜌𝑙) depends on a 21 

characteristic density value (𝜌𝑃), while that of 𝑣(𝜌𝑙) depends on the value of 𝜈𝑓, as depicted for 22 

example in Figure 1. 23 

 24 

Further, we assume here that the spontaneous lane changes, which are not caused by vehicle 25 

interactions and described by the terms 𝑆𝑙
𝐿,𝑅

, are formulated as  26 

 27 

𝑆𝑙
𝐿,𝑅 = 𝑘𝑙

𝐿,𝑅 (1 −
𝜌𝑙±1

𝜌𝑚𝑎𝑥,𝑙±1
)

𝛽

 (9) 

 28 

in which 𝑘𝑙
𝐿,𝑅

 and 𝛽 are spontaneous lane-changing parameters (18). For the spontaneous lane-29 

changing terms in Equation (9), we adopt the European-rule of primarily using the right lane at 30 

low densities (22, 23). Calibration results have shown that spontaneous lane-changing influences 31 

mainly low-density regimes. Setting  𝛽 = 8 in Equation (9), a smooth correction pre-factor 𝐺𝐸𝑢, 32 
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with 0 < 𝐺𝐸𝑢(𝜌) <1, is used to account for the European traffic rule by modifying 𝑆𝑙
𝐿 as 𝑆𝑙

𝐿 𝐺𝐸𝑢 1 

and 𝑆𝑙
𝑅 as 𝑆𝑙

𝑅 /𝐺𝐸𝑢 (18).  Furthermore, the probability function considered for lane-changing 2 

maneuvers can be considered as realistic and in-line with previous works in the literature (24).  3 

 4 

 5 
FIGURE 1 (Left) Lane changing probability for  𝝆𝒄𝒓,𝒍 = 𝟎. 𝟑𝝆𝒎𝒂𝒙,𝒍 and 𝝆𝑷 = 𝟎. 𝟎𝟐𝟓. (Right) 6 

Lane changing frequency for normalized density, for  𝝂𝒇 = 𝟎. 𝟒𝟓. 7 

 8 

To numerically approximate the multi-lane GKT model, we apply a higher-order finite-volume 9 

relaxation scheme. The spatial discretization is based on a fifth-order Weighted Essential Non-10 

Oscillatory-type (WENO) finite volume scheme, while time integration is based on a third-order 11 

implicit-explicit (IMEX) Runge-Kutta method. The numerical scheme is stable under the usual 12 

Courant-Friedrichs-Lewy (CFL) stability condition for explicit discretization schemes. The 13 

accuracy, simplicity and robustness of this higher-order scheme, compared to low-order ones, for 14 

simulation of various traffic flow models has been recently demonstrated in (19), where all the 15 

details of the numerical scheme can be found. 16 

 17 

MODEL CALIBRATION 18 

Despite their popularity and usefulness, the credibility of macroscopic simulation models depends 19 

greatly on their capability of reproducing with the highest possible level of accuracy their real-20 

world counterpart. Indeed, the model parameter calibration constitutes a necessary and integral 21 

part of the overall development of any traffic flow model, given the fact that they are for the most 22 

part empirical. However, the estimation of proper values for the unknown model parameters is a 23 

major challenge, because of the highly non-linear nature of the model equations. 24 

  25 

In this work, we present an automated calibration process for the GKT model parameter vector 26 

for a three-lane freeway stretch. Specifically, the parameter vector to be calibrated is 𝑿 =27 

[𝑢𝑚𝑎𝑥,𝑙,  𝜌𝑚𝑎𝑥,𝑙,  𝜌𝑐𝑟,𝑙, 𝑇𝑙 , 𝛾𝑙, 𝜏𝑙, 𝐴0,𝑙, 𝛿𝐴𝑙, 𝛿𝜌𝑙 , (𝑢𝑟𝑚𝑝 𝑢1⁄ ), 𝜈𝑓 , 𝜌𝑃, 𝑘1
𝐿 , 𝑘2

𝑅 , 𝑘2
𝐿 , 𝑘3

𝑅  ], 𝑙 = 1,2,3, (34 28 

parameters/design variables in total), which need to be fixed so as to minimize the deviation 29 

between the simulated and observed traffic data reflected via an appropriate cost function, 30 

hereafter denoted by 𝑓(𝑿). The proposed model allows for different parameter values to be 31 

introduced for each lane, in order to describe the different dynamics of each lane. Hence, the 32 

calibration of the extended second-order GKT model able to simulate multi-lane traffic flow 33 

dynamics becomes a problem of finding an optimal parameter vector 𝑿 subject to model (1) for 34 

all 𝑿 ∈ Ω, where Ω is a constrained admissible region of the parameter space, determined on the 35 

basis of physical constraints. Such a calibration process is a quite complex problem, since it 36 
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takes the form of minimizing a continuous multi-extrema cost function, which exhibits numerous 1 

local minima, which traditional gradient-based algorithms are likely to fail to avoid. In this work, 2 

a recently developed parallel Differential Evolution algorithm has been applied in order to deal 3 

with the aforementioned complex continuous optimization problem with numerous local minima, 4 

and a relatively large number of design variables. 5 

 6 

Metamodel-assisted Differential Evolution (DE) algorithm 7 

Since early in their development, Evolutionary Algorithms (EAs) have become increasingly 8 

attractive across various optimization problems, as a flexible and robust optimization technique 9 

capable of addressing real-world applications, containing multiple objectives and high 10 

dimensional search spaces; however, such algorithms call for significantly increased 11 

computation time requirements. A remedy to this shortcoming appears to be the use of surrogate 12 

models (metamodels), in conjunction with parallel processing. In what follows, we will briefly 13 

present the basic elements constituting a classic DE algorithm, as introduced in (20, 21). 14 

 15 

The minimization problem is defined as 16 

 17 

𝑚𝑖𝑛  𝑓(𝑿) = 𝑓(𝑥1 , 𝑥2, … , 𝑥𝑛) (10) 

 18 

where  𝑓(𝑿): ℝ𝑛 → ℝ is the cost function to be minimized by modulating the values of the 𝑛-19 

dimensional vector of design variables 𝑿,   𝑥𝑖 ∈ ℝ. During the optimization process, each design 20 

variable 𝑥𝑖 is bounded between pre-specified upper and lower values, with superscripts (𝑈) and 21 

(𝐿), respectively 22 

 23 

𝑥𝑖
(𝐿)

≤ 𝑥𝑖 ≤ 𝑥𝑖
(𝑈)

, 𝑖 = 1, … , 𝑛. (11) 

 24 

At first, the population is randomly initialized within the given boundaries as: 25 

 26 

𝑥𝑘,𝑖
(0)

= 𝑟 ∙ (𝑥𝑖
(𝑈)

− 𝑥𝑖
(𝐿)

) +  𝑥𝑖
(𝐿)

,   𝑘 = 1, … , 𝑁𝑝, 𝑖 = 1, … , 𝑛, (12) 

 27 

in which 𝑟 is a random generated number with uniform probability distribution within the range 28 

[0, 1] and 𝑁𝑝 is the (constant) number of individuals (chromosomes) in the population. 29 

 30 

Subsequently, the differential mutation process is activated, where a new chromosome is 31 

randomly generated for each individual of the current generation. Specifically, the formation of 32 

the new chromosome is based on a triplet of different randomly selected individuals and realized 33 

by adding a weighted difference among the two individuals of the triad to the third one (donor). 34 

Thereafter, the crossover recombination is applied among the perturbed individual and the 35 

current population member (parent), thereby generating the final candidate solution 36 

 37 

𝑥′𝑘,𝑖
(𝐺+1)

= {
𝑥𝐶𝑘,𝑖

(𝐺)
+ 𝐹 ∙ (𝑥𝐴𝑘,𝑖

(𝐺)
− 𝑥𝐵𝑘,𝑖

(𝐺)
)   𝑖𝑓 (𝑟 ≤ 𝐶𝑟 ˅ 𝑖 = 𝑖∗), 𝑖 = 1, … , 𝑛 

𝑥𝑘,𝑖
(𝐺)

            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖 = 1, … , 𝑛
 (13) 

 38 
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where 𝑥𝐶𝑘,𝑖
(𝐺)

 is the “donor” and (𝐺) is the current generation. The randomly selected integer 𝑖∗ is 1 

chosen once for all members of the population within the interval [1, 𝑛], while the DE control 2 

parameters 𝐹 ∈ [0,1]  and 𝐶𝑟 ∈ [0,1] for the mutation and crossover operations, respectively, 3 

remain constant during the search process and affect the convergence behavior and robustness of 4 

the algorithm. Subsequently, the selection process takes place to determine which of the parent or 5 

the offspring will survive to the next generation. Therefore, each trial vector 𝑿′𝑘
(𝐺+1)

competes 6 

against its counterpart (parent) in the current population 𝑿𝑘
(𝐺)

 by using a one-by-one comparison. 7 

If the candidate is better fitted than the corresponding current one, it moves to the next 8 

generation, ensuring in this way the survival of the elitists. The DE selection scheme can be 9 

represented as follows for a minimization problem: 10 

 11 

𝑿𝑘
(𝐺+1)

= {
𝑿′𝑘

(𝐺+1)
𝑖𝑓 𝑓(𝑿′𝑘

(𝐺+1)
) ≤ 𝑓(𝑿𝑘

(𝐺)
),

𝑿𝑘
(𝐺)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (14) 

 12 

The application of a classical DE algorithm to realistic computational problems is a time 13 

consuming task, as it requires a significant number of evaluations to achieve an adequate-quality 14 

solution. Thus, to reduce the running time of the algorithm, two strategies have been 15 

incorporated. A surrogate-assisted methodology was utilized to substitute some of the 16 

computationally intensive exact evaluations of trial vectors with low-cost approximations, 17 

without compromising the robustness and the convergence of the DE algorithm. Hence, the DE 18 

algorithm was combined with two Artificial Neural Networks (ANN’s), a Multi-Layer 19 

Perceptron (MLP) and a Radial Basis Functions Network (RBFN), which serve as surrogate 20 

models. 21 

 22 

In each generation of the DE, both surrogate models are re-trained, retrieving their training set 23 

from a database, fed with the previous results of the evaluation procedure; the most promising 24 

individuals from this database are used in each generation for retraining the surrogate models. A 25 

testing set is also retrieved from the database to evaluate in each generation the effectiveness of 26 

both surrogate models and select the most accurate one for use in the current generation. Each 27 

candidate solution is first pre-evaluated with the most accurate surrogate model and compared to 28 

its parent. If the candidate is pre-evaluated as better-fitted, an exact evaluation subsequently 29 

takes place, followed by a second (accurate) comparison with its parent, providing the final 30 

decision on which individual will proceed to the next generation. On the contrary, if the 31 

candidate is pre-evaluated as worse-fitted, compared to its parent, it is abandoned and no exact 32 

evaluation is further needed. In this way, all members in each generation have been selected 33 

through an exact evaluation and selection procedure, while the pre-evaluation, using the 34 

surrogate models, is utilized for removing the likely less promising candidates, with insignificant 35 

computational cost. This technique reduces the computational cost, through the reduction of the 36 

(costly) exact evaluations, without affecting the robustness of the optimization procedure.  37 

 38 

Moreover, parallel processing was incorporated, using MPI (Message Passing Interface) and 39 

based on the idea of “external-coupling” of the DE with the exact cost function evaluation, 40 

enabling the cooperation with different analysis software in the form of executables (in our case 41 

the macroscopic traffic flow model simulation, followed by the cost function computation). A 42 

detailed description of the utilized parallel surrogate-assisted DE algorithm is presented in (20, 43 
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21).  1 

 2 

Cost function formulation 3 

As already mentioned, the parameter calibration problem addressed here aims at the 4 

minimization of the discrepancy between the simulation results from the multi-lane GKT model 5 

and the observed traffic data collected for the considered network. Specifically, the model is fed 6 

with real measured boundary data (25) to reproduce the complete traffic state. The resulting 7 

model accuracy is evaluated using as cost function a combined total mean square normalized 8 

error of the model-calculated and observed speed and flow 9 

 10 

𝑓(𝑿) =
1

𝐶
∑ ∑ ∑ [(1 − 𝜇) (1 −

𝑢𝑙,𝑖,𝑘

𝑢𝑙,𝑖,𝑘
𝑑 )

2

+ 𝜇 (1 −
𝑞𝑙,𝑖,𝑘

𝑞𝑙,𝑖,𝑘
𝑑 )

2

]

𝑛

𝑖=1

𝐾

𝑘=1

𝑁

𝑙=1

 (15) 

  11 

where, 𝑢𝑙,𝑖,𝑘, and 𝑞𝑙,𝑖,𝑘 represent the predicted mean speed and flow, respectively, computed for 12 

lane 𝑙, location 𝑘 (𝐾 is the number of detectors that are available for calibration) and time instant 13 

𝑖 (𝑛 is the simulation time horizon); 𝑢𝑙,𝑖,𝑘
𝑑  and 𝑞𝑙,𝑖,𝑘

𝑑  represent, respectively, the observed mean 14 

speed and flow computed at lane 𝑙, location 𝑘 and time instant 𝑖, while 𝐶 = 𝑁 ∙ 𝑛 ∙ 𝐾, and 𝜇 is a 15 

weighting factor equal to 0.5. 16 

 17 

The calibration process begins with the generation of an initial population; every chromosome 18 

(design variables vector) is randomly initialized, based on the upper and lower bounds of the 19 

design variables. Subsequently, at each generation the candidate chromosomes are evaluated 20 

according to their cost functions’ values, i.e. the deviation between the simulated and the real 21 

traffic data; note that it is this stage that suffers from excessive computational requirements, and 22 

calls for the use of surrogate models. The contribution of these models lies in time-savings, due 23 

to avoiding the “expensive” exact evaluations of all candidate solutions, by using instead a 24 

trained neural network (20), as it was previously described.  Then, for each generation, the 25 

reproduction scheme of the DE algorithm generates a new population based on the mutation, 26 

crossover, and selection operators, aiming to new candidate parameter vectors with better cost 27 

function values. The whole procedure is repeated for a pre-described number of generations. 28 

 29 

 30 
 31 

FIGURE 2 A graphical representation of the U.K. freeway stretch considered. 32 

 33 

TEST NETWORK AND TRAFFIC DATA 34 

The multi-lane GKT model described previously is applied to a particular motorway network in 35 

the United Kingdom to calibrate its parameters under recurrent traffic flow conditions. 36 

Specifically, the considered network, sketched in Figure 2, is a 9.45 km long freeway stretch 37 

composed of three lanes, and is part of the M56 motorway with direction from Chester to 38 

Manchester. The freeway consists of one off-ramp and a two-lane on-ramp, which, before 39 
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merging into the mainstream, splits into two separate lanes. Figure 2 also illustrates the location 1 

of the on-ramps and off-ramp, as well as the locations of the available detector stations. 2 

 3 

The real-time traffic data, provided by MIDAS database (25), retrieved from 6 detectors (Figure 4 

2), deliver measurements of speed and flow per lane with a time resolution of 60 s; detector 5 

stations are also installed on the on-ramps and off-ramp, measuring the ingoing and outgoing 6 

flow, respectively. Measured data corresponding to the stretch’s boundaries are also available. 7 

Performing a qualitative analysis of real-time traffic data, a recurrent congestion, originated from 8 

high on-ramp flows during the morning rush hours, is observed. Indeed, by visual inspection of 9 

the contour plots shown in Figure 3 (upper) and Figure 5 (upper), which display the space-time 10 

evolution of the real speed measurements for the 3rd and 24th of June 2014, respectively, it can 11 

be observed that traffic congestion is formed upstream of the second on-ramp between 7–8 a.m. 12 

for both days. This congestion propagates upstream, creating an intensive low-speed area of 13 

several kilometers on the freeway mainstream.  14 

 15 

CALIBRATION AND VALIDATION RESULTS 16 

The numerically discretized multi-lane GKT model is first calibrated to specify the optimal 17 

parameter values for the considered network, using the measured data for a specific day. 18 

Eventually, in order to demonstrate the validity of the developed model to reliably reproduce the 19 

traffic conditions of the examined site, the optimal parameters resulting from the calibration 20 

procedure are applied to the same freeway for a different day. 21 

 22 

TABLE 1 Range of the parameter vector used for the multi-lane GKT model calibration 23 

 24 

Model parameters Units Bounds 

Desired free speed, 𝑢𝑚𝑎𝑥,𝑙 km/h [80, 140] 

Maximum density, 𝜌𝑚𝑎𝑥,𝑙  veh/km [140, 160] 

Critical density, 𝜌𝑐𝑟,𝑙 veh/km [30, 60] 

Desired time gap, 𝑇𝑙 s [1, 2] 

Anticipation factor, 𝛾𝑙  [1, 1.5] 

Relaxation time, 𝜏𝑙 s [20, 40] 

Variance pre-factor for free traffic, 𝐴0,𝑙  [0.006, 0.01] 

Pre-factor, 𝛿𝐴𝑙  [0.008, 0.04] 

Transition width, 𝛿𝜌𝑙 veh/km [3.5, 20] 

Frequency factor for lane changing, 𝜈𝑓    [0.1, 1] 

Critical density for lane changing probability, 𝜌𝑃,  [0.02, 0.04] 

Percentage of reducing speed at exiting/entering,  (𝑢𝑟𝑚𝑝 𝑢1⁄ )  [0.4, 0.9] 

Spontaneous lane-changing factor, 𝑘1
𝐿 Events/sec/m [0.001, 0.1] 

Spontaneous lane-changing factor, 𝑘2
𝑅 Events/sec/m [0.001, 0.04] 

Spontaneous lane-changing factor, 𝑘2
𝐿 Events/sec/m [0.001, 0.1] 

Spontaneous lane-changing factor, 𝑘3
𝑅 Events/sec/m [0.001, 0.04] 

 25 

Calibration results 26 

The real measurements used in this section were collected on the M56 motorway in U.K. on the 27 

3rd of June, 2014. The multi-lane GKT model parameters, with their corresponding admissible 28 

bounds, being consistent with those given in (19), are presented in Table 1. The DE algorithm 29 

was employed with a population size equal to 60, whereas the maximum number of generations 30 
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was set equal to 1500; the control parameters for the mutation and crossover operations were 1 

𝐹 = 0.6 and 𝐶𝑟 = 0.45. 2 

 3 

The considered 9.45 km stretch was simulated for 2:30 morning peak hours (i.e. from 6:30 a.m. 4 

to 9 a.m.), whereas the space discretization was 𝛥𝑥 = 100 m and the CFL value was set equal to 5 

0.4. The runs of the DE algorithm have been performed on a DELL PowerEdge R815 server with 6 

four 16-core, 2.5 GHz processors (64 cores total). The clock computational time for 1500 7 

generations was 781.3 min. Figure 3 displays the space-time evolution of the simulated speed, 8 

contrasted to the observations for the calibration day. Figure 4 depicts the measured and 9 

estimated speed dynamics for all detector locations around the congested area; as it can be 10 

observed, the real traffic conditions are well reproduced by the calibrated model, capturing with 11 

sufficient accuracy the onset of congestion with accurate timing and at the correct location, as 12 

observed in the real traffic data. The optimal model parameters and the minimum value of the 13 

cost function are given in Table 2. 14 

 15 

TABLE 2 Optimal model parameters and cost function value    16 

 17 

Lanes 

𝒖𝒎𝒂𝒙 𝝆𝒎𝒂𝒙 𝝆𝒄𝒓 𝑻 𝜸 𝝉 𝑨𝟎 𝜹𝑨 𝜹𝝆 𝜈𝑓 𝜌𝑃, (
𝑢𝑟𝑚𝑝

𝑢1
) 𝑘1

𝐿 𝑘2
𝑅 𝑘2

𝐿 𝑘3
𝑅 

𝑘𝑚

ℎ
 

𝑣𝑒ℎ

𝑘𝑚
 (s)  (s) - - 

𝑣𝑒ℎ

𝑘𝑚
 - - - 

𝐸𝑣𝑒𝑛𝑡𝑠

𝑠𝑒𝑐 ∙ 𝑙𝑎𝑛𝑒
 

Lane1 96 140 30 1.4 1.5 28 0.009  0.01 20 

0.44 0.02 0.76 0.003 0.007 0.001 0.04 Lane2 118 142 59 2 1.5 23 0.0065 0.032 10 

Lane3 128 140 60 2 1.5 21 0.0064 0.032 14 

Cost Function  % : 0.029 

 18 
 19 

  20 
FIGURE 3 Phase space speed dynamics for real measured speed (upper) and the model 21 

prediction (lower) for the calibration date. 22 
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 1 
  2 

FIGURE 4 Time-series of the real speed measurements (black) and the model prediction of 3 

speed at various detector locations for the calibration day.  4 






 1 
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Validation results 1 

In order to assess the robustness of the produced calibrated parameters, the resulting multi-lane 2 

GKT model was validated using real traffic data in the same freeway stretch on a different day, 3 

which is the 24th of June 2014, using the optimal parameters of the previous calibration procedure. 4 

The validation results presented in Figure 5 and Figure 6, are seen to capture with sufficient 5 

accuracy the real traffic flow conditions in the particular freeway stretch, although not at the exact 6 

same level of accuracy as the calibrated ones. The cost function value for this validation procedure 7 

was 0.054 %. From the simulation results it can be observed that, although the value of the cost 8 

function is low, the simulation is not able to fully replicate all the flow fluctuations inside the 9 

congested region. To that end, other types of cost functions are currently under investigation. 10 

Nevertheless, the proposed model shows a good potential for simulating such traffic flow patterns 11 

in multi-lane highways. 12 

  13 

 14 
FIGURE 5 Phase space speed dynamics for real measured speed (upper) and the model 15 

prediction (lower) for the validation date. 16 

 17 

CONCLUSIONS 18 

Within this study, a relatively new optimization tool, a parallel metamodel-assisted Differential 19 

Evolution (DE) algorithm, was employed for the automated calibration of a multi-lane (single-20 

class) second-order macroscopic traffic flow model, based on the GKT one, for a specific 21 

freeway stretch using real traffic flow data. Following from the numerical results, the DE 22 

algorithm proved to be a promising and robust tool for the automated calibration of such a 23 

complicated multi-lane macroscopic model, having a relatively large number of (usually) 24 

counteracting calibration parameters. Actually, the obtained model predictions using the values 25 

of the optimal model parameters are consistent with the real measurements, showing that the 26 

developed multi-lane macroscopic model, with the specific hi-order discretization scheme, is 27 

able to reproduce with sufficient accuracy the prevailing traffic conditions; the robustness of the 28 

calibrated parameters is demonstrated through the validation process.  29 

  30 
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 1 
 2 

FIGURE 6 Time-series of the real speed measurements (black) and the model prediction of 3 

speed at various detector locations for the validation day. 4 
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To the authors’ best knowledge, this is the first time a calibration/validation procedure for such a 1 

complicated multi-lane, second-order macroscopic traffic flow model, with such a large number 2 

of calibration parameters, is reported. 3 
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