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Abstract

The AXIOM project (Agile, eXtensible, fast I/O Module) aims at researching new ar-

chitectures for Cyber-Physical Systems (CPSs) of the future. One of the project’s goals

is to design a small and affordable board that could be used as a LEGO-style CPS

node and provide flexibility, energy efficiency as well as modularity through high speed

interconnection of many nodes which in turn will pave the way for a fast and reliable com-

munication. However, since the communication layer is the backbone of any distributed

system, if not carefully designed and implemented it can lead to network congestion, low

throughput, high latency and generally performance degradation. In this work we present

a router design and implementation that enables a seamless interconnection of multiple

AXIOM boards spanning inside a high throughput and low latency network. Based on a

cost-efficient network infrastructure, the router follows the paradigm of keeping resource

utilization to a minimum while using the well-known and trusted router primitives. Vir-

tual channels are implemented in order to facilitate a prioritized packet arbitration which

combined with Virtual Cut-Through switching and a deterministic routing algorithm pro-

vides efficient and reliable packet forwarding. Packet flow control is implemented through

the transmission of interrupt-like signals between adjacent nodes leading to lossless packet

transfers. With a fully pipelined architecture and an effective streaming communication

protocol the router offers a low-cost, high-speed interconnection for the network’s nodes.



Περίληψη

Το AXIOM project (Agile, eXtensible, fast I/O Module) στοχεύει στην έρευνα νέων

αρχιτεκτονικών για τα Cyber-Physical συστήματα CPSs του μέλλοντος. ΄Ενας από τους

σκοπούς του project είναι ο σχεδιασμός μίας μικρής και οικονομικά προσιτής πλατφόρμας η

οποία θα μπορεί να χρησιμοποιηθεί σαν κόμβος τύπου LEGO σε ένα CPS, και ταυτόχρονα

θα παρέχει προσαρμοστικότητα, ενεργειακή οικονομία αλλά και δομοστοιχειώτητα μέσω υ-

ψηλής ταχύτητας διασύνδεση πολλών κόμβων, το οποίο με τη σειρά του θα ανοίξει τον

δρόμο για ταχεία και αξιόπιστη επικοινωνία. Δεδομένου ότι το επίπεδο της επικοινωνίας

είναι η ραχοκοκαλιά κάθε κατανεμημένου συστήματος, αν δεν σχεδιαστεί και υλοποιηθεί

προσεκτικά μπορεί να οδηγήσει σε συμφόρηση του δικτύου, χαμηλό throughput, μεγάλες

καθυστερήσεις και γενικά να υποβαθμίσει την απόδοση. Σε αυτή την εργασία παρουσιάζεται

ο σχεδιασμός και η υλοποίηση ενός router το οποίο επιτρέπει την αδιάλειπτη διασύνδεση

πολλών AXIOM boards τα οποία εκτείνονται μέσα σε ένα δίκτυο υψηλού throughput και

χαμηλού latency. Βασισμένο σε μια δομή δικτύου χαμηλού κόστους, το router ακολου-

θεί την αρχή της ελάχιστης δυνατής χρήσης των πόρων της πλατφόρμας ενώ αξιοποιεί τα

γνωστά και δοκιμασμένα δομικά στοιχεία των routers. Χρησιμοποιεί ιδεατά κανάλια ώστε να

επιτρέπει την διαιτησία βάσει προτεραιότητας τύπου πακέτου το οποίο σε συνδυασμό με μία

τεχνική Virtual Cut-Through μεταγωγής και ένα ντετερμινιστικό αλγόριθμο δρομολόγησης,

προσφέρει αποδοτική και αξιόπιστη προώθηση πακέτων. Ο έλεγχος της ροής των πακέτων

υλοποιείται μέσα από σήματα που προσομοιάζουν interrupts, τα οποία στέλνονται μεταξύ

γειτονικών κόμβων με αποτέλεσμα την μεταφορά πακέτων δίχως απώλειες. Με μία πλήρως

pipelined αρχιτεκτονική και ένα αποδοτικό streaming πρωτόκολλο επικοινωνίας, το router

προσφέρει μία χαμηλού κόστους και υψηλής ταχύτητας διασύνδεση των κόμβων του δικτύου.
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Chapter 1

Introduction

Entering the Cyber-Physical era, both objects and people are treated as nodes making

up the same digital network of exchanging information. To that effect, we expect that

“things” or systems will eventually become somewhat smart as people, something that

will establish a rapid and close system-system as well as system-human and human-system

interaction as a common thing. There has been a tendency for CPS exploitation by many

applications that require interactions between humans and the physical environment.

A CPS integrates a set of hardware-software components to interact with the physical

world. What is expected from these systems is the ability to react in real-time, provide

sufficient computational power for the assigned tasks, be as energy efficient as possi-

ble for such tasks, scale up through modularity, allow for easy programmability across

performance scaling, and efficiently utilize the best existing standards at minimal costs.

However, there is a noticeable performance limit in mainstream CPSs, which presents

a challenge for the increasingly heavy load tasks, namely video surveillance and smart

home applications.

The AXIOM project (Agile, eXtensible, fast I/O Module) [1] aims at researching new

software/hardware architectures for the Cyber-Physical Systems (CPSs) of the future in

which the above expectations are possibly realized. Ultimately, one of the goals of the

project is to design a small affordable board that could be used as a LEGO-style CPS

node which will feature general purpose capability coupled with reconfigurable resources.

This paves the way for building larger systems with more performance while keeping the

programming task simple by using a familiar shared memory programming model. The
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1. INTRODUCTION

scalability/extensibility that AXIOM brings, is achieved by providing easy programma-

bility, not limited only to the single module but also to the larger systems consisting of

several modules tightly interconnected.

1.1 Motivation

Current systems are typically isolated and the only way to build larger systems is to

re-design a new system from scratch by adding more resources (e.g., more cores, more

memory, etc.). As pointed out above, AXIOM aims at realizing a small custom board

that provides flexibility, energy efficiency and modularity, based on the Xilinx Zynq

devices that feature a dual- or quad-core ARM processor, tightly coupled with FPGA

fabric. In the manycore era, AXIOM aims to enable modularity through high speed

interconnection of many AXIOM nodes as seen in Figure 1.1. That interconnection plays

Figure 1.1: The AXIOM node, featuring the proposed router.

a crucial role for the need of providing both fast and reliable communication (including

lossless control flow as, e.g., Infiniband, but with a simplified scope and cost). However,

the communication layer being the backbone of any distributed system, if not carefully

designed and implemented can lead to network congestion, low throughput, high latency,

and poor overall system performance. Keeping in mind that the AXIOM board can be

considered as the building block of future multi-node CPSs, what is of utmost importance
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1.2 Thesis Contribution

is utilizing a cost-efficient and high-throughput network, by optimizing and customizing

the networking logic, so as to maintain fast inter-board communication leading to more

effective systems and faster applications. In this work, we will present a router design

that creates the possibility of a seamless interconnection of systems spanning in multiple

boards as shown in Figure 1.2.

Figure 1.2: An network of a 2-D torus topology, based on the AXIOM node (Figure 1.1).

Apart from a 2-D torus, the AXIOM node could form ring and 2-D mesh topologies.

1.2 Thesis Contribution

This thesis, contributes the design and development of a router architecture that answers

the demand of efficient and low cost interconnection among boards which are nodes in a

network. The router achieves the highest performance possible so as to meet application

demands, while limiting the resource utilization to a minimum in order to make its

implementation possible on small-ranged reconfigurable SoCs. The key points to highlight

are the following:
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1. INTRODUCTION

• Multiple topology support (section 3.1)

• Virtual Cut-Through packet switching (section 3.3)

• Fully pipelined design (section 4.1)

• Packet-priority based arbitration (section 4.3)

• Fast inter-board communication (section 5.3)

• Low cost implementation (section 5.4)

1.3 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2 we review related

work regarding router design and implementation as well as comparisons made to them.

In Chapter 3 we present the network infrastructure upon which we designed our router.

This includes a detailed analysis of supported topologies along with the packet forwarding

method and the different packet types inside the network. Chapter 4 describes the pro-

posed router architecture, and discusses key points of the design such as pipeline stages,

routing table configuration, scheduling as well as packet flow control. Chapter 5 provides

a more technical description of the specific steps followed during the implementation,

which entails describing the tools used, giving detailed schematics of the router and of

course the final resource utilization on the boards. We then, in Chapter 6, present the

experimental results of the proposed router design implemented on the actual AXIOM

boards. Finally, Chapter 7, we conclude our work, and suggest directions towards future

work.
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Chapter 2

Related Work

Scalable interconnect architectures constitute the basis on which heterogeneous comput-

ing platforms and their unifying programming environments are being developed. Par-

allelism in its core, is all about the efficient co-operation of connected nodes which is

enabled by a meticulously designed interconnect. Topics such as NoC topologies, input

versus output queueing and scheduling have been thoroughly researched and can be con-

sidered textbook material ([2], [3], [4]).

Below, we present some of the works that are concerned with FPGA interconnection and

data transferring based on NoC routers.

High Performance Network-on-Chip Architectures

Psarras in his PhD thesis [5] proposes three different alternative architectures, which

can significantly improve the performance of NoCs, or lead to an overall lower power

consumption. One of those, is a pipelined router architecture, called ShortPath [6], that

parallelizes - for the first time - the allocation steps involved in the operation of a VC-

based router without resorting to speculation. Most importantly, ShortPath is augmented

with an always productive pipeline bypassing mechanism, which skips all stages without

contention, and “fast-forwards” the flits to the first encountered point of contention.

The other two, based on appropriate wire engineering, take advantage of fast link traversal

to rapidly send and receive flits between neighbouring nodes in half a clock cycle. Un-

der this clocking principle, two design alternatives are explored, which enable half-cycle

and Double-Data-Rate (DDR) link traversal. The proposed approaches can significantly
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2. RELATED WORK

improve network performance, or decrease the area and/or power cost of the NoC. Al-

though not obvious at first glance, half-cycle link traversal opens up new possibilities for

reducing wire capacitance. By harnessing these opportunities, RapidLink [7] renders the

half-cycle-delay requirement easier to achieve and potentially extends half-cycle traversal

capabilities to longer links.

Low-Latency Virtual-Channel Routers for On-Chip Networks

This paper [8] by the University of Cambridge presents a low latency router for Networks

on Chips that shows how the removal of control overheads - such as routing and arbitra-

tion logic - from the critical path can reduce the clock cycles and latency to a minimum.

Simulations demonstrated important cycle time improvements whilst allowing single cycle

flit routing.

A Comprehensive Comparison between Virtual Cut-Through and

Wormhole Routers for Cache Coherent Network On-Chips

In [9], the point of interest is how the scaling of semiconductor technology can change

the concept of Virtual Cut-Through (VCT) switching method being inefficient due to

larger buffers compared to Wormhole switching. Wang et al. through detailed hardware

implementations evaluate the hardware costs of Wormhole and VCT switching methods

with both deterministic and adaptive routing. In hindsight the paper proves that VCT

routers are actually efficient NoC routers as the critical path can be reduced up to 27%

while area and power overheads are trimmed down.

Merged Switch Allocation and Traversal in Network-on-Chip

Switches

In this work, G. Dimitrakopoulos et al. took a different approach regarding innovative

switch designs. Differentiating from the architecture-level point of view solutions that

took for granted most of the switch primitives and the way they are organized - albeit

efficient, they aimed for a design of new macros from scratch, equipping them with

the ability of handling concurrent arbitration and multiplexing, while maintaining their

scalable qualities (number of ports and data width). The proposed optimization concerns
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a new structure called Merged ARbiter and multipleXer (MARX) [10] that merges the

functionality of the arbiter and the crossbar’s multiplexers, in a new circuit that performs

the two distinct steps of switch allocation and switch traversal in parallel. As far as the

arbitration policy is concerned both simple round robin as well as more complex weight-

based selection policies that offer much better throughput can be implemented following

the proposed design methodology. However, even with more complicated selection policies

the router’s timing overhead when implemented with MARX units was negligible when

compared to a simple round-robin policy router with separate arbiter and multiplexer,

which is considered one of the most significant achievements of this work.

A High-Throughput Distributed Shared-Buffer NoC Router

In this letter [11], a new router design that aims to emulate an output-buffered router

(OBR) practically based on a distributed shared-buffer (DSB) router architecture is pro-

posed. Along with efficient pipelining and a novel flow control, the suggested architecture

uses two crossbar stages with buffering sandwiched in between. The packets are stored

there with two constraints. The first is that packets arriving at the same time can not

be stored to the same buffer and secondly a packet can not be stored to a buffer that

already holds a packet with the same departure timestamp. Additionally flow control

is implemented on a flit-by-flit basis instead of a per packet basis. The proposed DSB

architecture outperforms IBR configurations when the amount of buffering is increased,

whereas in terms of power consumption there is a noticeable power cost increase which

can be justified for NoC applications which demand high bandwidth.

A Gracefully Degrading and Energy-Efficient Modular Router

Architecture for On-Chip Networks

The study in [12] proposes a novel fine-grained modular router architecture. Aside from

using decoupled parallel arbiters, compared to existing designs it utilizes smaller cross-

bars for row and column connections targeting less output port contention all while

implementing a new switch allocation method called Mirroring Effect. What stands out

is the feature of graceful degradation of the network in case of permanent faults as well

as the reduction of the dynamic power consumption. The achieved packet latency ends
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2. RELATED WORK

up being 4-40% lower than that of two existing architectures while power consumption

drops 6-20% lower.

A 4.6 Tbits/s 3.6 GHz Single-cycle NoC Router with a Novel

Switch Allocator in 65nm CMOS

Princeton University, in collaboration with Intel, presented a NoC router design, targeted

at a 36-core shared memory chip multiprocessor system which targeted a clock frequency

of 3.6 GHz, which in itself poses a challenge considering that any NoC router should main-

tain power and area efficiency. To that effect, Kumar et al. in [13] made several unique

circuit and micro-architectural innovations and design choices, the most important being

a novel high throughput and low latency switch allocation mechanism (SPAROFLO),

a non-speculative single-cycle pipeline, a low-complexity virtual channel allocator and

finally a dynamically managed shared buffer design. The results yielded by this design

showed a significant latency reduction both at no-load and saturation situations.

The FORMIC project

In 2012, FORTH-ICS introduced the Formic board [14], a cost-efficient building block

designed for scalable multi-board prototypes. Formic filled an important gap of both

academic and commercial platforms, which either were too expensive or did not feature

adequate SRAM and board-to-board connections. What was designed was a scalable

hardware architecture based on which a 64-board, 512-core proof-of-concept prototype

was implemented. Formic is minimal in concept, small, has both SRAM and DRAM

memories, features convenient SATA connectors and is optimized to be a part of a larger

system. The first hardware design project which uses the Formic board is a prototype

of a non cache-coherent manycore architecture, based on ideas of the SARC project [15].

Each board fits in its FPGA eight CPUs, their private L1 and L2 caches, eight GTP links

at 3 Gbp/s and a full network-on-chip centered around a 22-port crossbar. A variable

number of boards can be interconnected in a 3D-mesh using the GTP links, growing the

system as required. In the 64 board architecture, a minimum sized packet of 36 bytes

needed 3-4 cycles to traverse the internal network while board-to-board traversals add

5-6 cycles per hop. These delays were by then, in line with state-of-the art 2D-mesh

multi-core architectures.
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Efficient Network Interface design for low cost distributed sys-

tems

This thesis [16] developed a high-throughput and cost-efficient Network Interface (NI)

specifically tailored to the requirements of the AXIOM project [1]. The NI design was

inspired by the FORMIC project and extended to facilitate the needs of the OmpSs

programming model, including multiple data transfer types. To implement the proposed

design three different message controllers were created, an interrupt system as well as

the necessary interconnects. The end result was an efficient, fully pipelined network

interface utilizing a small percentage of the available resources of the AXIOM board

while achieving high throughput.

2.1 Comparisons

The AXIOM router, presented in the following chapters, focused mainly on a cost-efficient

and a functionally reliable design. Additionally as most of the above works deal with

SoC interconnects in large scale networks, our comparison will be more qualitative than

quantitative.

From an architectural standpoint the AXIOM router managed to reduce the pipeline

stages (section 5.2) just like MARX [10] did by merging stages, and ShortPath [6] by

skipping stages with no contentions. However some of our stages were not single-cycle

something that leaves us behind when compared to these two works. Regarding schedul-

ing, when compared to MARX [10] we judge that both router designs provide intricate

algorithms which can handle packet forwarding in a fair and efficient way.

From an implementing point of view, the AXIOM router does a fairly good job since

it surpasses the maximum provided bandwidth of FORMIC [14] while being way more

cost-efficient in terms of FPGA resources but induces a bigger latency.
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Chapter 3

Network Infrastructure

Prior to presenting the router’s architecture and implemented design, we need to define

the broader context in which the router exists, and that is the network. In our case

as described in section 1.1 the network’s building blocks will eventually be the AXIOM

boards, acting as nodes interconnected in a fast and cost-efficient way. Consequently,

the way these nodes will be organised, as well as the messages that will be exchanged

between them, set the router requirements such as the number of input and output ports,

the number of virtual channels, as well as the scheduling and routing algorithm. This

organization and these messages exchanged are described in the following paragraphs

that deal with the supported network topologies and the way the packets are forwarded

inside the network along with a brief description of the packets.

Before diving into details, let us name the basic features of the proposed AXIOM router:

• Multiple ad-hoc topology support

• Supports different message type transmissions

• Utilizes Virtual Channels to prioritize packets

• Uses Virtual Cut-Through switching

3.1 Supported Topologies

A network’s topology is one of the main factors that affect performance. It defines

the physical organization of the network composed by the nodes, and consequently the
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available paths between all the nodes (routing algorithm) [17]. Simply because any other

topology aside from ring or 2-D mesh and torus would add a significant overhead to either

resources or logic, we decided to set as our goal a fully functional 2-D torus topology,

with a ring topology acting as a milestone at the midpoint of this work. For any other,

more complicated topology, we can expand the existing design and logic to achieve a

more efficient network. Figure 3.1 presents the implemented topologies, depicting an

example network of 8 nodes connected on a ring topology, a network of 9 nodes in 2-D

mesh as well as an example of a 2-D torus topology.
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Figure 3.1: Ring (left), 2-D Mesh (center) and 2-D Torus (right) network topologies

3.2 Supported Packet Types

Although the router handles packets as chunks of data without really interfering with

their contents, we judge that it is necessary to give a general description for each packet

type and additionally present their respective headers, before moving on to the general

architecture and implementation.

Two basic categories of data transfers are supported, those that transfer data from and

to the system’s APU, called RAW transfers, and those that transfer data directly from

and to the memory of the APU with the use of a DMA engine, called RDMA transfers.

Each of these include a number of packet types to facilitate the successful transmission

of data from one node to another. These packets types are listed below along with a brief

description of their purpose.
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• RAW NEIGHBOUR packets are used along with a discovery protocol that is

run by the main FPGA of the ring or 2-D mesh to locate all the other FPGAs,

assign ids to them and initialize their Routing Tables.

• RAW DATA packets are used to send data directly from one APU to another.

• INIT packets are sent from one node to another, when the first wants to inform

the second that he is about to send an RDMA packet. It includes information

regarding the message size about to be transmitted. It precedes LONG DATA,

RDMA WRITE and RDMA READ packets.

• LONG DATA packets are used to send data from one node’s memory to another’s.

It includes the source address of the sender’s memory to read the payload as well

as the payload size.

• RDMA WRITE packets are almost identical to the LONG DATA packet with

the only difference being that the RDMA WRITE also includes the destination

address of the receivers memory where the payload will be written.

• RDMA READ packets are used to request data from a remote node’s memory.

Includes the source address of the remote memory from which the data will be read,

the payload size and the destination address that the data will be written on the

local APU’s memory.

• ACK/NACK are used at the end of any RDMA transfer to signify a successful

or unsuccessful message transmission.

Overall, a packets header consists of 5 bytes with identical information for all packets and

some extra bytes of information in the case of RDMA packets. The information included

in a header contains the following:

1. The SOURCE field is 8 bits wide and represents the source node, where the packet

initially got generated.

2. The DESTINATION field is 8 bits wide and its value is the packet’s destination

node. This value is used as the address of the routing table BRAM, which contains

which router output the packet should request.
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3. The MESSAGE ID field is 8 bits wide and its value is an id given by the PS and

along with the SOURCE and DESTINATION fields create a unique id for each

transfer.

4. The TYPE field is 3 bits wide and its value is the packet’s type.

5. The PORT field is 3 bits wide and is used by the PS, for example to encapsulate

Ethernet packets.

6. The VC field is 2 bits and dictates the packets priority

7. The PAYLOAD SIZE field is 8 or 16 bits, depending on the packet type, and holds

the number of useful data bytes in the packet
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Table 3.1: Packet types

RAW packet

←− 1 Byte −→
SOURCE

DESTINATION

MESSAGE ID

VC PORT TYPE

PAYLOAD SIZE

PAYLOAD Byte 0

PAYLOAD Byte 1

...

ACK packet

←− 1 Byte −→
SOURCE

DESTINATION

MESSAGE ID

VC PORT TYPE

PAYLOAD SIZE LOW

PAYLOAD SIZE HIGH

NACK ACK Type

INIT packet

←− 1 Byte −→
SOURCE

DESTINATION

MESSAGE ID

VC PORT TYPE

PAYLOAD SIZE LOW

PAYLOAD SIZE HIGH

INIT Type

LONG DATA packet

←− 1 Byte −→
SOURCE

DESTINATION

MESSAGE ID

VC PORT TYPE

PACKET PAYLOAD

PAYLOAD Byte 0

PAYLOAD Byte 1

...

RDMA WRITE /

RESPONSE packet

←− 1 Byte −→
SOURCE

DESTINATION

MESSAGE ID

VC PORT TYPE

PACKET PAYLOAD

DST Addr 0

DST Addr 1

DST Addr 2

DST Addr 3

PAYLOAD Byte 0

PAYLOAD Byte 1

...

RDMA READ packet

←− 1 Byte −→
SOURCE

DESTINATION

MESSAGE ID

VC PORT TYPE

PAYLOAD SIZE LOW

PAYLOAD SIZE HIGH

SRC Addr 0

SRC Addr 1

SRC Addr 2

SRC Addr 3

DST Addr 0

DST Addr 1

DST Addr 2

DST Addr 3
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3.3 Packet Switching

Each message (whether an RDMA transfer, RAW messages or a simple ACK) is broken

down to packets, and each packet to flits as shown in Figure 3.2. Packets are transferred to

Figure 3.2: Data granularity of the network.

their destination through multiple routers along the routing path in a hop-by-hop manner.

Each node’s router keeps forwarding an incoming packet to the next node’s router until

the packet reaches its final destination. Switching techniques dictate when the router will

forward the incoming packet to the neighbouring node, consequently affecting the network

performance and buffer size required for each router. When starting off this thesis, there

was a variety of switching methods discussed namely Store & Forward, Wormhole and

Virtual Cut-Through (VCT), each with each own benefits and drawbacks [9].

The evaluation criteria for the above methods were exclusively cost and speed. Store

& Forward switching came in last, both in cost and speed comparisons, since it utilizes

packet-size buffers in contrast to Wormhole which uses flit-size buffers, and transmits data

in a framing manner instead of streaming as Wormhole and VCT do. Wormhole, although

being the most cost-efficient method with a minimum buffer size, and forwarding flits in

streaming fashion, it presented the risk of Head-Of-Line (HOL) blocking with a packet’s

flits, being dispersed in multiple nodes inside the network which has zero additional buffer

space to accommodate flits from other packets. Hence, Virtual Cut-Through became

the only viable option, accepting the trade-off of buffers larger than the minimum size

combined with an efficient and safe packet forwarding style.

However we should mention, that the VCT version we adopted, comes with a small tweak.

Although - like in traditional VCT - the buffers are reserved at the granularity of packets,

the size is not that of a single packet, but a variable multiple of the worst-case size packet
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depending on the VC priority.

In Figure 3.3 we give a brief example of VCT switching. Each packet has a header flit

which is decoded into information important to the packet’s routing. The header flit,

does not have to wait for the rest of the packet to move downstream, so as long as there

is no crossbar conflicts or downstream buffer space issues, the header is immediately

moved to the next node. The router holds the switch’s configuration until the end of the

packet and so the rest of the flits can simply follow the same route that was given to the

header, without having to be routed from the beginning.
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Figure 3.3: An example illustrating Virtual Cut-Through switching. A packet is being

injected into the network (at Node A), traversing several nodes, before reaching its des-

tination (Node D). Each node hop happens on a per-flit basis. When a link traversal is

unavailable, flits that cannot make it through, accumulate to the buffer. The rest of the

flits that made the hop before the link becoming unavailable, keep on moving downstream

towards their destination.
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Chapter 4

Router Architecture

In this chapter we will describe the proposed router architecture and highlight integral

parts of the design such as the pipeline and which tasks each stage has to complete, the

routing table and how it is configured to successfully help with the routing decisions, the

scheduling that takes place among packets and finally the way the router handles traffic

inside the network. Before moving on, in Figure 4.1 we present the architecture’s block

diagram so as to have a general idea of the design while diving into the description of

individual blocks and tasks.
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Figure 4.1: The proposed 3x3 router architecture.

4.1 Pipeline Stages

One of the key points of this thesis was creating a fully pipelined design. Although

in theory that does not seem to create an issue, there where numerous problems that
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we had to tackle, mainly related to the tools used. Our design consists of five pipeline

stages: Route Computation (RC), Input Buffering (IBUFF), Switch Allocation (SA),

Switch Traversal (ST), and finally Link Traversal (LT), each with its own distinct task.

The task based view is presented in Figure 4.2.

Figure 4.2: The pipelined tasks. From left to right: Route Computation, Input Buffering,

Switch Allocation, Switch Traversal, Link Traversal

Route Computation

This is the higher-level decision making process that handles the task of directing packets

towards their destination [18]. This decision is made by the routing algorithm imple-

mented either by the NI or the router, which depending on its complexity uses a number

of factors (network traffic, downstream buffer status, etc.) to determine what the next

hop will be. Something most routing algorithms have in common is the access to the

routing table. The routing table can be viewed as a map that dictates the path that

should be followed for each possible destination. Again, depending on the complexity

of the routing algorithm, the path can be predetermined and unique, or multiple and

variable. In our case, where the routing algorithm is deterministic, non-minimal, and

regular, RC will consist mainly of the routing table look up in order to forward packets

to the next node.

However, there is a case where the routing table access is skipped and the router accepts

as the packet’s destination whichever output was dictated by the NI. This takes place

only during the set-up of the network when the discovery algorithm is run. We should

also mention that the routing table access is needed only for the header flit of the packet.

The rest of the packet (body and tail flits) do not need any further routing, as they

simply follow the header flit.
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Input Buffering

After deciding through which output the packet needs to exit the router, comes the

process of temporarily storing the packet internally, before the router is ready to forward

it. Although buffering is one of the main sources of added overhead to a router design, it’s

imperative that the packet is safely stored somewhere inside the router, in case the latter

is not able to handle it yet, either due to increased network traffic or due to shortage of

downstream buffer space or even in case of some packets taking priority over others. The

size of these buffers can differ from one design to another, mostly based on the adopted

switching technique. For instance, in Store & Forward switching, the buffer has to be

big enough to store a whole packet (including header flit and body/tail flits), while in

Wormhole switching there is no need for buffers bigger than a flit’s size. In this work, we

take a similar approach to Virtual Cut-Through as discussed in section 3.3, which led to

using buffers larger than a single packet size.

Another requirement we had upon beginning the architecture design, was to take into

consideration that we would not treat every packet the same way. More specifically,

certain packets should be handled as soon as possible upon reaching a node inside the

network, while for others we could afford postponing their forwarding depending on the

importance of the information they held.

With that being said, we decided to discern the packet types into three different priorities;

High, Medium and Low. Virtual Channel 2 holds the packets of the highest priority

(ACKs, NACKs), Virtual Channel 1 is the buffer for medium priority packets (INIT,

RAW NEIGHBOUR, RAW DATA, LONG DATA, RDMA WRITE) and lastly Virtual

Channel 0 keeps the packets of the lowest priority (RDMA READ). It should be noted

that on the proposed architecture each VC priority uses a different size buffer, because

although the agreed upon maximum capacity was two times the worst-case packet size,

that size is variable between the different priorities.

Finally, a secondary but equally important task undertaken by this stage is informing

the adjacent nodes about the buffers’ status. In case the available space in a queue drops

below or raises above a certain threshold, then any node directly connected to the node

that the input buffer status has changed, is informed about that change through flow

control messages.
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Switch Allocation

This is the main algorithmic stage of the pipeline. Here, all packets, from every lane and

every virtual circuit, request one of the crossbar’s output links and are halted until that

output link is granted to them. For an output to be granted the router needs to assess

which packets are of higher priority than others and attempt to pair their respective input

streams to the requested output streams in the most efficient way possible. This means

that any free crossbar output link should be allocated to a single input queue, but this

however is not always the case. An output link might stay idle if the input buffers of the

node it leads to are full, or simply because no input stream requests that crossbar output.

As far as the request-grant handshake procedure is concerned, it takes place between the

allocator and only the header flit of each packet. After the decision is made and the

output has been granted, the remaining flits of that packet will be forwarded through

the same output as the header, making it obvious that the allocator’s task switches from

granting an output, to maintaining the crossbar’s input-output connection until the whole

packet has left the node.

Switch Traversal

In this stage, the input queues whose packets were granted a crossbar output, are paired

to that output in order to reach the link that will inject them back into the network (or to

the Network Interface, in case this node is the packets destination). With a unidirectional

2-D torus topology in mind, as seen in section 3.1, in each node there are two inputs from

the network, and one from the network interface that connects the router with the PS.

The same is true for the output links. This leads to a three-to-three (3x3) crossbar design.

The way these inputs connect with the outputs is through a number of multiplexers on

the input side, and a number of demultiplexers on the output side all connected to the

output of every multiplexer.

Link Traversal

Link Traversal stage is the final stage of our pipeline. After moving through the crossbar,

packets head either to the NI through the internal link or to the next node through
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the physical link. This is the stage with the most straightforward task since it only

involves wire connections and no logic. Each lane or link includes two different channels,

one incoming an one outgoing. The ultimate goal for each link is to send and receive

both data packets and flow control packets. For reasons that are explained later, at the

moment each link of each channel is reserved exclusively either for data or flow control

packets, depending whether the link is treated as an input or an output.

4.2 Routing Table and Configuration

In most router designs, we find a single routing table which the router uses to find the

correct output port that each packet should be forwarded through, towards its destina-

tion. We quickly realized however, that a single routing table approach could possibly

lead to races regarding more than a single read on the same address, which eventually

will occur whenever two different packet headers arrive on a node simultaneously (but

through different inputs) and have the same destination node ID leading to two memory

reads at the same time. This would result to a stalled RC stage for one of the packets

which in turn would complicate the pipeline as there was no guarantee that the latency

for accessing the routing table would always be the same.

Instead we went for a time efficient but more resource costly approach, by using multiple

copies of the same routing table. In fact we need one mirrored routing table for each

physical input link. Although resource requirements are certainly higher, this way we

avoid dependencies whenever two different inputs attempt to find the output port for

the same destination node. These mirrored routing tables have a depth of the number of

nodes in the network. This way, the table is indexed in essence by node IDs and the data

in each address space correspond to the router’s output port through which the next hop

will take place towards the packets destination node. The way that the routing table

is initialized is during the set-up of the network, when a discovery algorithm is run by

the APU, in order to identify nodes at the end of every physical link, of every router.

On subsection 7.3.1 we will discuss in what ways the current routing table set-up can be

expanded and improved upon.
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4.3 Scheduling

This section focuses on the scheduling task of the router. Assuming a router of x input

lanes (internal or physical) and y virtual channels per lane, this leads to xy streams that

the router has to arbitrate between. When only one input requests a specific output, the

router should connect the corresponding input with the designated output. When two or

more packets from different inputs compete for gaining access to the same output port

in the same cycle the router is responsible for resolving the contention. This means that

only one packet - and consequently one input - will gain access to the output port. The

flits of the packet that the decision did not favor, stay in the input buffer and make a

request anew, in the next cycle. To achieve an efficient but still fair arbitration between

different inputs, we suggest a two level scheduling algorithm. On the higher level, VCs

should be accessed according to a fixed priority while on the lower level, the sequence in

which it processes input links depends on a Round-Robin algorithm, which uses a token

to discern the prioritized lane from the rest. A high-level flowchart representation of the

scheduling algorithm is presented in Figure 4.3. Even though the per-VC and per-lane

arbitration seem to operate independently, their eventual outcomes in the SA stage are

very much dependent, each one affecting the aggregate matching quality of the crossbar.

Figure 4.3: The scheduling process between VCs and input lanes.
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4.3.1 Virtual Channel Scheduling

As presented on section 4.1’s Input Buffering stage, there are three distinct VC priorities,

VC2 is the high priority virtual channel, VC1 the medium priority VC and VC0 the lowest.

Focusing on a single input lane, the switch allocator must always attempt to process

packets coming from the highest priority VC available before moving on to a lower one.

As long as there are data available on the highest priority VC, the route controller will

always forward these packets instead of packets of lower VCs, unless the requested output

is already in use or the downstream VC has no space available. After checking all of the

VCx from all the lanes, the controller either starts over from the highest priority VC if a

new packet was granted an output, or moves one VC priority down if no new packet was

forwarded. The same logic propagates to all VC priorities. For example when checking

VC(x− 1), if a packet manages to acquire the requested output then the route controller

begins checking once again from the highest priority VC whereas if all VC(x− 1) packets

fail to reach the requested output, the scheduler moves on to checking packets from

VC(x− 2). If, at the worst case, the route controller fails to route a new packet from all

available VCs then it simply forwards the flits from the already routed packets and waits

for any kind of change in the network that will allow new packets to be routed on the

next cycle.

4.3.2 Lane Scheduling

On the lower level of scheduling the controller attempts to forward packets from any lane

but from a specific VC priority according to the procedure mentioned on the previous

paragraph. The question under discussion on this paragraph is how we could access the

input lanes, based on a ”fair” approach so that no lane ends up being prioritized when

it should not be. With that in mind we proposed a Round Robin algorithm that uses

a token to signify the first lane to be accessed. The basic premise behind this approach

is that when an input lane has the token, the route controller starts checking for new

packets from that lane, and moving on to the next one in numerical order until all the

lanes are checked. The token however, will stay on the same lane, until the controller

successfully routes a packet from that lane. When it does, the token is moved to the next

lane and will stay there until a packet from that lane is granted an output.

We should point out that eventually there are as many tokens as there are VCs. This
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can be easily explained, considering that it would be wrong to give Lane B the priority

for VC1 packets, just because Lane A just forwarded a VC2 packet and the token moved

from Lane A to Lane B for all VCs.

In Figure 4.4 we see a simple scenario of three packets that are all on the SA stage. As

thoroughly described above, initially the scheduler checks the highest VC priority on all

lanes, for packets that can be granted output. After it successfully routes them in this

case its a VC2 packet from Lane #1 it “resets” and checks again from the highest priority

for new packets. Only when on that priority there are no more packets present, it moves

to lower priorities and once again checks all lanes for said priority. On this example, both

input lanes have available packets from VC1 requesting the same output. The arbiter

follows the Round-Robin logic, and grants the output request of the lane that has the

VC token for that VC priority. Finally on the last clock cycle, the packet that lost all

previous contentions, either due to VC priority or due to the Round-Robin algorithm, is

now granted the output that it has requested.

4.4 Flow Control

Flow control is the mechanism that describes how a packet or flits of packet are transferred

between two endpoints, either across NIs (end-to-end flow control) or across routers (link-

level flow control) providing lossless operation and high communication throughput. A

NoC’s flow control is usually implemented through the use of credits or Stop-Go flags

[19].

In this work, after taking into account the added overhead of keeping track of credits

we decided to go with the latter. Our Stop-Go signals, which are named Xon-Xoff, are

sent to every adjacent node whenever a buffer status is changed. Depending mainly on

the agreed upon design and a packet’s time-of-flight, the router has to notify adjacent

nodes about buffer ”fullness” whenever a certain threshold is reached on the buffers

available slots. This requires to calculate the worst case latency (including router latency

and physical link speed) in order to set the buffers empty-to-full threshold correctly.

When that threshold is reached a flag is toggled which triggers the creation of a flow

control packet (in this case Xoff) to send to the adjacent node. Similarly, when the

queue’s utilization drops below said threshold, an Xon packet is transmitted informing

the adjacent node that it can once again successfully send a new data packet.
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Figure 4.4: A scheduling example of one VC1 packet in one input, and two packets in

the second input, a VC2 and a VC1, all requesting outputs on the same clock cycle. For

simplicity, all packets are supposed to be single-flit.
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System Implementation

This chapter provides all the necessary information of how the suggested architecture was

implemented. First off, we present the tools that were used for the technical aspect of

our work. Next, we proceed to the detailed description of the modules which includes the

tasks performed and how they match their respective pipeline stages, their ports and how

they interface with the rest of the design along with their timing performance. Towards

the end of the chapter, we incorporate the aspect of the physical connections between

the nodes and finally list the resource utilization of our design on the AXIOM board.

5.1 Tools Used

The two main tools that were used throughout this work were both Xilinx tools, namely

the Vivado High Level Synthesis (HLS) [20] tool and the Vivado Design Suite [21].

High-Level Synthesis (HLS) tools are hailed as one of the most promising ways to bridge

the design productivity gap, especially for reconfigurable systems [22]. These tools in-

crease designer productivity at a possible performance and/or silicon cost, although the

designer can play a significant role in the minimisation of both. Currently, one of the key

challenges for the designer is to efficiently use the vendor-defined methodology and the

design guidelines of the HLS tool.

The Xilinx Vivado High-Level Synthesis (HLS) tool transforms a C specification into a

register transfer level (RTL) implementation that the designer can synthesize into a Xil-

inx or a Xilinx compatible field programmable gate array (FPGA). C specifications can

be written in C, C++, SystemC, or as an Open Computing Language (OpenCL) API C
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kernel, and the FPGA provides a massively parallel architecture with benefits in perfor-

mance, cost, and power over traditional processors. Using the Vivado HLS tool we are

allowed to develop and verify algorithms at the C-level, control the C synthesis process

through optimization directives, create multiple implementations from the C source code

using optimizations directives, all while keeping an easy to read and portable C source

code ready to be re-targeted into different devices. The way that HLS synthesizes the C

code is that it turns the top-level C function as the top RTL module while synthesizing

its arguments into RTL I/O ports. The rest of the C functions are synthesized into blocks

in the RTL hierarchy mimicking the same hierarchy existent in the C source code. With

regard to the optimization directives mentioned above, the tool can follow the designer’s

instructions on how it should transform the code area the directive refers to. The usual

code areas that can be improved upon through the use of directives are

• The interfaces that will be implemented on the arguments of the top-level function

(BRAM, AXI4, AXI4-Stream, bus, etc)

• The arrays that the designer can pick how these will be implemented into block

rams and registers

• The loops that can be either fully or partially unrolled, pipelined etc. eventually

enhancing parallelism

The Vivado Design Suite is designed to improve productivity. This tool suite aims to

increase the overall productivity for designing, integrating, and implementing systems

using the Xilinx or Xilinx compatible devices. With the Vivado Design Suite, the user can

accelerate design implementation with place and route tools that analytically optimize

for multiple and concurrent design metrics, such as timing, congestion, total wire length,

utilization and power. The Vivado Design Suite provides the designer with design analysis

capabilities at each design stage. This allows for design and tool setting modifications

earlier in the design processes where they have less overall schedule impact, thus reducing

design iterations and accelerating productivity. All of the Vivado Design Suite tools are

written with a native tool command language (Tcl) interface. All of the commands

and options available in the Vivado Integrated Design Environment (IDE), which is the

graphical user interface (GUI) for the Vivado Design Suite, are accessible through Tcl.

Our first approach towards these tools was made under the general concept that every
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custom IP that was needed would be created with HLS since that provided a number

of benefits, with writing in a C-based language being the most significant, and then

connect our custom IPs along with the Xilinx provided IPs in the Vivado Design Suite

IDE and let the tool map our design on the FPGA. However, on the first steps of the

implementation and while encountering numerous difficulties with HLS mainly because of

lack of familiarity with the tool, we decided to take a lower level approach and attempted

to use VHDL to create the modules. Unfortunately, we once again reached a dead end

when we could not tackle problems related with integral parts of the design, with one of

the most representative being the stream interface. That brought us back to HLS where

in the end we managed to deal with every one of the problems presented by Vivado’s HLS

tool and successfully synthesized, verified and exported the modules that met resource

and latency expectations to the Vivado Design Suite tool to merge with the rest of the

IPs provided by Xilinx.

5.2 Implementation

The next paragraphs encapsulate the steps we took towards implementing the proposed

architecture, using the tools mentioned above. Here the reader can find a detailed de-

scription of all the router modules that were created and their functionality, alongside

with schematics to help visualize each parts connection with the rest of the architecture.
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Figure 5.1: Schematic of implemented architecture.

What we managed to achieve is a better organization of the tasks, mainly by taking

advantage some of the optimizations the tools used allow, ending up with a different

ordering of the pipeline stages which resulted in one stage less than expected, specifically

by merging SA and ST [10] and embedding it in the end of IBUFF stage. In Figure 5.2

we can see the final organization of the tasks and in Figure 5.3 a timing perspective of

the proposed pipeline architecture. The next paragraphs go into further detail describing

our architecture’s design.
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Figure 5.2: The pipelined tasks. From left to right, top to bottom: Route Computation,

Input Buffering, Switch Allocation, Switch Traversal, Link Traversal

RC IBUFF

SA

ST

LT

t0 t1 t2 t3 t4 tn

Figure 5.3: A clock cycle perspective of the pipelined tasks.

Routing Table

The Routing Table, along with the Link Controller are the two modules that carry the

task of route computation (section 4.1). During the first steps of our implementation

we decided that a BRAM of depth as big as the number of nodes in the network would

suffice as a routing table. This would be done in a way that each address space would

correspond to the same node ID. The value inside every slot of the routing table would

be the router’s output port through which the packet will make the next hop towards it’s

destination. Specifically the value ’0’ would signify that this node is this packet’s desti-

nation, so the packet would leave the network and head to the PS through the NI. Every
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other value would match a physical output’s ID which through the Aurora 64b/66b IP

(section 5.2) would lead to a downstream node. Furthermore the BRAM’s initialization

was already agreed upon to take place through the discovery protocol and before data

packets started being injected in the network. The routing tables’s task of finding the

suitable output port towards each destination node consists of receiving the header’s des-

tination field from Link Controller as the BRAM’s address of which the data are being

read and after 1 clock cycle to respond to Link Controller with the data read, which is

the output port found.

The routing table is implemented using a Xilinx provided BRAM IP, which is connected

on one side with an AXI BRAM Controller module which facilitates the initialization

of the BRAM by the PS and on the other with the Link Controller. The BRAM to

BRAM Controller connection happens through an AXI bus interface while the one with

the Link Controller uses a BRAM interface, which includes all the necessary signals such

as data in, data out, addr wr, addr rd, wr en, rd en, etc..

Link Controller

This is the module responsible for handling the input streams from the Aurora 64b/66b

IP which in essence means finding the output port for each packet received and store

it to the appropriate VC afterwards. The way LC (Figure 5.4) is connected with Au-

rora is through an AXI4-Stream interface with no side signals, which include just the

TDATA[(n-1):0], TVALID and TREADY. This means that there is no additional infor-

mation present regarding whether this is the a packet’s header, body or tail flit or where

this flit is headed. However this does not constitutes a problem since LC is the IP that

is responsible for the route computation as well as the input buffering. The algorithm

on which we based these tasks upon is fairly simple. LC starts by receiving a header flit

from Aurora 64b/66b. From this first chunk of data, we already have all the information

needed about the incoming packet. Depending on the packets TYPE field, it either reads

the routing table to find the appropriate router output that the packet must be forwarded

through, or simply bypasses the routing table (in the case of RAW NEIGHBOUR pack-

ets, sent during the discovery mode of the networks set up procedure). After finding

the appropriate output for the next hop, we now have to find a way to know when we
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will treat a flit as a header again. The solution to that is depended on both the current

packet’s type and its payload. For packet types that have a fixed amount of flits (such as

ACK, NACK, INIT, RDMA READ) we know exactly which flit will be the tail and so

we treat every next flit as header. On the other hand, for packet types with variable flit

number, we use the packets payload as a counter and decide when we are done process-

ing said packet. To this point, we have added some useful information to each flit which

translate as added side signals to the output streams. These are TDEST, containing an

output port ID and TLAST, used as a flag to notify the route controller that it is handling

a packet’s tail flit. The last task the LC has to accomplish is to buffer the packet. As

previously described there are three different packet priorities, which translate to three

different FIFOs used as virtual channels. To which virtual channel the packet should be

buffered is dictated by the header’s VC field.

With regard to LC’s connections, there are four AXI4-Stream interfaces present, one

with the Aurora IP and three with the FIFOs acting as the VCs, and a BRAM interface

with the Routing Table. The LC’s latency is 2 cc and that is attributed to the fact that

it inherits the BRAM’s latency when requests the output port from the Routing Table

hence making the IBUFF task a 2 clock cycle stage. However, by adding the PIPELINE

directive we managed to keep the II to 1, thus pipelining the module completely.

Directives used:

• #pragma HLS PIPELINE II=1 to set the pipeline’s initiation interval of this

function to 1.

• #pragma HLS INTERFACE axis off port=argument to implement the AXI-

Stream interface. Generates TVALID and TREADY signals automatically, while

additional sideband signals such as TLAST and TDEST ought to be explicitly

specified by the user, with a struct type. Parameter ’off’ specifies a non registered

mode.

• #pragma HLS STREAM variable=input depth=8 to configure the imple-

mentation of FIFOs used internally

• #pragma HLS RESOURCE variable=routing table core=RAM 1P BRAM

to specify the resource to be used to implement the array in the RTL.
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• #pragma HLS INTERFACE bram depth=256 port=routing table to imple-

ment the array arguments as accesses to an external BRAM.

Figure 5.4: Schematic of link controller.

Virtual Channels

As mentioned above, each input’s buffering stage is composed of three FIFOs each treated

as a separate virtual channel. These FIFOs were implemented with Vivado’s FIFO Gen-

erator, which through the IPs configuration menu, allows for a programmable full signal

that - as it’s name suggests - is asserted when the number of words in the FIFO is greater

than or equal to the programmable threshold set by the user. It is deasserted when the

number of words in the FIFO is less than the programmable threshold. This signal con-

nects directly to the XonXoff TX module and its assertion triggers the creation of a flow

control packet, described on the next paragraph. Since each VC holds different kinds of

packets we tried to trim down the FIFOs’ size, but still make them large enough to be
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Figure 5.5: Schematic of link controller’s FSM.

able to hold two of its worst-case size packets. As a result the final VC setup should be

as follows: every FIFO must be an AXI Stream FIFO of 8 byte data width and their

respective depth would be 16 slots for VC2, 128 for VC1 and 16 for VC0. For VC2, 16

slots might seem excessive since according to the two worst-case size packets rule, that

would mean just 2 slots since in case of ACKs and NACKs, packet equals flit (8 bytes).

The problem with that was that even if there was an option for a 2 slot FIFO, Vivado

would always implement it as a FIFO with depth of 16. As for VC1 we can see that our

rule is in effect. With the LONG DATA as the worst-case size packet, we are required to

have a total of 65 slots for two packets, which forces us to move up to 128 slots. Finally

for VC0 which only holds RDMA READ packets, hence a maximum payload (including

header) of 14 bytes per packet which translates to 4 slots for our FIFO we are once again
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led to a 16 slot buffer.

During the implementation stage, by using Xilinx’s FIFO Generator IP to create the

VCs, we took advantage of the built-in FIFOs option. The built-in FIFOs [23] is a mem-

ory resource provided by Ultrascale that allows for efficient implementation of FIFOs

with the dedicated logic in the block RAM. This way, any need for additional CLB logic

for counters, comparators and status flags is eliminated, something that would be nec-

essary with a generic block RAM implementation. However, the built-in FIFO option,

automatically restricts us to using a minimum depth of 512, which we accepted as a

trade-off, for smaller area utilization. We later on discovered another Xilinx FIFO IP,

the AXI4-Stream Data FIFO which allows a minimum depth of 16 slots, however instead

of a programmable full signal, it provides a 32-bit counter which holds information about

the FIFO’s occupancy but by that time we had already created our design based on the

single bit full flags, so we stayed with the IPs mentioned above. Though this might not

be the most cost-efficient way, we still uphold the rule of storing at worst two of the

largest packets of every VC priority in the implemented design.

Concerning the interfaces, since we “propagate” the AXI4-Stream use throughout the

architecture, these modules could not be different. This means that both the data input

and data output of the FIFO, use the AXI4-Stream interface. The only ap none interface

present is the one that drives the full-flag information from the FIFO’s programmable

full signal to the XonXoff TX module’s input. The latency of a read operation for the

selected FIFO cores implementing the VCs, is 2 clock cycles.

XonXoff TX & XonXoff RX

These are the modules solely responsible for the networks flow control. Each node needs

at all times to be able to send information upstream about the local VCs, as well as have

access to up-to-date statuses of the downstream VCs.

Updating upstream neighbouring nodes is something that takes place whenever any of the

programmable full signals of the local VCs changes. When that happens, XonXoff TX

immediately sends a control packet through the input Aurora 64b/66b’s back channel.

The useful data are only the lower 3 bits, and each one corresponds to a certain VC for

that lane, specifically bit 0 holds VC0’s status, bit 1 VC1’s and bit 2 VC2’s. A value of
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’0’ means OFF or stop, signifying that the buffer is full, or about to be full, when con-

sidering currently mid-flight packets. A value of ’1’ translates as ON or go, which means

that based on the threshold already set, and accounting for in-flight packets, a worst-

case packet can be sent from an upstream node and still be successfully buffered. On

the other hand, XonXoff RX is the one receiving the stop-go packets from the adjacent

downstream node. Its only input is the receiving channel of the output Aurora 64b/66b

from which it keeps only the useful 3 bits and through its connection to the RC, helps

the crossbar allocation procedure by informing about downstream buffer availability.

Both of the above modules interface with the Auroras with an AXI4-Stream connection,

while in XonXoff TX the fullness flags are 3 single bit inputs with no interface protocol

(ap none) and in XonXoff RX the signal that informs the Route Controller about the

FIFOs on the next node is a single 3-bit no interface protocol output. The XonXoff TX

module uses two clock cycles to receive and process the data from the VCs and write the

XonXoff signal to an “input” Aurora module, while the XonXoff RX has a single clock

cycle latency to receive the XonXoff packet from an “output” Aurora and inform the RC

about any status changes.

Directives used:

• #pragma HLS PIPELINE II=1 to set the pipeline’s initiation interval of this

function to 1.

• #pragma HLS INTERFACE axis off port=argument to implement the AXI-

Stream interface.

• #pragma HLS STREAM variable=argument depth=8 to configure the im-

plementation of FIFOs used internally

• #pragma HLS INTERFACE ap none to implement a simple data port with

no protocol.

Route Controller

The main algorithmic part of the router’s functionality takes place inside the RC module

(Figure 5.7). On each clock cycle, RC performs two distinct tasks, based on information
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Figure 5.6: Schematic of XonXoff TX and XonXoff RX.

held on local registers concerning the matches made between outputs and inputs that are

currently active and the downstream buffer space. The first task is that of checking all

input streams to find headers of packets that have not yet been routed and are waiting

for an output grant. The sequence of checking the streams depends on the VC priority on

a first level, and then on the Round-Robin algorithm. Both these ways of scheduling are

presented and thoroughly described in section 4.3. Eventually RC matches inputs with

unrouted packets to free outputs on an internal memory and moves on to the second part

of the algorithm. On the second stage, the controller reads from all input streams that

have been granted an output, either on this cycle or on a previous one, and writes the

data on the output stream that each input is paired to, according to the matching table.

Whenever the TLAST signal is asserted on a stream, RC clears the respective pairing

from the table, leaving the output free for the next packet.

The RC connects to the rest of the design with a number of single and multi-bit con-

nections. There are 9 AXI-Stream interface inputs that represent the data streams from

each VC (3 lanes each of 3 VCs hence 9 input streams) and 3 AXI-Stream outputs head-

ing either to the NI or to the Aurora IPs representing the router’s data outputs. Apart

from those, there 9 no protocol inputs, branching off the input streams which hold the
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destination information for each packet that has been attached on the stream since the

route computation stage, as well as 3 3-bit no protocol inputs, signifying the buffer status

of the NI and each of the two adjacent downstream nodes. One of the most important

milestones was managing to create the fastest route controller module possible. Our first

attempt was not what we expected as we ended up needing more that a hundred clock

cycles to check all the inputs for either new packet routing or for forwarding already

routed packets and write all these flits at the appropriate outputs. However, after code

restructuring and directive application we successfully created a module of zero clock

cycles latency (and obviously fully pipelined). This means that the RC acts as an asyn-

chronous IP simply demultiplexing and multiplexing inputs to outputs according to the

route decisions that are made on the fly.

Directives used:

• #pragma HLS PIPELINE II=1 to set the pipeline’s initiation interval of this

function to 1.

• #pragma HLS INTERFACE axis off port=argument to implement the AXI-

Stream interface.

• #pragma HLS STREAM variable=input depth=8 to configure the imple-

mentation of FIFOs used internally

• #pragma HLS INTERFACE ap none to implement a simple data port with

no protocol.

• #pragma HLS ARRAY PARTITION variable=argument complete dim=1

to partition an array into smaller arrays or individual elements. This will result in

RTL with multiple small memories or multiple registers instead of one large mem-

ory. This effectively increases the amount of read and write ports for the storage

resulting to throughput improvement, while requiring more memory instances or

registers.
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Figure 5.7: Schematic of route controller.

Interfacing with the physical layer

Towards a seamless connection to the physical links, we decided to incorporate into

our design the Xilinx provided Aurora 64B/66B [24] IP cores. Aurora 64B/66B is a

lightweight, serial communications protocol for multi-gigabit links, used to transfer data

between devices using one or many GTX or GTH [25] transceivers, while supporting the

AXI4-Stream user interface, making it an ideal choice for merging our design with the

physical level. The core implements the Aurora 64B/66B protocol using the high-speed

serial GTX, GTH or GTY transceivers in applicable UltraScale, Zynq-7000, Virtex-7, and

Kintex-7 devices. It can use up to 16 consecutive device GTX, GTH or GTY transceivers

running at any supported line rate to provide a low-cost, general-purpose, data channel

with throughput from 500 Mb/s to over 400 Gb/s. Aurora 64B/66B cores automatically

initialize a channel when they are connected to an Aurora 64B/66B channel partner, as

demonstrated in the Figure 5.9. In this work, we utilize a single lane on each channel that

we set up. After initialization, applications can pass data across the channel as frames

or streams of data. Streams are implemented in Aurora 64B/66B as a single, unending
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Figure 5.8: Schematic of route controller’s FSM.

frame. Whenever data is not being transmitted, idles are transmitted to keep the link

alive.

For a default single lane configuration, latency through an Aurora 64B/66B core is caused

by pipeline delays through the protocol engine (PE) and through the GTX and GTH

transceivers. The PE pipeline delay increases as the AXI4-Stream interface width in-

creases. The transceiver delays are determined by the transceiver features [25]. Table 5.1
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shows the maximum latency and the individual latency values of the contributing pipeline

components for the default core configuration on UltraScale GTH transceiver based de-

vices.

Table 5.1: Latency for the Default Aurora 64B/66B Core Configuration

Latency Component Clock Cycles

Logic 46

Gearbox 1-2

Clock Compensation 7

Maximul Total 54-55

Figure 5.9: Aurora 64B/66B overview.

5.3 Board Interconnection

Targeting the highest throughput possible with any of the available connectors on the

AXIOM board, we took advantage of the USB type-C [26] connectors using the GTH

transceivers. GTH transceivers are power-efficient transceivers, supporting line rates

from 500 Mb/s to 16.375 Gb/s. The GTH transceiver is highly configurable and tightly
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integrated with the programmable logic resources of the UltraScale architecture used on

the AXIOM boards. However, the maximum bandwidth supported by the transceivers

does not match that of the USB cables utilizing the GTH transceiver. The USB type-C

connectors provide four differential pairs [27] (TXp1, TXn1, RXp1, RXn1, TXp2, TXn2,

RXp2, RXn2) of SuperSpeed data bus which in couples (TX1 - RX1, TX2 - RX2) can han-

dle up to 10 Gb/s on full duplex. That can be translated to two channels, each comprised

of single bidirectional lane (using a single GTH transceiver) with 10 Gb/s bandwidth for

each, which as a result is the maximum throughput we aim for.

On each AXIOM board acting as network node, there are four type - C connectors,

allowing for a total of eight high-speed serial communication channels. For our imple-

mentation we decided to use just a single channel from each connection thus using one

GTH transceiver from each connector. Furthermore, as we mentioned before, we cur-

rently use just one lane of the channel for data transfers as the other one is reserved for

flow control packets. Hence, any of the connectors can be treated either as an input or

as an output for the router but not both. This leaves us with enough connectors to place

the board in a network with a ring topology and use just two out of the four connectors,

or in one with a 2-D torus topology and use all four USB type-C connectors. As seen in

Figure 5.10, two boards are connected in a ring topology, utilizing two physical links on

each, one as an input and one as an output.

In Figure 5.11 we can see a set-up of two boards that utilize all four connectors.

Unfortunately, due to lack of enough USB type-C cables (and initially lack of AXIOM

boards) we decided to set-up two independent rings while using the full 3x3 architecture,

which although can not be described as a Torus network, at least we could test that all

available lanes can successfully work in parallel.

5.4 Implementation Cost

Our goal was to create and implement a design which would be as low-cost as possible,

in order to leave most of the available PL space of the board free for application specific

accelerators. Our final design accomplishes that by occupying only 1% of the overall

resources for logic. Table 5.2 provides the resource utilization of the router implemented

on the zczu9eg chip.
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Figure 5.10: Two AXIOM boards connected in a ring topology, using the USB type-C

cables to implement the physical links.
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Figure 5.11: Two AXIOM boards programmed using the 3x3 router (for 2-D torus topolo-

gies) in 2 independent rings, to utilize all 4 connectors.
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Table 5.2: Router resource utilization on the zczu9eg chip. For modules with more than

one instance inside the design (x2 etc) the values give the sum of their aggregate resources.

To calculate resources for a single instance, divide by the number of instances.

CLB BRAM GT

LUT FF BRAM36K/FIFO

Logic LUTRAM BRAM36K FIFO

Link Controller (x2) 196 446

Routing Table (x2) 4

VCs (x6) 12 12 6

Route Controller 1502 38

XonXoff TX (x2) 36 44

XonXoff RX (x2) 2 6

Aurora 64B/66B 0 (x2) 794 70 2824 2 2

Aurora 64B/66B 1 (x2) 778 68 2658 2 2

Total 2569 138 6009 8 6 4

Available 274080 548160 912 12

Percentage 0.99% 1.1% 1.54% 33.33%
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Results

After thoroughly describing the architecture and implementation of the router, in this

chapter we will present the results of our work and discuss how well it could be integrated

on the AXIOM platform (Figure 6.1). Specifically, we will go through the details of the

AXIOM board’s specifications in order to give an overview of it’s available resources, and

then move on to a more technical evaluation of the router’s capabilities by discussing it’s

performance.

6.1 AXIOM Board Description

During the the course of this thesis, there was a number of boards that were available

to us, including the SECO produced AXIOM board. However, before we were able to

get a hands on experience with AXIOM, we had to compromise by using other boards

to debug and test our designs. These initial boards were the Digilent Zedboard at first

and then the Xilinx ZC706. We will not go into more detail about those two, mainly be-

cause neither one (and especially the Zedboard) met the requirements for both available

transceivers and connectors, not to mention the restricted resources.

AXIOM is the first board that combines three worlds in one: Arduino, ARM computing

and FPGA. The board in fact presents the same pinout of Arduino Uno, so to let you at-

tach an Arduino Uno-compatible shield to the board. Also, the presence of Arduino UNO

pinout enables fast prototyping and exposes the FPGA I/O with a user friendly inter-

face. The ARM computer on board consists of a 6-core heterogeneous processor - a 64-bit

Quad core A53 running at 1.2GHz and a 32-bit Dual core R5 at 500MHz. The FPGA
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Figure 6.1: The AXIOM board.

processor is a new generation Zynq Ultrascale Plus (ZU9EG) [28]. The combination of

a powerful heterogeneous 6-core ARM processor with a flexible and fast connection un-

leashes the true potential of the FPGA. For what concerns the RAM, the board features

as Processing System a swappable SO-DIMM that goes up to 32GB, and also a soldered

1 GB Programmable Logic. Speaking of storage option, the board has 8 GB of eMMC

and a micro SD card reader. However, the board could support up to 32 GB of eMMC.

With regard to the board’s connectivity, there are four USB Type C ports onboard, and

also two USB Type A - not to mention the miniDP connector. Additionally a single

channel 24-bit LVDS interface is available, suitable to attach an LCD with touch panel,

is provided as an option. Finally the board also features an RJ-45 ethernet connector

with a Gigabit ethernet transceiver.
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The AXIOM Board is in other words designed to be the perfect combination of High-

Performance Computing, Embedded Computing and Cyber-Physical Systems. It is

meant to be an ideal platform for real-time data analysis of a huge datasets in a short

time frame like machine learning, neural networks, server farms, bitcoin miners, and so

on. Below we present a list summing up the most significant features of the board.

• Wide boot capabalities: eMMC, Micro SD, JTAG

• Heterogeneus 64-bit ARM FPGA Processor: Xilinx Zynq Ultrascale+ ZU9EG

– 64-bit Quad-Core ARM Cortex-A53 MPCore @ 1.2GHz with L1 Cache 32KB

I/D per core, L2 Cache 1MB, on-chip Memory 256KB

– 32-bit Dual-core ARM Cortex-R5 MPCore R5 @ 500MHz with L1 Cache 32KB

I/D per core, Tightly Coupled Memory 128KB per core

– Mali-400 MP2 GPU with L2 Cache 64KB

– swappable DDR4 SO-DIMM RAM @ 2400MT/s (up to 32GB) for the Pro-

cessing System

– 600K System Logic Cells

– 548K CLB Flip-Flops

– 274K CLB LUTs

– 2,520 DSP Slices

– 12 GTH transceivers (8 on USB Type C connectors + 4 on HS connector)

• Easy rapid prototyping, because of the Arduino UNO Pinout

6.2 Experimental results on the AXIOM board

In our network interconnect controller we combine the network interface [16], and the

router. Although the efficiency of our NIC is evaluated based on both its latency and

throughput, if we focus only on the router, there is really no way to judge its efficiency

according to throughput. We can treat the router, as the middle man between the NI

and the physical links which are the USB type-C cables described in section 5.3. These

Ioannis Tampakakis 51 November 2017



6. RESULTS

two are mainly responsible for the bandwidth achieved and as long as the slowest router

pipeline stage still meets the required frequency of 161.13 MHz we can safely state that

there is no degradation of the network’s throughput that the router is responsible for.

Any drop-downs in throughput can be attributed to the DMA engines and the commu-

nication between the PS and the various interconnects with the PL. As a result, in this

section we chose to provide a number of examples to demonstrate the routers function-

ality, focusing mainly on the pipeline’s efficiency and the routing arbitration.

Scenario #1: Packets, arriving simultaneously, re-

questing different output

In this scenario, we test the case of two different type packets (but of the same VC

priority), arriving on the exact same time, on different input lanes, but requesting different

outputs. The point of this test, is to present the ability of the scheduler to handle more

than one packets from different inputs, in the same cycle, under the premise that there

are no contentions for the output ports that are being requested.

clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11

Input Link #0 XX P0 H P0 B P0 T XXX

Input Link #1 XX P1 H P1 B P1 B P1 T XXX

Output Link #0 XXX P1 H P1 B P1 B P1 T X

Output Link #1 XXX P0 H P0 B P0 T X

Scenario #2: Packets, arriving simultaneously, re-

questing same output

In the following waveform simulation, we tested the case of two packets arriving simul-

taneously requesting the same output port. As we can see below, one packet is received

on the internal link connected to the NI (Input Link #0), while the second is received
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through a physical link (Input Link #1). For the shake of simplicity, we assume that both

packets are of the same VC priority. Packet #0, consists of two flits, the header (P0H)

and the tail flit (P0T). Packet #1 has three flits. The requested output is Output Link

#1 for both packets. One cycle after the arrival of the high priority (red-VC2) packets, a

lower priority (yellow-VC1) arrives on the other physical link. As we can see and based

on the lane scheduling description given in subsection 4.3.2, since the token for the high

priority VC is on Lane #0, Packet #0 takes priority over Packet #1, and as soon as

Lane #0’s packet is granted the requested output, the token moves over to the next lane.

On the next cycle, since the scheduler cannot forward P1, drops a priority level down,

finding the low priority packet being ready to be routed since it’s output request is not

conflicting with another. It is successfully forwarded but the lower priority VC token

does not change hands since the input processed, was not the input holding the token.

One cycle later, Output Link #1 is free again, and P1’s output request is granted. After

forwarding Packet #1, the token for that priority moves again to the next lane.

clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9

Input#0 X P0 H P0 T XXX

Input#1 X P1 H P1 B P1 T XXX

Input#2 X P2 H P2 T XXX

VC 2 token 0 1 2

VC 1 token 0

Output#0 XXX P2 H P2 T XXX

Output#1 XXX P0 H P0 T P1 H P1 B P1 T X

Scenario #3: Packets, arriving back-to-back on same

input port, requesting same output port

With this example we wish to present the uninterrupted flow of packets through the

router, even when the scheduler is working with a full load of packets arriving back-to-

back on some input lanes and random arrivals on others.
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clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9

Input Link #0 X P0 H P0 T P1 H P1 T XXX

Input Link #1 XXX P2 H P2 B P2 T XXX

Output Link #0 XXX P2 H P2 B P2 T XX

Output Link #1 XXX P0 H P0 T P1 H P1 T XX

Throughput results based on packet type and payload

size

In this section we will present the results of the throughput tests we run, based on a C

code we wrote and downloaded to the ARM processor of the Ultrascale+ chip. Before

evaluating the results, two things should be noted. Firstly the code written supports only

synchronous transfers, which means that the APU has to wait for a transfer to complete

before initializing a new one. Secondly, since the router’s latency was 4 cc plus the 54-55

cc added from the Aurora 64b/66b cores for the link traversal stage we judged that there

would be no actual throughput fluctuations if we calculated the throughput based only

on the router’s latency.

With that in mind we decided to determine the achieved throughput, accounting for the

latency added by the APU, the Interrupt System, the NI and the router. Hence, we refer

to the result tables of Amourgianos-Lorentzos’ thesis [16] which depict the performance

of the Network Interface Controller as a whole.
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Table 6.1: RDMA and RAW data transfer throughput

Packet Type Payload Throughput

LONG DATA 15 Bytes 0.028 Gbps

255 Bytes 0.455 Gbps

4095 Bytes 3.9 Gbps

16383 Bytes 6.13 Gbps

65535 Bytes 7.3 Gbps

RDMA WRITE 15 Bytes 0.028 Gbps

255 Bytes 0.455 Gbps

4095 Bytes 3.86 Gbps

16383 Bytes 6.08 Gbps

65535 Bytes 7.27 Gbps

RDMA READ 15 Bytes 0.022 Gbps

255 Bytes 0.422 Gbps

4095 Bytes 3.7 Gbps

16383 Bytes 5.98 Gbps

65535 Bytes 7.23 Gbps

RAW DATA 15 Bytes 0.06 Gbps

127 Bytes 0.076 Gbps

255 Bytes 0.085 Gbps

There is a noticeable discrepancy in the throughput achieved between RAW data

transfers and RDMA transfers. This can be easily explained if we keep in mind that

with RAW data transfers, the payload needs to be written from the processor to the NI’s

FIFOs with the AXI Memory Mapped protocol, which is one of the two main reasons of

the added timing overhead of the network. Although the RDMA messages can scale up

throughput by carrying more payload per transfer, have to deal with the second reason of

additional latency which is the latency of the DMA Engine, utilized to fetch the payload

from each APU’s memory. However, as we can see in the table above, the DMA latency

is slowly absorbed as the payload of the transfer increases.

In the following figures (Figure 6.2, Figure 6.3), we have plotted the results from Table 6.1

to get a better visual representation of the throughput’s scaling in correlation with the

payload.
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Figure 6.2: Raw Transfer Throughput
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Figure 6.3: RDMA Transfer Throughput
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Chapter 7

Conclusion and On-going/Future

Work

7.1 Conclusions

The main goal of this work was to create a router that could interconnect multiple

FPGAs into a small cluster and make their communication as fast and as cost efficient

as possible. This means that there were certain limitations throughout the course of

this thesis that guided the design and the implementation process, mainly with regard

to throughput. The target bandwidth was already dictated by the USB type-C cables

specifications and set to 10 Gb/s, however the router is not the only component that

would affect the efficiency of the final design. In retrospect we realise that evaluating

the router just by the network’s throughput would may be unfair since there are many

variables in play, such as the added latency from the caches and DDR memories on

the boards that contain the useful data of the packets. Of course, it is obvious that

implementing a more complicated design that would handle traffic in a more intricate

way, such as different routing paths depending on network congestion or transmitting

different packets interleaved with each other on the same link, would adequately improve

the router’s performance. Due to this being the first attempt to facilitate the AXIOM

interconnect, we decided to follow a simpler approach, and just focus on pipelining the

task of buffering and routing the packets with the lowest resource utilization possible for

which we consider this work successful.
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7.2 On-going Work

This section presents certain optimization attempts that kicked off during the closing

point of this thesis and have already yielded positive results without being completed

yet.

7.2.1 Bidirectional Data

Maybe the most important improvement is the one that will allow data packets to flow

both ways. This means that instead of a maximum of two input and two output links,

there are now four input and four output links or similarly every physical link is both

an input and an output resulting in a much more fast and efficient network (Figure 7.1).

To do this, we utilize the User Flow Control (UFC) interface on the Aurora IPs. This

Figure 7.1: Improved AXIOM network 2D-Torus topology.

opens the way for control packet transmission, without the router having to internally

arbitrate data and control packets, change priorities, add new packet types or new VC

priorities on the design that is already implemented. These control packets are sent as
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UFC messages through a separate in-band channel and the Aurora 64b/66b IP treats

them by default as higher priority messages than the data messages. How this translates

in effect, is that UFC messages do not have to wait for the frame in progress to end, on

the contrary, they can interrupt the data message transmission (but without cancelling it

altogether) inject the control message inside the stream and then relinquish the channel

back to the rest of the data message. It becomes apparent, that now both data channels

of the Aurora 64b/66b IP can be used for data packet transmissions, since control packets

can be restricted to their own channel. One final obstacle that we need to tackle is that

now timing is not being met on the Route Controller module section 5.2 and that is

due to the added input and output ports that the scheduler implemented by RC has to

arbitrate between.

7.2.2 Adding leniency to Scheduling

Currently only one VC priority is allowed to participate from each input in each switch

allocation stage, and it is the same priority for all inputs. An improvement to that

would be to allow for a looser VC scheduling. What we suggest is that if grants were

given to packets from a certain priority but there are still output ports that will stay

idle as a result of the first-stage arbitration, the scheduler attempts to grant packets

from lower VC priorities, knowing that any higher VC priority packets that could be

forwarded, have already been given an output. This is already coded inside the new

Route Controller module that implements the bidirectional data flow described above,

however due to timing mismatches it has not yet been put to practice.

Below, in Figure 7.2 we give an example of a more lenient towards VC priority scheduler

that allows for packets of different VC priorities to be forwarded, given that for lower VC

packets to be granted an output, there are no higher VC packets that could have been

successfully given an output port.

7.2.3 Two GTH transceivers per USB connector

Vasilis Amourgianos-Lorentzos in an attempt to increase the interconnect’s available

throughput, suggested we took advantage of the second GTH transceiver available on

each USB type-C connector. This way, instead of a single TX-RX pair with a bandwidth

of 10 Gbps, we could now take advantage the second pin pair and aim for a target
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Figure 7.2: An example of a more lenient scheduling. Again, for simplicity, all packets

are supposed to be single-flit. Can be compared to Figure 4.4.

throughput of 20 Gbps. This called for some necessary alterations to both the NI’s and

the router’s design, specifically widening the data stream from 64 bits to 128 bits. This

was successfully implemented since the Aurora 64b/66b modules are ideal for multi-lane

channels and allowed us to easily scale up the data width.

7.3 Future Work

Finally, we discuss some ideas that have the potential of improving the existing router

design but have not been tested yet.
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7.3.1 Routing Algorithm

From a more macroscopic view, there are a few upgrades that we could implement to

increase the network’s throughput. As mentioned in section 3.1 one of the biggest factors

affecting a network’s performance is its topology. However for different topologies, differ-

ent routing algorithms can be applied. In this case we suggest a more advanced routing

computation method instead of the deterministic one applied. Routing algorithms are

categorized to minimal or non-minimal path, adaptive or non-adaptive as well as regular

or different paths. By introducing either a minimal path algorithm, or an adaptive one,

or even better both, we can achieve a much more efficient way for forwarding packets

inside the network. Instead of following a predetermined path at all times when on the

other hand the networks traffic is variable, we can now adjust to the networks congestion

levels and use a smarter route towards each packets destination node.

7.3.2 Adding Time-out Policy

Inside a network, when a sender transmits its data, usually awaits for a form of approval

from the receivers side that the transmission went through successfully or in some cases

that the transmission is still in process and no errors have occurred. This approval is

usually sent from the receiver to the transmitter through the form of an acknowledgement

packet (or negative acknowledgement, when informing about errors). For this work, this

“handshaking” process, happens at the level of the APU and the network interface. The

NI however is not aware about network traffic or the local router’s current buffer capacity.

This creates the potential for deadlocks, for example in a case where a packet injected

in the network from the NI, gets stalled, and eventually blocks another lower priority

packet, indefinitely. One way to tackle this problem is if a time-out policy was designed

that would give the router authority over packets that are congesting the network and

monopolize links. Obviously the router should update the root NI about a cancelled

packet so as to keep the lossless attribute of the network, and generally work hand-in-

hand with any form of control and arbitration with any layer above it.
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7.3.3 Implementation Improvements

As already discussed in section 5.2 the FIFOs used to buffer incoming flits should be

large enough to hold two of the worst-case size packets depending on which VC priority

the packet belongs. FIFOs in Xilinx FPGAs can be generated either as BRAMS or Logic

cells. Generally, and unless the FIFOs are very small and narrow, the most efficient way

is to use BRAMs. However, BRAM size sets a larger minimum size for the FIFOs than

the one we need. Specifically for a data width of 8 bytes, the total size of the BRAMs

assuming a minimum depth of 512 slots, would be 12288 bytes for all three VCs, which

corresponds to 96 packets of the biggest size.

This can be considered an overkill, since according to our design only a total of six

packets can exist inside these three FIFOs at runtime. These packets can fit within a

single BRAM of 512 slots depth and 8 bytes width. Noting that we provide sufficient

read/write ports and that we arrange head and tail pointers accordingly, we can use just

one BRAM sectioned to three parts to implement all the VCs for a single lane, resulting

to a 66% reduction in the BRAMs used.

Ioannis Tampakakis 62 November 2017



References

[1] Theodoropoulos, D., Pnevmatikatos, D., Alvarez, C., Ayguade, E., Bueno, J.,

Filgueras, A., Jimenez-Gonzalez, D., Martorell, X., Navarro, N., Segura, C., et al.:

The axiom project (agile, extensible, fast i/o module). In: Embedded Computer

Systems: Architectures, Modeling, and Simulation (SAMOS), 2015 International

Conference on, IEEE (2015) 262–269 1, 9

[2] Duato, J., Yalamanchili, S., Ni, L.M.: Interconnection networks: an engineering

approach. Morgan Kaufmann (2003) 5

[3] Dally, W.J., Towles, B.P.: Principles and practices of interconnection networks.

Elsevier (2004) 5

[4] Benini, L., De Micheli, G.: Networks on chips: A new soc paradigm. computer

35(1) (2002) 70–78 5

[5] Psarras, A.: High-performance networks-on-chip. PhD thesis 5

[6] Psarras, A., Seitanidis, I., Nicopoulos, C., Dimitrakopoulos, G.: Shortpath: A

network-on-chip router with fine-grained pipeline bypassing. IEEE Transactions on

Computers 65(10) (2016) 3136–3147 5, 9

[7] Psarras, A., Moisidis, S., Nicopoulos, C., Dimitrakopoulos, G.: Rapidlink: A

network-on-chip architecture with double-data-rate links. In: Electronics, Circuits

and Systems (ICECS), 2016 IEEE International Conference on, IEEE (2016) 93–96

6

[8] Mullins, R., West, A., Moore, S.: Low-latency virtual-channel routers for on-chip

networks. In: ACM SIGARCH Computer Architecture News. Volume 32., IEEE

Computer Society (2004) 188 6

Ioannis Tampakakis 63 November 2017



REFERENCES

[9] Wang, P., Ma, S., Lu, H., Wang, Z.: A comprehensive comparison between vir-

tual cut-through and wormhole routers for cache coherent network on-chips. IEICE

Electronics Express 11(14) (2014) 20140496–20140496 6, 16

[10] Dimitrakopoulos, G., Kalligeros, E., Galanopoulos, K.: Merged switch allocation

and traversal in network-on-chip switches. IEEE Transactions on Computers 62(10)

(2013) 2001–2012 7, 9, 32

[11] Soteriou, V., Ramanujam, R.S., Lin, B., Peh, L.S.: A high-throughput distributed

shared-buffer noc router. IEEE Computer Architecture Letters 8(1) (2009) 21–24 7

[12] Kim, J., Nicopoulos, C., Park, D., Narayanan, V., Yousif, M.S., Das, C.R.: A

gracefully degrading and energy-efficient modular router architecture for on-chip

networks. ACM SIGARCH Computer Architecture News 34(2) (2006) 4–15 7

[13] Kumary, A., Kunduz, P., Singhx, A., Pehy, L.S., Jhay, N.: A 4.6 tbits/s 3.6 ghz

single-cycle noc router with a novel switch allocator in 65nm cmos. In: Computer

Design, 2007. ICCD 2007. 25th International Conference on, IEEE (2007) 63–70 8

[14] Lyberis, S., Kalokerinos, G., Lygerakis, M., Papaefstathiou, V., Tsaliagkos, D.,

Katevenis, M., Pnevmatikatos, D., Nikolopoulos, D.: Formic: Cost-efficient and

scalable prototyping of manycore architectures. In: Field-Programmable Custom

Computing Machines (FCCM), 2012 IEEE 20th Annual International Symposium

on, IEEE (2012) 61–64 8, 9

[15] Katevenis, M.G., Papaefstathiou, V., Kavadias, S., Pnevmatikatos, D., Nikolopoulos,

D.S., Silla, F.: Explicit communication and synchronization in sarc. IEEE micro

30(5) (2010) 30–41 8

[16] Amourgianos-Lorentzos, V.: Efficient network interface design for low cost dis-

tributed systems. Diploma thesis, Technical University of Crete, Greece (2017)

http://purl.tuc.gr/dl/dias/9F0A3578-6759-426E-A687-0B126EA3F684. 9, 51,

54

[17] Chen, J., Li, C., Gillard, P.: Network-on-chip (noc) topologies and performance: a

review. In: Proceedings of the 2011 Newfoundland Electrical and Computer Engi-

neering Conference (NECEC). (2011) 1–6 12

Ioannis Tampakakis 64 November 2017

http://purl.tuc.gr/dl/dias/9F0A3578-6759-426E-A687-0B126EA3F684


REFERENCES

[18] Gebali, F., Elmiligi, H., El-Kharashi, M.W.: Networks-on-chips: theory and prac-

tice. CRC press (2011) 21

[19] Flich, J., Bertozzi, D.: Designing network on-chip architectures in the nanoscale

era. CRC Press (2010) 27

[20] Xilinx: Vivado Design Suite User Guide: High-Level Synthesis. Xilinx.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/

ug902-vivado-high-level-synthesis.pdf. 29

[21] Xilinx: Vivado Design Suite User Guide: Getting Started. Xilinx.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/

ug910-vivado-getting-started.pdf. 29

[22] Georgopoulos, K., Chrysos, G., Malakonakis, P., Nikitakis, A., Tampouratzis, N.,

Dollas, A., Pnevmatikatos, D., Papaefstathiou, Y.: An evaluation of vivado hls for

efficient system design. In: ELMAR, 2016 International Symposium, IEEE (2016)

195–199 29

[23] Xilinx: UltraScale Architecture Memory Resources. Xilinx.

https://www.xilinx.com/support/documentation/user_guides/

ug573-ultrascale-memory-resources.pdf. 38

[24] Xilinx: Aurora 64B/66B LogiCORE IP Product Guide. Xilinx.

https://www.xilinx.com/support/documentation/ip_documentation/aurora_

64b66b/v10_0/pg074-aurora-64b66b.pdf. 42

[25] Xilinx: UltraScale Architecture GTH Transceivers. Xilinx.

https://www.xilinx.com/support/documentation/user_guides/

ug576-ultrascale-gth-transceivers.pdf. 42, 43

[26] Wikipedia: USB Type-C (2017) https://en.wikipedia.org/wiki/USB-C#

Specifications. 44

[27] Wikipedia: Differential signaling (2017) https://en.wikipedia.org/wiki/

Differential_signaling. 45

Ioannis Tampakakis 65 November 2017

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug910-vivado-getting-started.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug910-vivado-getting-started.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b/v10_0/pg074-aurora-64b66b.pdf
https://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b/v10_0/pg074-aurora-64b66b.pdf
https://www.xilinx.com/support/documentation/user_guides/ug576-ultrascale-gth-transceivers.pdf
https://www.xilinx.com/support/documentation/user_guides/ug576-ultrascale-gth-transceivers.pdf
https://en.wikipedia.org/wiki/USB-C#Specifications
https://en.wikipedia.org/wiki/USB-C#Specifications
https://en.wikipedia.org/wiki/Differential_signaling
https://en.wikipedia.org/wiki/Differential_signaling


REFERENCES

[28] Xilinx: UltraScale Architecture and Product Data Sheet: Overview.

Xilinx. https://www.xilinx.com/support/documentation/data_sheets/

ds890-ultrascale-overview.pdf. 50

Ioannis Tampakakis 66 November 2017

https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf

	1 Introduction
	1.1 Motivation
	1.2 Thesis Contribution
	1.3 Thesis Outline

	2 Related Work
	2.1 Comparisons

	3 Network Infrastructure
	3.1 Supported Topologies
	3.2 Supported Packet Types
	3.3 Packet Switching

	4 Router Architecture
	4.1 Pipeline Stages
	4.2 Routing Table and Configuration
	4.3 Scheduling
	4.3.1 Virtual Channel Scheduling
	4.3.2 Lane Scheduling

	4.4 Flow Control

	5 System Implementation
	5.1 Tools Used
	5.2 Implementation
	5.3 Board Interconnection
	5.4 Implementation Cost

	6 Results
	6.1 AXIOM Board Description
	6.2 Experimental results on the AXIOM board

	7 Conclusion and On-going/Future Work
	7.1 Conclusions
	7.2 On-going Work
	7.2.1 Bidirectional Data
	7.2.2 Adding leniency to Scheduling
	7.2.3 Two GTH transceivers per USB connector

	7.3 Future Work
	7.3.1 Routing Algorithm
	7.3.2 Adding Time-out Policy
	7.3.3 Implementation Improvements


	References

