
Technical University of Crete, Greece
School of Electrical and Computer Engineering

Complete Software Development
Environment for ASEME

Methodology

Floros Efthymios

Thesis Committee
Associate Professor Georgios Chalkiadakis
Associate Professor Michail G. Lagoudakis

Dr. Nikolaos Spanoudakis

Chania, December 2017

ii

Πολυτεχνείο Κρήτης

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Ολοκληρωμένο Περιβάλλον Ανάπτυξης Λογισμικού για την

Μεθοδολογία ASEME

Φλώρος Ευθύμιος

Εξεταστική Επιτροπή

Αναπληρωτής Καθηγητής Γεώργιος Χαλκιαδάκης

Αναπληρωτής Καθηγητής Μιχαήλ Γ. Λαγουδάκης

Δρ. Νικόλαος Σπανουδάκης

Χανιά, Δεκέμβριος 2017

i

Acknowledgements

First of all I would like to thank my family for their endless support and love.
Next I would like to thank my supervisors Professor Georgios Chalkiadakis
and Dr. Nikos Spanoudakis firstly for introducing me into the research field
of intelligent agents and secondly for their guidance; and Professor Michail
Lagoudakis for accepting to be in the jury committee. I also would like to
thank Shabana Shaikh for her contribution to ASEME IDE. Last but not
least I want to thank the friends I made during my studies, who made me
consider Chania as my second hometown.

ii

Abstract

The design of multi-agent systems is a time-consuming task even for ex-
perts. ASEME is an Agent-Oriented Software Engineering Methodology
that can be used for model-driven Agent System development. This thesis
presents a complete Integrated Development Environment (IDE), by inte-
grating together the various existing tools (the AMOLA metamodels and
transformation tools[14], a CASE (Computer-Aided Software Engineering)
tool for robot-team behavior-control development (Kouretes Statechart Ed-
itor - KSE) [20], [21], an extension of KSE for Executing Statechart-Based
Robotic Behavior Models [9], [10] an application to transform SRM to BPM-
N/XPDL models [6], [7]), changing and enriching models and enhancing the
model driven process, which allows a user to design a multi-agent system from
scratch, export it to business models (XPDL/BMPN) and generate Java and
C++ code. This thesis also demonstrates the ASEME model-driven process
with a simple negotiation Agent.

iii

Περίληψη

Ο σχεδιασμός πολυπρακτορικών συστημάτων είναι χρονοβόρα διαδικασία ακόμη

και για τους ειδικούς. Η ASEME είναι μια μεθοδολογία πρακτοροστρεφούς
μηχανικής λογισμικού που μπορεί να χρησιμοποιηθεί για την ανάπτυξη πολυπρακ-

τορικών συστημάτων με γνώμονα το μοντέλο. Με την ενσωμάτωση των δι-

αφόρων υφιστάμενων εργαλείων (the AMOLA metamodels and transforma-
tion tools[14], a CASE (Computer-Aided Software Engineering) tool for robot-
team behavior-control development (Kouretes Statechart Editor - KSE) [20],
[21], an extension of KSE for Executing Statechart-Based Robotic Behavior
Models [9], [10] an application to transform SRM to BPMN/XPDL models
[6], [7].) , την αλλαγή και τον εμπλουτισμό των μοντέλων η εργασία αυτή
παρουσιάζει ένα ολοκληρωμένο περιβάλλον ανάπτυξης λογισμικού το οποίο

επιτρέπει σε ένα χρήστη να σχεδιάσει ένα πολυ-πρακτορικό σύστημα από το

μηδέν, να το εξάγει σε μοντέλα διαδικασιών (XPDL / BMPN) και να δημιουργή-
σει κώδικα Java και C ++. Αυτή η εργασία παρουσιάζει επίσης τη διαδικασία
μετασχηματισμού μοντέλων της ASEME με έναν απλό πράκτορα διαπραγμά-
τευσης.

iv

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Thesis Outline . 2

2 Background 4
2.1 Agent Oriented Software Engineering 4
2.2 Model Driven Engineering . 5
2.3 Metamodeling and Models Transformation 6
2.4 Eclipse Modeling Project . 7
2.5 Eclipse Rich Client Platform 8
2.6 The Xpand Language . 8
2.7 Java Agent Development Framework 9
2.8 The ASEME Methodology . 10

2.8.1 ASEME process overview 10
2.8.2 The AMOLA metamodels 12
2.8.3 The ASEME Model-Driven Process 19

2.9 BPMN/XPDL . 20
2.9.1 BPMN . 20
2.9.2 XPDL . 21

3 ASEME IDE Implementation 22
3.1 Dashboard . 22

3.1.1 Dashboard layout . 22
3.1.2 Dashboard architecture 24
3.1.3 Benefits . 26

3.2 Metamodels and Editors . 27
3.2.1 SUC . 30
3.2.2 AIP . 30

v

3.2.3 SRM . 31
3.2.4 Editors modifications 32
3.2.5 SUC Editor . 39
3.2.6 AIP Editor modifications 40
3.2.7 SRM Editor . 41
3.2.8 Statechart Editor . 44

3.3 Integration of existing tools/ Functionality extensions 45
3.3.1 Replacing IAC with Statechart 45
3.3.2 Importing the SRM2BMPN and XPDL tool 46
3.3.3 IAC to GG . 46
3.3.4 Transformations refinements 48
3.3.5 SRM to IAC import EAC 49
3.3.6 Abstract Role/Protocol support 50
3.3.7 Transition to Eclipse Mars Environment / Update Site 51

4 Interfaces 52
4.1 Add new model / editor . 52
4.2 Add new transformation . 54

5 An example of the ASEME modeling process 57
5.1 A negotiation Agent . 57
5.2 Requirements Analysis . 58
5.3 Analysis . 59
5.4 Design . 62
5.5 Implementation-code generation 63
5.6 Important Notes . 64

6 Conclusion 71
6.1 Discussion . 71
6.2 Future work . 73
6.3 Lessons learned . 73

vi

List of Figures

2.1 ASEME process overview ([15]) 11
2.2 ASEME phases and their products ([15]) 13
2.3 SAG emf meta-model . 14
2.4 SUC emf meta-model . 15
2.5 AIP emf meta-model . 16
2.6 SRM emf meta-model . 17
2.7 Statechart emf meta-model . 19

3.1 GMF Dashboard . 23
3.2 ASEME Dashboard . 23
3.3 ASEME Dashboard class diagram 25
3.4 SRM meta-model EMF Editor 29
3.5 SRM meta-model GMF Editor 30
3.6 The evolution of SUC metamodel implementation 31
3.7 The evolution of SRM metamodel implementation 32
3.8 Change SRM diagram file extension to .fg 33
3.9 Final form of SRM.gmftool . 36
3.10 Set line width and color in SRM.RoleFigure 38
3.11 AIP.gmfmap set property to Read Only 40
3.12 SRM.gmfmap Audit addition 41
3.13 IAC and Statechart . 45

4.1 SRM2XPDL/MANIFEST.MF runtime tab 53
4.2 ASEMEDashboard/MANIFEST.MF dependencies tab 54
4.3 ASEMEAction interface implementation for SRM2XPDL trans-

formation . 55
4.4 SRM2XPDL . 56

5.1 Install Modelling Compoents for ASEME IDE 58

vii

5.2 example SAG model . 59
5.3 derived SUC model . 60
5.4 SUC model refined . 62
5.5 derived AIP model . 63
5.6 derived SRM model . 64
5.7 SUC with Abstract Roles . 65
5.8 refined AIP model . 66
5.9 refined AIP model . 67
5.10 Generated Statechart models 68
5.11 Statechart model for Negotiator 68
5.12 Negotiator statechart variables 69
5.13 Code generation for Negotiator 70

viii

Chapter 1

Introduction

1.1 Problem Statement

Artificial intelligence, defined as intelligence exhibited by machines, has many
applications in today’s society, like Internet industry, health industry and
many more. The artificial intelligence programs that take decisions in order
to reach a user defined goal are called agents[23]. Agents should be able
to interact with other agents -constituting a multi-agent system- in terms
of cooperation or even the control of other agents, so while these interac-
tions become more common every day the need to use multi-agent systems
increases [22].

However, multi-agent systems can become really complicated as the num-
ber of agents increases, so a modular design approach is the solution. With
model driven engineering, a simpler, easier and sometimes even more com-
prehensive approach to software development is provided [4]. In model driven
software engineering the need of model transformations during the different
development phases is essential. One model driven engineering methodol-
ogy is ASEME ([15]). ASEME is an Agent-Oriented Software Engineering
(AOSE) methodology for developing multi-agent systems. It uses the Agent
Modeling Language (AMOLA, [16]), which provides the syntax and seman-
tics for creating models of multi–agent systems covering the analysis and
design phases of a software development process.

For some years now some stand alone tools have been developed based on
parts of ASEME methodology and extending it such as the AMOLA meta-
models and transformation tools[14], a CASE (Computer-Aided Software En-

1

gineering) tool for robot-team behavior-control development (Kouretes Stat-
echart Editor - KSE) [20], [21], an extension of KSE for Executing Statechart-
Based Robotic Behavior Models [9], [10] an application to transform SRM
to BPMN/XPDL models [6], [7]. In this thesis we gathered together all
the existing standalone tools, improved them and extended them in terms of
functionality in order to develop a tool, more like an Integrated Development
Environment, that allows a user to use the ASEME methodology at its full
extend in order to design a multi-agent system.

1.2 Thesis Outline

As mentioned already this thesis contribution is a tool, or rather an Inte-
grated Development Environment (IDE) that provides the user the possibil-
ity of designing a multi-agent system (MAS) using the ASEME methodology
from scratch, and going through the updated ASEME model driven process
to either export the designed system to business models (BPMN/XPDL) or
code generation (Java/C++) or both.

In Chapter 2 we briefly present the concepts and tools used throughout
this thesis, starting with a brief presentation of Model-Driven Engineering
and its basis, Meta-modeling and Model Transformation. We continue with
the presentation of the Eclipse Modeling Framework and the Eclipse Rich
Client Platform that are the two axes of ASEME IDE development. Af-
ter that we present the Xpand Language, a template language we used for
code generation and the Java Agent Development Framework (JADE) which
we use for the generated Java code. Subsequently we present the ASEME
methodology, through an overview of ASEME process, a brief presentation of
each of the AMOLA meta-models and of the Model-Driven-Process. Finally
we present an overview on BPMN and XPDL which are the business models
used.

In Chapter 3 we describe the implementation process of ASEME IDE. We
begin with the Dashboard presenting the layout, architecture and the bene-
fits of using a dashboard in an application in general. Afterwards we present
and discuss each AMOLA meta-model separately presenting in more detail
any changes and additions made to it and its editor and finally the function-
ality additions we made to the whole process including the replacement of
IAC meta-model with Statechart[21], the new SRM to BPMN and IAC to
GGenerator transformations available that extended the model- driven pro-

2

cess, the support of Abstract Roles and Protocols and many transformation
refinements made. Some of these transformation refinements were obliga-
tory due to the meta-models that changed, and others were made for the
improvement of ASEME IDE.

In Chapter 4 we demonstrate the development process of adding new
functionality to the existing tool using as example the addition of SRM to
BPMN/XPDL tool[7]. In Chapter 5 we present an example on how to use
the ASEME IDE going through each step of the Model-Driven process with
detailed comments on the usage of the current version of the IDE and dis-
cussing what the user should note about the behavior of the tool.

Finally in Chapter 6, we outline the conclusions of this thesis, along with
our ideas and plans for future work, discussing details of the ASEME IDE
development process, features that did not have the time to complete, and
providing advice based on the know-how we acquired completing this thesis.

3

Chapter 2

Background

2.1 Agent Oriented Software Engineering

Designing and building high quality industrial-strength software is difficult.
Indeed, it has been claimed that such development projects are among the
most complex construction tasks undertaken by humans. Against this back-
ground, a wide range of software engineering paradigms have been devised
(e.g., object-oriented programming, design patterns, application frameworks
etc.). Each successive development either claims to make the engineering
process easier or to extend the complexity of applications that can feasibly
be built.

Designing and implementing software as a collection of interacting, au-
tonomous agents (Agent is an abstraction of autonomous software that is
pro-active, social and can undertake tasks that if humans do them they re-
quire intelligence[22]) represents a promising point of departure for software
engineering for certain classes of problem adopting a multi-agent approach
to system development affords software engineers a number of significant
advantages over contemporary methods.

The most important outstanding issues for agent-based software engi-
neering are: (i) an understanding of the situations in which agent solutions
are appropriate; and (ii) principled but informal development techniques for
agent systems [5].

Towards the second issue AOSE proposes methodologies, abstractions
and tools for developing systems based on the agent paradigm. Agent-based
systems have evolved during the last two decades. To support the devel-

4

opment of such systems, agent-oriented methodologies have emerged. In
general, most of the methodologies have originated from two major research
domains, namely software engineering and artificial intelligence, and were ad-
justed to address the agent abstraction. It seems that many of the method-
ologies share a common basis, an observation that calls for unification and
for standardization. [18]

2.2 Model Driven Engineering

Over the last few decades, software researchers and developers have been
creating abstractions that help them program in terms of their design in-
tent rather than the underlying computing environment — for example,
CPU, memory and network devices — and at the same time shield them
from the complexities of these environments. These model-driven engineer-
ing technologies offer a promising approach to address the inability of third-
generation languages to alleviate the complexity of platforms and express do-
main concepts effectively[11]. Model-driven engineering (MDE) is a software
development methodology that focuses on creating and exploiting domain
models, which are conceptual models of all the topics related to a specific
problem. Hence, it highlights and aims at abstract representations of the
knowledge and activities that govern a particular application domain, rather
than the computing (f.e. algorithmic) concepts.

The MDE approach is meant to increase productivity by maximizing
compatibility between systems (via reuse of standardized models), simpli-
fying the process of design (via models of recurring design patterns in the
application domain), and promoting communication between individuals and
teams working on the system (via a standardization of the terminology and
the best practices used in the application domain).

A modeling paradigm for MDE is considered effective if its models make
sense from the point of view of a user that is familiar with the domain,
and if they can serve as a basis for implementing systems. The models
are developed through extensive communication among product managers,
designers, developers and users of the application domain. As the models
approach completion, they enable the development of software and systems.

Some of the better known MDE initiatives are:

• the Object Management Group (OMG) initiative model-driven archi-
tecture (MDA), which is a registered trademark of OMG.

5

• the Eclipse ecosystem of programming and modeling tools (Eclipse
Modeling Framework).

2.3 Metamodeling and Models Transforma-

tion

Model Driven Engineering (MDE) relies heavily on model transformation.
Model transformation is the process of transforming a model to another
model. The requirements for achieving the transformation are the existence
of metamodels of the models in question and a transformation language in
which to write the rules for transforming the elements of one metamodel
to those of another metamodel. The MDE approach has been argued to
contribute to non-functional requirements capture, such as portability, inter-
operability and reusability[1]. In the software engineering domain a model
is an abstraction of a software system (or part of it) and a metamodel is an-
other abstraction, defining the properties of the model itself. However, even
a metamodel is itself a model. In the context of model engineering there is
yet another level of abstraction, the metametamodel, which is defined as a
model that conforms to itself. There are four types of model transformation
techniques [17]:

• Model to Model (M2M) transformation. This kind of transforma-
tion is used for transforming a type of graphical model to another type
of graphical model. A M2M transformation is based on the source and
target metamodels and defines the transformations of elements of the
source model to elements of the target model.

• Text to Model (T2M) transformation. This kind of transformation
is used for transforming a textual representation to a graphical model.
The textual representation must adhere to a language syntax defini-
tion usually using BNF. The graphical model must have a metamodel.
Then, a transformation of the text to a graphical model can be defined.

• Model to Text (M2T) transformations. Such transformations are
used for transforming a visual representation to code (code is text).
Again, the syntax of the target language must be defined along with
the metamodel of the graphical model.

6

• Text to Text (T2T) transformations. Such transformations are
used for transforming a textual representation to another textual rep-
resentation. This is usually the case when a program written for a
specific programming language is transformed to a program in another
programming language (e.g. a compiler).

2.4 Eclipse Modeling Project

In the heart of the model transformation procedure is the Eclipse Modeling
Framework. Ecore is EMF’s model of a model (metamodel). It functions
as a metametamodel and it is used for constructing metamodels. It de-
fines that a model is composed of instances of the EClass type, which can
have attributes (instances of the EAttribute type) or reference other EClass
instances (through the EReference type). Finally, EAttributes can be of var-
ious EDataType instances (such are integers, strings, etc). EMF allows to
extend existing models via inheritance, using the ESuperType relationship
for extending an existing EClass.

The Eclipse Modeling Project (EMP) [3] is a top-level project at Eclipse.
In contrast, the core of the project, EMF, has been in existence for as long
as the Eclipse platform itself. Today the modeling project is a collection
of projects related to modeling technologies. This collection was formed
to coordinate and focus on model-driven software development capabilities
within Eclipse. The introduction of the Amalgamation project (https://
projects.eclipse.org/projects/modeling.amalgam) ushered in the be-
ginnings of a Domain Specific Language (DSL) focused development envi-
ronment, although it has a long way to go before mainstream developers can
use it. The Modeling project is organized logically into projects that pro-
vide the following capabilities: abstract syntax development, concrete syntax
development, model-to-model transformation, and model-to-text transforma-
tion. A single project, the Model Development Tools (MDT) project, is ded-
icated to the support of industry-standard models. Another project within
the Modeling project focuses on research in generative modeling technolo-
gies. Specifically EMP consists of EMF (Eclipse Modeling Framework), QVT
(Query: Validation: Transaction), M2M (Model-to-Model transformation),
M2T (Model- to-Text transformation), TMF (Textual Modeling Framework)
and GMF (Graphical Modeling Framework). EMF allows the developer to
define a DSL language in an abstract syntax. EMF has as an output a model

7

https://projects.eclipse.org/projects/modeling.amalgam
https://projects.eclipse.org/projects/modeling.amalgam

that describes a new language. QVT provides query, validation and trans-
action features for the EMF models. M2M provides Operational Mapping
Language that allows model- to-model transformation for EMF models. M2T
allows model-to-text by using JET (Java Emitter Template) or Xpand as a
template engine. TMF is still under development and does not offer a lot
of capabilities, but its purpose is to provide a textual editors with syntax
highlighting, code completion and build for EMF models. In the other hand,
GMF provides graphical editors for EMF models. The Graphical Modeling
Framework (GMF) is a framework within the Eclipse platform. It provides
a generative component and runtime infrastructure for developing graphi-
cal editors based on the Eclipse Modeling Framework (EMF) and Graphical
Editing Framework (GEF). The project aims to provide these components,
in addition to exemplary tools for select domain models which illustrate its
capabilities.

2.5 Eclipse Rich Client Platform

While the Eclipse platform is designed to serve as an open tools platform, it
is architected so that its components could be used to build just about any
client application. The minimal set of plug-ins needed to build a rich client
application is collectively known as the Rich Client Platform[13].

Applications other than IDEs can be built using a subset of the platform.
These rich applications are still based on a dynamic plug-in model, and the UI
is built using the same toolkits and extension points. The layout and function
of the workbench is under fine-grained control of the plug-in developer in this
case.

2.6 The Xpand Language

Xpand language was proposed by Open Architecture Ware (oAW) and is used
for Model-to-Text (M2T) transformations. The language is offered as part of
the Eclipse Modeling Project (EMP). The language allows the developer to
define a set of templates that transform objects that exist in an instance of
a model into text. Major advantages of Xpand are the fact that it is source
model independent, which is usually source code but it can be whatever text
the user desires, and its vocabulary is limited, allowing for a quick learning

8

curve. The language requires as input a model instance, the model and the
transformation templates. Xpand first validates the instance through the
provided model and then, as the name suggests, expands the objects found
in the instance with the input templates. It allows the user to define, except
form the expansion templates, functions implemented in Java language using
the Xtext functionality. Xpand is a markup language and uses the "<<" and
">>" to mark the start and the end of the markup context. Enables code
expansion using the model structure (i.e. expanding all child elements of a
specific type inside a node) and supports if-then-else structure. Functions
call be called inside markup. The advantages of Xpand are the fact that it
is source model independent, its vocabulary is limited allowing for a quick
learning curve while the integration with Xtend allows for handling complex
requirements. Then, EMP allows for defining workflows that can help a
modeler to achieve multiple parsings of the model with different goals.

2.7 Java Agent Development Framework

JADE (Java Agent Development Framework) is a software Framework fully
implemented in the Java language. It simplifies the implementation of multi-
agent systems through a middle-ware that complies with the FIPA specifi-
cations and through a set of graphical tools that support the debugging and
deployment phases. A JADE-based system can be distributed across ma-
chines (which not even need to share the same OS) and the configuration
can be controlled via a remote GUI. The configuration can be even changed
at run-time by moving agents from one machine to another, as and when re-
quired. JADE is completely implemented in Java language and the minimal
system requirement is the version 5 of JAVA (the runtime environment or
the JDK).

Besides the agent abstraction, JADE provides a simple yet powerful task
execution and composition model, peer to peer agent communication based
on the asynchronous message passing paradigm, a yellow pages service sup-
porting publish subscribe discovery mechanism and many other advanced
features that facilitates the development of a distributed system.

9

2.8 The ASEME Methodology

The Agent Systems Engineering Methodology (ASEME) [15] is a recently
emerging methodology for developing multi-agent systems. Its major advan-
tages to existing methodologies are that it builds on existing languages such
as statecharts and UML (which are familiar to engineers) in order to repre-
sent system analysis and design models. It provides three different levels of
abstraction, thus catering for large-scale systems involving diverse technolo-
gies. It is agent architecture and agent mental model independent, allowing
the designer to select the architecture type and the mental attributes of the
agent that he prefers (e.g. procedural agents, belief-desire-intentions (BDI)
agents, etc). Moreover, the ASEME process follows the modern model driven
engineering style, thus the models of each phase are produced by applying
transformation rules to the models of the previous phase. Each phase adds
more detail and becomes more formal leading gradually to implementation.
Thus, ASEME is a model-driven engineering process that can be automated
by using rules for models transformation and knowledge for adding detail in
every development phase. We define a platform independent model at the
end of the design phase that describes the system and allows its implemen-
tation with the use of different platforms or programming languages. In this
thesis we implemented an integrated development environment(IDE) guid-
ing the user to follow the model transformation process for implementing a
multi-agent system using the popular Java Agent Development Framework
(JADE).

2.8.1 ASEME process overview

The software development phases of the Agent Systems Engineering Method-
ology (ASEME)[15] are presented in Figure 2.1. There are six phases, the
first four produce system models (development phases), while the last two
(verification and optimization phases) evaluate and optimize these models.
The process is iterative allowing for incremental development and provides
the original possibility to jump backwards to any previous phase due to the
utilized model driven engineering (MDE) approach.

MDE is the systematic use of models as primary engineering artifacts
throughout the engineering life-cycle. It is compatible with the Model Driven
Architecture (MDA) paradigm of the Object Management Group (OMG).
MDA’s strong point is that it strives for portability, interoperability and

10

Figure 2.1: ASEME process overview ([15])

re-usability, three non-functional requirements that are very important for
modern systems design. MDA defines three models:

• A computation independent model (CIM) is a view of a system that
does not show structural details of systems. It uses a vocabulary that
is familiar to the practitioners of the domain in question as it is used
for system specification

• A platform independent model (PIM) is a view of a system that on one
hand provides a specific technical specification of the system, but on
the other hand exhibits a specified degree of platform independence so
as to be suitable for use with a number of different platforms

• A platform specific model (PSM) is a view of a system combining the
specifications in the PIM with the details that specify how that system
uses a particular type of platform

In ASEME the CIM, PIM and PSM are the models outputted by the
requirements analysis, design and implementation phases respectively. We

11

have inserted another model as the output of the analysis phase, the System
Roles Model (SRM). Each of these models is produced by applying simple
transformation rules to the previous phase model and this transformation is
traceable, that is it can be reverse engineered.

We define three levels of abstraction in each phase. The first is the so-
cietal level. There, the whole multi-agent system functionality is modeled.
Then, in the agent level, we model (zoom in) each part of the society, the
agent. Finally, we focus in the details that compose each of the agent’s parts
in the capability level. We define the concept of capability as the ability of an
agent to achieve specific tasks that require the use of one or more function-
alities. The latter refer to the technical solution(s) to a given class of tasks.
Moreover, capabilities are decomposed to simple activities, each of which
corresponds to exactly one functionality. Thus, an activity corresponds to
the instantiation of a specific technique for dealing with a particular task.
ASEME is mainly concerned with the first two abstraction levels assuming
that development in the capability level can be achieved using classical (or
even technology-specific) software engineering techniques. In Figure 2.2, we
present the ASEME phases, the different levels of abstraction and the models
related to each one of them

2.8.2 The AMOLA metamodels

System Actor Goal model (SAG)

The SAG model[17] is a subset of the Actor model of the Tropos ecore model.
Tropos is, on one hand, one of the very few AOSE methodologies that deal
with requirements analysis, and, on the other hand it borrows successful prac-
tices from the general software engineering discipline. The Tropos diagrams
provide more concepts than the ones used by AMOLA as they are also used
for system analysis, however, AMOLA defines more well-suited diagrams for
system analysis.Thus, the AMOLA System Actors Goals diagram is the one
that appears in Figure 2.3 employing the Actor and Goal concepts. The
actor references his goals using the EReference my goal, while the Goal ref-
erences a unique depender and zero or more dependee(s). The reader should
notice the choice to add the requirements EAttribute of Goal. Through this
attribute, each goal is related to functional and non-functional requirements,
which are documented in plain text form.

12

Figure 2.2: ASEME phases and their products ([15])

Use case model (SUC)

In the analysis phase, the analyst needs to start capturing the functionality
behind the system that is under development. In order to do that he needs to
start thinking not in terms of goal but in terms of what will the system need
to do and who are the involved actors in each activity. The use case diagram
helps to visualize the system including its interaction with external entities,
humans or other systems. It is well-known by software engineers as part of the
Unified Modeling Language (UML). In AMOLA no new elements are needed
other than those proposed by UML, however, the semantics change. Firstly,
the actor “enters” the system and assumes a role. Agents are modeled as
roles, either within the system box (for the agents that are to be developed)
or outside the system box (for existing agents in the environment). Human
actors are represented as roles outside the systembox (like in traditional
UML use case diagrams). This approach aims to show the concept that
we are modeling artificial agents interacting with other artificial agents or
human agents. Secondly, the different use cases must be directly related to
at least one artificial agent role. The SUC metamodel containing the concepts

13

Figure 2.3: SAG emf meta-model

used by AMOLA is presented in Figure 2.4. The concept UseCase has been
defined that can include and be included by other UseCase concepts. It
interacts with one or more roles, which can be one of the types defined in
RoleType enumeration :

• Abstract

• System

• Legacy System

• External System

• Human

AIP model

Another part of the analysis phase is the Agent Interaction Protocols(AIP).
Protocols(in the society level) originate from use cases that connect two
artificial agent roles. For defining protocols in the AIP metamodel (Figure
2.5) the concepts of Protocol and Participant are used with the condition
that each protocol needs at least two participant roles.

14

Figure 2.4: SUC emf meta-model

SRM model

An important concept in AOSE is the role. An agent is assumed to undertake
one or many roles in his lifetime. The role is associated with activities and
this is one of the main differences with traditional software engineering, the
fact that the activity is no longer associated with the system, rather with the
role. Moreover, after defining the capabilities of the agents and decomposing
them to simple activities in the SUC model we need to define the dynamic
composition of these activities by each role so that he achieves his goals.
Thus, the SRM model, was defined, based on the Gaia Role model. Gaia
defines the liveness formula operators that allow the composition of formulas
depicting the role’s dynamic behavior. However, we needed to change the
role model of Gaia in order to accommodate the integration in an agent’s
role the incorporation of complex agent interaction protocols (within which
an agent can assume more than one roles even at the same time), a weakness
of the Gaia methodology. The AMOLA SRM metamodel is presented in
Figure 2.6. The SRM metamodel defines the concept Role that references
the concepts:

15

Figure 2.5: AIP emf meta-model

– Activity, that refers to a simple activity with one attribute, name (its
name) and one reference, functionality (the description of what this
activity does),

– Capability that refers to groups of activities (to which it refers) achiev-
ing a high level goal, with two attributes, name (its name) and descrip-
tion (its description)

The Role concept also has the name and liveness attributes (the first is
the rolename and the second its liveness formula). The reader should also
note the functionality concept referenced by the Activity concept which is
used to associate the activity to a generic functionality. Functionality has
the following attributes :

– description, the functionality description

– algorithm, the algorithm used by the functionality

– permissions, the needed permissions

– technology, the used technology

– environment, the proper environment

all in free text form.

16

Figure 2.6: SRM emf meta-model

EAC/IAC model

In order to represent system designs, AMOLA is based on statecharts, a
well-known and general language and does not make any assumptions on the
ontology, communication model, reasoning process or the mental attitudes
(e.g. belief-desire intentions) of the agents, giving this freedom to the de-
signer. Other methodologies impose (like Prometheus or INGENIAS [2]), or
strongly imply (like Tropos [2]) the agent mental models. Of course, there
are some developers who want to have all these things ready for them, but
there are others who want to use different agent paradigms according to
their expertise. For example, one can use AMOLA for defining Belief Desire-
Intentions based agents, while another for defining procedural agents. The
inspiration for defining the IAC metamodel mainly came from the UML
statechart definition. Aiming to define the statechart using the AMOLA
definition of statechart, the IAC metamodel differs significantly from the

17

UML statechart. However, a UML statechart can be transformed to an IAC
statechart although some elements would be difficult to define (UML does
not cater for transition expressions and association of variables to nodes and
uses statecharts to define a single object’s behaviour). Thus, the IAC meta-
model, which is presented in Figure 2.7, defines a Model concept that has
nodes, transitions and variables EReferences. Note that it also has a name
EAttribute. The latter is used to define the namespace of the IAC model.
The namespace should follow the Java or C"#" modern package namespace
format. The nodes contain the following attributes:

– name. The name of the node

– type. The type of the node, corresponding to the type of state in a
statechart, typically one of AND, OR, BASIC, START, END, CON-
DITION

– label. The node’s label

– activity. The activity related to the node

Nodes also refer to variables. The Variable EClass has the attributes
name and type(e.g. the variable with name “count” has type “integer”).
The next concept defined in this metamodel is that of Transition, which has
four attributes:

– name, usually in the form <source node label>TO<target node label>

– TE, the transition expression. This expression contains the conditions
and events that make the transition possible. Through the transition
expressions (TEs) the modeler defines the control information in the
IAC. TEs can use concepts from an ontology as variables. Moreover,
the receipt or transmission of an inter-agent message can be used (in
the case of agent interaction protocols).

– source, the source node

– target, the target node

18

Figure 2.7: Statechart emf meta-model

2.8.3 The ASEME Model-Driven Process

1. Edit SAG model. The business consultant of the software development
firm identifies the actors involved in the system to be along with their
goals.

2. SAG2SUC. An automated task, as the reader can see in the figure this
task has only a mandatory input model (SAG) and an output model
(SUC). It creates an initial SUC model based on the previously created
SAG model.

3. Refine Use Cases. The analyst works on the SUC model and refines the
general use cases using the include relationship. He/she also identifies
which actors will be implemented defining them as human or artificial
agent actors. The overall system design is enriched by identifying the
tasks that have to be carried out by the actors.

4. SUC2SRM. An automated task, it has only a mandatory input model
(SUC) and an output model (SRM). It creates an initial SRM model

19

based on the previously created SUC model.

5. SRM2IAC. An automated task, it has only a mandatory input model
(SRM) and an output model (IAC). It creates multiple initial IAC
models based on the previously created SRM model, one for each role.

6. Refine the IAC model. The designer works on each IAC model by
defining the conditions and/or events that will enable the transitions
from one task to the other.

7. IAC2JADE. An automated task, it has only a mandatory input model
(IAC) and an output model (Java JADE Agent and Behaviours code).
It creates a JADE Agent class and multiple JADE Behaviour classes
for each IAC model.

8. Write SimpleBehaviour action methods. The programmer writes code
only for the JADE SimpleBehaviour class descendants’ action methods.

2.9 BPMN/XPDL

2.9.1 BPMN

Business Process Model and Notation (BPMN) [8] is a standard for business
process modeling that provides a graphical notation for specifying business
processes in a Business Process Diagram (BPD), based on a flowcharting
technique very similar to activity diagrams from Unified Modeling Language
(UML) 5 . The objective of BPMN is to support business process man-
agement, for both technical users and business users, by providing a nota-
tion that is intuitive to business users, yet able to represent complex pro-
cess semantics. The BPMN specification also provides a mapping between
the graphics of the notation and the underlying constructs of execution lan-
guages. The primary goal of BPMN is to provide a standard notation readily
understandable by all business stakeholders. These include the business ana-
lysts who create and refine the processes, the technical developers responsible
for implementing them, and the business managers who monitor and man-
age them. Consequently, BPMN serves as a common language, bridging the
communication gap that frequently occurs between business process design
and implementation. BPMN is constrained to support only the concepts of
modeling applicable to business processes. In addition, while BPMN shows

20

the flow of data, and the association of data artifacts to activities, it is not
a data flow diagram.

2.9.2 XPDL

The XML Process Definition Language (XPDL) is a format standardized
by the Workflow Management Coalition (WfMC) to interchange business
process definitions between different workflow products, i.e. between different
modeling tools and management suites. XPDL defines an XML schema for
specifying the declarative part of workflow / business process.

XPDL is designed to exchange the process definition, both the graphics
and the semantics of a workflow business process. XPDL is currently the best
file format for exchange of BPMN diagrams; it has been designed specifically
to store all aspects of a BPMN diagram. XPDL contains elements to hold
graphical information, such as the X and Y position of the nodes, as well as
executable aspects which would be used to run a process. This distinguishes
XPDL from BPEL which focuses exclusively on the executable aspects of
the process. BPEL does not contain elements to represent the graphical
aspects of a process diagram. It is possible to say that XPDL is the XML
Serialization of BPMN.

21

Chapter 3

ASEME IDE Implementation

3.1 Dashboard

Creating an IDE for ASEME had a certain challenge : how would a user who
is not familiar with the methodology and/or the concepts would cope with
an admittedly pretentious process such as ASEME. Our approach was to use
a Dashboard.

3.1.1 Dashboard layout

Following the paradigm of Eclipse GMF Dashboard (Figure 3.1) we created
the ASEME Dashboard view (Figure 3.2) to help the user work through
the flow of the ASEME process. As can be observed, it invokes actions for
many of the steps one routinely uses during the development of a multi-
agent system (MAS) using the ASEME methodology, but all from a single
location, gathering together the presentation of the model-driven process and
showing the discrete development steps, as well as the model transformations
between the different development phases. On both figures the dashboards
are presented at their default state, empty, with ”not specified” as the default
text for the empty model file label.

For the ASEME Dashboard layout we kept the same layout principles
followed by GMF Dashboard. Rectangular shapes for our models with the
available actions to the bottom and using arrows to visualize the flow and
guide the user through the Model-Driven process. We also used dashed
arrows to imply the optional parts of it.

22

Figure 3.1: GMF Dashboard

Figure 3.2: ASEME Dashboard

23

3.1.2 Dashboard architecture

ASEMEDashboardView plugin contains three packages :

1. asemedashboardview that contains only the Activator class. An acti-
vator is a Java class that controls the plug-in’s life cycle.

2. asemedashboardview.views that contains the main code for the imple-
mentation of the dashboard

3. asemedashboardviews.actions that contains the implementation of each
of the transform actions on the dashboard

In the Eclipse Platform a view is typically used to navigate a hierarchy
of information, open an editor, or display properties for the active editor.
ASEME Dashboard is implemented as a view, thus the ASEMEDashboard-
View plugin project has a view extension added to the plugin.xml file and the
ASEMEDashboardView.java is the name of the required org.eclipse.ui.parts.ViewPart
subclass, located in the .views package. In the same package there are the
three interfaces used to provide the functionality of the dashboard.

• ASEMEFacade : contains the initial API

• ASEMEAction : allows other plugins to contribute actions to the dash-
board

• ActionContainer : API for add/remove actions

24

Figure 3.3: ASEME Dashboard class diagram

In figure 3.3 you can see a class diagram of the ASEME Dashboard.
The implementation class for ASEMEFacade is ASEMEMediator. ASE-

MEMediator class is mandatory for the dashboard. From the setView method
the actions for the models (Create, Select, Edit) can be registered/unregis-
tered.

RunWizardAction, SelectFileAction and EditFileAction are the Abstract
classes for each Create, Select and Edit Actions shown on the dashboard
and all three implement ASEMEAction interface. All they above are defined
as inner classes of ASEMEMediator. Note that only the actions concerning
SRM model(Create, Edit, Select, Transform) are shown in the class diagram
mainly for readability reasons.

Transform actions also implement ASEMEAction interface and have any
context needed through a private ASEMEFacade type variable named con-
text (see TrasformSUC2SRMModelAction in Figure 3.3)

25

The Java class of the implementation of the dashboard layout is ASE-
MEFigure.java in asemedsahboardview.views package and extends
org.eclipse.draw2d.RectangleFigure. We mostly used org.eclipse.draw2d and
org.eclipse.draw2d.geometry packages. For the layout we used ModelFigure
and FlowActionFigure that implement ActionContainer interface(also shown
in class diagram) and visually represent the Model boxes and the transform
boxes respectively. More detailed technical description on customizing the
dashboard is presented in the next chapter.

Aside from the classes discussed until now we have a registry for the
actions (ASEMEActionRegistry), a class holding the state(ASEMEState)
and some helper classes.

3.1.3 Benefits

A dashboard is an easily readable, one page summary of the analysis of the
information. It is an overview of a system at a glance, thus there are benefits
that result in the utilization of such a tool :

Dashboards could be customized in terms of users and expectations. A
dashboard can be customized to present useful information and also can be
extended in terms of functionality . This allows each user to see the level
of detail that they need in order to meet their goals and the developer the
possibility to easily make functionality additions and modifications. In the
past users would spend large amount of time reviewing and analyzing differ-
ent reports to end in a final conclusion. This tool allows to see, at a glance,
an overall situation report of the desired information. But, having all-in-one
does not means the absence of details. Dashboards are developed with the
ability to get as deeper in information as required by simply selecting the
desired variable or object. More specifically the use of ASEME Dashboard
reduces significantly the time needed for designing a MAS with ASEME in
comparison with the separate use of the preexisting tools while the same time
gives the user an overview of the process. Finally there is no need for compli-
cated and exhaustive training. Dashboards are design to be intuitive to any
user. The graphic design allows an easy and smooth navigation throughout
the information.

The dashboard approach provides a significant opportunity to make ASEME
designing more efficient and quick to learn.

26

3.2 Metamodels and Editors

In this section we will present the changes and additions made to the exist-
ing ASEME metamodels and editors. Each of the AMOLA metamodels is
implemented as a EMF model and has its own GMF editor generated and
customized. So for the better understanding of the reader considered ap-
propriate to mention some general information about their EMF/GMF im-
plementation and structure, and describe some general procedures followed
for editing emf models and gmf editors before getting in a more detailed
description of the specific changes made.

GMF uses six files to create a generated graphical editor for instances of
a given metamodel :

• Domain Model : the metamodel we want to use to create the graph-
ical editor. For this metamodel.There is a choice between several kinds
of metamodels : Annotated Java code, Ecore model, Rose class model,
UML model or XML Schema). For this thesis impementation we used
Ecore models (.ecore).

• Domain Generation Model (.genmodel) : this file is used to gen-
erate the domain model code with EMF (it is the EMF file genModel)

• Graphical Definition Model (.gmfgraph) : this file is used to
define the graphical elements for the domain model

• Tooling Definition Model (.gmftool) : this file is used to define
the palette of tools that can be used in the graphical editor

• Mapping Model (.gmfmap) : this file links the domain model, the
graphical model (.gmfgraph) and the tooling model (.gmftool)

• Diagram Editor Generation Model (.gmfgen) : this final file is
used to generate the GMF graphical editor in addition to the EMF
code generated by the .genmodel file

Starting with the ASEME IDE structure, these six files mentioned above
for each of the metamodels are located in a Eclipse plugin project named
as MetamodelNameDesign (SAGDesign, SUCDesign etc.) in the ”model”
folder. The first two files (.ecore, .genmodel) is the EMF implementation of
the given model.From the .genmodel file you can generate Model, Edit and

27

Editor code. The Model code (Java implementation of the model) is located
inside the same plugin in the ”src” folder, the Edit (Java code for editing
of model objects) and Editor code (the UI for the EMF editor of the model
objects and wizard) are located in generated plugin projects with the .edit
and .editor suffix respectively. There is also a .diagram project (the GMF
editor) generated from the .gmfgen file.

In order to modify the metamodels implementation and apply the changes
the following steps are needed :

1. Edit the .ecore file from the default editor provided by EMF framework
and save it

2. Reload the .ecore model to the .genmodel file and

3. Re-generate the java code in order for the changes to take effect (from
.genmodel)

For the GMF editors modifications the re-generation step is the same(from
the .gmfgen file) , but the editing takes part in .gmftool, gmfgraph and
.gmfmap files and according to changes some steps of the GMF editor design
process (Figure 3.1) might need to be repeated. Further details for modifying
GMF editors will be presented later in this chapter.

For the readers convenience we present two figures of the generated ed-
itors, as called throughout this thesis the EMF Editor(Figure 3.4) and the
GMF Editor(Figure 3.5)

28

Figure 3.4: SRM meta-model EMF Editor

29

Figure 3.5: SRM meta-model GMF Editor

At the EMF level, SAG and Statechart metamodels remained unchanged,
so a more detailed description of the changes to the rest of the models follows.

3.2.1 SUC

In SUC meta model we removed the HumanRole and SystemRole EObjects,
replacing the way of describing a Role on the SUC level with the enumer-
ation RoleType Abstract, System, Legacy System, External System, Hu-
man and adding a RoleType field/EAttribute to the Role EObject (fig. 3.6).

3.2.2 AIP

In AIP metamodel we made only one change at this level : the engaging rules,
outcomes and liveness attributes of the Participant EObject changed to be
multi-line Strings (editable from the properties view of each attribute at
.genmodel file).

30

(a) SUC model before (b) SUC model refined

Figure 3.6: The evolution of SUC metamodel implementation

3.2.3 SRM

At the SRM metamodel we added an EString attribute to capability EObject
named description, that obviously is the capabilitys’ description in free text.
Then we replaced the functionality EAttribite of Activity EObject with the
new Functionality EObject containing five(5) EAttributes (all EStrings):

• description : the functionality description in free text

• technology : the technology this functionality uses

• environment : the environment

• permissions : the needed permissions

• algorithm : the algorithm

31

(a) SRM model before (b) SRM model refined

Figure 3.7: The evolution of SRM metamodel implementation

3.2.4 Editors modifications

After editing the metamodels, the next step is to setup their GMF editors.
The editing process varies depending to the part of the editor that needs
to be modified, ie to change the palette we had to modify the .gmftool file
then repeat the remaining process of creating the editor (regenerate .gmfmap
and .gmfgen files and then regenerate the GMF editor code). As the best
way to describe the editing process is by example, below we are going to
see some variations by presenting a set of processes followed to do specific
modifications to more than one GMF editors included in the ASEME IDE
and then describe further customizations done to the Java code for each
editor.

32

Figure 3.8: Change SRM diagram file extension to .fg

The framework pro-
vides the option to
set the file extensions
for the input files
of the editor. The
need to use this fea-
ture was obvious at
some point, ie the
SRM GMF editor
designed to repre-
sent the functional-
ity graph so a file ex-
tension like .fg would
be way more suit-
able than the default
.srm diagram. This
change can be done
by editing the ”Di-
agram File Exten-
sion” property of the
Gen Editor Generator Name.diagram resource of the Name.gmfgen file as
shown in figure 3.8 (for the SRM model). The file extensions used are .sagd,
.sucd, aipd, .fg and .kse for SAG, SUC, AIP, SRM and Statechart respec-
tively.

When the editor is generated, several icons are created in the plugin icons
folders. Changing the default icons is mainly to replace these images. GMF
uses Small(16x16) and large(32x32) .gif images, thus as long as we have the
new images (and resize them if needed) we replace (which means delete the
existing .gif file, copy/paste the .gif file and rename it with the deleted file
name) the files at specific locations according to our needs :

Diagram editor icons modification

for the SRM model we replaced these files:

• /SRM.diagram/icons/obj16/SRMDiagramFile.gif

• /SRM.edit/icons/full/obj16/Activity.gif

33

• /SRM.edit/icons/full/obj16/Capability.gif

• /SRM.edit/icons/full/obj16/Role.gif

• /SRM.edit/icons/full/obj16/Functionality.gif

As you can see at the example above the names of the files are quite
descriptive and as obj16 folder implies all our new files must be 16x16 pixels
images.

Tools palette icons modification

If you don’t modify the tools palette icons, GMF will select the default
EMF icons (the icons that are located in icons folder of the .edit project),
which most of the times are not very representative. It is possible to override
this and we used this feature for the SUC and the SRM diagram editors.

For the following example we will use the process followed for the SRM
model. Since our purpose here is to show the process we assume we have the
new icons we want to use for the SRM palette named Activity16x16.gif, Capa-
bility16x16.gif, Role16x16.gif and Functionality16x16.gif and Activity32x32.gif,
Capability32x32.gif, Role32x32.gif and Functionality32x32.gif (the selected
images and the selection criteria images will be presented to the correspond-
ing editors subsections).

• In SRMdesign.edit/icons/full/obj16, replace Activity.gif, Capability.gif,
Role.gif and Functionality.gif with the 16x16 images.

• In SRMdesign.edit, create a folder icons/full/obj32

• Copy the 32x32 icons

• Rename these files into Activity.gif, Capability.gif, Role.gif and Func-
tionality.gif

• Open the SRM.gmftool file

• Under the Creation Tool Role :

– delete both Default image nodes

– Add a small icon bundle image with these properties

34

∗ Bundle : SRMdesign.edit (plugin name in which the icons are
located)

∗ Path : icons/full/obj16/Role.gif (plugin relative path of the
icon)

– Add a large icon bundle image accordingly :

∗ Bundle : SRMdesign.edit (plugin name in which the icons are
located)

∗ Path : icons/full/obj32/Role.gif (plugin relative path of the
icon)

• Repeat the same operation under the creation tools for Activity, Ca-
pability and Functionality. The final form of the .gmftool file is shown
in figure 3.9

• Click on the Transform label of the dashboard

• Regenerate the diagram editor

35

Figure 3.9: Final form of SRM.gmftool

Most of the times
the icon order on
the palette is dif-
ferent than the or-
der of the creation
tools in the .gmftool
file. In SUC and
SRM GMF editors
we changed the or-
der of the palette
icons by modifying
the generated Java
code. The Java
method that must
be modified is cre-
ateSRM1Group() lo-
cated in SRMPalet-
teFactory.java in SRM.
diagram.part package
of the .diagram plu-
gin (accordingly for SUC). Below we present the createSRM1Group() method
after the modifications.

Listing 3.1: Edited createSRM1Group()

/∗∗
∗ Creates ”SRM” palette tool group
∗ @generated NOT
∗/
private PaletteContainer createSRM1Group() {

PaletteGroup paletteContainer = new PaletteGroup(Messages.
SRM1Group title);

paletteContainer.setId(”createSRM1Group”); //$NON−NLS−1$
paletteContainer.setDescription(Messages.SRM1Group desc);
paletteContainer.add(createRole1CreationTool());
paletteContainer.add(createCapability4CreationTool());
paletteContainer.add(createActivity3CreationTool());
paletteContainer.add(createFunctionality6CreationTool());
paletteContainer.add(createRoleCapabilities2CreationTool());

36

paletteContainer.add(createRoleActivities8CreationTool());
paletteContainer.add(

createCapabilityCapability activities5CreationTool()) ;
paletteContainer.add(createFunctionalityActivities7CreationTool()) ;

return paletteContainer;
}

37

As you can see we just changed the order of adding the creation tools
to the paletteContainer Object. Also we added NOT after the generated
annotation, which is used to state to the framework that this part of the code
is modified by hand and avoid overriding it in future code re-generations of
the code.

Figure 3.10: Set line width and color in
SRM.RoleFigure

Another change
made to all the GMF
editors was to set
a global line width
and color for all the
Diagram editor ele-
ments for the sake
of a unified appear-
ance, as they are all
part of thee same
tool. After a lot
of testing during the
development process
we decided to set the
global line width to
2 pixels and black as
the default color. In
order to do that we
must edit the .gmf-
graph file. Usually
the first node un-
der every Figure De-
scriptor is the selected Draw2d element (ie Rectangle, Ellipse for EObjects
and Polyline Connection for links). Each of this elements has a Line Width
property editable by the properties view and the color is added as a child in
the tree structure under the nodes. In figure 3.10 you can see an example of
SRM.gmfgraph file after the operation described for the RoleFigure. After
doing this for all needed elements the .gmfmap and .gmfgen file must be re-
generated and regenerate the editor (for each model) for the changes to take
effect.

GMF also provides the possibility to use Audits for an editor. Audits
represent set of rules that must hold true if evaluated on a diagram instance.
Individual audits are represented by AuditRule and can be organized hierar-

38

chicaly into logical categories by using AuditContainer. To work with Audits
you have to work on the .gmfmap file and then regenerate the editor as usual.
We will present more detailed information about audits at SRM editor and
Statechart editor subsections since we used audit rules one these two editors
of the ASEME IDE.

So far we have covered all four basic variations of the editing process of a
GMF editor since each one is starting from a different file (.gmfgen, .gmftool,
.gmfgraph, .gmfmap) and we will continue with further customizations per
editor. In SAG editor we just set the global line width and color, so no
further info is required.

3.2.5 SUC Editor

In SUC editor the role icon was changed with the UML role icon in order to
help any user of the ASEME IDE conceptually, because the UML role is the
most dominant role concept among the engineering field. We also added an
ellipse as the usecase icon, also the most dominant visual representation of
a usecase in the field. In addition for better visuals we changed the position
of the UseCase.Name Label inside the UseCase figure. to do this we had to
edit the .gmfgraph file and add a Center Layout child node to the UseCase
ellipse figure and regenerate the editor.

Finally since a UseCase can include other UseCases we chose to visualize
this with a Label with fixed <<include>> text on it on the link connecting
the included UseCases. For the placement of this label at the middle of each
connection we used org.eclipse.draw2d.MidpointLocator to the createCon-
tents() method of UseCaseIncludeEditPart.java in SUC.diagram.edit.parts
package.

Listing 3.2: SUC createContens()

/∗∗
∗ @generated NOT
∗/
private void createContents() {

fFigureIncludeLabel = new WrappingLabel();
FigureIncludeLabel.setText(”<<includes>>”);
fFigureIncludeLabel.setFont(FFIGUREINCLUDELABEL FONT);
this.add(fFigureIncludeLabel, new MidpointLocator(this, 0));

39

}

3.2.6 AIP Editor modifications

Figure 3.11: AIP.gmfmap set property to Read Only

In AIP editor we
made two changes to
the files. First to
the .gmfgraph file we
changed the layout
of the participant fig-
ure to vertical. To
do this we set the
property Vertical, of
the FlowLayout node
under the Partici-
pantFigure to true.
We also changed the
.gmfmap file in order
to do read only the
multi-line attributes
of the Participant
figure. For this there
is a boolean Read
Only attribute uder
each Feature Label
Mapping node in the Misc section (Figure 3.11). After doing this and regener-
ated the editor we added a tooltip to inform the ASEME IDE user that these
attributes are editable via the Properties view. So we had to edit creteNode-
Figure() method located in AIP.diagram.edit.parts.ParticipantEditPart.java

Listing 3.3: Edited creteNodeFigure() for AIP Participant

/∗∗
∗ Creates figure for this edit part .
∗ @generated NOT
∗/
protected NodeFigure createNodeFigure() {

NodeFigure figure = createNodePlate();

40

Label tooltip = new Label(”You can edit multiline attributes
from the properties view ”);

figure .setToolTip(tooltip) ;
figure .setLayoutManager(new StackLayout());

IFigure shape = createNodeShape();
figure .add(shape);
contentPane = setupContentPane(shape);
return figure;

}

3.2.7 SRM Editor

After the refinements made to the SRM.ecore, we re-designed the SRM GMF
editor to be the functionality graph of the SRM model. The icons for the
palette selected with similar criteria as in the SUC editor, namely popu-
lar images for the representing concepts so we ended up in UML Role for
SRM.Role, SPEM notation Activity for SRM.Activity, a jigsaw piece for
SRM.Capability and a gear for SRM.Functionality.

Figure 3.12: SRM.gmfmap Audit addition

After following the
steps of the GMF
Dashboard and gen-
erating our editor,
we did the changes
to the icons and
the lines as described
in Editors Modifica-
tions subsection we
wanted to implement
an automated pro-
cess that adds the
formula of a Capabil-
ity as the last line of
the liveness formula
of the Role, when
added and its not in-
cluded at the Roles

41

Capabilities. To
implement this (the
functionality is simi-
lar to a listener) we had to add an Audit rule to the .gmfmap file as shown in
(Figure 3.12), regenerate the editor and add the actual Java implementation
of the desired functionality at the validate method of Adapter1 inner class
located in SRM.diagram.providers.SRMValidationProvider.java.

Listing 3.4: SRM audit Java code

/∗∗
∗ @generated NOT
∗/
public static class Adapter1 extends AbstractModelConstraint {

/∗∗
∗ @generated NOT
∗/
public IStatus validate(IValidationContext ctx) {

Role context = (Role) ctx.getTarget();

String formula = context.getLiveness(). replaceAll(” ”, ””);

ArrayList<String> left = new ArrayList<String>();
ArrayList<String> right = new ArrayList<String>();

Pattern testPattern = Pattern.compile(”\\w+ ∗w∗”);

Matcher testMatcher = testPattern.matcher(formula);

StringTokenizer line = new StringTokenizer(formula, ”\n”);

while (line.hasMoreTokens()) {
String tmp = line.nextToken();
StringTokenizer formulaElements = new StringTokenizer(tmp,

”=”);

42

left .add(formulaElements.nextToken());
right .add(formulaElements.nextToken());

}

boolean added = false;

for(Iterator<Capability> capIter = context.getCapabilities().
iterator () ; capIter .hasNext();){

Capability tmpCap = capIter.next();

boolean found = false;

for (int i=1; i<left . size () ; i++){

if (tmpCap.getName().equals(left.get(i))){

found = true;
break;

}

}

if (! found){

String capForm = new String();

if (tmpCap.getDescription()!=null){
capForm = tmpCap.getName() + ”=” + tmpCap.

getDescription();
}

else{
capForm = tmpCap.getName();

}

if (context.getLiveness() .endsWith(”\n”)){

43

context.setLiveness(context.getLiveness() + capForm+
”\n”);

}
else{

context.setLiveness(context.getLiveness() +”\n”+
capForm+ ”\n”);

}

added = true;

}

}

return ctx.createSuccessStatus();

}
}

3.2.8 Statechart Editor

For the Statechart editor we used the Kouretes Statechart Editor ([21]) with
two changes. First we changed the Transition Expression attribute to be a
multi- line String, done via the .genmodel file. After that we had to remove
some of the already existing Audit rules because there were syntax checks
in order to have proper code generation for the Monas architecture which is
no longer supported by the ASEME IDE as deprecated. To remove already
existing Audit rules we had to remove them from the .gmfmap file but also
delete by hand the Adapter functions in statechart.diagram.providers .State-
ChartValidationProvider.java as they are annotated with the generated NOT
tag so even if we regenerate the editor these code blocks remain untouched.

44

3.3 Integration of existing tools/ Functional-

ity extensions

3.3.1 Replacing IAC with Statechart

IAC is pretty much the same metamodel as Statechart with a slight differ-
ence : the relation between the Nodes was stated vice versa at the EMF
metamodel. As we can see in (figure X), at the IAC metamodel each child
Node refers to its father via the FatherOf relationship while in Statechart
metamodel each father Node refers to its children via the Children relation-
ship. We removed IAC an its components(.edit, .editor and .diagram plugin
projects as IAC had EMF/GMF implementation as all the other models)
of our total project setup and since Statechart (along with its components
accordingly) was part of the initial setup, the next step was to replace IAC
with Statechart to other project that used it. That was seemingly a relatively
easy task, since the two models use the same naming conventions, but the
replacement had to be applied in several ways and lead to useful conclusions.

(a) IAC meta-model (b) Statechart meta-model

Figure 3.13: IAC and Statechart

45

At IAC EMFgenerator2 plugin(and generally in projects that use xpnand
for code generation and have an EMF model as input),which is responsible
for the IAC to JADE transformation needs the models .ecore file inside the
project folder in order for the xpand templates to work properly, so after re-
placing the .ecore file we had to replace the imports at the templates. After
that, we replaced IAC imports with the equilevant Statechart ones wherever
needed to the java code as well. Then as far as the code for transforming
liveness formula to Statechart was part of the existing tools, we updated
the regular expressions used for the transformation with those available in
the code of SRM to Xpdl transformation that had been submitted to ex-
tensive debug during the development of SRM2XPDL tool, always over the
same syntax criteria. During the debugging process of liveness2Statechart
java code we came across a serious bug. The regular expressions available
had problem dealing with the tilde(~) operator (|term~|) and the program
crashed whenever this operator used in the formula. We did not solve this
problem because we had a lot of other open issues at the moment but know-
ing that it exists help us set the tilda operator as unsupported at this stage
of the ASEME IDE and left this particular bug for future work.

3.3.2 Importing the SRM2BMPN and XPDL tool

SRM2BPMN tool was the first external functionality addition we made to the
ASEME IDE. Since a detailed description on how we integrated this tool to
our framework is going to be presented to the next chapter we will be limited
to the changes we made to the existing code. We used the current project
path from ASEME IDE ,given as an input parameter, to the methods used for
opening and saving files from the UI menu in order to be synchronized. Also
there was a bug during loading SRM models on different operating systems
due to different ways of persisting the newline character in the xml (.srm)
file. This solved by removing the "" char sequence from the liveness
formula attribute of each Role.

3.3.3 IAC to GG

IAC to GGenerator transformation tool was the second external functional-
ity addition we made to the ASEME Model-Driven process. Trying to em-
bed it to the framework there were problems invoking the xpand templates
through the workflow.mwe file in runtime, so we did it through java code.

46

To run the xpand templates through Java we used the xpand language im-
plementation package(org.eclipse.xpand2) , and more specifically XpandExe-
cutionContextImpl, XpandFacade, output.Outlet and output.OutputImpl as
well as org.eclipse.xtend.typesystem.emf.EmfMetaModel to define the input
model. These imports used in he created statechart2Naoth.Stct2NAoth.java
class, in the existing IAC-2-Naoth project, in the public static void generate-
Naoth method which takes as inputs the desired path for the generated code
and the Statechart model to be transformed to generic C++.

Listing 3.5: generateNaoth method

public static void genarateNaoth(String srcGenPath, Model statechart){

OutputImpl out = new OutputImpl();
Outlet outlet = new Outlet(srcGenPath);
outlet .setOverwrite(false);
out.addOutlet(outlet);

Outlet transitions outlet = new Outlet(srcGenPath+”/transitions/”)
;

transitions outlet .setOverwrite(false);

Outlet activities outlet = new Outlet(srcGenPath+”/activities/”);
activities outlet .setOverwrite(false);

Map<String, Outlet> outlets = new HashMap<String,Outlet>();
outlets .put(”default”, outlet) ;
outlets .put(” activities outlet ”, activities outlet) ;
outlets .put(” transitions outlet ”, transitions outlet) ;

OutputImpl.resolveOutlet(outlets, srcGenPath+”/activities/”, ”
activities outlet ”);

OutputImpl.resolveOutlet(outlets, srcGenPath+”/transitions/”, ”
transitions outlet”);

XpandExecutionContextImpl executionContext = new
XpandExecutionContextImpl(out, null);

47

// Configure the metamodels
EmfMetaModel emfMetaModel = new EmfMetaModel();
emfMetaModel.setMetaModelPackage(StatechartPackage.class.

getName());
executionContext.registerMetaModel(emfMetaModel);
XpandFacade xpandFacade = XpandFacade.create(executionContext);
Object[] params = null;

xpandFacade.evaluate(”mainTemplate::model”, statechart, params);
}

After that we modified the dashboard to meet the new requirements
(added the GGenerator box, the arrow from IAC and the transform but-
ton) and created the equivalent ASEMEAction implementation class for the
transformation action on the dashboard that gathers the path and model for
the input and calls the above method. This is the standard procedure for
adding external functionality to the dashboard with a more detailed descrip-
tion available in next chapter.

3.3.4 Transformations refinements

With the various editings made in EMF metamodels and considering the
fact that the existing code had parts that needed debugging, the transforma-
tions code had many fixes that their technical detailed description deemed
unnecessary. We considered more appropriate to discuss how we extended
the existing functionality.

We set as the default behavior of the transform actions to open the dia-
gram editor of the newly created model and for the code generation we added
a dialog notifying the user that the transformation was completed success-
fully. Otherwise if something goes wrong the user is also notified by a dialog
with an appropriate message according to the applying audits.

In addition, we added a code block for updating the project explorer when
multiple files are generated.

Also, in SUC2SRM and SRM2IAC transformations we automated the
import process of information from AIP and EAC respectively. The condition
for the auto-include process to begin is the existence of the equivalent file to
import from (AIP model with the same name and Statechart file with the

48

protocol name) in the project folder.
All the changes mentioned above had to be made to ASEMEDashboard-

view project, and are implemented at asemedashboardview.views.actions pack-
age. The actual transformation code is in ASEME Transformations plugin.
Almost all the transformation code has been rewritten as static methods
and in accordance with the changes made to the meta-models. We cre-
ated the class AsemeModelSaveHelper to ASEME Transformations plug-in
in order to automate the persistence of the models. In the class there
is a static org.eclipse.emf.ecore.resource.ResourceSet initialized with all the
ASEME meta-models registered and two methods for saving models to the
given org.eclipse.emf.common.util.URI or filename (java.lang.String) using
org.eclipse.emf.ecore.resource.Resource. That is more generally the way we
deal with persistence of the models throughout ASEME IDE. Further changes
made to the IAC2JADE transformations. We also used Java for invoking the
xpand templates, as with GGenerator transformation mentioned above with
the addition of the use of org.eclipse.xpand2.output.JavaBeautifier for the
format of the generated code provided by xpand. We also fixed a bug in
the existing code as the list of the Nodes of a Statechart was not properly
created. The problem was that the implementation of the tree structure of
the Statechart meta-model the children of each Node is a List of Nodes so
we needed a method using a tree2list recursive algorithm to access all nodes
of the tree-structure and return all nodes to a static list in order to be visible
for other classes where needed. Since the xpand framework does not sup-
port recursive code we had to put that method to the java helper classes of
IAC EMF.generator2 project.

3.3.5 SRM to IAC import EAC

At SRM2IAC transformation, SRM.Capabilities are transformed to State-
chart.Nodes for each SRM.Role. Capabilities at SRM level might be Proto-
cols at AIP. Since in EAC we have a Statechart for each AIP.Protocol we
automated the import of Variables and Transition Expressions, that contain
useful info for the code generation, to the appropriate Nodes of the equivalent
Role Statechart. We used the algorithm presented in pseudo code below :

Listing 3.6: SRMImportEAC algorithm

For each Role.Node
If (this.Node.TYPE == ”OR”)

49

If this.Node.isProtocol() {
Load Protocol

Associate Varibles
Associate TEs
}

End if
End if

End for

After we have the generated Statechart models, we needed to post-process
each model in order to enrich it with extra info from the SRM model, so an
iteration over the tree was necessary and we tried during that single iteration
over a Role statechart to also import any protocol info we have. Considering
the fact that in order to associate TEs and Variables from a protocol and a
role statechart we have to find their common sub-tree and transfer them per
Node and thus more iterations over different sub-trees are needed, we tried
to be efficient. We used four helper functions

exportCapabilities(SRMModel): List¡String¿
DFsearch(Node, String):Node
AssociateTEs(Model protocol, Model role, String protocolPrefix, String

rolePrefix) :void
AssociateVars(Node protocolNode, Node roleNode, Model stct, String

protocolPrefix, String rolePrefix): void
(Algorithm using helpers / more technical)

3.3.6 Abstract Role/Protocol support

During the development process and due to the changes made to the SUC
meta- model we came up with the idea of treating any Abstract Roles on
SUC as System ones, concerning the ASEME Model Driven Process. By
supporting Abstract Roles at the SUC model SUC2AIP transformation leads
to Abstract Protocols at AIP model. Subsequently, at SRM model Abstract
Protocols are imported as independent capabilities.

This admission and its derivatives to AIP and SRM provide additional
support of a Protocol between two Abstract Roles and Between Abstract and
System Roles and enriches the existing design process.

The automation for Abstract Roles/Protocols supported by the transfor-
mation tools in two levels :

50

• SUC2AIP transformation Abstract Roles are valid for transformation,
generating Abstract Protocols at AIP

• import AIP : (SUC2SRM transformation) import Abstract Protocols as
standalone Capabilities available for the user to assign to any SRM Role
with the protocol liveness formula that can be found in the description
field of a capability

3.3.7 Transition to Eclipse Mars Environment / Up-
date Site

For the transition of the application from Eclipse Luna to Mars and later
to Mars 2.0 environment we had imported the plugin projects to the new
Eclipse instance. Due to incompatibilities we had to regenerate the auto
generated code for each model but in order for it to work properly we had to
set the Compliance Level property of the .genmodel to 6.0 as shown in (fig).
Also there were some problems with the JVM version used by some of the
projects and some other minor configuration issues that all could be resolved
through the MANIFEST.MF file of each project.

To export ASEME IDE we followed two simple steps. First we created a
new feature project. A feature is a collection of plug-ins, in fact it is a xml file
describing the plug-in group. Eclipse provides a really helpful ui to edit the
feature.xml file similar to manifest.mf files and there we add the the desired
plug-ins that constitute the feature, compute their dependencies and so on.
If there are any external dependencies to any plug-in must be registered also
here to be visible during runtime as shown in (fig).

The second step was to create a new Update Site Project. Both Feature
and Update Site Projects are part of the Eclipse wizards in Plug-in Devel-
opment category accessible via File -> New -> Other. After the creation we
add the feature to the update site and add any extra information needed to
site.xml file and finally build. The Update site project folder is now ready
to be hosted at any server or used as a local repository.

51

Chapter 4

Interfaces

In this chapter we are going to present the way to add new functionality
to the existing ASEME IDE by example, describing the process followed to
integrate SRM2XPDL tool to the framework. More specifically, in subsection
4.1 we will describe the procedure of adding a new plugin (or set of plugins
for a GMF editor) with the desired new functionality and the appropriate
actions that need to be taken to register it properly to the framework, and in
subsection 4.2 we will show the steps that need to be followed for registering
a new transformation and adding the desired functionality.

4.1 Add new model / editor

When the addition of extra functionality is deemed necessary, the developer
must provide the functionality in an Eclipse Plugin. In accordance with those
indicated by the Eclipse Plugin Model, any external dependencies must be
in the classpath in order to be visible at runtime (Figure 4.1).

Also the package(s) that contain code that needs to be accessible from
outside the plugin need to be exported (Figure 4.1) and finally the new plugin
needs to be added to the dependency list of our main plugin ASEMEDash-
boardView (Figure 4.2).

After the standard actions described above the developer needs to al-
ternate the dashboard in order to meet the new requirements. Responsible
for modifying the Dashboard visually and adding functionality to it are the
classes ASEMEFigure and ASEMEMediator.

At ASEMEFigure java class we define the layout and parts of the Dash-

52

Figure 4.1: SRM2XPDL/MANIFEST.MF runtime tab

board in terms of a figure. As the Dashboard is implemented extending
draw2d (https://www.eclipse.org/gef/draw2d/) RectangleFigure, it can
be customized using org.eclipse.draw2d.geometry package in order to arrange
the figures that constitute the dashboard at will.

There are three main figures that are used repeatedly for the visual con-
struction of the dashboard and each of them is imple- mented as a java
class in asemedashboardview.views package : ModelFigure, FlowFigure and
FlowActionFigure.

Each model of ASEME is represented by a box in the dashboard and it
is implemented as a ModelFigure. The ModelFigure class extends draw2d
RectangleFigure(same as the dashboard) and implements ActionContainer
interface that gives the ability to have the actions (Create, Select, Edit)

For the edges connecting the ModelFigures we have the FlowFigure class
that extends Polyline and implements Connection, both from draw2d thus
customization is possible as stated by the rendering toolkit.

Our last main figure is the FlowActionFigure, which visually is the box

53

https://www.eclipse.org/gef/draw2d/

Figure 4.2: ASEMEDashboard/MANIFEST.MF dependencies tab

with the transform label on the FlowFigures. This class also extends draw2d
RectangleFigure and implements ActionContainer interface so it can support
the actions for the transformations.

In this case we follow the steps below : add the new box entitled ”Pro-
cess Model (BPMN 2.0 or XPDL)” (ModelFigure) define the actions on the
bottom side of the box(select and edit) add the arrow from SRMBox to
the new Box and (FlowFigure) add the transform label (define the action)
(FlowActionFigure)

4.2 Add new transformation

When all the steps described above have been done the process to add a new
transformation is relatively easy. First we make a new .java file (a class)
at ASEMEDashboardView plug-in in views.actions package that implements
the ASEMEAction interface and in its run() method we add the code that
will run when the transform button is pressed in the dashboard (4.3).

54

Figure 4.3: ASEMEAction interface implementation for SRM2XPDL trans-
formation

Then, mostly for modularity reasons, we follow our design and make a
.java class at ASEMETransformations plug-in where we put a static method
that implements the desired functionality (in this case it just launches the
external app) and we call it from the ASEMEAction class run() method
(Figure 4.4).

55

Figure 4.4: SRM2XPDL

56

Chapter 5

An example of the ASEME
modeling process

In this chapter we are going to present an example on how to use the ASEME
IDE. We will go through each step of the Model-Driven process with detailed
comments on the usage of the current implementation of the IDE and also
discussing on what the user should note about the behavior of the tool.

5.1 A negotiation Agent

For this example we are going to design and implement a simple negotiation
Agent that uses argumentation based decision making policies that negotiates
with a protocol defined by another argumentation based theory.

In order to start working with the ASEME IDE a user has to download
the Eclipse Modeling Tools Mars 2 http://www.eclipse.org/downloads/

packages/eclipse-modeling-tools/mars2 . After installing, two addi-
tional modeling components are required : Xpand and Graphical Modeling
Framework Tooling, that are available through the Install Modeling Compo-
nents option of the toolbar.(5.1)

Install the ASEME new software by adding the ASEMERepo
(http://aseme.tuc.gr/aseme/ASEMERepo/) update site (from the menu Help
-> Install new software and by clicking the Add button) Then start a new
general project and show the ASEME Dashboard view (from the menu Win-
dow -> Show view -> Other and from the list select the ASEME -> ASEME
Dashboard)

57

http://www.eclipse.org/downloads/packages/eclipse- modeling-tools/mars2
http://www.eclipse.org/downloads/packages/eclipse- modeling-tools/mars2

Figure 5.1: Install Modelling Compoents for ASEME IDE

5.2 Requirements Analysis

An agent during his life cycle may assume many roles. At this stage we have
to analyze our system in a societal level, thus to define the Actors being
present, and their Goals. After defining the possible agent roles and their
goals we analyze the requirements per goal and decide on possible interac-
tions.

In this particular example we need an agent that given a negotiation
protocol can use its own knowledge to negotiate with another agent and
another one providing the protocol. So we have two Actors : a Negotiator
and a ProtocolKeeper.

Now we are going to represent this in our SAG model. After clicking
the create button in the SAG box of the ASEME Dashboard an empty SAG
model is created and the GMF editor is opened. We can add items from the
palette to the editor(as in any graphical editor) and we define our two roles
with their goals as shown in (5.2).

58

Figure 5.2: example SAG model

5.3 Analysis

Preceding with the analysis phase we continue with the SUC model.
For each model transformation we just click on the transform label on

the arrow between the two model figures(boxes) on the dashboard and then
the derived model is created and the an instance of the corresponding editor
is opened with the newly created model ready to be edited.

In our example the derived SUC model looks like this(5.3). At the SUC
level we can add more information about the use cases and add any additional
roles that are needed to design our system in more detail.

At this stage of the analysis we come up to the first optional part of
the ASEME Model Driven process which is the use of the AIP model for
the design process. Usually the use of AIP is recommended because AIP is
responsible for the more detailed description of the protocols.

59

Figure 5.3: derived SUC model

SUC to SRM transformation requires only the SUC model but if AIP also
exists (and is selected in the dashboard) will also be used by the transforma-
tion algorithm. For this example we are going to present two different ways
on how the information of SUC and AIP models are combined to produce
the SRM and how it affects the auto-generated SRM model.

At this point we considered appropriate to present some notes on the
transformation algorithm :

• A use case that has two or more roles as participating roles will be
transformed to a protocol to AIP

• Each use case that includes other use cases will be transformed to a
capability to the SRM model

• the included use cases constitute the activities of the capability, thus

60

their apposition with the appropriate operators consist the behavioral
description of the capability, its liveness formula.

• the liveness formula of a capability is part of the SRM Role liveness
formula and is also the Liveness property of a Participant in the AIP
model

• the generated formula in both cases described above has ?OP? as sample
text where the operators are expected

• only System roles will at SUC will be transformed to SRM Roles

• any participants liveness formula at AIP will be imported at SRM
either in the formula of the appropriate Role (if its a System Role) or
as the description field of a standalone capability (in case of Abstract
Roles/Protocols)

The first option is to enrich the SUC model with information and de-
scribe in depth the desired behavior by extending the use cases as shown
in figure(5.4). Then we have the generated AIP model in 5.5 and after the
placement of the desired operators the SRM model of 5.6 is generated.

The second option we will present here is to only add two Abstract roles
at the generated SUC model as participants to a use case 5.7. This will
provide a similar AIP as above with the difference that the liveness property
of each participant will be empty because the use-case analysis in SUC is
absent. So by writing the liveness formula for each participant to define the
desired behavior(in both cases of our example we use the same protocols so
the same formula but in second case Negotiation Protocol is abstract 5.8)
we get generated SRM shown in 5.9 which has almost the same information
as in the previous case in a slightly different, more flexible format.

At the SRM the modeler has the possibility to enrich the model in various
ways, as capabilities and activities can be reused in more than one roles and
many activities can have the same functionality (eg web service invocation,
algorithm etc). The reader should note that any changes on the graphical
editor will not be automatically reflected to the liveness formula of the role
and must be added there by hand(all editings done through the properties
view 5.9). This feature is not supported yet by the ASEME IDE and the
transformations that have the SRM model as input (SRM to BPMN and
SRM to IAC) rely solely on the liveness formula of each role.

61

Figure 5.4: SUC model refined

By hitting the transform button and launching the Liveness to BPM-
N/XPDL application. The working directory is provided as root for the
application for the input actions and the produced files are also saved to the
project folder. For the interested reader, further details on the transforma-
tion algorithm are presented to ([7]) or in the ASEME IDE repository (repo)
in the model folder.

5.4 Design

From the liveness formula of each SRM role a Statechart model is generated.
The auto-generated models(.stct) are located in the project folder along with
one .kse file each(5.10).

Changes here will be affecting the code since is the last model used in
ASEME MDP before code generation, thus here the modeler can design in
detail the implementation of the behaviour of each role that an agent would
assume in our system.

62

Figure 5.5: derived AIP model

Statechart model generation is also provided from the liveness formula of
each protocol at AIP model(AIP2EAC).

If protocol statecharts have been generated before, any information avail-
able in the protocol statechart will be imported at each role statechart that
participates in each protocol.

For our example we present our final version Negotiator role statechart in
5.11 and the state variables in 5.12 (the assignment and editing of variables
to a node is done via the properties view as shown in Figure 5.12). Note that
the Transition Expressions(TEs) and Variables (also the association between
Variables and States) shown in the figures are automatically imported from
the Protocol statecharts (EAC).

5.5 Implementation-code generation

The last two steps are for code generation, so by hitting the transform button
for IAC2JADE or IACtoGenericC++ the generated code can be found at src-

63

Figure 5.6: derived SRM model

gen/JADE and src-gen/NAOTH respectively as shown in Figure 5.13. From
this point on the user may customize directly the generated code.

5.6 Important Notes

ASEME IDE users must note that the dashboard is not automatically up-
dated according to the project explorer(eg if a model is selected and delete
it from the project explorer it will not be removed from the dashboard).
This bug exists also in the GMF Dashboard implementation and during the
development process it was not considered a must-have feature(mostly for
time management reasons) but due to its importance for the user experience
we have to point it out for the users and rank it high in the future work
priority list.

64

Figure 5.7: SUC with Abstract Roles

65

Figure 5.8: refined AIP model

66

Figure 5.9: refined AIP model

67

Figure 5.10: Generated Statechart models

Figure 5.11: Statechart model for Negotiator

68

Figure 5.12: Negotiator statechart variables

69

Figure 5.13: Code generation for Negotiator

70

Chapter 6

Conclusion

6.1 Discussion

In this thesis we presented ASEME IDE, an advanced case-tool that provides
a user the possibility of designing a multi-agent system (MAS) using the
ASEME methodology from scratch and going through a model driven process
to either export the designed system to business models (BPMN/XPDL)
and/or code generation (Java/C++).

More specifically, we brought together various previous works on ASEME
(the AMOLA metamodels and transformation tools[14], Kouretes Statechart
Editor (KSE) [20] [21], an extension of KSE for Executing Statechart-Based
Robotic Behavior Models [9] [10] and an application to transform SRM to
BPMN/XPDL models [6] [7]), integrating into one application that could
support the entire ASEME model-driven process and created a dashboard to
guide the user through. During the development process, we had to mod-
ify the existing code and completely rewrite parts of it mostly due to the
refinements we made to some of the AMOLA meta-models implementation.
We also made functionality additions and extensions that finally led us to be
able to support an enhanced version of the ASEME process. ASEME IDE
is implemented as a plug in for the popular Eclipse platform and we also
provide an update site to install from.

Towards this thesis completion, there were some parts of the process that
have not been discussed yet. For example the addition of the SRM2BPMN
Swing application to ASEME IDE was a time-consuming task. The code
integration part of the process was relatively easy but the configuration part

71

was more complicated. The visibility of the external dependencies must be
ensured in every level with the most important of them being the top level,
when we group our plugin projects to a feature. If the desired extended
dependencies are not declared for exportation, when the ASEME IDE is
installed at an Eclipse instance and a user triggers (via the transform button
in our case) the application to start, ASEME IDE crashes and the logging
message is misleading in order to find the cause of this problem. So in
future functionality addition/extensions a developer must ensure that the
steps detailed in Chapter 4 and Section 3.3.7 are followed to avoid unpleasant
surprises and save time.

At some point we also tried to provide an alternative view for editing
the models (mostly SRM and AIP) using popular EMF Forms Framework
(http://www.eclipse.org/ecp/emfforms/). After multiple tries on several
versions of EMF Forms we did not succeed in having the desirable outcome
mainly because of the inability of the framework to support the simultaneous
editing of children entities included at a parent entity (eg Protocol Partici-
pants at AIP, Role Capabilities at SRM). It may be possible to do succeed
at this task since we are not aware of the current status of the framework
but we have to mention that developer support is charged with a fee rather
large for a thesis!

Concerning the tools that used through this thesis we have to note that
based on our experience of developing and customizing the editors, GMF
generated editors have many out of the box features that are helpful but
when it comes to add custom code, although at many cases the addition of
few lines of code was required, the time needed to complete such a task was
disproportionate with the amount of code needed. Thus, we have to agree
with [12] that GMF does shorten development time, but to a smaller degree
than we initially expected, especially for someone with no prior experience
with DSL editor frameworks.

Concluding, we consider that (mostly thanks to the dashboard approach)
we succeeded towards the outcome of this thesis, ASEME IDE, being is a
complete software tool that is more user friendly than the underlying con-
cepts, but as always there is a lot of room for improvements!

72

http://www.eclipse.org/ecp/emfforms/

6.2 Future work

During the development of ASEME IDE among the features added and the
bugs resolved there were a lot of features that either we did not have time to
implement or considered nice to have and not must have features. Also due
to the process made other improvements and features have emerged.

An improvement that will make ASEME IDE much more user friendly is
the use of GMF audit rules in all model editors (for now some audit rules are
used in KSE). More generally anything that would guide the user in a more
specific manner during the design process will be a nice add-on. For example
we tried to implement live validation of the SRM model GMF editor. More
specifically we tried to have the editor updated on every liveness formula
change (re-assign capabilities and activities or create them if they do not
exist and vise versa) but din not have the time to complete it and have it in
the current release. Our advise to anyone that would like to be involved with
that feature is to create a grammar (using xtext) for the formula validation.

Another nice-to-have feature would be the auto generation of simple form
protocols at the SUC editor. This idea came from the send-receive pattern
observed in most of the cases of defining a protocol between two actors in
a MAS. An interesting idea that could help for the implementation of this
feature can be found at [19].

A feature that will update the whole ASEME IDE is to add code gener-
ation for SRM functionality or even for SRM capabilities. Especially if the
generated code is stored by the IDE it takes the ASEME MDP to a whole
new level as we can have a pool of reusable code to customize the agents
behaviour. For example the generated code from functionality code can be
the invocation of a web service and extending it to capability generated code
can have also an implemented algorithm over the response of the web service
invoked.

6.3 Lessons learned

While working towards the completion of this thesis I learned that a lot of
reading is required before you start coding, especially when you have to work
with advanced software architectures, so keeping notes and in general good
organization is really helpful. Also due to the fact that you will have to build
upon already existing work of other people reading the manual is essential

73

while the next step is to contact the author. I also realized that it is a major
responsibility for any author (including me in that thesis) to try and write a
manual or any other text on what he did that is relatively easy to understand
in order to cause the least trouble possible to anyone that would need his
work afterwards. Last but not least I realized that time management is
essential, but is also a really common problem at any development process.
It always take more time than your original estimation.

74

Bibliography

[1] Jos Warmer Anneke Kleppe and Wim Bast. Practical Eclipse Rich
Client Platform Projects. Addison-Wesley Longman Publishing, 2003.

[2] Henderson-Sellers B. and Giorgini P. “Agent-Oriented Methodologies”.
In: (2005).

[3] Richard C. Gronback. Eclipse Modeling Project: A Domain-Specific
Language (DSL) Toolkit. Pearson Education, 2009.

[4] B. Henderson-Sellers. Agent-Oriented Methodologies. IGI Global re-
search collection. Idea Group Pub., 2005. isbn: 9781591405870. url:
https://books.google.gr/books?id=ylGAvAA3dPUC.

[5] Nicholas R Jennings and Michael Wooldridge. “Agent-Oriented Soft-
ware Engineering.” In: MAAMAW. Citeseer. 1999, pp. 1–7.

[6] Nektarios Mitakidis. “Transforming ASEME Roles Models to Process
Models”. Technical University of Crete, 2014.

[7] Mitakidis Nektarios, Delias Pavlos, and Spanoudakis Nikolaos. “Vali-
dating Requirements Using Gaia Roles Models”. In: Revised, Selected,
and Invited Papers of the Third International Workshop on Engineering
Multi-Agent Systems - Volume 9318. New York, NY, USA: Springer-
Verlag New York, Inc., 2015, pp. 171–190. isbn: 978-3-319-26183-6.
doi: 10.1007/978-3-319-26184-3_10. url: http://dx.doi.org/
10.1007/978-3-319-26184-3_10.

[8] Object Management Group (OMG). Meta-Object Facility (MOF) Spec-
ification, Version 2.0. OMG Document Number formal/2006-01-01 (http:
//www.omg.org/spec/MOF/2.0). 2006.

[9] Georgios Papadimitriou. “Extending Kouretes Statechart Editor for
Executing Statechart-Based Robotic Behavior Models”. Technical Uni-
versity of Crete, 2014.

75

https://books.google.gr/books?id=ylGAvAA3dPUC
http://dx.doi.org/10.1007/978-3-319-26184-3_10
http://dx.doi.org/10.1007/978-3-319-26184-3_10
http://dx.doi.org/10.1007/978-3-319-26184-3_10
http://www.omg.org/spec/MOF/2.0
http://www.omg.org/spec/MOF/2.0

[10] Georgios L. Papadimitriou, Nikolaos I. Spanoudakis, and Michail G.
Lagoudakis. “Extending the Kouretes Statechart Editor for Generic
Agent Behavior Development”. In: Artificial Intelligence Applications
and Innovations: 10th IFIP WG 12.5 International Conference, AIAI
2014, Rhodes, Greece, September 19-21, 2014. Proceedings. Ed. by Lazaros
Iliadis, Ilias Maglogiannis, and Harris Papadopoulos. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2014, pp. 182–192. isbn: 978-3-662-
44654-6. doi: 10.1007/978-3-662-44654-6_18. url: http://dx.
doi.org/10.1007/978-3-662-44654-6_18.

[11] Douglas C Schmidt. “Model-driven engineering”. In: COMPUTER-
IEEE COMPUTER SOCIETY- 39.2 (2006), p. 25.

[12] Fredrik Seehusen and Ketil Stølen. “An Evaluation of the Graphi-
cal Modeling Framework (GMF) Based on the Development of the
CORAS Tool”. In: Theory and Practice of Model Transformations: 4th
International Conference, ICMT 2011, Zurich, Switzerland, June 27-
28, 2011. Proceedings. Ed. by Jordi Cabot and Eelco Visser. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 152–166. isbn: 978-
3-642-21732-6. doi: 10.1007/978-3-642-21732-6_11. url: https:
//doi.org/10.1007/978-3-642-21732-6_11.

[13] Vladimir Silva. Practical Eclipse Rich Client Platform Projects. Apress,
2009.

[14] Nikolaos Spanoudakis. “The Agent Systems Engineering Methodology
(ASEME)”. PhD thesis. Paris Descartes University, 2009.

[15] Nikolaos Spanoudakis and Pavlos Moraitis. “Agent Systems Engineer-
ing Methodology: The Development Process”. In: VI Agent-Oriented
Software Engineering Technical Forum, Bath, UK, December 17. 2008.
url: http://www.pa.icar.cnr.it/cossentino/AOSETF08/docs/
AOSE_TF_08_SpanoudakisMoraitis.pdf.

[16] Nikolaos Spanoudakis and Pavlos Moraitis. “The Agent Modeling Lan-
guage (AMOLA)”. In: Artificial Intelligence: Methodology, Systems,
and Applications: 13th International Conference, AIMSA 2008, Varna,
Bulgaria, September 4-6, 2008. Proceedings. Ed. by Danail Dochev,
Marco Pistore, and Paolo Traverso. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 32–44. isbn: 978-3-540-85776-1. doi: 10.1007/
978-3-540-85776-1_4. url: https://doi.org/10.1007/978-3-
540-85776-1_4.

76

http://dx.doi.org/10.1007/978-3-662-44654-6_18
http://dx.doi.org/10.1007/978-3-662-44654-6_18
http://dx.doi.org/10.1007/978-3-662-44654-6_18
http://dx.doi.org/10.1007/978-3-642-21732-6_11
https://doi.org/10.1007/978-3-642-21732-6_11
https://doi.org/10.1007/978-3-642-21732-6_11
http://www.pa.icar.cnr.it/cossentino/AOSETF08/docs/AOSE_TF_08_SpanoudakisMoraitis.pdf
http://www.pa.icar.cnr.it/cossentino/AOSETF08/docs/AOSE_TF_08_SpanoudakisMoraitis.pdf
http://dx.doi.org/10.1007/978-3-540-85776-1_4
http://dx.doi.org/10.1007/978-3-540-85776-1_4
https://doi.org/10.1007/978-3-540-85776-1_4
https://doi.org/10.1007/978-3-540-85776-1_4

[17] Nikolaos Spanoudakis and Pavlos Moraitis. “Using ASEME Methodol-
ogy for Model-Driven Agent Systems Development”. In: Agent-Oriented
Software Engineering XI: 11th International Workshop, AOSE 2010,
Toronto, Canada, May 10-11, 2010, Revised Selected Papers. Ed. by
Danny Weyns and Marie-Pierre Gleizes. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 106–127. isbn: 978-3-642-22636-6. doi:
10.1007/978-3-642-22636-6_7. url: http://dx.doi.org/10.
1007/978-3-642-22636-6_7.

[18] Arnon Sturm and Onn Shehory. “The Landscape of Agent-Oriented
Methodologies”. In: Agent-Oriented Software Engineering: Reflections
on Architectures, Methodologies, Languages, and Frameworks. Ed. by
Onn Shehory and Arnon Sturm. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 137–154. isbn: 978-3-642-54432-3. doi: 10.1007/
978-3-642-54432-3_7. url: https://doi.org/10.1007/978-3-
642-54432-3_7.

[19] Gabriele Taentzer et al. “Generating Domain-Specific Model Editors
with Complex Editing Commands”. In: Applications of Graph Trans-
formations with Industrial Relevance: Third International Symposium,
AGTIVE 2007, Kassel, Germany, October 10-12, 2007, Revised Se-
lected and Invited Papers. Ed. by Andy Schürr, Manfred Nagl, and
Albert Zündorf. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 98–103. isbn: 978-3-540-89020-1. doi: 10 . 1007 / 978 - 3 - 540 -

89020-1_8. url: https://doi.org/10.1007/978-3-540-89020-1_8.

[20] Angeliki Topalidou-Kyniazopoulou. “A CASE (Computer-Aided Soft-
ware Engineering) tool for robot-team behavior-control development”.
Technical University of Crete, 2012.

[21] Angeliki Topalidou-Kyniazopoulou, Nikolaos I. Spanoudakis, and Michail
G. Lagoudakis. “A CASE Tool for Robot Behavior Development”. In:
RoboCup 2012: Robot Soccer World Cup XVI. Ed. by Xiaoping Chen
et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 225–
236. isbn: 978-3-642-39250-4. doi: 10.1007/978-3-642-39250-4_21.
url: http://dx.doi.org/10.1007/978-3-642-39250-4_21.

[22] Michael Wooldridge. An Introduction to MultiAgent Systems. 2nd. Wi-
ley Publishing, 2009. isbn: 0470519460, 9780470519462.

77

http://dx.doi.org/10.1007/978-3-642-22636-6_7
http://dx.doi.org/10.1007/978-3-642-22636-6_7
http://dx.doi.org/10.1007/978-3-642-22636-6_7
http://dx.doi.org/10.1007/978-3-642-54432-3_7
http://dx.doi.org/10.1007/978-3-642-54432-3_7
https://doi.org/10.1007/978-3-642-54432-3_7
https://doi.org/10.1007/978-3-642-54432-3_7
http://dx.doi.org/10.1007/978-3-540-89020-1_8
http://dx.doi.org/10.1007/978-3-540-89020-1_8
https://doi.org/10.1007/978-3-540-89020-1_8
http://dx.doi.org/10.1007/978-3-642-39250-4_21
http://dx.doi.org/10.1007/978-3-642-39250-4_21

[23] Michael Wooldridge and Nicholas R. Jennings. “Intelligent Agents:
Theory and Practice”. In: Knowledge Engineering Review 10 (1995),
pp. 115–152.

78

	Introduction
	Problem Statement
	Thesis Outline

	Background
	Agent Oriented Software Engineering
	Model Driven Engineering
	Metamodeling and Models Transformation
	Eclipse Modeling Project
	Eclipse Rich Client Platform
	The Xpand Language
	Java Agent Development Framework
	The ASEME Methodology
	ASEME process overview
	The AMOLA metamodels
	The ASEME Model-Driven Process

	BPMN/XPDL
	BPMN
	XPDL

	ASEME IDE Implementation
	Dashboard
	Dashboard layout
	Dashboard architecture
	Benefits

	Metamodels and Editors
	SUC
	AIP
	SRM
	Editors modifications
	SUC Editor
	AIP Editor modifications
	SRM Editor
	Statechart Editor

	Integration of existing tools/ Functionality extensions
	Replacing IAC with Statechart
	Importing the SRM2BMPN and XPDL tool
	IAC to GG
	Transformations refinements
	SRM to IAC import EAC
	Abstract Role/Protocol support
	Transition to Eclipse Mars Environment / Update Site

	Interfaces
	Add new model / editor
	Add new transformation

	An example of the ASEME modeling process
	A negotiation Agent
	Requirements Analysis
	Analysis
	Design
	Implementation-code generation
	Important Notes

	Conclusion
	Discussion
	Future work
	Lessons learned

