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Abstract

The current diploma thesis project focuses in utilizing the ECLIPSE reservoir simulation software to

optimize the well placement processes in a given reservoir and the history matching processes of the

simulation model data with the history data that accompany the simulation model. The optimization

processes mentioned above will be conducted on the simulation model built for a block that is part of

Gullfaks reservoir in the North Sea, Norway.

PlanOpt and SimOpt are modules of ECLIPSE reservoir simulation software, PlanOpt is used to optimize

the well placement processes and SimOpt is used to optimize the history matching processes of the

simulation model data with the history data that accompany the simulation model.

As far as well placement optimization is concerned, the already existing production wells of the simulation

model will be discarded and by utilizing the well placement optimization software, PlanOpt, a less or

equal number of production wells will be placed on the simulation model and will be scheduled to operate

for the same simulation period that the initial simulation model is operating, aiming �nally to achieve

equal or higher cumulative oil production than the initial simulation model at the end of the simulation

period.

SimOpt will be used to reduce the mismatch between the production data of the simulation model and

the real production data that were reported during the operation of the wells on the �eld. Several

reservoir parameters will be set to vary within a range and at the end of the optimization processes

SimOpt will calculate the values of the parameters chosen which produce the least possible mismatch

between the real production data and the data resulted from the simulation model. Since there are

di�erent types production data that are going to be matched, a study will be conducted of whether the

type of production data which are going to be matched in each di�erent simulation run of SimOpt, a�ect

the resulted matching at the end of each optimization run.
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Chapter 1

Reservoir Simulation Software

The current diploma thesis utilizes Schlumberger ECLIPSE Reservoir Simulation Software 2010.1 version

[1]. The software features which were used are:

� ECLIPSE 100, a black-oil reservoir simulator

� FloViz, a 3D visualization tool used to display reservoir simulation model data

� PlanOpt, a well placement tool assisting in choosing the locations of vertical production wells [2]

� SimOpt, an interactive computer program assisting in history matching between ECLIPSE

simulation model and the corresponding observed data [3]

The equations incorporated by the reservoir simulation software will be described in the sections below.

1.1 Formulation of the Equations of ECLIPSE 100 Reservoir

Simulator

As mentioned above, ECLIPSE 100 is a black-oil reservoir simulator that recognizes three phases, can

model reservoirs in three dimensions, incorporates equations in fully-implicit approach allowing the option

of having large time steps during the simulation period [4].

1.1.1 Description of Equations

Rfl is the non-linear residual for each �uid component in each cell at each time step.

Rfl =
dM

dt
+ F +Q (1.1)

where

dM : is the mass -per unit surface density- accumulated during the current time step dt

F : is the net �ow rate into neighboring grid blocks

Q : is the net �ow rate into wells during the time step

13



1.1. FORMULATION OF THE EQUATIONS OF ECLIPSE 100 RESERVOIR SIMULATOR

The non-linear residual, Rfl, is de�ned for each grid block and each �uid in the study. In the black-oil

model case the �uids are oil, water and gas.

1.1.2 Variable Set

A set of solution variables is required in order to solve the residual equation. Furthermore, to utilize

Newton's Method it is required that the number of independent variables should be equal to the number

of residual conditions.

For a three phase black-oil study (oil, water, gas), the primary solution variables X are pressure P and

two saturation variables. Water saturation Sw and either Sg, Rs or Rv are chosen to complete the set of

primary solution variable set. The residual R and the solution X are three component vectors in each

cell.

R =

2
64Ro

Rw

Rg

3
75 ; X =

2
64 Po

Sw

Sg or Rs or Rv

3
75 (1.2)

Jacobian J =
dR

dX
has the form shown below:

J =
dRi

dXj
=

2
66666666664

dRo

dPo

dRo

dSw

dRo

dSg

dRw

dPo

dRw

dSw

dRw

dSg

dRg

dPo

dRg

dSw

dRg

dSg

3
77777777775

(1.3)

The mass change during each time step dt is then proportional to the quantity dM = dM�2:5
t+�t � dMt,

with:

M = PV

2
66666666664

So
Bo

+
RvSg
Bg

Sw
Bw

Sg
Bg

+
RsSo
Bo

3
77777777775

(1.4)

where

PV : is the pore volume

Bo;w;g : are the oil, water, gas formation volume factors

Rs : is the solution gas/oil ratio

Rv : is the vapor oil/gas ratio

Based on the type of the reservoir (gas or oil) there are two options for the solution variables. While the

reservoir oil remains under-saturated (Sg = 0), then solution variable becomes Rs and while the reservoir

gas remains under-saturated (So = 0), then solution variable becomes Rv. As a result Jacobian is also

14



CHAPTER 1. RESERVOIR SIMULATION SOFTWARE

adjusted in accordance with the change of variable. Finally, no approximation is being carried out while

calculating Jacobian in order to ensure the quadratic convergence of the Newton's Method.

The hydrocarbon states are:

� State 1: Gas only (Rs = 0, Sg = 1� Sw),

Variables: Po, Sw, Rv

� State 2: Gas and oil (Rv = Rv;sat, Rs = Rs;sat),

Variables: Po, Sw, Sg

� State 3: Oil only (Rv = 0, Sg = 0),

Variables: Po, Sw, Rs

ECLIPSE 100 treats a cell that is almost full of water as being in state 2. Therefore the solution variable

is by default (Rs = Rs;sat). However, if a transition occurs in the cell to state 3 (in�ux of under-saturated

oil) then the Rs value is limited not to exceed the average GOR of in�ow from neighboring cells as this

will be a better estimate than Rs;sat.

In order to solve the non-linear residual equations R(X) = 0, Newton's method is being used. It might

require several iterations until the residuals are reduced to a su�cient small value. In ECLIPSE 100 there

are two measures which are used in order to de�ne the above mentioned su�cient small value : material

balance error and maximum saturation normalized residual.

Material Balance Error

When residuals are summed over all grid cells in the reservoir, the �ow term is canceled since the �ow

out of one grid cell is always equal and opposite in sign to the corresponding �ow into its neighboring

grid cells. As a result, the sum of the residuals for each phase corresponds to the net mass accumulation

within the reservoir less the net in�ux through the wells. This is the material balance error and its

equations are presented below for a three phase system:

X
i

(Ro)i =
X
i

�
dMo

dt

�
i

+
X
i

(Qo)i

X
i

(Rw)i =
X
i

�
dMw

dt

�
i

+
X
i

(Qw)i

X
i

(Rg)i =
X
i

�
dMg

dt

�
i

+
X
i

(Qg)i

(1.5)

whereX
i

: is the sum over all reservoir grid blocks

(Ro;w;g)i : are the oil, water, gas residuals in grid block i

In ECLIPSE 100 the material balance errors are converted to meaningful, problem independent numbers

by scaling to equivalent �eld saturation values as shown in the equation below:

15



1.1. FORMULATION OF THE EQUATIONS OF ECLIPSE 100 RESERVOIR SIMULATOR

MBo = Bodt

("X
i

(Ro)i

#,"X
i

(PV )i

#)

MBw = Bwdt

("X
i

(Rw)i

#,"X
i

(PV )i

#)

MBg = Bgdt

("X
i

(Rg)i

#,"X
i

(PV )i

#)
(1.6)

where

Bo;w;g : are the average oil, water, gas formation volume factors

MBo;w;g are computed for each Newton iteration and the material balance errors are considered to be

su�cient small if they are less than 10�7.

Maximum Saturation Normalized Residual

Apart from the material balance error that should be small as stated in the section above, another test

is required in order to have a su�ciently rigorous test of convergence. The second test is obtained by

computing the maximum saturation normalized residuals as shown below:

CNVo = BodtMAXi

����� (Ro)i
(PV )i

�����

CNVw = BwdtMAXi

����� (Rw)i
(PV )i

�����

CNVg = BgdtMAXi

����� (Rg)i
(PV )i

�����

(1.7)

where

MAXi : is the maximum value over all grid blocks of the reservoir

By converting each convergence error to an equivalent saturation value, CNV numbers (which are

considered to have converged when their values are less than 0:001) are being attached with sensible

limits.

1.1.3 Flow

The �owrate into cell i from a neighboring cell n, Fni is:

Fni = Tni

2
66666666664

kro
Bo�o

0
Rvkrg
Bg�g

0
krw
Bw�w

0

Rskro
Bo�o

0
krg
Bg�g

3
77777777775
u

x

2
6666664

dPoni

dPwni

dPgni

3
7777775

(1.8)

16



CHAPTER 1. RESERVOIR SIMULATION SOFTWARE

where

dPoni = Pon � Poi � %oniG(Dn �Di)

dPwni = Pwn � Pwi � %wniG(Dn �Di)

= Pon � Poi � %wniG(Dn �Di)� Pcown + Pcowi

dPgni = Pgn � Pgi � %gniG(Dn �Di)

= Pon � Poi � %gniG(Dn �Di) + Pcogn � Pcogi

Tni : is the transmissibility between cell n and i

kr : is the relative permeability of each phase

� : is the viscosity of each phase

dP : is the potential di�erence of each phase

% : is the �uid density

G : is the gravity acceleration

D : is the cell center depth

The subscript u denotes that each �uid mobility is to be evaluated in the upstream cell (cell n if dPni is

positive). The upstream calculation applies separately for each equation (oil, water,gas) so that e.g. oil

may �ow from cell i to cell n while water from cell n to cell i.

The net �owrate from cell i into neighboring cells is:

Fi =
X
n

Fni (1.9)

The rate of �ow into a production well from cell i is:

Qi = �Twi (Poi �Hiw � Pbh)

2
66666666664

kro
Bo�o

+
Rvkrg
Bg�g

krw
Bw�w

krg
Bg�g

+
Rskro
Bo�o

3
77777777775
i

(1.10)

where

Twi : is the well connection transmissibility factor

H : is the hydrostatic head correction

Pbh : is the bottom hole pressure

1.1.4 Reservoir Densities

In the black oil case, reservoir densities (%) of oil and gas are computed from surface densities (%s) using:

17



1.1. FORMULATION OF THE EQUATIONS OF ECLIPSE 100 RESERVOIR SIMULATOR

%o = (%so + CRs%sg) =Bo

%g = (C%sg +Rv%so) =Bg

(1.11)

with C = 1 for metric and lab units and C = 178:1076 for �eld units.

The reservoir density at the interface between cells n and i is computed as the average of the reservoir

densities in cells i and n:

%oni = (%on + %oi) =2

%gni = (%gn + %gi) =2

(1.12)

1.1.5 Newton Iterations of the Non-Linear Residual

Given the non-linear residual R = Rfl and the solution variables X, the equation that is needed to be

solved is Rfl (X) = 0. In each iteration of the non-linear equations the sequence of operations is:

1. Given the solution X, R (X) is obtained, then a correction �x have to be found such that

R (X +�x)�R (X) + J�x = 0, where J is the Jacobian
d

dX
R (X)

2. For �x to be calculated, the linear equation J�x = R (X)() �x = J�1R (X) needs to be solved

3. Update the solution vector, X ! X +�x. If some measure of convergence has been achieved then

the equation is considered solved, else proceed to the next iteration until convergence is achieved

In the fully implicit case the equations above may be solved for X, using the linear solver to give:

�x = J�1R0
fl (1.13)

The diagonal and band terms of J�1 for a three phase oil, water, gas system are presented below:

J 0D =

Water

Oil

Gas

P

2
6666664

x

x

x

Sw

x

0

0

X3

0

x

x

3
7777775
; J 0B =

Water

Oil

Gas

P

2
6666664

x

x

x

Sw

0

0

0

X3

0

0

0

3
7777775

(1.14)
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CHAPTER 1. RESERVOIR SIMULATION SOFTWARE

1.2 Solution of the System of Linear Equations

By utilizing Newton's method the complex non-linear residual equations can be solved with an iterative

way which only needs the solution of systems of linear equations [5]. The linear equations are also solved

iteratively using Orthomin [6]. Orthomin is a linear solver preconditioned by nested factorization. At

each iteration Orthomin minimizes the sum of the squares of the residuals by orthogonalizing each new

search direction to the existing search directions. To carry out these orthogonalizations, each search

direction must be stored. Usually, only the last few search directions are restricted. The number of

stored search directions should be less or equal to the total number of linear iterations. Each search

direction consists of pressures, saturations and residuals for each cell in an ECLIPSE 100 black-oil run

which means that 6 double-precision numbers will be stored per cell for a three phase black oil run.

Material Balance

At each Newton iteration the equation Ax = b needs to be solved, where A is the Jacobian matrix

�
dR

dX

�
and b is the non-linear residual of the prior Newton iteration:

b = R =
dM

dt
+ F +Q (1.15)

If the elements of b are summed over all cells in the reservoir then the �ow terms, F , will cancel and the

sum corresponds to the rate of mass accumulation in the reservoir. ECLIPSE 100 computes an initial

approximate solution, y, by solving an approximate equation, By = b. The material balance error (the

error in the mass accumulation rate) corresponding to y is obtained by summing the elements of the

residual r:

r = b� Ay = (B � A) y; sum =

n cellsX
i=1

ri (1.16)

This sum is zero if B is chosen such that colsum (B) = colsum (A), where colsum (A) is the diagonal

matrix formed by summing A in columns.

The above colsum constraint is obeyed independently for each component by ECLIPSE 100. The colsum

constraint is appropriate to obtain fast convergence for fully implicit black-oil cases because of the material

balance constraint.

1.2.1 Nested Factorization Preconditioning

A simple 3x2x3 grid is used as an example as shown on the �gure presented below:

19



1.2. SOLUTION OF THE SYSTEM OF LINEAR EQUATIONS

Figure 1.1: Mesh box of a 3x2x3 grid

where

Ni = 3 : is the number of grid blocks in the x direction

Nj = 2 : is the number of grid blocks in the y direction

Nk = 3 : is the number of grid blocks in the z direction

The structure of the Jacobian matrix for the 3x2x3 problem above is shown below:

A =

2
6666666666666666666666666666666664

D U1 0 U2 0 0 U3 0 0 0 0 0 0 0 0 0 0 0

L1 D U1 0 U2 0 0 U3 0 0 0 0 0 0 0 0 0 0

0 L1 D 0 0 U2 0 0 U3 0 0 0 0 0 0 0 0 0

L2 0 0 D U1 0 0 0 0 U3 0 0 0 0 0 0 0 0

0 L2 0 L1 D U1 0 0 0 0 U3 0 0 0 0 0 0 0

0 0 L2 0 L1 D 0 0 0 0 0 U3 0 0 0 0 0 0

L3 0 0 0 0 0 D U1 0 U2 0 0 U3 0 0 0 0 0

0 L3 0 0 0 0 L1 D U1 0 U2 0 0 U3 0 0 0 0

0 0 L3 0 0 0 0 L1 D U1 0 U2 0 0 U3 0 0 0

0 0 0 L3 0 0 L2 0 L1 D U1 0 0 0 0 U3 0 0

0 0 0 0 L3 0 0 L2 0 L1 D U1 0 0 0 0 U3 0

0 0 0 0 0 L3 0 0 L2 0 L1 D 0 0 0 0 0 U3

0 0 0 0 0 0 L3 0 0 0 0 0 D U1 0 U2 0 0

0 0 0 0 0 0 0 L3 0 0 0 0 L1 D U1 0 U2 0

0 0 0 0 0 0 0 0 L3 0 0 0 0 L1 D 0 0 U2

0 0 0 0 0 0 0 0 0 L3 0 0 L2 0 0 D U1 0

0 0 0 0 0 0 0 0 0 0 L3 0 0 L2 0 L1 D U1

0 0 0 0 0 0 0 0 0 0 0 L3 0 0 L2 0 L1 D

3
7777777777777777777777777777777775

(1.17)

ECLIPSE 100 chooses direction 1 automatically to correspond to the direction of highest transmissibility

(usually the Z-direction). Thus, L1, U1 usually correspond to derivatives of �ow between cells in the

Z-direction.

Three dimensional �nite di�erence systems give rise to sparse linear equations with banded matrices,

such as:

20



CHAPTER 1. RESERVOIR SIMULATION SOFTWARE

A = D + L1 + U1 + L2 + U2 + L3 + U3 (1.18)

where

D : is a diagonal matrix

L1; L2; L3 : are the lower bands

U1; U2; U3 : are the upper bands

The elements of D, U1, U2, U3, L1, L2, L3 are 2x2 matrices for implicit two-phase systems (oil/water,

oil/gas, gas/water) and 3x3 matries for implicit three-phase systems.

L2 and U2 connect cells in the second direction and the third direction is connected with the help of L3

and U3. In nested factorization [7], an approximation, B, is constructed by the following nested sequence

of factorizations:

B = (P + L3)P�1 (P + U3) = P + L3 + U3 + L3P�1U3

B = (T + L2)T�1 (T + U2) = T + L2 + U2 + L2T�1U2

B = (G+ L1)G�1 (G+ U1) = G+ L1 + U1 + L1G�1U1

(1.19)

where

G : is a diagonal matrix

P�1 : is the inverse of P

T�1 : is the inverse of T

G�1 : is the inverse of G

It follows that:

B = G+ L1 + U1 + L2 + U2 + L3 + U3 + L1G�1U1 + L2T�1U2 + L3P�1U3

= A+G�D + L1G�1U1 + L2T�1U2 + L3P�1U3

(1.20)

The diagonal matrix is computed using:

0 = G�D + L1G�1U1 + colsum
�
L2T�1U2 + L3P�1U3

�
(1.21)

This choice of G ensures that colsum (B) = colsum (A) which, in turn, ensures that there are no material

balance errors in the solution of the linear equation.

O�-band elements -not belonging on the above mentioned bands U1, U2, U3, L1, L2, L3 - which are

possibly corresponding to non-neighboring connections, arising in the treatment of faults, local grid

re�nement (LGR) or completing the circle in a three dimensional radial study, may destroy the simple

structure of the bands above. However, these o�-band elements can be easily incorporated in the nested

factorization procedure by simply generalizing the de�nition of the band.
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1.2.2 Initialization for Nested Factorization Preconditioning

Before iterations begins the diagonal matrix G must be computed. ECLIPSE 100 computes and stores

G�1 rather than G as this is more e�cient in subsequent calculations. To conserve material balance,

using the colsum variant on the preconditioner it holds:

G = D � L1G�1U1� colsum
�
L2T�1U2

�
� colsum

�
L3P�1U3

�
(1.22)

Calculation proceeds one cell at a time, thus:

1. when G�1 is known for a cell, then the contribution of L1G�1U1 to the value of G in the next cell

can be calculated

2. when G�1 is known for a line, then the contribution of L2T�1U2 to the value of G in the next line

can be calculated

3. when G is known for a plane, then the contribution of L3P�1U3 to the value of G in the next plane

can be calculated

1.2.3 Solution Procedure for Nested Factorization

To compute a new search direction ECLIPSE 100 solves the equation By = r by the following hierarchical

procedure. At the outermost level the equation below is solved:

(P + L3)
�
I + P�1U3

�
y = ry = P�1 (r � L3y) y = y � P�1U3y (1.23)

The equations above are solved one plane at a time, starting with the �rst plane and progressing forward

until y is known on each plane. The equation is explicit since the quantity L3y involves the known

solution, y, on the previous plane.

During the solution of the equation above z = P�1q must be computed on each plane. This involves

solving the equation below:

(T + L2)
�
I + T�1U2

�
z = qz = T�1 (q � L2z) z = z � T�1U2z (1.24)

The equations above are solved by sweeping backwards one line at a time.

Finally, during the solution of the equations above must be noted that the vector of the form w = T�1q

must be computed on each plane. This involves solving the tridiagonal equation below:

(G+ L1)
�
I +G�1U1

�
w = vw = G�1 (v � L1w)w = w �G�1U1w (1.25)

The equations above are solved by sweeping �rst forward, then backward through the cells in a line. This

may be solved as a block tridiagonal in the intermediate nesting if a method exists of inverting the line

tridiagonal equations.

1.2.4 Orthomin

The Orthomin procedure used by ECLIPSE 100 can be summarized in the steps below:
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1. Compute the initial solution: y = B�1b; x �! y

2. Compute the initial residual: r = b�Ay, (if the colsum constraint is used, the sum of the elements

of r is now zero)

3. Test for convergence and escape if converged else �nd a new search direction, y = B�1b

4. Orthogonalize  to the stack of previous search directions (z):

y = y �
(yz)

(zz) z
(1.26)

5. Find the optimum step length, s, which minimizes the saturation normalized sum of the squares

of the residuals (rr):

s =
(rq)

(qq)
(1.27)

q = Ay (1.28)

6. Update the solution (x �! x + sy), the residual (r �! r � sq) and the stack z = (z; y) (if not

converged, return to step 5

1.2.5 Convergence Criteria

The convergence criterion in ECLIPSE 100 is based on the maximum residuals for each phase. As noted

in section 1.1.2 these are normalized to represent e�ective saturation normalized residuals so that the

convergence criteria are physically meaningful in terms of saturation changes.

The Orthomin procedure is set to minimize the saturation normalized root mean square residuals.

Residual sums (material balance errors) should be zero to within rounding error, while absolute maximum

saturation normalized residual is used to test for convergence. The standard convergence criterion is that

the maximum saturation normalized residual, jrjmax, be less than 0:0001. Convergence is also assumed

if jrjmax is less than MIN (0:1jbjmax; 0:001rtop; 0:001). jbjmax is the largest saturation normalized input

residual and rtop is the greatest saturation normalized residual to occur at any stage of the procedure.

rtop may be much larger than jbjmax since the colsum constraint makes the initial residual quite large.

1.2.6 Treatment of Wells

The strongly coupled fully implicit treatment of wells in ECLIPSE 100 extends the linear equations to

include the well variables, w, corresponding to the bottom hole �owing pressure and wellbore fractions.

Thus, each well, like each cell, has three variables in the three phase case. Including the well terms, the

linear equations now become:

Ax+ Cw = r

Rx+Dw = u

(1.29)

where

u : is the well residuals

If there are N grid blocks and L wells then:
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A : is a band NxN matrix

C : is a sparse NxL matrix

R : is a sparse LxN matrix

D : is a sparse LxL matrix

Usually, D is lower triangular and easily inverted, allowing the well terms to be eliminated. Thus the

equation for x becomes:

�
A� CD�1R

�
x = r � CD�1u (1.30)

which is easily solved by preconditioned Orthomin.
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1.3 PlanOpt

PlanOpt is part of ECLIPSE reservoir simulation software which targets in assisting in choosing the

locations of vertical production wells. The vertical wells are completed in each column of cells that

satis�es speci�c criteria. After the ECLIPSE reservoir model is loaded in PlanOpt software several steps

should be followed in order to achieve the best well placement according to the speci�ed criteria and

constraints.

1.3.1 Phase 1

At �rst an initial distribution of vertical producing wells should be generated based on minimum exclusion

zones for pre-existing production and injection wells, mobile saturations of grid blocks, the existence of

other wells and layer or depth of the wells to be created. Based on these information PlanOpt conducts

a scan to determine qualifying grid blocks which hold true to the above restrictions. Finally, it is

important that the new wells created surely are not placed in the vicinity of pre-existing wells according

to the minimum exclusion zones that have been also prede�ned.

1.3.2 Phase 2 (Static Screening)

Phase 2 is an optional step very helpful though since it can aid in rejecting a lot of wells found during the

operations of phase 1 and so make the optimization procedure run for shorter period of time. PlanOpt

runs the simulation for a nominal period of time (e.g. 1 day) and so minimum and maximum values

for the PI, GOR, GLR, Water-cut, Kh and the number of open connections are calculated for the new

wells. Then user may specify the minimum and maximum allowable ranges for the above values resulting

in "screening" wells which do not comply with the allowable range that the user have de�ned.

Furthermore, it should be noted that when there are lots of wells next to each other, there might be

interference between them when simulating, causing chopping. By using the Well Distance option wells

are ranked based on PI, GOR, GLR, Water � cut, Kh and the number of open connections and then

disabled based on rank and the number of wells that happen to exist in the speci�c distance de�ned by

the user.

1.3.3 Optimization

The optimization phase of the PlanOpt software involves iteratively "screening" the well con�guration

according to results obtained from a full simulation run of the initial model together with the additional

constraints and limits that have been added by the user with thePlanOpt software. Screening operation

involves the ranking of all wells according to their value.

The equation below shows the objective function at the k0th iteration:

OF =
X
i

(ao�Qoi + ag�Qgi + aw�Qwi) = (1�DF )
j

(1.31)

where

i : is the number of cycles over the wells present at the current k0th iteration

ao;w;g : are the objective function coe�cients for oil, water and gas
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Qo;w;g : are the oil, water, gas production or WOPT for oil, WWPT for water and WGPT for gas for

well i over time

DF : is the discount factor

j : is the number of days since start to date divided by 365

The objective function equation can also be written in the form below:

OF =
WOPT

�
2nddate

�
�WOPT (Initial Date)

(1 +DF )
(] of days since start until 2nd date = 365)

+

+
WOPT

�
3rddate

�
�WOPT

�
2nddate

�
(1 +DF )

(] of days since start until 3rd date = 365)
+

+::::+
WOPT

�
N thdate

�
�WOPT

�
(N � 1)

th
date

�
(1 +DF )

(] of days since start until end date = 365)

(1.32)

where

WOPT (Initial Date) = 0

number of days of period k = number of days corresponding to time interval [Initial Date; k + 1date]

If DF = 0, then OF =WOPT (Last Date)

Finally, an alternative well objective function can be used as shown below:

(User OF ) =

(
b�

X
i

h
O:F: (i)

i)
� (B �N) (1.33)

where

i : is the number of cycles over the wells present at the current k0th iteration

O:F: (i) : is the well (discounted) objective function as de�ned above for well i

b, B : are the user assigned coe�cients

N : is the number of wells present in the k0th iteration

Default values: b = 1 and B = 0

26



CHAPTER 1. RESERVOIR SIMULATION SOFTWARE

1.4 SimOpt

SimOpt is part of ECLIPSE reservoir simulation software which targets on aiding all aspects concerning

history matching processes. It incorporates the full �eld reservoir model together with observed data

collected during the actual operation of the reservoir through time. Since there might be a mismatch

between the observed and the simulation model data there is a need to modify several parameters of the

simulation model (porosity, permeability, transmissibility, etc) so that the simulation model data will

have a better match with the observed data. After the parameters are chosen the software operations

will indicate which of them will have the greatest impact on the matching process. Finally, when the

correct parameters are chosen as the software indicates a regression process will follow that will calculate

the values of the parameters with which the best possible matching occurs. The basic work �ow and

operations of the software is described below.

1.4.1 Observed Data, Prior Information and Objective Function

Observed Data

The observed data are split into two categories the observed production data (bottom hole pressure, �uid

production rates, etc) and survey production data (�uid saturations or acoustic impedance to pressure

waves etc).

The observed data are of the form of measurement data sets which also should be accompanied with

their corresponding measurement error values. If speci�c data sets are deemed to be of more importance

then weight factors can be assigned to the whole data set so that during the matching process will have

a more precise match.

The simulated and observed data are compared point to point so in the case that no simulated value

exists for an observed data time, a linear interpolation is conducted.

Prior Information

Based on geological surveys that might be conducted, several statistical information are collected

through the life span of the reservoir. So the parameters that are chosen to vary during matching

should acquire values that are reasonable and consistent. The prior information is a measure of the

uncertainty of reservoir parameters and speci�es how parameter modi�ers are expected to vary. During

the regression process prior information is used to normalize the parameter modi�er which leads to

improved convergence and �nally is used to modify the objective function so that the parameter modi�ers

try to match the statistical information as well as the observed data.

There are two types of distributions:

� Normal: Allows small range of variations

� Log-Normal: Variation with order of magnitude

A mean value of 1 for normal distribution or 0 for log-normal distribution for parameter modi�er indicates

that the imported simulation model is treated as the most likely value of the parameter modi�er value.

Any changes away from the imported model will be penalized by the prior term in the objective function.

Standard deviation of a parameter modi�er distribution indicates the amount of variation away from the

mean value in the parameter modi�er.
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Prior weight is given to each property parameter modi�ed in the prior term of the objective function. By

default the prior weights are 0 meaning that there is no contribution from the prior term in the objective

function.

The normalization of a parameter modi�er re�ects the mean value and amount of variation expected in

the modi�er and depends on the distribution type.

� Normal: r =
�� �

�

� Log-Normal: r =
log10 (�)� �

�

where

�, � : are the value and mean value of the parameter modi�er distribution respectively

� : is the standard deviation of the parameter modi�er distribution

Objective Function

The objective function which have to be minimized to achieve the matching between the observed and

the simulation model production data is presented below:

f =
�

2
r
T
r +

�

2
s
TC�1

s s + fprior (1.34)

where

�, �,  : are the overall weights for production, survey and prior terms

r : is the vector of residuals for the observed production data

s : is the vector of residuals for the observed survey data

Cs : is the matrix of correlation between observed survey data residuals

fprior : is the objective function for the prior term

fprior =
1

2
v
TBTC�1

priorBv (1.35)

where

v : is the vector of normalized parameter modi�ers

B : is the diagonal matrix of parameter modi�er prior weights

Cprior : is the parameter modi�er prior correlation matrix

subscript T denotes the transpose of the matrix or vector

Each element, ri, in the vector of residuals for the observed production data is the normalized and

weighted di�erence between an observed production value and the corresponding simulated value. The

equation is shown below:

ri = wdwi
(oi � ci)

�d
(1.36)
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where

d : references one set of observed production data of a given type, at a given well or group of connection

i : references an individual data point in the d0th item of observed production data

oi and ci : are the observed and calculated (that is simulation) production values respectively

�d : is the measurement error for the d0th production data set

wd : is an overall weighting for the d0th production data set

wi : is a weighting for the i0th production data point

As mentioned in the beginning of the section the weighting factors may be used to "�lter out" bad or

unreliable production data, and/or reduce the importance of suspect measurements. Di�erent values of

wd can be used to express particular interest in certain production data sets, while zero or low values of

wi can be used to indicate a low level of con�dence in production data at a given time.

In the formulation of the production term in the objective function, there is an inherent assumption

that there is no correlation between the production residuals. Studies have shown, that the temporal

correlation length for typical production data is less than a month, while this data is usually speci�ed

at monthly intervals meaning that this assumption is reasonable. However, it is important that when

preparing history match data the sampling frequency should be longer than the correlation length.

Each element, si, in the vector of residuals for the observed survey data is the normalized and weighted

di�erence between an observed survey value and the corresponding simulated value. The equation is

shown below:

si = wd
(oi � ci)

�i
(1.37)

where

d : references one set of observed survey data of a given type at a given time

i : references an individual grid block data point in the d0th item of observed survey data

oi and ci : are the observed and calculated (that is simulation) survey values respectively

�i : is the square root of the variance associated with the observed survey residual value (the error in the

observed survey value)

wd : is an overall weighting for the d0th data set

It is quite common for the information contained in the observed survey residuals to have correlation

lengths that are greater than the size of the simulation model grid blocks. Hence it is necessary to specify

the correlation between the observed survey residuals in order to ensure that the correct weighting is

applied within each observed survey data set. In SimOpt Software this is done by specifying a correlation

model and correlation lengths (Lx, Ly and Lz) for each observed survey data set.

There are three correlation models available sin SimOpt:

1. No correlation - in which the correlation matrix is simply the identity matrix

2. Exponential correlation - in which the correlation matrix entries are given by:

Cs;ij = e�3h (1.38)
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3. Spherical correlation - in which the correlation matrix entries are given by:

Cs;ij = 1�
3h

2
+
h3

2
(h � 1) ; Cs;ij = 0 (h > 1) (1.39)

where, for both the exponential and the spherical correlation models,

h =

s�
�xij
Lx

�2

+

�
�yij
Ly

�2

+

�
�zij
Lz

�2

(1.40)

and �xij , �yij and �zij are the distances between the ith and the jth grid blocks in the x, y and z

directions respectively.

As there may be a large number of observed grid block survey values, the correlation matrix can be very

large and it would take too much space to store. Hence, a correlation cut-o� value can be speci�ed. If a

value generated by the exponential or spherical models is below this cut-o�, then it is treated as zero.

1.4.2 Gradients and RMS

Gradients

First derivative of the objective function:

rf = � (rr)
T
r + � (rs)

T
C�1
s s +rfprior

[rr ]ij =
dri
dvj

= �
wdwi

�d

�
dci
dvi

�
; [rs]ij =

dsi
dvj

= �
wd

�i

�
dci
dvi

� (1.41)

Second derivative of the objective function:

r2f = �
h�
r2

r

�T
r + (rr)

T
(rr)

i
+ �

h�
r2

s

�T
C�1
s s + (rs)

T
C�1
s (rs)

i
+ r2fprior (1.42)

According to the Gauss-Newton approximation the terms involving second derivatives of the simulated

values can be ignored since their values are very small compared to the �rst term. Also it is pre-multiplied

by the residual term which is small near the solution although the approximation is used even when away

from the solution.

So, the equation above can be written also:

r2f ' � (rr)
T
(rr) + � (rs)

T
C�1
s (rs) + r2fprior (1.43)

It is important to note that the �rst and second derivative of the objective function can be generated

using only the �rst derivatives of the simulated quantity with respect to the parameter.

RMS Values

The overall measure of a history matching process is expressed as a Root Mean Square (RMS) index

which provides an average value of the deviation between simulated and observed data:
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RMS =

r
2f

m
(1.44)

where

f : is the objective function

m : is the total number of observations over which the index is formed and consists of:

� data points in active observed production data that have non-zero point weight wi

� active observed survey data points

� active prior terms (parameters with non-zero prior weight speci�ed

RMS index is also calculated for each di�erent group/well/connection/survey data set separately.

RMS Sensitivities

The partial derivatives of the RMS with respect to each of the parameters modi�ers are called RMS

sensitivities which are indication of the most sensitive parameters for the history matching.

r (RMS) =
rf

m�RMS
(1.45)

with respect to normalized or un-normalized parameters.

1.4.3 Prior Regression Operations

Before running the Regression Mode of SimOpt which will modify the chosen parameters in order to

achieve the best possible match between observed and simulation model data, Evaluation Mode or

Base Run and Gradient Mode can be utilized. These modes can be used -after choosing the reservoir

parameters- to clarify whether a reservoir parameter that is chosen to vary will have high or negligible

impact on the matching process during the operations of regression mode.

Evaluation Mode

After running the Evaluation Mode, the RMS between observed and simulated model data is calculated.

The RMS tables that are produced point the sensitivity of changing the parameters on the RMS matching.

Depending on the mismatches, parameters should be chosen to be change and improve the match. The

parameters chosen will a�ect the simulated values meaning that the magnitude and the sense of change

should comply with the geological information that exist for the reservoir. Finally, it is common that

parameters may exist that will produce similar e�ects or act on the opposite direction with each other

or even be totally dependent.

Gradient Mode

During the operations of the Gradient Mode each of the parameters chosen will change at a time so that

the gradient of required simulation value with respect to each parameter is calculated. The calculated

gradients are in fact the sensitivities of the RMS to changes in each of the parameters which will aid in
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determining the order of magnitude of the modi�er of each parameter. In order to achieve the best quality

of the Regression Mode (fast and �rm convergence), it is also extremely important to chose parameters

which are either uncorrelated with each other or have no contradictions. With the aid of the gradients

that were calculated Hessian matrix, Covariance Matrix and Correlation Matrix are produced.

Hessian Matrix

The Hessian matrix elements are the second derivatives of the objective function with respect to the

parameters that have been chosen, see equation (1.42). Hessian matrix aids to examine the conditioning

of the regression problem.

It is preferable to have a Hessian matrix whose diagonal elements dominate and are roughly equal in size.

SimOpt measures the quality of each parameter's row/column with:

� Diagonal dominance

P
i 6=j

��Hij

��
Hii

(1.46)

� Normalized maximum o�-diagonal

max(i6=j)

��Hij

��
Hii

(1.47)

where��Hij

�� : is the element of the i0th row and j0th column corresponding to the second derivative of the

objective function with respect to parameter i and j

Parameters with small values of the measurements above will perform better during regression. An

ill-conditioned Hessianmatrix may result in slow convergence of regression procedure and should remedied

by removing redundant parameters and reducing interdependence between parameters as will be discussed

below.

Covariance Matrix

The parameter Covariance matrix is calculated as the inverse of the Hessian matrix and may be utilized

to determine how well determined are the parameters for the current match.

The diagonal elements of the matrix are, approximately, the parameter variances. The parameter

variances are the square of the standard deviation of the parameter value probability distribution function.

Larger variances are associated with less well-determined parameters. The o�-diagonal elements represent

the parameter covariances. These can be loosely considered as a measure of how well one known given

that the others were known exactly.

Correlation Matrix

The parameter correlation matrix is calculated from the covariance matrix as shown below:

Correlation (i; j) =
Covariance (i; j)p

Covariance (i; i)� Covariance (j; j)
(1.48)
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The matrix above indicates the degree of association between changes in one parameter i with changes

in another parameter j. Correlation values range from �1 to +1. A value of zero indicates that the e�ect

on the history match of changing one of the parameters does not interfere with the e�ect on the history

match of changing the other meaning that they are independent of one another.

The correlation of a parameter with itself is clearly always+1 and so the leading diagonal of the correlation

matrix is alsways �lled with values of +1.

In general, the correlation between pairs of parameters is not �1, +1 or zero, but some values in between.

Regression operations work best when the parameters are independent. When designing a set of

parameters for regression operations it is useful then to perform a run with the Gradient Mode �rst

to ensure that the correlations between parameters are not too strong (that is close to +1 or �1).

Redundant Parameters

There are two types of redundant parameters:

1. Parameters whose gradients are identical. Such parameters will lead to a Hessian matrix that is

non-invertible (no correlation matrix)

2. Parameters whose gradients are exactly opposite will have the same e�ect on Hessian matrix like

above making it non-invertible

If during the operations above redundant parameters appear, either one of the parameters have to be

rejected or set to semi-active mode meaning that it will not contribute during the operations of the

Regression Mode.

Interdependent Parameters

There are two types of interdependent parameters:

1. Strongly anti-correlated parameters: Two parameters with similar gradients leading to a correlation

matrix entry for these parameters close to �1. E�ect of increasing one parameter is canceled by

the e�ect of decreasing the other parameter. Such parameters can be merged to a single parameter

for regression to converge quicker

2. Strongly correlated parameters: Two parameters with almost similar gradients leading to a

correlation matrix entry for these parameters close to +1. E�ect of increasing one parameter

is canceled by the e�ect of increasing the other parameter. In such a case either reject one of the

parameters or make one parameter semi-active

When one parameter of a pair of redundant or strongly correlated parameters have to be rejected then in

order to chose which will be rejected the measurements of diagonal dominance or normalized maximum

o�-diagonal as discussed on chapter 1.4.3 can be used.

1.4.4 Regression Mode

During the operations of Regression mode the objective function that will have been formed based on

the parameters chosen, needs to be minimized in order to achieve the best possible match of observed

and simulation model data. There is a variety of regression algorithms which will optimize an objective

function like the equation (1.34).
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Levenberg-Marquardt Algorithm

SimOpt uses the Levenberg-Marquardt algorithm which is a combination of the Newton method and a

steepest descent scheme. Denoting the vector of current parameter normalized modi�er values as �k,

then the algorithm estimates the step, dvk (�), required to minimize the objective below:

dvk (�) = (H + �I)
�1
rf

�
�k
�

(1.49)

where

H : is the Hessian matrix of second derivatives of f

I : is the identity matrix

The parameter � is free and is varied so that, away from solution where the quadratic Newton model

may have less validity, it takes large values and so the bias of the step is towards the steepest descent

direction. Whilst near the solution, it takes small values to make the best possible use of the fast quadratic

convergence rate of the Newton step.

If the input data measurement errors are close to being normally distributed, the inverse of the Hessian

matrix approximates the parameter covariance matrix. This can be used to estimate the parameter

squared standard errors.

Model Trust Region

A re�nement on the Levenberg-Marquardt method used in the program is to vary not the parameter �,

but instead to vary the length of the step dvk and adjust � accordingly.

The degree of freedom thus becomes the size of the region in which the regression step is being constrained

and so can be set to re�ect the con�dence in the quadratic model's ability to represent the actual objective

function. This region is called the Model Trust Region and the allowable step length, the trust region

radius, TRR.

The following equations are used to determine the value of the parameter �. For:

������dvk (0)
������
2
� TRR �! � = 0 (1.50)

(i.e. a pure Gauss-Newton step), otherwise � is calculated so that,

������dvk (�)
������
2
= TRR (1.51)

The trust region radius is set to an initial conservative value at the start of a regression. This initial

trust region radius can be speci�ed manually or it can be calculated using the length of the Cauchy step

given by:

TTR0 =

������rfv0 (0) ������ 3

2

frf (v0)g
T
H frf (v0)g

(1.52)

The trust region radius is then updated, subject to preset upper and lower bounds, after each iteration

of the minimization procedure, according to the degree to which the change in the objective function was

correctly modeled.
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Chapter 2

Initial Model Production Data and

Details

The software packages of PlanOpt and SimOpt are going to be used in order to optimize the well

placement and achieve history matching on a reservoir block of Gullfaks. On this chapter basic

information about geometry, topology of existing producing and injecting wells, �eld data, well production

data of the simulation model and well production observed data are going to be presented.

By utilizing the FloViz package from ECLIPSE Reservoir Simulation software, 3D �gures of the reservoir

simulation model are going to be presented in order to understand and visualize the information

mentioned above.

2.1 Reservoir

The reservoir block that is incorporated in the current diploma thesis is part of the Gullfaks oil �eld

[8]. Gullfaks is an oil and gas �eld in the Norwegian sector of the North sea. It was discovered in 1978

in block 34=10 at a water depth range of 130 � 230 meters. The �rst production platform of Gullfaks

started producing in 1986. Two additional production platforms were built in 1988 and 1989.

The reservoir consists of delta sandstones from Middle Jurassic Brent Group, shallow-marine Lower

Jurassic Cook Formation sandstones and the �uvial-channel and delta-plain Lower Jurassic Statfjord

Formation.

2.2 Geometry

The simulation model of Gullfaks oil �eld block part is 20� 40� 13 grid blocks. The whole 130th layer

and several other grid cells in other layers of the reservoir were set as inactive since no contribution from

these regions is wanted on the speci�c block.

The �gure below shows the whole reservoir simulation model with both the active grid cells (red color)

and inactive grid cells (blue color):
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Figure 2.1: Gullfaks block 20� 40� 13 grid blocks simulation model

The depth range of the speci�c reservoir block part of Gullfaks is shown on the �gure below:

Figure 2.2: Gullfaks block depth of active grid cells in meters (m)

By looking on the �gure above it can be deducted that the shallowest part of the reservoir simulation

model is set at 1742:8meters below sea bottom, the deepest part at 1946:9meters below sea bottom

and so the maximum pay-zone thickness is 204:1meters.

2.3 Well Topology

The �gures below shows the injection and production wells topology of the simulation model.
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CHAPTER 2. INITIAL MODEL PRODUCTION DATA AND DETAILS

Figure 2.3: Gullfaks block well topology

Figure 2.4: Gullfaks block 120th layer well topology

Figure 2.5: Gullfaks block 30rd layer well topology
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2.4. FIELD DATA

There are �ve production wells completed on the reservoir:

� Well P-A1H : Vertical well with small deviations after the 40th completed connection. First

connection is completed at the 40th layer of the reservoir and last connection is completed at

the 120th layer of the reservoir

� Well P-A2AH : Vertical well. First connection at the 60th layer and last connection at the 120th

layer

� Well P-A17: Vertical well with small deviations after the 30rd completed connection. First

connection at the 50th layer and last connection at the 120th layer

� Well P-A35: Vertical well. First connection at the 30rd layer and last connection at the 120th layer

� Well P-A39A: Deviated-Horizontal well. First connections at the 100th layer and last connections

at the 120th layer

There are two injection wells completed on the reservoir:

� Well I-A5H : Vertical well. First connection at the 30rd layer and last connection at the 120th layer

� Well I-A38: Vertical/Horizontal well. First connection at the 30rd layer and last connection at the

120th layer. Well becomes horizontal at the 120th layer of the reservoir

Injection well I-H2 is not a real completed well. It simulates a water in�ux caused by an adjacent aquifer.

Production wells P-A35 and P-A17 are drilled through layers (70th and 80th) with grid cells that are

marked as inactive cells.

2.4 Field Data

Several important �eld data are presented on the �gures below:

Figure 2.6: Field cumulative oil/water production (Black/Blue curves, Right y-axis) and water

injection (Red curve, Left y-axis) over time
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After running the simulation of the initial model provided for the current diploma thesis the original oil

in place was measured to be 24:18� 106 sm3. The residual oil saturation of the reservoir model was set

at 20% meaning the original mobile oil in place of the reservoir is 19:344� 106 sm3.

The simulation model runs for a certain period of time (1stDecember 1986 until 1stNovember 1998) and

provides �eld simulation results along the whole simulation period.

By observing �gure (2.6), it can be derived that the cumulative oil and water production at the end of

the simulation period are 7:91� 106 sm3 and 7:23� 106 sm3 respectively. The cumulative water injected

in the reservoir at the end of the simulation period is 20:10� 106 sm3.

Figure 2.7: Field oil/water/liquid production rate (Black/Blue/Red curves, Left y-axis) over time

The �gure above shows the daily production of oil, water and their sum -the liquid daily production rate-

of the whole �eld.

Figure 2.8: Field oil/water production rate (Black/Blue curves, Right y-axis) and water-cut fraction

(Red curve, Left y-axis) over time
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2.5. WELL PRODUCTION/INJECTION DATA

Figure 2.9: Field liquid production rate (Black curve, Right y-axis), water injection rate (Blue curve,

Right y-axis) and average reservoir pressure (Red curve, Left y-axis) over time

Reservoir pressure is highly related to to the total liquid production and water injection rates. The

pressure pro�le of the �gure above shows a continuous increase after one year of production since after

that time the water injection rate is continuously higher than the total liquid production rate of the

reservoir. Furthermore, as liquid production and water injection continues, water covers more space that

oil used to occupy, the pore volume available due to the compressibility of oil is waning resulting in an

even more abrupt increase of the average reservoir pressure curve.

2.5 Well Production/Injection Data

On this chapter well production data are going to be presented for all producing and injecting wells. As

far as production wells are concerned oil and water production rates (Black/Blue curves, Right y-axis)

and water-cut (Red curve, Left y-axis) will be presented. For the injection wells the water injection rate

(Blue curve, Left y-axis) is going to be presented.

Together with the above mentioned data that is going to be presented below, information will be printed

for all wells about the percentage of:

� oil cumulative production of each production well on the �eld cumulative oil production

� water cumulative production of each production well on the �eld cumulative water production

� water cumulative injection of each injection well on the �eld cumulative water injection

The above mentioned information are vital in order to understand which production well contributes

more during the simulation period which also indicates the regions that are capable of producing higher

quantity of oil. The water production data for each well together with their corresponding water-cut

values and the injection pro�les of injecting wells will aid in understanding which wells and �nally which

regions will have early water breakthrough during production.

During the optimization processes that are going to be discussed on chapter 3 the information mentioned

above will aid on choosing and setting up variables, constrains and limits of the objective function.
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CHAPTER 2. INITIAL MODEL PRODUCTION DATA AND DETAILS

Production Well P-A1H

Figure 2.10: Well P-A1H production data (click here for well position)

% of �eld cumulative oil produced: 39.16 %

% of �eld cumulative water produced: 41.63 %

Production Well P-A2AH

Figure 2.11: Well P-A2AH production data (click here for well position)

% of �eld cumulative oil produced: 20.24 %

% of �eld cumulative water produced: 19.44 %
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Production Well P-A17

Figure 2.12: Well P-A17 production data (click here for well position)

% of �eld cumulative oil produced: 14.51 %

% of �eld cumulative water produced: 9.524 %

Production Well P-A35

Figure 2.13: Well P-A35 production data (click here for well position)

% of �eld cumulative oil produced: 6.333 %

% of �eld cumulative water produced: 11.01 %
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Production Well P-A39A

Figure 2.14: Well P-A39A production data (click here for well position)

% of �eld cumulative oil produced: 19.76 %

% of �eld cumulative water produced: 18.4 %

Injection Well I-A5H

Figure 2.15: Well I-A5H injection data (click here for well position)

% of �eld cumulative water injected: 58.64 %
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Injection Well I-A38

Figure 2.16: Well I-A38 injection data (click here for well position)

% of �eld cumulative water injected: 37.36 %

Injection Well I-H2

Figure 2.17: Well I-H2 injection data (click here for well position)

% of �eld cumulative water injected: 3.997 %
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2.6 Well Observed Production Data

During the time period that the simulation model runs (1st December 1986 until 1st November 1998)

real well production data were recorded. These observed data are going to be used during the history

matching operations on chapter 4.

The �gures below show the observed production data for all producing wells. Oil/water production rates

(Black/Blue curves, Right y-axis) and water-cut (Red curve, Left y-axis) over time:

Production Well P-A1H

Figure 2.18: Well P-A1H observed production data (click here for well position)

Production Well P-A2AH

Figure 2.19: Well P-A2AH observed production data (click here for well position)
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2.6. WELL OBSERVED PRODUCTION DATA

Production Well P-A17

Figure 2.20: Well P-A17 observed production data (click here for well position)

Production Well P-A35

Figure 2.21: Well P-A35 observed production data (click here for well position)
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Production Well P-A39A

Figure 2.22: Well P-A39A observed production data (click here for well position)
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Chapter 3

Well Placement Optimization aided by

PlanOpt

The initial model presented on chapter 2 will be subjected to optimization procedures with PlanOpt

Reservoir Simulation software in order to achieve increased oil production during the simulation period.

All the assumptions and actions taken prior to optimization will also be discussed together with the �nal

results of the optimization process.

3.1 Model Setup Prior to Optimization Process

PlanOpt software has a basic limitation. The distribution of wells that creates can only be vertical wells.

On the sections below it will be discussed how the initial model was prepared in order to be introduced

to PlanOpt software.

3.1.1 Pre-existing Production Wells

PlanOpt is going to be utilized in order to �nd new well positions compared to the original ones in order

to achieve increased oil production. The number of original producing wells is �ve which means that

from the distribution of wells that PlanOpt will create, after the optimization process �ve -or if it is

possible less than �ve- wells will be chosen that will meet with speci�c control variables, constraints and

limits. For this reason all pre-existing production wells should be disabled before introducing the initial

model as input in PlanOpt software. The initial model's DATA �le was modi�ed and all producing wells

were deleted.

3.1.2 Injection/Production Wells Management

The producing/injecting pattern of the initial model can not be followed by PlanOpt. The software in

order to operate needs a �eld control variable (Oil production rate, Water production rate etc) value

which will be kept constant until a limit or constraint is met and then is forced to alter. However, by

observing the �eld production rates on �gure 2.7 concerning the initial model that is not the case. The

injection pro�le as shown on �gure 2.9 also follows the �eld production pattern. By observing these

�gures it can be derived that although both �eld production and injection rates change continuously

with time, there is a pattern that �eld injection rate is always higher than the �eld production rate.
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Since PlanOpt constrains the �eld production rate to be constant, the same should apply for the injection

wells in order to have pressure stability during the simulation period. Since the setup of the optimization

should not diverge from the initial model the following action were taken.

Production Wells Averaging

Since the �eld production rate should be a constant control variable in order to be as close to the initial

model as possible the summed average production rate of all wells will be used as shown on the �gure

below.

Figure 3.1: Oil production rates of all wells and summed average oil production rate of all wells (Red

curve)

The summed average production rate of all wells is 2072:3 sm3=day of oil.

Injection Wells Averaging

The averaging of the injection wells is more complex than the previous case with the production wells.

The speci�c production wells that during their operation resulted to the production rates as shown on

the �gures above will not be present during the optimization process and thus only the average value of

their summed production was needed as a reference value for the optimization control variable.

The injection wells of the initial model will continue to exist during the optimization setup and operations

and so their behavior (I-A5H is a vertical injection well, I-A38 is a vertical/horizontal injection well) and

operation pattern should be similar to the one they had on the initial model.

For this reason, all the injecting wells will be present at the optimization phase. Well I-H2 which is not

a real well and simulates a water in�ux from an adjacent region will continue to operate with exactly

the same way like the initial model. Wells I-A5H and I-A38 will operate with the same pattern (same

injection start date and shut-in date) but with their injection rate averaged for as long they operate as

shown on the �gure below.
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Figure 3.2: Water injection rates of injecting wells on initial model (Black curves) and average water

injection rates of injecting wells (Blue curves)

As stated above well I-H2 (Red curve) does not contribute to the average water injection value since it is

not a real injection well. There is a small period of time that both wells are injecting, during this period

the average water injection rate of each well was scaled so that the sum of the average water injection

rates is constant at 5026:1 sm3=day of water.

After the average injection value was calculated for both injecting wells the initial model's DATA �le was

modi�ed to include the above mentioned changes on the injection well scheduling.

3.2 Optimization Setup Processes

After the initial model was modi�ed properly it is introduced in PlanOpt environment to setup and

then begin the optimization process. This section describes all steps and procedures that were taken to

optimize well placement that resulted in increased oil production.

3.2.1 Exclusion Zones

The �rst action to take when the modi�ed initial model is introduced in PlanOpt is to set exclusion zones

around the already existing wells (in this case around the pre-existing injection wells since no producing

wells are present on the modi�ed initial siimulation model).

When wells are placed near each other -especially when their cells are neighboring with other wells' cells-

interference may be caused while producing.

Exclusion zones prevent PlanOpt to place production wells on cells that are part of the zones. The range

of the zones depends on the distance provided as input which is a circle with its center at the center of

the cell with a pre-existing well and its radius is the distance provided by the user.

The exclusion zone chosen for this project is 90m so as to create a zone which consists of all cells that

are adjacent to the existing injection wells as shown on �gure below.
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Figure 3.3: PlanOpt, setting the exclusion zones

3.2.2 Phase-1

Phase-1 is responsible for generating the initial distribution of wells based on speci�c criteria (minimum

and maximum mobile saturations and well geometry).

The model that will be produced after optimization and the initial one should be similar so that they

can be compared. All the wells present on the initial model have their connections between the 30rd and

120th layer of the reservoir, so the initial distribution of wells the will be created by PlanOpt will be

constraint so that every new well will have its connections between these layers as shown on the �gure

below.

Figure 3.4: PlanOpt, after running phase-1
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The Log Window prints that 509 new wells were added on the model. This well distribution will be

subjected to further re�nement until optimization starts and the desired number of wells is met.

3.2.3 Phase-2

Phase-2 is an optional step before optimization. Before proceeding to either phase-2 or optimization the

group rate control value should be assigned. Group rate control is the desired �eld oil production rate

(which was calculated on section 3.1.2 for the speci�c run) as shown on the �gure below.

Figure 3.5: PlanOpt, setting group rate control (�eld oil production rate)

After the group rate control value is inserted the setup of phase-2 can start as shown on the �gure below.

Figure 3.6: PlanOpt, setup of phase-2
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3.2. OPTIMIZATION SETUP PROCESSES

When phase-2 setup runs, the modi�ed model inserted in PlanOpt runs for a nominal period of time (1

days on the current project) and calculates several well parameters (PI, GOR, GLR, Water-cut, Kh

and the number of open connections) and �nds theirs maximum and minimum bounds. By modifying

the minimum or/and maximum parameters' range results in discarding the wells whose corresponding

parameter values are not in the user speci�ed range.

Another way to utilize the above parameters in phase-2 is Well distance option. The wells of the initial

distribution are ranked based on the distance parameter that is chosen, then based on the well distance

inserted all the wells inside the speci�ed radius are compared and the one with the highest rank will be

active while the rest are going to be discarded.

This option was used on the current project since the way that it chooses which wells will stay active

results in the least possible well interference as shown on the �gure below.

Figure 3.7: PlanOpt, after running phase-2

After phase-2 is �nished 384 wells were reported on Log Window that were disabled. Judging by the

position of the remaining wells it can be noted that there are no wells adjacent to each other.

Running phase-2 takes approximately 1 minute. If all the wells that were disabled during phase-2 were to

be included on the optimization operation, then the running time of optimization would greatly increase

since more iteration would be needed in order to reach the desired number of wells.

3.2.4 Limits-Constraints

Since phase-2 is �nished, the next step is to set the limits and constraints of wells based on which

the optimization will run. The basic limit on the current project is the bottom-hole pressure and the

constraints that will be used are focused on managing the water-cut level of each well.

Bottom-hole Pressure Limit

In order to calculate what will be the bottom-hole pressure limit of each well, the worst case scenario is

going to be examined. That is, a well drilled until the deepest active cell (at 1947m depth below sea
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bottom) producing almost solely water (extreme water-cut value). It is assumed that the �uid needs to

be elevated from the well to the sea bottom and from there it will join a transport pipeline. The equation

below calculates the minimum hydrostatic bottom-hole pressure needed to elevate the �uid column at

the sea bottom level:

Pbhp = %fl

�
kg

m3

�
g
�m
s2

�
h (m)� 10�5 = 191 bar (3.1)

where

Pbhp : is the calculated bottom-hole pressure limit

%fl : is the density of the �uid, 1000
kg

m3
at the worst case scenario

g : is the gravity acceleration, 9:81
m

s2

h : is the height of the well/�uid column, 1947m at the worst case scenario

As shown on the �gure below a value of 200 bar is introduced in PlanOpt. The extra pressure of 9 bar

are set as a safety margin:

Figure 3.8: PlanOpt, bottom-hole pressure limit

Water-cut level constraints

During the development of the current diploma thesis project, several optimization runs of PlanOpt were

conducted without constraining the wells using water-cut management. All runs resulted in cumulative

oil production which was lower or almost equal than the one produced while running the initial simulation

model as presented on �gure 2.6. Even when optimization runs were conducted with the group rate control

variable (mentioned on section 3.1.2) being assigned higher values than 2074 sm3=day, the results were

also disappointing.

Since water-cut was not constrained, during optimization PlanOpt was choosing wells regardless the

fact that their water-cut was taking extreme values after some simulation steps and �nally resulted in

producing small quantity of oil. Finally water-cut constraints were used as shown on the �gure below:
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Figure 3.9: PlanOpt, water-cut constraints

When applying water-cut constraints PlanOpt utilizes ECLIPSE capability of conducting work-overs on

wells. When setting active Maximum water-cut by introducing a value, if the water-cut of the well ever

reaches this value then Workover procedure is triggered. There are several work-over procedures:

� +CON , if a well reaches maximum water-cut then the connection with the higher water-cut and

all connections below it are shut

� CON , if a well reaches maximum water-cut then the connection with the higher water-cut is shut

� WELL, if a well reaches maximum water-cut then the well is shut

If Secondary maximum watercut is set active when all connection of a well are shut due to actions of the

previous constraint then all connection open again until they meet the secondary constraint. When the

secondary constraint is met Workover action (WCUT 2) is triggered and the chosen work-over is carried

out.

After running several optimization projects with completely the same setup and di�erent combinations

of water-cut work-overs, the best option was found and presented on the �gure above. CON work-over

carries out the best results since only the connection that has reached the water-cut constraint is shut.

The speci�c reservoir contains a region in the 70th and 80th layers with inactive cells which means that

the layers above and below this region have no communication in the vertical direction. As a result when

using +CON type of work-over which shuts all the connections below the connection that has reached

the maximum water-cut constraint it is possible that connections whose water-cut values were not even

close to the maximum water-cut constraint will be shut resulting in lower oil production rates.

The upper limit for the water-cut constraint was set to be 75% for all optimization attempts since most

of the wells of the initial model were shut or set to work-over procedures after this value was violated.

Furthermore after setting the water-cut constraint higher than 75% the cumulative oil production results

were poor.

The lower limit for the water-cut constraint was set to be 60 % since below that value optimization

process was always terminated due to high quantity of simulation and optimization errors due to the fact
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that the maximum water-cut constraint was set to a extremely low values and the optimization process

could not �nd wells to meet with the speci�c constraints.

3.2.5 Target Number of Wells - Well Reduction

The �nal step of the setup before optimization begins is to set the target number of wells that the

optimization will try to reach, the percentage of well reduction that will be carried out at each iteration

and the minimum number of wells that will be discarded during each iteration are shown on the �gure

below:

Figure 3.10: PlanOpt, Target Number of wells, well reduction and minimum number of well to

discard at each iteration

3.2.6 Optimization

Figure 3.11: PlanOpt, optimization initiates
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Based on the remaining number of wells from the initial well distribution, the target number of wells

and the percentage of well reduction set by the user the total number of iterations is calculated when

optimization starts. The optimization start time is printed on the Log Window as shown on �gure 3.11.

After optimization terminates successfully the end time is printed on the Log Window and the target

number of wells chosen during the optimization process is displayed on PlanOpt as shown on �gure 3.12.

Figure 3.12: PlanOpt, optimization terminates

The optimization process needs about 2 hours to be completed for the current setup mentioned above.

After optimization is �nished a new DATA simulation �le is created by PlanOpt which contains all the

information about the new model that was developed by the software.

For each optimization run two new DATA �les were created one for a target number of wells of �ve and

one of four in order to compare the models and examine if there is a possibility of achieving the same

cumulative production with one drilled well less.

3.3 Oil Production Maximization

When the water-cut constraint was added on the optimization process the �nal optimized model resulted

in higher cumulative oil production. However, further optimization should be conducted in order to �nd

the maximum cumulative oil production that can be achieved while utilizing the water-cut constraint.

As mentioned on section 3.2.4 maximum water-cut constraint is one variable able to vary the resulted

cumulative oil production. The second variable that a�ects the resulted cumulative oil production after

optimization is the group control variable (only when maximum water-cut constraint is active).

Water-cut values were chosen to range from the value of 60 % (lower water-cut constraint limit) to the

value of 72 % (upper water-cut constraint limit) as shown on the table below.

Group rate control variable (oil rate) values were chosen to vary from the value of 2074 sm3=day (lower

limit of the group control rate) to the value of 3600 sm3=day as shown on the table below.
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Water-cut
No.

(%)

1 63.0

2 64.0

3 64.4

4 64.5

5 64.6

6 65.0

7 65.5

8 66.0

9 67.0

10 70.0

11 72.0

Table 3.1: Water-cut values

Oil rate
No.

(sm3=day)

1 2074

2 2150

3 2250

4 2350

5 2500

6 2650

7 2800

8 3000

9 3300

10 3600

Table 3.2: Group �eld oil rate

The number of water-cut values times the number of group rate control values is the number of

optimization runs needed in order to create a dependency of cumulative oil produced after each simulation

with both the water-cut constraint and the group control rate.

After the optimization runs were �nished a 3D plot of a plain was created where each water-cut and

group control rate values (x-axis, y-axis) correspond to a speci�c cumulative oil produced value (z-axis).

Finally a contour plot was created based on the cumulative oil produced data and the corresponding

water-cut and group control rate values. The contour plots are 2D plots which depict 3D plots of plains

or meshes. All continuous lines having the same color denote that every point that belongs on the line

have the same value.

Apart from the cumulative oil production plain-contour plots for 5 and 4 wells, there will be plain-contour

plots of the percentage of increase of cumulative oil production on the cumulative production of the initial

model and �nally of the percentage of the original mobile oil in place that have been produced. The

�gures of the plains-contour plots mentioned above are presented below:

Figure 3.13: Oil cumulative production plain and contour plot for 5 wells
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Figure 3.14: Oil cumulative production plain and contour plot for 4 wells

By observing the plains on the �gures above it is clear that there is a strong dependency of the cumulative

oil production on the group �eld rate. As group �eld rate increases production also increases until a "hill"

of maxima is reached. After that point as group �eld rate keeps increasing, production decreases. As

far as the water-cut is concerned there is a pattern dictating the cumulative oil production as water-cut

work-over limit increases which is minor compared to the one of group �eld rate. As water-cut work-over

limit increases there is also a small increase in cumulative oil production until a maximum value is reached

after which production decreases as water-cut work-over limit keeps increasing.

It should be noted here that simulation runs concerning the water-cut work-over limit of 60% were omitted

from �gures since most of them produced huge amount of errors during the optimization procedure as

explained on section 3.2.4.

In order visualize the magnitude of dependency of cumulative oil production on group rate control and

water-cut work-over limit curves below were produced:

Figure 3.15: Maximum cumulative oil production curves
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The left curve shows the maximum values of cumulative oil production among all water-cut work-over

limit simulation runs with respect to group �eld rate while the right curve shows the maximum values of

cumulative oil production among all group �eld rate simulation runs with respect to water-cut work-over

limit. In both plots as the corresponding x-axis variable increases cumulative oil production also increases

until a maximum value is reached after which production starts to decrease. However, at the left plot

the range of values of the cumulative oil production is of 106 magnitude and at the right plot the range

is of 105 magnitude meaning that the group �eld rate variable dependency compared with the water-cut

work-over limit variable dependency is higher by one order of magnitude. Since group �eld rate is the

main reason of cumulative oil production increase, the maximum cumulative oil production of each group

�eld rate value among all water-cut work-over limit values (left plot of the �gure above) were printed as

black/red stars on the contour line plots of �gure 3.13 and �gure 3.14.

The �gures below present information about the percentage of increase of cumulative oil production with

respect to the initial model and the percentage of original mobile oil in place that have been produced:

Figure 3.16: % of increase of cumulative production plain and contour plot for 5 wells

Figure 3.17: % of increase of cumulative production plain and contour plot for 4 wells
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By observing the �gures above it can be derived that the optimization process, regardless of the values

chosen from tables 3.1 and 3.2, results in cumulative oil production which is always higher than the one

of the initial model.

Figure 3.18: % of original mobile oil in place produced plain and contour plot for 5 wells

Figure 3.19: % of original mobile oil in place produced plain and contour plot for 4 wells

Since the cumulative production of all models created by the optimization process was always higher

than the one resulted from the initial model (�gures 3.16 and 3.17) the percentage of oil produced out

of the original mobile oil in place will also be accordingly higher as shown on the �gures above.

Finally the maximum percentage of increase of cumulative oil production with respect to the initial

model and the percentage of original mobile oil in place that have been produced among the water-cut

work-over limits values with respect to group �eld rate values will be presented on the �gure below, since

group �eld rate values had major e�ect (one order of magnitude greater than the corresponding e�ect of

water-cut work-over limit values) on the results of the simulation runs.
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Figure 3.20: Maximum % of increase of cumulative oil production with respect to the initial model

and original mobile oil in place that have been produced

By observing the �gures presented above, there are regions on the 3D plain that although the water-cut

work-over limit step is tiny the cumulative oil production value changes abruptly.

The �gure below shows all the lines that create the 3D plain in a 2D plot in order to describe the

mentioned behavior above:

Figure 3.21: Cumulative oil production vs Water-cut work-over limit

For example by observing the red curve of the left plot between the 3rd and the 4th value of cumulative

oil production an abrupt increase is visible although the water-cut work-over limit changes from 64:4 %

to 64:5%. The same behavior appears also on other curves of the plots above. The majority of the curves

appear to develop this behavior in water-cut work-over limit ranges where the values chosen are very

close to each other like the example mentioned above.

The behavior described above is impossible to have some sort of physical meaning since a change of 0:1%
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on the water-cut work-over limit can not cause an almost 7% increase on the cumulative oil production.

In order to understand the reason of the above behavior FlowViz 3D reservoir simulation viewer was

used for the simulation models concerning the 3rd and the 4th point of the red curve on the left plot.

Figure 3.22: Water-cut work-over limit of 64:4 % well position

Figure 3.23: Water-cut work-over limit of 64:5 % well position

By observing the �gures above it can be concluded that while four out of �ve wells remain exactly at

the same position in the two simulation models, the �fth well has di�erent position in the simulation

models concerning the 64:4 % and 64:5 % water-cut work-over limit. Apparently the 0:1 % of change in

the water-cut work-over limits between the two simulation models a�ected the optimization process. The

optimization process in order to comply with the new water-cut work-over constraint had to chose each

time a new well position regarding the �fth well. The new well that was chosen resulted �nally in higher

cumulative oil production since the region that was placed was further away from other producing wells.

On the other hand by looking on �gure 3.21 there are similar simulation results that the small change
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of water-cut work-over limit produced a well position pattern that �nally resulted in an abrupt drop of

cumulative oil production. PlanOpt can not predict what future e�ect might have the position of wells

near each other and so further constraints might be needed in order to force the wells being positioned

far from each other to minimize well interference and in the same time chose well positions that will

maximize the oil production.

3.4 Optimal Simulation Model Analysis

In all �gures presented above concerning the optimization runs and the resulted models it can be observed

that all runs having target number of wells set to 4 have always lower cumulative oil production than

runs having target number of wells set to 5. At this point in order to chose which model will be chosen

as having produced the best simulation outputs only the cumulative oil production is taken into account.

There are several other parameters which should be taken into account when making the �nal selection

of which model to chose like the cumulative water production, the water injection rates and of course

economic factors which will lead in choosing the �nal number of wells that will be drilled. On the current

diploma thesis project since the aim is to maximize the cumulative oil production, the model resulting

so will be chosen to be further discussed.

The simulation model which produced the higher cumulative oil production will be further discussed.

The �gure below shows the cumulative oil production with respect to the water-cut work-over limit for

the group �eld rate value of 3300 sm3=day.

Figure 3.24: Cumulative oil production vs Water-cut work-over limit for 3300 sm3=day

By observing �gure 3.21 it could be concluded that the curves corresponding to the group �eld rate

of 3300 sm3=day included the maximum value of cumulative oil production. The maximum value

corresponds to 70 % water-cut on the curve concerning the 5 wells pattern. The simulation model

which resulted to the maximum value of cumulative oil production will be presented below.

The discard sequence of wells during the optimization process concerning the optimal simulation model

is presented on appendix B. By observing which wells are discard after each iteration of the optimization

process, there should be a pattern that all wells around the injection wells are discarded from the

beginning apparently because early water breakthrough occurs resulting to high water-cut and low oil

production rates.
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On the following section �eld data and well production data of the optimal simulation model are going

to be presented.

3.4.1 Field Data

All �gures below present both the curves of the initial simulation model (Black curves) and the optimal

simulation model (Red curves) for ease of comparison.

Figure 3.25: Field water-cut fraction over simulation time, Optimal model (Red curve) - Initial model

(Black curve)

The water-cut fraction of the optimal model is lower than the corresponding water-cut of the initial

model for most of the simulation time resulting to lower percentage of water compared to that of the oil.

Figure 3.26: Field oil production rate over simulation time, Optimal model (Red curve) - Initial

model (Black curve)
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Figure 3.27: Field water production rate over simulation time, Optimal model (Red curve) - Initial

model (Black curve)

By observing the �gures above it can be concluded that the simulation model created by PlanOpt during

the optimization process begins producing based on the group rate control variable since as shown on

�gure 3.26 �eld oil production rate is stable at 3300 sm3=day. After several simulation steps some limits

and constraints of the model (well bottom-hole pressure, water-cut work-over limit) are violated resulting

to lower �eld oil production rate. However, during the greatest part of the simulation period �eld oil

production rate of the optimal model is higher than the one of the initial model.

As far as �eld water production rate is concerned it can be observed in both the curves for the initial and

optimal simulation model that there are several simulation periods with abrupt increases and decreases

of the curves. This behavior is due to the fact that a well might be shut or a new well might open or

even if a speci�c connection of a well is shut due to high water-cut, resulting to abrupt decrease of water

production rate.

Figure 3.28: Field cumulative oil production over simulation time, Optimal model (Red curve) -

Initial model (Black curve)
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Figure 3.29: Field cumulative water production over simulation time, Optimal model (Red curve) -

Initial model (Black curve)

By observing the �gures above it can be concluded that the optimal model not only produces more

quantity of oil at the end of the simulation period but also that produces less quantity of water which

means that possible water treatment costs might be reduced if the scheduling of the optimal model was

to be followed. The oil production increase at the end of the simulation period is 28:15 % and the water

production decrease at the end of the simulation period is 7:66 %.

Figure 3.30: Field cumulative water injection over simulation time, Optimal model (Red curve) -

Initial model (Black curve)

As noted on section 3.1.2 the average calculated water injection rate was used on the modi�ed initial

simulation model that was going to be introduced in PlanOpt software meaning that although the

injection rates of the optimal model will be the average calculated values the cumulative water injected

at the end of the simulation period should be equal between the initial and the simulation models created

by the PlanOpt software. By observing the �gure above it is obvious that the cumulative water injected
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at the end of the simulation period for both the initial and the optimal model are equal with a tiny

error of 0:66 %. The error has been produced because while calculating the average injection rates for

each well the rounded value at the �fth important digit was used resulting to the tiny error propagation

throughout the simulation period.

3.4.2 Well Production Data

On this section well production data are going to be presented for all producing wells. As far as production

wells are concerned oil and water production rates (Black/Blue curves, Right y-axis) and water-cut (Red

curve, Left y-axis) will be presented.

As far as injection wells are concerned the results are identical with the information presented on �gure

3.1.2 since the injection pattern of all simulation models created by PlanOpt for each injection well is the

average injection rate of each well that existed on the initial model without taking into account injection

well I �H2 since it is an injection well simulating a water in�ux from an adjacent region.

Together with the above mentioned data that is going to be presented below, information will be printed

for all wells about the percentage of:

� oil cumulative production of each production well on the �eld cumulative oil production

� water cumulative production of each production well on the �eld cumulative water production

Production Well P-A0000026

Figure 3.31: Well P-A0000026 production data (click here for well position)

% of �eld cumulative oil produced: 18.19 %

% of �eld cumulative water produced: 23.46 %
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Production Well P-A0000075

Figure 3.32: Well P-A0000075 production data (click here for well position)

% of �eld cumulative oil produced: 38.24 %

% of �eld cumulative water produced: 40.43 %

Production Well P-A0000703

Figure 3.33: Well P-A0000703 production data (click here for well position)

% of �eld cumulative oil produced: 12.62 %

% of �eld cumulative water produced: 9.13 %

70



CHAPTER 3. WELL PLACEMENT OPTIMIZATION AIDED BY PLANOPT

Production Well P-A0000761

Figure 3.34: Well P-A0000761 production data (click here for well position)

% of �eld cumulative oil produced: 12.87 %

% of �eld cumulative water produced: 9.97 %

Production Well P-A0003787

Figure 3.35: Well P-A0003787 production data (click here for well position)

% of �eld cumulative oil produced: 18.08 %

% of �eld cumulative water produced: 17.02 %
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The curves presented on the �gures above concerning the production wells of the optimal model appear

to have a common behavior. Each time water-cut (Red curve, left y-axis) reaches the value of 70 % an

abrupt decrease on water-cut occurs. This behavior results from the implementation of the water-cut

work-over constraint which is set active each time water-cut tends to take values higher than 70 % and

shuts the well connection which produces with the higher water-cut value. This constraint forces the well

to produce at lower water-cut values and �nally results in achieving higher cumulative oil production.
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Chapter 4

Production Data History Matching

aided by SimOpt

SimOpt is part of ECLIPSE reservoir simulation software assisting history matching of production data.

It is common that the results of a simulation model concerning the production data of a �eld have to

be matched with the on-�eld measurements of production data (observed production data). When the

simulation model and the observed production data diverge several parameters of the simulation model

can be set to vary within a reasonable range in order to achieve matching of the curves concerning the

simulation model and the observed production data. SimOpt optimizes the history matching process

mentioned above using a regression procedure. The production data of the initial simulation model and

the observed production data of the current diploma thesis will be matched by utilizing the features of

SimOpt software as will be presented below.

4.1 Observed Production Data

The �rst step when operating SimOpt is to load the available observed production data (history

production data) corresponding to the simulation model. The observed production data that are going

to be matched on the current project are:

� Observed oil production rate of each production well denoted as WOPRH

� Observed water production rate of each production well denoted as WWPRH

� Observed water-cut fraction of each production well denoted as WWCTH

For each producing well of the �eld the three above data sets of observed production are introduced in

SimOpt software. Each data set consists of pairs of the date that the observation was made and the

observed value. Furthermore, each data set has to be accompanied with a value concerning the error of

the measurements.

As stated on [9] the measurement of �ow-rates at the time that the speci�c observed data were collected,

was conducted with the error ranging around 5 % of the measured value. Since each data consists of

numerous measured values the 5 % of the average value of each data set was used as input in SimOpt.

The table below shows the measurement errors introduced in SimOpt for each data set and for each

production well:
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WOPRH WWPRH WWCTH
Wells �

sm3=day
� �

sm3=day
�

(%)

P-A1H 85.5 63.0 2.04

P-A2AH 40.4 39.5 1.65

P-A17 24.5 17.0 1.97

P-A35 20.0 47.8 3.34

P-A39A 41.2 38.7 2.14

Table 4.1: Measurement errors of observed production data sets

The �gure below presents the input of the measurement errors of the observed production data sets in

SimOpt software.

Figure 4.1: Measurement error input in SimOpt software

On the left column of SimOpt software the observed data tree is presented. The white color squares

represent data sets which are not going to be used (in-active data sets) and the yellow color squares

represent data sets which will be used (active data sets) in the history matching process that will follow.

4.2 Parameters

There are several reservoir parameters that can be set to vary in order to achieve matching between the

simulation model data and the observed data like transmissibility, permeability, porosity well connection

transmissibility etc. On the current project the parameters that are going to be used are:

� X-transmissibility

� Y -transmissibility

� Z-transmissibility

� Porosity
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The above parameters are applied regionally meaning that the user must set which regions of the reservoir

will have its parameters varied during the matching procedure. Since the reservoir consists of 12 active

layers each one will be set as a separate region for each di�erent reservoir parameter from the list above.

Finally as will be shown on the �gure below there are going to be 12 parameters concerning the

X-transmissibility of the reservoir, 12 parameters concerning the Y -transmissibility of the reservoir and

so on having a �nal number of 48 regional parameters at the end.

Figure 4.2: Setting up the regional parameters for the history matching process

The �gure below shows the range of multipliers of the regional parameters:

Figure 4.3: Setting up the range of multipliers of the regional parameters

After the regional parameters are created their available range of modi�cation should be speci�ed.

Transmissibility and porosity parameters in SimOpt software are changed using modi�ers. Modi�ers

are numbers which will by multiplied with their corresponding parameter original value in order to

change it. A multiplier with value above unity will increase the value of the parameter and a multiplier
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with a value below unity will decrease the value of the parameter. All the regional parameters chosen

above will be set to vary during the regression procedure in order to achieve matching between simulation

and observed data.

4.3 Optimization

After the observed data have been imported in the SimOpt software together with their corresponding

measurement errors and all the chosen regional parameters have been assigned to their corresponding

regions of interest the optimization process can start. Below are presented the simulation option that

SimOpt is capable of.

4.3.1 Evaluation Run

Before regression procedure begins it is important to examine the mismatch of the curves of the observed

and the simulation model data. A normal simulation run (evaluation run) of the initial model is conducted

and the RMS value between observed and simulation model data is calculated showing the magnitude of

the mismatch. Furthermore, graphs containing the curves of the simulation model data and the observed

data are available in order to visualize the magnitude of the mismatch and also at which data points the

mismatch is more intense.

The �gure below shows the results after the evaluation run has been terminated:

Figure 4.4: Results after the evaluation run has terminated

The resulted RMS value between the observed and the simulation model data is printed after the

evaluation run is �nished. After the evaluation run is �nished the graphs presenting the observed data

sets which are set as active will also present the curves of the corresponding simulation model data which

were calculated during the evaluation run. The duration of the evaluation run as stated above is similar

to a normal simulation run, thus for the current project it needs approximately 60 seconds to �nish.
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4.3.2 Gradient Run

The gradient run is the most important feature of the SimOpt software since it calculates the gradients

of the formed objective function with respect to each regional parameter as discussed on sections 1.4.1

and 1.4.2. These information will help making the �nal decision about which parameters should be set

to vary for matching the simulation model data with the observed data as stated on section 1.4.3.

The �gure below shown the information created after the gradient run was terminated:

Figure 4.5: Correlation matrix

Figure 4.6: Hessian matrix

By consulting the entries of the correlation matrix the pairs of parameters having their correlation value

near 1 (strongly correlated) or �1 (strongly anti-correlated) are found. A correlation threshold value
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exists (Ct) denoting the range inside which a pair of parameters is consider strongly correlated
�
Ct; 1

�
or strongly anti-correlated

�
� 1;�Ct

�
.

Strongly anti-correlated parameters should be merged before the regression operations start meaning that

instead of having two regions (one for each parameter), the regions should be merged to a new region

which will consists of the two previous regions and will be represented by one new regional parameter.

Strongly correlated parameters should not co-exist during the regression operations meaning that one of

the parameter's pair should be discarded. The choice is based on the information provided by the Hessian

matrix. The parameter having the highest diagonal dominance or normalized maximum o�-diagonal value

is the one that should be discarded since it performs in a way that slows down the regression performance.

For the current project a gradient run needs approximately 7 minutes to �nish.

4.3.3 Regression Run

After the regional parameters have been chosen by consulting the information provided by the gradient

run the regression process can start. During the regression run the parameters will have their values

modi�ed based on the directions that the calculated gradients will show. After each iteration of the

regression run the calculated RMS between the simulation model and the observed data is printed.

The �gure below shows SimOpt after regression has started.

Figure 4.7: Regression run initiation

The user can set the number of iteration after which the regression run will be terminated, otherwise if

the regression process happens to converge before the set number of iterations is reached then regression

is again terminated since RMS can not be minimized any more. The RMS at the end of each iteration

can be plotted on a �gure during the regression run so as to visualize the quality of matching after

each iteration. By observing the RMS curve during the regression run one can judge if there is need

for proceeding in more iterations or terminating since the future improvement of the match between the

simulation model and observed data will be minor.

The �gure below shows SimOpt when the regression run has been terminated and the RMS curve that

has been created and updated after each iteration.
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Figure 4.8: Regression run termination

Note that when regression starts and �nishes the time is recorded on the log window at the bottom of

SimOpt software and so the overall time of regression run can be calculated. For the current project a

regression run needs approximately 11 minutes for each iteration to �nish. For the current set of runs

presented above, depending on the number of iteration needed by the regression operations to converge

which varied from 20 to 31 iterations, the corresponding regression run time varied approximately from

3 hours and 40 minutes to 5 hours and 41 minutes.

4.4 History Matching Optimization

In order to achieve the best matching between the simulation model and observed data several

optimization were tried. After coming to a conclusion about the parameters that produced the best

matching results that are X, Y , Z-transmissibilities and porosity the observed data used had to be

analyzed in order to �nd the combination of data sets that would provide the best matching.

For each production well the observed data were oil rate (WOPRH), water rate (WWPRH) and water-cut

fraction (WWCTH) that is the fraction of water rate over the total liquid rate which is the sum of oil

and water rates. Water-cut is a value which can be derived if the oil and water rates are known or if the

water-cut fraction is known together with either the oil or the water rate then water or oil rates can be

derived respectively.

It is going to be examined if better match can be achieved between simulation runs whose only di�erence

will be the combinations of di�erent data set types. On each simulation run the regional parameters are

going to be the same together with all the observed data sets measurement errors. However, each time a

di�erent combination of observed data set type is going to be set as active that is the speci�c observed

data sets are going to be matched with the simulation model data.

On each simulation run an evaluation run is conducted before regression is initiated and the initial RMS

value between the current active observed data sets and the simulation model data sets is calculated.

After the regression process has terminated the �nal RMS value is calculated. Finally, each observed

data set type (WOPRH or/andWWPRH or/andWWCTH) that was set as inactive when the model was

imported in SimOpt software is set as active and a �nal evaluation run is conducted with all observed
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data set types active and with all the regional parameters having taken their �nal modi�ed values. The

resulted RMS values of the �nal evaluation run from all di�erent simulation runs concerning all the

possible combinations of observed data set types will judge which simulation achieved the best matching.

The �gure below shows the RMS curves of all simulation runs with each one corresponding to one

combination.

Figure 4.9: RMS convergence of each observed data set type combination

Although some simulation of speci�c combinations of observed data set types seem to achieve better

matching since their �nal RMS value is better - Water Rate (Yellow with squares curve) and Oil Rate

& Water Rate (Cyan with Stars curve) - it should be taken into account that not all the observed data

set types were active during the regression process and only after the �nal evaluation run where all the

observed data set types will be active, the simulation results will be comparable.

The table below presents the initial RMS, the �nal RMS and the �nal RMS after evaluation with all the

observed data set types active:

Observed Data Final RMS

Set Type Combinations
Initial RMS Final RMS

after Evaluation

Water-cut 6.9895 3.1703 3.0301

Oil Rate 6.4500 2.8813 3.0650

Water Rate 6.9172 2.7986 3.1238

Oil Rate & Water-cut 6.7381 3.0062 2.9303

Water Rate & Water-cut 6.9552 2.9954 2.9799

Oil Rate & Water Rate 6.6877 2.7375 2.9369

Oil Rate & Water Rate & Water-cut 6.7964 2.9346 2.9346

Table 4.2: Initial RMS, �nal RMS and �nal RMS after evaluation

By observing the �nal RMS values after the evaluation run where all the observed data set types are

set active, it can be concluded that the simulation run resulting to the minimum RMS value is the

one with the Oil Rate & Water-cut combination of observed data set types. Although this particular

combination appeared to have poor results after the regression run (see Purple with Plus signs curve

on �gure 4.9), after the �nal evaluation run its RMS value was the best compared to RMS values that
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the other simulation runs produced. The next step is to produce �gures of the observed and simulated

data sets in order to visualize and inspect the quality of the matching. The following �gures will present

curves of:

� The observed data sets (Red with Circles curve)

� The initial simulation model data sets (Black with Circles curve)

� The �nal simulation models data sets after the evaluation run:

1. Water-cut as active data set during regression (Blue curve)

2. Oil rate as active data set during regression (Orange curve)

3. Water rate as active data set during regression (Yellow curve)

4. Oil rate & water-cut as active data set during regression, model produced the minimum RMS

value after evaluation (Purple with Squares curve)

5. Water rate & water-cut as active data set during regression (Green curve)

6. Oil rate & water rate as active data set during regression (Cyan curve)

7. Oil rate & water rate & water-cut as active data set during regression (Light Brown curve)

The quality of the matching depends on how near are the curves of the observed data sets and the �nal

simulation models data sets in comparison with the curves of the initial simulation models data sets.

The visualization of the history matching process with the curves on the �gures below aids in judging

each di�erent simulation run model in a qualitative aspect which is the only mean to avoid the situation

of over-�tting of the simulation model curves with the observed data ones. Given a situation where

over-�tting is severe the quantitative manner of judging the matching process, which is the RMS value

between observed and simulation model data sets, would classify the achieved matching as successful

since when over-�tting of curves occurs their produced RMS value is minor. However, a simulation

model which has its data sets over-�tted over the observed data sets is highly prone to produce erroneous

results over the simulation periods between the data sets' points and subsequently during the time period

of future operation plans where the simulation model results will be needed in order to guess the pro�les

of several production data (oil rate, water rate etc.).

Well P-A1H

Figure 4.10: Oil production rate over time of Well P-A1H
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Figure 4.11: Water production rate over time of Well P-A1H

Figure 4.12: Water-cut fraction over time of Well P-A1H
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Well P-A2AH

Figure 4.13: Oil production rate over time of Well P-A2AH

Figure 4.14: Water production rate over time of Well P-A2AH
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Figure 4.15: Water-cut fraction over time of Well P-A2AH

84



CHAPTER 4. PRODUCTION DATA HISTORY MATCHING AIDED BY SIMOPT

Well P-A17

Figure 4.16: Oil production rate over time of Well P-A17

Figure 4.17: Water production rate over time of Well P-A17
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Figure 4.18: Water-cut fraction over time of Well P-A17
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Well P-A35

Figure 4.19: Oil production rate over time of Well P-A35

Figure 4.20: Water production rate over time of Well P-A35
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Figure 4.21: Water-cut fraction over time of Well P-A35
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Well P-A39A

Figure 4.22: Oil production rate over time of Well P-A39A

Figure 4.23: Water production rate over time of Well P-A39A
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Figure 4.24: Water-cut fraction over time of Well P-A39A

All the �gures presented above appear to have a common behavior. There is obvious mismatch between

the observed and initial simulation model data sets among all three di�erent data set types.

The simulation model runs which aimed to reduce the mismatch between the observed and initial

simulation model data sets appear to produce better results since the curves representing the data sets

of each di�erent simulation run are closer to the observed data sets. This can also be ascertained by the

results of table 4.2 where in all di�erent simulation runs the RMS value resulted after the evaluation of

the model with all the observed data sets is lower than the initial RMS value that the model produced

by at least 42:84 %.

By further observing table 4.2 and the �gures above the di�erent simulation runs that where conducted,

in order to inspect the possible di�erence in the RMS value produced (after evaluating the model with all

data sets as soon as regression has �nished) when having di�erent combinations of data set types active

during regression, appear to have minor di�erence between each other not exceeding the value of 6:19%.

This behavior is also visible in all curves presented above since all of them are having almost the same

shape with only tiny di�erences between them regardless of the data set type.

The behavior described above is ascribed to the fact that the data set types, that are oil rate and water rate

are interdependent since both are in�uenced by the water-cut fraction. Each time a di�erent combination

of the observed data set is used as active during the regression run there might be only a small changes

in the resulted RMS values of each di�erent model since the results of the simulation model concerning

the oil and water rate together with their corresponding water-cut fraction are interdependent.

Since the di�erent simulation runs with di�erent observed data sets set as active during regression

failed to provide important improvement to the history matching process the next step would be adding

more parameters. In other words the regional discretization of each reservoir parameter, that are X, Y ,

Z-transmissibilities and porosity which at the speci�c project was set to be as one layer on the Z direction

for each reservoir parameter, could be more complex having at the end more regional parameters to vary

towards the matching of the curves. Furthermore, possible geological information could be exploited

which would mean even more regional parameters e.g. fault transmissibilities.
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Conclusion

5.1 Well Placement Optimization

Well placement optimization aided by PlanOpt succeeded since the new simulation models which were

created by the software produce larger quantity of oil than the initial simulation model at the end

of the simulation period. Furthermore, the achieved oil production of each new simulation model is

produced using a number of production wells that is equal or lower than the number of existing wells

on the initial simulation model. The optimization procedure was a�ected each time by the values of the

control variables (group �eld oil rate), the operational limits (bottom-hole pressure) and the operational

constraints (water-cut work-over limit). Apart from the bottom-hole pressure limit which was kept

unchanged for all the new simulation models that were created (see section 3.2.4), group �eld oil rate and

water-cut work-over limit were set to vary within a speci�ed range creating a con�ned plain of solutions,

with each solution corresponding to a unique new simulation model.

Group �eld oil rate had major in�uence on the maximization of oil production compared to water-cut

work-over limit. Although the increase in oil production resulted from optimizing with respect to

water-cut work-over limit was minor compared to the e�ect of the group �eld oil rate, water-cut work-over

limit activation was the major parameter which forced all the new simulation models created by PlanOpt

software to have an increased oil production. Before incorporating water-cut work-over limit in the

optimization processes all the resulted simulation models, regardless of the group �eld rate value that

was being used, produced much less quantities of oil than the initial simulation model. By activating

the option of water-cut work-over limit on the optimization processes each model was able to include

operations of shutting and opening well connections throughout the simulation period in order to reduce

the produced water-cut fraction leading to increased oil production. The combined e�ect of optimizing

group �eld oil rate while water-cut work-over limit was active forced the new simulation models that

were created to produce higher quantity of oil at the end of the simulation period. Finally, by having

also the value of the water-cut work-over limit optimized the new simulation models which were created,

resulted to an additional, but lesser in magnitude, increase in the quantity of oil production at the end

of the simulation period.

Both group �eld oil rate and water-cut work-over limit were set to vary within a range. Discrete values

had to be chosen from within these ranges each time a new optimization run had to be initiated. Since

the resulted oil production of each new simulation model that was created was a function of both group

�eld oil rate and water-cut work-over limit, if n, m where the numbers of discrete values from within

each range respectively, then, in order to create a plain showing the dependency of the oil production at

the end of the simulation period with respect to both water-cut work-over limit and group �eld oil rate

n�m optimization runs would be needed to be conducted. The higher the values of n and m, the higher
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the resolution of the resulted plain of solutions. As the resolution of the plain is increasing it is more

possible to reach even closer to the value of a local maximum. However, the higher is the resolution of

the expected plain the higher is the number of the optimization runs that should be conducted in order

to acquire the results to create the solution plain and �nally the higher is the computation time that is

going to be needed. For the current diploma thesis project n and m were chosen so as to create a plain

where the dependency on water-cut work-over limit and group �eld oil rate would be discernible.

Further development of the current project of well placement optimization would be creating a more

re�ned plain increasing in that way its resolution. This would probably result in �nding a new optimal

model since the re�ned plain would reveal a location nearer to the maximum value or a new maximum

value. Another important aspect that should also be taken into account in a future development of this

project is the economic viability of this project. Although oil production is increased and the number

of wells can also be decreased, in order to monitor the �ow rates of water and oil at each connection of

the well and also being able to shut and open a speci�c connection requires more specialized equipment

meaning that an economic analysis of the whole project should be conducted. Finally, the optimization

of well placement that was implemented using PlanOpt software could be conducted by using CMOST

optimization tool of CMG software in order to compare the results of both software optimization tools

which utilize di�erent optimization algorithms.

5.2 History Matching Optimization

There are several remarks concerning the history matching optimization. While having the same

regression parameters in all the optimization attempts each time di�erent observed data set types were

kept active during the regression process and �nally when optimization was �nished an evaluation was

conducted by having all the observed data set types active. This procedure was carried out until all

possible combinations of data set types being active were applied in order to inspect possible di�erences

between each optimization run.

Judging by a quantitative perspective each di�erent simulation run produced di�erent results since the

RMS value after the �nal evaluation was di�erent among every model. For each simulation run a di�erent

objective function is formed since the data set types that are active during regression change resulting

to di�erent output results at the end of the regression process and �nally di�erent results after the �nal

evaluation. The best model was the one which produced the minimum RMS value. However, the RMS

values for all di�erent optimization runs were not exceeding each other by a maximum of 6:19%. Judging

by a qualitative perspective though, it is important to not only take into account that all the history

matching curves corresponding to each di�erent optimization run are having minor di�erences between

each other which happens due to the fact that their resulted RMS values have also minor di�erences as

stated above, but also that all curves appear to have the same behavior and shape.

The fact that water-cut is a function of oil and water rate is crucial in interpreting the history matching

results since the data set that the optimization process was incorporating were oil production rate, water

production rate and water-cut fraction. Although at each di�erent simulation run di�erent data set types

were active during regression, the �nal step was always to evaluate the results having all the data set

types active. Since water-cut and oil and water rate are depended the simulation model that was resulted

each time after the �nal evaluation had a common behavior because of the above mentioned dependency

of the above mentioned data sets.

Further development of the current project of history matching optimization would be creating a more

complex set of parameters which would be based on geological and geophysical information resulting to

more e�cient history matching. Finally, the optimization of history matching that was achieved by using

SimOpt software could be conducted by using CMOST optimization tool of CMG software in order to
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compare the results of both software optimization tools which utilize di�erent optimization algorithms.
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Appendix A

Well Position on Initial Simulation

Model

Figure A.1: Well P-A1H position (click here to return)

Figure A.2: Well P-A2AH position (click here to return)
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Figure A.3: Well P-A17 position (click here to return)

Figure A.4: Well P-A35 position (click here to return)

Figure A.5: Well P-A39A position (click here to return)
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APPENDIX A. WELL POSITION ON INITIAL SIMULATION MODEL

Figure A.6: Well I-A5H position (click here to return)

Figure A.7: Well I-A38 position (click here to return)

Figure A.8: Well I-H2 position (click here to return)
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Appendix B

Optimal Simulation Model Well

Reduction

Figure B.1: Before optimization begins (click here to return)

Figure B.2: Iteration No:1 (click here to return)
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Figure B.3: Iteration No:2 (click here to return)

Figure B.4: Iteration No:3 (click here to return)

Figure B.5: Iteration No:4 (click here to return)
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Figure B.6: Iteration No:5 (click here to return)

Figure B.7: Iteration No:6 (click here to return)

Figure B.8: Iteration No:7 (click here to return)
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Figure B.9: Iteration No:8 (click here to return)

Figure B.10: Iteration No:9 (click here to return)

Figure B.11: Iteration No:10 (click here to return)
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Figure B.12: Iteration No:11 (click here to return)

Figure B.13: Iteration No:12 (click here to return)

Figure B.14: Iteration No:13 (click here to return)
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Figure B.15: Iteration No:14 (click here to return)

Figure B.16: Iteration No:15 (click here to return)

Figure B.17: Iteration No:16 (click here to return)
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APPENDIX B. OPTIMAL SIMULATION MODEL WELL REDUCTION

Figure B.18: Iteration No:17 (click here to return)

Figure B.19: Iteration No:18 (click here to return)

Figure B.20: Iteration No:19 (click here to return)
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Figure B.21: Iteration No:20 (click here to return)

Figure B.22: Iteration No:21 (click here to return)

Figure B.23: Iteration No:22 (click here to return)
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Figure B.24: Iteration No:23 (click here to return)

Figure B.25: Iteration No:24 (click here to return)

Figure B.26: Iteration No:25 (click here to return)
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Figure B.27: Iteration No:26 (click here to return)

Figure B.28: Iteration No:27 (click here to return)

Figure B.29: Iteration No:28 (click here to return)
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Figure B.30: Iteration No:29 (click here to return)

Figure B.31: Iteration No:30 (click here to return)

Figure B.32: Iteration No:31 (click here to return)
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Figure B.33: Iteration No:32 (click here to return)

Figure B.34: Iteration No:33 (click here to return)

Figure B.35: Iteration No:34 (click here to return)
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Appendix C

Well Position on Optimal Simulation

Model

Figure C.1: Well P-A0000026 position (click here to return)

Figure C.2: Well P-A0000075 position (click here to return)
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Figure C.3: Well P-A0000703 position (click here to return)

Figure C.4: Well P-A0000761 position (click here to return)

Figure C.5: Well P-A0003787 position (click here to return)
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