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ABSTRACT 

 

In the field of computational acoustics, the calculation of the impulse response of 

a space is of vital importance. Acoustic parameters, frequency response and the 

cumulative spectral decay can directly be extracted from the impulse response. 

This thesis contributes on the development and utilization of a Finite Element 

Method in the Time Domain for estimating the impulse response and acoustic 

parameters of a room.  

A methodology is developed for resolving the most crucial elements involving 

the Finite Element Method in the Time Domain. In order to develop an accurate 

method, we considered different modeling parameters (source selection, 

modeling of walls and acoustic material) and different parameters for the 

numerical scheme (finite element meshes, time stepping method, time stepping 

scales). 

For this purpose the impulse responses and the acoustic parameters of a 

reverberant space were computed and then compared with the measured ones. 

The results showed that the Time Domain Finite Element Method is an applicable 

method that provides good results for the calculation of the impulse response 

and acoustic parameters in a reverberant room. 

As a utilization of the Time Domain Finite Element Method the method was 

applied in a Virtual Reverberation Chamber for the calculation of the absorption 

coefficients of an acoustic panel. The results showed that the method can be used 

for the prediction of the absorption characteristics of acoustic panels of various 

shapes prior to their manufacture. 
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ΠΕΡΙΛΗΨΗ 

 

Στον τομέα της υπολογιστικής ακουστικής, ο υπολογισμός της κρουστικής 

απόκρισης ενός χώρου είναι μεγάλης σημασίας. Η πλειονότητα των ακουστικών 

παραμέτρων, όπως και η συχνοτική απόκριση του χώρου μπορούν να εξαχθούν 

από την κρουστική απόκριση. Η διατριβή συμβάλλει στην ανάπτυξη και 

αξιοποίηση της Μεθόδου Πεπερασμένων Στοιχείων στο Πεδίο του Χρόνου για 

τον υπολογισμό της κρουστικής απόκρισης και των ακουστικών παραμέτρων 

ενός χώρου. 

Στην διπλωματική αναπτύχθηκε  μεθοδολογία για την επίλυση των πιο κρίσιμων 

θεμάτων που αφορούν τη Μέθοδο των Πεπερασμένων Στοιχείων στο Πεδίο του 

Χρόνου. Τα βήματα που ελήφθησαν υπόψη για την ανάπτυξη μιας αξιόπιστης 

μεθόδου ήταν η κατάλληλη επιλογή πηγής, η κατάλληλη μοντελοποίηση των 

τοίχων, οι χρονικές κλίμακες, τα πλέγματα των πεπερασμένων στοιχείων, η 

μοντελοποίηση του υλικού ακουστικής απορρόφησης και η μέθοδος χρονισμού. 

Για το σκοπό αυτό υπολογίστηκαν οι κρουστικές αποκρίσεις και οι ακουστικές 

παράμετροι ενός χώρου αντήχησης και στη συνέχεια συγκρίθηκαν με τις 

αντίστοιχες που βρέθηκαν μετά από μέτρηση. Τα αποτελέσματα έδειξαν ότι η 

Μέθοδος των Πεπερασμένων Στοιχείων στο Πεδίο του Χρόνου μπορεί να 

παρέχει καλά αποτελέσματα για τον υπολογισμό της κρουστικής απόκρισης και 

των ακουστικών παραμέτρων σε ένα χώρο αντήχησης. 

Ως αξιοποίηση της Μεθόδου των Πεπερασμένων Στοιχείων στο Πεδίο του 

Χρόνου, έγινε εφαρμογή σε ένα εικονικό θάλαμο αντήχησης για τον υπολογισμό 

των συντελεστών απορρόφησης ενός ακουστικού στοιχείου. Τα αποτελέσματα 

έδειξαν ότι η μέθοδος μπορεί να χρησιμοποιηθεί για την πρόβλεψη των 

χαρακτηριστικών απορρόφησης ακουστικών στοιχείων διαφόρων σχημάτων 

πριν από την κατασκευή τους.  
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CONTRIBUTION TO THE STATE OF THE ART 

 

Finite Element Method (FEM) is among the most widely used numerical methods 

in acoustics. However few researchers have addressed the issue of using the 

method in the Time Domain (TDFEM) for room acoustics applications. For this 

reason the aim of this thesis was to broaden the current knowledge of TDFEM 

especially for measurements of impulse responses and acoustic parameters. We 

initiated this research by assembling all the right elements for an applicable and 

effective TDFEM [1, 2]. The same elements were used to simulate diffraction 

effects from sound barriers [3]. This thesis also provided additional contribution 

regarding the measurement methods that were essential for the experimental 

evaluation of TDFEM [4, 5]. 

The first contribution is the utilization of the TDFEM for measuring the 

absorption coefficient of acoustics panels [6]. In reality measuring the absorption 

coefficient of an acoustic panel requires the usage of a reverberation chamber. 

This process is time-consuming and costly. For this thesis the process of 

measuring the absorption coefficient of an acoustic panel was simulated with the 

use of the TDFEM. A ‘virtual reverberation’ method was created and the 

implementation of the process provided good results. With the use of this 

process the absorption coefficient of acoustic panels with variant shapes can be 

measured. The same method can also be utilized for the measurement of other 

acoustic characteristics of materials such as the diffusion coefficient. 

The second contribution involves mesh restriction requirements for room 

acoustic application of TDFEM. Experimental data showed that the cross 

correlation coefficient between calculated and impulse response has a 

decreasing step over time [7].  The same results were obtained after some 

theoretical calculations that are presented in this thesis. The importance of these 

findings is significant. Mesh restrictions imposed so far in the field of acoustics 

provides good results but mainly for calculations in the frequency domain. For 

calculations in the time domain it appears that mesh restriction requirements 

depends on the time duration of the impulse response. Hence it depends on the 
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reverberation time and volume of the room since the duration of the impulse 

response is affected by these characteristics. Longer impulse responses require 

smaller mesh size than the current restrictions for more accurate calculations.  

This study also contributes to a new understanding of the choice of 

measurement method according to levels of background noise. For the 

evaluation of the TDFEM precise measurements were required. The most 

common methods for impulse response and reverberation time measurements 

in acoustic spaces are the Exponential Sine Sweep (ESS) and Maximum Length 

Sequence (MLS). The ESS and MLS methods were applied for impulse response 

measurements with a varying level of background noise [4]. Results show that 

for reverberation time measurements the mean absolute error and standard 

deviation for the MLS method starts to rise at lower background noise levels 

compared to the ESS method. For low background noise levels the two methods 

provide similar results. Implications of the findings suggest the proposed method 

for measurement according to the levels of the background noise.  

Last but not least a novel alternative sound source for acoustic measurements 

was tested. A dodecahedral loudspeker is commonly required for precise 

impulse response and reverberation time measurements. A common directional 

loudspeacer was utilized to mimic the sound field created by a dodecahedral 

loudspeaker [5]. For this purpose the directional loudspeaker was placed in 

twelve positions similar to the positions of the cones of the dodechedral 

loudspeaker. For each position impulse response were measured and finally 

added up creating a single impulse response for the dirctional loudspeaker. The 

impulse response was also obtained with the use of a dodecahedral loudspeaker. 

The findings suggest that reverberation time measurements with the proposed 

method can provide usable results for acoustic spaces. According to the results 

the proposed method is one of the best alternative methods for measuring 

reverberation time when a dodecahedral speaker is not available. 
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Chapter 1  

 

1. INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

The acoustics of rooms, music halls, public spaces, schools, as well as the outside 

environment is an area of significant importance. Computational acoustic 

simulation can help to predict and adjust the acoustical characteristics of spaces 

prior to their manufacturing. With the consistent progress of computer 

technology, computational acoustic simulation has become a popular, 

indispensable, and powerful tool for sound design of architectural and urban 

spaces. There are many expectations for a variety of applications for prediction 

of room acoustics and noise propagation, development of acoustic materials and 

optimization of sound environments. At present and in the near future 

computational acoustics will be widely used in the fields of architectural 

acoustics, environmental acoustics and noise control. 
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Especially room Impulse Response (IR) modeling has been a subject of interest 

to acousticians for many years. The room impulse response is the output of the 

space when presented with a brief input signal, called an impulse.  With the 

calculation of the room impulse response the majority of the acoustic parameters 

that define a space can be derived. Almost all the acoustic parameters that can be 

measured in an area can result from the impulse response. Indicatively we can 

mention the Reverberation Time, Early Decay Time, Clarity, Speech 

Transmission Index as well as the Frequency Response and the Cumulative 

Spectral Decay of a space. Hence the acoustic behavior of an existing space is 

known if the impulse response is known.  Similarly we can predict the acoustic 

behavior of a space prior of its construction if we are able to model the acoustic 

space and calculate the impulse response.  Therefore the importance of the 

theoretical calculation of the impulse response of a room is significant.  

On a commercial scale, mainly for large spaces, acoustic parameters and the 

impulse response are calculated by applying principles of Statistical and 

especially Geometric Acoustics. Geometric acoustics is a branch of acoustics that 

studies propagation of sound on the basis of the concept of rays considered as 

lines propagating acoustic energy. Geometric acoustics is widely used in 

modeling room impulse responses because it is relatively easy to implement and 

provides good results in the mid and high frequency range. A short review of 

Geometric along with Statistical acoustics will be presented in the next chapter. 

Although these methods are helpful especially for practical application stages, 

they cannot adequately predict the impulse response of a space where the 

dimensions are such that they are affected by wave phenomena (e.g. standing 

waves). Wave based considerations are required for most rooms within the 

lower frequency range where the wave phenomena are eminent. Hence a wave 

acoustics approach is necessary for an accurate calculation of the impulse 

response and acoustic parameters of a space. The wave equation governs any 

sound field and a room’s impulse response is given by solving the wave equation 

with appropriate boundary conditions. For a wide range of frequencies within 

the audible range the wave phenomena greatly affect the correct prediction of 

the impulse response. 

https://en.wikipedia.org/wiki/Dirac_delta_function
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Wave methods are based on the numerical solution of the wave equation. 

Methods such as the Finite Element Method, Boundary Element Method (BEM) 

and Finite Difference Method (FDM) have many applications on the field of 

acoustics. Wave-based acoustic simulation techniques are steadily increasing 

their practicality and applicability in real life problems. With the rapid progress 

of computer technology wave based methods will become even more applicable 

for conducting acoustical investigations and carrying out design processes. 

Various applications of wave-based simulations are expected to be executed 

effectively. These methods enable us to investigate the sound fields in far more 

detail than Geometrical Acoustics. Of specific interest is the area of room acoustic 

simulation. The Finite Element Method has shown that it has the potential to be 

the most prominent method in the field of room acoustics. For this reason it 

seemed prudent to undertake a study of the Finite Element Method in the field of 

room acoustics for measuring the impulse response and acoustics parameters of 

a space. 

 

1.1 PROJECT SCOPE AND RESEARCH METHODS 

While there are many applications of the finite element method in the field of 

acoustics, few researchers have addressed the problem of calculating the 

impulse response and the derived acoustic parameters by applying the method 

in the time domain for room acoustics applications [8, 9]. Hence the goal of this 

investigation became trying to find out the applicability of the Time Domain 

Finite Element Method in the field of room acoustics. The main purpose of this 

thesis is to research a TDFEM that can derive accurately the impulse response 

and acoustic parameters of a room. A method that is practical and has little error 

compared with the actual measured results. This dissertation aims to address 

the discrepancies found when comparing the modeled and the measured room 

impulse responses. A goal of this thesis is to better match the modeled and the 

measured room impulse responses and to better understand why the 

simulations and the measurements of the room impulse responses may differ 



4 

 

even for simple cases like small reverberant rooms. Moreover this thesis will 

attempt to predict and solve problems that may arise in its implementation in 

real life rooms. 

For this purpose, a methodology for acoustic analysis with finite elements in the 

time domain is proposed.  The first step of this work is the theoretical calculation 

of the impulse response of an existing reverberant space with the finite element 

method. We develop a methodology for resolving the most crucial elements of an 

accurate method: source selection, correct modeling of walls, time step-time 

scales, finite element meshes, modeling of acoustic material and time stepping 

method. The impulse responses of the reverberant space were measured with 

the Maximum Length Sequence (MLS) technique and compared with the 

computed ones. With the help of simulations the numerical accuracy of the finite 

elements in acoustic analysis was tested. Acoustic parameters such as 

Reverberation Time, Early Decay Time, Clarity and Definition were extracted 

from the impulse responses along with the Cumulative Spectral Decays and 

Frequency Responses and compared with measured ones.  

On the second part of the thesis a utilization of the time domain finite element 

method is presented. The theoretical capability of calculating the impulse 

response and consecutively the room reverberation time provides the ability of 

theoretical calculation of the absorption coefficient of an acoustic panel. A virtual 

replication of the reverberation chamber method that is used for the 

measurement of the absorption coefficient of materials was performed. A 

reverberation chamber is an acoustic space that is used for the measurement of 

absorption characteristics of acoustic materials. The process was carried out for 

the theoretical calculation of the reverberation time of a reverberant room, with 

and without a test specimen. Then the absorption coefficient was calculated from 

the differences both for measured and calculated results. The application of this 

method is useful for calculation of the acoustic behavior of materials prior to 

their manufacture and prediction of the influence of the shape of the absorption 

material. This method will help in the development and optimization of acoustic 

panels. 



5 

 

1.2 THESIS STRUCTURE 

The thesis is divided into six main chapters: Elements of Acoustics, Finite 

Element Method in Acoustics and Formulations, Setup of Finite Element Method 

and Implementations, Acoustic Measurements, Comparison of Finite Element 

Method Modeling and Measurements and finally Conclusion and Future Work. 

The chapter of Elements of Acoustics contains the necessary background 

information required to contextualize the extent of this research problem. The 

relevant theoretical fundamentals of Acoustics are presented in four parts: basic 

quantities, wave acoustics and equations, impulse and frequency response and 

finally acoustic parameters and absorption coefficient. 

The chapter of the Finite Element Method, Acoustics and Formulations provides 

an introduction of the finite element method, a literature review of the 

applications of the Finite Element Method and the TDFEM in Acoustics, the basic 

steps of the method and the finite element formulation for the solution of the 

wave equation that was used for this thesis. 

The Setup of Finite Element Method and Implementations includes the steps that 

were taken into account for the development of an accurate method such as 

source selection, correct modeling of walls, time step-time scales, finite element 

meshes, modeling of acoustic material and the time stepping method. Detailed 

setup of implementations of the method is presented for different cases. 

The Acoustic Measurements chapter contains details about the actual 

measurements in a reverberant space such as the selection of the measurement 

method, speaker calibration, microphone calibration and application of ISO 354. 

Detailed setup of implementation of the measurements is presented for different 

cases. 

Comparison of Finite Element Method Modeling and Measurements present the 

findings of the previous sections, comparison of theoretical and experimental 

results as well with discussion of the results. 
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Finally the conclusions of the thesis are summarized in chapter 7. Also many 

avenues for future research are identified. 

An additional finite element formulation of the wave equation is presented in the 

Appendix, followed by the Bibliography. 
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Chapter 2  

 

2. ELEMENTS OF ACOUSTICS 

 

 

 

 

 

 

 

 

The chapter of Elements of Acoustics contains the necessary background 

information in the field of acoustics required to contextualize the extent of this 

thesis. It is divided into four subsections which are: Basic Sound Field Quantities, 

Wave Acoustics and Equations, Impulse and Frequency Response and finally the 

Acoustics Parameters and Absorption Coefficient. The Basic Sound Field 

Quantities section presents the quantities that will be used and calculated 

throughout this thesis. The section of Wave Acoustics and Equations contains 

necessary information about the wave and the Helmholtz equation. Especially 

different forms of the wave equation will be presented and discussed. Impulse 

and Frequency response section presents the importance and utilization of the 

impulse response in the field of acoustics. Finally the Acoustic parameters and 

Absorption Coefficient section presents the parameters and the absorption 

coefficient that were calculated, measured and compared in this thesis. 
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2.1 BASIC SOUND FIELD QUANTITIES 

Acoustics as a science may be defined as the generation, transmission, and 

reception of energy as vibrational waves in matter [10]. The phenomenon of 

sound in a medium essentially involves time-dependent changes of density, with 

which are associated time-dependent changes of pressure, temperature and 

positions of the fluid particles [11]. Hence, sound can be defined as mechanical 

disturbance due to particle movement in a medium.  The most common medium 

for sound propagation is air. Sound can also propagate to other media mediums 

such as water, metal, wood etc. 

The sensation of sound is the most familiar acoustic phenomenon. For the 

average young person, the mechanical disturbance due to particle movement in 

air is interpreted as sound if the frequency content is between 20 Hz to 20,000 

Hz. However, in a broader sense acoustics also includes the ultrasonic 

frequencies above 20,000 Hz and the infrasonic frequencies below 20 Hz.  

Elasticity is an important characteristic of a medium necessary for transmitting 

sound and is a common property of gases, liquids, and solid-state materials. 

When the molecules in an elastic medium are displaced from their normal 

configurations, an internal restoring force arises. A force proportional to the 

displacement acts on the molecules to restore them to their original position. The 

particles then are set in vibratory motion and an elastic wave will be propagated 

through the medium. The wave propagates at a speed that depends on the elastic 

properties of the medium. It is this elastic restoring force, coupled with the 

inertia of the system that enables matter to participate in oscillatory vibrations 

and thereby generate and transmit acoustic waves.  

The waves transmitted in air are longitudinal, since fluids cannot exhibit shear 

motion. Longitudinal waves are characterized by the oscillation of the wave 

motion being in the direction of the wave propagation. Examples include the 

simple sinusoidal vibrations produced by a tuning fork which are then 

transported through air, complex vibrations generated by a bowed violin string 
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and oscillations of a speaker cone. For this thesis we shall consider longitudinal 

waves in air. 

2.1.1 Sound Pressure 

Sound pressure is particularly important for the field of acoustics. Sound 

pressure or acoustic pressure is the local pressure deviation from the ambient 

(average, or equilibrium) atmospheric pressure, caused by a sound wave. The 

deflection of the molecules results in varying the local medium density and 

pressure from its equilibrium level [12]. Sound pressure is measured in pascals 

[Pa], which has a dimension [N/m2]. The total pressure 𝑝𝑇  at certain location is: 

 

 𝑝𝑇 = 𝑝0 + 𝑝 (2-1) 

 
where: 
𝑝𝑇 Total pressure at a certain location 
𝑝0 Static pressure or Equilibrium pressure 
𝑝 Sound pressure 

 

The static pressure at a point in the medium is the pressure that would exist at 

that point with no sound waves present. At normal barometric pressure, po 

equals approximately 105 Pa. Standard atmospheric pressure is usually taken to 

be 0.760 m Hg at 00C. This is a pressure of 101 325 Pa. In this thesis we shall 

assume 𝑝0=105 Pa. 

The sound pressure caused by the propagating disturbance is the most 

important and useful quantity in acoustics. The perception of sound is caused by 

the sound pressure acting on the eardrum. The acoustic properties of spaces 

depend on the spatial and temporal distribution of sound pressure. Since the 

sound pressure is a scalar quantity, it can be contained in equations that have no 

vectors. The static pressure and density in the atmosphere is quite larger than 

the acoustic pressure transmitted by waves in air. Even some of the loudest 

sounds generated (e.g., close to a jet engine) produce pressure fluctuations that 

are of the order of 100 Pa, while in everyday life, acoustic pressure fluctuations 
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vary in their magnitude from about 10-5 Pa (about the smallest sound that can be 

detected) to around 1 Pa (typical of the pressure fluctuations generated in a 

noisy workshop). 

The acoustic pressure is often symbolized by a logarithmic scale. Main reason for 

that is the extremely large range of acoustic pressure and the practicality of this 

approach. Sound pressure levels (SPLs) 𝐿𝑝 in decibel (dB) are formed by the 

following equation: 

 𝐿𝑝 = 20 log
𝑝𝑟𝑚𝑠

𝑝𝑟𝑒𝑓
 (2-2) 

where 𝑝𝑟𝑒𝑓 = 2 · 10-5  Pa is the internationally standardized reference value for 

sound waves in the air. The 𝑝𝑟𝑚𝑠 is the square root of the arithmetic mean of the 

squares of the acoustic pressure. 

2.1.2 Density, Particle Velocity, Particle Displacement 

The air that surrounds us consist of tiny molecules which are about 0.33 nm in 

diameter, but are 3.3 nm apart, so they only occupy 0.1% of the space. Even so, at 

room temperature, a cubic meter weighs 1.18 kg [13]. Due to the fluctuations of 

the sound pressure, the medium density also varies. The total density 𝜌𝑡is then 

equal to: 

 𝜌𝑇 =𝜌0 + ρ (2-3) 

where: 
𝜌𝑇  Total density at a certain location 
𝜌0 Static density or Equilibrium density 
ρ Density increment due to the sound pressure 

 

The ambient density of air is given by the formula: 

 𝜌0 =
𝑝0

287 ∙ 𝑇
 
𝐾𝑔

𝑚3⁄  (2-4) 



11 

 

T is the absolute temperature and p0 is the static pressure. At a normal room 

temperature of T=2950 K (220 C or 71.60 F), and for a static pressure p0 =105 Pa, 

the ambient density is ρ0= 1.18 kg/m3 [14]. This value of ρ0 will be used in this 

thesis unless otherwise stated. 

The particles or molecules of the media vibrate with a particle velocity 𝑢⃗  and 

particle displacement 𝑠  . These vectors are related as: 

 𝑢⃗ =
𝜕𝑠 

𝜕𝑡
 (2-5) 

 𝑠 = ∫ 𝑢⃗ ∙ 𝑑𝑡

𝑡

 (2-6) 

2.1.3 Speed of sound 

The speed of sound is the distance travelled per unit time by a sound wave as it 

propagates through an elastic medium. The speed c of the fluctuations in the 

medium is a vector quantity. In many equations it is used as a scalar when the 

magnitude of the sound speed is needed. The propagation direction of this vector 

is perpendicular to the wave fronts. These are surfaces of the equal wave phase. 

The sound speed direction denotes the direction of energy propagation.  

The speed of sound depends on several nonacoustic quantities. Temperature is 

the most common one which is associated.  The international ISO 9613 [15] 

standard provides details for precise calculation of c. One of the significant 

effects on c has the medium temperature as given for air by: 

 𝑐 = 343.2√
273.15 + 𝑇℃

293.15
𝑚/𝑠 (2-7) 
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Were 𝑇℃  is the medium temperature in centigrade. As the earlier equation 

reveals, the speed of sound for 20°C is 343.2 m/s or 1,235 km/h. The constant 

373.15 K is the absolute temperature of 0°C in Kelvin degrees. The speed has a 

weak dependence on frequency in air. In general we assume that the speed of 

sound is the same for every frequency. The speed of sound travels most slowly in 

gases has higher values in liquids and the highest in solids. 

2.1.4 Impedance 

The acoustic impedance at a given surface ZA is defined as the complex ratio of 

sound pressure averaged over the surface to volume velocity through it [16]. The 

surface may be either a hypothetical surface in an acoustic medium or the 

moving surface of a mechanical device. The SI unit of acoustic impedance is the 

newton second per cubic meter (N·s/m3) or the rayl per square meter (rayl/m2). 

 𝑍𝐴 =
𝑝

𝑈
 (2-8) 

The specific acoustic impedance ZS is the complex ratio of the sound pressure at 

a point of an acoustic medium or mechanical device to the particle velocity at 

that point. The SI unit of specific acoustic impedance is the pascal second per 

meter (Pa·s/m) or the rayl. That is: 

 𝑍𝑆 =
𝑝

𝑢
 (2-9) 

The characteristic impedance (r0c) is the ratio of the effective sound pressure at 

a given point to the effective particle velocity at that point in a free, plane, 

progressive sound wave. It is equal to the product of the density of the medium 

times the speed of sound in the medium (r0c). The unit is Newtons/m3or rayls.  

https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/Newton_%28unit%29
https://en.wikipedia.org/wiki/Rayl
https://en.wikipedia.org/wiki/International_System_of_Units
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2.2 WAVE ACOUSTICS AND EQUATIONS 

There are three main modeling approaches in acoustics that can be used to 

describe the complicated sound fields in spaces, which may be termed Wave 

acoustics, Geometrical acoustics, and Statistical (or Energy) acoustics. Wave 

acoustic is the most rigorous one and it is based on solutions of the wave 

equation. Geometrical acoustics is a simpler approach to modeling room 

acoustics and involves study of the propagation of sound rays throughout a 

room. Statistical acoustics discusses the acoustical properties of spaces in terms 

of the energy flow. 

Modeling of a sound field as a discrete system is the goal for wave based acoustic 

analysis. Modeling can be performed in the frequency or the time domain. Wave 

acoustic modeling is essential especially in the low frequency range where the 

acoustic wavelength is comparable to the space dimensions. The reason for that 

is that wave interference that causes resonances in the room dominates the 

acoustic field. When using the wave equation, issues having to do with 

diffraction, diffusion, and reflections are automatically handled since the 

phenomena are assessed from a fundamental perspective without using 

geometrical simplifications.  

Solving the wave equation allows for precise calculation of the acoustic pressure 

at any point in space. Appropriate boundary conditions and physical properties 

of the medium have to be defined. The materials that comprise the surfaces of a 

room can be defined in terms of their acoustic impedance. An analytical or a 

numerical approach can be used for solving the wave equation. High 

expectations have been placed for the field of wave acoustics for present and 

near future for solving problems that could not be resolved in the past. 

2.2.1 Derivation of the wave equation 

Wave equation dictates the propagation of acoustic waves through a medium. 

The form of the equation is a second order partial differential equation. The 

wave equation describes the evolution of acoustic pressure that was defined in 
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the previous chapter as a function of space and time. Presentation of the 

derivation of the wave equation allows for a better understanding of its different 

forms and allows for appropriate application for different cases. 

The following derivation of the wave equation requires several things [17]: 

• The medium is considered to be at rest. 

• The sound pressure must be small enough compared to the static 

pressure for the medium to be considered linear. In practice, the 

maximum sound pressure is assumed to be less than 0.001 times the 

static pressure. 

• There can be no heat exchange within the medium; that is, no heat flows 

into or away from the volume element. The process is said to be adiabatic. 

• There should be no losses in the medium. The medium does not exhibit 

viscosity or other phenomena leading to damping. 

• The medium is homogenous—the effects of gravitation are not 

considered. 

Basic laws of mechanics and thermodynamics are applied for this derivation of 

the wave equation. Sound pressure, density, particle velocity, temperature and 

basic equations are going to be utilized and combined into one equation, the 

wave equation. 

 Euler’s equation 

The derivation for a one dimensional sound field will be presented. The waves 

and the medium particles will be considered to oscillate in one direction. At this 

point, we will not consider the generator of the field but will concentrate on the 

mathematical relationship in the free field [18]. Figure 2-1 shows a very small 

portion of the sound field of cross section S and length dx. 
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Figure 2-1 Sound pressure acting on a small volume 

The two sides are considered perpendicular to the direction of the sound 

propagation. Different forces are applied to the sides so that the resulting force is 

equal to their differences: 

 𝑆[𝑝(𝑥) − 𝑝(𝑥 + 𝑑𝑥)] = −𝑆
𝜕𝑝

𝜕𝑥
𝑑𝑥 = 𝐹 (2-10) 

For the next step Newton’s law for force is used F = m(du/dt). For the volume 

element the total mass is m = (ρ + δ)Sdx including the density change due to the 

sound δ. The Lagrangian description of acceleration is changed into an Eulerian 

using the equation: 

 
𝑑𝑢

𝑑𝑡
=

𝜕𝑢

𝜕𝑡
+

𝜕𝑢 𝜕𝑢

𝜕𝑥 𝜕𝑡
≈

𝜕𝑢

𝜕𝑡
 (2-11) 

The second term in this equation is much smaller than the first term [19] and is 

neglected so that Equation 2-9 becomes linear. We substitute into Equation 2-8: 

 
−

𝜕𝑝

𝜕𝑥
= 𝜌𝑡

𝜕𝑢

𝜕𝑡
 

(2-12) 

This is the Euler’s equation. It presents the relationship between the sound 

pressure and the particle velocity. Its main use is in the calculation of the particle 
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velocity u from the acoustic pressure p. The first term in Equation 2-10 is a part 

of the 3D gradient operator, that is: 

 𝑔𝑟𝑎𝑑 ≡ ∇=
𝜕

𝜕𝑥
𝑖 +

𝜕

𝜕𝑦
𝑗 +

𝜕

𝜕𝑧
𝑘 (2-13) 

Equation (2-11) for a 3D field is: 

 𝑔𝑟𝑎𝑑𝑝 = −𝜌𝑡

𝜕𝑢⃗ 

𝜕𝑡
 (2-14) 

   

 Equation of continuity 

For this step the flux of the medium is going to be examined. The flux is defined 

by the product of medium density and velocity inside the considered volume at x 

in dt. This is shown in figure 2-2 where the flux moves into and out of a small 

volume element. The product of medium density and velocity defines the flux at 

position x in dt. It is given by: 

 𝑆𝜌𝑡(𝑥)𝑢(𝑥)𝑑𝑡 (2-15) 

 

Figure 2-2 Medium flow through a small volume 
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The flux going through S at x + dx is 

 

𝑆𝜌𝑡(𝑥 + 𝑑𝑥)𝑢(𝑥 + 𝑑𝑥)𝑑𝑡 = 𝑆 [𝜌𝑡(𝑥) +
𝜕𝜌𝑡

𝜕𝑥
𝑑𝑥] [𝑢(𝑥) +

𝜕𝑢

𝜕𝑥
𝑑𝑥] 𝑑𝑡

= 𝑆 [𝜌𝑡𝑢 +
𝜕(𝜌𝑡𝑢)

𝜕𝑥
𝑑𝑥 +

𝜕𝜌𝑡

𝜕𝑥

𝜕𝑢

𝜕𝑥
(𝑑𝑥)2] 𝑑𝑡 

(2-16) 

For equation 2-14 the last term can be considered small so it will be neglected. 

The medium flow from the volume now becomes: 

 𝑆[𝜌𝑡(𝑥)𝑢(𝑥) − 𝜌𝑡(𝑥 + 𝑑𝑥)𝑢(𝑥 + 𝑑𝑥)]𝑑𝑡 = −𝑆
𝜕(𝜌𝑡𝑢)

𝜕𝑥
𝑑𝑥𝑑𝑡 (2-17) 

The medium flow from the small volume is equal to the change of the matter 

(𝜕ρt/𝜕t)dtSdx.  This now can be formulated by the equation of continuity: 

 
𝜕(𝜌𝑡𝑢)

𝜕𝑥
= −

𝜕𝜌𝑡

𝜕𝑡
 (2-18) 

The particle velocity in the earlier equation is an x component of the velocity 

vector𝑢⃗ = 𝑢⃗ 𝑥𝑖 + 𝑢⃗ 𝑦𝑖 + 𝑢⃗ 𝑧𝑖 . To proceed with the earlier equation, we will use the 

div operator: 

 𝑑𝑖𝑣𝑢⃗ =
𝜕𝑢𝑥

𝜕𝑥
+

𝜕𝑢𝑦

𝜕𝑦
+

𝜕𝑢𝑧

𝜕𝑧
 (2-19) 

The equation of continuity can now be written in the following form: 

 𝑑𝑖𝑣𝑢⃗ = −
1

𝜌𝑐2

𝜕𝑝

𝜕𝑡
 (2-20) 
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 Thermodynamic Law and Wave Equation 

The sound field can be considered to consist of small volumes. Some volumes 

have positive acoustic pressure which results in an increased gas density and 

slightly higher temperature. Other volumes have negative acoustic pressure 

which results in a decreased gas density and slightly lower temperature. The 

temperature and density changes alternate very fast and hence it can be 

considered that there is no time for the heat to flow between those areas. This 

process can be called adiabatic. 

For an adiabatic process, the relationship between the sound pressure and the 

density is given by p = c2ρ [20], where c is a constant equal to the speed of sound. 

We substitute in Equation 2-16 for ρ in 𝜕ρt/𝜕t and obtain for the equation of 

continuity and Euler’s equation: 

 −𝜌
𝜕𝑢

𝜕𝑥
=

1

𝑐2

𝜕𝑝

𝜕𝑡
 (2-21) 

 −
𝜕𝑝

𝜕𝑥
= 𝜌𝑡

𝜕𝑢

𝜕𝑡
 (2-22) 

We can combine the two equations after deriving the first equation by x and the 

second by t and making the mixed terms equal. We obtain: 

 
𝜕2𝑝

𝜕𝑥2
−

1

𝑐2

𝜕2𝑝

𝜕𝑡2
= 0 (2-23) 

This is the one dimensional wave equation. There is not a source term in the 

equation so it applies for sound pressure-free waves. A similar equation can also 

be derived for acoustic quantities such as particle velocity and density. It is a 

fundamental equation that provides the spatial and temporal distributions of 

acoustic pressure. 
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In order to apply the equation in 3D problems, we replace 𝜕2p/𝜕x2 by a 3D 

Laplace operator Δ for a desired coordinate system. In Cartesian coordinates, the 

wave equation takes the form: 

 ∆𝑝 −
1

𝑐2

𝜕2𝑝

𝜕𝑡2
= 0 (2-24) 

The equation states that the acoustic pressure at any given point in space must 

behave in such a way to ensure that the second derivative of the pressure 

fluctuation with respect to time is related to the second derivatives of the 

pressure fluctuation with respect to the three spatial coordinates [21]. Therefore 

this form of the equation does not require the existence of some form of source. 

 

2.2.2 Other Forms of the Wave Equation 

The classical wave equation derived in the previous section describes linear, 

non-dissipative sound wave waves in a homogeneous steady medium at rest 

without the presence of a sound source. In reality the wave equation can have 

many forms. Campo’s comprehensive review gathered all forms of the wave 

equation [22, 23].  He stated that an extension of the classical wave equation may 

be required if any of the following four restrictions is lifted:   

• linearity, i.e., perturbations of the mean state with small slope;  

• neglect of dissipation, e.g., by shear and bulk viscosity and thermal 

conduction;  

• steady homogeneous medium, e.g., medium with properties, such as mass 

density and/or sound speed dependent on position, inhomogeneous 

and/or on time  unsteady 

• medium at rest or in nonuniform motion, nonuniform flows, e.g., potential 

or vortical. 
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In the context of this thesis in the field of acoustics, the forms of the wave 

equation that are going to be presented and are relevant with this study, are the 

linearized inhomogeneous wave equation and the lossy wave equation. 

 Linearized inhomogeneous wave equation 

The classical or linearized wave equation was previously derived on the 

assumption that the fluid element had no exchanges of heat or fluid mass. Also 

that it was not subject to any sound sources or external forces. The solutions of 

the equation therefore represent forms of sound waves that can exist, but tells us 

nothing about possible causes of their existence [24]. As a next step we proceed 

by modifying the linearized equation of mass conservation. The displacement of 

fluid volume is allowed hence the effect of sound sources can be included. For 

this reason the equation of motion and the equation of continuity that were 

combined for the formulation of the wave equation have to be modified. 

Euler’s equation does not require any extension. However, the equation of 

continuity that describes the fluid flux will be amended by a term ρQ that 

expresses generated mass per unit of volume flow Q [25]. The dimension of Q is 

[m3/s]. The equation of continuity extended and modified, is: 

 𝜌0𝑑𝑖𝑣𝑢⃗ = −
𝜕𝑝

𝜕𝑡
+ 𝜌0𝑄 =

1

𝑐2

𝜕𝑝

𝜕𝑡
+ 𝜌0𝑄 (2-25) 

We also need Euler’s equation for three dimensions: 

 𝑔𝑟𝑎𝑑𝑝 = −𝜌
𝜕𝑢⃗ 

𝜕𝑡
 (2-26) 

In order to obtain the wave equation for the sound pressure, we eliminate from 

the earlier equations 𝑢⃗  and obtain  
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 ∆𝑝 −
1

𝑐2

𝜕2𝑝

𝜕𝑡2
= −𝜌0

𝑑𝑄

𝜕𝑡
 (2-27) 

Volume velocity of the source is represented by the right side of equation 2-25. 

External sources can be applied to the equation such as vibrating surfaces, 

musical instruments and loudspeakers. The sound radiation of a dodecahedral 

loudspeaker that was used for this thesis can also be applied with the use of this 

equation. An analytical solution to the inhomogeneous wave equation can be 

found in Lamb[26]. 

This linearized inhomogeneous wave equation is the form of the wave equation 

that will be used in the finite element method formulation of this thesis. 

 Lossy wave equation for propagation of sound in fluids 

For the linearized wave equation and the linearized inhomogeneous wave 

equation that was presented before we assumed that there is no loss due to 

absorption of the medium. In reality when a sound source operates inside a 

room, the acoustic field which is created is governed not only by the absorbing 

characteristics of the boundaries but also by the absorption of the air filling the 

space. 

In order to account for the effect of viscosity of the medium the Navier-Stokes 

equations must be used for the derivation of the lossy wave equation. For the 

general case the lossy wave equation which accounts also for the losses of the 

medium takes the following form [27]: 

 

∇ (
1

𝜌0
∇𝑝) −

1

𝜌0𝑐2

𝜕2𝑝

𝜕𝑡2
+ ∇ [

4𝜇

3𝜌0
∇ (

1

𝜌0𝑐2

𝜕𝑝

𝜕𝑥
)]

= −
𝜕

𝜕𝑡
(
𝑄

𝜌0
) + ∇ [

4𝜇

3𝜌0
∇ (

𝑄

𝜌0
)] 

(2-28) 

where 
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c = speed of sound o in fluid medium ( √𝐾/𝜌0) 

K = bulk modulus of fluid 

μ = dynamic viscosity 

We can assume that the losses from the medium for the frequency range of this 

thesis (low frequencies) are negligible. However, if we want to apply wave 

acoustics at higher frequencies, we must also take into account the losses of the 

medium. In that case we must use the lossy wave equation for propagation of 

sound in fluids. The same equation should be utilized if we want to use wave 

acoustics for another medium, e.g. water. 

2.2.3 Boundary conditions 

The wave equation must be associated with boundary conditions. For that 

reason Neumann, Dirichlett or Robin conditions are assigned. These acoustic 

boundaries apply in the case of room acoustics where the domain is an enclosed 

space. In exterior problems where sound is radiated in unbounded media, the 

Sommerfeld radiation condition must be utilized. This condition ensures that the 

wave amplitude vanishes at infinity. A review of boundary conditions for the 

field of Acoustics can be found in Atalla  [28].  

 

Figure 2-3 Boundary conditions [28] 
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 Dirichlet boundary condition  

Dirichlet boundary condition is also called the fixed boundary condition or first 

type condition. In mathematics when imposed on an ordinary or a partial 

differential equation, it specifies the values that a solution needs to take along 

the boundary of the domain. Dirichlet boundary condition on the field of 

acoustics specify the acoustic pressure on the part ∂Ωf,D of boundary ∂Ωf depicted 

in figure 2-3 as: 

 𝑝 = 𝑝0 (2-29) 

 Neumann boundary condition 

Neumann boundary condition is also called natural boundary condition or 

second type boundary condition. In mathematics specifies the values of the 

derivative of a solution on the boundaries. For the field of acoustics the Neumann 

boundary condition is specified on the part ∂Ωf,N of boundary ∂Ωf  depicted in 

figure 2-3 as: 

 𝑛⃗  ∇𝑝 = 0 (2-30) 

 

 Robin or impedance boundary condition 

Robin boundary condition is also called third boundary condition. In acoustics it 

can also called impedance boundary condition. In mathematics when imposed on 

an ordinary or a partial differential equation, it is a specification of a linear 

combination of the values of a function and the values of its derivative on the 

boundary of the domain. For the field of acoustics the Robin boundary condition 

specifies the acoustic impedance on the part ∂Ωf,R of boundary ∂Ωf  [29]. 

 𝑍
𝜕𝑝

𝜕𝑛
+ 𝑗𝜔𝜌0𝑝 = 0 (2-31) 
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The symbol ∂/∂n denotes partial differentiation in the direction of the outward 

normal to the wall. For this thesis the Robin boundary condition is the one that 

was applied for the modeling of walls. Values of acoustic impedance can be 

measured or calculated for the application of the Robin boundary condition. 

 

2.2.4 Helmholtz Equation 

Apart from the wave equation, another equally important one in the field of 

acoustics is the Helmholtz equation named for Hermann von Helmholtz. The 

Helmholtz equation can result from the wave equation after applying the 

technique of separation of variables. If we assume that the time dependence of 

the sound pressure p is proportional to exp(jωt) [30] with ω denoting the 

angular frequency and j2=-1, the linearized homogeneous equation transforms 

into the Helmholtz equation [31]: 

 ∆𝑝 + 𝑘2𝑝 = 0 (2-32) 

where  𝐾 = 𝜔/𝑐 is the angular wave number. The Helmholtz equation represents 

a time-independent form of the wave equation. It can be applied to room 

acoustics or musical acoustics for identifications of resonant frequencies and 

modes of vibration for acoustic spaces and musical instruments respectively. 

 

2.2.5 Eigenfrequencies, Eigenmodes, Eigenvalues 

The Helmholtz equation supplemented by the boundary condition can only be 

solved for certain discrete values kn of the angular wavenumber k, so-called 

eigenvalues. Then each eigenvalue is related to a characteristic angular 

frequency ωn = ckn and hence to a frequency called the resonant frequency  or 

the eigenfrequency [31]. At resonance, the energy in the room will build up 

infinitely if there are no losses. This is called an oscillation mode of the room, an 

https://en.wikipedia.org/wiki/Hermann_von_Helmholtz
https://en.wikipedia.org/wiki/Separation_of_variables
https://en.wikipedia.org/wiki/Wave_equation
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eigenmode, or simply mode [32]. For each eigenfrequency, there is at least one 

eigenmode. For certain room dimensions, many eigenmodes may have identical 

eigenfrequencies.  

In the common case of a rectangular room that is bounded by three pairs of 

parallel and rigid walls, the eigenfrequencies of the room are presented from the 

Eq. 2-33. Expressed in Cartesian coordinates x, y, and z, the room extends from x 

= 0 to x = Lx in the direction of the x axis, from y = 0 to y = Ly in y direction, and z 

= 0 to z = Lz in z direction. For rigid walls, where Z =∞, according to Eq. (2-31) 

the boundary condition transforms into 𝜕𝑝 𝜕𝑥⁄ = 0 for x = 0 and x = Lx along 

with two similar equations for the y and the z direction. The Helmholtz equation 

in Cartesian coordinates reads 

 
𝜕2𝑝

𝜕𝑥2
+

𝜕2𝑝

𝜕𝑦2
+

𝜕2𝑝

𝜕𝑧2
+ 𝑘2𝑝 = 0 (2-33) 

Its solutions satisfying the boundary conditions are given by [33] 

 𝑝𝑛𝑥𝑛𝑦𝑛𝑧
(𝑥, 𝑦, 𝑧) = 𝐴 cos (

𝑛𝑥𝜋𝑥

𝐿𝑥
) cos (

𝑛𝑦𝜋𝑦

𝐿𝑦
) cos (

𝑛𝑧𝜋𝑧

𝐿𝑧
) (2-34) 

Here A is an arbitrary constant, and 𝑛𝑥, 𝑛𝑦 , and 𝑛𝑧 are integers. The associated 

eigenfrequency is 

 𝑓𝑛𝑥𝑛𝑦𝑛𝑧
=

𝑐

2
√(

𝑛𝑥

𝐿𝑥
)
2

+ (
𝑛𝑦

𝐿𝑦
)

2

+ (
𝑛𝑧

𝐿𝑧
)
2

 (2-35) 

If two of 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 are zero, the waves are called axial waves because they 

propagate in the direction of one of the room axes. A wave with the wave fronts 

perpendicular to one of the room walls is called a tangential wave (tangential to 

a wall). These waves have one of the wave numbers equal to zero. If none of the 

wave numbers is a zero, the waves are called oblique waves. 
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2.2.6 Other modeling approaches 

So far in this chapter we have presented elements of the field of wave acoustics 

where acoustical quantities can be defined as functions of space and time. For 

now, due to various reasons such as high computational costs, wave acoustics is 

not used in practical applications in the field of room acoustics. The most 

common methods that are applied are geometric and statistical acoustics. The 

statistical approach is the first scientific approach that has been implemented to 

architectural acoustics and is still in use today for the sake of easy 

implementation and simplicity. Geometric acoustics is the most widely used 

method for practical applications. The method provides satisfactory results 

down to the Schroeder frequency which is going to be presented in a following 

section (Sec. 2.2.7). 

 Geometrical acoustics 

Geometrical acoustics is a conceptually simpler approach for estimating the 

sound field of a room than wave acoustics. Its basic concept is that it follows 

energy propagation in a room. It can be considered an energy based 

approximation and the wave nature of sound is disregarded. Existing software 

that applies concepts of geometrical acoustics apparently can predict impulse 

response of concert halls above a frequency limit. This frequency limit is the 

Schroeder frequency and it will be presented in the next section (Sec. 2.2.7). The 

method is widely used in practical acoustic design. Two methods are commonly 

used in geometrical acoustics for prediction of impulse response: the ray tracing 

method   and the mirror image method. 

Ray tracing method [34, 35] is based on the use of Fermat’s principle that states 

that a wave travels by the quickest route and, in homogeneous air, sound follows 

straight lines, thought of as rays. The basis of ray tracing is that the sound power 

can be modeled as sound rays or particles that carry a part of the total power. A 

fraction of the power is carried by each ray and is emitted in the acoustic space 

in a straight line. When the ray reaches a surface or an object it is reflected or 

scattered. The software that is used emits the rays from different model sources 
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which emulate real life sources, e.g. monopole source (dodecahedron), 

loudspeaker source and follow its course in space. A source can be set to emit 

continuous rays in a large number (1,000–1,000,000) of uniformly spaced radial 

directions. According to the source the angular distribution of intensity is being 

specified according to source directivity. It is possible to simulate absorption 

from the air which is essential especially in the high frequency range since 

absorption increases with frequency. When a real source emits sound the 

intensity of the sound is decreased as the square of the distance travelled. In ray 

tracing modeling the divergence of rays automatically accounts for the 

decreasing of energy. 

An alternative to ray tracing is mirror image method [36, 37]. The basic idea is 

that mirror images are created as a result of reflection by plane surfaces. Then 

sound is assumed to arrive from the mirrored sources. When the ray hits a 

mirror, whether plane or curved, it will be reflected. For a mirror, the incident 

and reflecting sound as well as the normal to the surface are in the same plane, 

and the angles of incidence and reflection are equal. When the mirrored copies of 

the source are established, sound rays can be drawn from the mirror images to 

the listening position. Mirror image analysis can provide the same result with ray 

tracing method if a large number of rays are studied. 

In large and commercial scale mainly for large spaces, the impulse response is 

calculated by applying principles of geometric acoustics. The calculated impulse 

response will typically show some deviation from the actual measurements. The 

degree of this deviation depends on the acoustic characteristics of the space 

since geometrical acoustics neglect wave phenomena such as scattering and 

diffraction. However Schroder and Antani [38, 39] implemented diffraction 

modules into simulation software for ray tracing and image sources. Still the 

method is not sufficient for accessing the acoustic field in the low frequency 

range below the Schroeder frequency. Nevertheless, the ray tracing method and 

mirror image method are important practical tools in analyzing the reflection 

paths of a room since both methods often give sufficient results for practical 

work in room acoustics. 
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 Statistical acoustics 

The field of statistical acoustics originated from the work of Sabine [40].  Sabine’s 

empirical equation is still often used for an approximate calculation of 

reverberation time which is the most important acoustic parameter. 

Reverberation time is going to be presented in a following section (Sec. 2.4.1). 

Statistical acoustics, contrary to geometric or wave acoustics does not require 

utilization of a computer for its application. Through the years statistical 

acoustics has evolved by acquiring a solid mathematical foundation. 

In statistical acoustic the sound field is considered to be diffused. A sound field is 

said to be diffuse if on average over some time interval the sound intensity (as a 

vector) in any field point is omnidirectional with constant magnitude for all 

directions [41]. The intensity of sound, is the time-averaged sound energy that 

passes through unit cross-sectional area in unit time [42]. The central concept of 

statistical acoustics is that of a sound field, which is considered to be diffused,  

consisting of a very large set of statistically unrelated (uncorrelated) elemental 

plane waves of which the propagation of direction is random with a uniform 

probability distribution [43]. This implies that there is an equal probability that 

sound will arrive from any direction[44].In reality the diffuse field model is not 

well suited to the representation of sound fields in enclosed spaces that are not 

highly reverberant, that have one or two principal dimensions much greater than 

other(s) or that have highly non-uniform distributions of sound absorption over 

the boundaries [45].  

2.2.7 Schroeder Frequency  

Schroeder frequency can be defined as a cross over frequency in the spectra of 

an acoustic room. It separates the low frequency area of the room, where 

separate modes dominate the spectrum, from the high frequency region where 

modes of the room overlap [46, 47]. A room mode is the characteristic 

distribution of the sound pressure amplitude of a resonant frequency of the 

room [31]. Every resonant frequency and hence every mode of a room has a 

specific bandwidth in the frequency response of the room. The transition is 
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considered to occur at a modal spacing of around three modes within a given 

mode’s half-power bandwidth. The Schroeder frequency is defined as: 

 𝑓𝑠 = 2000√
𝑅𝑇

𝑉
 (2-36) 

where V is the volume of the room and RT is the reverberation time.  

The Schroeder frequency allows us to subdivide the room behavior into regions 

and indicates the techniques that can be used to calculate room response. Above 

the Schroeder frequency it is possible to analyze the room without having to take 

into account the behavior of its normal modes. Therefore geometrical or 

statistical acoustics can be applied. However below the Schroeder frequency 

these approaches will lead to significant divergences from the actual response of 

an acoustic space. Wave acoustics is the proper way for calculation of room 

response below Schroeder frequency. 

2.3 IMPULSE AND FREQUENCY RESPONSE 

Main motivation of this thesis is the precise calculation of the room impulse 

response. The frequency response of an acoustic space can be derived directly 

from the impulse response. Cumulative spectral decay which presents valuable 

information about the room resonances in the frequency and the time domain 

can also be extracted from the impulse response. The majority of the acoustic 

parameters can be calculated from the impulse response as it will be presented 

in the next section.  Finally impulse response provides the ability of auralization 

of an acoustic space, a property that is particularly important for the field of 

architectural acoustics. 



30 

 

2.3.1 Impulse Response 

The impulse response reveals the acoustic character of a room. It can be defined 

as the sound pressure as a function of time at the point of interest in the room for 

an impulsive source at some other point in the room  [48]. 

In the field of room acoustics, the impulse response can be divided into three 

sections: the direct signal that arrives from the source, early reflections from 

walls and subsequent reverberation. The direct signal is traveling the most direct 

path (a straight line from the source to the microphone position) and usually is 

expected to be the loudest. Sound reflected by the walls is losing energy because 

of the absorption and arrives later in at lower levels. The subsequent 

reverberation consists of the large number of reflections to the walls which 

normally leads to a random signal. As reflected copies of the original sound keep 

arriving later and later, at lower and lower amplitude levels, they form an 

exponential decay slope. This reverberation typically looks like something close 

to a straight line when displayed on a graph with a logarithmic amplitude scale. A 

typical impulse response of a room where the three sections discussed before 

are identifiable is presented in figure 2-4.  

All these sections contain a large number of information about the 

characteristics of a room. Except acoustic parameters and frequency responses 

that will be later discussed, also signal arrival times, direct sound and discrete 

reflections, decay characteristics, signal to noise ratio, clues about speech 

intelligibility can be measured. Even room shape and size can be estimated from 

the impulse response [49]. 

The impulse response is not only important in the field of room acoustic but also 

in many other fields. An impulse response is not only the time domain response 

of an acoustic space (time vs. amplitude) but also for a system in general. System 

not necessarily needs to be an acoustic space (room, concert hall, sports arena...). 

It can describe a filter, an equalizer, a loudspeaker, a microphone etc. So a more 

general definition is necessary. If the input signal to a Linear Time Invariant 

(LTI) system is the unit-impulse sequence δ(t), then the output signal is called 
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the impulse response of the system, h(t). The unit impulse sequence, with only 

one nonzero value at t = 0, is defined as [50]: 

 𝛿(𝑡) = {
1 𝑡 = 0
0 𝑡 ≠ 0

 (2-37) 

In order to define a linear system we have to estimate the link between input and 

output of the system. The link between input x(t) and output y(t) is linear if the 

concept of superposition applies – i.e. if y1(t) is the response to x1(t) and y2(t) is 

the response to x2(t) then the response to ax1(t)+bx1(t) is ay1(t)+by2(t) [51]. The 

system is called time invariant if the output does not depend explicitly on time.  

 

Figure 2-4 Impulse Response of a room 

2.3.2 Frequency Response 

The time domain behavior of a system (impulse response) can be displayed in 

the frequency domain as a spectrum and phase (transfer function) [52]. The 

classical Fourier analysis states that every time signal, with a finite energy, has a 

corresponding Fourier transform. The basic connection between the time 

domain and the frequency domain is the Fourier transform, with the following 

equation which transforms the time signal h(t) into the frequency spectrum 

H(f)[53]. 
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 𝐻(𝑓) = ∫ ℎ(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞

 (2-38) 

In a system analysis we assume that linear time-invariant system is excited with 

a signal x(t) and on output has signal y(t). Both signals x(t) and y(t) have 

corresponding Fourier transforms X(f) and Y(f). 

 

Figure 2-5 Linear Time Invariant System 

The relationship between the input and the output of an LTI system, in the 

frequency domain, can be expressed as: 

 𝑌(𝑓) = 𝑋(𝑓)𝐻(𝑓) (2-39) 

where complex function H(f) is called a frequency response: 

 𝐻(𝑓) =
𝑌(𝑓)

𝑋(𝑓)
= |𝐻(𝑓)|𝑒𝑗𝜑(𝑓) (2-40) 

 

Figure 2-6 Relationship between Impulse Response and Frequency Response 

x(t)

X(f)

y(t)

Y(f)

h(t)

H(f)
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|𝐻(𝑓)| is termed a magnitude response, and 𝜑(𝑓) is termed a phase response. 

The frequency response shows how the system changes the magnitude and 

phase spectrum of an input signal. The inverse Fourier transform of the 

frequency response is the impulse response.  

The product 𝑋(𝑓)𝐻(𝑓)has a Fourier pair in the time domain defined by the 

convolution 𝑥(𝑡) ⊗ ℎ(𝑡). This convolution is equal to the output signal 𝑦(𝑡): 

 𝑦(𝑡) = 𝑥(𝑡) ⊗ ℎ(𝑡) = ∫ ℎ(𝜏)𝑥(𝑡 − 𝜏)𝑑𝜏

∞

−∞

 (2-41) 

It is obvious, as by analyzing the convolution 𝛿(𝑡) ⊗ 𝑥(𝑡), we get: 

 ℎ(𝑡) = ∫ ℎ(𝜏)𝛿(𝑡 − 𝜏)𝑑𝜏

∞

−∞

 (2-42) 

The system frequency response is usually estimated by using the input-output 

cross-spectrum and the input auto-spectrum. By rewriting the expression for the 

transfer function in the following form: 

 𝐻(𝑓) =
𝑌(𝑓)

𝑋(𝑓)
=

𝑌(𝑓)𝑋∗(𝑓)

𝑋(𝑓)𝑋∗(𝑓)
=

𝑆𝑥𝑦(𝑓)

𝑆𝑥𝑥(𝑓)
 (2-43) 

we can get the frequency response by dividing the input-output cross-spectrum 

with the input autospectrum (star denotes the complex conjugate value) [54]. 

This equation is usually called H1 estimator. 

Fourier transform pairs of the cross-spectrum 𝑆𝑥𝑦(𝑓) and the input auto-

spectrum 𝑆𝑥𝑥(𝑓) are the crosscorrelation 𝑅𝑥𝑦(𝑡) and the auto-correlation 𝑅𝑥𝑥(𝑡). 

Using the H1 estimator for the frequency (and impulse) response estimation is 

important, as this estimator has good properties in reducing the influence of the 
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noise and distortions. The preceding theory is valid only for a noiseless 

environment and for an excitation signal that has infinite duration. In practice we 

always have some noise present and we can only analyze signals of finite 

duration. 

2.3.3 Cumulative Spectral Decay 

The cumulative spectral decay plot offers useful information about the behavior 

of the room, or for a system. It’s basically a frequency response chart, but with 

the added time element. It shows how the frequency response develops, after the 

input signal has stopped. In the cumulative spectral decay some frequencies will 

decay slowly, and will show up on the graph as sustained frequencies in time. 

This will be an indicative of the room resonances. Since there is an extra axis, the 

plot will be 3D (waterfall graph). 

Cumulative spectral decay is defined by Bunton and Small [55] as a time-

frequency function: 

 𝐶(𝑡, 𝜔) = ∫ ℎ(𝜏)𝑢0(𝜏 − 𝑡)𝑒−𝑗𝜔𝜏𝑑𝜏

∞

−∞

 (2-44) 

where h(t) is the impulse response function and 𝑢0(𝑡) is the unit step function. 

Theoretically 𝐶(𝑡, 𝜔) is a Fourier transform of the part of impulse response 

defined from the time t to infinity. 

To better understand the significance of this function we multiply 𝐶(𝑡, 𝜔)with 

𝑒𝑗𝜔𝑡. 

 𝐶(𝑡, 𝜔)𝑒𝑗𝜔𝑡 = ∫ ℎ(𝜏)𝑢0(𝜏 − 𝑡)𝑒𝑗𝜔(𝑡−𝜏)𝑑𝜏

∞

−∞

 (2-45) 

Next, we write the imaginary part of the equation only. We get: 
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 |𝐶(𝑡, 𝜔)| sin(𝜔𝑡 + 𝑎𝑟𝑔[𝐶(𝑡, 𝜔)]) = ∫ ℎ(𝜏)𝑢0(𝜏 − 𝑡) sin(𝜔(𝜏 − 𝑡)) 𝑑𝜏

∞

−∞

 (2-46) 

The integral on the right side is a convolution of the system impulse response 

h(t) and the excitation function 

 𝑓(𝑡) = 𝑢0(−𝑡)sin (𝜔𝑡) (2-47) 

which is a sine function that exist for 𝑡 < 0 , and is zero from 𝑡 ≥ 0. As the linear 

system response to the sine function is also a sine function we can conclude that 

|𝐶(𝑡, 𝜔)| is an envelope of the sine function response, after the excitation has 

been switched off. By a repeated application of the Fourier transform, each time 

for a part of an impulse response that is ahead in time by an interval dt, we get 

the time-frequency function. 

 

Figure 2-7 Cumulative Spectral Decay of a room 

Figure 2-7 depicts a cumulative spectral decay of a typical room for frequencies 

up to 1000 Hz and for time up to 4 sec. Especially below 200 Hz the resonant 

frequencies of the room and their decay time can be observed. For this 
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characteristic, cumulative spectral decays are particularly important in the field 

of room acoustics and also in the field of loudspeaker design. 

 

2.3.4 Auralization 

An important application of calculating the impulse response of an acoustic 

space is the ability to ‘auralize’ the acoustic field of the particular space. 

Auralization is a term introduced to be used in analogy with visualization to 

describe rendering audible (imaginary) sound fields [56]. Architects, sound 

designers and acoustic engineers can replicate the way sound waves will behave 

in a structure through the use of computer software [57].  

Once the room impulse response for the positions of the source and receiver in 

the room have been found, these can be appropriately convolved with the head-

related impulse functions and with the impulse responses of the sound-reflecting 

surfaces—the impulse responses of the various reflection coefficients described 

previously. This yields the binaural room impulse responses. These impulse 

responses (one for each ear) can be convolved with anechoically recorded 

sounds such as music or speech. Then one can experience the recordings 

reproduced in the actual space. The convolution can be done using software in a 

general purpose computer or by a dedicated hardware convolver.  

Auralization has a large number of interesting applications spanning 

information, education and entertainment. Its role in the near future will be 

enhanced especially in the field of virtual reality. 
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2.4 ACOUSTIC PARAMETERS AND ABSORPTION COEFFICIENT 

The acoustic behaviour of a room can be characterized by values of acoustic 

parameters that define the space. The majority of acoustic parameters can be 

extracted from the impulse response of the space. Depending on the usage of a 

space e.g. music, speech, theatre, the appropriate acoustic parameters are chosen 

for the representation of the room. 

A common way to estimate room acoustical characteristics is the standard ISO 

3382 [58]. The ISO defines several room acoustical parameters as shown in 

Table 2-1. The standard also defines methods for the estimation of these 

parameters from the measured impulse response [59]. 

Quantity Symbol Subjective Aspect 

Reverberation time  RT  (s) Reverberance, loudness, involvement 

Early decay time  EDT (s) Reverberance, clarity 

Clarity  C80 (dB) Clarity 

Definition  D50 (%) Speech definition 

Centre time  TS (s) Clarity 

Strength  G  (dB) Relative sound level 

Lateral energy fraction LF, LFC (%) Spatial impression 

Interaural cross-correlation IACC Spatial impression 

Table 2-1 Overview of General Room Acoustical Parameters (ISO 3382) 

 

2.4.1 Reverberation time - RT 

The most important room parameter is the Reverberation Time (RT). It is 

defined as a time interval required for the sound energy to decay 60 dB after an 

excitation in the room has stopped [60].   
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To estimate the reverberation time, measurement of the energy decay curve 

after the sound source is switched off is necessary. The energy decay curve is 

usually an irregular curve r(t) that is approximated with a linear decay. The 

linear decay approximation is useful in the presence of background noise where 

the time interval required for the sound energy to decay 60 dB can still be 

calculated, as shown on Fig. 2-8 

 

Figure 2-8 Energy decay curve for a sound that is switched off in time t=0 

The reverberation time is determined from the slope of the estimated linear 

decay as: 

 𝑅𝑇 = 60
𝑑𝑡

𝑑𝑟
 (2-48) 

Following the recommendation of the standard ISO3382, the energy decay slope 

can be estimated by the method of linear regression. The standard defines that 

measurement of the energy decay curve should be measured in standard octave 

bands 125Hz to 4kHz., or in third octave bands from 100Hz to 5kHz. The 

estimation of energy decay curve is obtained by the Schroeder integrated 

impulse response method [61]. Schroeder has shown by statistical analysis that 

the room averaged energy decay r(t) can be obtained from the backward 

integrated squared impulse response h(t): 
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 𝑟(𝑡) ≈ ∫ ℎ2(𝜏)𝑑𝜏

∞

𝑡

 (2-49) 

The Schroeder expression can be used in more practical, normalized logarithmic 

form: 

 10 log 𝑟(𝑡) = 10 log (
∫ ℎ2(𝑡)𝑑𝑡

∞

𝑡

∫ ℎ2(𝑡)𝑑𝑡
∞

0

) (2-50) 

Note that in this expression the denumerator represents the total energy. A 

typical energy decay curve of an actual room is depicted in figure 2-9. 

 

Figure 2-9 Energy Decay Curve of an actual Room 

ISO3382 also defines the following notation which is similar to RT and can be 

used in acoustic measurements: 
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• T30 : reverberation time determined from the average slope of the energy 

decay curve obtained from part of the decay curve between -5dB and -

35dB.  

• T20 : reverberation time determined from the average slope of the energy 

decay curve obtained from part of the decay curve between -5dB and -

25dB.  

• T10 : reverberation time determined from the average slope of the energy 

decay curve obtained from part of the decay curve between -5dB and -

15dB.  

 

2.4.2 Early decay time - EDT 

Early decay time (EDT) is defined as the time interval required for the sound 

energy level to decay 10 dB after the excitation has stopped [62]. To enable 

direct comparison with the reverberation time, the result is multiplied by a 

factor of 6. For an ideal exponential decay in a diffuse field, the expected value of 

the EDT equals reverberation time.  

Early decay time is correlates better with the human perception of reverberation 

of a room than the reverberation time [63]. Hence it gives a better subjective 

evaluation of the reverberation of a room. 

 

2.4.3 Clarity – C80, C50   

Clarity or "early to late index" C80 (C50) is defined as the logarithmic ratio of an 

impulse response's energy before time te, and its energy after te [64]. The value te 

=50 ms is used to express the clarity of speech, whereas te = 80 ms is better 

suited for music.  
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 𝐶80 = 10 log
∫ ℎ2(𝑡)𝑑𝑡

80𝑚𝑠

0

∫ ℎ2(𝑡)𝑑𝑡
∞

80𝑚𝑠

 (2-51) 

 𝐶50 = 10 log
∫ ℎ2(𝑡)𝑑𝑡

50𝑚𝑠

0

∫ ℎ2(𝑡)𝑑𝑡
∞

50𝑚𝑠

 (2-52) 

Original German name for the clarity is "Klarheitsmaß".  High values for the 

clarity indicate a large amount of the early energy, which corresponds to a 

subjective sensation of the clarity. On the contrary, a low clarity values indicate 

an unclear, excessively reverberant sound.  

Subjectively, acceptable value for 𝐶80 is -3dB or higher. For a good speech or text 

intelligibility acceptable value of 𝐶50  is -2 dB or higher. 

 

2.4.4 Definition – D50 

The Definition D50 or "early to total sound energy ratio" is a measure of the 

speech definition [65]. It is also known by its German name Deutlichkeit. It is 

defined as: 

 𝐷50 = 100
∫ ℎ2(𝑡)𝑑𝑡

50𝑚𝑠

0

∫ ℎ2(𝑡)𝑑𝑡
∞

0

  (%) (2-53) 

2.4.5 Centre time - TS 

The Centre time TS corresponds to the centre of gravity of the squared impulse 

response:  
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 𝑇𝑠 =
∫ 𝑡 ∙ ℎ2(𝑡)𝑑𝑡

∞

0

∫ ℎ2(𝑡)𝑑𝑡
∞

0

   (2-54) 

The upper integration limits are taken as the truncation point, or the end of the 

impulse response, according to the noise treatment option specified. 

The subscript S in the name TS stands for the German name “Schwerpunktzeit”. 

The value of TS is expressed in milliseconds. Low TS suggests a sensation of 

clarity, whereas high TS suggests a reverberant sound.  The centre time is very 

highly correlated with the EDT [66]. 

For an ideal system, the expected value of TS is proportional to the reverberation 

time RT: 

 𝑇𝑆,𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 =
𝑅𝑇

13.6
 (2-55) 

2.4.6 Strength - G 

The sound strength G (or, relative sound level) is defined as the logarithmic ratio 

of the sound pressure exposure (squared and integrated sound pressure) of the 

measured impulse response p(t) to that of the response p10(t) measured at a 

distance of 10m from the same sound source in a free field [67]. 

 𝐺 = 10 log10

∫ 𝑝2(𝑡)𝑑𝑡
∞

0

∫ 𝑝10
2 (𝑡)𝑑𝑡

∞

0

= 𝐿𝑝𝐸 − 𝐿𝑝𝐸,10 (2-56) 

 

 Sound exposure is determined for each octave band as;  
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 𝐿𝑝𝐸 = 10 log10

1

𝑇0
∫ (

𝑝(𝑡)

𝑝0
)

2

𝑑𝑡

∞

0

 (2-57) 

where p0 = 20uPa, T0 = 1s. 

The sound source must be omnidirectional, but this requirement is almost 

impossible to achieve in all frequency bands with real loudspeakers. To account 

for real loudspeaker directivity pattern, when making the measurement of LpE,10 

in a free field, or in anechoic room, it is necessary to make the measurement at 

every 12,5o around the sound source and to calculate the energy-mean value of 

the sound pressure exposure levels in order to average the directivity of the 

sound source. This can be done by power averaging overlays of octave band 

smoothed frequency response curves. That curves can be saved (as overlay) and 

later used to estimate sound strength in different room positions.  We get sound 

strength, or relative sound level, simply by subtracting values of overlay curve 

from the octave-smoothed frequency response. 

 The change of G over a distance in a room gives some indication of how diffuse 

the room's sound field is. The expected value in a room with diffuse sound field 

theory is given by: 

 𝐺𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 10 log (
𝑅𝑇

𝑉
) + 45(𝑑𝐵) (2-58) 

where V is the volume of the room and T is its reverberation time. 
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2.4.7 Other acoustic parameters 

There are many other acoustic parameters than can be calculated with the use of 

the impulse response. The calculation of these parameters requires the full 

spectrum measurement of the impulse response rather than octave band as the 

previous parameters. However, these parameters can be calculated by 

combining methods such as the finite element method (low frequency range), 

geometrical acoustics (mid and high frequency range).  

IEC-60268-16 standard defines the method for the estimation of speech 

intelligibility and gives a rating called STI - Speech Transmission Index - that is 

close to the subjective intelligibility score. The same standard also defines a 

simplified method for the estimation of speech intelligibility called RASTI – Rapid 

Speech Transmission Index. 

Besides STI ratings for male and female speech, an important parameter of 

speech intelligibility is %ALcons (Articulation Loss of Consonants) that has been 

defined by Peutz experimental work. It is used in architectural acoustics with an 

equivalent subjective rating.  

 

2.4.8 Absorption coefficient 

The absorption coefficient is an important characteristic of acoustic materials. It 

also defines the absorption characteristics of the surfaces of a space. In this 

thesis the coefficient was used in the application of the finite element method. 

Modeling of acoustic boundaries was implemented with utilization of the 

absorption coefficient of walls. Also the coefficient of an acoustic panel was 

calculated by using the finite element method. For these reasons a definition of 

the coefficient follows. 

When sound waves interact with real materials the energy contained in the 

incident wave is reflected, transmitted through the material, and absorbed 

within the material [68]. For this model the surfaces treated will be assumed 



45 

 

planar. Some curvature is tolerated for as long as the radius of the curvature can 

be considered large compared to the wavelength of the sound. The energy 

balance is illustrated in Fig. 2-10. 

 

 𝐸𝑖 = 𝐸𝑟 + 𝐸𝑡 + 𝐸𝑎 (2-59) 

 

Figure 2-10 Interaction of sound waves with a surface [68] 

 

This model involves the case of the interaction at the boundary of the material. 

We assume that the differences between absorption (conversion energy to heat) 

or transmission are not relevant. From the standpoint of the incident size we can 

assume that both mechanisms are absorptive since energy is not reflected. 

Because we are only interested in the incident side of the boundary, we can 

combine the transmitted and absorbed energies. If we divide Eq. (2-59) by Ei , 

 1 =  
𝐸𝑟

𝐸𝑖
+

𝐸𝑡+𝑎

𝐸𝑖
 (2-60) 
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we can express each energy ratio as a coefficient of reflection or transmission. 

The fraction of the incident energy that is absorbed (or transmitted) at the 

surface boundary is the absorption coefficient: 

 𝑎𝜃 =
𝐸𝑡+𝑎

𝐸𝑖
 (2-61) 

Absorption coefficients of materials can be found in standard textbooks such as 

Kinsler and Frey [69]. 
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Chapter 3  

 

3. FINITE ELEMENT METHOD, ACOUSTICS AND 
FORMULATIONS 

 

 

 

 

 

 

 

 

The chapter of Finite Element Method, Acoustics and Formulations is divided 

into four subsections. Those are: Introduction, Finite Element Method in 

Acoustics, Basic Steps of Finite Element Method and finally Finite Element 

Formulation of the Wave Equation. The first subsection serves as a general 

introduction to the method of finite elements. The section of Finite Element 

Method in Acoustics presents the method in the field of acoustics. Also, there is a 

reference to alternative wave based methods used in the field of room acoustics 

as well a comparison of the methods. The section of Basic Steps of Finite Element 

Method presents the general steps of the method along with a deeper 

presentation of the method with particular emphasis in the implementations in 

the field of acoustics. Finally the Finite Element Formulation of the Wave 

Equation section presents the formulation of the method that was applied for 

this thesis. 
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3.1 INTRODUCTION 

The best way to solve any physical problem governed by a differential or partial 

differential equation is to obtain the analytical solution.  Analytical solutions 

yield the values of a desired unknown quantity. They are given by a 

mathematical expression and are valid for a number of locations in a physical 

system, a body or a space. If the phenomenon is modeled using of ordinary or 

partial differential equations, appropriate methods are required for the 

analytical solutions. Complicated boundaries, geometries and loadings often 

prevent us from obtaining analytical solutions. Irregularities of boundaries, for 

example, can be difficult or impossible to describe mathematically. Hence 

numerical methods, such as the finite element method, have to be employed, to 

obtain acceptable solutions. 

Finite element method is one of the most widespread numerical methods for 

solving problems in a variety of fields. Typical problem areas of interest that are 

solvable by use of the finite element method include structural analysis, heat 

transfer, fluid flow, electromagnetic potential and acoustics. It is applicable to 

steady-state and time dependent problems as well as problems involving 

nonlinear material properties. Several mathematical concepts are combined 

under the finite element method. Finite element method has two primary 

subdivisions. The first utilizes discrete elements to obtain the joint 

displacements and member forces of a structural framework. The second uses 

the continuum elements to obtain approximate solutions to heat transfer, fluid 

mechanics and solid mechanics problems. The second approach is the true finite 

element method [70].  However finite element software is capable of solving 

both types of problems. The name finite element method is often used to denote 

both the discrete element and the continuum element formulations.  

The basic idea of the finite element method is the modeling of a body by dividing 

it into an equivalent system of smaller bodies. A mesh is formed by dividing the 

space into a large number of non-overlapping elements, which are subfields of 

finite extent.  The mesh can have an unstructured form in which the elements 



49 

 

can arbitrarily differ in size and position, provided the neighboring elements are 

hooked in a "compatible" way.  This feature facilitates the automatic creation of 

meshes for arbitrary shapes, which gives great practical value to the method. The 

method can also be easily applied to objects composed of several different 

materials and having mixed boundary conditions. After the completion of a mesh 

instead of solving the problem for the entire body, equations are formulated for 

each finite element. An approximate solution can be developed for each of these 

elements. The equations are combined taking care to ensure continuity at the 

interelement boundaries. All the individual solution are assembled together to 

obtain the solution of the whole body.  This results in a system of algebraic 

equations that can be solved with a variety of methods. 

For the application of the finite element method many general computer 

programs have been developed. User-assisting programs that generate a grid 

from a limited number of shape-defining points are available as well as programs 

that analyze the results and display them in graphic form for further study. The 

finite element method is the computational basis of many computer-assisted 

design programs. Dedicated software has helped widespread usage and 

dominance of the finite element method in many areas. The finite element 

method in the field acoustics is presented in the following section along with 

alternative competitive methods. 

 

3.2 FINITE ELEMENT METHOD IN ACOUSTICS 

This section presents the use and utilization of the finite element method in the 

field of acoustics. In the end of the subsection the alternative wave based 

methods of Boundary Element and Finite Difference will be discussed in 

comparison with the Finite Element method. 
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3.2.1 Literature review-Applications of the Finite Element 

Method and the TDFEM in Acoustics 

In the field of acoustics the first detailed study of the finite element method was 

presented by Gladwell in 1965 [71]. In the 1970s  it was used for analysis of 

frequency responses and normal modes in ducts, cavities, and rooms [72, 73] 

and for optimization of room shape regarding modal distribution in the low 

frequency range [74]. From the early stage, it has been also applied to vibro-

acoustic coupled systems and inhomogeneous sound fields [75, 76], which is 

currently useful for evaluation of sound insulation, floor impact noise, acoustic 

materials and components. Research developed to include the influence of sound 

absorbing materials [76, 77]. Later on the finite element method was used for the 

acoustic design of passenger car compartment [78, 79].  

Because of the emergence of low-cost, high-speed computers finite element 

method is also being applied in the field of architectural acoustics mainly for 

estimation of room resonances and reverberation [80-82]. With the recent 

progress of iterative solvers for linear systems, the application of the finite 

element method to real life rooms and concert halls is being challenged [83]. 

Especially for the field of room acoustics some work that has to be mentioned in 

the field of finite element method and the finite element method in the time 

domain is the following: 

Okuzono et al. [8] proposed a time domain finite element method for the 

calculation of the impulse response. Newmark time integration method was used 

and a COCG iterative solver. Also a hexahedral 27-node isoparametric element 

was used for this study. 

Also Okuzono et al. [84] applied an explicit time domain method for room 

acoustics and compared it with an iterative one that he has previously used. The 

results showed that for higher impedances of walls the method performed 

better. 
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A finite element method was also recently used by Ayr et al [85], for the low 

frequency qualification of reverberation test rooms . 

In his work Vorllander [57] discusses the application of measuring the impulse 

response in architectural acoustics towards virtual reality application uses. 

Noh and Bathe proposed an explicit time integration scheme for the analysis of 

wave propagations [86]. The application of this scheme in the field of room 

acoustics seems to be quite promising. 

Lam [87] discussed the issues for computer modeling of room acoustics in non-

concert hall settings. Among others a good agreement was found between the 

FEM, BEM and the analytical solution in reverberant rooms. 

 

3.2.2 Alternative Time Domain Methods 

Besides FEM, the main time domain methods that can be applied in room 

acoustics problems are mainly the Boundary Element Method (BEM) and the 

Finite Difference Method (FDM) that will be discussed in the following 

subsections. Alternative time-domain methods that may be applied to acoustics 

are the Linearized Euler Equation (LEE) method, the Constrained Interpolation 

Profile (CIP) method, and the Time Domain Finite Volume Method (TDFVM). 

Review of these methods can be found by Oshima et al [88]. The LEE method is 

applicable to wave propagation phenomena under the influence of arbitrary 

background flows. The main application of the method is sound propagation 

simulations outdoors where wind effects are not negligible. The CIP method is 

characteristic in that the method is in principle free from numerical dispersion. 

The characteristic allows simulations with high phase accuracy. The TDFVM 

method is constructed on an unstructured grid system. The method thus has an 

advantage in modeling complex geometries compared to the TDFDM method 

where orthogonal structured grid is used. 
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 Finite Difference Method in Acoustics 

The Finite Difference Method is a numerical method for solving differential 

equations by approximating them with difference equations. In this approach 

instead of describing the surface with a mesh (as with the FEM, BEM), a grid is 

used and the algebraic equations [89] are solved at the points of the grid. Hence 

the volume of the medium is represented as a mesh of interconnected nodes, and 

the differential terms of the wave equation are replaced by finite-difference 

approximations between nodes in space and time. This creates many unknowns, 

but their interactions are simple and efficient to solve. 

For transient phenomena the Time Domain Finite Difference Time Method 

(TDFDM) is a popular competing algorithm. It is a very efficient method in terms 

of computational speed and storage while also offering excellent resolution in 

the time domain. The explicit formulation makes computations efficient, and the 

computational effort increases linearly with the number of discretization cells. 

Especially in the field of room acoustics the TDFDM has been used for computing 

the impulse response in a space. It has been demonstrated [90] that the method 

can be used to effectively model low-frequency problems in room acoustics 

simulations.  

However, the architectural space boundary shape is simulated by a staircase 

approximation which is a fundamental disadvantage for the finite difference 

method. Difficult boundary conditions will result in errors for the method. The 

room’s shape is an important factor in determining acoustic behavior. Results 

from Sakamoto et al [91] were in good agreement in the middle-frequency bands 

but in the low-frequency range, large discrepancies were observed because of 

the difficulties in determining and modeling the boundary conditions. Sakuma 

states [92] that the simple discretization of the wave equation in which the 

method has its basis is not sufficient for modeling more complex wave 

propagation phenomena, high-accuracy simulations, or acoustic fields with 

complex geometries. Also dispersion is a critical cause for errors for the TDFDM 

[93].  
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 Boundary Element Method in Acoustics 

The Boundary Element Method is a numerical computational method for solving 

linear partial differential equations which have been formulated as integral 

equations. It can be applied in many areas of engineering and science such as 

fluid mechanics, fracture mechanics, electromagnetics and wave propagation 

[94]. 

In the field of acoustics the BEM is based on Green’s theorem, according to which 

the pressure at a point can be calculated from knowledge of the acoustic 

conditions at the boundary  [95]. The main difference between FEM and BEM is 

in the requirement in FEM for modeling of a closed acoustic space and its 

boundary, whereas BEM can be used for an open space and only requires 

modeling and meshing of the boundary. With the FEM, results are obtained for 

all nodes, whereas the BEM only gives one point at a time. In both methods, all 

physical effects such as surface scattering and diffraction are included, provided 

the boundaries can be correctly described. 

Because BEM requires only meshing of the boundary in the case of homogeneous 

problems it can be said that it can produce a faster solution. Astley [96] states 

that the question of whether BE or FE methods are the more effective for 

acoustical computations remains an open one. BEM models that discretize only 

the bounding surface require fewer degrees of freedom but are nonlocal in space. 

FE models require many more variables but are local in space and time, which 

greatly reduces the solution time for the resulting equations. Research from 

Harati  [97] suggests that, for interior problems, finite element methods are 

more economical on most practical configurations. Davies [98] states that the 

major advantage of the FEM is that it is significantly further advanced than the 

BEM and that there is a wide variety of easily available codes.  

The general purpose applicability, robustness, mathematical structure and 

overall flexibility of finite element methods highlight their attractiveness and 

justify further developments of the methods. The strength of FE models lies in 

their ability to treat inhomogeneous media and difficult boundary conditions 
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that may arise in real life room acoustics problems. From all the methods 

mentioned above only the FEM has become sufficiently inexpensive and 

simplified in commercial software, for practical application in the field of 

acoustics.  

 

3.3 BASIC STEPS OF THE FINITE ELEMENT METHOD 

This section contains the basic steps of the finite element method. Although the 

particulars will vary, the implementation of the finite-element approach usually 

follows a standard step-by-step procedure  [99, 100]. The following provides an 

overview of each of the finite element steps. 

3.3.1 Definition of governing equations  

Initially we define the problem which usually may be an ordinary differential 

equation or partial differential equation. In the field of acoustic common 

problems to be solved include some form of the wave equation (Eq. 2-24) or the 

Helmholtz equation (Eq.2-32).  

For a more general approach to the finite element method let us consider the 

partial differential equation: 

 𝐿[𝑢(𝑟 )] = 𝑓(𝑟 ) (3-1) 

The PDE is defined in a domain ΩF. 𝐿[∙] represents a linear differential operator. 

𝑢(𝑟 ) is the unknown function to be determined and 𝑓(𝑟 ) is the source function.  

The basic concept of the finite element method consists of discretizing the 

continuum problem so that an approximate solution can be found by solving an 

algebraic system of equations. The next step to that direction is to transform the 

governing equation into a weak integral formulation. 
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3.3.2 Weak Integral Formulation 

In mathematics the weak formulation is a significant concept for the analysis of 

ordinary and partial differential equations. Its application allows the transfer of 

linear algebra concepts for the solution of problems in many fields. An equation 

after its weak formulation has solutions with respect to certain test functions. 

The concept of the weak formulation is utilized in the finite element method. 

 Derivation of the Weak Formulation  

Derivation of the weak formulation of an ordinary or partial differential equation 

results from multiplying the equation with a function, called test function. As a 

next step an integral is applied on both sides of the equation. The test functions 

play a crucial role in the finite element method. A test function that solves the 

integral equation is a likely candidate for solving the original PDE or ODE 

problem. 

The divergence theorem by Gauss or Green’s formula (also known as integration 

by parts) can then be applied on second order derivatives. The boundary 

conditions are significant for the correct implementation of the weak 

formulation to the problem. The boundary integral is responsible for the correct 

modeling of the interactions with the surrounding. 

Multiplying Eq. 3-1 by a test function 𝑤(𝑟 ), and integrating over the domain 

gives the following formulation: 

 ∫ 𝑤(𝑟 )

𝛺𝐹

𝐿[𝑢(𝑟 )]𝑑𝛺 = ∫ 𝑤(𝑟 )

𝛺𝐹

𝑓(𝑟 )𝑑𝛺 (3-2) 

By defining the symbol (∗,∗) as: 
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 (𝑎, 𝑏) = ∫ 𝑎(𝑟 )

𝛺𝐹

𝑏(𝑟 )𝑑𝛺 (3-3) 

Eq. 3-2 can be written as: 

 (𝐿[𝑢], 𝑤) = (𝑓,𝑤) (3-4) 

  Test Functions - Galerkin’s method 

There are many possible choices for test functions. More precisely, we consider 

not only one test function, but a whole class of test functions represented by w 

where each one corresponds to an equation. Of course, we could never consider 

all possible test functions as this would result in an infinite amount of equations. 

In practice, we need a finite number of well-chosen test functions. 

A finite element method divides the domain into a mesh. The geometry is divided 

into a set of smaller volumes — elements. Test functions can then be defined 

using polynomials on each element. A requirement is that they are non-zero only 

on a small group of neighboring elements, and zero outside the group. The most 

common type of polynomials, constructed in this way, is known as Lagrange 

shape functions.  

Galerkin's method uses the same functions that were used in the approximating 

equation. This approach is the basis of the finite element method for problems 

expanding in a variety of fields. This method yields the same result as the 

variational method [101] when applied to differential equations that are self-

adjoint. Galerkin's method is used to develop the finite element equations for the 

field problems discussed in this thesis. 
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3.3.3 Discretization 

This step involves dividing the solution domain into finite elements. A finite 

element mesh is a partition of a given domain into subdomains, which are called 

elements, such that every point of the domain is found in one of the elements. 

The entire domain has to be covered by the elements without overlapping, and 

the conditions of compatibility between finite elements on the boundary have to 

be satisfied as well. A finite number of nodes define the topology of each element. 

They are placed on the vertices, edges or on the surfaces of the elements or even 

inside them. The finite element method facilitates the use of an unstructured grid 

in which the elements can arbitrarily vary in size and position, provided the 

neighboring elements are hooked to a node in a "compatible" way. Locating and 

numbering of the node points, have to be included as well as specifying their 

coordinates values. This characteristic of the method gives great practical value 

and applicability in a variety of fields.. 

Two-dimensional domains can be discretized into triangular, quadrilateral or a 

mixture of triangular and quadrilateral elements. Over three-dimensional 

domains, tetrahedral and hexahedral elements can be used. Also in some cases 

wedges, pentahedral elements and pyramid elements could also be employed.. 

Figure 3-1 provides examples of elements employed in two and three 

dimensions. The points of intersection of the lines that make up the sides of the 

elements are referred to as nodes and the sides themselves are called nodal lines 

or planes.  

To reduce discretization (numerical) error in a finite element analysis, the 

quality of the finite element meshes has to be optimized such that the element 

size is in compliance with the specified nodal spacing and that the shape of the 

elements ought to be as equilateral as possible. For conforming meshes, the 

boundary nodes of the finite element mesh have to lie on the boundary surface of 

the given domain, and for constrained meshes, apart from the geometrical 

requirements of a conforming mesh, additional topological requirements such as 

specified edges and faces have to be present in the mesh as well [102]. 
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Furthermore, a higher-order curvilinear element can also be employed to fit 

domains with curved boundaries to reduce discretization error. More details 

about mesh creation and mesh requirements in the field of finite element in 

acoustics especially for the problem encountered in this thesis can be found in 

section 4.1.4. 

  

Figure 3-1 Examples of elements in two and three dimensions 

 

For that reason the domain ΩF is divided in a set of m elements 𝑇1,𝑇2,…….,𝑇𝑚, which 

do not overlap, hence ∀ 𝑖 ≠ 𝑗: 𝑇𝑖 ∩ 𝑇𝑗 . The mesh now can be represented as: 

 𝑇ℎ(𝛺𝐹) = ⋃𝑇𝑖

𝑚

𝑖=1

 (3-5) 

A set of P grid points, the nodes, have to be defined, with each point 𝑝𝑘 ∈ 𝑃  being 

described by a global index k=1,2,….,N, where N is the total number of nodes in 

the mesh. 

 

Triangular 
Element

Quadrilateral 
Element

Node
Nodal Line

Hexahedron Element

Tetrahedron Element 
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3.3.4 Approximation of variables and calculation of 

elementary matrices 

An approximate solution for the unknown function 𝑢(𝑟 ) now has to be defined. 

The approximate solution is 𝑢ℎ(𝑟 ) and the unknown function 𝑢(𝑟 ) can be 

expressed as: 

 𝑢ℎ(𝑟 ) = ∑𝑢𝑖𝑁𝑖(𝑟 )

𝑁

𝑖=1

 (3-6) 

𝑤ℎ𝑒𝑟𝑒 𝑁𝑖(𝑟 ) are the so called shape functions. 

Now the approximate solution of Eq.3-4, is determined by the coefficients 𝑢𝑖  

which represent the value of the unknown function at the node i. At the node i 

where the point is given by the coordinates 𝑟 𝑖, the shape functions must satisfy 

the following conditions: 

 𝑁𝑗(𝑟 𝑖) = 𝛿𝑖𝑗 ,          𝑖, 𝑗 = 1,… . , 𝑁 (3-7) 

For the next step we substitute Eq.3-6 into Eq. 3-4. For Galerkin’s method we 

choose as a test function 𝑤 = 𝑁𝑗(𝑟 ). We obtain: 

 (𝐿 [∑𝑢𝑖𝑁𝑖

𝑁

𝑖=1

] , 𝑁𝑗) = (𝑓,𝑁𝑗),            𝑗 = 1,… . , 𝑁 (3-8) 

since  𝐿[∙]is a linear operator and the coefficients 𝑢𝑖  are constants we can write: 

 ∑𝑢𝑖(𝐿[𝑁𝑖], 𝑁𝑗)

𝑁

𝑖=1

= (𝑓,𝑁𝑗),            𝑗 = 1, … . , 𝑁 (3-9) 
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The previous equation is a linear system of N equations with N unknowns, 

𝑢1, 𝑢2, . . , 𝑢𝑁. Eq.3-9 can now be written in a matrix formation: 

 𝑨𝒙 = 𝑩 (3-10) 

𝑨 = (𝑎𝑖𝑗) is called stiffness matrix. It is given by: 

 𝑨 = (𝑎𝑖𝑗) = (𝐿[𝑁𝑖], 𝑁𝑗) = ∫ 𝐿[𝑁𝑖(𝑟 )]𝛺𝐹
𝑁𝑗(𝑟 )dΩ,   𝑖, 𝑗 = 1,… . , 𝑁 (3-11) 

𝒙 = (𝑢1, 𝑢2, … . . , 𝑢𝑁)𝑇 is the vector of unknown coefficients 

𝒃 = (𝑏1, 𝑏2, … . . , 𝑏𝑁)𝑇 is the load vector given by: 

 𝑏𝑗 = (𝑓,𝑁𝑗) = ∫ 𝑓
𝛺𝐹

(𝑟 )𝑁𝑗(𝑟 )dΩ,   𝑗 = 1,… . , 𝑁 (3-12) 

 

 Shape functions 

As a next step we have to define the shape functions for our formulation. It is 

common to use polynomials as shape functions for finite element formulations. A 

common approach for modeling in 3d is the use of tetrahedral. Hence shape 

functions must be defined for every tetrahedron of the mesh. 

Let us consider the tetrahedron in a Cartesian system in the following picture. 
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Figure 3-2 Tetrahedral Finite Element in Cartesian coordinates 

 

The shape function of the node i has the following form: 

 𝑁𝑖(𝑥, 𝑦, 𝑧) = 𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑦 + 𝑑𝑖𝑧,        𝑖 = 1,… ,4 (3-13) 

If we consider the following condition the coefficients 𝑎𝑖 , 𝑏𝑖, 𝑐𝑖,𝑑𝑖 can be 

calculated: 

 𝑁𝑗(𝑟 𝑖) = 𝛿𝑖𝑗 ,        𝑖, 𝑗 = 1,… .4 (3-14) 

For this element a system of four equations and the four coefficients is formed. 

The same has to be repeated for all the elements so that all the shape functions 

are determined. The next step is the solution of equation 3-10. This can be 

achieved after the shape functions have been derived and integrated. 

In practice the above calculations are carried by a software implementation 

usually after a coordinate transformation has been applied. The main reason for 

this approach is the simplification of the calculations. 
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A tetrahedron in a transformed coordinate system can be shown in the following 

figure. 

 

Figure 3-3 Tetrahedral Finite Element in a Transformed Coordinate system 

 

The points in the original Cartesian coordinates (x, y, z) can now be transformed 

in corresponding points (ξ1, ξ2, ξ3) as follows: 

 

𝑥 = 𝑥1 + (𝑥2 − 𝑥1)𝜉1 + (𝑥3 − 𝑥1)𝜉2 + (𝑥4 − 𝑥1)𝜉3 

𝑦 = 𝑦1 + (𝑦2 − 𝑦1)𝜉1 + (𝑦3 − 𝑦1)𝜉2 + (𝑦4 − 𝑦1)𝜉3 

𝑧 = 𝑧1 + (𝑧2 − 𝑧1)𝜉1 + (𝑧3 − 𝑧1)𝜉2 + (𝑧4 − 𝑧1)𝜉3 

(3-15) 

The above transformation leads to the Jacobian matrix: 

 𝑱 = [

𝑥2 − 𝑥1 𝑥3 − 𝑥1 𝑥4 − 𝑥1

𝑦2 − 𝑦1 𝑦3 − 𝑦1 𝑦4 − 𝑦1

𝑧2 − 𝑧1 𝑧3 − 𝑧1 𝑧4 − 𝑧1

] (3-16) 

The new nodal basis functions for the tetrahedron in the transformed coordinate 

system are now [103]: 
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𝑁1
𝑡(𝜉1, 𝜉2, 𝜉3) = 1 − 𝜉1 − 𝜉2 − 𝜉3 

𝑁2
𝑡(𝜉1, 𝜉2, 𝜉3) = 𝜉2 

𝑁3
𝑡(𝜉1, 𝜉2, 𝜉3) = 𝜉3 

𝑁4
𝑡(𝜉1, 𝜉2, 𝜉3) = 𝜉1 

(3-17) 

 

3.3.5 Assembling – Imposition of constraints 

After the individual element equations are derived, they must be linked together 

or assembled to characterize the unified behavior of the entire system. The 

assembly process is governed by the concept of continuity. That is, the solutions 

for contiguous elements are matched so that the unknown values (and 

sometimes the derivatives) at their common nodes are equivalent. Thus, the total 

solution will be continuous. When all the individual versions are finally 

assembled, the entire system is expressed in matrix form.  

Before the element equations are assembled, a global numbering scheme must 

be established to specify the system’s topology or spatial layout. This defines the 

connectivity of the element mesh. Once the topology is specified, the element 

equation can be written for each element using the global coordinates. Then they 

can be added one at a time to assemble the total system matrix  

Finally the equations must be modified to account for the system’s boundary 

conditions. These adjustments result in the final matrix form ready to be solved. 
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3.3.6 Solution and convergence study 

 Solution 

Solutions of Eq. 3-19 can be obtained with techniques such as LU decomposition 

[104]. In many cases, the elements can be configured so that the resulting 

equations are banded. Thus, the highly efficient solution schemes available for 

such systems can be employed. 

These quantities are usually related to the derivative of the parameter and 

include the stress components, and heat flow and fluid velocities. 

 Postprocessing 

Upon obtaining a solution, it can be displayed in tabular form or graphically. In 

addition, secondary variables can be determined and displayed. Although the 

preceding steps are very general, they are common to most implementations of 

the finite-element approach.  

 Numerical Error  

Finite element solutions of  problems that can be encountered in acoustics may 

have errors [105] compared to the analytical solution. Possible errors that may 

arise are approximability error and pollution error. Astley [106] states that 

approximability error is a measure of the best approximation, which can be 

achieved for a given spatial interpolation while the pollution error is associated 

with the numerical representation of phase or dispersion.  

The approximability error decreases as (𝜆 ℎ⁄ )−𝑝 where λ is the smaller 

wavelength of a solution, h is the node spacing and p is the polynomial order of 

the shape functions. The approximability error will be smaller for higher order 

elements. Larger values of 𝜆 ℎ⁄  are essential for a better finite element method 

representation. This is achieved with smaller node spacing. An extensive review 

applicable to this thesis for problems in acoustics is presented in section 4.1.4. 
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For the finite element method the pollution error depends of the dimensions of 

the computational domain. For acoustical problems the pollution error is large 

when the wavelength of the disturbance is small compared to the dimensions of 

the space. This means that for higher frequencies the pollution error is also 

higher. The error may not be significant over a single wavelength but it may be 

accumulate over many wavelengths. This means that the pollution error may 

vary not only with the value of frequency but also with the size of the 

computational domain. The overall global error for a finite element solution for 

the Helmholtz equation takes the form [107]: 

 𝑒 ≤ 𝐶1 (
ℎ𝑘

2𝑝
)
𝑝

+ 𝐶2𝑘 (
ℎ𝑘

2𝑝
)
2𝑝

 (3-18) 

The first term represents the approximability error, the second the pollution 

effect. C1 and C2 are constants. For three dimensional problems considering the 

pollution error there are also considerations of element orientation with respect 

to wave direction. 

In general the accuracy of a solution can be refined by two ways. By reducing 

mesh size for a fixed value of p. This is called h-refinement. The other way is by 

increasing the order of the elements. This is called p refinement. There are also 

combinations of the two techniques (h-p refinement). The most common method 

for better accuracy of solutions in the field of acoustics is the h refinement. 

Nevertheless higher order spectral elements (p ∼ 5) have been applied for short 

wave problems with promising results [108].  
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3.4 FINITE ELEMENT FORMULATION OF THE WAVE EQUATION 

The finite element formulation of the linearized inhomogeneous wave equation 

is presented [109-111]. This is the equation that will be mainly applied in this 

thesis. 

The finite element formulation is obtained by testing wave Equation 2-25 using 

the Galerkin method. Equation 2-25 is multiplied by testing function w and 

integrated over the volume of the domain, which after some manipulation, yields 

the following: 

   

∫
1

𝜌0𝑐2
𝑤

𝜕2𝑝

𝜕𝑡2
𝑑𝑣

𝛺𝐹

+ ∫ ∇𝑤 (
1

𝜌0
∇𝑝)𝑑𝑣

𝛺𝐹

− ∫ 𝑤
1

𝜌0
𝑛̂∇𝑝𝑑𝑠

𝛤𝐹

= ∫ 𝑤
1

𝜌0

𝜕𝑄

𝜕𝑡
𝑑𝑣

𝛺𝐹

 

(3-19) 

 

where: 

dv = volume differential of acoustic domain ΩF 

ds = surface differential of acoustic domain boundary ΓF 

𝑛̂=outward normal unit vector to the boundary ΓF 

From the equation of momentum conservation, the normal velocity on the 

boundary of the acoustic domain is given by: 

 
𝜕𝑣𝑛,𝐹

𝜕𝑡
= 𝑛̂

𝜕𝑣 

𝜕𝑡
= −

1

𝜌0
𝑛̂∇𝑝 (3-20) 
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Substituting 3-20 into Equation 3-19 yields the “weak” form of Equation 2-25 

given by: 

 

∫
1

𝜌0𝑐2
𝑤

𝜕2𝑝

𝜕𝑡2
𝑑𝑣

𝛺𝐹

+ ∫ ∇𝑤 (
1

𝜌0
∇𝑝)𝑑𝑣

𝛺𝐹

+ ∫ 𝑤
𝜕𝑣𝑛,𝐹

𝜕𝑡
𝑑𝑠

𝛤𝐹

= ∫ 𝑤
1

𝜌0

𝜕𝑄

𝜕𝑡
𝑑𝑣

𝛺𝐹

 

(3-21) 

The normal acceleration of the fluid particle can be presented using the normal 

displacement of the fluid particle, given by: 

 
𝜕𝑣𝑛,𝐹

𝜕𝑡
= 𝑛̂

𝜕2𝑢⃗ 𝐹
𝜕𝑡2

 (3-22) 

where: 

𝑢⃗ 𝐹=the displacement of fluid particle 

After using equation 3-22, equation 3-21 is expressed as: 

 

∫
1

𝜌0𝑐2
𝑤

𝜕2𝑝

𝜕𝑡2
𝑑𝑣

𝛺𝐹

+ ∫ ∇𝑤 (
1

𝜌0
∇𝑝)𝑑𝑣

𝛺𝐹

+ ∫ 𝑤𝑛̂
𝜕2𝑢⃗ 𝐹
𝜕𝑡2

𝑑𝑠

𝛤𝐹

= ∫ 𝑤
1

𝜌0

𝜕𝑄

𝜕𝑡
𝑑𝑣

𝛺𝐹

 

(3-23) 

3.4.1 Derivation of Acoustic Matrices 

Equation 3-23 contains the fluid pressure p and the structural displacement 

components ux,F, uy,F, and uz,F as the dependent variables to solve. The finite 
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element approximating shape functions for the spatial variation of the pressure 

and displacement components are given by: 

 𝑃 = {𝑁}𝑇{𝑃𝑒} (3-24) 

 𝑢 = {𝑁′}𝑇{𝑢𝑒} (3-25) 

where: 

{𝑁}= element shape function for pressure 

{𝑁′}= element shape function for displacements 

{𝑃𝑒}= nodal pressure vector 

{𝑢𝑒} = {𝑢𝑥𝑒}, {𝑢𝑥𝑒}, {𝑢𝑧𝑒}= nodal displacement component vectors 

From equation 3-24 and 3-25, the second time derivative of the variables and the 

virtual change in the pressure can be expressed as follows: 

 
𝜕2𝑃

𝜕𝑡2
= {𝑁}𝑇{𝑃𝑒̈} (3-26) 

 
𝜕2

𝜕𝑡2
{𝑢} = {𝑁′}𝑇{ 𝑢̈𝑒} (3-27) 

 𝛿𝑃 = {𝑁}𝑇{𝛿𝑃𝑒} (3-28) 

 

After substituting Equation 3-24 and 3-25 into Equation 3-23, the finite element 

statement of the wave Equation is expressed as: 
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∫
1

𝜌0𝑐2
{𝑁}{𝑁}𝑇𝑑𝑣{𝑝̈𝑒}

𝛺𝐹

+ ∫
1

𝜌0

[∇𝑁]𝑇[∇𝑁]𝑑𝑣{𝑝𝑒}

𝛺𝐹

+ ∫{𝑁}{𝑛}𝑇{𝑁′}𝑇𝑑𝑠{𝑢̈𝑒,𝐹}

𝛤𝐹

= ∫
1

𝜌0

{𝑁}{𝑁}𝑇𝑑𝑣{𝑞̇}

𝛺𝐹

 

(3-29) 

where: 

{𝑛}=outward normal vector at the fluid boundary 

{q̇} =  the first time derivative of nodal mass source vector 

 

Equation 3-29 can be written in matrix notation to create the following 

discretized wave equation: 

 [𝑀𝐹]{𝑝̈𝑒} + [𝐾𝐹]{𝑝𝑒} + 𝜌̅0[𝑅]𝑇{𝑢̈𝑒,𝐹} = {𝑓𝐹} (3-30) 

 

where: 

[𝑀𝐹] =  𝜌̅0 ∫
1

𝜌0𝑐2𝛺𝐹
{𝑁}{𝑁}𝑇𝑑𝑣 = acoustic fluid mass matrix 

[𝐾𝐹] = 𝜌̅0 ∫
1

𝜌0
[∇𝑁]𝑇[∇𝑁]𝑑𝑣

𝛺𝐹
 = acoustic fluid stiffness matrix 

[𝑅]𝑇 = ∫ {𝑁}{𝑛}𝑇{𝑁′}𝑇𝑑𝑠
𝛤𝐹

= acoustic fluid boundary matrix 

{𝑓𝐹} = 𝜌̅0 ∫
1

𝜌0
{𝑁}{𝑁}𝑇𝑑𝑣 

𝛺𝐹
 = acoustic fluid load vector 
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3.4.2 Acoustic Boundary Conditions 

The Robin boundary condition on impedance boundary ΓΖ is given by: 

 𝑣𝑛,𝐹(𝑟 ) − 𝑣𝑛,𝑆(𝑟 ) = 𝑌(𝑟 )𝑝(𝑟 ) (3-31) 

where: 

𝑣𝑛,𝐹(𝑟 )= normal velocity of fluid particle on the boundary 

𝑣𝑛,𝑆(𝑟 ) = normal velocity of structure surface 

Y = boundary admittance 

Z (boundary impedance) = 1/Y 

Substituting Equation 3-31 into Equation 3-21 yields: 

 ∫ 𝑤
𝜕𝑣𝑛,𝐹

𝜕𝑡
𝛤𝛧

𝑑𝑠 = ∫ 𝑤 (𝑌
𝜕𝑝

𝜕𝑡
+

𝜕𝑣𝑛,𝐹

𝜕𝑡
) 𝑑𝑠

𝛤𝛧

 (3-32) 

The matrix forms in are rewritten with a damping matrix: 

 [𝐶𝐹] = 𝜌̅0 ∫ 𝑌{𝑁}{𝑁}𝑇

𝛤𝛧

𝑑𝑠 (3-33) 

The acoustic fluid load vector is now: 

 {𝑓𝐹} = 𝜌̅0 ∫
1

𝜌0

{𝑁}{𝑁}𝑇𝑑𝑣

𝛺𝐹

− 𝜌̅0 ∫{𝑁}{𝑁}𝑇𝑑𝑠

𝛤𝛧

{𝑣̇𝑛,𝑆} (3-34) 
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More on the setup of the finite element method will be presented in the next 

section of this thesis. Alternative formulation of the finite element method based 

on the principle of minimum potential energy can be found in the Appendix. 
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Chapter 4  

 

4. SETUP OF THE FINITE ELEMENT METHOD 
AND IMPLEMENTATIONS 

 

 

 

 

 

 

 

 

 

 

 

The practical application of the finite element method, especially in the time 

domain, is the subject of this chapter. The method will also be applied in the 

frequency domain (finite element method for the Helmholtz equation). This 

chapter has two sections: the setup of the time domain finite element method 

and the implementation in three different cases. For the setup of the finite 

element method in the time domain, many considerations had to be taken into 

account for the right implementation of the method. Those were the proper 

selection of source, the accurate representation of the impedances of walls, the 

time scales, the finite element meshes, the stepping method, the modeling of the 

acoustic material, the solver and the type of elements. The method was 

implemented in the cases of a reverberant room and in a reverberant room with 

acoustic panels. Finally the finite element method (Helmholtz equation) was 

implemented in a reverberant room for the calculation of eigenfrequencies and 

eigenmodes.  
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4.1 SETUP OF THE FINITE ELEMENT METHOD 

4.1.1 Source selection 

For the calculation of the impulse response a sound source which is 

omnidirectional is needed. Also the use of a source with a finite frequency band 

is necessary since large frequency content may cause problems in the application 

of the finite element method due to frequency artifacts. For that reason the use of 

an initial pulse with high frequency content was not selected from the beginning 

of the study. The methods that were considered were a gaussian pulse point 

source and a filtered impulse with an Infinite Impulse Response (IIR) filter 

(Butterworth type band pass filter) that was used in  similar studies [8, 112]. The 

gaussian pulse point source was selected due to superior characteristics in the 

time domain and ease of implementation.  Gaussian pulse point source was also 

used in similar studies for the time domain modeling of room acoustics with the 

application of the time domain finite difference method [113-115]. 

 

 Gaussian Pulse Point Source 

A Gaussian Pulse point source was used in this study. The source is 

omnidirectional as can be seen in Figures 4-2 and 4-3 in 2d and 3d domain 

respectively. A Gaussian time profile is defined in terms of its amplitude A, its 

frequency bandwidth f0, and the pulse peak time tp [116-118]. The spectrum of 

the pulse is similar to a low pass filter with the frequency bandwidth easily 

adjusted by controlling the width of the pulse. Hence the frequency bandwidth is 

limited so no frequency artifacts can be created for the finite element utilization 

of the source. The well-defined Fourier transform pair of the time signature and 

frequency spectrum equations also allows easy interpretation and 

postprocessing of the result. Considerations have to be made for the correct 

placement of the Gaussian source away from absorbing boundaries due to 

scattering effects [118]. 
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The governing equations (Eq 4-1) were implemented in the Finite Element 

Analysis. Figure 4-1 shows the spectrum of the Gaussian Pulse Point Source. The 

non-linear frequency characteristics of the source were taken into consideration 

for the correct application of the method. 

 

𝑄 = −𝐴2𝜋2𝑓0
2(𝑡 − 𝑡𝑝)𝑒

−𝜋2𝑓0
2(𝑡−𝑡𝑝)

2

 

𝑡𝑝 −
1

𝑓0
< 𝑡 < 𝑡𝑝 +

1

𝑓0
  

(4-1) 

 

Figure 4-1 Spectrum of Gaussian Pulse Point Source 

 

In figures 4-2 and 4-3, a Gaussian Pulse Point source is presented in small time 

increments (0.005 sec) for a 2d and a 3d space respectively. We can observe how 

the acoustic pressure spreads in space having the speed of the sound. The wave 

front is spherical. As expected, the amplitude of the acoustic pressure decreases 

as the pulse moves away from its original position. The same can be observed for 

the 2d and 3d depiction. The interaction with boundaries is presented in the 

following section. 
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Figure 4-2 Gaussian Pulse Point Source in small time increments (2d) 
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Figure 4-3 Gaussian Pulse Point Source in small time increments (3d) 
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4.1.2 Impedances of walls 

One of the most important considerations for the accuracy of the finite element 

method modeling of an acoustic space is the correct implementation of wall 

modeling. The field of room acoustics deals with sound propagation mainly in 

enclosed spaces. The sound, hence the acoustic pressure is bounded on all sides 

by walls. The sound absorbing characteristics of the walls governs the way the 

acoustic pressure is distributed and decayed after an acoustic sound source 

radiates in the acoustic space. A fraction of the sound is reflected from the 

acoustic boundaries after impact. Another fraction of the sound is absorbed after 

impinging on the walls. The acoustic energy is either converted into heat or 

transmitted outside of the walls. It is this combination of numerous reflections 

and interaction in the acoustic boundaries of rooms that contributes to the 

complexity of the sound field in a space which is known as the acoustics of a 

room. 

In the finite element formulation presented in the previous chapter, the 

modeling of the walls was carried out using the acoustic impedance. The wall 

impedance is a quantity which closely emulates the physical behavior of a wall. It 

is based on the particle velocity normal to the wall which is generated by a given 

sound pressure at the surface. Considering the incident condition of acoustic 

wave to the boundary surface, the normalized acoustic impedance of wall 

surfaces were calculated by substituting the random incidence absorption 

coefficient of the walls into the Eq. 4-2 [119, 120] with the assumption that the 

acoustic impedance is independent of the incidence angle.   

 𝑍 = 𝜌0𝑐
1 + √1 − 𝛼

1 − √1 − 𝛼
 (4-2) 

Kuttruf [121] states that “a rigid wall (a = 0) has impedance Z=∞ and for a 

completely absorbent wall the impedance equals the characteristic impedance of 

the medium”. We can see that this statement is true if we replace the values of 

absorption coefficient (α = 0 and α = 1 ) into Eq. 4-2. For the derivation of the 
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Eq.4-2 we have assumed that the incident wave is a plane wave. In reality and in 

this study however the waves originate from a sound source and are therefore 

spherical. Hence the incident wave into a wall can arrive from any direction. 

However, it is necessary to note that the above selection affects correspondence 

between the computed and measured values. The effect may also be different for 

different room shapes and sizes. For this thesis we assumed that the sound 

source is not too close to the absorbing surface so that the curvature of the wave 

fronts can be neglected. We also took care that the actual placement of the source 

in the modeling process is as far away as possible from the walls. The extent of 

this influence is going to be investigated in future studies. 

The absorption coefficient in reality is dependent on the angle of incidence (θ) 

[122-125].  Equation 4-3 presents the dependence of the acoustic impedance to 

the angle of incidence and the absorption coefficient [126]. Although this 

approach is more close to reality, it is difficult to be implemented in a finite 

element formulation. In fig. 4-4 the dependence of the absorption coefficient to 

the angle of incidence is depicted for different materials.  

 𝑍 =
𝜌0𝑐

cos 𝜃
 
1 + √1 − 𝛼

1 − √1 − 𝛼
 (4-3) 

Of special interest are surfaces, the impedance of which is independent of the 

direction of incident sound. This applies if the normal component of the particle 

velocity at any wall element depends only on the sound pressure at that element 

and not on the pressure at neighboring elements. Walls or surfaces with this 

property are referred to as ‘locally reacting’. 
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Figure 4-4 Dependence of the Absorption Coefficient of Materials to the angle of incidence (Materials 

with different Impedances) [127] 

In order to present how the impedance of walls affects the incident wave in a 

finite element formulation in the time domain, examples follow for three 

different cases. In figures 4-5, 4-6 and 4-7 an acoustic space with a Gaussian 

Pulse Point source is presented in small time increments. In the first case (fig. 4-

5) all the walls are fully reflective (Z = ∞). In the second case (fig.4-6) all walls 

are reflective but one which is fully absorptive (Z=ρc). In this case the impedance 

of wall is equal with the impedance of the medium.  In the final case (fig. 4-7) all 

walls are reflective but one which is slightly absorptive. The impedance of this 

wall is higher than the one of the medium.  

For the first case (fig. 4-5) it can be seen that the walls are fully reflective and 

there is no decrease in the acoustic pressure after the impact of the sound wave 

in the wall as expected. In the second case (fig. 4-6) the sound wave and the 

acoustic pressure is eliminated after impact with the absorptive wall. It can be 

seen in the case of the room with a slightly absorptive wall (fig.4-7) that the 

acoustic pressure is decreased because of the absorptivity of the wall as expected 

in real life rooms. Naturally different absorption of the walls will also cause 

different impulse responses as it will be presented later. 
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Figure 4-5 Gaussian Pulse Point Source in small time increments within a room with reflective walls 

(2d) 
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Figure 4-6 Gaussian Pulse Point Source in small time increments within a room with all walls 

reflective but the right which is fully absorptive (2d) 
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Figure 4-7 Gaussian Pulse Point Source in small time increments within a room with all walls 

reflective but the right which is lightly absorptive (2d) 
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For a direct comparison of the results, the same time increment for the three 

cases previously stated is presented in fig. 4-8. The differences in acoustic 

pressures can be better observed. Figure 4-9, presents an alternative depiction of 

the acoustic pressure (height depiction) for a different representation of the 

acoustic pressures. 

   

Figure 4-8 Comparison of the same moment in time of a room with all reflective walls, a room with 

all walls but right reflective (right wall absorptive) and a room with all walls reflective but right 

(right wall lightly absorptive) 

The previous approach is used in the case where we want to apply the finite 

element method in an enclosed space, a room, a hall etc. In the case that we want 

to implement modeling with finite elements in an open space (e.g. external 

environment) we need to apply the Perfectly Matched Layer (PML)[128, 129] 

boundary conditions. The PML boundary condition is a domain or layer that is 

added to an acoustic model to mimic an open and non-reflecting infinite domain. 

It sets up a perfectly absorbing domain as an alternative to non-reflecting 

boundary conditions. The PML works with all types of waves, not only plane 

waves. It is also efficient at very oblique angles of incidence. The PML imposes a 

complex-valued coordinate transformation to the selected domain that 

effectively makes it absorbing at maintained wave impedance, and thus 

eliminating reflections at the interface. 

The above can be implemented for the modeling of acoustic spaces with the use 

of the finite element method. For geometrical or statistical acoustics the 

absorption coefficient is used for the modeling of walls. The absorption 

coefficient is measured with the use of a reverberation chamber according to the 
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ISO 354 [130, 131]. It can also be measured with the use of an impedance tube 

[132, 133]. 

 

Figure 4-9 Acoustic Pressure of a room with reflective walls 

 

4.1.3 Time step  

For the application of the finite element method in the time domain an 

appropriate time step needs to be chosen. The time step is necessary for the 

utilization of the time stepping method that will be presented later in this 

chapter. The correct time step is the basis for calculating correctly the impulse 

responses and acoustic parameters since the impulse responses in essence are 

the acoustic pressure values in short time steps. 

The time step is dictated by the Courant–Friedrichs–Lewy (CFL) condition. 

Richard Courant, Kurt Friedrichs, and Hans Lewy described the CFL condition 

[134, 135] investigating finite difference approximations. The condition was 

applied to prove existence of solutions to partial differential equations. The CFL 

condition was formed long before finite element applications and invention of 
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digital computers. Trefethen [136] states that the CFL paper laid the theoretical 

foundations for practical finite difference computations and in particular it 

identified a fundamental necessary condition for convergence of any numerical 

scheme that has subsequently come to be known as the CFL condition. The CFL 

condition is a necessary condition for the convergence of a numerical 

approximation of a partial differential equation linear or nonlinear. It has to be 

applied in the numerical analysis of explicit time integration schemes, when 

these are used for the numerical solution. The consequence of the CFL condition 

is that the time step must be less than a certain time in time-marching numerical 

simulations, otherwise the simulation will produce incorrect results. 

The condition dictates that the time step must be kept small enough so that 

information has enough time to propagate through the space discretization. The 

principle behind the condition is that, for example, if a wave is moving across a 

discrete spatial grid and we want to compute its amplitude at discrete time steps 

of equal duration, then this duration must be less than the time for the wave to 

travel to adjacent grid points [137]. As a corollary, when the grid point 

separation is reduced, the upper limit for the time step also decreases. In 

essence, the numerical domain of dependence of any point in space and time (as 

determined by initial conditions and the parameters of the approximation 

scheme) must include the analytical domain of dependence (wherein the initial 

conditions have an effect on the exact value of the solution at that point) in order 

to assure that the scheme can access the information required to form the 

solution. The condition in numerical equation solving states that, given a space 

discretize on, a time step bigger than some computable quantity should not be 

taken. In the general case, the CFL has the following form: 

 𝐶 =
𝑢∆𝑡

∆𝑥
≤ 𝐶𝑚𝑎𝑥 (4-4) 

where the dimensionless number C  is called the Courant number, 

• u is the magnitude of the velocity (whose dimension is length/time) 
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• Δ t is the time step (whose dimension is time) 

• Δx x is the length interval (whose dimension is length). 

For application in the finite element method the time step depends on the 

frequency contents of the signal and by the desired maximal frequency 

resolution T =1/ fmax. The CFL number dictates the relation between the time 

step size and the minimal mesh size hmin.  When solving transient models the 

maximal frequency we want to resolve is set as fmax. This frequency translates 

to a minimal wavelength λmin = c/fmax and in turn to a maximum element size 

hmax = λmin/5, as will discussed in the next section. The mesh resolution 

imposes a restriction on the time step size Δt taken by the solver. The 

relationship between mesh size and time-step size is closely related to the CFL 

number, which is now defined as  

 𝐶𝐹𝐿 =
𝑐𝛥𝑡

ℎ
≤ 𝐶𝑚𝑎𝑥 (4-5) 

where c is the speed of sound and h is the mesh size.  

A CFL number around 1 would correspond to the same resolution in space and 

time if the discretization errors were of the same size, however, that is normally 

not the case. The value of C max changes with the method used to solve the 

discretised equation, especially depending on whether the method is explicit or 

implicit. If an explicit (time-marching) solver is used then typically Cmax = 1. 

Implicit (matrix) solvers are usually less sensitive to numerical instability and so 

larger values of C max may be tolerated. The limiting step size, where the errors 

are of roughly the same size, can be found somewhere at CFL < 0.2. The implicit 

second-order accurate method generalized-α was used for this thesis for the 

transient acoustics problems. In reality a longer time step is permitted if the 

forcing does not make full use of the mesh resolution, that is, if high frequencies 

are absent from the outset. Generalized-α introduces some numerical damping of 

high frequencies.   



87 

 

Applying CFL < 0.2=1/5, and hmax = λmin/5 into Eq.4-5, will result in a time step 

given by: 

 𝛥𝑡 <
1

5

ℎ𝑚𝑎𝑥

𝑐
=

𝜆𝑚𝑖𝑛

25𝑐
=

1

25

1

𝑓𝑚𝑎𝑥
 (4-6) 

Another issue that affects the choice of time step is the sampling rate of the 

actual measurements on the reverberant room. The measurements where 

performed in the typical 44.1 KHz sampling rate which means that there were a 

time step of 1/44100 sec for every sample measurement. The process of 

conversion between sampling rates [138]can have effects on the quality of the 

impulse response. So a time step for the finite element method equal to the time 

step of the actual measurements was chosen for a direct comparison. The time 

step size that was chosen for this finite element study is T=1/44100 sec.  

The following figure (Fig. 4-10) presents images from the acoustic pressures in a 

2d space. The walls are slightly absorptive. The time step for this modeling is 

1/44100 sec. Figures 4-11, 4-12, 4-13 present the impulse responses for three 

different points in the space. The points and dimensions of the space are 

presented in figure 4-15. The Gaussian pulse point source is located in point 1. It 

can be seen that the impulse responses are different for different points. This can 

be explained by the different reflections from the walls and the different distance 

from the source. A comparison of the different impulse responses can be seen in 

figure 4-14. This is also true for real life rooms. The impulse responses inside the 

room are different for every measuring point. 
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Figure 4-10 Acoustic Pressure in a room with absorptive walls (t=0 sec to t=0.6 sec) 
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Figure 4-11 Impulse Response (Point 1) 

 

Figure 4-12 Impulse Response (Point 2) 

 

Figure 4-13 Impulse Response (Point 3) 
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Figure 4-14 Comparison of the Impulse Responses 

 

Figure 4-15 2d space dimensions and Points 

 

4.1.4 Finite element meshes 

Another important consideration for this thesis was the correct implementation 

of meshes for the finite element method formulations. Solutions to acoustic 

problems are wavelike. The waves are characterized by a wavelength λ in space, 

whose value depends on the frequency and speed of sound c in the medium 

according to λ = c/f. This wavelength has to be resolved by the mesh. To 

represent a wave on a discrete grid (the mesh), it is obvious that the mesh 

Point 1 (0, 0)

Point 2 (0, 7.5)

Point 3 (14, 14)
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elements must be smaller than the wavelength in order to resolve the wave. That 

is, there needs to be several degrees of freedom per wavelength in the direction 

of propagation.  

The smallest element side length that can be used is determined by the shortest 

wavelength, that is, highest frequency, to be analyzed. Typically five or six 

elements are used [139, 140]. Schmiechen [141] states that two points per 

wavelength are strictly sufficient, but would not lead to accurate mode shapes so 

a  factor of three to five is advised. Wojcik et al. [142] report computational 

results with five percent error using nine and two percent error using 18 linear 

elements per wavelength. Harari [143] proposes 10 nodes per wavelength or 

more similar to Thompson [144]. In Zienkiewicz  [145] it is stated that ‘a rule of 

thumb’ which has been used for some time, is that there should be 10 nodes per 

wavelength. Marburg found that six elements per wavelength can provide 

acceptable accuracy [146] similar to Ihlenburg's comprehensive study on finite 

element error analysis [147] .  

In a similar fashion Otsuru tested the accuracy for the meshes in the field room 

acoustics for different elements [148].  The FE meshes were created for different 

requirements for λ/h. Here, λ and h respectively denote wavelengths of upper 

limit frequencies of the octave band and the maximum nodal distance. He found 

that on the condition λ/h > 4 successful interpolation of peaks in mode shapes 

assures small errors in the eigenfrequency approximation. 

For this thesis the requirement that λ/h>5 was followed.  Assuming the 

frequency range between 20 and 500 Hz to be of interest, the distance between 

the nodes in the FEM mesh should not exceed 0.1 m.  

Equally important is also the form of the mesh. Unstructured meshes are 

generally better than structured meshes for wave problems where the direction 

of wave propagation is not known everywhere in advance. The reason is that in a 

structured mesh, the average resolution typically differs significantly between 

directions parallel to the grid lines and directions rotated 45 degrees about one 

of the axes. Because the direction of propagation is generally not known 
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beforehand, it is good practice to aim for an isotropic mesh independently of the 

direction. 

The generation of a suitable FEM 3D mesh to describe the room by volume 

elements used to be a tedious process, but modern software has removed much 

of the effort needed to mesh small rooms such as a control room or studio. 

Sometimes, it is useful to manually design a finite element mesh in 2D (such as 

over its floor surface) and then expand it (automatically) vertically at uniform 

intervals, to create a 3D mesh of the room volume. 

The two most popular techniques for automatic mesh generation are the 

Delaunay triangulation [149-151] and the Advancing Front Technique (AFT) 

method [152-154]. Other techniques exist also such as the Octree method, the 

adaptive refinement, the medial surface method, the plastering method, the 

whisker weaving method and the H-morph algorithm [155]. For this thesis the 

Delaunay triangulation was used. ‘The defining property of a Delaunay 

triangulation in the plane is that no vertex of the triangulation lies in the interior 

of any triangle’s circumscribing disk—the unique circular disk whose boundary 

touches the triangle’s three vertices. In three dimensions, no vertex is enclosed 

by any tetrahedron’s circumscribing sphere’[156]. 

In the following figure (Fig. 4-16) impulse response calculations are presented in 

a 3d space with different meshes. The meshes for the first two cases were 

created with the restriction that λ/h<5. For the third case with the restriction 

that λ/h=5. Finally in the last case the restriction was λ/h>5. From comparison of 

the results it can be seen that in cases 3 and 4, the impulse response is the same. 

In the first two cases the impulse responses have differences if compared with 

cases 3 and 4. This is a clear indication that the restriction λ/h>5 should be 

followed for an accurate calculation of the impulse response. 
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Figure 4-16 Impulse Response calculations in a 3d space with different meshes  (Mesh 1,2: λ/h<5, 
mesh 3:  λ/h=5, mesh 4: λ/h>5)   
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The wall impedances were selected in the previous case so that the room's 

impulse response is small, less than 0.3 sec, and allows for rapid calculations. 

While the restriction λ/h>5 seems to be adequate for the calculation of impulse 

responses presented in figure 4-16, this does not seem to be the case in every 

situation.  

Experimental data from this thesis, however, suggests that in rooms where the 

impulse response has a longer duration there are differences in the impulse 

responses and indeed they are increasing over time. This is presented in section 

6.1.1 of this thesis where experimental and calculated impulse responses for a 

reverberant space are compared. The results showed that the cross correlation 

coefficient between calculated and impulse response has a decreasing step over 

time. For those measurements and calculations the reverberant room impulse 

response is greater than 3 sec. This shows us that for acoustic spaces with longer 

time impulse responses, the restriction λ/h>5 will provide good correlation 

between measured and calculated impulse responses in the early region of the 

impulse response but with an accuracy that is decreasing over time. Acoustic 

spaces that have a longer impulse response are rooms with a larger volume, 

rooms that have less absorptive walls or a combination of the previous ones. 

In order to test the above, the wall impedances were altered in the same space 

that was used in the previous calculations (Fig. 4-16), resulting in less absorptive 

walls and with a room with longer impulse response. Impulse responses were 

then calculated for two different cases of meshes. The new calculations are 

presented in figure 4-17. Comparing the impulse responses for the two different 

cases (Fig. 4-16, Fig. 4-17) will show that in the second case the time duration of 

the impulse responses is about twice as long and allows for a better comparison. 

Comparison of the impulse responses that were obtained for different meshes 

(depicted in Fig. 4-17) is presented in figure 4-18. We notice that while the 

impulse responses in the initial stages are identical, the differences are 

increasing over time. This is a clear indication that the effect of the mesh size on  
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Figure 4-17 Impulse Response calculations in a 3d space with different meshes  (Mesh 1: λ/h<3, 
mesh 2:  λ/h=3)   

 

 

Figure 4-18 Comparison of the Impulse Responses for different meshes (Gray: Mesh 1, λ/h<3, Black: 
mesh 2, λ/h=3)   

the time domain finite element method creates these effects on the impulse 

response. As Astley states [106] ‘small phase differences between the exact and 

computed solution may not contribute significantly to numerical error over a 
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single wavelength but accumulate over many wavelengths to give a large global 

error’. The importance of these findings is significant. Mesh restrictions imposed 

so far for the field of acoustics, are reasonable and provide good results but 

mainly for calculation in the frequency domain. For calculations in the time 

domain it appears that mesh restriction requirements depends on the time 

duration of the impulse response. Longer impulse responses require smaller 

mesh size than the current restrictions proposed for more accurate calculations. 

 

4.1.5 Modeling of the acoustic material 

Absorptive materials used in architectural applications tend to fall into three 

categories: porous absorbers, panel absorbers, and resonant absorbers. The 

most common category is the one of porous absorbers. This includes fiberglass, 

mineral fiber products, fiberboard, carpet, pressed wood shavings, cotton, felt, 

open-cell neoprene foam, sintered metal, and many other. Panel absorbers are 

nonporous lightweight sheets, solid or perforated, that have an air cavity behind 

them, which may be filled with an absorptive material such as fiberglass. 

Resonant absorbers can be lightweight partitions vibrating at their mass-air-

mass resonance or they can be Helmholtz resonators or other similar enclosures, 

which absorb sound in the frequency range around their resonant frequency. 

They also may be filled with absorbent porous materials. Extended review of 

acoustic materials referring to their acoustic impedances can be found in Long 

[157]. 

For the modeling of the acoustic material for this thesis the Delany-Bazley-Miki 

model was used [158]. It is an empirical model used to describe fibrous materials 

such as fiberglass, cotton wool and rock wool with great accuracy. The model can 

be used for materials with porosity close to one. The Delany-Bazley-Miki model 

is an equivalent fluid model that mimics the bulk losses in certain porous-fibrous 

materials. The model represents a porous medium with complex propagation 

constants. For a highly porous material with a rigid skeleton, the model 

estimates the complex wave number kc and complex impedance Zc as functions 
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of frequency and flow resistivity. Using the original coefficients of Delany and 

Bazley, the expressions are: 

 𝑘𝑐 = 𝑘𝑎 (1 + 0.098 (
𝜌𝑎𝑓

𝑅𝑓
)
−0.7

− 𝑖 ∙ 0.189 (
𝜌𝑎𝑓

𝑅𝑓
)
−0.595

)       (4-7) 

 𝑍𝑐 = 𝑍𝑎 (1 + 0.057 (
𝜌𝑎𝑓

𝑅𝑓
)
0.734

− 𝑖 ∙ 0.087 (
𝜌𝑎𝑓

𝑅𝑓
)
−0.732

)       (4-8) 

 

where Rf is the flow resistivity and 𝑘𝑎 = 𝜔/𝑐𝑎  and 𝑍𝑎 = 𝜌𝑎𝑐𝑎 are the free-space 

wave number and impedance of air, respectively. Measurements of the flow 

resistivity of rock wool can be found in bibliography [159]. 

 

4.1.6 Stepping method 

For the solution of the wave equation in the time domain with the use of finite 

elements, a time stepping method is necessary. The time stepping method that 

was used in this study is the Generalized-α [160, 161]. A viable alternative which 

is commonly used in structural problems is the Newmark β method [162]. More 

about this method for acoustics problems can be found in Otsuru [163]. An 

analysis and comparison of the method for the time integration algorithms of the 

finite element solutions can be found in Dettmer [164]. 

The Method solves for a discrete time step n and the equations can be expressed 

as presented below. 

 𝒑𝑛+1 = 𝒑𝑛 + ℎ𝒑̇𝑛 + ℎ2((
1

2
− 𝛽) 𝒑̈𝑛 + 𝛽𝒑̈𝑛+1) (4-9) 

 𝒑̇𝑛+1 = 𝒑̇𝑛 + ℎ((1 − 𝛾)𝒑̈𝑛 +  𝛾𝒑̈𝑛+1 (4-10) 
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 𝑭(𝑡𝑛+1−𝑎𝑓
) = 𝑀𝒑̈𝑛+1−𝛼𝑚

+ 𝐶𝒑̈𝑛+1−𝑎𝑓
+ 𝐾𝒑𝑛+1−𝑎𝑓

 (4-11) 

Where h is the time step:  

 ℎ = 𝑡𝑛+1 − 𝑡𝑛 (4-12) 

Also: 

 𝒑𝑛+1−𝑎𝑓
= (1 − 𝑎𝑓)𝒑𝑛+1 + 𝑎𝑓𝒑𝑛 (4-13) 

 𝒑̇𝑛+1−𝑎𝑓 = (1 − 𝑎𝑓)𝒑̇𝑛+1 + 𝑎𝑓𝒑̇𝑛  (4-14) 

 𝒑̈𝑛+1−𝛼𝑚
= (1 − 𝑎𝑚)𝒑̈𝑛+1 + 𝑎𝑓𝒑̈𝑛 (4-15) 

 𝑡𝑛+1−𝑎𝑓
= (1 − 𝑎𝑓)𝑡𝑛+1 + 𝑎𝑓𝑡𝑛 (4-16) 

The parameters 𝑎𝑓, 𝑎𝑚, γ, 𝛽 are: 

 𝑎𝑓 =
𝜌∞

𝜌∞ + 1
 (4-17) 

 𝑎𝑚 =
2𝜌∞ − 1

𝜌∞ + 1
 (4-18) 

 𝛾 =
1

2
− 𝑎𝑚 + 𝑎𝑓 (4-19) 

 𝛽 =
1

4
(1 − 𝑎𝑚 + 𝑎𝑓)

2 (4-20) 
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4.1.7 Solver 

After the system of linear equations is formed by the finite element method a 

solver must be applied. There are two main categories of solvers: the ones that 

use a direct elimination process (direct solvers) and the ones that use an 

iterative method (iterative solvers).  

The MUltifrontal Massively Parallel sparse direct solver (MUMPS) [165, 166] was 

used in this thesis. The basis of the direct solvers involves a direct elimination 

process. Decomposition of the matrix [K] is performed into lower and upper 

triangular matrices, [K] = [L][U]. Forward and back substitutions are performed 

for the computation of the solution. The MUMPS works on general systems of the 

form [𝐾]{𝑢} = {𝐹} and uses several preordering algorithms to permute the 

columns and thereby minimize the fill-in. MUMPS is multithreaded on platforms 

that support multithreading and also supports solving on distributed memory 

architectures. A practical aspect of MUMPS, is that is has the capability to store 

the LU factors on the hard drive. This minimizes the internal memory usage. The 

PARDISO [167]direct solver was also tested with similar results in computational 

time. 

The iterative solvers are similar to a conjugate gradient method. Variations 

include the generalized minimum residual method and the biconjugate gradient 

stabilized method. A typical iterative method involves an initial guess and 

successive steps of iteration leading. This leads to the calculation of the unknown 

variable from one or two of the previous iterations. A specified tolerance can be 

defined for the solver convergence. The advantage of the iterative solvers is the 

smaller memory usage, but the performance is not always robust. Some iterative 

solvers are the GMRES (generalized minimum residual)[168], FGMRES (flexible 

generalized minimum residual)[169] and the BiCGStab Iterative Solver 

(biconjugate gradient stabilized)[170]. More about the iterative methods applied 

in acoustics can be found in Otsuru [171]. 

 



100 

 

4.1.8 Type of Elements 

The Lagrange 2nd-order tetrahedral elements were used for this thesis in the 

finite element formulation. The shape functions for the tetrahedral elements are 

presented in table 4-1. Shape functions for the two and three dimensional 

tetrahedron, hexahedron and prism element can be found in Atalla [103]. Figure 

4-19 presents the Lagrange 2nd-order tetrahedron element. 

 

Figure 4-19 Lagrange 2nd order tetrahedron element [103] 

 

The accuracy of the finite element method depends on the shape functions used 

in the formulation. Different elements have been studied by Otsuru for acoustic 

applications [148] in the frequency domain. Differences were found, especially 

after mesh manipulation.  Different elements cause different convergence of 

results. The study with the different elements was applied for the calculation of 

eigenfrequencies. A significant area of improvement for the time domain finite 

element method lies in this area and is reserved for future work. 

 



101 

 

Node id Coordinates Shape functions 

1 (0,0,0) 𝑁1 = (2𝜉4 − 1)𝜉4 

2 (0,1,0) 𝑁2 = (2𝜉2 − 1)𝜉2 

3 (0,0,1) 𝑁3 = (2𝜉3 − 1)𝜉3 

4 (1,0,0) 𝑁4 = (2𝜉1 − 1)𝜉1 

5 (0, 1/2, 0) 𝑁5 = 4𝜉4𝜉2 

6 (0, 1/2, 1/2) 𝑁6 = 4𝜉2𝜉3 

7 (0,0, 1/2) 𝑁7 = 4𝜉3𝜉4 

8 (1/2, 0, 0) 𝑁8 = 4𝜉1𝜉4 

9 (1/2, 1/2,0) 𝑁9 = 4𝜉1𝜉2 

10 (1/2, 0, 1/2) 

,0) 

𝑁10 = 4𝜉1𝜉3 

𝜉4 = 1 − 𝜉1 − 𝜉2 − 𝜉3 

Table 4-1 Shape functions for Lagrange 2nd order three dimensional element [103] 
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4.2 IMPLEMENTATIONS OF TIME DOMAIN FINITE ELEMENT 

METHOD 

The finite element method was implemented in the time domain for the cases of 

a reverberant room and a reverberant room with absorptive material. Finally the 

finite element method was implemented in the frequency domain for the 

reverberant room. 

4.2.1 Reverberant room Modeling 

For the first implementation the goal was the calculation of impulse responses in 

a reverberant room. Acoustic parameters, frequency responses and cumulative 

spectral decays were going to be extracted from the impulse responses for later 

comparison with measured results.  

For the application of the finite element method in the time domain a 

reverberant room in the Technical University of Crete was used due to its simple 

shape and uniformity of absorption characteristics of walls. The reverberant 

room is depicted in Fig. 4-20. The volume and the surface area of the room are, 

respectively, 38.71 m3 and 71.17 m2. Inner walls of the room are made of 

concrete.  

A Gaussian Pulse Point Source was used in this study. The source was placed at a 

height of 1.5 m for all calculations, as depicted in the figure 4-20. Considerations 

were taken so the source was not near the walls due to scattering effects. 

Measuring positions are depicted as points in figure 4-20. 

Considering the incident condition of acoustic wave to the boundary surface, the 

normalized acoustic impedance of wall surfaces were calculated by substituting 

absorption of the walls into the Equation 4-2 of the random incidence absorption 

coefficient with the assumption that the acoustic impedance is independent of 

the incidence angle. The absorption coefficients that were used in the finite 

element formulation were measured during the experimental procedure that is 
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presented in section 5.2.1 of this thesis. Table 5-1 contains the values of the 

absorption coefficients. 

The time step size that was chosen for this study is T=1/44100 sec. 

The FE meshes were created to satisfy the requirement that λ/h > 5. Here, λ and 

h respectively denote wavelengths of upper limit frequencies of the octave band 

and the maximum nodal distance. Figure 4-21 presents the mesh of the 

reverberant room. 

The Lagrange 2nd-order tetrahedral elements were used in the finite element 

formulation. 

The MUltifrontal Massively Parallel sparse direct solver (MUMPS) was used for 

solving the system of equations that arose from implementing the finite element 

method.  

After the computation, the pressures at 60 points were extracted. The impulse 

responses were constructed from the extracted pressures for each time step by 

using the Generalized-a time stepping method. From the calculated impulse 

responses acoustic parameters were derived. Also frequency responses and 

cumulative spectral decays were extracted. Derivation methods for acoustic 

parameters, frequency response and cumulative spectral decays are presented in 

sections 2.3 and 2.4 of this thesis. Calculated impulse responses, frequency 

responses and cumulative spectral decays are compared with the ones measured 

with the MLS technique in the sixth chapter of the study. 
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Figure 4-20 Reverberant room with computed points 

 

 

Figure 4-21 Meshing of the Reverberant room 
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4.2.2 Reverberant room with Acoustic Material Modeling 

For this implementation, a ‘virtual reverberation chamber’ method was applied 

[6]. A description of the method and the actual setup are presented in the 

following section.  

 ‘Virtual reverberation chamber’ method 

In room acoustics the knowledge of the absorption coefficient of the materials 

that cover the surface of a space is necessary for predicting the majority of the 

acoustic parameters that define a space. For the measurement of the absorption 

coefficient the reverberation chamber method [130, 131] and the impedance 

tube method [132, 133] are commonly used. The impedance tube method can 

measure the absorption coefficient of a plane material but not in the case when 

an acoustic panel has a variant shape (e.g. pyramidal). The most common 

method that can measure the absorption coefficient if a material has a variant 

shape is the reverberation chamber method.  

The utilization of a ‘virtual reverberation chamber’ method that could be used 

for the prediction of the absorption coefficient of acoustic panels could be of 

great use. An applicable ‘virtual reverberation chamber’ could predict the 

absorption coefficient of an acoustic panel prior to its manufacturing and it 

would help reducing the cost of development. It could also lead to new shapes 

and variations of acoustic panels.   

The goal of this implementation was the application of a ‘virtual reverberation 

chamber’ method for the measurement of the absorption coefficient of an 

acoustic panel. For that cause a virtual replication of the reverberation chamber 

method with the use of the time domain finite element method was performed. 

The reverberation chamber method is presented in ISO 354 [130]. It consists of 

two separate sets of impulse response measurements in a reverberant chamber. 

On the first one impulse responses of the empty reverberant room are measured. 

On the second one impulse responses are measured with the presence of an 

acoustic panel. The presence of the acoustic panel, because of its absorption, 
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causes changes in the measured impulse responses. Reverberation time is 

extracted from the impulse response as presented in section 2.4.1. The presence 

of the acoustic panel results in a lower reverberation time. From the differences 

in the reverberation time between the two measurements, the absorption 

coefficient of the material can be measured. The absorption coefficient can be 

calculated according to equation 4-21 as the ISO 354 suggests. 

The same procedure was followed for the ‘virtual reverberation chamber’ with 

the use of the time domain finite element method. Impulse responses in the 

reverberant room were calculated in two different cases. In the first one impulse 

responses of the empty reverberant room are calculated. In the second one 

impulse responses are calculated with the presence of an acoustic panel that was 

modeled in the finite element method. Reverberation times are extracted and the 

absorption coefficient is calculated for the ‘virtual reverberation chamber’ 

method according to equation 4-21.  

Absorption Coefficients (αs) of the acoustic panel can be calculated using the 

following formula: 

 𝑎𝑠 = 55.3
𝑉

𝑆
(

1

𝑐2𝑇2
−

1

𝑐1𝑇1
) − 4𝑉(𝑚2 − 𝑚1) (4-21) 

V is the volume of the empty reverberation chamber (m³)  

S is the area of the test specimen (m²)  

𝑇1 is the mean reverberation time of the empty reverberation chamber 

(seconds) 

𝑇2 is the mean reverberation time of the reverberation chamber with the 

test specimen installed (seconds) 

𝑐1, 𝑐2 are the velocity of sound calculated from the following formula:  

c = 331 + 0.6t m/s  

t is the air temperature of the reverberation chamber (Celsius) 

𝑚1, 𝑚2 are the power attenuation coefficient at  𝑇1and  𝑇2calculated according to  

ISO 9613:1993 [15]  
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 Setup of the calculation for the ‘virtual reverberation chamber’ 

method 

The time domain finite element method was used for the application of a ‘virtual 

reverberation chamber method’. The same reverberant room in the Technical 

University of Crete that was presented in section 4.2.1 was used. The volume and 

the surface area of the room are, respectively, 38.71 m3 and 71.17 m2. Inner walls 

of the room are made of concrete.  

A Gaussian Pulse Point Source was used in this study. The source was placed at 

two different points as presented in table 4-2. The sound sources can be seen in 

figure 4-23 as spheres. Considerations were taken so the source placement was 

not near the walls due to scattering effects. The source positions were at least 3 

m apart as the ISO suggests. 

Considering the incident condition of acoustic wave to the boundary surface, the 

normalized acoustic impedance of wall surfaces were calculated by substituting 

absorption of the walls into the Equation 4-2 of the random incidence absorption 

coefficient with the assumption that the acoustic impedance is independent of 

the incidence angle. The absorption coefficients that were used in the finite 

element formulation were measured during the experimental procedure that is 

presented in section 5.2.1 of this thesis.  

The placement of the acoustic material is depicted in figure 4-22 and 4-23. For 

the modeling of the acoustic material the Delany-Bazley-Miki model was used. It 

is an empirical model used to describe fibrous materials such as fiberglass, 

cotton wool and rock wool with great accuracy. The Delany-Bazley-Miki model is 

an equivalent fluid model that mimics the bulk losses in certain porous-fibrous 

materials. The acoustic material that was modeled is that of rock wool. The 

acoustic material was laid directly over the floor so that no part was closer than 

0.63 m to any edge of the boundary of the room.  
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The time domain finite element method was applied for two sets of calculation as 

presented in section 4.2.2.1. The first calculation was without the modeled 

acoustic panel and the second one with the presence of the acoustic panel.   

The time step size that was chosen for this study is T=1/44100 sec. 

The FE meshes were created to satisfy the requirement that λ/h > 5. Here, λ and 

h respectively denote wavelengths of upper limit frequencies of the octave band 

and the maximum nodal distance. Meshing of the room with the acoustic 

material is presented in figure 4-24. 

After the computation, the pressures at 6 receiving points were extracted for 

each of two source positions. A total of 12 impulse responses were calculated. 

The placement of the receiving points is presented in table 4-2. The receiving 

points can be seen in figure 4-23 as points.  

The impulse responses were constructed from the extracted pressures for each 

time step. From the calculated impulse responses, the mean reverberation times 

and finally the absorption coefficient were derived and will be discussed and 

compared with the ones measured with the MLS technique in the results and 

discussion of this study. 

 

 

Figure 4-22 Reverberant room with acoustic material 
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Figure 4-23 Placement of Sources (spheres) and Calculation Points (points) 

 

 

Figure 4-24 Meshing of the reverberant room with the acoustic material 
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Receiving Points Source Points 
R1 (1.10,1.00,1.10) S1 (1.78,1.10,1.10) 
R2 (1.10,1.00,1.97) S2 (1.78,3.47,1.97) 
R3 (1.78,2.24,1.10)  
R4 (1.78,2.24,1.97)  
R5 (1.10,3.47,1.10)  
R6 (1.10,3.47,1.90)  

 

Table 4-2 Source Placement and Points of Calculation 

 

4.2.3 Reverberant room Modeling (Frequency Domain) 

The goal of this implementation was the calculation of the eigenfrequencies and 

eigenmodes of the reverberant space. The finite element method for the 

Helmholtz equation was used. Finite element formulation of the Helmholtz 

Equation can be found in Atalla [172], Fahy [173] and Astley [174]. 

Since the formulation of the Helmholtz equation was utilized for this 

implementation there is not a source in the finite element formulation. Also 

because modeling is in the frequency domain a time step was not set. 

Considering the incident condition of acoustic wave to the boundary surface, the 

normalized acoustic impedance of wall surfaces was calculated by substituting 

absorption of the walls into Equation 4-2 of the random incidence absorption 

coefficient with the assumption that the acoustic impedance is independent of 

the incidence angle. The absorption coefficients that were used in the finite 

element formulation were measured during the experimental procedure that is 

presented in section 5.2.1 of this thesis. Table 5-1 contains the values of the 

absorption coefficients. 

The FE meshes were created to satisfy the requirement that λ/h > 5. Here, λ and 

h respectively denote wavelengths of upper limit frequencies of the octave band 

and the maximum nodal distance. 
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Eigenmodes and eigenfrequencies were extracted in the frequency area between 

100 and 200 Hz.  The purpose of these calculations was the comparison of the 

results for the resonant frequencies from the TDFEM, the finite element method 

in the frequency domain (Helmholtz equation) and the analytical solution. The 

comparison will be presented in the following chapter. 
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Chapter 5  

 

5. ACOUSTIC MEASUREMENTS 

 

 

 

 

 

 

 

 

 

 

In order to compare the results obtained using the finite element method, 

acoustic measurements were performed in the same reverberant room that was 

modeled for the application of the method.  The acoustic measurement process is 

presented in two parts. For the first part the setup of the acoustic measurements 

is presented along with the considerations that have to be taken into account for 

precise measurements. Those were the appropriate choice of measurement 

method, the correct application of the method, calibration of the dodecahedral 

loudspeaker and calibration of the microphone. The second part includes the 

implementations in the reverberant room for two different cases. For the first 

case impulse response measurements were performed in the reverberant room. 

In the second case impulse response measurements were performed in the 

reverberant room with the presence of an acoustic material.  
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5.1 SETUP OF ACOUSTIC MEASUREMENTS 

Major part of this thesis deals with the subject of correct calculation of the 

impulse response of an acoustic space. Hence the correct and precise 

measurement of the impulse response is important for the experimental 

confirmation of the method. The necessary considerations that led to the best 

possible measurement of the impulse responses are presented in the following 

sections. 

5.1.1 Impulse Response Measurements 

Appropriate measurement of the impulse response of an acoustic space is a 

particularly important process. As mentioned previously, the precise impulse 

response measurement is crucial because the majority of the acoustic 

parameters that characterize a space can be derived from it. Choosing the right 

method should be done with care. Room conditions are the ones that affect the 

choice of appropriate measuring method. Every acoustic space can be defined as 

a linear invariant system. Hence for the assumption of source and receiver 

immobility an impulse response h(t) can characterize the space and the specific 

source and receiver points of measurement in that space. The measurement 

process involves the transmission of a signal from the source (input) and its 

recording from the receiver (output). For acoustic measurements the source is 

usually a dodecahedral speaker and the receiver is an omnidirectional 

microphone. The choice of the excitation signal is extremely important for the 

best possible impulse response measurements. The excitation signal should have 

some specific features for that purpose. The signal to noise ratio of the 

deconvolved impulse response must be the maximum. Signal to noise ratio can 

be improved if the excitation signal and measurement technique allow multiple 

averages of the measured output signal before the impulse response 

deconvolution process is started. Also reproducibility of the excitation signal is 

essential. Nonlinear artifacts also should be avoided in the impulse response 

measurements.  
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Setup and fundamentals for impulse response measurements are detailed in 

Ballou [175]. Those are: 

• The sampling rate must be fast enough to capture the highest frequency 

component of interest. 44.1 kHz or 48 kHz are more than sufficient for 

acoustic measurements. 

• The time length of the measurement must be long enough to allow the 

decaying energy curve to flatten out into the room noise floor. 

• The measurement must have a sufficient signal-to noise ratio to allow the 

decaying tail to be fully observed. This often requires that the 

measurement be repeated a number of times and the results averaged. 

• Repeatability of the results. 

 

 

5.1.2 Impulse Response Measurement Techniques 

The most common excitation signals are the Maximum Length Sequence (MLS), 

the Inverse Repeated Sequence (IRS), the Logarithmic Sine Sweep (LSS) and the 

Time-stretched pulses. The ones most used are the MLS and the LSS excitation 

signals.The acoustical impulse response measurements using the MLS technique 

were first proposed by Manfred Robert Schroeder and have been used with 

success in the field of acoustics. Shortly after the publication of MLS technique 

the IRS method was developed as an alternative theoretical option of the MLS for 

reducing distortion peaks [176]. The disadvantage of this method is the longer 

time needed for the calculation of the deconvolution by using high order FFT and 

IFFT filters [177]. The time-streched pulses were introduced from Aoshima for 

the measurements of impulse responses [178]. This method aims at increased 

sound to noise ratio with the purpose of diminishing the peak distortions. Finally 

the logarithmic sine sweep method was first proposed and developed by Farina 

and Ugololli [179-181]. The method intended to overcome most of the 

limitations encountered in the other measurement techniques.  
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5.1.3 Choice of Measurement technique 

The most prominent and widely used measurement techniques for the impulse 

response are the logarithmic sine sweep and the maximum length sequence. 

Studies by Farcas [177], Mateljan [182] and especially Stan [183] present a 

thorough comparison of the different impulse response measurement 

techniques.  

The swept-sine is an optimal excitation signal for the fast measurement of an 

acoustical impulse response, without the averaging. It gives a better estimation 

than other excitation signals in acoustical time-variant environments and slightly 

nonlinear systems. Also in a noiseless environment the logarithmic sine sweep 

method seems to be the most appropriate. The swept-sine is not good excitation 

signal if the environment generates a large level of the colored or impulsive 

noise. It also gives a bad estimation in a system that has the frequency sensitive 

automatic gain control or automatic noise suppression. In those cases periodic 

noise excitation signals as the maximum length sequence give a better 

estimation. 

In the presence of a nonwhite stationary noise the MLS technique outperforms 

the other methods. In a nonrandom noisy environment, where specific source is 

responsible for the noise, MLS method provides the best results and has better 

reproducibility. Same results can be obtained with the IRS technique, but the 

MLS method is more practical, faster and commonly used.  

For this thesis at the beginning of the measurement procedure the methods were 

tested thoroughly in the reverberant room. After many measurements, it has 

been observed that both methods have very close results. However, it was 

obvious that the MLS method had greater stability and repeatability of results. 

This may be due to small background noise in the room. Therefore, it was 

preferred to follow the MLS method throughout the experiments. 
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5.1.4 Maximum Length Sequence (MLS) Measurement 

Technique 

The acoustical impulse response measurements using the MLS technique were 

first proposed by Schroeder [184] and have been used in the field of room 

acoustics and loudspeaker design. Many papers discussed the theoretical and 

practical advantages and disadvantages of their technique. The MLS method 

presents great immunity in distortion [185]. Bleakley and Scaife [186] have 

shown that the signal-to noise ratio for the MLS sequence increases by 3 dB 

when the period length of the MLS sequence is doubled. Some practical aspects 

are discussed by Vanderkooy and Vorlander [187, 188]. 

A Maximum Length Sequence (MLS) [189] signal is a pulse signal with quasy-

randomly exchanging states: +1 and -1. It can be analyzed as a binary sequence 

of N zeros or ones, that is periodic with a period N = 2m-1. The MLS can be 

generated with shift registers connected in a feedback. 

Feedback connections are defined with some primitive polynomial of m-th order. 

For example, Fig. 5-1 shows generation of one MLS sequence with the 

polynomial b(x)=x4+x3+1.  

This is fourth order polynomial and the generated MLS sequence has length 

(period) N = 24 – 1 = 15. 

 

Figure 5-1 MLS sequence generation with shift registers 
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Every MLS sequence has following characteristics: 

1. The autocorrelation function is constant 𝑅𝑘
𝑥𝑥 = {

1, 𝑘 = 0
−1/𝑁, 𝑘 ≠ 0

 

2. DC value is equal to 1/N 

3. The crest factor is 1 (0dB) 

For large N, a DC value (1/N) approaches zero. Then, the autocorrelation is equal 

to 1 for k=1, else it is equal to the zero. The power spectrum Sn and the 

autocorrelation Rk are Fourier pair: 

 𝑆𝑛
𝑥𝑥 = ∑ 𝑅𝑘

𝑥𝑥

𝑁−1

𝑘=0

𝑒−𝑗2𝜋𝑛𝑘/𝑁 = 1 (5-1) 

This power spectrum is a constant, which means that MLS sequence has a white 

spectrum. When system excitation has a white spectrum then cross-correlation 

of an output signal with an input signal is proportional to the system impulse 

response (ℎ𝑘 ≈ 𝑅𝑘
𝑥𝑦

). 

The most important reason for the MLS popularity is the simple instrumentation 

necessary. A sound generator and a computer with fast correlation can compute 

the impulse response of an acoustic space. The correlation can be performed 

with an FFR algorithm or a Hadamard transform.  

Another important aspect of MLS measurements is the low crest factor. In theory 

this  can be the lowest among the other techniques. In practice this is not true 

due to the slight changes of an MLS signal through the output of the D/A 

converter "antialiasing" filter and passing through any other filter. Nevertheless 

a crest factor from 6dB to 9dB is common measurement for the MLS method on 

typical PC configuration. 

The biggest problem with the MLS method seems to be the measurement of 

nonlinear systems. Sequences that are created from the MLS can generate 



118 

 

distortions that alter the impulse response of a nonlinear system. This problem 

is not so prominent for the measurement of acoustic spaces. In the case of 

nonlinearities the logarithmic sine sweep is better for measuring the frequency 

response of systems. 

 

Figure 5-2 Dialog box for the measurement of the impulse response using MLS 

 

5.1.5 Calibration of the loudspeaker 

In order to measure the impulse response of a space, a point source is necessary 

which has to be omnidirectional. For this purpose a dodecahedral speaker is 

commonly used. There are also other techniques [190-192] for measuring the 

impulse response without the use of a dodecahedral loudspeaker but they are 

less precise. 

The evaluation of a loudspeaker in the low frequency range usually requires 

measurements of distortion, frequency response and power output. A large and 

expensive anechoic chamber or a costly open-field outdoor testing site is 
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necessary for these measurements. Methods also exist with the use of a semi-

anechoic and a reverberation room [193-195]. 

Small [196] pointed out that valid measurements could be made at low 

frequencies in any reasonable environment by sampling the pressure inside the 

enclosure. Keele [197] proposed a similar technique for loudspeaker assessment 

and calibration that was followed in this thesis. This loudspeaker test technique 

depends only on near field pressure measurements made in a nonanechoic 

environment. The necessary measurements of frequency response, distortion 

and power output can be measured in an easy and simple measurement.The 

relationship between near and far sound pressures depends only on two length 

constants and is independent of frequency. Therefore, Keele states, that low-

frequency response can be measured quite simply by plotting the nearfield 

pressure (in dB) versus frequency. Total acoustic power output versus frequency 

can then be derived. The supporting experimental measurements show that 

loudspeaker system piston-range characteristics can easily be measured by 

sampling the nearfield pressure with a test microphone held close to the acoustic 

radiator. Valid nearfield measurements may be taken in any reasonable 

environment without the use of an anechoic chamber or large outdoor test site. 

Experimental measurements using the nearfield technique show excellent 

agreement with more traditional test methods. 

For this thesis the dodecahedral speaker frequency characteristics were 

measured by sampling the nearfield pressure with a test microphone. The 

spectrum levels were extracted. A dedicated software was used for applying the 

frequency compensation. The following equation was used for the loudspeaker: 

Corrected level (dB) = Measured level (dB) – Compensation level (dB) 
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Figure 5-3 Frequency Response for Compensation (Loudspeaker Calibration) 

 

5.1.6 Calibration of the Microphone 

Many are the methods used for the correct calibration of the microphone for the 

impulse response measurements. Frederiksen  [198] states that, ideally, the 

frequency response of a microphone should be measured with a sound pressure 

that is either known as a function of frequency or known to be constant over the 

frequency range of interest. This specific requirement is very difficult to 

implement with an acoustic source. 

An alternative option is to use an electrostatic actuator which can produce a 

force, or say an electrostatic pressure, directly on a microphone diaphragm that 

is independent of the frequency. For this thesis frequency response calibration 

performed with the use of an electrostatic actuator. The actuator method is 

relatively cheap and easy to perform. The method is described in detail in the 

standard IEC61094-6 [199] and in the AIP Microphone Handbook [200]. The 

actuator can simulate a sound pressure on the microphone diaphragm, if this is 

electrically conducting. An actuator is usually  a flat and very stiff metallic plate 
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with holes or slits that make it acoustically transparent. During the operation, 

the actuator is placed close to and in parallel with the microphone diaphragm. 

Typically, 800V DC and 30V AC are applied between the actuator and the 

diaphragm. These voltages will, with the most commonly used models of 

actuators, generate an equivalent sound pressure of about 1 Pa (94 dB).  

For this thesis a cylindrically shaped condenser microphones was used with 

good acoustic properties, such as high stability of sensitivity and an influence of 

ambient conditions that is relatively small and predictable. The microphone was 

connected with the microphone preamplifier to the soundcard input. The sound 

actuator was attached on the microphone for the calibration process.  

 

5.2 IMPLEMENTATIONS 

For the first case impulse responses were measured in a reverberant room for 

the calculation of acoustic parameters and frequency responses. For the second 

case impulse responses were measured in a reverberant space with the use of 

acoustic panels for the calculation of the absorption coefficient of the material.  

 

5.2.1 Reverberant room Measurements 

The sound field in a reverberant space with a lightly damped wall was measured 

in this study with the use of a Maximum Length Sequence (MLS) signal. The 

reverberant room to be computed and measured here is depicted in Fig. 5-4. The 

volume and the surface area of the room are, respectively, 38.71m3   and 71.17 

m2. Inner walls of the room are made of concrete.  

The impulse responses at 60 receiving points were measured as depicted in Fig. 

5-4.The sampling frequency of the measurement was 44.1 kHz. An appropriate 

sequence length (262144 samples) and time constant (approximately 6 seconds) 

for the MLS signal was chosen according to the expected reverberation time. Ten 
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iterations were performed for each of the sixty measurement points. The settings 

are depicted in Figure 5-2. Averaging was used for better signal to noise ratio 

and to reduce the temperature fluctuation effect. Averaging several 

measurements performed at one microphone/loudspeaker position in order to 

reduce the measurement uncertainty caused by statistical deviations.  

The variations of temperature and hence the sound velocity with time and 

position cannot be entirely avoided but the effects which are caused by these 

inhomogeneities can be considered to be small for frequencies below 1 kHz.  

An omnidirectional dodecahedral loudspeaker (Type DO12; 01 dB-Stell) was 

placed at a height of 1.5 m, as depicted in Fig. 5-4. The assessment and 

calibration of the dodecahedral loudspeaker was achieved after near field sound 

pressure measurements of the impulse response were performed. The frequency 

range of this study is such that the method that was used is adequate for 

calibration.  

In addition, a microphone (Type 4190; Earthworks) was placed 1.2 m above the 

floor for each of the 60 measurements.  

Table 5-1 lists the average measured reverberation times and average 

absorption coefficients   of the room surfaces for octave bands with center 

frequencies of 125, 250 and 500 Hz. The reverberation times are spatial average 

values of 60 receiving points calculated using the maximum length sequence 

method. The values of the absorption coefficient were calculated by substituting 

measured reverberation times into the Sabine equation on the assumption that 

the sound field in the room is sufficiently diffuse. However, the Schroeder 

frequency of the reverberant room is approximately 550 Hz. This indicates that 

the sound field in the reverberation room is insufficiently diffuse below 500 Hz. 

The average absorption coefficient is going to be used in the section of the setup 

of TDFEM for the calculation of the impedance of the walls. 
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From the measured impulse responses, acoustic parameters were derived and 

will be discussed and compared with the ones calculated from the TDFEM later 

in this study. 

 125 (Hz) 250 (Hz) 500(Hz) 

RT (sec) 5.16 3.11 2.65 

SD (sec) 0.70 0.42 0.21 

a  1.70
2

10


  2.82
2

10


  3.30
2

10


  

 

Table 5-1 Average Measured Reverberation times, standard deviations and average absorption 

coefficients of room surfaces 

 

 

Figure 5-4 Reverberant room with measured and computed points 
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Figure 5-5 Maximum Length Sequence Impulse Response Measurements 

 

5.2.2 Reverberant room with Absorptive Material 

Measurements 

The measurements were carried out in a reverberant room of the Technical 

University of Crete, Greece (Fig. 5-6) with a volume and surface area of 

respectively, 38.71 m3 and 71.17 m2. Inner walls of the room are made of 

concrete.  

The specimen comprised of five acoustic panels covering an area of 315 x 130 

cm, which for testing purposes were laid directly over the floor so that no part 

was closer than 0.63 m to any edge of the boundary of the room. The specimen 

comprised of rock wool (measured thickness 50 mm), which was overlaid 

synthetic open weave facing fabric. The perimeter edges of the specimen were 

shielded for test by a 50 x 25 mm timber batten framework. The test was 

conducted with the specimen installed within the chamber and also in the 
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absence of the specimen and any associated framework. The test specimen 

reached equilibrium with respect to temperature and relative humidity in the 

room before tests were carried out. 

The measurements were made with the use of a Maximum Length Sequence 

signal in accordance with ISO 354. The sampling frequency of the measurement 

was 44.1 kHz. An appropriate sequence length and time constant for the MLS 

signal was chosen according to the expected reverberation time. Ten iterations 

were performed for each of the measurement points. Averaging was used for 

better signal to noise ratio and to reduce the temperature fluctuation effect. 

Same as the previous measurement, as the ISO suggests, several measurements 

performed at one microphone/loudspeaker position in order to reduce the 

measurement uncertainty caused by statistical deviations.  

The variations of temperature and hence the sound velocity with time and 

position cannot be entirely avoided but the effects which are caused by these in-

homogeneities can be considered to be small for frequencies below 1 kHz.  

Six microphone positions were used for each of two loudspeaker positions to 

obtain a good average at each of the one-third octave intervals from 100 Hz to 

500 Hz as prescribed in the Standard. A microphone (Type 4190, Earthworks) 

was placed for each of the measurements. An omnidirectional dodecahedral 

loudspeaker (Type DO12, 01 dB-Stell) was placed at two loudspeaker positions 

which were at least 3 m apart. The assessment and calibration of the 

dodecahedral loudspeaker was achieved after near field sound pressure 

measurements. The frequency range of this study is such that the method that 

was used is adequate for calibration. Absorption Coefficients (αs) of the specimen 

were calculated using equation 4-21 according to ISO 354. 



126 

 

 

Figure 5-6 Reverberant room with acoustic material 

 

 

Reverberant Room 
Conditions 

Air  
Temperature 

Relative 
Humidity 

Air  
Pressure 

Empty Room 18°C 78% 765 mmHg 
Room with Specimen 18°C 77% 765 mmHg 

 

Table 5-2 Reverberant Room Conditions 

 

 

Receiving Points Source Points 
R1 (1.10,1.00,1.10) S1 (1.78,1.10,1.10) 
R2 (1.10,1.00,1.97) S2 (1.78,3.47,1.97) 
R3 (1.78,2.24,1.10)  
R4 (1.78,2.24,1.97)  
R5 (1.10,3.47,1.10)  
R6 (1.10,3.47,1.90)  

 

Table 5-3 Receiving and Source Points 
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Figure 5-7 Reverberant Room with Acoustic Material 
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Chapter 6  

 

6. COMPARISON OF FEM MODELING AND 
MEASUREMENTS 

 

 

 

 

 

 

 

 

Comparison of the results of the finite element method and the actual 

measurements in a space will be presented for three different cases. In the first 

case the comparison for measurements and calculations made in a reverberant 

room will be displayed. The impulse responses, acoustic parameters, frequency 

responses and cumulative spectral decays will be presented and discussed. In the 

second case, the measurements and calculations made in the reverberant room 

with the presence of absorbent material will be used for the extraction of the 

absorption coefficient of the material. The results will be presented along with a 

discussion of the findings. Finally the eigenfrequencies and eigenmodes of the 

room will be presented with the use of finite element method (Helmholtz 

equation). A comparison will be presented for the finite element method 

(Helmholtz equation), the time domain finite element method and the analytical 

results. 
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6.1 IMPULSE RESPONSES, FREQUENCY RESPONSES AND 

ACOUSTIC PARAMETERS 

After the modeling, the pressures at 60 points of the reverberant room were 

computed. The impulse responses were calculated from the extracted pressures 

for each time step with the use of the finite element method in the time domain. 

From the calculated impulse responses, acoustic parameters were derived and 

will be discussed and compared with the ones measured with the MLS technique. 

6.1.1 Impulse Response 

The precise calculation of the impulse response is the prime goal of the thesis. 

Accurate modeling will enable accurate representation of the frequency 

responses and cumulative spectral decays and also precise calculation of the 

acoustic parameters. In order to evaluate the quality of modeling, the results of 

the calculation will be compared with the actual measurements in the 

reverberant room [1]. 

Comparisons of the computed and the measured impulse responses at three 

arbitrary receiving points at times up to 0.4 s are portrayed in Figure 6-1. The 

fine structures of the computed impulse responses correspond closely to those of 

the measured ones, irrespective of receiving point. Similar results were obtained 

for the other points in this investigation. 

The cross-correlation coefficient between the measured and calculated impulse 

responses was assessed in order to quantify the accuracy of the results. The 

coefficient is calculated and averaged with 0.05 sec steps at all receiving points. 

The values of the coefficient are 0.89 for 0.1 sec and 0.82 for 0.5 sec with a 

decreasing step over time. The value of the coefficient and hence the accuracy of 

the TDFEM is high but further improvement of the method is necessary. 

Although high correlation coefficients are obtained in the early time region of the 

impulse responses, the value decreases gradually over time. This is a sign that 

there might be a factor which accumulates over time and affects the  
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Figure 6-1 Measured and Computed Impulse Responses for three points in the Reverberant Room  
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correspondence between measured and calculated impulse responses. A review 

of the probable causes of this inaccuracy follows in the next chapter. 

 

Figure 6-2 Averaged cross-correlation coefficients for Measured and Calculated impulse responses 

 

 Probable causes for differences between measured and calculated 

impulse responses 

Although the convergence between the results is satisfactory, it is important to 

investigate the reasons for the differences between measured and calculated 

impulse responses in order to find ways to improve the modeling method. 

Initially, there were some hypotheses about the decrement of the correlation 

coefficient over time for the impulse responses. A probable cause for the 

decrement of the coefficient was assumed to be the insufficient modeling of the 

impedance of the boundary conditions. As it was discussed earlier the 

normalized acoustic impedance of wall surfaces were calculated by substituting 

the random incidence absorption coefficient into Equation 4-2 with the 

assumption that the acoustic impedance is independent of the incidence angle.  

Later on, comparison of the impulse responses that were obtained for different 

meshes (presented in section 4.1.4) showed that while the impulse responses in 

the initial stages are identical, the differences are increasing over time. This is a 

clear indication that the effect of the mesh size on the time domain finite element 
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method creates these effects on the impulse responses. This seems to justify the 

gradually decreasing cross correlation coefficient of the impulse response. There 

is an error that accumulates over because of the insufficiency of the mesh size. 

Another cause of uncertainty may also be due to the measurement process. The 

dodecahedral loudspeaker simulates a point omnidirectional source. This is not 

always the case and uncertainties are caused by source directivity in room 

acoustics investigations [201]. Martin [202] states that most of the commercial 

dodecahedron loudspeakers comply with the maximum allowed directional 

deviations of the source specified in the standard. While this requirement is 

adequate for the derivation of reverberation times, for the detailed investigation 

of the room impulse response time structure, however, the directivity of the 

source becomes more important. This problem has been addressed in the finite 

difference method in the time domain [114, 203]. An improvement of the 

measurements is proposed by Martellotta [204] who suggest a stepwise rotation 

of dodecahedron sound source to improve the accuracy of room acoustic 

measure. Also Kleiner [205] states that diffraction of the dodecahedral 

loudspeaker edges plays a role for the measurement of an accurate impulse 

response. In conclusion, we can say that there will always be a slight difference in 

the results between measurements and calculations because of the influence of 

the source. 

Another cause of uncertainty may be because of the measurement software. 

There have been measured variations between standard room acoustic 

measures for impulse response measurements [206]. There is also might be a 

variation for calculating acoustic parameters between software implementations 

[207].  Hence there seems to be a limit to measurement accuracy of impulse 

responses due to the measurement process. 

Finally, another cause of variations might also be a background noise that existed 

in the reverberant room during the measurements. The effect of background 

noise is also shown in the frequency response measurements to be presented in 

the next section. 
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6.1.2 Frequency responses- Cumulative Spectral Decays 

Frequency responses and Cumulative Spectral Decays of the space were chosen 

to be presented in this study as the most important graphs for room acoustic 

analysis. These graphs are important for a representation of a room or an 

enclosed space of any dimensions. Frequency responses and Cumulative Spectral 

Decays of the space were derived from the measured and calculated impulse 

responses [2]. The results are presented in the following figures both for the 

TDFEM and MLS measurement for frequencies up to 200 Hz. The frequency 

responses are depicted for three arbitrary points of measurement in the 

reverberant room. Similar results were obtained for the other points of 

measurement and calculation.   

Comparing the measured and calculated frequency responses shows that TDFEM 

modeling has managed to accurately predict the resonant frequencies at the 

measurement points. There is also a strong correlation with the relative levels in 

the resonant frequencies in the measurement points. At low frequencies there is 

a difference that is probably due to background noise that existed in the room. In 

general there are small variations due to differences observed in impulse 

responses measurements and calculations as previously stated. 

As a second step the cumulative spectral decays were extracted from the 

measured and calculated impulse responses. In essence the cumulative spectral 

decays are a representation of the frequency response in the time domain.  This 

is particularly important in the field of room acoustics because it serves as an 

additional indication for the problematic resonant frequencies in the room.  As a 

result the appropriate acoustic treatment can be chosen to improve these 

problematic frequencies.  The results are compared in Figure 6-4 for frequencies 

up to 200 Hz and in the time domain. The results are presented in different 

graphs for better comparison. There is a good correlation of the resonant 

frequencies between the measured and computed results. There is also a strong 

correlation with the relative levels in the resonant frequencies in the 

measurement points. Similar with the frequency responses at low frequencies  
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Figure 6-3 Measured and Computed Frequency Responses for three points in the reverberant room 
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Figure 6-4 Measured (gray) and Computed (light blue) Cumulative Spectral Decays for three points 

in the reverberant room 
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there is a difference that is probably due to background noise that existed in the 

room. In general there are small variations due to differences observed in 

impulse responses measurements and calculations as previously stated. We note 

that the method has managed to predict the decay rate of the main resonant 

frequencies. 

 

6.1.3 Acoustic parameters 

Acoustic parameters of the reverberant space were derived from the measured 

and calculated impulse responses. The reverberation time, early decay time, 

clarity (C80) and definition (D50) were chosen to be presented in this thesis as 

some of the most important parameters for room analysis. These parameters are 

adequate for a satisfying representation of the room characteristics. 

The results are presented in the following tables both for the TDFEM and MLS 

measurement and for octave bands with center frequencies of 125, 250 and 500 

Hz. The results are presented in the tables for six arbitrary points in the 

reverberant room.  

RT 

(sec) 

125 (Hz) 250 (Hz) 500 (Hz) 

MLS TDFEM MLS TDFEM MLS TDFEM 

1 5.01 5.00 3.10 2.75 2.61 2.45 

2 5.34 5.11 3.30 3.43 2.46 2.62 

3 5.96 5.04 2.88 3.29 2.84 2.57 

4 5.07 4.99 2.59 3.00 2.94 2.54 

5 5.49 5.12 3.15 2.89 2.55 2.70 

6 5.55 4.96 3.08 2.93 2.54 2.49 

Table 6-1 Measured and calculated Reverberation Time of the reverberant space 

EDT  

(sec) 
125 (Hz) 250 (Hz) 500 (Hz) 

MLS TDFEM MLS TDFEM MLS TDFEM 

1 4.63 4.96 3.03 2.80 3.01  2.88 

2 5.44 4.97 2.92 3.24 3.03  2.72 

3 5.52 4.89 2.89 3.41 2.94  2.94 

4 5.10 4.86 1.96 3.10 2.49  2.87 

5 5.06 5.02 3.09 3.16 2.64  3.03 

6 5.20 4.84 2.26 3.02 2.36  2.96 

Table 6-2 Measured and calculated Early Decay Time of the reverberant space 
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C80  

(dB) 
125 (Hz) 250 (Hz) 500 (Hz) 

MLS TDFEM MLS TDFEM MLS TDFEM 

1 -4.65 -4.13 -5.82 -5.07 -5.32 -0.21 

2 -8.17 -5.80 -1.54 -3.56 -2.87 -0.44 

3 -8.22 -6.62 -2.66 -5.96 -0.54 -2.11 

4 -3.15 -3.26 -2.92 -7.52 -0.71 -1.40 

5 -6.85 -3.96 -0.92 -1.71 -1.20 -0.96 

6 -3.65 -3.10 -4.43 -5.72 -4.08 -1.95 

Table 6-3 Measured and calculated Clarity of the reverberant space 

D50   

(%) 
125 (Hz) 250 (Hz) 500 (Hz) 

MLS TDFEM MLS TDFEM MLS TDFEM 

1 9.9 11.6 11.4 17.8 8.8 29.3 

2 10.9 17.0 31.4 18.0 22.6 29.9 

3 10.7 11.3 20.8 17.2 35.3 44.1 

4 22.7 16.7 20.1 8.2 27.4 35.1 

5 8.5 19.7 35.3 22.6 27.3 47.6 

6 21.0 16.9 20.8 8.6 16.8 31.8 

Table 6-4 Measured and calculated Definition of the reverberant space 

To evaluate the similarity between the measured and computed acoustic 

parameters the averages are presented in table 6-5. 

Average 125 (Hz) 250 (Hz) 500 (Hz) 

MLS TDFEM MLS TDFEM MLS TDFEM 

RT(sec) 5.42 5.05 3.02 3.05 2.66 2.56 

EDT(sec) 5.16 4.92 2.69 3.12 2.75 2.88 

C80 (dB) -5.78 -4.47 -3.05 -4.92 -2.45 -1.18 

D50 (%) 13.9 15.5 23.3 15.4 23.0 36.3 

Table 6-5 Averages of measured and calculated acoustic parameters 

The results for the measured averages correspond closely to the calculated ones. 

The calculated averages succeeded to predict the decrease in the reverberation 

time and early decay time for higher frequencies. Reverberation time is the most 

important acoustic parameter. The differences between the calculated and the 

measured values are small which allows practical use of results in acoustic 

studies of rooms. Also differences in specific measurement points are small. 

Combining results with results of geometric acoustics allows for a complete 

study in the whole frequency spectrum. Similar results are also observed for the 

values of early decay time. We can see that the results for reverberation time are 

not the same as the early decay time which shows that the space is not 
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completely diffused. Nevertheless the combination of results both for RT and 

EDT will allow acoustic treatment for a specific point in an acoustic space. With 

respect to clarity and definition, we see that we have good results but with a 

slight bigger variation from the measured values. This is may be due to the fact 

that the values arise from the comparison of the first section of the impulse 

response with the rest of the impulse response. More research on real rooms 

about the accuracy of measurements for room results is necessary. 

6.1.4 Application of the TDFEM in real life rooms 

The results for the reverberant room show that the method can provide good 

results for the impulse responses, frequency responses, cumulative spectral 

decays and the acoustic parameters. An important question that rises, is if the 

method is applicable in real life rooms. Two seem to be the most important 

issues. 

The first one is the computational cost which currently prohibits the method 

from widespread use. The use of the method over the entire frequency range (up 

to 20 kHz) at present time is prohibitive. However, there is the possibility of 

applying the time domain finite element method up to the Schroeder frequency 

for real life rooms.  The method can then be combined with geometrical acoustics 

for higher frequencies. Hence a hybrid method would be a possible practical 

option. 

The second issue seems to be the application of boundaries. For this thesis the 

boundaries are locally reacting. In reality, there are many kinds of boundary 

conditions which correspond to different acoustic materials such as porous 

absorbers, combination of porous absorbers, panel absorbers, Helmholtz 

resonators etc. There would be a problem in precisely defining the boundary 

conditions for all the absorbent surfaces that may exist in a space. For example, 

the modeling of a common object that may exist in a space e.g. a chair would 

require different finite element modeling for different parts. A probable solution 

would be to apply locally reacting boundary conditions for every absorptive 
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material in a room, similar with the approach in geometrical acoustics 

(absorption coefficient). The results of this approach in real life rooms will be 

examined in a future study. 

 

6.2 ABSORPTION COEFFICIENT OF ACOUSTIC MATERIAL 

In the second part of this thesis the ability of calculating impulse responses with 

the use of the finite element method in the time domain was utilized for the 

computation of the absorption coefficient of an acoustic panel. For that purpose 

at first the acoustic coefficient of an acoustic panel was measured in the 

reverberant space according to the ISO 354. The ISO requests the procedure to 

be performed in a reverberant space. The same process was performed virtually 

with the use of the TDFEM. The results are compared in the following section. 

6.2.1 Absorption Coefficient 

The sound absorption coefficients for third octave bands were calculated from 

the mean reverberation times for the empty room and the room with the sample 

installed after. The reverberation times were extracted from the impulse 

responses both for the measured and calculated ones [6]. The specimen is 

treated as a planar sample as suggested by the ISO 354.  In Figure 6-6 the 

absolute error and the percent error for the measured and calculated absorption 

coefficient are presented. The mean absolute error is 0.04 sec.  These results 

indicate that the absorption coefficient can be calculated using the method with 

acceptable accuracy. Consequently, the method may be considered to have 

sufficient reliability for calculating absorption characteristics of porous materials 

and acoustic panels with variant shapes.  
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Figure 6-5 Measured and calculated absorption coefficient of an acoustic panel 

 

  
Figure 6-6 Absolute error and percent error for measured and calculated absorption coefficient of 

an acoustic panel 

 

6.2.2 Applications for a ‘virtual’ reverberation chamber 

The main goal of this part of the thesis was the utilization of the finite element 

method in the time domain in order to calculate the absorption coefficient of an 

acoustic panel. The results support this goal and show that the method can be 

useful in practical real world applications. The method is yet to be applied in 

reverberation chambers which are in full agreement with the specification of the 

ISO 354 in order the applicability of the method to be checked and the results to 

be refined.  
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A possible application of the method is that it can be applied for the development 

of acoustic panels. Acoustic panels are created in various shapes for which it is 

difficult to ascertain their absorption coefficient before they are built. This 

process can play a major role in the manufacturing process. It could also be 

combined with an optimization process in order to achieve the best results. In 

this way, novel shapes of absorption panels could be tested and validated in a 

virtual environment with minimum cost. 

Another possible application of this approach is that other acoustic 

characteristics of materials can be tested in a virtual environment. An obvious 

possibility is the random incidence scattering coefficient which also requires a 

reverberation chamber for its accurate measurement [208, 209].           

6.3 EIGENFREQUENCIES-EIGENMODES 

In the previous sections by using the finite element method in the time domain, 

we were able to measure a room's impulse response, the acoustic parameters 

that characterize it as well as the frequency responses and cumulative spectral 

decay. From the frequency responses we can observe the eigenfrequencies of the 

room that exist at the points of measurement. The eigenfrequencies can also be 

found using the finite element method in the frequency domain (Helmholtz 

equation). Also with the use of equation 2-28 we can calculate eigenfrequencies 

of the acoustic space. The purpose of this chapter is to compare the 

eigenfrequencies for these three cases.  

Figure 6-7 presents the eigenfrequencies and the eigenmodes for four 

frequencies in the reverberant room. In figure 6-7 those frequencies can be 

identified as resonant from the frequency response obtained from the time 

domain finite element method in three different points in the acoustic space. 

Table 6-6 presents the comparison of the eigenfrequencies along with the 

solution for the eigenfrequencies from equation 2-28. The results obtained from 

the TDEFEM, the FEM element (Helmholtz) and the analytical solution have very 

close values. 
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Figure 6-7 Eigen frequencies, Eigen modes and Sound Pressure Levels in the Reverberant Room 
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Figure 6-8 Calculated frequency responses for three measurement points in the reverberant room 

 

Analytical FEM (Helmholtz) TDFEM 

115.49 115.57 115.98 

123.38 123.49 123.32 

136.23 136.35 136.03 

169 169.2 168.92 

 

Table 6-6 Analytical, FEM (Helmholtz) and TDFEM Eigen frequencies for the reverberant room 

This latter section, in addition to showing that TDFEM, FEM (Helmholtz) and the 

analytical solution can provide very close results, has another significant 

meaning. In practical, real life acoustic studies of rooms the knowledge of the 

impulse response along with the eigenfrequencies and eigenmodes is very 

important. In room acoustics it is desirable that the frequency spectrum of a 

room is as flat as possible in the desired listening position. It is also desirable 

that the cumulative spectral decay does not reveal significant resonances with a 

great duration in the time domain.  
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For this reason, the eigenmodes can be utilized in order the appropriate acoustic 

interventions to be applied. The eigenmodes provide vital information on which 

positions the absorbent elements must be placed in order to achieve maximum 

absorptivity of the acoustic energy. The maximum absorption capacity is 

achieved where the particle  velocity has a maximum, i.e. at a distance from the 

hard surfaces equal to λ / 4 [210]. 

A representation of the eigenmodes with the use of isosurfaces is very helpful for 

that cause. Some charecteristic isosurfaces for eigenmodes are presented in the 

following figures. The problematic frequencies can be identified with 

measurements or with the use of the time domain finite element method. The 

effect of placing absorbing material in position with maximum absorptivity for 

the problematic frequency in a room can be predicted with the use of the time 

domain finite element method. 

 

 

Figure 6-9 Isosurface for Eigenfrequency 110.47 Hz 
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Figure 6-10 Isosurface for Eigenfrequency 123.49 Hz 

 

 

Figure 6-11 Isosurfaces for Eigenfrequency 169.2 Hz 
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Chapter 7  

 

7. CONCLUSION AND FUTURE RESEARCH 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions and future work for this thesis are presented in this chapter. The 

most salient points are discussed, along with major strengths and limitations of 

this thesis. Finally some avenues for future work which are already underway 

are conferred. 
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7.1 CONCLUSIONS 

This thesis has attempted to propose, validate and utilize a time domain finite 

element method for modeling the sound field of an acoustic space. A 

methodology developed for resolving the most crucial problems involving the 

calculation of the impulse response of a reverberant shape. The steps in the 

research methods that were taken into account for the development of an 

accurate method were the source selection, correct modeling of walls, time step-

time scales, finite element meshes, modeling of acoustic material and the time 

stepping method. 

The results after the impulse responses and the acoustic parameters of a 

reverberant space were computed and then compared with the measured ones 

showed that the time domain finite element method is an applicable method that 

provides good results for the calculation of the impulse response and acoustic 

parameters in a reverberant room. The high computational cost along with lack 

of research in real life rooms currently prohibits the method from widespread 

use. 

The results of this thesis show that the modeling of walls by substituting the 

normalized acoustic impedance from in situ measurements of the absorption 

coefficient is satisfactory in the case of a reverberant room. The results for 

calculated acoustic parameters are very close to the measured ones, which 

allows for the method to be used in practical application. In reality, this is not the 

ideal modeling for every kind of absorbing surface. There exist absorbent 

surfaces and materials that cannot be treated as locally reacting.However, the 

practicality of this approach if it leads to acceptable results in real life rooms is 

very promising. The acoustic impedance of materials can be immediately 

calculated and used in the finite element method in the time domain for 

measuring acoustic parameters in real rooms. The impedances of a large number 

of acoustic materials can be extracted from the absorption coefficients of 

acoustic materials since the majority of the absorption coefficient is already 

measured with the use of a reverberation chamber.  
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It therefore stands to reason that this thesis approach for calculating the impulse 

response could prove to be of considerable commercial interest. This 

development would presumably lend itself to such applications such software 

that can predict the sound field of rooms, halls prior to the manufacturing and 

address the problems that are not possible to solve with current methods such as 

geometric or statistical acoustics. From the standpoint of low frequency 

calculation of impulse responses the time domain finite element method can 

provide better results than the current methods. Combining the method with a 

geometrical acoustics approach above the Schroeder frequency (hybrid method) 

could be the best practical solution. Future improvements in computer 

processing power are likely to make the method more accessible. The above 

implementation in real life rooms is an obvious avenue of future work. 

For this thesis the number of nodes per wavelength that was used for mesh 

construction was adequate. However it was observed that the correlation 

coefficient of the impulse responses was reduced overtime. Accuracy, however, 

was still satisfactory, which also is evident in the results for the acoustic 

parameters. There were also indications that for shorter impulse responses and 

smaller rooms with higher absorption this necessity reduces. Hence acceptable 

results for impulse response can be obtained with fewer nodes per wavelength. 

This observation may be particularly useful for the appropriate setting of 

number of nodes per wavelength depending on the room size and absorption.  

The second aim of this study was to investigate the usability of the method for 

predicting the absorption coefficient of a material. The time domain finite 

element method was utilized in the form of a virtual reverberation chamber for 

the measurement of the absorption coefficient of an acoustic panel. The results 

showed that the method can be used for the prediction of the absorption 

characteristics of acoustic panels. The method can be used for a virtual 

replication of a reverberation chamber that is commonly used for the 

measurement of the absorption coefficient of materials. This is an indication that 

the method can be applied for calculating the absorption coefficient of materials 

with various shapes prior to their manufacturing. 
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The findings of this thesis also showed that there is compatibility of the results 

with the frequency domain finite element method by solving the Helmholtz 

equation. The combination of methods is very useful for acoustic field studies at 

low frequencies and proper treatment of a room. 

With regard to the research methods, some limitations need to be acknowledged. 

The method was only applied in a reverberant room. This limitation means that 

study findings need to be interpreted cautiously. The generalizability of these 

results needs to be tested in real life rooms, halls and open spaces. Only further 

study will resolve whether the method can be applicable in real life rooms.  

Strength of this thesis is that it can serve as a basis for modeling acoustic 

phenomena in the time domain. This thesis has provided a deeper insight into 

the application of time domain finite element method in the field of room 

acoustics. Many applications exist for an efficient time domain finite element 

method. Also the accurate prediction of the sound field of any enclosed space is 

of great interest in many scientific fields and has many useful and interesting 

applications.  The importance of the time domain finite element method is going 

to be enhanced on the near future because of the emergence of low-cost, high-

speed computers. More development and advancement is to be expected for the 

method in further studies. 

 

7.2 FUTURE WORK 

As it was stated earlier a natural progression of this work is the application of 

the method in real life rooms with different symmetries, larger volumes and with 

different absorbing materials. The method can also be combined with 

geometrical acoustics above the Schroeder frequency for a full spectrum hybrid 

approach of room acoustics problems in the time domain. 

Another area of application is the utilization of the virtual reverberation 

chamber for measuring the absorption coefficient of acoustic panels with 
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different shapes. Optimization methods can also be used for the proposal of 

shapes of acoustic panels with better acoustic characteristics.  

Accordingly to the method used to measure the absorption coefficient, a similar 

method can be used to measure the diffusion coefficient of materials. A virtual 

method for measuring the diffusion of acoustic panels will be of great use and 

could lead to new shapes and configurations. 

The finite element method in the time domain can also be considered for 

modeling other wave phenomena. Diffraction may be an applicable candidate.  

The time domain finite element method can be utilized for the development and 

optimization of sound barriers. The effects of diffraction can be examined and 

evaluated both in the frequency and the time domain. The open pressure 

acoustics domain can be modeled with the use of a perfectly matched layer.  

The use of the method may be also important in the field of loudspeaker design 

where the response of the speaker cabinet in the time domain is crucial. 

Resonances in the time domain can be extracted from the cumulative spectral 

decay and treated accordingly.  
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8. APPENDIX 

 

8.1 DERIVATION OF THE FEM FORMULATION VIA THE 

PRINCIPLE OF MINIMUM POTENTIAL ENERGY 

An alternative derivation of the FEM formulation based on the principle of 

minimum potential energy is presented in this section [211]. In a three-

dimensional sound field Ω with sound pressure distribution p(x, y, z), kinetic 

energy T and potential energy U of sound at an angular frequency ω are in the 

forms of: 

 𝑇 =
1

2

1

𝜌𝜔2
∫(∇𝑝 ∙ ∇𝑝)𝑑𝑉

𝛺

 (8-1) 

 𝑈 =
1

2

1

𝜌𝑐2
∫ 𝑝2𝑑𝑉

𝛺

 (8-2) 

As previously stated, ρ and c, respectively, denote air density and speed of sound. 

Furthermore, the work W done by an external force at a surface area Γ is 

obtained by 

 𝑊 = ∫ 𝑢𝑛𝑝𝑑𝑠

𝛤

 (8-3) 

where un denotes normal displacement at Γ . 

Then, total energy Π in the system becomes 
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 𝛱 = 𝑈 − 𝑇 − 𝑊 (8-4) 

and, based on the principle of minimum potential energy, i.e. δΠ = 0, one can 

derive the sound field. The same result can be derived as a weak form solution by 

applying Galerkin’s method onto the wave equation as previously stated. 

At this point, let us discretize the system by FEM: following the standard FEM 

procedure, Ω is divided into a number of elements and sound pressure p(x, y, z) at 

an arbitrary point Q(x, y, z) in an element e can be approximated as 

 𝑝(𝑥, 𝑦, 𝑧) = 𝑁(𝑥, 𝑦, 𝑧)𝑇𝑝𝑒 (8-5) 

Here, pe and N(x, y, z) are element nodal sound pressure vector and interpolation 

(shape) function vector, respectively. Hence we can rewrite: 

 𝑇 = ∑(
1

2

1

𝜌𝜔2
∫ {(

𝜕𝑁𝑇𝑝𝑒

𝜕𝑥
)

2

+ (
𝜕𝑁𝑇𝑝𝑒

𝜕𝑦
)

2

+ (
𝜕𝑁𝑇𝑝𝑒

𝜕𝑧
)

2

}

𝑒

𝑑𝑉)

𝑒

 (8-6) 

= ∑(𝑝𝑒
𝑇
1

2

1

𝜌𝜔2
∫ {

𝜕𝑁

𝜕𝑥

𝜕𝑁𝑇

𝜕𝑥
+

𝜕𝑁

𝜕𝑦

𝜕𝑁𝑇

𝜕𝑦
+

𝜕𝑁

𝜕𝑥

𝜕𝑁𝑇

𝜕𝑧
}

𝑒

𝑑𝑉𝑝𝑒)

𝑒

 

 𝑈 = ∑(𝑝𝑒
𝑇
1

2

1

𝜌𝑐2
∫[𝑁𝑁𝑇]

𝑒

𝑑𝑉𝑝𝑒)

𝑒

 (8-7) 

 𝑊 = ∑(𝑝𝑒
𝑇𝑢𝑛 ∫ 𝑁

𝛤𝑒

𝑑𝑆)

𝑒

 (8-8) 
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Then, the following discretized equation can be derived for each element e, 

 𝛱𝑒 =
1

2

1

𝜌𝜔2
𝑝𝑒

𝑇𝐾𝑒𝑝𝑒 −
1

2𝜌
𝑝𝑒

𝑇𝑀𝑒𝑝𝑒 − 𝑝𝑒
𝑇𝑢𝑛𝑊𝑒 (8-9) 

Herein, element matrices, Ke,Me and We, are respectively defined by 

 𝐾𝑒 = ∫ {
𝜕𝑁

𝜕𝑥

𝜕𝑁𝑇

𝜕𝑥
+

𝜕𝑁

𝜕𝑦

𝜕𝑁𝑇

𝜕𝑦
+

𝜕𝑁

𝜕𝑥

𝜕𝑁𝑇

𝜕𝑧
}

𝑒

𝑑𝑉 (8-10) 

 𝑀𝑒 =
1

𝑐2
∫[𝑁𝑁𝑇]

𝑒

𝑑𝑉 (8-11) 

 𝑊𝑒 = ∫ 𝑁

𝛤𝑒

𝑑𝑆 (8-12) 

The total energy Π in Ω equals the summation of energies in all the elements. 

Therefore, by performing δΠ = 0, one can obtain the discretized equation of 

motion with global matrices K,M and W as 

 (𝐾 + 𝑗𝜔𝐶 − 𝜔2𝑀)𝑝 = 𝜌𝜔2𝑢𝑛𝑊 (8-13) 

Here, C denotes global dissipation matrix which is constructed using all the 

element dissipation matrices Ce in Ω. 
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