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of Discrete-Time Systems with Application to
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Abstract—This paper is devoted to the development of adap-
tive control schemes for uncertain discrete-time systems, which
guarantee robust global exponential convergence to the desired
equilibrium point of the system. The proposed control scheme
consists of a nominal feedback law, which achieves robust global
exponential stability properties when the vector of the parameters
is known, in conjunction with a nonlinear dead-beat observer. The
proposed adaptive control scheme depends on certain parameter
observability assumptions. The obtained results are applicable to
highly nonlinear uncertain discrete-time systems with unknown
constant parameters. The successful applicability of the obtained
results to real control problems is demonstrated by the rigorous
application of the proposed adaptive control scheme to uncertain
freeway models. A provided example demonstrates the efficiency
of the approach.

Index Terms—Nonlinear systems, adaptive control, discrete-
time systems, freeway models.

I. INTRODUCTION

ADaptive control for discrete-time systems has been stud-
ied in many works (see for instance [1], [2], [3], [4]

and in many cases it is a direct extension of adaptive control
schemes for continuous-time systems (see [5]). The limitations
of adaptive control schemes for discrete-time systems have
been studied in [6]. The major shortcoming of many adaptive
control methodologies is that the closed-loop system does
not exhibit an exponential convergence rate to the desired
equilibrium point of the system, even if the nominal feedback
law achieves global exponential stability properties when the
parameters are precisely known.

This work is devoted to the development of adaptive control
schemes for uncertain discrete-time systems, with unknown
constant parameters, which guarantee robust, global, expo-
nential convergence to the desired equilibrium point of the
system. The idea is simple: use a nominal feedback law,
which achieves robust, global, exponential stability properties
when the vector of the parameters is known, in conjunction
with a nonlinear, dead-beat observer. The dead-beat observer
(designed using an extension of the methodology described in
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[7]) achieves the precise knowledge of the vector of unknown
parameters after a transient period; then the states of the
closed-loop system are robustly led to the desired equilibrium
point with an exponential rate by the nominal feedback law.
The proposed adaptive scheme does not require the knowledge
of a Lyapunov function for the closed-loop system under the
action of the nominal feedback stabilizer.

The design as well as the successful application of the
adaptive control scheme requires restrictive observability as-
sumptions, which may not be fulfilled for a general nonlinear
system. However, when the observability assumptions are met,
then, the obtained results are applicable to highly nonlin-
ear, uncertain discrete-time systems with unknown constant
parameters. The applicability of the obtained results to real
control problems is demonstrated by the rigorous application
of the proposed adaptive control scheme to uncertain freeway
models.

Traffic congestion in freeways leads to serious degradation
of the infrastructure causing excessive delays, and impacting
traffic safety and the environment. Extensive research has been
conducted to investigate and develop traffic control measures
which can tackle this phenomenon. However, measures such
as ramp metering, variable speed limits or dynamic route
guidance have to be driven by appropriate control strategies in
order to achieve their target. Traffic control strategies such as
nonlinear optimal control [8], [9] and Model Predictive Con-
trol [10], [11] have been extensively studied but they are highly
demanding from the computational point of view. However, the
efficiency of traffic operations can also be enhanced by explicit
feedback control approaches such as the pioneering I-type
regulator ALINEA [12] and its extensions [13], [14], as well
as other proposed feedback control algorithms in [15], [16],
[17], [18]. These explicit feedback control strategies should
guarantee local stability properties for the desired uncongested
equilibrium point (UEP) of the freeway model.

A Lyapunov approach was adopted in [19], which led to
the robust, global exponential stabilization of the UEP of a
nonlinear freeway model. However, the nonlinear feedback
stabilizer demands the knowledge of several model parameters,
which are usually unknown. The present work proposes an
adaptive control scheme, which is based on a dead-beat non-
linear observer and guarantees the robust, global exponential
convergence rate to the desired UEP of the freeway model. The
nonlinear freeway model in [19] is a generalization of various
freeway models (see [20], [9], [21]), which are special cases
of the considered model.
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The structure of the present work is as follows. Section 2
is devoted to the development of the robust, global, exponen-
tial adaptive control scheme for nonlinear uncertain discrete-
time systems. The obtained results are applied rigorously in
Section 3 to uncertain freeway models for the robust, global,
exponential attractivity of the (unknown) desired UEP of the
freeway model. An illustrating example of a freeway model is
presented in Section 4, where it is also shown that the proposed
adaptive control scheme is robust, even if the vector of the
unknown parameters is not constant, and even if modeling
errors are present. The concluding remarks of the paper are
given in Section 5.

Notation

• <+ := [0,+∞). For every set S, Sn =

n times︷ ︸︸ ︷
S × ...× S for

every positive integer n. <n
+ := (<+)n. For every x ∈ <,

[x] denotes the integer part of x ∈ <. For certain sets
S1, S2, ..., Sn, the set S1 × S2 × ... × Sn is denoted by∏n

i=1 Si.
• Let x, y ∈ <n. By |x| we denote the Euclidean norm of
x ∈ <n and by x′ we denote the transpose of x ∈ <n.

• When R is an index set, then by (xi; i ∈ R) we denote
a vector with components all xi ∈ < with i ∈ R, in
increasing order. For example, if R = {2, 5, 10}, then
(xi; i ∈ R) = (x2, x5, x10)′.

II. EXPONENTIAL STABILIZATION OF SYSTEMS WITH
UNKNOWN PARAMETERS

Consider the uncertain discrete-time dynamical system:

z+ = F (d, z), z ∈ X, d ∈ D (1)

where X ⊆ <n is a non-empty closed set, D ⊆ <l is a
non-empty set and F : D × X → X is a locally bounded
mapping. In this setting, z ∈ X denotes the state of system
(1) and d ∈ D is an unknown, time-varying input. Let
z∗ ∈ X be an equilibrium point of (1), i.e., F (d, z∗) = z∗

for all d ∈ D. Given z0 ∈ X , {d(t) ∈ D}∞t=0 we are in a
position to determine the solution z(t) of (1), with z(0) = z0
corresponding to input {d(t) ∈ D}∞t=0, by means of the
recursive relation z(t+ 1) = F (d(t), z(t)), for all t ≥ 0.

In this work we adopt the following robust exponential
stability notion (see similar notions in [22], [23], [24]).

Definition 2.2: We say that z∗ ∈ X is Robustly Globally Expo-
nentially Stable (RGES) for system (1) if there exist constants
M,σ > 0 such that for every z0 ∈ X , {d(t) ∈ D}∞t=0, the
solution z(t) of (1) with z(0) = z0 corresponding to input
{d(t) ∈ D}∞t=0 satisfies |z(t) − z∗| ≤ M exp(−σt)|z0 − z∗|
for all t ≥ 0.

We next consider discrete-time systems with uncertain con-
stant parameters and outputs. Consider the discrete-time sys-
tem:

x+ = f(d, θ∗, x, u), x ∈ S, d ∈ D,u ∈ U, θ∗ ∈ Θ (2)

where S ⊆ <n, D ⊆ <l, U ⊆ <m, Θ ⊆ <q are non-empty
sets and f : D × Θ × S × U → S is a locally bounded
mapping. In this setting, x ∈ S denotes the state of the system
(2), d ∈ D is an unknown, time-varying input, u ∈ U is the
control input and θ∗ ∈ Θ denotes the vector of unknown,
constant parameters. The measured output of the system is
given by

y(t) = h(d(t), θ∗, x(t)) (3)

where h : D × Θ × S → <k is a locally bounded mapping.
Let Y ⊆ <k be a set with h(D × Θ × S) ⊆ Y . We assume
that x∗ ∈ S is an equilibrium point for system (2) and d ∈
D is a vanishing perturbation, i.e., there exist vectors y∗ ∈
h(D×{θ∗}×S) and u∗ ∈ U such that f(d, θ∗, x∗, u∗) = x∗,
y∗ = h(d, θ∗, x∗) for all d ∈ D. Notice that y∗ ∈ Y .

The main result of this section provides sufficient conditions
for dynamic, robust, global, exponential stabilization of the
equilibrium point x∗ ∈ S. The stabilizer is constructed under
the following assumptions. By y(p)(t) = (y(t − 1), y(t −
2), ..., y(t− p)) for certain positive integer p > 0, we denote
the ”p-history” of the signal y(t) (defined for all t ≥ p). By
(y∗, ..., y∗) we mean the vector in <kp which is formed by
combining the vector y∗ ∈ <k p times. Since y∗ ∈ Y , it
follows that (y∗, ..., y∗) ∈ Y p.

(H1) Suppose that there exists a mapping K : Θ × Y → U
such that x∗ ∈ S is RGES for the closed-loop system (2), (3)
with u = K(θ∗, y).

(H2) Suppose that there exist a positive integer p > 0, a set
A ⊆ Y p which contains all w ∈ Y p in a neighborhood of
(y∗, ..., y∗) and a mapping Ψ : Y ×A→ Θ, such that for every
sequence {(d(t), θ̂(t)) ∈ D × Θ}∞t=0 and for every x0 ∈ S,
the solution x(t) of (2), (3) with u = K(θ̂, y), initial condition
x(0) = x0 corresponding to inputs {(d(t), θ̂(t)) ∈ D×Θ}∞t=0

satisfies θ∗ = Ψ(y(t), y(p)(t)) for all t ≥ p with y(p)(t) ∈ A.

(H3) There exists a positive integer m > 0, such that for every
sequence {(d(t), θ̂(t)) ∈ D × Θ}∞t=0 and for every x0 ∈ S,
the solution x(t) of (2), (3) with u = K(θ̂, y), initial condition
x(0) = x0 corresponding to inputs {(d(t), θ̂(t)) ∈ D×Θ}∞t=0

satisfies y(p)(t − i(t)) ∈ A for some i(t) ∈ {0, 1, ...,m} and
for all t ≥ m+ p.

Assumption (H1) is a standard assumption, which guaran-
tees the existence of a robust global exponential stabilizer
when the vector of the parameters θ∗ ∈ Θ is known.
Assumptions (H2)-(H3) are equivalent to complete, robust
observability of θ∗ from the output given by (3) (see, also [7]).
More specifically, Assumption (H2) guarantees the existence
of a function Ψ (the reconstruction map, see [7]), which gives
the exact value of θ∗, provided that the p-history of the output
signal belongs to a specific set A. Assumption (H3) guarantees
that the p-history of the output signal is bound to enter the set
A, every m time units.

The following result combines a certainty equivalence type
controller with a finite-time identifier and guarantees exponen-
tial convergence both of the state x(t) and the estimate θ̂(t)
to x∗ and θ∗, respectively, for every disturbance d(t).
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Theorem 2.1: Consider system (2) with output given by (3)
under assumptions (H1), (H2), (H3). Moreover, suppose that
the sets f(D×Θ×S×U), Y , Θ are bounded. Finally, assume
that there exist a constant L ≥ 0, neighborhoods N1 ⊆ <n of
x∗, N2 ⊆ <k of y∗, N3 ⊆ <q of θ∗, such that the inequalities
|f(d, θ∗, x,K(θ̂, h(d, θ∗, x)))−x∗|+|h(d, θ∗, x)−y∗| ≤ L|x−
x∗| + L|θ̂ − θ∗| and |Ψ(h(d, θ∗, x), w) − θ∗| ≤ L|x − x∗| +
L
∑p

i=1 |wi−y∗| hold for all x ∈ N1∩S, d ∈ D, θ̂ ∈ N3∩Θ,
wi ∈ N2 ∩ Y (i = 1, ..., p) with w = (w1, ..., wp).
Then, the dynamic feedback stabilizer

w+
1 = y

w+
2 = w1

...
w+

p = wp−1

θ̂+ =

{
θ̂ if w 6∈ A
Ψ(y, w) if w ∈ A

u = K(θ̂, y)

(4)

where w = (w1, ..., wp) ∈ Y p, θ̂ ∈ Θ achieves the following:
1) There exist constants M,σ > 0 such that for every sequence
{d(t) ∈ D}∞t=0 and for every (x0, w0, θ̂0) ∈ S × Y p ×Θ, the
solution (x(t), w(t), θ̂(t)) of the closed-loop system (2), (3)
with (4), initial condition (x(0), w(0), θ̂(0)) = (x0, w0, θ̂0)
corresponding to input {d(t) ∈ D}∞t=0 satisfies

|x(t)− x∗|+
p∑

i=1

|wi(t)− y∗|+ |θ̂(t)− θ∗| ≤

M exp(−σt)
(
|x(0)− x∗|+

p∑
i=1

|wi(0)− y∗|+ |θ̂(0)− θ∗|
)

(5)

for all t ≥ 0.
2) For every sequence {d(t) ∈ D}∞t=0 and for every
(x0, w0, θ̂0) ∈ S × Y p × Θ the solution (x(t), w(t), θ̂(t))
of the closed-loop system (2), (3) with (4), initial condi-
tion (x(0), w(0), θ̂(0)) = (x0, w0, θ̂0) corresponding to input
{d(t) ∈ D}∞t=0 satisfies θ̂(t) = θ∗, for all t ≥ m+ p+ 1.

Remark 2.1: The dynamic feedback stabilizer (4) achieves
dead-beat estimation (provided by the variable θ̂ ∈ Θ) of the
vector of unknown constant parameters θ∗ ∈ Θ. Due to the
dead-beat estimation, the exponential convergence property for
the closed-loop system is preserved, as estimate (5) shows.

The proof of Theorem 2.1 relies on the following technical
lemma. Its proof is provided in the Appendix.

Lemma 2.2: Consider system (1) and let Ω ⊆ X be a given
set. Suppose that F (D × X) is bounded. Moreover, suppose
that the following hold:
i) There exist constants M,σ > 0 such that for every z0 ∈ Ω,
{d(t) ∈ D}∞t=0 the solution z(t) of (1) with initial condition
z(0) = z0 corresponding to input {d(t) ∈ D}∞t=0 satisfies
|z(t)− z∗| ≤M |z0 − z∗| exp(−σt), for all t ≥ 0.
ii) There exists an integer N ≥ 1 such that for every z0 ∈ X ,
{d(t) ∈ D}∞t=0 and t ≥ N there exists i(t) ∈ {0, 1, ..., N} for

which the solution z(t) of (1) with initial condition z(0) = z0
corresponding to input {d(t) ∈ D}∞t=0 satisfies z(t−i(t)) ∈ Ω.
iii) There exists a constant L ≥ 1, such that the inequality
|F (d, z) − z∗| ≤ L|z − z∗| holds for all d ∈ D and for all
z ∈ X in a neighborhood of z∗.
Then, z∗ ∈ X is RGES for the uncertain system (1).

Remark 2.2: It should be noticed that Lemma 2.2 requires
that the exponential stability estimate |z(t) − z∗| ≤ M |z0 −
z∗| exp(−σt) holds only for initial conditions z0 that belong
to the set Ω. Therefore, one can exploit this fact by selecting
the set Ω ⊆ X in a convenient way. As always, there is a price
to pay for this relaxation of requirements for RGES: one has
to show that assumptions ii), iii) of Lemma 2.2 hold as well.

We are now ready to provide the proof of Theorem 2.1.

Proof of Theorem 2.1: Let Φ(x) be the (possibly empty) set
of all w = (w1, ..., wp) ∈ Y p for which there exist ξ ∈ S,
(d(i), θ̂(i)) ∈ D × Θ, i = 0, ..., p − 1 such that the vectors
x̄(i), i = 0, ..., p, defined by the recursive formula

x̄(0) = ξ

x̄(i+ 1) = f(d(i),θ∗, x̄(i),K(θ̂(i), h(d(i), θ∗, x̄(i))))
(6)

for i = 0, ..., p − 1, satisfy x̄(p) = x and wp−i =
h(d(i), θ∗, x̄(i)) for i = 0, ..., p − 1. Notice that Φ(x∗) 6= ∅
since by selecting ξ = x∗ ∈ S, θ̂(i) = θ∗ ∈ Θ and arbitrary
d(i) ∈ D for i = 0, ..., p − 1, the recursive formula (6) gives
x̄(p) = x∗ and wp−i = y∗ for i = 0, ..., p− 1.

All assumptions of Lemma 2.2 hold with X = S×Y p×Θ,
z = (x,w, θ̂), Ω = ∪x∈S{(x,w, θ∗) : w ∈ Φ(x)}, N =
m+ p+ 1, z∗ = (x∗, y∗, ..., y∗, θ∗) and

F (d, z) :=



f(d, θ∗, x,K(θ̂, h(d, θ∗, x)))
h(d, θ∗, x)

w1

...
wp−1

g(h(d, θ∗, x), w, θ̂)


,

where

g(h(d, θ∗, x), w, θ̂) :=

{
θ̂ if w 6∈ A
Ψ(h(d, θ∗, x), w) if w ∈ A

.

Notice again that Ω 6= ∅ since Φ(x∗) 6= ∅. We show next that
assumptions (i), (ii) of Lemma 2.2 are direct consequences of
assumptions (H1), (H2), (H3).

Let {d(t) ∈ D}∞t=0 be an arbitrary sequence and let
(x0, w0, θ̂0) ∈ Ω be an arbitrary vector with θ̂0 = θ∗. Consider
the solution (x(t), w(t), θ̂(t)) of the closed-loop system (2),
(3) with (4), initial condition (x(0), w(0), θ̂(0)) = (x0, w0, θ̂0)
corresponding to input {d(t) ∈ D}∞t=0. By virtue of (6), the
component x(t) of the solution satisfies x(t) = x̄(t + p)
for all t ≥ 0, for certain solution x̄(i) of the system
x̄+ = f(δ, θ∗, x̄,K(ν, h(d, θ∗, x̄))) (that corresponds to cer-
tain inputs {(δ(t), ν(t)) ∈ D × Θ}∞i=0 with δ(t + p) = d(t),
ν(t+ p) = θ̂(t) for all t ≥ 0 and appropriate initial condition
ξ ∈ S). Moreover, w(t) = ȳ(p)(t + p) ∈ Φ(x(t)) for
all t ≥ 0, where ȳ(t) = h(δ(t), θ∗, x̄(t)). Notice that if
w(0) = w0 ∈ A then ȳ(p)(p) ∈ A, and, consequently,
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assumption (H2) guarantees that θ̂(1) = θ∗. If w(0) = w0 6∈ A
then θ̂(1) = θ̂(0) = θ∗. Using induction and the previous
argument, it follows that θ̂(t) = θ∗ for all t ≥ 0. Therefore,
assumption (i) of Lemma 2.2 is a consequence of assumption
(H1).

Assumption (ii) of Lemma 2.2 follows from the fact that
w(t) = y(p)(t) ∈ Φ(x(t)) for all t ≥ p. Assumption (H3)
guarantees that w(t − i(t)) = y(p)(t − i(t)) ∈ A for some
i(t) ∈ {0, 1, ...,m} and for all t ≥ m+ p. It follows from (4)
that θ̂(t− i(t) + 1) = θ∗. Since t− i(t) + 1 ≥ p+ 1, we also
get w(t − i(t) + 1) ∈ Φ(x(t)) and thus z(t − i(t) + 1) ∈ Ω.
Therefore, assumption (ii) of Lemma 2.2 holds with N =
m+ p+ 1.

Since A ⊆ Y p contains all w ∈ Y p in a neighborhood of
(y∗, ..., y∗) and since there exist neighborhoods N1 ⊆ <n of
x∗, N2 ⊆ <k of y∗, N3 ⊆ <q of θ∗, such that the inequalities

|f(d, θ∗, x,K(θ̂, x))− x∗|+ |h(d, θ∗, x)− y∗| ≤
L|x− x∗| − L|θ̂ − θ∗|,

|Ψ(h(d, θ∗, x), w)− θ∗| ≤ L|x− x∗|+ L

p∑
i=1

|wi − y∗|

hold for all x ∈ N1∩S, d ∈ D, θ̂ ∈ N3∩Θ, wi ∈ N2∩Y (i =
1, ..., p) with w = (w1, ..., wp), it follows that assumption (iii)
of Lemma 2.2 holds. /

III. APPLICATION TO FREEWAY TRAFFIC CONTROL

A. The freeway model

We consider a freeway which consists of n ≥ 3 components
or cells; typical cell lengths may be 200-500 m. Each cell may
have an external inflow (e.g. from corresponding on-ramps),
located near the cell’s upstream boundary; and an external
outflow (e.g. via corresponding off-ramps), located near the
cell’s downstream boundary (Fig.1). The number of vehicles
at time t ≥ 0 in component i ∈ {1, ..., n} is denoted by
xi(t). The total outflow and the total inflow of vehicles of
the component i ∈ {1, ..., n} at time t ≥ 0 are denoted by
Fi,out(t) ≥ 0 and Fi,in(t) ≥ 0, respectively. All flows during a
time interval are measured in [veh]. Consequently, the balance
of vehicles (conservation equation) for each component i ∈
{1, ..., n} gives:

xi(t+ 1) = xi(t)− Fi,out(t) + Fi,in(t), t ≥ 0. (7)

Each component of the network has storage capacity ai > 0
(i = 1, ..., n). Our first assumption states that the external (off-
ramp) flows from each cell are constant percentages of the total
exit flow, i.e., there exist constants Pi ∈ [0, 1) (i = 1, ..., n),
such that:(

flow of vehicles
from cell i to cell i+ 1

)
= (1− Pi)Fi,out(t) (8)

for i = 1, ..., n− 1, flow of vehicles
from cell i to regions out

of the freeway

 = PiFi,out(t) (9)

for i = 1, ..., n.

The constants Pi are known as exit rates. Since the n-th
cell is the last downstream cell of the considered freeway,
we may assume that Pn = 1. We also assume that Pi < 1 for
i = 1, ..., n−1, and that all exits to regions out of the network
can accommodate the respective exit flows.

Our second assumption is dealing with the attempted out-
flows fi(xi), i.e. the flows that will exit the cell if there is
sufficient space in the downstream cell. We assume that there
exist functions fi : [0, ai] → <+ with 0 < fi(xi) < xi for
xi ∈ (0, ai], variables si(t) ∈ [0, 1], i = 2, ..., n, so that:

Fi−1,out(t) = si(t)fi−1(xi−1(t)), i = 2, ..., n, t ≥ 0

and Fn,out(t) = fn(xn(t))
(10)

The variable si(t) ∈ [0, 1], for each i = 2, ..., n, indicates
the percentage of the attempted outflow from cell i − 1 that
becomes actual outflow from the same cell. The function fi :
[0, ai] → <+ is called, in the specialized literature of Traffic
Engineering (see, e.g., [20], [9], [25], [21], [26], [27]), the
demand-part of the fundamental diagram of the i-th cell, i.e.
the flow that will exit the cell i if there is sufficient space in the
downstream cell i+ 1. Notice that equation (10) for Fn,out(t)
follows from our assumption that all exits to regions out of
the network can accommodate the exit flows.

Let vi ≥ 0 (i = 1, ..., n) denote the attempted external
inflow to component i ∈ {1, ..., n} from the region out of the
freeway. Typically, vi, i = 2, ..., n, correspond to external on-
ramp flows which may be determined by a ramp metering
control strategy. For the very first cell 1, we assume, for
convenience, that there is just one external inflow, v1 > 0.
Let the variables Wi(t) ∈ [0, 1], i = 1, ..., n, indicate the
percentage of the attempted external inflow to component
i ∈ {1, ..., n} that becomes actual inflow. Then, we obtain
from (8) and (10):

F1,in(t) = W1(t)v1(t) and
Fi,in(t) = Wi(t)vi(t)+si(t)(1− Pi−1)fi−1(xi−1(t)),

for i = 2, ..., n

(11)

Our next assumption requires that the inflow of vehicles at
the cell i ∈ {1, ..., n} at time t ≥ 0, denoted by Fi,in(t) ≥ 0,
cannot exceed the supply function of cell i ∈ {1, ..., n} at time
t ≥ 0, i.e.,

Fi,in(t) ≤ min(qi, ci(ai − xi(t))) (12)

where qi ∈ (0,+∞) denotes the maximum flow that the i-
th cell can receive (or the capacity flow of the i-th cell) and
ci ∈ (0, 1] (i = 1, ..., n) denotes the congestion wave speed
of the i-th cell.

Following [20], we assume that, when the total demand flow
of a cell is lower than the supply of the downstream cell, i.e.

)()1( 1112 xfPs 

)( 1112 xfPs

11vW

)( 2223 xfPs )(1 iiii xfPs 

)()1(1 iiii xfPs 

)( nn xf

22vW iivW nnvW

i n21

Fig. 1. Scheme of the freeway model.
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when vi(t)+(1−Pi−1)fi−1(xi−1(t)) ≤ min(qi, ci(ai−xi(t)))
for some i ∈ {2, ..., n}, then the demand flow can be fully
accommodated by the downstream cell, and hence we have
si(t) = Wi(t) = 1. Similarly, when v1(t) ≤ min(q1, c1(a1 −
x1(t))), then we have W1(t) = 1. In contrast, when the
total demand flow of a cell is higher than the supply of the
downstream cell, i.e. when vi(t)+(1−Pi−1)fi−1(xi−1(t)) >
min(qi, ci(ai − xi(t))) for some i ∈ {2, ..., n} (or when
v1(t) > min(q1, c1(a1 − x1(t)))), then the demand flow
cannot be fully accommodated by the downstream cell, and
the actual flow is determined by the supply function, i.e.
we have Fi,in(t) = min(qi, ci(ai − xi(t))) (or F1,in(t) =
min(q1, c1(a1−x1(t)))). Therefore, for i = 2, ..., n and t ≥ 0
we get:

F1,in(t) = min(q1, c1(a1 − x1(t)), v1(t)) (13)

si(t) = (1− di(t))×

min

(
1,max

(
0,

min(qi, ci(ai − xi(t)))− vi(t)
(1− Pi−1)fi−1(xi−1(t))

))

+di(t) min

(
1,

min(qi, ci(ai − xi(t)))
(1− Pi−1)fi−1(xi−1(t))

) (14)

Fi,in(t) =

min(qi, ci(ai − xi(t)),vi(t) + (1− Pi−1)fi−1(xi−1(t)))
(15)

where
di(t) ∈ [0, 1] (16)

are time-varying parameters. Note that, if the supply is higher
than the total demand, then (14) yields si = 1, irrespective
of the value of di, since the total demand flow can be
accommodated by the downstream cell. Thus, the parameter
di determines the relative inflow priorities, when the down-
stream supply prevails. Specifically, when di(t) = 0, then
the on-ramp inflow has absolute priority over the internal
inflow; on the other hand, when di(t) = 1, then the internal
inflow has absolute priority over the on-ramp inflow; while
intermediate values of di reflect intermediate priority cases.
The parameters di(t) ∈ [0, 1] are treated as unknown parame-
ters (disturbances). Notice that by introducing the parameters
di(t) ∈ [0, 1] (and by allowing them to be time-varying),
we have taken into account all possible cases for the relative
priorities of the inflows (and we also allow the priority rules
to be time-varying); see [28], [20] for freeway models with
specific priority rules, which are special cases of our general
approach.

All the above are illustrated in Fig.1. Combining equations
(7), (8), (9), (10), (13) and (15) we obtain the following
discrete-time dynamical system:

x+1 = x1 − s2f1(x1) + min(q1, c1(a1 − x1), v1)

= x1 − s2f1(x1) +W1v1
(17)

x+i = xi − si+1fi(xi)

+ min(qi, ci(ai − xi), vi + (1− Pi−1)fi−1(xi−1))

= xi − si+1fi(xi)

+Wivi + si(1− Pi−1)fi−1(xi−1)

(18)

for i = 2, ..., n− 1,

x+n = xn − fn(xn)

+ min(qn, cn(an − xn), vn + (1− Pn−1)fn−1(xn−1))

= xn − fn(xn) +Wnvn + sn(1− Pn−1)fn−1(xn−1)
(19)

where si ∈ [0, 1], i = 2, ..., n are given by (14). The
values of Wi ∈ [0, 1], i = 1, ..., n, may also be similarly
derived from (15) when vi > 0 but they are not needed
in what follows. Define S =

∏n
i=1(0, ai]. Since the func-

tions fi : [0, ai] → <+ satisfy 0 < fi(xi) < xi for
xi ∈ (0, ai], it follows that (17), (18), (19) is an uncertain
control system on S (i.e., x = (x1, ..., xn)′ ∈ S) with
inputs v = (v1, ..., vn)′ ∈ (0,+∞) × <n−1

+ and disturbances
d = (d2, ..., dn)′ ∈ [0, 1]n−1. We emphasize again that the
uncertainty d ∈ [0, 1]n−1 appears in the equations (17), (18)
and (19) only when the supply function prevails, i.e., only
when vi(t)+(1−Pi−1)fi−1(xi−1(t)) > min(qi, ci(ai−xi(t)))
for some i ∈ {2, ..., n}.

We make the following assumption for the functions fi :
[0, ai]→ <+, (i = 1, ..., n):

(H) There exist constants δi ∈ (0, ai] and ri ∈ (0, 1) such that
fi(z) = riz for z ∈ [0, δi]. Moreover, there exists a positive
constant fmin

i > 0 such that fi(δi) = riδi ≥ fi(z) ≥ fmin
i

for all z ∈ [δi, ai].
Assumption (H) reflects some of the basic properties of the

so-called demand function [21] in the Godunov discretization;
whereby δi is the critical density, where fi(xi) achieves a
maximum value. The implications of Assumption (H) for the
demand function are illustrated in Fig. 2. The linearity of the
demand functions on the interval [0, δi] is a consequence of
the consideration of constant free flow speed for under-critical
densities (here, represented by the dimensionless variable ri ∈
(0, 1)), which is suggested in many studies in the literature
(see, for example, [20]). Notice also, that Assumption (H)
includes the possibility of reduced demand flow for overcritical
densities (i.e., when xi(t) ≥ δi ), since fi(xi) is allowed to
be any arbitrary function (e.g. discontinuous or decreasing
or, even, increasing), taking any values within the bounds
mentioned in (H) (corresponding to the grey area in Fig. 2),
for xi ∈ [δi, ai]; this could be used to reflect the capacity drop
phenomenon, as it is treated in some recent works [29], [30].
Fig. 2 presents, within the grey area of overcritical densities,
three examples of demand functions, which satisfy assumption
(H).

A more general assumption than assumption (H) was used
in [19], but in [19] it was assumed that all parameters of the
model were known. More specifically, in [19], it was not nec-
essary the demand functions fi : [0, ai] → <+, (i = 1, ..., n)
to be linear on the corresponding intervals [0, δi].

B. Global Exponential Stabilization of Freeway Models

Define the vector field F̃ : D× S × (0,+∞)×<n−1
+ → S

for all x ∈ S =
∏n

i=1(0, ai], d = (d2, ..., dn) ∈ D = [0, 1]n−1

and v ∈ (0,+∞)×<n−1
+ , with F̃i being the right hand sides of

(17)-(19), for i = 1, ..., n, and si given by (14), for i = 2, ..., n.
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Fig. 2. Implications of Assumption (H): The demand functions fi should be
linear on the interval [0, δi], while they can take any value on the interval
(δi, ai] within the depicted grey area.

Then, the control system (17), (18), (19) can be written in the
following vector form:

x+ = F̃ (d, x, v), x ∈ S, d ∈ D, v ∈ (0,+∞)×<n−1
+ (20)

Consider the freeway model (20) under assumption (H). Let
v∗ = (v∗1 , ..., v

∗
n)′ ∈ (0,+∞)×<n−1

+ be a vector that satisfies:

v∗1 < min(q1, c1(a1 − δ1), r1δ1)

v∗i +

i−1∑
j=1

v∗j (

i−1∏
k=j

(1− Pk)) < min(qi, ci(ai − δi), riδi)
(21)

Any inflow vector that satisfies (21), defines an UEP x∗ =
(x∗1, ..., x

∗
n) ∈

∏n
i=1(0, δi) for the freeway model:

x∗1 = r−11 v∗1

x∗i = r−1i

(
v∗i +

i−1∑
j=1

v∗j

i−1∏
k=j

(1− Pk)

)
, i = 2, ..., n

(22)

The UEP is not globally exponentially stable for arbitrary v∗1 >
0, v∗i ≥ 0 (i = 2, ..., n). Indeed, simulations show that there
are critical values of inflows, so that if the inflows v∗i ≥ 0
(i = 1, ..., n) are larger than the critical values, then other
equilibria for model (20) (congested equilibria) appear. These
congested equilibria have large cell densities and attract the
solution of (20).

The following result (see [19]) is the main result in feedback
design that provides the nominal feedback for the adaptive
control scheme that we intend to use. The result shows that
a continuous, robust, global exponential stabilizer exists for
every freeway model of the form (20) under assumption (H).

Theorem 3.1: Consider system (20) with n ≥ 3 under
assumption (H) for each i = 1, ..., n. Then there exist a subset
R ⊆ {1, ..., n} of the set of all indices i ∈ {1, ..., n} with
v∗i > 0, constants σ ∈ (0, 1], bi ∈ (0, v∗i ) for i ∈ R and a
constant τ∗ > 0, such that for every τ ∈ (0, τ∗) the feedback
law K : S → <n

+ defined by:

K(x) = (K1(x), ...,Kn(x))′ ∈ <n with

Ki(x) = max

(
bi, v

∗
i−τ−1(v∗i − bi)Ξ(x)

)
for all x ∈ S, i ∈ R,

Ki(x) = v∗i for all x ∈ S, i /∈ R,

(23)

where

Ξ(x) :=

n∑
i=1

σi max(0, xi − x∗i ), for all x ∈ S, (24)

achieves robust global exponential stabilization of the UEP
x∗ of system (20), i.e., x∗ is RGES for the closed-loop system
(20) with v = K(x).

The result of Theorem 3.1 (see [19]) is based on the
construction of a Control Lyapunov function for system (20)
under a more general assumption than assumption (H). The
feedback law provides values for the controllable inflows vi,
i ∈ R, in the interval [bi, v

∗
i ] for all i ∈ R, where bi ∈ (0, v∗i )

for i ∈ R are the minimum allowable inflows. Since the proof
of Theorem 3.1 is constructive, criteria for the selection of
the index set R ⊆ {1, ..., n} and the constants σ ∈ (0, 1],
bi ∈ (0, v∗i ) for i ∈ R and τ∗ > 0 are provided.

Without loss of generality, we will assume, in what follows,
that R 6= ∅ (because otherwise the UEP is open-loop RGES).

Let µi ∈ (0, δi), vi,max < (0,+∞) (i = 1, ..., n) be
constants such that:

v1,max < min(q1, c1(a1 − µ1),

vi,max + (1− Pi−1)ri−1µi−1 < min(qi, ci(ai − µi),

i = 2, ..., n.

(25)

It follows that if x ∈ Ω =
∏n

i=1(0, µi) and v ∈
(0, v1,max]×

∏n
i=1[0, vi,max]:

Wi = 1, for i = 1, ..., n and si = 1 for i = 2, ..., n (26)

x+1 = x1 − f1(x1) + v1

x+i = xi − fi(xi) + vi + (1− Pi−1)fi−1(xi−1)

for i = 2, ..., n

(27)

In what follows, we assume that x∗ = (x∗1, ..., x
∗
n) ∈∏n

i=1(0, µi − ε], v∗i ∈ [bi + ε, vi,max] for i ∈ R and for
some ε ∈ (0, 1/2) and v∗ ∈ (0, v1,max] ×

∏n
i=2[0, vi,max].

Moreover, we assume that Pi ∈ [0, 1− ε] for i = 1, ..., n− 1
and ri ∈ [ε, 1− ε] for i = 1, ..., n.

Another feature of the present problem is that the selection
of the UEP may be made in an implicit way. For example,
we may want the UEP that guarantees the maximum outflow
from the freeway. In such cases, the equilibrium position of the
controllable inflows is determined as a function of the nominal
values of the uncontrollable inflows and the parameters of the
freeway, i.e., there exists a smooth function

g : [0, 1−ε]n−1×
∏
i/∈R

[0, vi,max]×[ε, 1−ε]n →
∏
i∈R

[bi+ε, vi,max]

such that

(v∗i ; i ∈ R) = g(P, v∗i ; i /∈ R, r) (28)

where P = (P1, ..., Pn−1)′ ∈ [0, 1 − ε]n−1 and r =
(r1, ..., rn)′ ∈ [ε, 1− ε]n.
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C. Measurements and Unknown Parameters

Let m ∈ {1, ..., n} be the cardinal number of the set R and
let u ∈ U =

∏
i∈R[bi, vi,max] ⊆ (0,+∞)m be the vector of

all controllable inflows vi with i ∈ R.
The model parameters which are (usually) unknown or

uncertain are: the exit rates Pi ∈ [0, 1) for i = 1, ..., n − 1,
the uncontrollable inflows v∗i ∈ <+ for i /∈ R and the
demand coefficients ri ∈ (0, 1) for i = 1, ..., n. All these
parameters will be denoted by θ∗ = (P, v∗i ; i /∈ R, r) and
are assumed to take values in a compact set Θ := [0, 1 −
ε]n−1 ×

∏
i/∈R[0, vi,max]× [ε, 1− ε]n, for some ε ∈ (0, 1/2).

Therefore, the control system (17), (18), (19) can be written
in the following vector form:

x+ = F̄ (d, θ∗, x, u)

x ∈ S, d ∈ D,θ∗ ∈ Θ, u ∈ U =
∏
i∈R

[bi, vi,max] (29)

Notice that the feedback law defined by (23) is a feedback law
of the form u = K(θ∗, x): the feedback law depends on the
unknown parameters through x∗ and (v∗i ; i ∈ R) (recall (22)
and (28)). It follows that assumption (H1) holds for system
(29). An explicit definition of the feedback law K : Θ×S →
U is given by the following equations for all θ̂ = (P̂ , v̂∗i ; i /∈
R, r̂) ∈ Θ, x ∈ S with r̂ = (r̂1, ..., r̂n)′ ∈ [ε, 1 − ε]n, P̂ =
(P̂1, ..., P̂n−1)′ ∈ [0, 1− ε]n−1:

(v̂∗i ; i ∈ R) = g(P̂ , v̂∗i ; i /∈ R, r̂), (30)

x̂∗1 = min(r̂−11 v̂∗1 , µ1 − ε),

x̂∗i = min

(
r̂−1i

(
v̂∗i +

i−1∑
j=1

v̂∗j

i−1∏
k=j

(1− P̂k)

)
, µi − ε

)
for i = 2, ..., n,

(31)

u = K(θ̂, x) with

Ki(θ̂, x) = max(bi,v̂
∗
i − τ−1(v̂∗i − bi)Ξ(θ̂, x))

for all x ∈ S, i ∈ R,
(32)

Ξ(θ̂, x) :=

n∑
i=1

σi max(0, xi − x̂∗i ), for all x ∈ S. (33)

The measured quantities are the cell densities x ∈ S and the
outflows from each cell. We have two kinds of outflows from
each cell: the outflow to regions out of the freeway

Qout = (Q1,out, ..., Qn,out)
′ ∈ <n

+

Qi,out = Pisi+1fi(xi), i = 1, ..., n− 1

Qn,out = fn(xn)

(34)

and the outflows from one cell to the next cell

Q = (Q1, ..., Qn−1)′ ∈ <n−1
+

Qi =(1− Pi)si+1fi(xi), i = 1, ..., n− 1
(35)

Therefore, the measured output is given by:

y = h(d, θ∗, x) = (x,Qout, Q) ∈ S ×<n
+ ×<n−1

+ (36)

Assumption (H) guarantees that h(D × Θ × S) ⊆ Y where
Y := S ×

∏n
i=1[0, ai]×

∏n−1
i=1 [0, ai] is a bounded set.

It follows from (26), (27), (34), (35), assumption (H) and
the fact that µi ∈ (0, δi) (i = 1, ...n), that:

if x(t − 1) ∈ Ω =
∏n

i=1(0, µi), t ≥ 1, then the following
equations hold:

Pi =
Qi,out(t− 1)

Qi,out(t− 1) +Qi(t− 1)
, i = 1, ..., n− 1 (37)

v∗i = xi(t)− xi(t− 1) +Qi(t− 1)+

Qi,out(t− 1)−Qi−1(t− 1), i ∈ {2, ..., n}\R
(38)

v∗1 = x1(t)− x1(t− 1) +Q1(t− 1)+

Q1,out(t− 1), if i /∈ R
(39)

ri =
Qi,out(t− 1) +Qi(t− 1)

xi(t− 1)
, i = 1, ..., n (40)

Equations (37), (38), (39), (40), (36) allow us to define a
mapping Ψ : h(D × Θ × S) × Y → Θ for which θ∗ =
(P1, ..., Pn−1, v

∗
i ; i /∈ R, r1, ..., rn)′ = Ψ(y(t), y(t − 1)) for

all t ≥ 1 with y(t − 1) ∈ A, where A ⊆ Y is the set for
which:

w = (w1, w2, w3) ∈ A⇔

(w1,w2, w3) ∈ Y,w1 ∈ Ω =

n∏
i=1

(0, µi)

and w2,i + w3,i > 0 for i = 1, ..., n− 1

(41)

The mapping Ψ : h(D ×Θ× S)× Y → Θ is defined by

θ̂ = (P̂1, ..., P̂n−1, v̂
∗
i ; i /∈ R, r̂1, ..., r̂n)′ = Ψ(y, w) (42)

with

P̂i = min

(
1− ε, w2,i

w2,i + w3,i

)
, i = 1, ..., n− 1 (43)

v̂∗i = max(0,min(vi,max, xi − w1,i + w3,i + w2,i − w3,i−1)),

i ∈ {2, ..., n}\R and i 6= n
(44)

v̂∗n = max(0,min(vn,max,xn − w1,n + w2,n − w3,n−1)),

if n /∈ R
(45)

v̂∗1 = max(0,min(v1,max,x1 − w1,1 + w3,1 + w2,1)),

if 1 /∈ R
(46)

r̂i = max

(
ε,min

(
1− ε, w2,i + w3,i

w1,i

))
, i = 1, ..., n− 1

(47)

r̂n = max

(
ε,min

(
1− ε, w2,n

w1,n

))
(48)

Using assumption (H), (3.16), (22) and (36), it follows that
there exists y∗ ∈ Y with y∗ = h(d, θ∗, x∗) for all d ∈ D. By
virtue of our assumption x∗ = (x∗1, ..., x

∗
n) ∈

∏n
i=1(0, µi) and

v∗ ∈ (0, v1,max]×
∏n

i=2[0, vi,max], (41), we conclude that A
contains all w ∈ Y in a neighborhood of y∗. It follows that
(H2) holds with p = 1 for system (29) with output given by
(34), (35), (36).
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In order to prove that assumption (H3) holds for system (29)
with output given by (34), (35), (36), we need the following
fact, which is a consequence of property (C5) shown in [19]
and (25).

Fact: Define Ij(x) :=
∑j

i=1 xi for j = 1, ..., n. There exists a
constant C ∈ (0, 1) such that the following inequality holds:

n∑
i=1

Ii(x
+) ≤ (1− C)

n∑
i=1

Ii(x) +

n∑
i=1

(n+ 1− i)vi,

for all (x, v, d) ∈ S × (0, v1,max]×
n∏

i=2

[0, vi,max]× [0, 1]n−1

(49)

where x+ is given by (29).
The following proposition guarantees that assumption (H3)

holds for system (29) with output (34), (35), (36).

Proposition 3.2: Suppose that bi > 0 (i ∈ R) and vi,max

(i 6∈ R) are sufficiently small and that τ > 0 is sufficiently
small

(
τ ≤ ε2σn mini∈R((vi,max− bi)−1)

)
. Then there exists

an integer m ≥ 1 such that for every sequence {(d(t), θ̂(t)) ∈
D×Θ}∞t=0 and for every x0 ∈ S, the solution x(t) of (29), (36)
with u = K(θ̂, x), initial condition x(0) = x0 corresponding
to inputs {(d(t), θ̂(t)) ∈ D×Θ}∞t=0 satisfies y(t−1−i(t)) ∈ A
for some i(t) ∈ {0, 1, ...,m} and for all t ≥ m+ 1.

The main result for the freeway model is a consequence
of Theorem 2.1 and the fact that all functions are sufficiently
smooth in a neighborhood of the equilibrium.
Corollary 3.3: Consider system (29) with output given by (34),
(35), (36). Suppose that bi > 0 (i ∈ R) and vi,max(i /∈ R) are
sufficiently small and that τ > 0 is sufficiently small. Then the
dynamic feedback law given by:

w+
1 = x,w+

2 = Qout, w
+
3 = Q (50)

P̂+
i =

 P̂i if w 6∈ A

min

(
1− ε, w2,i

w2,i+w3,i

)
if w ∈ A

(51)

(v̂∗i )+ =


v̂∗i if w 6∈ A

max(0,min(vi,max, xi − w1,i

+w3,i + w2,i − w3,i−1))
if w ∈ A

(52)

(v̂∗n)+ =


v̂∗n if w 6∈ A

max(0,min(vn,max, xn − w1,n

+ w2,n − w3,n−1))
if w ∈ A

(53)

(v̂∗1)+ =


v̂∗1 if w 6∈ A

max(0,min(v1,max, xn − w1,1

+ w3,1 + w2,1))
if w ∈ A

(54)

r̂+i =


r̂i if w 6∈ A

max

(
ε,min

(
1− ε, w2,i+w3,i

w1,i

))
if w ∈ A

(55)

r̂+n =


r̂n if w 6∈ A

max

(
ε,min

(
1− ε, w2,n

w1,n

))
if w ∈ A

. (56)

with (30), (31), (32), (33), P̂ = (P̂1, ..., P̂n−1), P =
(P1, ..., Pn−1), r̂ = (r̂1, ..., r̂n), r = (r1, ..., rn), w =
(w1, w2, w3), v̂∗ = (v̂∗1 , ..., v̂

∗
n), achieves the following:

1) There exist constants M,σ > 0 such that for every
sequence {d(t) ∈ D}∞t=0 and for every (x0, w0, P̂0, v̂

∗
j,0; j /∈

R, r̂0) ∈ S × Y × Θ, the solution of the closed-loop
system (29), (36) with (50)-(56), (30)-(33), initial condition
(x(0), w(0), P̂ (0), v̂∗j (0); j /∈ R, r̂(0)) = (x0, w0, P̂0, v̂

∗
j,0; j /∈

R, r̂0) corresponding to input {d(t) ∈ D}∞t=0 satisfies:

|x(t)− x∗|+ |w(t)− y∗|+ |r̂(t)− r|+ |P̂ (t)− P |+
|v̂∗(t)− v∗| ≤Mexp(−σt)

(
|x(0)− x∗|+ |w(0)− y∗|

+ |r̂(0)− r|+ |P̂ (0)− P |+
∑
i/∈R

|v̂∗i (0)− v∗i |
) (57)

for all t ≥ 0.
2) There exists an integer N ≥ 1 such that for every
sequence {d(t) ∈ D}∞t=0 and for every (x0, w0, P̂0, v̂

∗
j,0; j /∈

R, r̂0) ∈ S × Y × Θ, the solution of the closed-loop
system (29), (36) with (50)-(56), (30)-(33), initial condition
(x(0), w(0), P̂ (0), v̂∗j (0); j /∈ R, r̂(0)) = (x0, w0, P̂0, v̂

∗
j,0; j /∈

R, r̂0) corresponding to input {d(t) ∈ D}∞t=0 satisfies P̂ (t) =
P , r̂(t) = r, v̂∗(t) = v∗, for all t ≥ N .

It is important to notice, that the work in [19] provides
a state feedback law, which guarantees the robust, global,
exponential stabilization of the freeway model (29) when the
parameters of the freeway model are known.On the other hand,
Corollary 3.3 provides a dynamic feedback law, under which
the states of the freeway model (29) converge to the UEP, even
when the vector of parameters is unknown. Below, we provide
the proof of Corollary 3.3.

Proof of the Corollary 3.3: Let N1 ⊆ Ω be a neighborhood of
x∗, N2 ⊆ A be a neighborhood of y∗, and let N3 ⊆ <3n−1−m

be a neighborhood of θ∗. Since Ω =
∏n

i=1(0, µi), it follows
from Assumption (H) and the fact that µi ∈ (0, δi) for i =
1, ..., n that fi(xi) = rixi for i = 1, ..., n. Definitions (34),
(35), (36) in conjunction with (26) and the fact that Pi ∈
[0, 1) for i = 1, ..., n − 1, ri ∈ (0, 1) for i = 1, ..., n − 1,
imply that the following inequality holds for all x ∈ Ω and
d = (d2, ..., dn) ∈ D = [0, 1]n−1:

|h(d, θ∗, x)− y∗| ≤ |x− x∗|+ |Qout −Q∗out|+ |Q−Q∗|

≤ |x− x∗|+
n−1∑
i=1

|Pifi(xi)− Pifi(x
∗
i )|+ |fn(xn)− fn(x∗n)|

+

n−1∑
i=1

|(1− Pi)fi(xi)− (1− Pi)fi(x
∗
i )|

≤ |x− x∗|+
n∑

i=1

ri|xi − x∗i | ≤
(

1 +

n∑
i=1

ri

)
|x− x∗|

(58)

Next, we notice that by virtue of (27) and the facts that
Pi ∈ [0, 1) for i = 1, ..., n − 1, ri ∈ (0, 1) for i = 1, ..., n,
fi(x

∗
i ) = v∗i +(1−Pi−1)fi−1(x∗i−1) for i = 2, ..., n, f1(x∗1) =

v∗1 , it follows that the following holds for all x ∈ Ω, d ∈ D
and u ∈ <m:



FP-10-622 9

|F̄ (d, θ∗, x, u)− x∗| ≤ |x1 − f1(x1) + v1 − x∗1|

+

n∑
i=2

|xi − fi(xi) + vi + (1− Pi−1)fi−1(xi−1)− x∗i | ≤

n∑
i=2

|xi − fi(xi) + fi(x
∗
i ) + (1− Pi−1)fi−1(xi−1)

− (1− Pi−1)fi−1(x∗i−1)− x∗i |
+m|u− u∗|+ |x1 − f1(x1) + v1 − x∗1| ≤

(1− r1)|x1 − x∗1|+
n∑

i=2

(1− ri)|xi − x∗i |+

n∑
i=2

(1− Pi−1)ri−1|xi−1 − x∗i−1|+m|u− u∗| ≤(
n−

n∑
i=1

ri +

n∑
i=2

(1− Pi−1)ri−1

)
|x− x∗|+m|u− u∗|

(59)

where u∗ = (v∗i ; i ∈ R). Using (32) and (33), it is straight-
forward to show that there exists a constant L̃ > 0 such
that the following inequality holds for all x, x̂∗ ∈ S and
v̂∗ ∈

∏n
i=1[0, vi,max]:

|u− u∗| ≤ L̃|x− x∗|+ L̃|x̂∗ − x∗|+ L̃|v̂∗ − v∗| (60)

Using (30), (31) and the fact that the function g : [0, 1 −
ε]n−1×

∏
i/∈R[0, vi,max]× [ε, 1− ε]n →

∏
i∈R[bi + ε, vi,max]

is a smooth function, it follows that the following inequality
holds for all θ̂ ∈ N3 ∩Θ:

|x̂∗ − x∗|+ |v̂∗ − v∗| ≤M |θ̂ − θ∗| (61)

Finally, using definitions (42)-(48) in conjunction with the fact
that N2 ⊆ A, it follows that there exists a constant L̄ > 0 such
that:

|Ψ(h(d, θ∗, x), w)− θ∗| ≤L̄|x− x∗|+ L̄

p∑
i=1

|wi − y∗|

for all x ∈ N1 ∩ S, d ∈ D, θ̂ ∈ N3 ∩Θ,

wi ∈ N2 ∩ Y (i = 1, ..., p) with w = (w1, ..., wp).

(62)

Since, we have already proved that assumptions (H1), (H2),
(H3) hold for the closed-loop system (29), (36) with (50)-(56),
(30)-(33), it follows from (58), (59), (60), (61) and (62) that all
assumptions of Theorem 2.1 hold. Therefore, Corollary 3.3 is
a direct application of Theorem 2.1 to the closed-loop system
(29), (36) with (50)-(56), (30)-(33). The proof is complete. /

IV. AN ILLUSTRATING EXAMPLE

The following example illustrates the application of the
results of the previous section to a specific freeway model. The
selected values for the parameters have physical interpretation
and the example demonstrates the efficiency of the proposed
control scheme, even in the case of modeling errors.

Consider a freeway model of the form (14), (17), (18),
(19) with n = 5 cells. The freeway stretch considered for
the simulation test is 2.5 km long and has three lanes. Each
cell is 0.5 km long and has an on-ramp and off-ramp. The

first and the third on-ramp are assumed to be controllable,
hence R = {1, 3}, and the vector of the controllable inflows
is u = (v1, v3). The inflows from the rest of the on-ramps
are assumed to be unknown and therefore they will have to
be estimated. Regarding the priority rules, we assume that
di(t) ≡ 0 for the whole simulation horizon, which means that
the on-ramp inflows have absolute priority over the internal
inflows. The simulation time step is set to be T = 15s and
the cell capacities are ai = 170 [veh], for 1 = 1, ..., 5. Note
that, since all flows and densities are measured in [veh], the
cell length, the time step and the number of lanes do not
appear explicitly, but they are only involved implicitly in the
value of every variable and every constant (e.g. critical density,
jam density, flow capacity, wave speed etc.) corresponding to
density or flow.

The formulas of the demand functions are given by the
following equations:

fi(z) =

{
( 5
11 )z z ∈ [0, 55]

25− ( 7
115 )(z − 55) z ∈ (55, 170]

(i = 1, ..., 4),

f5(z) =

{
( 4
11 )z z ∈ [0, 55]

20− ( 3
115 )(z − 55) z ∈ (55, 170]

. (63)

Assumption (H) holds with δi = 55 [veh], ai = 170 [veh]
for i = 1, ..., 5, ri = 5/11, fmin

i = 18 for i = 1, ..., 4, r5 =
4/11 and fmin

5 = 17. Thus, every cell has the same critical
and jam density which correspond to 36.7 [veh/km/lane] and
113.3 [veh/km/lane], respectively, in common traffic units with
the above settings. Definitions (63) guarantee that the demand
functions for i = 1, ..., 4 lead to 20% higher flow capacity
(fi(δi) = 25 [veh] for i = 1, ..., 4, corresponding to 2000
[veh/h/lane]) than the flow capacity of the fifth cell (f5(δ5) =
20 [veh], corresponding to 1600 [veh/h/lane]) and therefore
the last cell is a strong bottleneck for the freeway (e.g. due to
grade or curvature or tunnel or bridge etc.). Notice also, that
the capacity drop phenomenon has been taken into account by
considering a linearly decreasing demand function for over-
critical densities xi ∈ (55, 170] (similar to the one proposed
in [26]). Furthermore, the congestion wave speeds are ci =
0.22 for i = 1, ..., 5 corresponding to 26.4 [km/h]. Finally, we
suppose that the cell flow capacities qi for i = 1, ..., 5 satisfy
the inequalities qi ≥ ciai for i = 1, ..., 5 and therefore, they
play no role in the model (14), (17), (18), (19).

Our goal is to globally exponentially stabilize the system at
an UEP which is as close as possible to the critical density (due
to the fact that the flow value at the critical density is largest).
Therefore, we selected as the upper bound for the equilibrium
densities and for each cell to be the µi = δi− ε (i = 1, ..., 5),
where ε = 10−4. The exit rates are set to be P1 = 0.04,
P2 = 0.15, P3 = 0.08, P4 = 0.1 and we selected v1,max = 25,
v2,max = 1.3, v3,max = 4, v4,max = 2.3 and v5,max = 2.8,
so that inequalities (25) hold. The uncontrollable inflows are
v∗2 = 1, v∗4 = 2 and v∗5 = 2.5. Summarizing, the vector of the
parameters θ∗ consists of the exit rates P = [P1, P2, P3, P4]′,
the unknown external uncontrollable inflows v∗i (i = 2, 4, 5)
and the slopes r = [r1, ..., r5]′ of the demand functions. Hence,
θ∗ = [P1, ..., P4, v

∗
2 , v
∗
4 , v
∗
5 , r1, ..., r5].
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Fig. 3. Time evolution of the states of the open-loop system (dashed lines
correspond to the UEP for constant inflows v∗ = [17.29316, 1, 4, 2, 2.5]
[veh]) with fully congested initial condition x0 = (a1, a2, a3, a4, a5)′.

The function

g : [0, 1−ε]4×
∏

i=2,4,5

[0, vi,max]×[ε, 1−ε]5 →
∏
i=1,3

[bi+ε, vi,max]

with b1 = b3 = 0.2 involved in (28) has been selected in such a
way that the outflow from the last (fifth) cell is approximately
maximized:

g(P, v∗2 , v
∗
4 , v
∗
5 , r) = (v∗1 , v

∗
3) = (ĝ(P, v∗2 , v

∗
4 , v
∗
5 , r), 4) (64)

where

ĝ(z) =

b1 + ε z ∈ (−∞, b1]

502z2 − 103z + 100.2001 z ∈ (b1, b1 + 2ε]

z z ∈ (b1 + 2ε, v1,max − 1]
−1
4 z

2 + 13z − 144 z ∈ (v1,max − 1, v1,max + 1]

v1,max z ∈ (v1,max,∞)

(65)

where z =
(
r5x
∗
5−(v∗5+(1−P4)v∗4+(1−P3)(1−P4)v∗3+(1−

P2)(1−P3)(1−P4)v∗2)
)
/
(
(1−P1)(1−P2)(1−P3)(1−P4)

)
and x∗5 = µ5 − 2ε.

The UEP is x∗ = [38.045, 38.723, 41.715, 42.778, 54.9997]
for v∗ = [17.29316, 1, 4, 2, 2.5], P = [0.04, 0.15, 0.08, 0.1]
and r = [5/11, 5/11, 5/11, 5/11, 4/11]. The above UEP is
not globally exponentially stable due to the existence of
additional (congested) equilibria. This is shown in Fig.3, where
the solution of the open-loop system, with constant inflows
v∗ = [17.29316, 1, 4, 2, 2.5], is attracted by the congested
equilibrium [96.19, 94.6, 87.73, 85.22, 82.33]′ leading to out-
flow, which is 0.72 [veh] lower than the capacity flow of the
last cell. Therefore, if the objective is the operation of the
freeway with largest outflow, then a control strategy will be
needed.

We are in a position to guarantee global exponential attrac-
tivity of the UEP for the freeway model that was described
above by using Corollary 3.3. Indeed, Corollary 3.3 guarantees

that there exist constants σ ∈ (0, 1], b1, b3 > 0 and τ > 0 such
that, the feedback law K : Θ× S → U defined by:

K1(θ̂, x) =

max
(
b1, v̂

∗
1 − τ−1(v̂∗1 − b1)

5∑
i=1

σi max(0, xi − x̂∗i )
)

K3(θ̂, x) =

max
(
b3, v̂

∗
3 − τ−1(v̂∗3 − b3)

5∑
i=1

σi max(0, xi − x̂∗i )
)

(66)

(v̂∗1 , v̂
∗
3) = g(P̂ , v̂∗i ; i 6∈ R, r̂), (67)

for the closed-loop system (29), (34), (35),
(36) with (50)-(56), (66), (67), (31) and (33),
achieves global exponential attractivity of the UEP
x∗ = [38.045, 38.723, 41.715, 42.778, 54.9997].

It is important here to note that the feedback law (66) aims
to maximize the outflow from the fifth cell without assuming
knowledge of the cell’s capacity flow. The maximization is
achieved by implicitly estimating the capacity flow of the
fifth cell in real time, using the estimation of the slope of
the demand function (r̂5(t)) and the (given) critical density
of the same cell. Empirical traffic engineering investigations
have shown that the capacity is stochastic, in the sense that
traffic breakdown on different days may occur at different flow
values. In contrast, the critical density, at which capacity flow
occurs, is deemed more stable from day to day. This is the
very practical reason why it is assumed in this work that the
critical density is constant and known, while capacity flow is
estimated in real time. Note that, this is in full accordance
with simpler but proven (in many field installations) control
laws like ALINEA [12], which also considers a given density
set-point.

Selecting b1 = b3 = 0.2, we tested various values of the
constants σ ∈ (0, 1] and τ > 0 by performing a simulation
study with respect to many initial conditions. Low values for
σ ∈ (0, 1] require small values for τ > 0 in order to guarantee
global exponential stability for the closed-loop system. All the
following tests of the proposed regulator were conducted with
the same values σ = 0.7 and τ = 10.

All the following simulation tests were conducted with the
same initial conditions for the observer states w1,i(0) = 100
[veh], w2,i(0) = 20 [veh], w3,i(0) = 20 [veh] for i = 1, ..., 5,
P̂i(0) = 0 for i = 1, ..., 4, v̂∗i (0) = 0 for i = 2, 4, 5 and
r̂i(0) = 0.7 for i = 1, ..., 5.

Fig.4 shows the evolution of the density of every cell
and Fig.5(a) shows the evolution of the Euclidean norm of
the deviation x(t) − x∗ of the state from the UEP, i.e.,
|x(t) − x∗|, for the closed-loop system with the proposed
feedback regulator (50)-(56), (66), (67), (31) and (33) for three
different initial conditions. The first condition corresponds to
very low densities (x0 = (10, 15, 10, 15, 10)′), the second
initial condition corresponds to congested states with high
deviations between each other (x0 = (70, 85, 65, 120, 100)′),
while the third initial condition corresponds to the state where
the density of every cell has its maximum value, i.e. ai
(i = 1, ..., 5), which also corresponds to the initial condition
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Fig. 4. Time evolution of the states of the closed-loop system (29), (36)
with (50)-(56), (66), (67), (31) and (33) with fully congested initial condition
x0 = (170, 170, 170, 170, 170)′.

for Fig.4. Indeed, both Fig.4 and Fig.5 show that the pro-
posed feedback stabilizer (50)-(56), (66), (67), (31) and (33)
achieves dead-beat estimation of the vector θ∗, preserving the
exponential convergence property for the closed-loop system.

Fig. 5. The Euclidean norm of the deviation x(t) − x∗ of the state from
the UEP, i.e., |x(t) − x∗| for the closed-loop system (29), (36) with (50)-
(56), (66), (67), (31) and (33) and three different initial conditions x0 =
(10, 15, 10, 15, 10)′ (red line), x0 = (70, 85, 64, 120, 100)′ (blue line) and
x0 = (170, 170, 170, 170, 170)′ (green line).

We also tested the performance of the feedback law (50)-
(56), (66), (67), (31) and (33) under the effect of periodic
uncontrollable inflows with different frequencies and different
amplitudes, given by:

v∗2 = 1 + 0.3 cos
(3πt

2

)
, v∗4 = 2 + 0.1 cos(πt) and

v∗5 = 2.5 + 0.2 cos
(πt

4

)
.

(68)

Fig.6(a) and Fig.6(b), depict the evolution of the Euclidean
norm of the deviation x(t) − x∗ and the evolution of the
weighted norm ‖ · ‖n of the deviation of the estimated
parameters from the nominal parameters vector, defined by

‖θ̂(t)− θ∗‖n =

∣∣∣∣( 1

1− ε
(P̂ (t)− P ),

v̂∗2(t)− v∗2
v2,max

,
v̂∗4(t)− v∗4
v4,max

,

v̂∗5(t)− v∗5
v5,max

,
1

1− ε
(r̂(t)− r)

)∣∣∣∣,
(69)

with respect to the unknown time-varying uncontrollable in-
flows (68) and under the proposed feedback regulator (50)-
(56), (66), (67), (31) and (33). The initial conditions were the

Fig. 6. (a) The Euclidean norm of the deviation x(t) − x∗ of the state
vector from the UEP, (b) The weighted norm ‖θ̂(t) − θ∗‖ of the deviation
of the estimated parameters from the nominal parameters vector, for periodic
uncontrollable inflows given by (68) for the closed-loop system (29), (36)
with (50)-(56), (66),(67),(31) and (33) and three different initial conditions
x0 = (10, 15, 10, 15, 10)′ (red line), x0 = (70, 85, 64, 120, 100)′ (blue
line) and x0 = (170, 170, 170, 170, 170)′ (green line).

same as in the previous case. Again, the proposed regulator
achieved to lead the system to the equilibrium state by
performing only small deviations for the estimated parameters.
Fig.6 shows that the proposed feedback stabilizer (50)-(56),
(66), (67), (31) and (33) achieves the exponential convergence
property of the densities to the desired UEP.

Furthermore, in order to illustrate the performance of the
proposed feedback law under the presence of modeling errors,
we considered the case where the demand functions do not
satisfy assumption (H). More specifically, we considered the
piecewise quadratic demand functions:

fi(z) =

{
0.7z − ( 0.49

110 )z2 , z ∈ [0, 55]

25.025− ( 7.025
115 )(z − 55) , z ∈ (55, 170]

for(i = 1, ..., 4),

f5(z) =

{
0.56z − ( 0.392

110 )z2 , z ∈ [0, 55]

20.02− ( 3.02
115 )(z − 55) , z ∈ (55, 170]

. (70)

In this case the UEP is x∗ = [30.77, 31.5, 34.85,
36.1, 54.9997]. Fig.7, shows the evolution of the Euclidean
norm of the deviation x(t) − x∗ of the state from the UEP
and for the closed-loop system with the proposed feedback
regulator (50)-(56), (66), (67), (31) and (33) and three dif-
ferent initial conditions. Again, Fig.7 shows that the proposed
feedback stabilizer (50)-(56), (66), (67), (31) and (33) achieves
the exponential convergence property of the densities to the
desired UEP, even under the presence of modeling errors.

In the same vein, Fig. 8 shows the time evolution of the
densities of every cell for the closed-loop system (29), (36)



FP-10-622 12

Fig. 7. (a) The Euclidean norm of the deviation x(t) − x∗ of the
state from the uncongested equilibrium, i.e., |x(t) − x∗|, for the closed-
loop system (29), (36) with (50)-(56), (66), (67), (31) and (33), piecewise
quadratic demand functions and three different initial conditions x0 =
(10, 15, 10, 15, 10)′ (red line), x0 = (70, 85, 64, 120, 100)′ (blue line) and
x0 = (170, 170, 170, 170, 170)′ (green line).

with (50)-(56), (66), (67), (31) and (33) with initial condition
x0 = (60, 60, 60, 60, 60)′ and under the presence of the same
modeling errors. More specifically, in this figure the demand
functions are given by (63), which satisfy Assumption (H),
for t < 60, while after that time modeling errors appear. This
means that for t ≥ 60 the demand functions are given by (70),
which do not satisfy Assumption (H). Fig. 8 shows that the
exponential convergence property to the desired uncongested
equilibrium point is preserved even when modeling errors
appear after an initial transient period.

V. CONCLUDING REMARKS

Novel results for adaptive control schemes for uncertain
discrete-time systems, which guarantee robust, global, expo-
nential convergence to the desired equilibrium point of the
system, were provided in the present work. The proposed
control scheme consists of a nominal feedback law, which
achieves robust, global, exponential stability properties when
the vector of the parameters is known, in conjunction with a
nonlinear, dead-beat observer. The proposed adaptive scheme
did not require the knowledge of a Lyapunov function for the
closed-loop system under the action of the nominal feedback
stabilizer and is directly applicable to highly nonlinear, un-
certain discrete-time systems with unknown constant param-
eters. The applicability of the obtained results to real control
problems was demonstrated by the rigorous application of
the proposed adaptive control scheme to uncertain, freeway
models. Simulation results showed the efficacy of the proposed
adaptive control scheme even under the presence of modeling
errors and/or time-varying parameters.

It is well-known that dead-beat observers may present lim-
ited robustness properties with respect to measurement errors.
Therefore, additional work is needed for the robustification
of the proposed dead-beat identifier or its replacement by
different type of identifiers (e.g., Luenberger-type observers,
Lyapunov-based identifiers). Alternative methods for the ro-
bustification are to be tested: least-squares methods, filtering
approaches, or dead-zone techniques.

Fig. 8. Time-evolution of the states of the closed-loop system (29), (36)
with (50)-(56), (66), (67), (31) and (33), for initial conditions x0 =
(60, 60, 60, 60, 60)′, and for piecewise linear demand functions for t < 60
and piecewise quadratic demand functions for t ≥ 60.
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APPENDIX

Proof of Lemma 2.2: By virtue of assumption (iii), there
exists δ > 0 such that the inequality |F (d, z)−z∗| ≤ L|z−z∗|
holds for all d ∈ D and z ∈ A := {y ∈ X : |y − z∗| < δ}.
Since F : D ×X → X is a bounded mapping, there exists a
constant R > 0 which satisfies

sup{|F (d, z)| : z ∈ X, d ∈ D} ≤ R. (71)

It follows from (71) and the triangle inequality that the
following inequality holds:

sup

{
|F (d, z)− z∗|
|z − z∗|

: d ∈ D, z ∈ X \A
}
≤

δ−1 sup{|F (d, z)− z∗| : z ∈ X, d ∈ D} ≤
δ−1(R+ |z∗|)

(72)

Combining (72) and the fact that |F (d, z) − z∗| ≤ L|z − z∗|
holds for all d ∈ D and for all z ∈ A, we get:

|F (d, z)− z∗| ≤ max
(
L, δ−1(R+ |z∗|)

)
|z − z∗| (73)

for all (d, z) ∈ D ×X .
Let z0 ∈ X be an arbitrary vector and let {d(t) ∈ D}∞t=0

be an arbitrary sequence. Consider the solution z(t) of z+ =
F (d, z) with initial condition z(0) = z0 corresponding to input
{d(t) ∈ D}∞t=0. By virtue of assumption (ii), there exists
i(N) ∈ {0, 1, ..., N} with z(N − i(N)) ∈ Ω. By virtue of
assumption (i), we get:

|z(t)− z∗| ≤M |z(k)− z∗| exp(−σ(t− k)), (74)

for all t ≥ k, where k = N − i(N).
Notice that k ∈ {0, 1, ..., N}. Using induction and (73), we

get
|z(t)− z∗| ≤ L̃t|z0 − z∗|, for all t ≥ 0, (75)
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where L̃ := max
(
L, δ−1(R + |z∗|)

)
≥ 1. Combining (74),

(75) and the fact that k ∈ {0, 1, ..., N}, we obtain:

|z(t)− z∗| ≤ML̃N exp(σN)|z0 − z∗| exp(−σt) (76)

for all t ≥ 0. Noticing that assumption (iii) guarantees that
z∗ = F (d, z∗), we conclude that estimate (76) implies that
z∗ ∈ X is RGES for the uncertain system (1). The proof is
complete. /

Proof of Proposition 3.2: Assume that bi > 0 (i ∈ R) and
vi,max (i 6∈ R) are sufficiently small so that∑
i∈R

(n+1−i)bi+
∑
i 6∈R

(n+1−i)vi,max < C min
i=1,...,n

(
(n+1−i)µi

)
.

(77)
Since τ ≤ ε2σn mini∈R

(
(vi,max − bi)

−1) and v̂∗i ∈ [bi +
ε, vi,max] for i ∈ R, it follows that

τ−1(v̂∗i − bi) ≥ ε−1(vi,max − bi)σ−n for all i ∈ R. (78)

Let m ≥ 1 be an integer that satisfies:

m ≥ 2 + [Λ] (79)

where Λ =
(

ln( min
i=1,...,n

((n+ 1− i)µi)−C−1κ)− ln(
n∑

i=1

(n+

1− i)ai)
)
/ ln(1− C). Next, we show the following claim.

Claim: if x /∈ Ω then for every (θ̂, d) ∈ Θ× [0, 1]n−1 it holds
that:

n∑
i=1

Ii(x
+) ≤ (1− C)

n∑
i=1

Ii(x) + κ (80)

where C ∈ (0, 1) is the constant involved in (49), κ :=∑
i∈R(n+ 1− i)bi +

∑
i/∈R(n+ 1− i)vi,max and x+ is given

by (29) with u = K(θ̂, x).

Proof of Claim: if x /∈ Ω =
∏n

i=1(0, µi), then there exists
i ∈ {1, ..., n} such that xi ≥ µi. Since x̂∗ = (x̂∗1, ..., x̂

∗
n) ∈∏n

i=1[0, µi− ε] (recall (31)), it follows from (33) and the fact
that σ ∈ (0, 1] that Ξ(θ̂, x) ≥ σn(xi − x̂∗i ) ≥ εσn. Since (78)
holds, it follows from (32) that vi = bi for all i ∈ R. Inequality
(80) is a consequence of (49) and the fact that v∗i ∈ [0, vi,max]
for all i /∈ R. The proof of the claim is complete. We show
next, by means of a contradiction, that for every sequence
{d(t), θ̂(t) ∈ D × Θ}∞t=0 and for every x0 ∈ S, the solution
x(t) of (29), (36) with u = K(θ̂, y), initial condition x(0) =
x0 corresponding to inputs {d(t), θ̂(t) ∈ D ×Θ}∞t=0 satisfies
y(t − 1 − i(t)) ∈ A for some i(t) ∈ {0, 1, ...,m} and for
all t ≥ m + 1. Suppose that, on the contrary, there exists a
sequence {d(t), θ̂(t) ∈ D × Θ}∞t=0, a vector x0 ∈ S and an
integer t ≥ m + 1, such that the solution x(t) of (29), (36)
with u = K(θ̂, y), initial condition x(0) = x0 corresponding
to inputs {d(t), θ̂(t) ∈ D×Θ}∞t=0 satisfies y(t−1− i(t)) /∈ A
for all i(t) ∈ {0, 1, ...,m}. By virtue of (41), this implies that
x(t−1−i(t)) /∈ Ω for all i(t) ∈ {0, 1, ...,m} (notice that (26),
(27), (34), (35), (36) and (41) guarantee that x ∈ Ω implies
that y ∈ A). It follows from the Claim, that:

n∑
i=1

Ii(x(l + 1)) ≤ (1− C)

n∑
i=1

Ii(x(l)) + κ

for l = t− 1−m, ..., t− 1

(81)

Using (81) repeatedly, we get:
n∑

i=1

Ii(x(t− 1)) ≤

(1− C)m
n∑

i=1

Ii(x(t− 1−m)) + κ
1− (1− C)m

C

(82)

Using the definition Ij(x) :=
∑j

i=1 xi for j = 1, ..., n and the
fact that x ∈ S =

∏n
i=1(0, ai], we get from (82):

(n+ 1− j)xj(t− 1) ≤ (1− C)m
n∑

i=1

(n+ 1− i)ai + C−1κ

for all j = 1, ..., n
(83)

Using (83), (76) and (79), we get:

(n+ 1− j)xj(t− 1) ≤ min
i=1,...,n

((n+ 1− i)µi)

for all j = 1, ..., n which implies that x(t − 1) ∈ Ω =∏n
i=1(0, µi), a contradiction. The proof is complete. /
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