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Abstract

Polar codes is a new scheme of channel coding, which is the first provably
capacity-achieving coding scheme for a wide class of channels, the binary discrete
memoryless channels. At the same time, they use low complexity encoding and
decoding algorithms, which makes them attractive for a wide range of use-cases.
These algorithms scale as O(NlogN), where N is the blocklength of the code. Polar
codes exploit channel polarization, a very common phenomenon which arises when
one takes N independent copies of a channel and transforms them into another
set of N channels. Under channel polarization, the channels are converted to a set
of extremal (either perfect or completely noisy) channels, called bit-channels. In
the presence of channel polarization, the information vector is sent through the
perfect bit-channels, while a fixed vector of arbitrary bits is sent through the useless
bit-channels. A problem which arises is the determination of which bit-channels are
perfect and which are useless. This problem, called the “construction of polar codes”
among researchers, has been addressed successfully and efficiently only for the binary
erasure channel (BEC). The non-universality property of polar codes complicates
their construction, because the behaviour of a bit-channel may be perfect for one
physical channel but noisy for another. The adoption of polar codes in 5G NR
strengthens the demand for a fast and adaptive construction scheme. This thesis
attempts to design an efficient algorithm for the construction of polar codes for
the binary symmetric channel (BSC), taking advantage of proved universal partial
orders among the bit-channels and state-of-the-art algorithms which approximate
efficiently upper and lower bounds of the probability of error of the bit-channels.
The simulation results show a marginal time-running difference over the explicit use
of the approximation algorithms, which can be used computationally for a more

accurate construction.



Hepirngm

Ov mohxol xwdixeg (polar codes) eivon pa cOyypovn uédodog xwdixonoinong
xavahiol, 1 TedTN PEY0dB0C TOU OTOOEDELYUEVH ETUTUYYAVEL TNV YWENTIXOTNTA TOU
HAVAALOD YLOL Lol UEYAAT) XATIY OpEo XAUVOALEY, Tal BUABLXE BLoELTA XotvahLoL Y welg wvAun.
Ty B otiypn, yenotdomooly akyopliuous xwdxomolnong xal amoxwoLxoToinong
YOUUNAAG TOANUTAOXOTNTOC, XATL TTOLU TOUG XAVEL EAXUCTIX00C Yiol TOMAES yerioeie. Ot
ahySprduot autol €youy ntohurthoxdtnta tne tEne O(NlogN), 6mouv N eivor 10 prixoc
umhox tou xddxa. Ot mohxol x@Bixeg aflomoloby éva YUUVOUEVO TIOU OVOUdLEToL
ToAwon xavolol (channel polarization), éva chvUeS QouvOUEVO TOL TEOXVUTTEL 6TV
petaoynuatilouue N aveldptnrta avtlypapa evog xovolol ot éva dhho chvoro and N
xavahio. Tor xavdhior TOAOVOVTOL, PE TNV EVVoLa OTL UETUTEETOVTAL OE EVal GUVOAO o
axpatior xavéhta (eite Téheta elte eviehnds YopuBwodn), To onolo ovoudloupe bit-channels.
Tnod v mapousio g TOAWGNG xavaAloy, 1 TANEoQoplo amocTEAAETAUL UECH Ao To
Téheta bit-channels, eved péoa and to dyenota bit-channels anoctéhheton o audolpetn
otatixy) oxohoudia amd bits. ‘Eva mpdBinuo mou mpoxintel ebvan 1 e€axpifwon twv
bit-channels mou efvar Télelor xou ATV oL elvan dyenoto. Autd 1o TEORANUA, TOUL
OO TOUC ERPELVNTEC OVOUALETOL “UUTAUGHELY) TwV TOMXWOY Xxwdixwv”, €yel emAvdel pe
YeRyopo TeoTO WoVo Yot To Buadixd xavdht Swrypaghc (BEC). To yeyovoe 6t ta
bit-channels twv TOAX®V %xwdIxwY eV €xouv eviaio GUUTERLPOEA YLloL OAL TA PUOLXA
xovehar oTol omolol xaTooxeLVALETAUL O TOAMXOC HWOBXOC, TEQITAEXEL TO TEOBANUL BLOTL
éva bit-channel uropetl va efvan téheto yia éva ToAxd 1Bl ahhd VopuPBdeg Yo Evay
dAhov. H aglomoinon tov mohxdv xwdixwy oto 5G NR evioylel tnv avéyxn yia évay
YEHYOPO o EUTPOCUPUOGTO ahyOEWIUO Xataoxeuc.  AuTH 1 Simhwpatix epyocio
Tpoonadel Vo oYeBIAoEL Evay AmOBOTIXG GAYORELIUO YLl TNV XATUOXELY| TWV TOMXODY
xwdixwv Yl T0 duadixd cuuuetewd xavdh (BSC), oflomoudvtoc xdmoles Uepinés
dotdielc (partial orders) petald twv bit-channels mou €youv anodetyel 6Tt 1oy bouy
Yiot GAOUC TOUG TOAXOUE XOOIXES, XAl XATOLOUS GUYYPOVOUS ahyoplduoug Tou eXTHOLY
ATOBOTINE GVed %ol XATE PedrypaTa TNg TdavoTnTog opdiuatog Twv bit-channels. Ta
ATOTEAEGUUTA TV TEOCOUOWMOEWY OELYVOLY Wial ONUOVTIXY OLopopd oTNY ToyUTNTA
TOU TPOTEWOUEVOU OAYORIIUOU omd TNV OMOXAELCTIXY YENON TWV TEOGEYYLO XY
olyoplduwy, TéTol OOTE 0 Yedvoc mou ecowovouceitar vo pmopel va oftomowndet

UTIOAOYLO TIXGL YL Lo IO aXELBY) XATUOXELY| TOU XWOXAL.



Oa fideha va euyoploThow Tov xodnynTr Hou, x. I'. Kapuotivo
Yioe TNV ouvey | oThEEN Tou pou €dwoe xa)” OAN TNV OLdpxELd
NG EXTOVNONG auTHS TNg gpyaciag. Ou fieha enlong va
ELYELOTACL GAOUS ToUG XadTyNTES o, WLalTEPa TOUG
xx A AdBo xon A MrAétoa, yio TiC YVOOES xaL To
OnutovEYxd cnpe{ouato ToU Hou €BKOUY XAUTE TNV BIGEXELL TOV

OTIOLOWY OV,
Enlong euyapiote 6houg toug glAoug o, Yo OAEC TIC WEALEC
oTypéc mou nepdoape pall.

TENOG, aPlepOVL AUTHY TNV EQYACIN GTNV OXOYEVELY LoV, TOUG
yovelg xan ta adép@uar pou, mou pe othpiay xad” oA TNV

OLAPXELOL TOV GTIOUDWY UOV.
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1 Channel Polarization

Channel polarization, proposed by Arikan in [1], is a method where one takes N
independent copies of a given binary discrete memoryless channel (B-DMC) W and
transforms them into another set of N binary-input channels {WJ(\?) 11 <i < N} with the
property that, as NV becomes large, the symmetric capacities {I](Vi)} become either 0 or 1
with probability 1 and also 32, 1) = NI(W).

1.1 Preliminaries

Given a B-DMC W : X — Y, two parameters are of great significance in the following

analysis, the symmetric capacity

W (y|z)
R IILCEES s Ty W

yey wEX

and the Bhattacharyya parameter

)£ VWEIOW (D). (2)

yey

The parameter (W) is a measure of rate and it is easy to notice that it is the channel
capacity when W is symmetric. On the other hand, Z (W) is a measure of reliability, since
it is an upper bound on the probability of error of maximum-likelihood decoding when W
is used only once to transmit a bit. Indeed, consider a B-DMC W and the error event
under ML decoding € = {(z,y) € X x Y : % ylx@l > 1}. Then, the probability of error is

W(y|z)
ZZPnyy]lgxy ZZPX 7) Py x=o(y|7)le (7, y)
) . W(ylr @ 1)
g;{PX W (ylz)le(z,y) < g;{PX W (y|x)
:ZZPX(x)\/W(y|x Wylze 1) = ZZPX ()W (y|0)W (y[1)
= > VW)W L) = Z(W). (3)

Both I(W) and Z (W) take values in [0, 1]. The two parameters are related with the

following two bounds.
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Figure 1: The binary erasure channel (BEC)  Figure 2: The binary symmetric channel
with erasure probability e. (BSC) with crossover probability p.

Proposition 1.

I(W) > log H—%(VV)’ (4)
1W) < VI—Z(W. (5)

The proof of Proposition 1 is provided in the Appendix.

From (4) and (5), we infer the following corollary.
Corollary 1. Z(W) — 1 iff I[W) — 0. Similarly, Z(W) — 0 iff [W) — 1. O

Lastly, we define the two binary-input channels that will be mentioned throughout this
presentation of polar codes, the binary erasure channel (BEC) and the binary symmetric
channel (BSC). In BEC (Fig. 1), the receiver either receives the bit transmitted correctly,
with probability 1 — €, or receives a message (an erasure symbol) that the bit was erased
during the transmission, with erasure probability €. In BSC (Fig. 2), the receiver either
receives the bit transmitted correctly, with probability 1 — p, or receives the bit flipped,
with crossover probability p. For BEC, (1) and (2) give the following equations

(6)

while, for BSC, they become
I(W)=1+plogp+ (1 —p)log(l—p),
Z(W) =2v/p(1 —p).

Henceforth, we will use the notation o to denote the row vector a = (aq, g, ..., ay).

Given such a vector afY, we write af as a shorthand to denote the subvector (a;, ..., ;)
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Figure 5: Construction of Wy from two independent
copies of Wyy,.

Figure 4: Construction of Wy from two
independent copies of W5.

when 1 < ¢ < j < N, whereas Ozf is regarded as void when j < 4. Given the vector o
and A C {1,..., N}, we write ay to denote the subvector (oy : k € A). We write agf,e to
denote the subvector of o with even indices (ay : i < k < j;k even), and Ozio to denote
the subvector of of with odd indices (g : 7 < k < j; k odd).

1.2 Channel Polarization

In this section we will address the phenomenon of channel polarization, as described
above. Shortly afterwards, Polar Codes will be defined and proved to be capacity-achieving,
by exploiting this feature.

1.2.1 Channel Combining

The Channel Combining phase of channel polarization concerns the recursive
transformation of a set of N independent copies of a given B-DMC, namely W into
another vector channel Wy : XV — YV N = 2" n > 0. The general recursion
The initial step of the recursion is W; £ W. Then,

two independent copies of Wy, are combined to produce Wy. The input vector udl

step is illustrated in Fig. 5.

of Wy is first transformed into S{V such that sg;_1 = ugj—1 D ug; and sq; = wug; for



1 < i < N/2. The vector sV is then reshuffled by the permutation Ry to provide

the vector v = (s1,83,...,8N_1,52,84,...,5n). The first half (s, ss,...,sy_1) of v
becomes the input to the first copy of Wy, and the second half (s, s4,...,sy) becomes

the input to the second copy of Wy/,. This is repeated until we finally reach the N copies
of W and transmit our transformed input vector.
From this definition, we can see that the blockwise transition probability is recursively

transformed with the relation
Wan (i [ui™) = Wi (g [u3h @ ui )W (YR, Jui?). (8)

We note that the transformation u — 2V is linear. More specifically, notice that
Wi (y¥ [ud) = WY (yN|uY Gy), where Gy is called the generator matriz. In channel
polarization, we seek for a Gy which achieves polarization and at the same time gives
low complexity encoding and decoding algorithms. Here we presented only one of those

possible Gy matrices (transformations).

1.2.2 Channel Splitting

The Channel Splitting phase splits Wy back into a set of N binary-input coordinate
channels W](\f) : X = YV x X1 such that, if ul is a priori uniform, W](\f) is the effective
channel seen by the ith input u;, given both the actual channel output %V and all the
previous actual inputs u}~'. Thus, the transition probabilities of the coordinate channels

are defined by

_ WN(Z/{V>UZ1) _ Z WN(y{Vau§7uﬁ—1)
P{u;} P {u;}

N N—i
uH_lGX g

W (1 |uy ) P {uy’ Wy (yN [ulV)2=N
- ¥ y {ul} 3 (i |ug)

, o -1
uf  EeX N Pui} uf XN 2
W (g1 [uy’) 1
= > ﬁ = > SN Wi (v |ur). (9)
ug\_f'_lexl\l—i u%\_fHeXN—i

The effective channel WS) will be used to estimate the input u;. We will address the effect
of this choice for decoding polar codes in Chapter 1.6. Henceforth, the coordinate channels

{WJ(\;)} will be called bit-channels, as they are used to transmit a single bit.

10



1.3 Transformation of Channel, Rate, and Reliability

We will now see how this blockwise transformation is broken into single-step channel
transformations and then how rate and reliability transform alongside. Consider a
binary-input channel W : X — Y. A pair of binary-input channels W' : X — Y
and W”: X — Y x X are obtained by a single-step transformation of two independent
copies of W, denoted by (W, W) — (W', W"), iff there exists a one-to-one mapping
f:Y? =Y such that

1
W' (f s yo)lun) = D W (yalus & )W (ya]us), (10)
uhbeX
1
W (f (y1,y2), wiluz) = W (yilur @ ua) W (ys|uz). (11)
In what follows, we will take f as the identity mapping. Hence, (10) and (11) simplify to
1
W (yi|u) = Z §W(?Jl|u1 D u2) W (y2|uz), (12)
ug€X
1
W (7, urlug) = S W (yilur @ ua) W (s |uz). (13)
Then, the general single-step channel transformations are of the form
(W W) = (Wl i) (14)

and, more specifically,

i— 2i— 1 i
Win ™ uf i) = §W( Uil B uiy ?luzio1 @ ua)

ug; €X
W(l) (yN—i-la U’l € 2|u2z) (15)

i i— 1 % 7
W ™t u) = SR (0 ud® © ui 2 Juzioy @ u) - W (R 10 Juzi). - (16)

The proof of (15) and (16) is provided in the Appendix.
This result will allow us able to study the properties of the overall rate and reliability
transformation. We will first study the transformation of rate of the local, single-step,

channel transformation (14).

Proposition 2. Consider (W, W) — (W', W") for some set of binary-input channels.
Then,

I(W') + I(W") = 21(W), (17)
[(W') < I(W7), (18)

with equality in (18) iff I(W') equals 0 or 1.

11



The proof of Proposition 2 is provided in the Appendix.

Equation (17) indicates that, under a single-step channel transformation, symmetric
capacity is preserved. Equation (17) together with inequality (18) imply that I(W') =
IW"y = I(W) iff I(W) is either 1 or 0. In any other case, the single-step transformation

extremize the symmetric capacity in the sense that
(W) < I(W) < I(W"). (19)
Next, we have the following results regarding the local-level transformation of reliability.

Proposition 3. Consider (W, W) — (W', W") for some binary-input channels. Then,

ZW") = Z(W), (20)
ZW') <2Z(W) — Z(W)?, (21)
ZW') > Z(W) > Z(W"), (22)

with equality in (21) iff W is a BEC.

The proof of Proposition 3 is provided in the Appendix.

From (20), (21), and (22), we infer that Z(W') = Z(W") = Z(W) ifft Z(W) equals 0
or 1. This is equivalent to the implication we have from the transformation of rate. Also,
we infer that reliability can only improve under a single-step transformation in the sense
that

ZW" + Z(W") <2Z(W). (23)

At last, we have a result for the special case of the transformation of a BEC. Before
proceeding to the statement, we will first define the multi-output BEC. Consider a
symmetric binary-input channel W' (y;,...,y,|z) : X — Y, where Y € Y. We denote
with Y, 1 < i < 2", the possible output vectors of W’. We say that W’ is BEC if its
transition probabilities are of the form as in Figure 6, for arbitrary k, [. As it can be seen,
the BEC defined in Chapter 1.1 is a special case of this definition for k =0, [ =n = 1.

Now, we can state the anticipated result.

Proposition 4. Consider the channel transformation (W, W) — (W' W"). If W is a
BEC with some erasure probability €, then the channels W' and W" are BECs with erasure

2

probabilities 2 — € and €, respectively. Conversely, if either W' or W" is a BEC, then

W is BEC.

The proof of Proposition 4 is provided in the Appendix.
Using recursively the results of Propositions 2 and 3, we derive the following proposition

for the general case.

12
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Figure 6: The multi-output binary erasure channel with erasure probability e.

Proposition 5. For any B-DMC W, N =2", n >0, 1 <i < N, the transformation
(WJS;), WJ(\?) — (WQ(%_U,WQ(?\;)) is rate-preserving and reliability-improving in the sense
that

T(W) -1 (wi)) =21 (w), (24)
Z (Wéf@‘”) +Z (ngv”)) <27 (W};)) , (25)

with equality in (25) iff W is a BEC. Channel splitting extremizes the rate and reliability

i the sense that

(Y <1 () <1 (). o
z(Wi) =z (W) = 2 (wid)), (27)
with equality in (26) and (27) iff (W) equals O or 1. The reliability terms further satisfy
‘ ‘ N\ 2
A (Wgﬁ*”) <27 (Wﬁ’) ~Z (Wﬁ’) , (28)
, N2
z(wi) =z (W), (29)
with equality in (28) iff W is BEC. The cumulative rate and reliability satisfy
N .
> IWY) = NI(W). (30)
i=1
N .
S z(wi) < Nzw), (31)
i=1

13
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Figure 7: N = 1024 polarized copies of BEC(e = 0.5).

with equality in (31) iff W is a BEC.

For the special case that W is a BEC with an erasure probability €, the parameters
{Z (WJ(\?)} and {/ (W](\;))} can be computed through the recursions

. . . 2
z (WD) =2z (wi),) -2 (W)

| 5 (32)
z (W) =z (wg),)
! <WJ(V2 Fl)) =1 (Wf(vi}2)2’ (33)

2i)\ (4) OR%
1(wi) =21 (wi,) =1 (W)
with Z (Wl(l)) = ¢. The parameter Z (W](\;)) equals the erasure probability of the channel
W](Vi). The recursion (33) follows from (32) by the fact that I (WJ(VZ)) =1-Z7 (W](\;)) for W](Vi)
a BEC (6). We use the above recursions to illustrate the polarization effect per channel in

Fig. 7.
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1.4 Relation between the Construction and the Index of a

bit-channel

We showed that channel polarization is broken down to single-step channel

transformations using the relations (15) and (16), which we repeat below.

i— 1 i i— i—
Wi DN i) =y §Wz(v) (y1' ul's? © ui's?ugi 1 @ uy)
W24
W (R e i), (15)

i i— 1 i i
Wi (3Nl uss) = SWR (' @ ud s @ ) - Wi RN 1, ). (16)

We see that the path of a transformed channel inside the above recursions is directly
related with its index. By making the convention that bit-channel indexing ranges from
1 through N, but their correspondent binary representation ranges from all zeros to all
ones (i.e. 1 is represented by ‘000...0°, 2 is represented by ‘000...17 etc.), when two copies
of a channel with index (b1, ba, ..., b,)s are transformed, we get two new channels, one
even-indexed and one odd-indexed with indices (by, b, ..., b,,0)s and (b, bs, ..., by, 1)a,
respectively. It follows that we can construct a bit-channel recursively simply by following
the binary representation of its index (from the MSB to the LSB), using either (15) or
(16) when the next bit is 0 or 1.

1.5 Channel Polarization: Main results

We are now ready to prove the main results of channel polarization.

Theorem 1. For any B-DMC W, the channels {W } polarize in the sense that, for
any fired § € (0,1), as N goes to infinity through powers of two, the fraction of indices
i€ {l,...,N} for which I(W )) € (1 —9,1] goes to I(W) and the fraction for which
I(W) € [0,6) goes to 1 — I(W).

Before we proceed to the proof, we will first construct the framework upon which we
will work. We define a binary tree, which represents the channel transformation procedure
(14). The tree is illustrated in Fig. 8. Notice that channel WZ(Z) is located at the nth
level of the tree at node number 7 counting from top. We index each channel-node with
bit sequences. The root node is indexed with the null sequence. The upper node at
level 1 is indexed with 0 and the lower node with 1. Given a node at level n with index
bibs . ..b,, the upper node emanating from it is indexed with b;b,...b,0 and the lower
with b1bs...b,1. We denote the channel WQ(Z) located at node byby...b,, as Wy, s, .

15



Wg(l) = Wooo

W = Woo
Wy” = Won
Wil = wo
Wg(3) = Wowo
9 W = Wo
’ W = Won
— W
‘ W = Wigo
1 W =W
Wg(ﬁ) = Wior
Wi =w,
W = Wiie
w® = wn
Wg(s) = Win

Figure 8: The tree process for the recursive channel construction.

Upon this tree, we define a uniform random tree process { K, : n > 0}, where P(K,, =
W, »,) = 1/2", for every sequence by - - - b,. For the initial step, we define Ky = W. To
keep track of the rate and reliability parameters of the random sequence of channels K,
we define the random processes I, = I(K,) and Z,, = Z(K,). Clearly, I, = I(W) and
Zo = Z(W).

More precisely, consider the probability space (€2, S, P). The sample space €2 is the
space of all binary sequences (by,bs,...) € {0,1}>, i.e. all the probable paths on the
infinite random tree process. To reach the end of these paths we need an infinite amount
of single-step channel transformations. The set & is generated by the binary sequences
S(by,....by) 2{we€Q:w =bi,...,wp =by}, n>1, where by,...,b, € {0,1}. That is,
the cylinder set S(by,...,b,) includes all the paths on the infinite random tree process
which start with the sequence bq,...,b,, and & includes all of those cylinder sets. The
function P(-) is the probability measure defined on &, such that P(S(by,...,b,)) = 1/2".
Notice that S(by,...,b,) = S(b1,...,b,,0)US(by,...,b,,1). For each n > 0, we define J,
as the set generated by the cylinder sets S(by,...,b0;), 1 <i<mn, by,...,b; € {0,1}. We
define &y as the set consisting of the empty set and €2 only. Clearly, S C & C ... C S.

Now we are ready to prove Theorem 1.

Proof of Theorem 1: We will employ the following two propositions:

Proposition 6. The sequence {I,,S,;n > 0} is a martingale:

Sn C Spp1 and 1, is Sy,-measurable (34)

16



E[|L]] < (35)
Iy = BlLu|S). (36)

Furthermore, the sequence {I,;n > 0} converges almost everywhere to a random variable
I such that E[l] = Io.

Proof: Condition (34) is true by construction and (35) by the fact that 0 < I,, < 1. To

prove (36) we use (24) to write

1 1
ElLia|S(by, ... b)) = §](Wb1...bno) + §I(Wb1...bn1) = I(Wy,..5,) = In. (37)

Since I, is bounded, I(Wj, 4,) is a uniformly integrable martingale. We use [3, Theorems
9.4.5, 9.4.6] to state that I, converges almost everywhere to a random variable I, and
E[l,] — E[ly]. We use (30) to derive that E[I,] = Iy for any n > 0. Therefore,
E[l] = Ip. O

Proposition 7. The sequence {Z,,Sn;n > 0} is a supermartingale:

Sp C Spp1 and Z, is S, -measurable (38)
ElZ,]] < o0 (39)
Zn > Bl Zni1 |30 (40)

Furthermore, the sequence {Z,;n > 0} converges almost everywhere to a random variable

Zoo which takes values almost everywhere in {0,1}.

Proof: Condition (38) is satisfied by construction. Condition (39) is satisfied by the
fact that 0 < Z,, < 1. To prove, (40) we use (25) to write

1 1
E[Z,1|S(b,....b,)] = §Z(Wb1...bn0) + §Z(Wb1...bn1) < Z(Why..b,) = Zn. (41)

Since Z,, is bounded, Z(Wj, s, ) is a uniformly integrable martingale. We use [3, Theorem
9.4.5] to state that Z,, converges almost everywhere to a random variable Z.,, such that
El|Z, — Zx|] — 0. It follows that E[|Z,.1 — Z,|] — 0. But, by (28) and (29) we derive
that Z,., = Z,* with probability 1/2 Z,,; > Z,* with probability 1/2 (these are the
cases where we choose the lower or upper subtree when we make a random step from
a node). Hence, E[|Z,.1 — Z,|| > (1/2)E|Z,* — Z,) > 0. Thus, E[Z,(1 — Z,)] — 0,
which implies E[Z,(1 — Zw)] — 0. But Z, € [0,1] and so (1 — Z) € [0,1] as well.
Hence, (Zo(1 —Z)) € [0, 1]. This implies that (Zw(1 — Z)) equals 0 almost everywhere
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Figure 9: Polarization of BEC (e = 0.5) at the 1024th level.

or, equivalently, that Z,, equals 0 or 1 almost everywhere. This completes the proof of

Proposition 7. Il

The fact that Z, equals 0 or 1 almost everywhere, combined with Corollary 1, implies
that I, = 1 — Z, almost everywhere, and hence I, equals 1 or 0 almost everywhere.

To complete the proof of Theorem 1, we notice that the sequence {L@} is an infinite
Bernoulli process. Hence P(L@ =1) = E[ly] = Iy. By Borel’s Law of Large Numbers, we
have that the fraction of indices i for which I = 1 is equal to P(Ié? = 1), namely Iy, and
the fraction for which 1Y = 0 is equal to 1 — Iy. This concludes the proof of Theorem 1. [

Fig. 9 illustrates the validity of Theorem 1. We see that, for a BEC with ¢ = 0.5, at
the 1024th level of the tree process, almost 70% of I,, take values in {0+ 6,1 — ¢} for a

small 9.

Theorem 2. For any B-DMC W with I(W) > 0 and any fired R < I(W), there exists
a sequence of sets Ay C {1,...,N}, N € {1,2,...,2",...}, such that Ay > NR and
ZWPY < O(N=%4) for alli € Ay.

The proof of Theorem 2 is provided in the Appendix.
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We stated the polarization result in Theorem 2 in terms of {Z (W](VZ))} A rate of
polarization result in terms of {/ (W](VZ))} can be obtained from Theorem 2 with the help

of Proposition 1.

1.6 Polar Coding

In the presence of channel polarization, coding becomes trivial: We send data only
through the bit-channels for which Z (W](\;)) is near 0. We call this coding method polar
coding.

Individual codes will be identified by a parameter vector (N, K, A, uc), where N = 2"
is the number of the available bit-channels, K is the code dimension and specifies the size
of A, where A is a fixed subset of the bit-channels which will be used to send information
and u4cc xn-x i a fixed vector that is sent over the subset A¢, which is the complement
of A over all N bit-channels. The number N is the block length and the ratio K/N = R
is the code rate. We will refer to A as the information set, whereas A° will be referred to
as the frozen set. Accordingly, uy € X% will be referred to as the information vector and

uae as the frozen wvector.

1.6.1 Successive Cancellation Decoding

Consider a code with parameter (N, K, A,uxc). Let uY be encoded into a codeword
2, let 2V be sent over the channel W¥ | and let a channel output y¥ be received. The
decoder’s task is to generate an estimate @' of ul¥, given knowledge of A, use and .

The successive cancellation (SC) decoder generates its decision vector by computing

Uj, if1 € AC,
hi(y{\aaiil)a ifie€ A,

~N A
iy &

(42)

in the order i from 1 to N, where h; : YV x Xi=! — X i € A, are decision functions

defined as “ .
7 N ~i—
| 0, if tatit 10>
ha(y, @ity 2 W N a ) = (43)
1, otherwise.

We say that a decoding block error occured if 4 # ul¥ or equivalently, if G4 # u4.
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1.6.2 Probability of error

The notation P.(N, K, A jus) will denote the probability of block error for a
(N, K, A, us) code, assuming that each information vector uy € X% is sent with

probability 275 and decoding is done by the above SC decoder. More precisely,

1
Pe(]\fal(a147“.»40)é Z 2_K Z WN(y{V‘U’iV) (44)

ugeX K y eYNal (yi¥ ) #ul’

The average of P,(N, K, A,us) over all choices for uye € XV will be denoted as
P.(N, K, A).

Proposition 8. For any B-DMC W and any choice of the parameters (N, K, A)

JyMngiydmw. (45)

icA
Proof: We may express the block error event as € = U;c4B;, where B; is the event

that the first decision error in SC decoding occurs at stage . We notice that
2 {(uou) € XY %YV st = O ), A e (00 )
= {(u,y) € XV x YV i = O (u sy, s # byl ui )}
C{ul, V) e XV x YN sy # hi(y, uit) C gy, (46)

where €; is the error event when the i-th coordinate channel is used only once to transmit

a bit. Thus, we have

€)<Y Plei). (47)

€A

Now, using (3) we conclude that

PEe)<> 7z (Wg’)) . (48)

1€A

Proposition 8 leads to the idea behind the definition of polar codes.

1.6.3 Polar Codes

Given a B-DMC W, a code with parameter (N, K, A, uac) will be called a polar code
for W if the information set A is chosen as a K-element subset of {1,..., N} such that
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Z(W](Vi)) < Z(W](Vj)) for all i € A, j € A°. That is, the information set A is chosen as to
minimize the RHS of (48).

Polar codes are channel-specific codes: a polar code for one channel may not be a polar
code for another.

The choice of u 4. is negligible for the performance of polar codes. In fact, below we
state that for symmetric channels, any choice for u . is as good as any other.

We complement Theorem 2 with the following results, proved in [1, Theorems 3-4].

Theorem 3. For any given B-DMC W and fized R < [(W), block error probability for

polar coding under successive cancellation decoding satisfies
P.(N,R) = O(N"%). (49)

Theorem 4. For any symmetric B-DMC W and any fired R < I(W), consider any
sequence of (N, K, A,uac) codes with N increasing to infinity, K = |[NR], A chosen in
accordance with the polar coding rule for W, and uae fixed arbitrarily. The block error

probability under successive cancellation decoding satisfies

1

PN, K, A uye) = O(N™1). (50)

Note: In more recent works the bounds in Theorems 2,3 & 4 have been strengthened.
More precisely, in [4] it is shown that for any binary-input discrete memoryless channel W
with symmetric capacity 1(W) and any rate R < I(WV), the probability of block decoding

error for polar coding under successive cancellation decoding satisfies
P. =02 (51)
for any § < % when the block-length N is large enough.

In [5] a rate-dependent bound is derived: For any B-MC W with I(W) > 0 and fixed
R < I(W), the best achievable block error probability satisfies

P.(N, R) = (272", (52)
for any ¢ satisfying ¢t < Q"' (R/I(W)), where Q(z) = f;o e~ 2du/\/2x.

We now return to the observation we first made in Chapter 1.2.2. While the synthesized
channel W](Vi) has in its output vector the actual inputs u'~', when estimating the input wu;,
the SC decoder knows only their estimations 4} . But, following the results of channel
polarization and the definition of polar codes, we know that the estimations are correct
with probability which tends to 1, because they are either in the frozen vector, and thus
already known to the decoder, or they are sent over a bit-channel with Bhattacharyya

parameter close to 0.
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1.6.4 Complexity of Encoding and Decoding Polar Codes

It is proved and well known that both encoding and successive cancellation decoding of
polar codes have complexity O(N log N), where N is the block length. For the part of the
encoding, the main idea is to notice the recursive nature of channel combining, which is
given schematically in Figure 5. As for the decoding part, applying (15) and (16) in (43),
we take a binary recursive relation as well. The above are stated and proved analytically
in [1, VII, VIII].

2 Construction of Polar Codes

Having in our hands a low complexity encoding and decoding channel code, it is of
great interest the efficient construction of such a code. That is, the determination of the
information set A according to the rule described in the definition of polar codes. The
construction of polar codes poses many challenges, like having the ability to adapt rapidly
in channel, rate and block length variations. As we already mentioned, polar codes are
channel-specific codes, which means that when the physical channel changes dynamically,
as it happens with mobile communications, we have to re-construct a new information set.
Polar codes are chosen to be used in 5G NR, which strengthens the demand for a fast and
adaptive construction algorithm.

In what follows, we will restrict our results in BSCs, but we can generalize the procedure
for any other BMS channel. We note that only for the BEC there is a fast, memory-efficient
and optimal construction algorithm, in terms of calculating efficiently the Bhattacharyya
parameters of the bit-channels, using (32). For any other channel, a robust calculation
of the Bhattacharyya parameters is still either cumputationally highly demanding or
impractical due to memory requirements. Here we will combine the approximation method
proposed in [7], which scales linearly with the block length, with the partial orders of the
bit-channels proposed in [8].

2.1 The Construction Problem

Given an arbitrary BMS channel W and a block length N, while trying to construct

the information set A, one has to answer to either of the following two questions:
1. Fized-Rate Construction: What rate R am I trying to achieve?

2. Fized-Performance Construction: What block error rate P, am I trying to achieve?
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Those two questions are of course equivalent in the following sense: a certain rate R
achieves a certain block error rate P, for a given BMS channel W and block length N, and
vice versa. Usually, one wants to transmit information with a certain upper bound on the
bit error rate. However, we will concentrate on the fixed-rate construction problem. This
is because, as we’ll see, it can be solved faster, and on the other hand a fixed-performance

problem can easily be converted to a fixed-rate using a bijection vector.

2.1.1 Solving strategy of the Fixed-Rate Construction Problem

More precisely, the problem we are trying to solve is the following: Given an arbitrary
BMS channel W, a block length N and a code rate R = K/N, which K bit-channels
minimize the RHS of (48)7 In other words, which K out of the N bit-channels have the
lowest Bhattacharyya parameter - or - are more reliable than the rest N — K7

Now we will state our solving strategy, which is inspired by [6]. Given an arbitrary
BMS channel W, a block length N and a rate R = K/N, suppose that someone gives
us the following information: Some bit-channels W;, i € {0,..., N — 1} are more reliable
than at least N — K bit-channels and some other bit-channels W;, j € {0,...,N — 1}
are less reliable than at least K bit-channels. We denote the former of those subsets I
and the latter F'. Obviously, I [ F = {0}. Then, [ € A and F' € A°. We denote the rest
(undetermined) bit-channels as U = {Wy, k€ {0,...,N —1} : W, ¢ I|JF}. Then, in
order to solve the fixed-rate construction problem, it suffices to totally order the reliability
of the bit-channels that are in U: The most reliable of them will complete A and the least
reliable will complete A°.

The above strategy proposes two complementary ways to construct the information
set A. The first is to use the pair-wise reliability relation between the bit-channels, as
much as is known to us such a relation, and conclude if some of them are in I or F
and the second is to decide -in any way possible- which of the rest are explicitly the
most reliable. The performance gains by solving the fixed-rate problem instead of the
fixed-performance comes from noticing that we don’t need to precisely calculate the
Bhattacharyya parameters of the subset U. On the contrary, this would be mandatory if
we tried to solve the fixed-performance problem.

In the following sections, we lay out the theoretical tools which we use for accomplishing

this strategy efficiently.
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Figure 10: Q is degraded with respect to W. Figure 11: Q’ is upgraded with respect to W.

2.2 Stochastically Degraded and Upgraded Channels

Obviously, a key to the proposed construction method is to define a reliability relation
between the bit-channels. As in [7], we define the (stochastically) degraded with respect to
and upgraded with respect to relations between two channels.

Let @ and W be two BMS channels @ : X — Z, W : X — Y. We say that @) is
stochastically degraded with respect to W, denoted as @) < W, if there exists a channel
P :Y — Z such that

Qzlz) =Y W(ylz)P(z]y) (53)
yey
forall z € Z and z € X.

Let @ and W be two BMS channels Q' : X — Z/, W : X — Y. We say that Q' is
stochastically upgraded with respect to W, denoted as @' %= W, if there exists a channel
P : 7 —Y such that,

W(yle) = Y Q'(Z|z)P(yl2) (54)
ZeZ!
forall 2/ € 7 and x € X.

In other words, @) is said to be degraded with respect to W if there exists another
channel P which if it intervenes after W’s output, it produces Q’s output, and @’ is said
to be upgraded with respect to W if it can be degraded to W. Figures 11 and 10 illustrate
the defined relations. Obviously,

Q =Wif W<xQ. (55)
It can be shown that < and = are reflexive and transitive relations and thus,
W g W and W = W and also, (56)

if W< W and W x W”, then W < W”. (57)

If two channels W and W’ are both degraded with respect to each other, then we say that
W and W’ are equivalent, and denote this by W = W’. By (55), (56) and (57) we get
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that = is an equivalence relation and so,

W =W, (58)
wW=w iff W=w. (59)
Now we will see the effect of < and > on three channel parameters of interest, namely,

the probability of error under ML-decoding and uniform input, P,.(-), the Bhattacharyya

parameter Z(-) and the symmetric capacity I(-). The next lemma is proved in [7].

Lemma 1. Let W : X — Y be a BMS channel and suppose that Q) : X — Z s degraded
with respect to W. Then,

Pe(Q) = Po(W), (60)
Z(Q) = Z(W), (61)
HQ) < I(W). (62)

Because of (55), if we replace “degraded” with “upgraded”, the inequalities are reversed.

Therefore, if W = @Q, then the inequalities become equalities.

2.3 Universal partial orders of the bit-channels

In [8] it is proved that partial orders (PO) [9, Ch. 1.1] of reliability exist for the
bit-channels of polarized symmetric channels with binary inputs. Below we restate the
definitions of those POs and the main theorems from [8] without providing their proofs.

Let ¢,5 € {0,--- ;N — 1} be the indices of the bit-channels W](Vi) and W](Vj) according to

the transformation relations in (15) and (16). Let those indices have binary representations

(in—1,n—2," " ,10)y a0d (Jn_1, Jn—2," - , Jo), respectively.

Theorem 5. If for all k € {0,--- ,n — 1} we have jp =1 =i, = 1, then W](\,j) < W](Vi).
Ezamples: W](\?lo) < W](\?ll), W](Vwm) < st,lon).

Definition 1. We write j i if there exist I,I' € {0,--+ ,n — 1} with | <" such that

1. jl:1 and jl/:0.
2.1,=0 and iy =1.
3. Forall ke{0,--- ,n—13\{,l'}: jx = ix.
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Figure 12: Pre-determined pairwise reliability orderings of bit-channels.

Essentially, j 4 if and only if we can obtain j by switching a more significant 1 with
a less significant 0 in 7.
Ezamples: (01101) A~ (10101), (0111) * (1110).

Theorem 6. If j 7 i then WY < W,

The next proposition shows that we can combine the above POs, by using them
explicitly on partitions of the binary representations of the indices. It is stated in [8], but

we re-state and re-prove it here more clearly.

Proposition 9. Let two bit-channels W](Vi) and W](Vj) with indices with binary

representations i = (in,in—1,...,91)2 and j = (JnyJn-1,---,71)2 respectively.

If the awvailable partial orders can be applied explicitly on the indices’
- . - n—ky—1 n—ky—1 n—ky—ky—2 n—ky—ky—2

partitions (szkpjr?fkl)’ (ZZ—ki—l—kij—kll—l—kg)? (ZZ—ki—kZ—z—k:wJ;L—kll—k;—%k:a)’ Tt

(2-711—(22";1 ki)_(r_l),j?_(zgl ki)_(r_l)), where (3_1 k;) — (r — 1) < n, and all give the same

order direction, then the overall binary representations of those bit-channels follow the

same reliability order as their partitioned counterparts.

Proof: For shorthand we will notate the channels with indices the partitions
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Figure 13: Percentage of the undetermined among the N bit-channels.

Ty A8 Uk, Z'Z:’]zij_kz as iy, and so on. Consider that from the above POs we have
(Jky = )y Uy = @ky)s (Jkg = @ks)s -+, (J1 %= 71). Then, using the given partial orders
we have j = (Jrudke* Jeoadie) 7 Ukadie = Jheoainn) 7 ks * ke, 7 o0 07
(T, 0k * - * 7k,_, ) = 7. The same holds even when we switch “»=" with “x”. d
Ezxample: The pair W](\? 101001)2, W](\? 111002 annot be ordered from Theorems 5 and 6.
But from Theorem 5 we know that W](\? 1> Wz(\? "2 and from Theorem 6 that
W](\? 0z VV](\,1 002 Bocause the order direction is the same for both partitions, we derive
that WJSJ101001)2 < W](\?HHOO)Q.

Theorems 5-6 and Proposition 9 give us a powerful means for constructing polar codes.
Although polar codes are channel-specific, they claim a universal relation between the
reliability of some of their bit-channels, which can be determined only by their indices.
Note that this is a natural consequence derived from the transformations (15) and (16).

Figure 12 shows the fraction of the pair-wise reliability orderings from the overall
(g) bit-channel pairs, which can be obtained by combining the above POs according to

Proposition 9. Figure 13 shows the efficiency we gain by utilizing the given partial orders.
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Figure 14 shows the percentage of the information and the frozen vectors we can fill by
employing the above POs in the proposed strategy. We notice that for low code rates, we
can fill a significant portion of the frozen vector and for high rates a significant portion of
the information vector.

Theorems 5 and 6 hold true regardless of the physical channel, so they are extremely
useful for a method adaptive to channel variations. Lastly, we show how those POs are

able to render the construction algorithm adaptive to block length variations.

Theorem 7. If the above POs infer that W; < W; in a code with block-length N, then
Wi < W; in a code with block-length 2N .

Proof: A binary representation (in,4,_1,--- ,41) of an index 7 in a code with block
length N = 2" represents the same index as (0,4,,%,_1, - ,%;) in a code with block
length 2N = 2"*!. But this lengthened representation doesn’t affect the ordering given by
the above POs. U
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2.4 Upgraded and Degraded approximations of the bit-channels

In [7], a method was proposed, for approximating one stochastically degraded and one
stochastically upgraded version of the original bit-channel. Then, the original bit-channel
must lie between the degraded and the upgraded versions. In practice, the derived channels
are very close and therefore the method gives very close approximations of the bit-channels.

The method runs in O(Np?log 1), where the “fidelity” parameter p is an even integer,
and it is the quantization limit of the approximations. Basically, a greater u gives a
denser quantization, and thus closer approximations. Below we restate the theoretical
background of the two algorithms. Lastly, we end this subsection by presenting the
algorithms themselves.

We recall from Sections 1.3 and 1.4 that the bit-channels in polar codes can be
constructed according to the binary representation of their indices, by using recursively the
relations (12) and (13), whether the next bit in the representation is 1 or 0 respectively.

We will notate the equations (12) and (13) as the operations W m W and W & W,

respectively. Thus, those operations are defined as:

1
(W a8 W) (yr,y2lur) = B Z W (yilur & ug)W (y2|uz) (63)
us€X
1
(W & W) (y1, Y2, ur|uz) = §W(y1|u1 D u2) W (y2|us). (64)

We assume W is symmetric, and thus for every symbol y € Y in the output alphabet of
W, there exists its conjugate symbol in the output alphabet, notated by 4 € Y, for which
W(y|1) = W(g|0). In [7, Lemma 4], it is proved that we lose no information by assuming
that W has no self-conjugate symbols (that is, y = y). Henceforth, for simplicity we will
assume that W has no self-conjugate symbols.

We also associate for each output symbol y € Y a likelihood ratio, defined as follows:

s Wl0) _ W(yl0)
Wi(ylt)  W(glo)

LR(y) (65)

Lemma 2. Fiz a binary input channel W : X — Y. Denote Wy = W m W and
We = W ® W. Suppose that a channel Q) is degraded with respect to W, and denote

RQu=0QHQ and Qp = Q ® Q. Then
Quw < Wa and Qs < Ws. (66)
Moreover, all of the above continues to hold if we replace “degraded” by “upgraded” and

((% ” by ((? 77'
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2.4.1 Degrading merge

Lemma 3. Let W : X — Y be a BMS channel, and let y; and yo be symbols in the output
alphabet Y. Define the channel Q) : X — Z as follows. The output alphabet Z is given by

Z = Y\ {y17 gh Ya, gQ} U {21,27 21,2} . (67)

Forallz € X, z € Z, define

W(z|z), if 2 € {Z12, 212}
Q(z|r) = Wyilx) + W(ys|z), if 2= 21,2, (68)
W(in|z) + W(ilx), if 2= Z12.

Then, Q < W.

Lemma 3 is used repetetively inbetween the recursive applications of “H” and “®”.
Hence, the computed bit-channel is a degraded version of the actual bit-channel, while its
output alphabet size is reduced by 2 for each time Lemma 3 is used. The reduction of
the output alphabet size reduces the time complexity and the memory requirements for
the next recursion step. We pair Lemma 3 with the equations (20), (21) which we restate

below in terms of the defined operations.

ZWBW) <2Z(W) — Z(W)? (69)
Z(WeW)=Z(W)? (70)

Algorithm 1 constructs a degraded version @) of a bit-channel W](\,i) and outputs its
probability of error. This can easily be seen by noticing that Algorithm A just uses
Lemma 3 and the equations (20) and (21) recursively. Because @ is degraded with respect
to W, P.(Q) is an upper bound for the probability of error of Wﬁ).

We want the degraded version of W](\,i) to be as close to the original. That is, its
probability of error must be as low as possible, or equivalently, its capacity must be as
high as possible. Thus, we must find for which pair {y;,y,} the application of Lemma 3

produces a channel with the largest possible capacity.

Theorem 8. Let W :x — Y be a BMS channel, with Y = {y1, Y2, -, Y, U1, Y2, -, G}
Assume that
1 < LR(y1) < LR(y2) < --- < LR(yz). (71)
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Algorithm 1 Bit-channel degrading procedure

1: procedure BITCHANNEL_DEGRADING (W, i1, N, 1)

2: > inputs: An underlying BMS channel W, a bound g = 2v on the output
alphabet size, a code length N = 2", and an index ¢ with binary representation
1= (bl,bg, NN ,bn)g.

3: > output: An upper bound on the probability of error of W;.

4: 7 = Z(W)

5: () = DEGRADING_MERGE(W, 1)
6: for j=1,2,...,ndo

7 if b; =0 then

8: W+—QHEQ

9: 7 + MIN(Z (W), 27* — 7)
10: else

11: W—Q®Q

12: 7+ 77

13: end if

14: () = DEGRADING_MERGE(W, 1)

15: end for

16:  Po(Q) = 5 2 ey MIN(W (y[0), W(y|1))
17: return MIN(P.(Q),Z)

18: end procedure

For symbols wy,ws € Y, denote by I(wy,ws) the capacity of the channel one gets by the
application of Lemma 3 to wy and wy. Then, for all distinct 1 <i< L and1 < j <L,

L, v5) = L(yir y5) = 1Y, U5) = (Ui, v5)- (72)
Moreover, for all 1 <i < j <k < L, we have that either
or
Iy, yk) = 1(Yi, Yr)- (74)

Essentially, Theorem 8 says that assuming we have ordered the likelihood ratios of
the conjugate output symbols as in (71), it suffices to choose the pair of the consecutive
symbols, for which Lemma 3 produces a channel with the largest capacity. By doing this,
we can maximize the capacity of the produced channel. This way we consider only L — 1

merges instead of (g)
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The contribution of a conjugate pair of output symbols {a,b} in the overall capacity

of a channel, is given by
C(a,b) = —(a+ b)logy((a+0)/2) + alogy(a) + blogy(b). (75)

We use the notation a = W(y;]0), b = W(y;|0), ' = W(y;+1|0), b’ = W (y;+1|0) and
a® =a+d, bt =b+ V. The resulting difference in capacity when applying Lemma 3 to

y; and y;41, is given by
calcDeltal(a,b,d’,b') = C(a,b) + C(a',b') — C(a™,b"). (76)

Algorithm 2 contains an implementation of degrading_merge, which uses Lemma 3
and Theorem 8. The function degrading-merge applies Lemma 3 as many times as is
needed in order to reduce the output alphabet size to at most p. This restricts the running
time and the space requirements until the algorithm has finished running.

More precisely, this implementation uses a data structure which integrates a doubly
linked list, for storing the order of the LR values, and a min-heap, for storing the order of
the deltal values. The fields dLeft and dRight lie in the doubly linked list, and make up
the pointers to the elements corresponding to the linked pairs {y;_1, v} and {y;11, vit2},
respectively.

The function insertRightmost inserts a data element as the rightmost element of
the doubly linked list. The function getMin lies in the min-heap and returns the data
with the smallest deltal. Namely, the data element which consists the symbols we are
about to merge. The function removeMin removes the element returned by getMin. The
function valueUpdated updates the heap due to a change in deltal resulting from a merge.
Whenever we remove (insert) an element, it must be removed from (inserted in) both the
list and the heap, but when a merge occurs only the heap needs to be updated. This is
a result of the following lemma which says that after a merge, the resulting LR order

remains the same as before, and thus we don’t need to update the list after a merge.

Lemma 4. Ify; and y;11, in light of (71), are merged to z according to Lemma 3, then
LR(y;) < LR(z) < LR(Yis1). (77)

Having said the above, and after considering the running time of the respective heap’s
and list’s functions, we infer that the running time of degrading merge is in O(Llog L).
In addition, we observe that after applying the transformations in either (63) or (64),
the output alphabet size L scales to either u? or 2u?, respectively. We conclude that the

running time of degrading merge is in O(u?log u?).
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Algorithm 2 The degrading merge function

1: procedure DEGRADING_MERGE(W, 1)

2: > inputs: A BMS channel W : X — Y, where |Y| = 2L, a bound p = 2v on
the output alphabet size.

3: > output: A degraded channel @ : X — Y’, where |Y'| < p.

4: > Assume 1 < LR(y1) < LR(y2) <--- < LR(yr)

5 if 2L < p then

6 return W

7: end if

8 fori=1,2,...,L—1do

9: d = new data element

10: d.a < W(y;|0), d.b <+ W(y;|0)

11: d.a’ + W(yi+1|0), d.b + W(g,+1|0)

12: d.deltal < cALCDELTAI(d.a,d.b,d.a’,d.b")

13: INSERTRIGHTMOST(d)

14: end for

15: =1L

16: while [ > v do

17: d < GETMIN()

18: at =da+dad, bt =db+dV

19: dLeft = d.left

20: dRight = d.right

21: REMOVEMIN()

22: l+—1-1

23: if dLeft # null then

24: dLeft.a' < a™*

25: dLeft.b < b*

26: dLeft.deltal < cALCDELTAI(dLeft.a,dLeft.b,at,b™)
27 VALUEUPDATED(d Le ft)

28: end if

29: if dRight # null then

30: dRight.a + a*

31: dRight.b < b*

32: dRight.deltal < CALCDELTAI(a™,b", dRight.a’, dRight.b')
33: VALUEUPDATED(dRight)

34: end if

35: end while

36: Construct () according to the probabilities in the data structure and return.

37: end procedure
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Algorithm 3 Bit-channel upgrading procedure

1: procedure BITCHANNEL_DEGRADING (W, i1, N, 1)

2: > inputs: An underlying BMS channel W, a bound g = 2v on the output
alphabet size, a code length N = 2", and an index ¢ with binary representation
1= (bl,bg, NN ,bn)g.

3: > output: A lower bound on the probability of error of W;.

4: () = UPGRADING_MERGE(W, 1)

5: for j=1,2,...,ndo

6: if b; = 0 then

T W+—QHEQ

8: else

9: W+ Q®Q

10: end if

11: () = UPGRADING_MERGE(W, 1)
12: end for

13 Pe(Q) = 322,y MIN(W (y]0), W(y[1))
14: return P,.(Q)

15: end procedure

2.4.2 Upgrading merge

Algorithm 3 contains the procedure for the construction of an upgraded version ) of a
bit-channel W](Vl), which is similar to the degrading procedure. Next, we will show how its
“core” works. Namely, how we can merge output symbols and get an upgraded channel

instead. For the upgrading_-merge function we employ the following two lemmas.

Lemma 5. Let W : X — Y be a BMS channel, and let y5 and y; be symbols in the output
alphabet Y. Denote Ay = LR(ys) and Ay = LR(y2). Assume that

1<)\ < (78)

Next, let a; = W (y1|0) and by = W(y1|0). Define g and By as follows. If Ay < 00

ap + bl a; + bl
Q2 2)\2+1, B Mo+ 1 ( )
Otherwise, we have Ay = 00, and so define
o = Q1 -+ bl, 62 == 0 (80)
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For real numbers «, 8, and x € X, define

a, ifx=0,
t(a, B) = . (81)
B, ifxr=1.
Define the channel Q' : X — Z' as follows. The output alphabet Z' is given by
7' =Y \{y2, 92,91, 51 } U {22, 22} (82)
Forallz € X and z € 7/,
W(z|z), if z ¢ {22, 22},
Q'(z]x) = { W(palz) + tlag, Balx), if 2 = 2, (83)

W (72|z) + t(Ba, aalx), if 2 = Z.
Then, Q' = W.

Lemma 6. Let W : X — Y be a BMS channel, and let y1, 1y, y3 be symbols in the output
alphabet Y. Denote \; = LR(y1), Aa = LR(y2), A3 = LR(y3). Assume that

1< /\1 < )\2 < )\3. (84)

Nezt, let as = W (y2|0) and by = W (y2|0). Define ay, 1, as, B3 as follows. If A3 < oo

)\3[)2 — ag . )\3b2 — Qg

=\ = 85
aq 1 )\3 _ )\1 9 ﬁl )\3 _ )\1 3 ( )

as — Aby as — Aiby
= A\g—— == 86
as 3)\3_/\1, Bs N — Ay (86)

Otherwise, we have A\3 = 0o, and so define

ar = Aiby, 81 = by, (87)
Q3 = a9 — )\162, ﬂg = O (88)

Leta t(a, B|z) be defined as in Lemma 5, and define the BMS channel Q' : X — Z' as
follows. The output alphabet Z' is given by

Z' =Y \{y1, 91, Y2, U2, ys, Ys } U {21, 71, 23, Z3 }- (89)
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Figure 15: Upper and lower bounds of the probability of error for the BSC (N = 512, (W) = 0.5).

Chosen value of y is 32.

For allx € X and z € 7', define

(

W (z|z),

W (y1|z) + t(aa, Bi]x),
Q'(zlz) = § W(gi|z) + (B, au |),

W (ys|z) + t(as, B3]z),

W (gsl) + 165, ).

Then, Q" »=W.

ifZ ¢ {21721723723}7

if 2= 21,
if 2 =z,
if 2 = z3,
if 2z = Zz3.

Regarding how Lemmas 5 and 6 perform compared to each other, in [7, Lemma 12] it

is proved that Lemma 6 produces a channel that is closer to the original bit-channel than

Lemma 5 does. The reason Lemma 5 is used at all, is because when Ay and A3 are too close

to each other, the subtraction operations in Lemma 6 will cause numerical instabilities

when performed from a logical floating-point machine. For this reason, Lemma 5 is used

instead of Lemma 6 when this case occurs.

The merge-upgrading procedure follows the same structure as the degrading-merge.

The only twist here is that we must first search for which indices 1 <7 < L — 1 the ratio
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Figure 16: Polarization effect of the BSC (N = 512, (W) = 0.5).

LR(y;+1)/LR(y;) is less than 1 + € for small e. Namely, the symbols for which their LR is
too close. For these symbols, we must use Lemma 5, until no such index exists, or until
the output alphabet size is at most p. Then we continue by applying Lemma 6 for the
rest merging procedure.

The order we choose the output symbols for applying the merging operations is, again,
that which minimizes the capacity deviation from the initial channel. For Lemma 5, this
is the same as that which is used in the degrading-merge procedure (76). For Lemma 6 we
similarly define the resulting difference in capacity as follows: Let ao, by, oy, (1, s, O3 be
defined according to Lemma 6. Also, let a; = W (y1), by = W (1), ag = W(ys), bs = W(ys)
and for shorthand we notate aj = a; +ay, b = by + B4, a3 = az+as, by = b3+ 3. Then,

the resulting difference in capacity is given by
caleDeltalg(a, by, ag, by, as, by, ay,bf, a3, by) =(a1,b1) + C(ag, ba) + C(az, bs)
- C((li"_, bi‘r) - C(a;_’ b;ii_)’ (91)

where the subscript of the function indicates that it refers to Lemma 6.
Figure 15 illustrates the approximated upper and lower bounds for the BSC, using

a fidelity parameter p = 32. Figure 16 illustrates the polarization effect of the same
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Figure 17: Bit-channels of the BSC (N = 512, (W) = 0.5), sorted according to the differences
{Pé‘pper(W](\;)) - Pelower(W](\;))} (right is higher), for ¢ = 32. The measurements ranged in
[0,2.86e—03), with mean value 8.5e—05 and variance 5.35e—08. By evaluating only on the best
half channels, the mean value is 7.45e—05 and the variance is 6.19e—08.

channel by sorting the upper bound of probability of error. We can easily notice that as
the block length N increases, the fraction of the bit-channels that have extremal (bounds

of) probability of error increases, too.

2.4.3 Performance of the Approximations

In our proposed algorithm, we will assume that the inequality PPPe" (W) < P*PPer(1V;)
infers the inequality P.(W;) < P.(W;). Below, we study the safety of this assumption.

Firstly, we study the following observation: if the distance between the upper and
lower bounds of the probability of error of a bit-channel is very small, then the bounds are
very close to the true probability. If the same happens for two different bit-channels we
can assume that the bounds are able to order their actual probability of error correctly. In
other words, if the differences (PPP*" (W;) — Plover(W;)) and (PP (W;) — Plever (W)
are very small, then PP (W;) < P*PPe"(W;) infers that P.(W;) < P.(W,). The same
holds if we switch “<” with “>”. In Figure 17 we sort the bit-channels according to

this measure. We observe that the distance is higher for the channels that are not yet
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Figure 18: Bit-channels of the BSC (N = 512, (W) = 0.5), sorted according to the differences
{pyPpenaverage “(WJ(\;)) — pyppenhigh ”(WJ(\?))} (right is higher). The measurements ranged in
[0,2.59e—04), with mean value 1.48¢—05 and variance 1.64e—09. By evaluating only on the best
half channels, the mean value is 9.61e—06 and the variance is 1.16e—09.

polarized. Because polar codes are not likely to use these channels, we infer that the above
assumption is safe.

We insist in our assumption by studying an additional measure of the approximation
performance: if for two different bit-channels their upper bound of probability of error for
some average value of p, is close to that for a relatively high value of u, then we infer that
the bounds for the average value of i are already close to the true values. Hence, we can
assume that they are able to order them correctly. In Figure 18 we sort the bit-channels
according to this measure. We make the same observation as before: the difference is
higher for the intermediate channels.

A general implication of Figures 17 and 18 is that Algorithms 1 and 3 work better
mostly for those bit-channels that are nearly polarized. We are now ready to present the

proposed construction algorithm.
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2.5 Fast construction of Polar Codes

We begin by determining all the possible (J;[ ) pair-wise orderings of the bit-channels
using the available Partial Orders. We keep these orderings in a matrix, called
InformationTable (IT) as follows: If W; < W;, then IT(i,j) = —1. It W; < W,
then I7(i,j) = 1. For any other case, IT(i,j) = 0. We make the following observations
regarding the structure of IT.

With a first look we see that IT is an N x N matrix. By observing that IT(i,i) =
0 for any 4, IT can be reduced to a (N —1) x N matrix. Also, by observing that
IT(i,j) =r < IT(j,i) = —r, r € {—1,0,1}, IT can be further reduced to a vector of
length (N — 1)N/2. Lastly, keeping this structure, I7’s elements take only binary values
{0,1}. Thus, in order to represent I7T’s values, it is only needed 1 bit per element. We
infer that saving IT requires only (N? — N)/2 bits. However, while referring to I'T we
will keep the original N x N structure because it is easier to depict.

Also, in use cases where the block length may vary dynamically, we still only need one
static I'T', with size equal to the largest block-length that our module uses. This holds true
because of Theorem 7. For example, if our maximum block-length is N,,,, and we wish to
construct a polar code of length Ny < N,,4., we will just use the upper-left N x N, part
of I'TN,,.. xNyaw-

Because of the above, and because the values of IT" are independent of the physical
channel, I'T" is needed to be calculated only once, and use it repetitively whenever we
need to construct a polar code. Thus, we will assume that the construction of I7T doesn’t
contribute to the running time of the algorithm.

Having said the above, we assume [T is already calculated. The construction procedure
begins by using IT for calculating the subsets I, F' and U. We then use Algorithm 1 in
Section 2.4 to calculate upper bounds of probability of error for the bit-channels in U.
Then, we sort the bit-channels in U according to their upper probability of error and
choose the best of them to complete A and the worst to complete A¢. Algorithm 4 is
indicative of this procedure. Also, it is easy to integrate the adaptive properties of the

partial orders that we mentioned in Chapter 2.3.

Ezample: Consider the BSC W, with I(W) = 0.5. Suppose we wish to construct a
polar code for W, with block length N = 16 and rate R = 0.44. Then, the information set
must have size equal to K = | N - R| = 7. The given partial orders yield the following
Information Table (I7).
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Algorithm 4 Proposed construction method of Polar Codes

1: procedure CONSTRUCT(W, i, N, R)

2: > inputs: An underlying BMS channel W, a bound g = 2v on the output
alphabet size for the degrading/upgrading procedures, a code length N = 2",
and a transmission rate R.

3: > outputs: The information set A and the frozen vector A°.

4: K+ LN . RJ

5: I={i:|IT(i,:)==1|> N - K}

6 F—{j:|IT(j,:) — —1 > K}

7: U={k:k¢IUF}

8: Run Algorithm 1 on the channels in U and return the upper bounds of their
probability of error in the vector PelU.

9: Sort PelU and save in C' the permutation vector.

10: > Now C' contains the indices of the channels in U, sorted by their upper bounds
of probability of error.
11: A=TUC(1: K —|I)
12: return A and A°¢
13: end procedure
o 1 2 3 4 5 6 7T 8 9 10 11 12 13 14 15

o[O0O -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 —11]

1|10 -1 -1 -1-1-1-1-1-1 -1 -1 -1 -1 -1 -1

211 1 0 -1 -1 -1-1-1-1-1 -1 -1 -1 -1 -1 -1

3|1 1 1 o0 O -1 -1-1 0 -1 -1 -1 0 -1 -1 -1

4 (/1 1 1 0 O -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

5|1 1 1 1 1 O -1 -1 0 -1 -1 -1 -1 -1 -1 -1

¢ |1 1 1 1 1 1 0O -1 0 O -1 -1 -1 -1 -1 -1

7|11 1 1 1 1 1 1 O O O O -1 0 -1 -1 -1

s |1 1 1 o0 1 O O O o0 -1 -1 -1 -1 -1 -1 -1

o1 1 1 1 1 1 o0 O 1 O -1 -1 -1 -1 -1 —1

o|{1 1 1 1 1 1 1 O 1 1 O -1 -1 -1 -1 -1

nf1l 1 1 1 1 1 1 1 1T 1 1 0O 0 -1 -1 -1

21 1 1 o 1 1 1 0 1T 1 1 0 0 -1 -1 -1

31 1 1 1 1 1 1 1 1 1 1 1 1 0 -1 -1

a1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -1

(11 1 1 1 1 1 1 1 1 1 1 1 1 1 O
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where the indices of the rows and columns correspond to indices of bit-channels, and the

cells take values as we described above. From this matrix, we construct the subsets I, F
and U as

[ ={i:|IT(,:) == 1| > 9} = {10,11,12, 13,14, 15},
F :{] : |IT(.]7) - _1| > 7} - {07 1’27374757678}7
U={k:k¢IUF}={T,0}.

The cardinality of I is 6. Thus, we need 1 more bit-channel to complete A. The output of
Algorithm 1 (u = 32), for the bit-channels with indices in U, is ngpeT(Wl(g)) ~ (0.03099
and ngper(wfé’)) ~ 0.20726. Thus, the bit-channel with index 7 is more reliable than the

bit-channel with index 9, and the final information set of the polar code is

A=TU{7} ={7,10,11,12,13,14, 15}.

Lastly, we note that we could combine the pair-wise orderings from the partial orders
with the newly mined from using Algorithm 1: after running Algorithm 1 we could fill
some of the gaps (zeros) in IT using the sorted vector PeU. Then we could further use
the transitivity property (57) in order to fill more gaps: for any i, j,k, if IT(i,j) = 1
and IT(j,k) =1, then IT(i, k) = 1. Similarly, if IT(i,5) = —1 and IT(j, k) = —1, then
IT(i, k) = —1. We then could repeat the procedure and get updated versions of I, F' and
U. Our experiments showed that although we can indeed fill some part of the gaps this
way, the produced information sets using this method are the same as before regardless of

the chosen fidelity parameter p, and thus the increased time complexity is needless.

2.6 Results

In this section we present the reliability and efficiency performance of the proposed
algorithm. Also, we will compare how the proposed algorithm performs with respect to
the conventional method that chooses the best channels by sorting the upper bounds of
probability of error without employing the partial orders of the bit-channels.

One question that arises is how the fidelity parameter p affects the resulting information
sets. in Section 2.1.1, we observed that the fixed-rate problem should be faster to solve
because we only need to order the reliability of the channels and not to precisely calculate
them. In practice this comes true. We take for example a BSC with [(W) = 0.5 and
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Figure 19: Error rate performance for the BSC (N = 512, (W) = 0.5).

block-length N = 512. In this case, the information sets produced by sorting the upper
bounds of probability of error are exactly the same for any value of p when p > 32. This
means that we lose nothing by restricting p to at most 32 for this channel and block-length
setting.

As for the difference between the produced information sets of the proposed algorithm
and the conventional method described above, it turns out that, for reasonably high values
of 11 (e.g. in our example for p > 4), the resulting information sets are exactly the same
when the two methods run for the same pu.

We illustrate the proposed algorithm’s performance in Figures 19 and 20. It turns
out that the proposed method can use higher values of 1 and still maintain a faster
running time than the conventional method, regardless of the increased value of u. In our
example, the resulting information sets differ to at most 1 bit-channel. However, because
in practice channel polarization is constrained by the block length, the assumption we
made in Section 1.6 that, successive cancellation decoding can reliably assume that, when
estimating the input w;, our estimations of all the previous inputs u}™* are errorless, is not
absolutely true. Hence, in polar codes there exist error propagation when the estimation of

an input is wrong and this estimation is used when decoding other inputs. For this reason,
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when we use a more reliable bit-channel, with input u;, we also render more reliable the
bit-channels that have u; in their output vector. Having said that, it is important to note
that, albeit minimal in population, the different channels that our proposed algorithm
gives are most of the times better, as a result from using a greater fidelity parameter.

In summary, for the same error rate performance, or equivalently for the same value of
the fidelity parameter, the proposed algorithm is significantly faster. On the other hand, if
we wish to constrain the running time, we can use higher values of the fidelity parameter

and get more accurate approximations, getting slightly more reliable information sets.
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Appendix

Proof of Proposition 1.

To prove (4), we use Gallager’s Ey(p, Q) [2, p-138], which can be seen as a measure of

information:
1+p
Eo(p,Q) = —log > [ZQ W (yla) /" 1*’”] ,0<p<L. (92)
yey Lzex
When @ is the uniform input distribution and p = 1, we have
Eo(1,Q) = —log ) | F ( W (yl|0) + v W(y[1) )r —log——= . (93)
= 2 1+ Z(W)

Also, in [2, Theorem 5.6.3] it is shown that I(W) > %ﬁ’@. We use this to show:

OL(W)p _ 9Eo(p, Q)

94
o = op (94)

Also, notice that Ey(p, @) = 0 and I(W)p = 0 when p = 0. Then, we have
I(W)p > Eo(p,Q), Yp=>0. (95)

If we set p=11n (95), we get inequality (4). Inequality (5) is proved in [1, Appendix]. OJ

Proof of the tranformation relations (15) and (16).

To prove (15), we write

21—
WZ(N 1)(y%N7u1 2’,&22 1) = Z

uZN e X2N-2i

1
- Z 22N—1W< |ulo@ule)WN(yN+1|U )

2N , 2N

1
WWM(Q%NW%N)

u22 o’ u27, e
YLy R
U2i u2i\-,-1 e
Y S @) (96)
2N
2i+1,0
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By deﬁnition (9), the sum over u%f\il , for any fixed u%]g equals

(2) 2i—2 2N N—i 2N
Wy (yN, ui . > @ ui's?ugi1 @ us;), because as usy, , ranges over XN w3l @ uil,
ranges also over X~ We now factor this term out of the middle sum in the above

equation and use (9) again to obtain (15). To prove (16), we write

WY ) = 3 oy Won (™)
u%f\ile

:_ Z 2N 1 yN—i—l‘u )
u2z+1 e
1
uZlN
2i+1,0
By carrying out the inner and outer sums in the same manner as in the proof of (15), we
obtain (16). O

Proof of Proposition 2.

Consider the channels W : X — YV, W' : X — Y and W’ : X — Y x X, where
Y = (V1,Y3). Define the uniformly distributed pair (U, Us) over X? and (X3, X5) =
(Ur & Uy, Us). Also, we define Py, yyx, x5 (Y1, Y2|21, £2) = W (y1|x1)W (y2|z2). The latter
definition fits in our framework because (i) given X, Y; is independent of any other input
and (ii) given both X; and X», Y} and Y5 are independent, because we use two independent

copies of W to transmit X; and X,. We now have

I(W') = I(U; "1Ya), (98)
I(W") = I(Uy; Y1YoUy) = 1(Us; Y1Ya|Un), (99)

where in the last equation we used the independence of U; and Us. By the chain rule and

the fact that there is a one-to-one relation between (X3, X3) and (Uy, Us) we have
Next, we prove a useful lemma.

Lemma 7. (X1, X5) = (U ® Us, Us) is a pair of independent random variables.
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Proof: Notice that

P(uy & ug) = % Vo (ug,ug), (101)
P(ug) = % vV uy, (102)
P(u; @ ug,ug) = }l V (ug, us). (103)
Then,
P(uy @ ug,us) = P(uy @ ug)Plug) V (u1,us). (104)
U

We now have

I(X1 X, Y1Y5) = I(X1; Y1Y3) + I(Xy; Y1Y5| X))
= I(X1;;Y1Y2) + H(X2|X1) — H(Xz|Y1Y2X:)
= I(X1;Y1Y2) + H(Xz) — H(X2|Y1Y?)
= I(X1;Y1Y2) + I(Xa2; Y1Y3) (105)

where in the first equation we used the chain rule and in the third equation we used

Lemma 7. Also,
[<X1;Y1Y2) = H(Xl) - H(Xl‘Y1Y2)
= H(Xl) - H<X1|Y1)
= I1(X; Y1) (106)

where in the second equation we used the independence of X; and Y;. Similarly,
I(X5; Y1Y2) = 1(X2;Ys). (107)

The proof of (17) is now completed, since

(105) &2 1(X, Xo1 Vi Ya) = I(X13 V1) + 1(Xp: Ya) = I(W) + I(W) = 2(W).  (108)

(107

N 'S

To prove (18), we begin by noting that

I(W") =I(Uy; Y1YaUy) = 1(Us; V) + 1(Us; Y1UL|Y)
— (W) + I(Uy; YiUL|Y2) > T(W). (109)
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(109) and (17) give (18). The above proof shows that equality holds in (18) iff
I(Us; Y1Up|Y2) = 0, which is equivalent to having

PU1,U2,Y1|Y2(U17 Uz, Y1|ya) = PUl,Yl\Yz(Ub y1|y2)PU2|y2 (uz]y2) (110)

for all (uy,us, y1,y2) such that Py,(y2) > 0, or equivalently, by multiplying both sides with
PY2 (y2)2/<PU1 (ul)PUz <u2))7

PY17Y2|U17U2 (yla y2|u17 UQ)PY2 (yQ) = PYLYZ‘Ul (ylv yQ‘ul)PYﬂUz (yQ‘u2) (111)

for all (u1,us2,y1,y2). Since Py, v, u,.0, (Y1, Y2lu1, u2) = W (yr|ur @ ug) W (yalug), (111) can
be written as

W (y2|ua) [W (y1]u1 @ uz) Py, (Y2) — Py v, (Y1, yalur)] = 0. (112)

Substituting
1 1
Py () = 5W (yaluz) + 5W (yaluz © 1) (113)

and
1 1
Py vajon (41, Y2l un) = 5 W (ya|ur ® u2)W (goluz) + SW (g1 us @ up @ 1)W (y2|uz © 1) (114)
into (112) and simplifying, we obtain
W (y2lu2)W (y2lus @ 1)[W (y1]ur & uz) — W(yi|ug @ uz @ 1)] =0, (115)
which for all possible values of (u,us) is equivalent to
W (2| )W (yo| D)[W (y1]0) — W (11]1)] = 0. (116)

Thus, either there exists no yo such that W (yz|0)W (y2|1) > 0, in which case (W) =1, or
for all y; we have W (y,|0) = W (y;|1), which implies I(W) = 0. This concludes the proof
of Proposition 2. O
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Proof of Proposition 3.

To prove (20), we write

207 = 37 W wl0) W al)

yl Ui

= Z %\/W(yllul (4200) - /W (y1Jur @ 1)W (y2]1)

= VO - Y ZVW@/IIM (sl 1)
= Z(W)2. (117)

To prove (21), we use the notation a(y;) = W (11]0), 6(y1) = W(y1|1), B(y2) = W (y2|0),
V(y2) = W(y2|1).

- Z NACHONEO

—Z \/04 (y1)By2) + 5(y1)v(y2) - Valy)v(y2) + 6(y1) B(ye)

(118)
Also, we use the following identity to get:

[V (aB + 07)(ay + 6B)]” + 2\/aBoy(Va — V6)* (VB — 7)?
= ¢_+¢_¢_+¢_>—2 afor)?
= V(@B +67)(ay +66)) < [(VaB + Vo) (Vay +V68) — 2/ aBi)
= [V (@B +07)(ay + 38)] < [(VaB + V/67) (/a7 + V/6B) — 2/ aBé] (119)

Then, from (118) we get

<Z [Vay1)B(y2) + Vo) (w2)] - [Valy)y(v2) + V/(y1)B(y2)]

- Z V) B(y2)d ()7 (ys))- (120)

Now, each term obtained after expanding (v/a(y1)B(y2) + /3(y1)7(y2)) (/@
5(y1)B(y2)) gives Z(W) when summed over y2. Also, Zy% Veay)B(y2)d
Z(W"). Hence the inequality is proved.

(y1)v(y2) +
Y1)7 (Y2

)
By2)0(y1)v(y2) =

To prove the equality condition in (21), we notice that the inequality was formed in (119)
when we omitted the term <2\/aﬁ(5’y(\/& — V)2 (VB - ﬁ)2) Hence, we have equality in
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@niﬂ(zwa@oﬁwaawnw@g«wa@n——vﬁ@nf«wﬁ@g >);fole i
for any choice of y7, a(y1)B(y2)d(y1)7(y2) = 0 or a(y1) = d(y1) or = . Now we
will explain why this condition is satisfied iff W is a BEC.

Suppose W is a BEC. Then, when either y; or y, is equal to 0 or 1, at least one term
in a(y1)5(y2)d(y1)7(y2) is equal to zero. If y; = e then a(y;) = 0(y1) and if yo = € then
B(y2) = v(y2). We conclude that if W is BEC, equality in (21) holds. Conversely, take the
possible case that y; = yo. If in this case equality is satisfied only when W is a BEC, then
W must be a BEC. In this case, for the equality to hold we must have, for any choice of
y1, either a(y1)d(y;) = 0 or a(y;) = d(y1). Comparing with the transition probabilities
of a BEC (Figure 1), we notice that this is equivalent to saying that W is a BEC. We
conclude that equality in (21) holds iff W is a BEC.

To prove (22), we use the following result, which is proved in [1, Lemma 4]:

Given any collection of B-DMCs W; : X — Y, j € J, and a probability distribution ) on
J, define W : X — Y as the channel W (y|z) = .. ; Q(j)W;(y|z). Then,

Y QUZ(W;) < Z(W), (121)

jeJ

We now write W' as the mixture,

W/ (y3hn) = 2 Wo(udlen) + Wi (u3lon), (122)
where
Wolyilu) = W (yi|u) W (y2]0), (123)
Wiyilu) = W (yi|ur & D)W (y2]1), (124)
and use the above result to obtain the claimed inequality
20W') > L{2(Wo) + Z(W)] = Z(W). (125)
Also, since 0 < Z(W) < 1 and Z(W") = Z(W)?, we have Z(W) > Z(W"). 0O

Proof of Proposition 4.
By expanding (12), we get
, 1
Wt lO)W' (y3[1) =7 (W (1]0)* + W (31 [1)°]W (32| 0)W (3] 1)

LW 0 + W AW oW I, (120)
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and

W/(R10) — W (R11) = SV ([0) — W n DIV (wl0) ~ W) (127

Suppose W is a BEC, but W’ is not. For the identities given, if there is no pair (yi, y2)
such that the left sides of the identities are both different from zero, then W’ consists
only of output pairs (yi, y2) with either a uniquely possible input u;, or with uniformly
distributed input over all possible values of u;. But this is a BEC. So for W’ to not be a
BEC, then there must exist (y;,y2) such that the left sides of (126) and (127) be both
different than zero. From (127), and with the previous assumption, we infer that neither
Y1 nor Yo is an erasure symbol for W. But then the RHS of (126) must be zero, which is a
contradiction. Thus, W’ must be a BEC. From (127), we conclude that y? is an erasure
symbol for W’ iff either y; or y, is an erasure symbol for W. From the union of those
two events, we get that the erasure probability of W’ is 2¢ — €2, where € is the erasure
probability of W.

Conversely, suppose W’ is a BEC but W is not. Then, there exists y; such that
W (y1|0)W (y1]1) # 0 and W (y;|0) — W (y1|1) # 0. By taking y, = 1, we see that the
RHSs of (126) and (127) can both be made nonzero, which contradicts the assumption
that W’ is a BEC. The proof completes after handling (13) the same way we did with
(12). O

Proof of Theorem 2.

Consider the probability space (2, S, P). For w € Q, i > 0, by Proposition 5, we have
Zi—i—l(w) = Z?(Cd) if Bi—i—l(w) =1 and Zi+1(W) S QZZ(CU) - ZZ‘(W)Z S 2ZZ((J}) if BH_l(UJ) =0.
For ¢ > 0 and m > 0, define

T,,(¢) 2 {w € Q: Zj(w) < for all i > m}. (128)

For w € T,,,(¢) and i > m, we have

Zz—l—l(w) < 27 if BiJrl(w) = 07 129
Ziw) T ¢, if B (w) =1, (129)

which implies
Znw) < ¢-27m [T /2P, we Tu(¢).n > m. (130)

i=m-+1
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Zit1(w)

To see why this holds notice that the above recursive relation of , on each backwards

Zz(w)
recursion step it adds to the RHS product a factor of 2 if B;(w) = 0 and a factor of ¢ if
Forn >m >0 and 0 < n < 1/2, define
Unn(m) 2 {weQ: Y Bi(w) > (1/2=n)(n—m)}. (131)
i=m+1
Then, for w € T,,,(¢) N Upn.n(n) we have
Zn(w) < ¢-2nm . (¢/2)3/2-mn-m)
=>Z,(w) < (- [2/F¢ A (132)
from which, by putting ¢, £ 27 and 19 £ 1/20, we obtain
ZTL(w) < 27475(n7m)/4, w e Tm(CO) N Um,n(”O) (133)

Now, we show that (133) occurs with sufficiently high probability. First, we use the
following result, which is proved in [1, Lemma 1].
For any fixed ¢ > 0, 6 > 0, there exists a finite integer mg((, d) such that

PT0(Q)] = 1o — /2. (134
Second, we use Chernoff’s bound [2, 10, p. 531] to write,
PlUpn(m)] >1— 2—(n—m)[1—H(1/2—7I)}’ (135)

where H is the binary entropy function.
Define ng(m,n,d) as the smallest n such that the RHS of (135) is greater than or equal
to 1 —¢6/2. It is clear that ng(m,n,d) is finite for any m >0, 0 <n < 1/2, and ¢ > 0.
Now, with m; = m(0) = mg(¢,d) and n; = n1(8) £ ng(my,no,6), we obtain, for

nZ”l»

P11, (Go) N Upny n(10)]

P[Tml (CO)] + P[Uml,nWo)] - P[Tml (CO) U Uml,n(no)]
> P[Tml(CO)] + P[Uml,n(nﬂ)] —1
Io—03/2+1—-6/2—1=1,—4. (136)

v

Finally, we tie the above analysis to the claim of Theorem 2. Definec £ 2745™1/4 and

V, 2 {weQ: Z,(w) <271}, n>0, (137)
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and note that, by (133)
Tml (CO) M Uml,n(nﬂ) C Vm n > n. (138)

So, P(V,,) > Iy — ¢ for n > n;. On the other hand,

1 1
P(Va)= Y 5 1{Z(Way) <™/} = | Ax], (139)

wyeXn

where Ay 2 {i € {1,...N}: ZW") < eN-5/4}, with N = 2".
We conclude that |[Ax| > N(ly — d) for n > ny(d). This completes the proof of
Theorem 2. U
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