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Abstract

The need for designing more efficient processing units has led researchers
to seek solutions on heterogeneous system architectures, especially now
that typical CPUs reach their physical boundaries as far as the number of
integrated transistors and clock speed. These heterogeneous systems try
to use various processing units like GPUs, ASICs and FPGAs, alongside
the CPU in order to go through specific cost-efficient tasks, optimizing
the overall performance. Systems integrated on FPGAs that accelerate
the execution of a program are commonly called hardware accelerators.

MachSuite is a set of benchmark programs, i.e., of the most widely
used hardware accelerators. It was developed in order to help researchers
evaluate accelerator-centric architectures.

First, in this thesis, we analyze and describe the MachSuite
benchmark. Next, we introduce a novel hardware-based architecture
for one of the described applications, i.e., a Back-propagation algorithm
which is used for training artificial neural networks. The proposed
architecture offers a more efficient hardware-based execution exploiting
hardware parallelism. Finally, we optimize the architecture of our design
and evaluate it under a theoretical aspect and on a real system.
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Chapter 1

Introduction

Since the invention of the first computer, the computing industry is trying
to find out ways to build faster, better and non-power hungry machines
to serve the increasing demands in the various IT workloads.

For the last 50 years the exponential improvement of chip
technologies followed the Moore’s law, as defined by Gordon Moore
the co-founder of Intel and Fairchild Semiconductor. Moore’s law is an
observation which says that the amount of components (transistors) per
integrated circuit is doubling approximately every 18 months. However,
many researchers in the semiconductor industry, including Gordon
Moore, claim that this law will not be applicable anymore, as the
transistor is exponentially decreasing in size and it is reaching its physical
boundaries.

Transistors nowadays are so small that the width of their channel
is only a few atoms long. This fact creates a few challenges. Firstly,
modern chips have so many transistors integrated that they have reached
limitations related to the amount of power they use. In other words
Dennard scaling has ended. This, also, leads to cooling problems, too.
Secondly, quantum mechanics start to play a significant role in these
sizes where a phenomenon called quantum tunneling (an effect about
electrons jumping across a potential energy barrier) creates engineering
problems and sets a physical limit to the transistors size in which they
work properly.

There have been some promising approaches to solve those
complications and one of them is in the field of heterogeneous systems,
like hardware accelerators. In this thesis we will describe the
implementation of hardware accelerators on Field Programmable Gate
Arrays (FPGAs) as an attempt to develop different architectures that
are flexible and can achieve performance and efficiency similar to ASIC.

1.1 FPGAs

A Field-Programmable Gate Array (FPGA) is an integrated circuit
designed to be configured by a designer after the manufacturing process.
They serve as the building blocks of reconfigurable computing and their
advantage is that they are sometimes significantly faster than generic
CPUs for specific applications due to their parallel nature. The ability of
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1.2. HARDWARE ACCELERATORS

reconfiguration is what makes them so popular as they combine the speed
of hardware with the flexibility of software. FPGAs are broadly used on
applications, like digital signal processing, computer vision, cryptography
and process acceleration. The designers use the FPGAs to accelerate
certain parts of an algorithm and they share part of the computation
between the FPGA and a generic processor, which is this thesis’ theme.

Figure 1.1: Block diagram of FPGA architecture

The basic architecture of an FPGA, as shown in Figure 1.1, consists
of Configurable Logic Blocks (CLBs), routing channels, input/output
blocks, and also some elements that are not represented, like Digital
Signal Processor slices (DSPs), and Block Rams (BRAMs). CLBs
are surrounded by input/output blocks (IOBs) for communicating with
external devices. Each CLB (Figure 1.2) consists of slices and each
slice contains 4 Look-Up Tables (LUTs) and 8 Flip-Flops (FF) that can
be configured to perform either combinational or sequential logic. The
general FPGA structure allows for arbitrary configuration, so designers
can connect the logic elements however necessary.

1.2 Hardware Accelerators

Nowadays, some applications have become so computational intensive
that have high execution times on conventional CPUs. This led
researchers to design heterogeneous hardware systems that utilize GPUs
and FPGAs alongside the main CPU. These systems try to take
advantage of concurrency and efficiency, scheduling either a complete
or parts of the mapped algorithm to be computed on a specific part of
the system. Figure 1.3 [19] shows an example of such system. So, the

16



CHAPTER 1. INTRODUCTION

Figure 1.2: Arrangement of Slices within the CLB

hardware that performs the acceleration is separate of the main CPU
and is called hardware accelerator.

Figure 1.3: A heterogeneous system

FPGAs can be very useful in such cases and they can be
programmed with small algorithms that accomplish the acceleration. A
simple method to develop accelerators is the use of High Level Synthesis.

1.3 High Level Synthesis

High Level Synthesis (HLS) is an automated process that interprets an
algorithm description in a high-level-language and produces the digital

17



1.4. MACHSUITE

hardware that implements that algorithm description. In other words,
there are special tools like Vivado HLS that transform a C/C++ code
program into register transfer level (RTL) hardware description language
(HDL) implementation, which can be afterwards loaded on an FPGA
and be evaluated. The goal of HLS is to give the hardware designers the
ability to efficiently build, verify and optimize hardware, exploiting the
flexibility and ease that a higher level of abstraction language provides,
while the tool automatically implements the RTL design.

1.4 MachSuite

MachSuite [17] is an open-source benchmark that provides High Level
Synthesis(HLS) synthesizable C code intended for accelerator-centric
research. It is a collection of 19 benchmarks spanning 12 different
kernels, written to cover a diverse set of applications and to include
the most popular algorithms that are being used in hardware accelerator
architectures. The lack of a standard and well-defined benchmark led
researchers to many problems in the past, as there are many different
algorithms with different coding styles and approaches for the same
kernels making it hard to compare the results. MachSuite provides
standardization by implementing the most popular kernels in a simple
way and using realistic input data in order to help researchers to make
advances.

1.5 Contribution

The contribution of this thesis is described below:

• We provide a detailed description and an analysis of the memory
utilization for all MachSuite Benchmarks accelerators using the
Vivado HLS tool.

• We describe the functionality for a MachSuite Benchmark
algorithm, i.e., Backprop algorithm, which is an artificial neural
network training method.

• We propose two different parallel reconfigurable architectures for
the Backprop algorithm. The first architecture is based on simple
HLS directives. The second architecture is based on the split of the
algorithm into three parallel and independent pipelined modules
(clusters).

• We apply various hardware optimizations for the two different
proposed architectures of Backprop algorithm, e.g., pipelining and
loop unrolling.
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CHAPTER 1. INTRODUCTION

• We integrate the two proposed architectures into the RACOS
application.

• We compare the two different proposed architectures for the
Backprop algorithm and we evaluate their performance results.

1.6 Thesis Structure

In chapter 2 of this thesis, we present the related work in the field of
hardware acceleration, as well as, the hardware acceleration applications
on FPGAs. In chapter 3 we will provide an overview of the MachSuite
Benchmark and in chapter 4 we will describe Backprop algorithm.
Chapter 5 describes the hardware architectures and the optimization
techniques we used. Chapter 6 presents and compares the performance
results and finally chapter 7 concludes the thesis and provides comments
for future work.
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Chapter 2

Related Work

There are several works in the literature studying FPGA-based
accelerators. All these studies are based on the key advantages of FPGAs
that are parallelism, high energy-efficiency and flexibility.

There are previous works about Neural Networks and machine
learning techniques, which are developed on FPGA-based accelerators.
These works have been widely used on image, text and voice recognition,
machine translation, scene analysis, encryption and other applications.
Convolutional Neural Networks (CNN) [24], that are widely employed for
image recognition, have been implemented with FPGAs accelerators due
to their high performance and reconfigurability that exceeds performance
of generic processors. Other types of Neural Networks like Recurrent
Neural Networks [10] are developed extensively on FPGAs due to the
flexibility and parallelization that they provide. An issue for the
FPGA-based applications is the limited memory bandwidth provided
from an FPGA platform especially when the deep learning techniques get
more complex and require more computational throughput. Therefore, to
tackle this problem there have been introduced methods for analyzing the
computational throughput and memory requirements of a CNN design
and optimizing it using the roofline model [24].

Microsoft has turn attention on FPGA-based accelerators to make
search engine algorithms (Bing) more efficient and competitive [23]. The
growth of the World Wide Web increased the difficulty for a search engine
to fetch rapidly the search data. To carry out that task, machine learning
algorithms need to be deployed, but they are slow with large datasets on
general purpose CPUs. That’s why Microsoft develops new generations
of FPGA-based accelerators and optimizes the searching algorithms to
exploit parallelism with promising results on real world search activities.

Data centers face an exponential increase in the amount of
traffic that they have to serve due to cloud computing. Typical
servers with general CPUs lose ground due to their excessive power
consumption. On the other hand, GPUs although they provide
significant performance advantages, they can be used as fixed resources in
the Infrastructure-as-a-Service (IaaS) model, leading to under utilization
problems [9]. Accelerators on FPGAs can be ideal for utilization on
data centers as they are re-programmable and they can adapt to new
workloads and new needs. Also, studies have shown that they can
achieve multiple times better performance per watt than CPU/GPU
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implementations for the same applications [14].
In order to train a neural network, a Backpropagation algorithm

is used. The model of the Backpropagation Neural Network (BPNN)
finds applications in various scientific fields, from classification and image
recognition, to medicine and chemistry. Indicatively, some examples will
be provided. The ability of a BPNN for pattern recognition makes it a
useful tool for financial applications. BPNN are used to analyze financial
data, to find patterns and to predict stock values [12]. In the field of
pharmaceutics, researchers use BPNN techniques to predict the effect of
drug experiments on lab rats [6]. An other application of BPNN is on
the field of geology and geo-engineering. BPNN are trained to identify
seismic waves from recorded seismic data [11]. They are also used for
mapping and predicting earth slope movement and ground movement
around tunnels [13]. Finally, BPNN can find applications in the field
of medicine. Researchers use neural networks to recognize X-ray images
and to extract features that lead to the diagnosis of diseases [16].

Finally, we can see some examples where hardware accelerators with
the combination of hardware optimizations using High-Level Synthesis
can be useful. Electrocardiogram (ECG) analysis is a method for
detecting heart diseases in the field of medical health care. Machine
learning algorithms are used to analyze the data volume of this method
and detect patterns that assess the health status of a patient. Researchers
try to find efficient ways to improve performance of this method using
hardware based accelerators developed with High Level Synthesis. A case
study for arrhythmia detection, which is a heart disease, on an ECG
medical database, used a machine learning algorithm, i.e., a Support
Vector Machine (SVM) algorithm. SVM was re-structured using HLS
to be transfered on HW accelerators [21]. This study, also, explored the
use of HLS directives, in order to improve performance of this specific
method and managed to achieve up to 94% latency improve compared
to the original algorithm.
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Chapter 3

Overview of MachSuite

This chapter describes all the accelerators that are included in MachSuite
as shown in the following table. All the algorithms are characterized by
simplicity to help other researchers experiment. As we see in Figure 3.1,
many of the algorithms provide two distinct versions for the same
kernel. These algorithms solve the same problem with different ways or
characteristics in order to provide more diversity.

Figure 3.1: All the MachSuites accelerators demonstratively

AES
The Advanced Encryption Standard is a block cipher designed as a
replacement for the Data Encryption Standard (DES) algorithm. This
implementation of the algorithm processes data blocks using cipher keys
of 256 bits in a series of substitution phases. AES is very useful on both
hardware and software implementations, because of its parallelizability,
and it uses byte-oriented arithmetic operators and transformations small
enough for lookup tables. MachSuites implementation of AES provides
a lookup table optimization for the primary Substitution-box (S-box)
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which is a basic component of symmetric key algorithms in cryptography.

BACKPROP
Artificial Neural Networks (ANN)[17],[20] are a widely used machine
learning technique, with applications on various fields like computer
vision, stock market prediction, data classification and many others.
Inspired by the way biological systems, like the human brain, work,
neural nets are composed of a large number of interconnected elements
(neurons), which are organized in multiple layers that feed-forward
information and have some weights labeled between every neuron (or
node). The ANN, usually, consist of three layers, the layer of input
units, one hidden layer and the layer of output units. Data flows forward
through these layers and we observe the outputs. Training a neural
network is an expensive task, as it requires the iterative updating of a
large number of parameters (weights, biases) to finally fit the desired
outputs. Their ability to extract patterns and detect trends makes a
trained ANN an ”expert” in a specific category, which leads to many
applications. Backpropagation (Backprop) is a common method to train
an ANN. It compares the outputs of an untrained network to the desired
ones and it calculates an error value for each element in the output layer
using a loss function. Then this error value is propagated backwards
towards the input layer, updating weights on every node throughout
the network. Finally, this process continues iteratively until the error is
minimized and the network considers to be trained.

BFS/BULK
Breadth-first search algorithms are used for traversing graphs or trees and
they are build blocks for other algorithms like path finding, maximizing
flows in networks, etc. Its characteristic is that, this type of algorithms
traverse a tree or a graph, layer by layer and its key advantages are
its parallelizability and that it can process massive data sets efficiently.
The BFS/BULK[17] is a data oriented implementation of breadth-first
search algorithms and uses a brute-force, data parallel method, which is
typically used on Single Instruction, Multiple Data (SIMD) and vector
architectures. Another feature of BFS/BULK is that the structure
of the graph input affects massively the execution behavior. In more
detail, the mesh graphs often create memory overflowing problems
and overestimate typical graph diameter. MachSuite creates using the
R-MAT[7] algorithm, which is a simple method to create quickly realistic
graphs with a few parameters, a low-diameter and scale-free graph.

BFS/QUEUE
A common implementation of BFS uses a queue algorithm to dynamically
track the current horizon. In this way we trade off lower memory
bandwidth requirements for increased bookkeeping. The BFS/QUEUE
[17] variant creates an identical solution to BFS/BULK but with a
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different node traversal order, showing notably different computational
characteristics.

FFT/STRIDED
The Fast Fourier Transform is an algorithm that computes the Discrete
Fourier Transform on signals, from their original form to the frequency
domain and vice versa. Applications of FFT kernels are used in almost
all fields that use sinusoidal signals, such as engineering, physics,
applied mathematics, and chemistry. It is the most common hardware
accelerator found in literature. The canonical Cooley-Tukey ”butterfly”
method, which is contained in MachSuite’s implementation of FFT, is
characterized by a wide range of strided access patterns and nested,
triangular loop structures. The MachSuite benchmark provides a
straightforward, iterative implementation of a 1024-point, complex FFT.

FFT/TRANSPOSE
FFT transpose is an optimization of FFT kernel that computes a
series of small-radix FFTs that consist of transpose operations in order
to reduce memory costs on modern acceleration architectures. This
technique trades off data manipulation overhead for improved locality
and it is optimized for a single, fixed-size FFT. MachSuite studies the
core structure of a well-tuned GPU code and provides a 512-point,
complex FFT that uses an 8-point small-radix FFT.

GEMM/NCUBED
GEMM stands for GEneral Matrix to Matrix Multiplication and it
multiplies two input matrices. Matrix multiplication is likely the most
useful building block found in numerical software and it is important
for any linear algebra package. It provides high computational density,
an easily manipulated mathematical structure with extremely regular
behavior and it is a common target for automatic and hand-tuning.
GEMM/NCUBED [17] is a naive, O(n3) algorithm for dense matrix
multiplication provided as a well-understood reference point.

GEMM/BLOCKED
Blocking is a well-known optimization technique that exploits effectively
the memory hierarchy. Usually matrix multiplication algorithms use
a blocked loop structure that aims to improve memory locality by
commuting the arithmetic to reuse all of the elements in one block
before moving onto the next. MachSuite implements a different version
of GEMM that uses a fixed 8-factor blocking component.

KMP/KMP
String searching algorithms are used in various applications, from
packet filters to scientific codes (DNA pattern matching problems). The
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Knuth- Morris- Pratt algorithm is a fast string matching technique
with running time proportional to the sum of the length of the strings.
The key improvement in KMP is a small, precomputed data structure
that predicts the next position in the input string where a match
could be found after a mismatch. This way the algorithm bypasses
re-examination of previously matched characters. MachSuite embodies a
KMP implementation with both the matching and precomputation steps.

MD/KNN
Molecular dynamics simulations are a category of n-body problems
that are essential for computational chemistry packages. The Molecular
dynamics packet includes methods of studying the atoms movements.
While most MD codes include a variety of iterated equations, the most
CPU intensive component is normally the calculation of the potential[2]
(the force field between the atoms), which is order O(n2). Both
MachSuites MD benchmarks compute Lennard-Jones potentials, which
is a commonly used approximation to the Van der Waals interactions
between all pairs of atoms. The strength of these interactions die out
as a sixth-order polynomial function of distance, thus, most simulations
further approximate the force calculation by only considering nearby
pairs of points. MD/KNN[17] (k- nearest neighbors) uses well-defined,
fixed-length neighbor lists to track the relevant molecular interactions.

MD/GRID
Another version of MD, which is widely used by many computational
chemistry packages[3], replaces distinct neighbor lists with a 3-D grid. In
this way, force calculations are computed on all particles in the current
and adjacent grid cells. This technique trades off bookkeeping overhead
to track and iterate over grid cells for improved memory locality and
enables memory partitioning. MachSuites both MD/GRID[17] and
MD/KNN codes use the same input set and agree within 0.1%.

NW
The Needleman-Wunsch is an algorithm used in bioinformatics to
align DNA or protein sequences. It compares two nucleotide or amino
acid sequences and finds out structural or functional similarities. The
algorithm is a dynamic programming method that divides the problem
into separate smaller sub problems and optimizes a similarity score
between two strings. MachSuites implementation of NW is a wavefront
computation that populates a square similarity score matrix as it runs.
Finally, the optimal alignment is reconstructed by materializing this
score matrix.

SORT/MERGE
Mergesort is a simple and efficient comparison algorithm invented by
John von Neumann. A sorting kernel serves as a building block for many
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other algorithms. Although merge sort is an outdated algorithm tends
to be popular on parallel platforms due to its simple structure and low
data dependencies. MachSuite[17] includes an iterative implementation
of an 4096 long integer array sort.

SORT/RADIX
Radix sort is a typical non-comparison-based algorithm, that sorts
data by rearranging integer representations (keys) based on the
same significant position and value. Radix sort is often used when
handling input sets with small value ranges and in parallel contexts.
Non-comparison sorts operate in a way so that they exploit properties
of the value domain to lower computational complexity. MachSuites
version sorts an integer array by comparing 4-bits blocks at a time.

SPMV/CRS
Sparse matrix-vector multiplication methods, i.e., y = Ax, are widely
used. A sparse vector is a vector that its most elements are zeros.
Sparse matrices often appear for solving partial differential equations
or computing properties on high-diameter graphs. Storage and
manipulating sparse matrices/vectors requires different algorithms
in order to exploit the properties of sparsity. In more detail, the
multiplication is identical to the dense version, but organizing and
tracking the nonzero elements changes dramatically the computational
characteristics. SPMV/CRS[17] uses Compressed Row Storage format
for storing the nonzero elements, creating one-dimensional arrays that
contain all the information for the sparse matrix. Since sparse matrix
operations often depend heavily on the structure and density of the
input matrix, MachSuite provides a test matrix [1] as a proxy for the
behavior of an iterative solver.

SPMV/ELLPACK
Ellpack is an alternative to the Compressed Row Storage (CRS),
contiguous nonzero external storage format. Ellpack in order to sustain
regularity in access pattern trades off memory overhead. This way it
pads out each row of its nonzero matrix to the maximum length of any
row, filling the empty cells with zeros in order to enable sequential access.

STENCIL/STENCIL2D
Stencil codes are a class of iterative kernels, which update array elements
according to some fixed patterns. These codes can be found in many
applications on computer vision and scientific simulations. The inner
loop of a stencil code is a fixed-size computational 2D or 3D template,
which performs a sequence of sweep across a large input grid. The size
and the shape of the stencil itself varies across applications.
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Figure 3.2: A selection of stencils used in various scientific applications

The majority of codes use a unit-stride motion across the data.
MachSuite contains a typical, 9-point, 2D stencil that applies a 3x3 filter
to an input array.

STENCIL/STENCIL3D
Stencils can be found with different grid configurations and dimensions.
As the grid changes, the execution characteristics change, too. To
demonstrate the difference between surface and volume stencils,
MachSuite also provides a 7-point star-shaped, 3D stencil.

VITERBI
Hidden Markov models are machine learning techniques that have
unobserved (hidden) states. They are widely used as stochastic models
with applications ranging from information coding to pattern recognition
and bioinformatics. The Viterbi algorithm is a dynamic programming
method for finding the most likely sequence of hidden states called the
Viterbi path based on a set of observations and a pair of probability
matrices. Viterbi exhibits high computational density. MachSuite
provides an implementation that computes probabilities on a Hidden
Markov model.

3.1 Memory profiling of MachSuite

In the Table 3.1 we summarize, what resources each of the algorithms
would require if programmed on a Virtex6 FPGA. We used the vivado
HLS xilinx tool to calculate those quantities. These measurements are
upon the original and unoptimized algorithms that are contained in the
benchmark. Most of the algorithms are not memory demanding due to
their simplicity and mostly because they are designed this way to achieve
small memory footage (around 32KB which is an average cache size) for
research reasons. Table 3.1, also, shows all the available memory of the
targeted FPGA.

According to Table 3.1, a few algorithms (Backprop, FFT/Strided,
FFT/Transpose, MD/Grid and MD/KNN) are more suitable for
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BRAM-18K DSP48E FF LUT

AES 4 0 479 1071
BACKPROP 34 112 34956 38593
BFS/BULK 0 0 381 618
BFS/QUEUE 2 0 255 642
FFT/STRIDED 0 56 4213 7548
FFT/TRANSPOSE 33 157 19871 49365
GEMM/BLOCKED 0 14 1166 1848
GEMM/NCUBED 0 14 1070 1880
KMP 0 0 327 541
MD/GRID 0 42 7605 11731
MD/KNN 0 42 6745 9858
NW 0 0 485 968
SORT/MERGE 4 0 423 484
SORT/RADIX 0 0 311 837
SPMV/CRS 0 14 1203 1894
SPMV/ELLPACK 0 14 1082 1861
STENCIL/2D 0 4 127 174
STENCIL/3D 0 8 467 565
VITERBI 64 3 1548 2931

Available 832 768 301440 150720

Table 3.1: Memory Utilization of all the original and without any
optimization algorithms of MachSuite. The highlighted ones are more
suitable for researching purposes due to their size.

researching purposes due to their relative large size. For this thesis we
arbitrarily picked Backprop algorithm because of its big size and its
function-oriented structure.
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Chapter 4

Backprop implementation

In this chapter we will describe the functionality of Backpropagation
algorithm but first, a little more about Artificial Neural Networks.

4.1 Neural Networks

A neural network (Figure 4.1) is a set of interconnected ”neurons”
arranged in layers, i.e., the input layer, one or more hidden layers and
the output layer, where we get the outputs of the network. There are
connections between each neuron in every layer, as shown in Figure 4.1,
that show how the information flows. Also, some weight values are
attributed to each connection and these weights control the signal
between neurons. The NN is fed with a defined input set and it
generates the observed outputs. The goal of the neural networks is to
implement tasks that seem easy for a human but are very difficult and
complicated of a computer, like image recognition for example.

Figure 4.1: A simple Neural Network

The neural network concept, while being a simple idea, can be very
complex with hundreds of neurons and many layers. They can learn to
decide what an output will be based on the inputs. This ”learning”
process is possible for a NN as it can adapt and change the weight
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values in order to subsequently change the output results. A more precise
representation of a neural networks neuron is as follows:

Figure 4.2: Threshold estimation for a neuron

X1, X2, X3 are the input values and W1, W2, W3 are the weights
of a specific neuron. Y is the neuron’s output. In order to decide for
Y to be either 0 or 1 the sum

∑
iwixi must be greater or lower than a

threshold value or else bias (-b).

Y =

{
0 if

∑
iwixi ≤ −b

1 if
∑

iwixi > −b

The value of threshold(b) affects massively the output. If a big
positive value is set for a threshold, then the neuron will give ”1” as
the output and similarly a big negative threshold will cause a ”0” as
output. This model of neural network, though, has a disadvantage. A
small change to the weight or the bias of one neuron can lead to a big
change to the overall output of the neuron and change unpredictable the
overall output of the network. In more detail, a marginal change to these
values can make a big difference producing a ”1” for a ”0” and vise versa.
The equation above is generic and shows how an output of a neuron is
calculated.

4.1.1 Sigmoid Neuron

We cannot have an unpredictable node (neuron) behavior in order to
successfully train a neural network. We need the small changes to the
weights and the biases, to lead to small changes to the outputs so that
we can gradually and repeatedly train the network to give the correct
output.

To counter the problem, actual neural networks use a different type
of neurons, the sigmoid neurons, where the sum

∑
iwixi is multiplied on

every node with an activation function σ() that has a ”sigmoid” shape.
This function defines the output of the neuron and is essential for the
learning process.

The activation function or the transfer function σ(net) as shown in
the Figure 4.3 is:

σ(net) =
1

1 + e−net
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Figure 4.3: Sigmoid activation function of a neural network

This equation is widely used as activation function. It is non-linear
(has a sigmoid shape) and it is in the range of (0,1). This function takes
real numbers and ”squashes” them into range between 0 and 1, while the
”sigmoid” shape creates a smooth transition.

Figure 4.4: Plot of a Sigmoid function

If we put it more explicitly it becomes

σ(net) =
1

1 + e−
∑

wixi−b
(4.1)

Given that the sum
∑

iwixi + b is a large positive number then e ≈ 0
and σ(net) ≈ 1. Similarly when

∑
iwixi + b is a large negative number,

the e → ∞ and the neurons output is approximately 0. Last, when∑
iwixi + b has a value neither too big nor too small, σ(net) can have

any output between 0 and 1. This property is very useful as it creates a
smoothness effect that we need for the output variation in order to train
a network. Also, it makes a nice interpretation of the firing rate of a
actual biological neuron.

4.2 Backpropagation

Backpropagation is a common algorithm used to train artificial neural
networks. This method is used for calculating the error contribution, or
the error function, of every neuron of the network after a set of input
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data has been given throughout the network. This error information is
propagated backwards layer by layer through the network updating each
neuron weight and bias until the network is considered to be trained.
Backpropagation method requires a known desired output for each input
in order to find the error function and to train the network. [18] [15]

To explain more thoroughly this process lets first consider a simple
network, like in Figure 4.5

Figure 4.5: A Simple Neural Network

i1, i2 are the input neurons, w the weight of each connection, h1, h2
two neurons of the hidden layer, o1, o2 the output neurons and b1, b2 the
biases that also have weight attributes. The Backpropagation algorithm
works in two phases.

1. Forward input propagation until the network generates an output.
Then, the calculation of the error using the known target outputs
takes place.

2. Backpropagate the error by starting from output layer and
updating every weight attribute until input layer.

Considering the first phase, we need to show how the input
propagates through the network. For example, for the simplest network
that we defined previously, Figure 4.5, the net input and output of each
hidden neuron layer is calculated using equation 4.1. Next, we do the
same for the output neurons and this leads us to the net output of the
network.

After the calculation of the network outputs, we can calculate the
error function using the equation

Etotal =
1

2

∑
(target− output)2 (4.2)

After the error calculation, we can start the second phase by
backpropagating this error and updating the weights. This process will
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change slowly the overall output so that to be closer to the target, thus
minimizing the Etotal.

In our example Figure 4.5 we have to find out the change of W5 in
order to decrease the total error by a little. In other words we need to
find the partial derivative of Etotal with respect to W5.

∂Etotal

∂W5

This partial derivative can be written as [15]

∂Etotal

∂W5

= −(targeto1 − outo1) ∗ outo1(1− outo1) ∗ outh1 (4.3)

Finally, when we have the error contribution of the specific weight, we
subtract this value from the current weight to get the new weight using
also a new variable α, i.e., the learning rate. α is the speed that the
whole network needs to be trained. If α is high, the network will be
trained fast but it will not be very accurate. The new weight will be:

W ′
5 = W5 − a ∗

∂Etotal

∂W5

(4.4)

We continue and calculate in the same way W6 but we don’t update
the new weights yet. We need the old weights to calculate correctly the
hidden layer weights. Finally, this procedure updates all the weights and
the biases of all neurons. Next, we feed forward the same input in order
to take a different output with smaller error. This process takes place
iteratively for many thousands times until the error is sufficiently small,
thus, the network considers to be trained.

4.2.1 Code structure of the Backprop algorithm

The original algorithm is implemented in a single file the backprop.c.
There are also three more files, which are important for the algorithm to
run. The generate.c generates the initial values of the weights, the biases,
the training data and the training targets using a random generation
function, i.e., rand(), and stores them into matrices with predefined
sizes. The other two files are, the backprop.h, which defines the matrices
sizes and helps with customization, and the support.h, which has general
definitions, instructions and macros.

The generate.c file calls the function backprop() with parameters
all the initialized matrices that constitute the input of the algorithm.

The Backprop algorithm is structured in functions that divide
the computations and provide comprehension to the programmer. The
original version has a main function ”backprop()” that calls all the others.

The algorithms functionality is described in the following functions:
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1. matrix vector product with bias input layer () is the first
function that is called and it gets as input all the first layers weights
and biases. It calculates the internal algorithm values based on the
typo:

∑
iwixi + b.

2. RELU () function gets the above value as input and calculates the
activation and deactivation function of the first layer neurons.

3. matrix vector product with bias second layer () function
gets as input the weighs, the biases of the hidden layer and the
activation function of the first layer and it gives the sum for the
hidden layer. Then RELU() is called again, thus, the activation
and the deactivation functions are calculated for the hidden layer.

4. matrix vector product with bias output layer () function
takes as input all the weights and the biases of the output layer
neurons and the previously calculated activation function and it
produces the last sum. Next, RELU gets that sum value and gives
the last activation and deactivation functions.

5. soft max () function has as input the activation value for the
output layer and ”squashes” it in the range [0,1].

6. take difference () function takes as input the output of
soft max() comparing it with the training targets and giving the
error of the networks outputs.

7. get delta matrix weights3 () function starts the
backpropagation part. It gets as input the output error and
the activation function of the hidden layer and produces the new
values of the output layer weights, the delta weights3.

8. get oracle activation2 () function takes the output error and
the deactivation function of the hidden layer nodes and it finds
the new values for the biases of the hidden layer, i.e., the
oracle activations2 variable.

9. get delta matrix weights2 () function gets the
oracle activation2 and the activation function of the input
layer and computes the delta weights2.

10. get oracle activation1 () function, again, gets the
oracle activation2 and the deactivation function of the input
layer and finds the oracle activation1.

11. get delta matrix weights1 () finds the last variable that needs
to be computed, i.e., the delta weights1. This function uses the
oracle activation1 function and the input data of the network.
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12. update weights () function, finally, updates all the
weights(1,2,3) with the delta weights(1,2,3), the biases(1,2)
with oracle activations(1,2) and the biases3 with the error value of
the outputs.

4.2.2 Algorithm Flowchart

In this section we present the flowchart of the MachSuites
Backpropagation algorithm Figure 4.6.

First, the algorithm generates random values, which initialize the
first input of weights and biases. It, also, generates the training data,
which are the target values and the input data of the neural network.

Next, this input is given to the algorithm and the process begins.
Based on the Equation 4.1, the activation function for each neuron of the
first layer is computed and stored in a matrix. Then the algorithm uses
this matrix and the same equation to calculate the activation function for
all the hidden layer neurons and it stores again those values on a different
matrix. The third step calculates in the same way the activation function
for the output layer neuron and stores it to another matrix. This matrix
contains the original output of the untrained network.

After that, the algorithm calculates the total error (Equation 4.2)
using the targets that were set at the beginning and the last matrix that
contains the original outputs. This is the last step of propagation phase
and the backpropagation starts.

Firstly, in the backpropagation phase, the new biases of the output
layer are calculated in a matrix called ”oracle activation(3)”. This uses
the partial derivative of the activation function ”deactivation”, which is
based on the following equation:

deactivation(
∑
i

wixi + b) =

activation(
∑
i

wixi + b) ∗ (1− activation(
∑
i

wixi + b))
(4.5)

The ”oracle activation” function is the product of the previously
calculated error and the d(e)activation function. This is the crucial
information that is backpropagated and trains the network.

Next, the algorithm computes the new weights of the output layer,
i.e., the ”delta weights”, with the use of the previous ”oracle activation”
and the activation function of the hidden layers nodes.

Next, the algorithm proceeds back to the hidden layer after the
calculation of the oracle function and the delta weights of the output
layer. There, the algorithm computes the ”oracle activation(2)”, the
delta weights and the activation function of the input layer.
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Figure 4.6: Backpropagation algorithm flowchart

Then, the final ”oracle activation(1)” for the input layer is found
as: OracleActivation(1) = OracleActivation(2) ∗ dactivation(1) and
the ”delta weight(1)” as: DeltaWeight(1) = OracleActivation(1) ∗
InputSet.

Last, the algorithm updates all the weights and the biases after the
calculation of all the parameters. The delta weight matrices are used to
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update the old weights and the oracle activation functions for the old
biases. As we pointed before in Equation 4.4, the new weight is:

New Weight = Old Weight− Learning Rate ∗ Partial Derivative of Error Sunction

The partial derivative is calculated a priori in each oracle activation
function so we have all we need to proceed the update. In the same way,
all the biases are updated. At this point the first training set considers
to be completed.

The above process runs iteratively within a for-loop for all the
training sets that we defined initially until the produced error is small
and the network is trained.
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Chapter 5

Architecture Implementation

5.1 Memory analysis

The subject of this thesis is to map an algorithm on hardware using
high level synthesis. In order to do that, we need firstly to describe
the memory requirements of an FPGA. This will provide comprehension
about the memory units that are utilized by the HLS tool and further
knowledge about the functionality of an FPGA. Secondly, we need to
analyze each application of the MachSuite benchmark to find the more
memory demanding one, so that our research will be challenging. We
did that process in chapter 3 and we chose baackprop algorithm for our
experiments.

For the needs of this thesis we used as a reference device a Virtex6
Xilinx FPGA (XC6VLX240T). The Virtex6 FPGA consists of 37680 total
slices, 832 Block RAMs 18KB and 768 DPS48E. Each slice contains 4
LUTs and 8 Flip Flops so the total amount of available Flip Flops is
301440 and of LUTs is 150720.

Block RAMs 18KB have a true dual-port configuration meaning
that they consist of 18KB storage area and two independent access ports,
which are used for reading or writing. Vivado HLS can automatically
analyze the design and choose the number of ports on a BRAM that
will maximize the data rate. The designer has also the option to select
accordingly, using directives. Read operation takes 2 clock cycles to
complete as an output register is interposed, whereas write operation
takes 1 clock cycle. Block RAMs are also flexible and can be configured
for example 16K x 1, 8K x2 , 4K x 4, 2K x 9, 1K x 18 or 512 x 36.

DSP48E is a Digital Signal Processor slice embedded inside
virtex 5 and 6 FPGAs that can support some functions like multiply,
multiply accumulate (MACC), multiply add, one- or n-step counter, logic
operations(AND,OR) and more.

There are two main components that constitute the logic resources
on an FPGA, LUTs and Flip-Flops. A Look Up Table (LUT) is basically
a table that determines what the output for any given input(s) is. In more
detail, it is a truth table that effectively defines how the combinatorial
logic behaves. Virtex6 uses 6 input LUTs. Flip-Flops (FF) are circuits
that have two states and can store information. One FF represents one
bit of information. Both LUTs and FF logic resources are grouped in
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slices to create configurable logic blocks.

5.2 First Backprop architecture

In order to compile, simulate and synthesize the Backprop algorithm into
RTL (Register-Transfer Level) verilog code we used the Xilinx Vivado
HLS tool. First, we simulated the C code of the algorithm with the HLS
tool in order to confirm that the algorithm works fine, i.e., it produces
the correct output (small error). Next via vivado HLS we chose the
function that will be synthesized into verilog (top function). In the first
architecture, the main function backprop(...) was selected as top function
and it was synthesized. After synthesis all the needed hdl files were
produced. Next, we co-simulated the C code (testbench, libraries) with
the verilog code in order to verify the RTL design. Last, we exported the
RTL system for use in other Xilinx tools, like Vivado.

5.2.1 Architecture

This section presents the reconfigurable architectures for the backprop
algorithm.

Matrix Vector Product Input Layer

The first function that is mapped on hardware is
Matrix vector product with bias input layer(). This function takes
as input three double precision matrices. The Biases1[ ], the Weights1[
] and the training data[ ] matrices are the three input matrices and the
output is activations1[ ] matrix. The output matrix is double-precision
type, too.

Its functionality is to add and multiply elements of these input
matrices within two nested for-loops in order to produce the output
matrix. The tool by default implements the multiplication and addition
operations using DSP48E macro cells. It uses fixed numbers of DPS48E,
that depend on the type of operation and the precision type of the
variables. In any case 3 DSP48Es are utilized for addition of double
type variables (dadd) and 11 DSP48Es for multiplication of double type
variables (dmul).

The main body of this function is this nested foor loop.

f o r ( j = 0 ; j < node s p e r l ay e r ; j++){
a c t i v a t i o n s [ j ] = (TYPE) 0 . 0 ;

f o r ( i = 0 ; i < input d imens ion ; i++){
a c t i v a t i o n s [ j ] += weights [ j ∗ input d imens ion + i ] ∗ t r da ta [ i ] ;
}

}
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The Vivado HLS tool implements this piece of code in the
following way. Firstly the tool will implement modules that will do
simple operations, between integers, like (addition, multiplication, logical
comparison etc). With these modules and as well with registers and
multiplexers, the tool will implement the following part of the code:

j = 0 , i = 0
j < node s pe r l aye r , i < input d imens ion
j++, i++
j ∗ input d imens ion + i

Next, the tool uses two fixed modules, one that does a simple
addition of two double-precision (64-bit) elements and one that does
a multiplication of the same kind of elements (Appendix). These two
components are the part of the logic that it will implement this part:

weights [ j ∗ input d imens ion + i ] ∗ input sample [ i ]
a c t i v a t i o n s [ j ] + ( weights [ j ∗ input d imens ion + i ]} ∗ t r da ta [ i ] ; )

The tool, finally, uses registers, multiplexers and modules for
addition and comparison to implement the for-loop structure itself. It
uses these logic components to control the operations inside the loop
structure and to make them iterate until the exit condition is met. In
the same way is the outer for-loop mapped in the hardware.

f o r ( i = 0 ; i < input d imens ion ; i++)
{}

Figure 5.1 shows the whole Matrix Vector Product Input Layer
function, that was piece by piece described, as it is mapped in the
RTL. The figure shows a general idea of how the various components
are differentiated with a special shape and are interconnected. In the red
cycles are presented the two components that do the double precision
addition and multiplication.

BLOCK RAM

Between the core functions of the algorithm, intermediate matrices are
mapped to store the in-between data. The tool utilizes all these matrices
as Block RAMs

Block RAMs are fast and simple memory blocks and that’s why
the tool uses them automatically for the main matrices of the algorithm.
Naturally, the number of BRAMs a matrix uses, depends on its size.
The minimum amount of RAM that can be assigned to a matrix is 2 x
18KB RAM because Virtex 6 FPGAs contain 36KB Block RAM modules
divided in two separate 18K independent blocks [5]. The only downside
about them is the limited port number that they have and the small
available amount of them on an FPGA (Appendix).
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Figure 5.1: Hardware-based architecture for function Matrix Vector
Product Input Layer. In the red cycles are the modules that do the
double precision addition and double precision multiplication
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The whole algorithm

All the rest functions of the mapped algorithms follow the
same functionality of the Matrix vector product with bias input layer
function. Each function is mapped as an independent hardware module.
Secondary matrices are mapped as Block RAM in between the functions.
The architecture of the whole Backprop algorithm is presented in
Figure 5.2.

Figure 5.2: Diagram of the whole Backprop algorithm. Each function
is represented as a different module. The outputs of each function are
stored in Block RAMs. The last function, i.e., update weights takes
as inputs all the intermediate matrices, calculates the new weights and
biases and feeds them back to the start.
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5.2.2 Hardware optimizations

Vivado HLS attempts to optimize latency and throughput for the mapped
architectures. First, the tool attempts to minimize the interval between
new inputs(throughput). Second, it attempts to minimize the latency
and finally it tries to map the architecture on hardware using the less
possible resources. It also takes advantage of the parallelism, and when
it is possible it schedules functions to run concurrently.

Vivado HLS tool provides many options for manual optimization
of the mapped design in order to improve the overall performance. This
takes place with the use of special directives. There are three different
techniques which can be used to optimize performance:

1. Latency Optimization

Latency can be shortened by using special directives on a function
or on a block of code, setting the min and max latency that
is desired. Another method is also, loop manipulation, like
loop unrolling, flattening and merging that reduce loop transition
overheads.

2. Throughput Optimization

For throughput improvement there is the Dataflow directive that is
applied on the top-level function, which maps the other functions
and loops to operate in parallel. Another method is the use of
pipeline directives which offers concurrent/parallel execution of
functions and loops. These two methods work best in combination
with each other.

3. Array Optimization

Finally, arrays can create bottlenecks due to memory and port
accesses, which result in latency and throughput delay. We
can eliminate those bottlenecks with the use of directives for
partitioning and reshaping arrays.

We used mainly loop unrolling and pipelining directives for
mapping our algorithm, as it consists mostly of functions that have
nested for-loops. We, also, kept the clock frequency around 8 ns as
that is the target frequency of our FPGA. Additionally, we tried to have
the optimum trade-off between area and execution time as the memory
utilization grows with the latency improvement. The throughput of the
algorithm is attempted to be maximized with the Dataflow and pipeline
directives but data dependencies hinder this attempt.

Vivado HLS keeps by default all loops rolled. The operations in
each iteration use the same hardware. The tool gives the opportunity
to unroll a loop either partially or fully. Below we can see what a loop
unrolling in C code means. [4]
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i n t n ;
f o r (n = 0 ; n < 100 ; n++)
{

b=a [ n]+b ;
}

Listing 5.1: A rolled loop

i n t n ;
f o r (n = 0 ; n < 100 ; n +=2)
{

b=a [ n]+b ;
b=a [ n+1]+b ;

}

Listing 5.2: Partially Unrolled
loop

In this example lets say that a[ ] is mapped in a Block-RAM. The
rolled loop runs for 100 times and it requires an adder and a single port
BRAM to read a[ ]. The other loop is partially unrolled by a factor of 2,
which means that it will take half of the iterations to complete, but here
the trade-off is that it needs two adders and a dual port BRAM.

There is the option to fully unroll a loop, but except of the
multiplication of the hardware utilization there is one more issue. For
the above example, if we unroll the loop by factor 4, we will need four
adders and a 4-port BRAM that performs four reads per cycle. As there
is not that type of BRAM available, the array must be partitioned.

Pipelining is a technique that improves throughput while mapping
different operations in parallel. This technique exploits the way a
processor is divided in stages (five stages in our example for simplicity)
the Instruction Fetch (IF), Instruction Decode (ID), Execution (EX),
Memory Access (MEM) and register Write Back (WB) stages, and loads
instructions in every clock cycle Figure 5.3.

Figure 5.3: An example of a 5 stage pipeline structure

In that way each stage does not stay idle until the instruction is
done but executes the next , minimizing the throughput at 1 cycle.

In Vivado HLS when applying a pipeline directive in a function or
in a loop, it fully unrolls all loops in the hierarchy and as a result it
uses high percentage of hardware. With the help of the loop unrolling
directive we can control this ”time vs space” trade-off. The pipeline
directive by default attempts to load a new instruction every clock cycle,
in other words to keep the Initiation Interval (II) at 1 cycle. In some cases
though, this requirement cannot be met, usually when some instructions
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try to load or store multiple times simultaneously in a Block RAM, that
has only two ports (bottleneck). Also, data dependencies between loop
iteration may result stalling the pipeline. Then the tool increases this
II accordingly, resulting delay in throughput by some clock cycles. The
total clock cycles are given from: (Loop Trip Count -1)*II+Iteration
latency.

The limited BRAM port problem can be solved by manipulating
an array. As we stated before arrays are mapped in BRAMs. There is
the ARRAY PARTITION directive that partitions arrays into smaller
structures, providing in that way more data ports. There are different
options for the partition. The partition can be block or cyclic by a factor
(usually by 2) or complete as it is shown in Figure 5.4.

Figure 5.4: Examples of the array partition technique

Optimizations on original Backprop

Next, we will describe the directives that are used on every function as
long with the details of the optimization.

First, we used the Dataflow directive that is applied on the top
function. Generally in C all operations take place sequentially. Dataflow
directive analyzes the data flow and tries to enable a function or a loop
to start execution before the previous one completes all of its operations.
It can achieve concurrency this way optimizing throughput and latency.
This optimization takes place by adding memory channels at the size of
the variables, which help the data to flow between tasks, but with a small
area overhead. These channels can be configured and set to ping-pong
buffers of FIFO buffers. In some cases we chose FIFO buffers to minimize
the memory used by the channels.

Next function we’ll analyze is exponential(). This function is called
many times in the algorithm so its optimization is quite important. We
fully unrolled this loop. Pipeline directive could not be used in this
case because the double precision division and double precision addition
operations (the body of the loop) created a critical path resulting longer
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clock time (13ns with target at 8ns).

TYPE exponent i a l (TYPE x) {
i n t n=16; sum=1;
f o r ( i n t i = n − 1 ; i > 0 ; −− i )
{

sum = 1 + x ∗ sum / i ;
}

}

Listing 5.3: Backpropagations function ”exponential”

The next function we optimized is RELU(). This function is called
many times and needs to have improved latency for some area penalty.
We chose to use pipeline directive on this function, but the tool calculated
that due to data dependencies the II should be 16 for those issues to be
resolved.

Next, we worked for three functions
matrix vector product with bias input layer(),
matrix vector product with bias second layer() and
matrix vector product with bias output layer(). We used pipeline
directives in the first two and loop unrolling for the third one. In the
first function we had no issues. A bottleneck conflict appeared in the
second function and the tool computed that the number that solved
the conflict was 2. So we set II=2 in the directives options. The third
was unrolled with factor 4 in order to have the best trade-off between
latency and area.

The next mapped functions are these that do the
backpropagation part, i.e., take difference(), get delta matrix weights3(),
get oracle activations2(), get delta matrix weights2(),
get oracle activations1() and get delta matrix weights1(). Some of
the functions had no dependency or bottleneck issues and were
pipelined achieving also a small percentage improvements on latency.
Others, like the larger functions, i.e, get delta matrix weigths2(),
get delta matrix weights1() and get oracle activations1(), all had
dependency constrains that needed to be resolved with II=32 in the
pipeline options.

The weights upgrade() function is especially interesting because it
is the biggest in functionality, as it consists of many for- loops, some
of them nested, that update the new values to the matrices. We used
pipeline directive on most of them. The directives were applied on the
outer loop of the nested ones so that the tool unrolls completely all the
loops in the hierarchy for pipelining.

Finally after the use of the directives we described above, we
managed all together to achieve the best trade-off between latency and
area as it was our goal. More details in chapter 6.
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5.3 Second Backprop architecture

The general idea for our new architecture design of Backprop algorithm
was to break the algorithm into three parts that will become three
independent IP cores. These cores can be loaded on different PRRs
in the same FPGA, are interconnected with FIFO interfaces to stream
the data and are executed in concurrency targeting, in that way, better
performance.

5.3.1 Architecture of clusters

Backprop algorithm is structured in functions. The idea is to group these
functions into three clusters , trying also to make them utilize about the
same area. Each cluster will also have its inputs and outputs to FIFO
modules in order to achieve concurrency while streaming the data from
one cluster to another. This FIFO assignment can easily take place using
directives in Vivado HLS. The queue structure has an input to write the
data and two signals, the empty signal to show when the queue is empty
and the read signal for reading input data. This addition to our design
naturally creates an increase to the total area, because the FIFOs require
area( registers and multiplexers).

Figure 5.5 shows the diagram of our new architecture.

Instead of having the algorithm in one piece, we now have it in three
independent parts, of course without changing its functionality. The bold
arrows represent the FIFO interconnection from the initial input of the
algorithm. The connection between the clusters is also FIFO, as well as
the feedback to the start to continue the loop until the backpropagation
is done.

Each cluster maps some functions together into a single module
for each case. So in the beginning for cluster 1, the top level function
has become the matrix vector product with bias input layer(). The first
cluster also maps the propagation phase of the algorithm which consists
of the following functions: exponential(), add bias to activations(),
RELU(),matrix vector product with bias second layer() and
matrix vector product with bias output layer().

The second cluster has as top function the soft max function
and contains almost all the backpropagation stages. The second
cluster contains: take difference(), get delta matrix weights3(),
get oracle activations2() and get delta matrix weights2() functions.

The last cluster is get oracle activations1() function and it
mainly updates the weights and the biases. It contains :
get delta matrix weights1() and update weights() functions.

50



CHAPTER 5. ARCHITECTURE IMPLEMENTATION

Figure 5.5: Block diagram of the introduced architecture (Clusters). The
bold arrows represent the assignment of the generated input matrices to
FIFO structures. The intermediate matrices are also set to FIFO and as
well the last cluster returns the new weights and biases with FIFOs to
the start.

5.3.2 Hardware optimizations

The FIFO directive addition was our first optimization, which allows the
data to stream between the clusters. This design was essential for our
architecture, as we need the data to stream in order to achieve parallel
execution of the clusters. FIFOs also are required for the mapping of our
system on a hardware platform, which is described in the next section.
Our policy was again to choose pipeline and loop unrolling directives that
provide about the same percentage of acceleration for the same amount
of area increase.
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CLUSTER 1

We mention first of all that all inputs and outputs of all three clusters
were set to FIFO interface.

In respect to the first cluster we used Dataflow directive to
its top Function, i.e., matrix vector product with bias input layer()
and pipeline directive on its function’s body. Then the side
functions matrix vector product with bias second layer(), add bias(),
matrix vector product with bias output layer() and RELU() were
pipelined or unrolled.

The matrix vector product with bias second layer() function as it is
the larger in terms of iterations had impressive results. It consists of
two for-loops that are nested and the pipeline directive unrolled fully
these loops in order to schedule the instructions to be fetched at every
cycle. Also, we set the option II=2 on the directive in order to resolve
the problem with the bottleneck of loading operation of an array.

Next function that was optimized is RELU(). We stated before
that this function is called many times so its optimization was highly
efficient. We used here the pipeline directive. As the function’s loop was
fully unrolled, a carried dependency constrain came along on the store
operation for activations[ ] variable inside the loop, as it is shown in the
list of code below. The tool automatically calculated that the target of
the pipeline directive should be II=16 in order to get that issue resolved.

TYPE RELU( ) {
i n t n=1;
f o r ( i = 0 ; i < s i z e ; i++) {

#pragma HLS PIPELINE I I=16
da c t i v a t i on s [ i ] = a c t i v a t i o n s [ i ]∗(1.0− a c t i v a t i o n s [ i ] ) ;
a c t i v a t i o n s [ i ] = 1.0/(1 .0+ exponent i a l ( a c t i v a t i o n s [ i ] ) ) ;

}

Listing 5.4: Example of a pipeline directive on ”RELU” function

Finally we unrolled the inner loop of the last function add bias().
The loop contains a simple add operation and we unrolled it for factor 4
in order to have the best trade off.

CLUSTER 2

As far as the second cluster, we used pipeline directive to all its functions
and Dataflow directive to the top function. More specifically the
Dataflow directive didn’t make any latency improvement but decreased a
bit the used resources (2% FFs and 3% LUTs). This is based on the fact
that the tool automatically schedules the functions to operate in parallel
when ever possible so the throughput is optimal. This directive adds
memory channels (with FIFO buffers) between tasks to maximize data
flow, fact that explains the area utilization decrease.

This cluster has also a function that maps almost all the clusters
complexity. This function is get delta matrix weights 2() and was
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optimized with a pipeline directive. Although, there was a carried
dependency constrain, causing the directive to have II=32, we kept this
II option to 32 in order to have the greatest trade off for latency.

The other three functions get delta matrix weights 3(),
get oracle activations 2() and take difference() were also pipelined
with no issues whatsoever, giving accumulatively the last piece of
improvement.

CLUSTER 3

Finally, the third cluster has also mostly been pipelined. Typically,
for the top function (get oracle activation1()) was used the Dataflow
directive, while the inputs and the outputs were applied with FIFO
interface directives and also the main body of the function was pipelined.
There was an issue in pipelining the main body of this top function,
which contains two nested for- loops. There was a carried dependency
constrain issue when pipelining the outer loop, that needed to be resolved
with the option II=32 of the directive. This directive also created too
much area so the trade off wasn’t efficient enough. So, we decided to
pipeline only the inner loop that gave a better trade off with only a small
bottleneck issue which was resolved with the II=4 option.

The second function of this cluster is get delta matrix weight1()
which was also pipelined. There was also an issue here, as the load
operation could not be scheduled due to few memory ports. II=32 solved
this issue, leading to some latency cycles loss.

Finally, there is the update weights() function which embodies more
than 60% of the clusters functionality. It contains 12 for loops, and 6
of them are double nested loops. We used the pipeline directive to all
of them, leading to a satisfying speedup for a reasonable area trade off.
More details about the above will be given in Chapter 6.

5.4 Final System Integration

For the last part of this thesis we tried to combine our work with an
already existent application about hardware accelerators developed from
researchers in our laboratory.

This application is called RACOS(Reconfigurable ACcelerator
OS)[22] and in a nutshell is a system that produces an interface between
software and FPGA hardware and provides the capability to a user
to load\unload compatible accelerators on the Partial Reconfiguration
Regions (PRR) of a FPGA and evaluate them. The system is capable
of loading multiple accelerators on a FPGA and scheduling them for
execution using four policies: Simple, In Order, Out of Order and
Forced. The first two policies consider the submission order, while the
other two target to reduce the number of reconfigurations.
Figure 5.6 shows the hardware architecture of this system [8].
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Figure 5.6: RACOS design architecture

The figure is divided into two parts, that represent the two components
of the design. The Host is a typical desktop computer(gray blocks)
and the other part is an FPGA board that is connected to the host
PC with the PCI express interface. Data can be transfered from the
Host to the FPGA and vise versa via DMA(Direct Memory Access)
transactions. The FPGA is divided into two segments, the static and
the reconfigurable as it is highlighted in the figure. The static part
contains all the necessary components for loading and accessing the
accelerators, which are the PCIe and DMA that control the data I\O,
the IRQ generator that sends interrupts to the CPU informing for the
current state, the Reconfiguration Controller that schedules the data
into the PRRs via the ICAP port and various FIFOs and buffers that
temporary save and transfer data. Finally, the Partially reconfigurable
segments are the area where the accelerators are loaded and executed.

We used this system to load and test our backprop accelerator.
We tested the original architecture with and without optimizations,
the second architecture (Clusters) with and without optimizations and
the third design of the clustered version with best optimization for the
latency. The results will be presented in Chapter 6.
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5.4.1 Best optimization of clustered architecture

In this last section we describe our second Approach on the second
architecture. We optimized the clustered version of Backprop algorithm
trying to achieve the maximum latency improvement. We scrutinize each
cluster to find that point where the latency speed up is maximum.

Cluster 1

With regard to the first cluster, we analyzed further from the
Vivado HLS result report the latency estimations for each
function and each loop. Two of the functions, RELU() and
matrix vector product with bias second layer() are the most
time-consuming. In section 5.3.2 we described that some of the
applied pipeline directives had an Initiation Interval (II) different than
1 clock cycle, which is the target. Also, some loops where not fully
unrolled. We agreed with this compromise because we did concern
about the area increase.

For this design, we moved towards minimizing the latency of the
mapped architecture. Taking this in to mind, we applied on the two
functions, matrix vector product with bias second layer() and RELU(),
pipeline directives enforcing the tool to achieve II=1 in combination with
Array partition directives on the arrays that created those issues. We
also fully unrolled add bias() functions for-loops and in that way we hit
a ceiling on minimizing latency but for a radical area increase.

Cluster 2

The same logic stands also for cluster 2. We kept all the already applied
directives and added a few more on the places where we previously
decided that it did not worth it. The main improvement came for the
get delta matrix weights2() function, which initially had an issue with
the pipeline directive. For our first optimization policy we decided to
keep the II=32 option as the tool suggested, solving the issue and keeping
in that way the best trade of. For our second policy we needed all the
latency improvement so we enforced the tool to achieve II=1 no matter
how much area must be utilized. Finally we used pipeline directives on
the top function over all the for-loops (even the small ones) trying to find
the point where the latency optimization is max. The results are shown
in subsection 6.3.2.

Cluster 3

A lot of effort was put on cluster 3, too, and especially in
update weights() function that has many loops and operations. Our
policy was again to keep the efficient optimizations and try to find out
ways to maximize the speed up adding new ones or improving the existing
ones.
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For the first policy, we observed that some loops could not be
pipelined efficiently because of data dependencies and array bottlenecks,
compelling us to apply II > 1 or to avoid pipelining them altogether.
In some cases we enforced the II=1 option but in other ones this did
not work. We talk about for-loops, where pipeline directives created a
significant decrease of the clock speed due to critical path issues that
were created by operations like division and multiplication. So now we
decided to manually manipulate them. For example the following loop
created a clock increase (13ns from 8ns) because of data dependencies
inside the loop when the pipeline directive tried to fully unroll it.

f o r ( i =0; i < input d imens ion ; i++){
f o r ( j = 0 ; j < n p l ; j++){

weights1 [ i ∗ n p l + j ] −= ( d weights1 [ i ∗ n p l + j ] ∗ l r ) ;
norm += weights1 [ i ∗ n p l + j ]∗ weights1 [ i ∗ n p l + j ] ;

}
}

Listing 5.5: Example of a loop that created data dependencies before
optimization

We firstly flattened manually the above loop, then we applied
manual unrolling with factor 8 and finally we managed to solve the
critical path problem with the II=4 option in the pipeline directive.

f o r ( i =0; i < input d imens ion ∗ n p l ; i+=8){
#pragma HLS PIPELINE I I=4

weights1 [ i ] −= ( d weights1 [ i ] ∗ l r ) ;
weights1 [ i +1] −= ( d weights1 [ i +1] ∗ l r ) ;
weights1 [ i +2] −= ( d weights1 [ i +2] ∗ l r ) ;
weights1 [ i +3] −= ( d weights1 [ i +3] ∗ l r ) ;
weights1 [ i +4] −= ( d weights1 [ i +4] ∗ l r ) ;
weights1 [ i +5] −= ( d weights1 [ i +5] ∗ l r ) ;
weights1 [ i +6] −= ( d weights1 [ i +6] ∗ l r ) ;
weights1 [ i +7] −= ( d weights1 [ i +7] ∗ l r ) ;
norm += weights1 [ i ]∗ weights1 [ i ]

+ weights1 [ i +1]∗weights1 [ i +1]
+ weights1 [ i +2]∗weights1 [ i +2]
+ weights1 [ i +3]∗weights1 [ i +3]
+ weights1 [ i +4]∗weights1 [ i +4]
+ weights1 [ i +5]∗weights1 [ i +5]
+ weights1 [ i +6]∗weights1 [ i +6]
+ weights1 [ i +7]∗weights1 [ i +7] ;

}

Listing 5.6: The previous loop manually manipulated
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Finally we applied pipeline directives to every for-loop of the cluster
3 to ensure that everything is at max latency efficiency.
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Chapter 6

Results

6.1 Baseline performance of Backprop

The MachSuite benchmark provides fully functional and synthesizable
code for each hardware accelerator that it describes. We used
the provided input data set for Backprop algorithm to conduct our
experiments and to evaluate our introduced architectures.

For the first architecture of Backprop the input dataset is provided
along with the algorithm. A generate.c file produces the initial input
that is given to the algorithm. The weight and the bias matrices for the
input, the hidden and the output layer are randomly produced, as well
as the training data. The training target matrices are filled with ones.
The size of all matrices is arbitrarily chosen by the MachSuite developers
and the total amount of the input dataset ranges around 65 KB.

We used the execution results of this original algorithm, with
this specific input dataset as a reference point for comparison with our
mapped architectures.

6.2 First Architecture

First, the Xilinx Vidado HLS tool was used to compare the performance
of the proposed hardware-based architecture of the algorithm vs.
its software-based solution. This tool creates automatically the
hardware architecture of the algorithm and gives information about
the performance and memory configuration of the mapped hardware
architecture.

Figure 6.1: Timing of the original Backprop using the default input
dataset(65KB)
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The first result that is shown on the synthesis report of the tool
is the timing, Figure 6.1. The target device is a Virtex 6 device that
uses clock at 125 MHz, i.e, 8 ns clock cycle. The tool estimated that the
mapped algorithms will have a 7.43 ns clock cycle, which is acceptable.

Figure 6.2: Latency and throughput in clock cycles for the original
Backprop using the default input dataset(65KB)

Second, the report shows the latency of the algorithm. The
default input dataset (65 KB) was used to test the algorithm. The tool
calculated that the mapped algorithm takes 99.507.915 cycles (of 8ns
each), which means about 0,796 sec to finish execution. Interval shows
the clock cycles that are needed for this design with this specific input
dataset to accept a new set of input data.

Figure 6.3: Memory Utilization of the original Backprop using the default
input dataset(65KB)

Finally the report displays the memory utilization of the produced
hardware. Figure 6.3 shows the total use of the hardware resources in
terms of BRAM 18K, DSP48E, FFs and LUTs. The hardware-based
mapping of Backprop algorithm needs 34 BRAMs, 112 DSP48Es, 34956

60



CHAPTER 6. RESULTS

Flip Flops and 38593 LUTs. The report shows also, the amount of those
components that are available on the Virtex6 board as well the utilization
percent. We can also see more thoroughly how that memory is used. The
Expression line on the report shows the area resources, that some small
operations, i.e., add, sub, or, etc, need, to be mapped on hardware. The
Memory line refers to the RAM space, that is used mainly for the input
matrices and for some intermediate matrices, which are used for storing
the data as the algorithm runs. The report also shows the usage of some
extra multiplexers and registers for addressing and storing some matrices
in the main function. Finally, the Instance line, which takes the most
memory, represents the algorithms functionality divided in functions. In
more details, Figure 6.4 shows how the tool maps each function of the
algorithm.

Figure 6.4: Instantiation of the algorithms functions using the default
input dataset(65KB)

6.2.1 First Architecture Performance

In this section we will describe the contribution of each directive that we
applied on the original version of Backprop algorithm architecture.

First, we used the Dataflow directive (Table 6.1). As we stated
before, this directive adds channels between tasks to allow the data to
flow. The interesting thing about that assignment in our case is that it
lead to a small decrease of the total latency (64385 cycles ∼ 0.06%) with
an appreciable decrease in area. -14 BRAMs (-12.5%), -4569(-12.8%) FFs
and -5132(-13.3%) LUTs. The lack of a great latency improvement is due
to the tools compiler automatically tries to schedule the functions to run
concurrently when data is ready. The area decrease is because of slight

61



6.2. FIRST ARCHITECTURE

modifications all over the design, mainly multiplexers and intermediate
arrays were subtracted and replaced with the FIFO configuration of the
channels.

LATENCY(cycles) BRAM DSP48 FF LUT

INITIAL 99507915 34 112 34956 38593

DATAFLOW 99443530 34 98 30387 33461

CHANGE -64385 0 -14 -4569 -5132

Table 6.1: Dataflow directive over the top function of the original
architecture

The next function was exponential(), where we used the loop
unrolling with factor 4 directive. The choice of factor in this directive was
according to the best trade-off between latency and area. We managed
to save accumulative almost 3 million clock cycles (∼ 3% improvement)
of the latency with the cost of 500 FFs (∼ 1%) and 6081 LUTs (∼ 18%).
All that area was used by the tool to construct the new fully unrolled
structure of exponentials() main loop (Table 6.2).

LATENCY(cycles) BRAM DSP48 FF LUT

PREVIOUS 99443530 34 98 30387 33461

UNROLLING f=4 96838301 34 98 30887 39542

CHANGE -2605229 0 0 +500 +6081

Table 6.2: Loop unrolling of Exponential function of the original
architecture (Previous refers to the Dataflow directive above)

Then we added pipeline with II=16 on the for-loop of RELU()
function (Table 6.3) due to a carried dependency constrain in it. The
number of the II was calculated by the tool and gives us the best trade-off.
We gained about 6 million cycles latency improvement (-∼ 6%) with
area increase 12 BRAMs (+∼ 35%), 28 DSP48Es (+∼ 29%), 5699 FFs
(+∼ 15%) and 8322 LUTs(+∼ 21%). Pipelining with II=1 here wasn’t
a feasible choice, as while trying this directive to achieve II=1, it results
a radical increase of DSP48, FF and LUT utilization (about 4-5 times
more).

LATENCY(cycles) BRAM DSP48 FF LUT

PREVIOUS 96838301 34 98 30887 39542

PIPELINE II=16 90428652 46 126 36586 47864

CHANGE -6409649 +12 +28 +5699 +8322

Table 6.3: Loop unrolling on RELU function of the original architecture
(Previous refers to the loop unrolling directive above)
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Next, Table 6.4 shows that we optimized the
three functions, matrix vector product with bias input layer,
matrix vector product with bias second layer and
matrix vector product with bias output layer by applying pipeline
and unrolling directives. The first, after pipelined with II=1, managed
to achieve ∼ 3% acceleration for about the same percentage of area
penalty. In the second was applied pipeline with II=2 (due to array
bottlenecks) and due to the many iterations that it has in its loops,
achieved ∼ 12.5% latency decrease for 22% increase in FFs and 14%
LUTs. The third when pipelined created way more area penalty than
latency benefit so we chose to unroll by factor 4 its loop, gaining about
0.4% time for about the same area percent increase.

LATENCY(cycles) BRAM DSP48 FF LUT

PREVIOUS 90428652 46 126 36586 47864

INPUT II=1 88593109 46 140 40527 50409
SECOND II=2 78939760 46 154 49130 57891
OUTPUT f=4 78907812 46 154 49304 58137

CHANGE -11520840 0 +28 +12718 +10273

Table 6.4: The three functions of the original architecture after applying
pipeline directives to the first two and loop unrolling directive to the
third (Previous refers to the loop unrolling directive above)

Next, we will describe the functions that map the backpropagation
part and we will present them together in Table 6.5. Pipeline directives
were used for all of them. The take difference(), get oracle activations2
and the get delta matrix weights3() functions where pipelined with
no problem (II=1). For the rest functions appeared conflicts on
data dependencies that were resolved increasing the II option of the
directives. Thus, get delta matrix weight2 and get oracle activation1
functions had II=32 due to loop-carried dependencies (a constrain in
loops that one iteration must wait for the previous one to finish)
and get delta matrix weight1 had II=32 due to array bottlenecks. All
these directives gained accumulatively about 22% acceleration with 13%
BRAM, 62% DSP48E, 31% LUT and 23% FF increase utilization.

Later, there is the Update weight() function that is the most
computational intensive function. Table 6.6 shows the total gain that
the pipeline directives caused on the function.

More specifically, the Update weights function contains 12 for-loops
and all of them were pipelined. Table 6.7 shows in details the pipeline
directives for each for-loop. The loops that are nested have an (N)
indicator next of their name in the table. Loops like number 5 and 7 have
the more iteration and thus came from their optimization the most speed
up. After optimizing all these for- loops, we can see that this function
alone gained almost 48 million clock cycles that is about 50% speed up to
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PIPELINE LATENCY(cycles) BRAM DSP48 FF LUT

PREVIOUS 78907812 46 154 49304 58137

TAKE DIFF 78756711 46 154 49297 58163
MATRIX W3 78435112 48 165 49817 58456
OR ACT2 77907970 48 168 50569 59350
MAT W2 II=32 71535811 50 190 52790 61279
OR ACT1 II=32 62457852 50 229 62710 69948
MAT W1 II=32 61165099 52 251 64870 71733

CHANGE -17742713 +6 +97 +15566 +13596

Table 6.5: Back-propagation functions of the original architecture, all
with pipeline directives. Those that don’t have an II indication have the
default II=1(Previous refers to the directives above)

PIPELINE LATENCY(cycles) BRAM DSP48 FF LUT

PREVIOUS 61165099 52 251 64870 71733

UPDATE W 13247500 52 254 86882 91600

CHANGE -47917599 0 +3 +22012 +19867

Table 6.6: Update weights function of the original architecture with
pipeline directives (Previous refers to the directives on the table above)

the original algorithm, for the cost of 3 DSP48, 22012 FFs(∼ 60% more)
and 19867 LUTs(∼ 50% more) on the original memory requirements of
the algorithm (34956 FFs, 38593 LUTs).

Finally, Backprop algorithm was about 86.3% faster, from 796
ms to 108.3 ms based on 8 ns clock period. The throughput of the
algorithm is the same with the latency. Data dependencies allowed for
no concurrency so the only performance improve came from the latency
speed up. The penalty for this improvement was the increase of 52% for
BRAM, 126% for DSP48E, 148.5% for FF and 137% for LUT as it
is presented in Figure 6.5
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PIPELINE LATENCY(cycles) BRAM DSP48 FF LUT

PREVIOUS 61165099 52 251 64870 71733

Loop 1 (N) 55949450 52 254 67921 74749
Loop 2 55780563 52 254 68055 74899
Loop 3 (N) 50980153 52 254 71398 76786
Loop 4 50399630 52 254 71425 76801
Loop 5 (N) 35112582 52 254 77998 82412
Loop 6 34925627 52 254 78068 82499
Loop 7 (N) 16882648 52 254 82832 87533
Loop 8 16256482 52 254 82850 87579
Loop 9 (N) 14880148 52 254 84323 89209
Loop 10 14536925 52 254 84361 89289
Loop 11 (N) 13488509 52 254 86063 91333
Loop 12 13247500 52 254 86882 91600

CHANGE -47917599 0 +3 +22012 +19867

Table 6.7: For-loops of the Update weights function of the original
architecture (Previous refers to the table of directives above)

Figure 6.5: Comparison of the initial statistics of the original algorithm
and the final after the optimization

6.3 Second Architecture

The second architecture without any directive is a little slower than the
original one (about 10 million cycles ∼ 10% that is about 80 ms) as the
data is stored in arrays before exiting and after entering the next module.
That process needs, also, extra area for storing and reading the data.
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LATENCY(cycles) BRAM DSP48 FF LUT

ORIGINAL 99507915(796 ms) 34 112 34856 38593

CLUSTER 1 29882627(239 ms) 34 70 16484 18088
CLUSTER 2 9812600(78.5 ms) 28 14 7820 9925
CLUSTER 3 70024800(560 ms) 86 28 12913 14211
CL1+CL2+CL3 109720027(877.5 ms) 148 112 37056 42842

CHANGE +9762112(81.5 ms) +108 0 +2200 +4249

Table 6.8: The second architecture of the clusters and the accumulative
performance in comparison to the original architecture

6.3.1 Initial performance results for clustered
version

The addition of FIFO directives had a small enhancement in speed up
(2.8 million cycles ∼ 2%) despite the fact that the data is now streamed
continuously between clusters. This result is not impressive for our
algorithm because for the most part this algorithm has a sequential
execution with many data dependencies. There was also a slight decrease
on resources.

LATENCY(cycles) BRAM DSP48 FF LUT

ORIGINAL 99507915 34 112 34856 38593

CLUSTER 1 29024595 34 70 16363 18093
CLUSTER 2 9748541 28 14 7721 9917
CLUSTER 3 68103139 86 28 12668 14189
CL1+CL2+CL3 106876329 148 112 36752 42221

CHANGE +7368414 +108 0 +1896 +3628

FIFO- NO FIFO -2843698 0 0 -304 -621

Table 6.9: The clustered architecture with the addition of FIFO
directives, the comparison of Cl1+Cl2+Cl3 with the original algorithm
and the difference between the Cl1+Cl2+Cl3 with FIFOs design and the
without FIFOs one

CLUSTER 1

Overall performance of Cluster 1

Table 6.10 shows the overall optimization of cluster 1 as well the total
percentage of speed up for the equivalent change in area.
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CL1 ORIGINAL OPTIMIZED CHANGE

LATENCY 239 ms 20 ms -92%

BRAM 18K 34 36 +5%
DSP48E 70 112 +60%
FF 16484 30795 +86%
LUT 18088 32153 +77%

Table 6.10: Cluster 1, comparison of the original form together with the
optimized design, initial optimization

Cluster 1 in detail

Table 6.11 shows all the applied directives on the TOP function of Cluster
1. The Dataflow and FIFO directives were applied over the whole top
function and the pipeline directive was applied on the top functions body,
which is a for- loop.

CLUSTER 1 LATENCY(cycles) BRAM DSP48 FF LUT

INITIAL 29882627 34 70 16484 18088

FIFO 29042595 34 98 16363 18093
DATAFLOW 29036958 34 98 16202 18055
PIPELINE 27190193 34 84 20155 20482

CHANGE -2692434 0 +14 +3671 +2394

Table 6.11: All the top function’s directives of Cluster 1, initial
optimization

The applied directives on the top function managed to gain 2.6
million clock cycles (-∼ 9%) for 14 DSP48Es(+∼ 20%) 3671 FFs (+∼
22%) and 2394 LUTs(+∼ 13%) Table 6.11.

Next, we used pipeline directive on the
matrix vector product with bias second layer function. In this case
the Initial Interval option was set II=2 due to limited memory ports of
the BRAMs where the arrays are stored. The pipelining gave 35% latency
improvement with the penalty increase in area of 2 BRAMs(+5%), 14
DSP48Es(+16%), 8603 FFs(+42%) and 7477 LUTs(+50%) Table 6.12.

CLUSTER 1 LATENCY(cycles) BRAM DSP48 FF LUT

PREVIOUS 27190193 34 84 20155 20482

PIPELINE II=2 17536844 36 98 28758 27959

CHANGE -9653349 +2 +14 +8603 +7477

Table 6.12: The matrix vector product with bias second layer function
of the first cluster, initial optimization

Next is Exponential() function. We used here, as with the original
backprop the loop unrolling with factor 4 directive. The choice of factor
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in this directive was according to the best trade-off between latency and
area. We managed to save accumulative almost 2.5 million clock cycles
(∼ 14% improvement) of the latency with the cost of 289 FFs (∼ 1%)
and 3851 LUTs (∼ 14%). (Table 6.13).

LATENCY(cycles) BRAM DSP48 FF LUT

PREVIOUS 17536844 36 98 28758 27959

UNROLLING f=4 14973729 36 100 29047 31810

CHANGE -2563115 0 +2 +289 +3851

Table 6.13: Loop unrolling of Exponential function (Previous refers to
the table of directives above)

Next is RELU() function. Here, it was used a pipeline directive
with II=16 (loop-carried dependencies on a division operation) that saved
about 12 million cycles, which is a further 81% speed up, reaching our
optimum time for only 12 DSP48Es (12% more), 1748 FFs (6% more)
and 343 LUTS (1% more) Table 6.14.

CLUSTER 1 LATENCY(cycles) BRAM DSP48 FF LUT

PREVIOUS 14973729 36 100 29047 31810

PIPELINE II=16 2566477 36 112 30795 32153

CHANGE -12407252 0 +12 +1748 +343

Table 6.14: RELU function of cluster 1, initial optimization

Finally for cluster 1 there is the add bias() function. We tested
for that function both, loop unrolling with various factors and pipeline
directives and none of them provided improvement that was efficient
enough. So we didn’t use any directive.

CLUSTER 2

Overall performance of Cluster 2

Table 6.15 presents the total latency optimization for Cluster 2

CL2 ORIGINAL OPTIMIZED CHANGE

LATENCY(cycles) 9748541(78.5 ms) 2178721(17 ms) -78%

BRAM 18K 28 34 +21%
DSP48E 14 50 +257%
FF 7721 10894 +41%
LUT 9917 12675 +27%

Table 6.15: Comparison of the original cluster 2 and optimized design,
initial optimization
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Cluster 2 in detail

The second cluster is the smallest one. The top function soft max()
wasn’t optimized further, except of the Dataflow and FIFO interface
directives. This function is very small and everything we tried wasn’t
efficient enough. So, with the Dataflow and FIFO directives we had
about 0.6% latency decrease along with 3% less FFs and 2% less LUTs
(Table 6.16).

CLUSTER 2 LATENCY(cycles) BRAM DSP48 FF LUT

INITIAL 9812600 28 14 7820 9925

FIFO 9748541 28 14 7721 9917
DATAFLOW 9742118 28 14 7569 9698

CHANGE -70482 0 0 -251 -227

Table 6.16: Top function of Cluster 2, initial optimization

Next, we applied pipelining with II=32 (due to loop carried
dependencies) to the get delta matrix weight2() function (Table 6.17)
and it gave us 64% latency speed up for 7% more BRAMs, 157% more
DSP48Es, 23.5% FFs and 18% LUTs.

CLUSTER 2 LATENCY(cycles) BRAM DSP48 FF LUT

PREVIOUS 9748541 28 14 7569 9698

PIPELINE II=32 3001219 30 36 9877 11630

CHANGE -6747322 +2 +22 +2308 +1932

Table 6.17: get delta matrix weight2 function of cluster 2, initial
optimization

The last three functions get delta matrix weights 3(),
get oracle activations 2() and take difference() were also pipelined
with no dependency errors and bottlenecks, giving accumulatively 24%
further improvement to the latency with 13% more BRAMs, 39% more
DSP48s, 10% FFs and 7.5% more LUTs as it is shown in Table 6.18.
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CLUSTER 2 LATENCY(cycles) BRAM DSP48 FF LUT

PREVIOUS 3001219 30 36 9877 11630

ORACLE ACT2 2549077 32 50 10570 12154
MATRIX W3 2182285 34 50 10791 12451
TAKE DIFF 2178721 34 50 10894 12675

CHANGE -822498 +4 +14 +1017 +1045

Table 6.18: Pipeline on the last three functions of cluster 2, initial
optimization

CLUSTER 3

Overall performance of Cluster 3

Table 6.19 shows the comparison of the original performance of cluster 3
and the optimal one, showing also the percentage of change.

CL3 ORIGINAL OPTIMIZED CHANGE

LATENCY(cycles) 70024800(560 ms) 7908318(63.2 ms) -89%

BRAM 18K 86 92 +7%
DSP48E 28 42 +50%
FF 12913 40523 +213%
LUT 14211 35991 +153%

Table 6.19: Comparison of the original cluster 3 and optimized design,
initial optimization

Cluster 3 in detail

For cluster 3 we followed the same policy as with the previous two clusters
and we applied Dataflow and FIFO directives. Also, we used pipeline
with II=32 directive for the loop of the top functions body, which is
get oracle activations1 function. All these optimizations contributed the
first 10% speed up but with a small penalty in area, 0.6% more FFs and
1% more LUTs Table 6.20.

CLUSTER 3 LATENCY(cycles) BRAM DSP48 FF LUT

INITIAL 70024800 86 28 12913 14211

FIFO 68103193 86 28 12668 14189
DATAFLOW 68085673 86 28 12540 14009
PIPELINE II=32 61314895 86 28 12999 14371

CHANGE -8709905 0 0 +86 +160

Table 6.20: Top function of Cluster 3 with all the added directives (Initial
refers to the unoptimized cluster 3), initial optimization
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The next function of this cluster is get delta matrix weight1. This
was pipelined with II=32 (due to array bottlenecks) and has gained an
extra 2% latency improvement and caused ∼ 0.6% FF and ∼ 0.3% LUT
increase Table 6.21.

CLUSTER 3 LATENCY(cycles) BRAM DSP48 FF LUT

PREVIOUS 61314895 86 28 12999 14371
PIPELINE II=32 60089461 86 28 13089 14417

CHANGE -1225434 0 0 +90 +46

Table 6.21: get delta matrix weight1 function with pipeline directive,
initial optimization

Finally, for the update weights function, after the implementation
of pipeline directives to all for- loops of the functions body we managed
to achieve 70% latency improvement for 7% more BRAMs, 0% more
DSP48E, 88% more FFs and 41% more LUTs as it is shown in Table 6.22.

CLUSTER3 LATENCY(cycles) BRAM DSP48 FF LUT

PREVIOUS 60089461 86 28 13089 14417

Loop 1 (N) 56238749 86 42 16333 16786
Loop 2 56056520 86 42 16486 16803
Loop 3 (N) 49586515 86 42 22627 19461
Loop 4 49179638 88 42 22653 19507
Loop 5 (N) 26810845 90 42 34275 30943
Loop 6 26652003 90 42 34300 30988
Loop 7 (N) 9807010 92 42 38431 33496
Loop 8 9539362 92 42 38448 33623
Loop 9 (N) 8663501 92 42 38448 33623
Loop 10 8332842 92 42 39150 34520
Loop 11 (N) 8084589 92 42 39956 35406
Loop 12 7908318 92 42 40523 35991

CHANGE -52181143 +6 +14 +27434 +21574

Table 6.22: Pipeline directives on every for-loop of the Update weights
function of Cluster 3, initial optimization

Summary for the first latency optimization and throughput

The final results for the first optimization of our architecture about the
execution times are:

• Cluster 1, before optimization 239 ms and after 20 ms

• Cluster 2, before optimization 78.5 ms and after 17 ms

• Cluster 3, before optimization 560 ms and after 63.2 ms
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The latency summary of all the clusters is 100.2 ms, with the
execution time of the three unoptimized clusters being 877.7 ms which
is about 88.6 % speed up. The equivalent execution time for the original
Backprop optimized is 108.3 ms making the clustered version 8.1 ms
faster(∼ 8%).

BRAM DSP48 FF LUT

CLUSTER 1 36 112 30795 32153
CLUSTER 2 34 50 10894 12675
CLUSTER 3 92 42 40523 35991

CL1+CL2+CL3 162 204 82212 80819

AVAILABLE 832 768 301440 150720

BALLANCE 670 564 219228 69901

Table 6.23: The total area results of all clusters for the first optimization
policy and the comparison with the available resources on a Virtex 6
FPGA.

6.3.2 Best optimization of clustered version

This section describes the different optimization policy, which we applied
on the clustered version of Backprop algorithm. The second policy aims
to maximize the latency optimization, independently to the area increase
but still to fit inside a Virtex6 FPGA. We used this policy to find the
best execution time for the algorithm.

We tried to optimize latency by changing the options on the pipeline
directives, where there was some kind of dependency or bottleneck issues
and the tool estimated different II value > 1. Also we fully unrolled the
loops that we previously decided not to.

Cluster 1

Overall performance of Cluster 1

Table 6.24 shows the contribution of our best optimization over the initial
cluster 1 without any directives.

Table 6.25 compares the results of the first optimization vs. the
second one (best latency optimization) and the percentage of change.

The final results show that the first cluster initially was executed
in 29.882.627 clock cycles, i.e., 239ms, the first optimization decreased
latency to 2.566.477 cycles, or, 20 ms execution time and the best
improvement that we managed to achieve is 1.987.948 clock cycles , or,
15.9ms which means that we had 93% speed up from the original cluster
1.

Figure 6.6 shows the report of the vivado HLS tool, where
the utilization estimates show that, even though we didn’t take into

72



CHAPTER 6. RESULTS

CL1 Initial Design Best Optimization CHANGE

LATENCY(cycles) 29882627 (239ms) 1987948 (15.9ms) -93%

BRAM 18K 34 44 +29%
DSP48E 70 368 +425%
FF 16484 100060 +507%
LUT 18088 99242 +448%

Table 6.24: Best latency optimization in comparison with the original
unoptimized cluster 1

CL1 1st Optimization Best Optimization CHANGE

LATENCY(cycles) 2566477 (20ms) 1987948 (15.9ms) -25%

BRAM 18K 36 44 +22%
DSP48E 112 368 +228%
FF 30725 100060 +225%
LUT 32153 99242 +209%

Table 6.25: First and best latency optimization for Cluster 1

consideration the area in our last effort for optimization, the final
architecture still fits in the board.

Figure 6.6: The report of Vivado HLS for cluster 1 after the best
optimization showing the total utilization percent on the Virtex 6

Cluster 1 in detail

For cluster 1 we didn’t change the Dataflow of the FIFO directives so we
took them for granted and continued from there. We changed for function
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matrix vector product with bias second layer the pipeline II option from
2 to 1 combined with an Array Partition directive as it is presented in
Table 6.26

CLUSTER 1 LATENCY(cycles) BRAM DSP48 FF LUT

PIPELINE II=2 17536844 36 98 28758 27959
PIPELINE II=1 17334894 36 98 30796 29569

CHANGE -201950 0 0 +2038 +1610

Table 6.26: matrix vector product with bias second layer function of the
first cluster, best latency optimization

Then, the biggest change happened in RELU() function. Initially
the tool suggested pipeline directive with II=16 in order to resolve a
carried dependency constraint. This constrain was issued on a double-
precision division operation. Enforcing the tool to achieve the II option
the tool utilized a large amount of DSP48, FF and LUT to create multiple
instances of this operation, optimizing further the latency but with a
massive cost on area as it is shown in Table 6.27.

CLUSTER 1 LATENCY(cycles) BRAM DSP48 FF LUT

PIPELINE II=16 2816477 36 112 30795 30153
PIPELINE II=1 2106449 42 339 84333 86644

CHANGE -710028 +6 +227 +53538 +56491

Table 6.27: RELU function of cluster 1, best latency optimization

The next change was in add bias function, where we fully unrolled
the previously, partial with factor 4 unrolled loop, as presented in
Table 6.28

CLUSTER 1 LATENCY(cycles) BRAM DSP48 FF LUT

UNROLLING F=4 2655107 42 121 34129 33135
UNROLLING FULL 2085748 42 141 34906 34856

CHANGE -569359 0 +20 +777 +1721

Table 6.28: add bias function of cluster 1 , best latency optimization

Finally, we applied pipeline directives to all for- loops that are
contained in the top function, which previously in the first optimization
policy we decided that they didn’t give a good trade off, achieving our
best time optimization (Table 6.29).
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CLUSTER 1 LATENCY(cycles) BRAM DSP48 FF LUT

PREVIOUS 2081347 42 359 88917 91362

TOP FUNCTION 1987948 44 368 100060 99242

CHANGE -93399 +2 +9 +11143 +7880

Table 6.29: Pipeline directives on the top functions body of cluster 1
(Previous refers to the added directives shown on the table above), best
latency optimization

Cluster 2

Overall performance of Cluster 2

Table 6.30 shows the best overall latency improvement of the second
cluster which firstly ran in 9.748.541 clock cycles, or, 78.5ms. The first
optimization achieved 2.178.721 cycles, or, 17ms and the last finally
achieved an execution time at 1.367.570 cycles, i.e, 11ms which is 85%
acceleration from the original (Table 6.31).

CL2 Initial Design Best Optimization CHANGE

LATENCY(cycles) 9748541(78.5ms) 1367570(11ms) -85%

BRAM 18K 28 34 +21%
DSP48E 14 254 +1714%
FF 7721 64450 +735%
LUT 9917 66763 +573%

Table 6.30: Best latency Optimization in comparison with the original
unoptimized cluster 2

CL2 1st Optimization 2nd Optimization CHANGE

LATENCY(cycles) 2178721(17 ms) 1367570(11ms) 35%

BRAM 18K 34 34 0%
DSP48E 50 254 408%
FF 10894 64450 492%
LUT 12675 66763 426%

Table 6.31: Best latency optimization of Cluster 2 in comparison with
the first one
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Figure 6.7: The report of Vivado HLS for cluster 2 after the best
optimization, showing the total utilization percent on the board

Cluster 2 in detail

Cluster 2 is the smallest of the three in area and the fastest in runtime
and it didn’t have a lot of margin for further optimization. The most
work was done in function get delta matrix weight2 which has the most
computation complexity of the cluster.

The Dataflow, FIFO interface directives and pipeline directives
with II=1 were again unchanged. Thus, we describe only the further
optimization. In get delta matrix weight2 function we had to face a
carried dependency issue for the pipeline directive that concluded having
II=32 (double precision multiplication). In this case, though, we forced
the tool to achieve II=1 in this function gaining almost 35% speed up
with the following results in Table 6.32

CLUSTER 2 LATENCY(cycles) BRAM DSP48 FF LUT

PIPELINE II=32 3376219 30 36 9877 11630

PIPELINE II=1 2321606 34 250 62229 64183

CHANGE -1054613 +4 +214 +52352 +52553

Table 6.32: get delta matrix weight2 function of cluster 2. We showed
in Table 6.17 from subsection 6.3.1 the results that a pipeline with
II=32 directive had on this function. Now, we demonstrate the further
optimization of this function with a different II option
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Previously, we decided for our first optimization policy not to apply
any directive on the top function of this cluster as nothing was efficient
enough. However, for the second policy we used pipeline directives on
the top functions body gaining a small percentage of latency improve as
it is shown in Table 6.33.

CLUSTER 2 LATENCY(cycles) BRAM DSP48 FF LUT

PREVIOUS 2321606 34 250 62229 64183

PIPELINE 1367570 34 254 64450 66763

CHANGE -954036 +0 +4 +2221 +2580

Table 6.33: Top function of cluster 2 after the use of pipeline directives
on the functions body (Previous refers to the added directives shown on
the table above)

Cluster 3

Overall performance of Cluster 3

Table 6.34 shows the best overall latency improvement of the third
cluster. The original cluster 3 was executed in 70.024.800 clock cycles
(560ms), after the first optimization the execution time was 7.908.318
cycles (63.2 ms) and we achieved for the best case an execution time
at 5.508.096 clock cycles (44ms) which is 92% acceleration from the
original.

Table 6.35 shows the comparison of our first optimization of the
cluster 3 with the final optimization.
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CL3 Initial Design Best Optimization CHANGE

LATENCY(cycles) 70024800(560ms) 5508096(44ms) -92%

BRAM 18K 86 102 +18%
DSP48E 28 145 +417%
FF 12913 70602 +462%
LUT 14211 61078 +329%

Table 6.34: Best latency optimization in comparison with the original
unoptimized cluster 3

CL3 1st Optimization 2nd Optimization CHANGE

LATENCY(cycles) 7908318(63.2 ms) 5508096(44ms) -30%

BRAM 18K 92 102 +9.2%
DSP48E 42 145 +245%
FF 40523 70602 +74.2%
LUT 35991 61078 +71.5%

Table 6.35: Best latency optimization of Cluster 3 in comparison with
the first one

Figure 6.8: The report of Vivado HLS for cluster 3 after the best latency
optimization showing the total utilization percent on the board

Cluster 3 in detail

The point from where we started the further optimization of cluster 3 is
the point where we stopped the 1st optimization.

We tried the Dataflow directive on the Update weights function as
we present in Table 6.36.

For the top function of this cluster that is get oracle activation1(),
we kept the Dataflow and FIFO interface directives. This function had
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CLUSTER 3 LATENCY(cycles) BRAM DSP48 FF LUT

First Opt 9158318 92 42 40523 35991

DATAFLOW 8559293 92 84 56821 46400

CHANGE -599025 +0 +42 +16298 +10409

Table 6.36: The Dataflow directive effect over the update weights
function

an issue with one of the for- loops in our first optimization and we decided
to pipeline it with II=32 (due to iteration dependencies). Now, we used
pipeline with II=1 in combination with an Array Partition directive on
the array that created the issue as it is shown in Table 6.37.

CLUSTER 3 LATENCY(cycles) BRAM DSP48 FF LUT

PREVIOUS 8559293 92 84 56821 46400

TOP FUNCTION 6274359 94 109 68199 55417

CHANGE -2284934 +2 +25 +11378 +9017

Table 6.37: The Pipeline directive that was applied in the Top function of
cluster 3 for the best latency optimization (Previous refers to the added
directives shown on the table above)

In the last Table 6.38, we see the final difference that the change
from II=32 to II=1 in the pipeline after an array partition did to the
get delta matrix weight1 function.

CLUSTER 3 LATENCY(cycles) BRAM DSP48 FF LUT

PREVIOUS 6274359 94 109 68199 55417

PIPELINE II=1 5508096 102 145 70602 61078

CHANGE -766263 +8 +36 +2403 +5661

Table 6.38: Pipeline with II=1 directive on get delta matrix weight1
function (Previous refers to the added directives shown on the table
above), best latency optimization

Summary for the best latency optimization

The final results for the best optimization of our architecture for the
execution times are:

• Cluster 1, before optimization, 239 ms, after first optimization, 20
ms and after best, 15.9 ms.
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• Cluster 2, before optimization, 78.5 ms, after first optimization,
17 ms and after best, 11 ms.

• Cluster 3, before optimization 560 ms, after first optimization,
63.2 ms and after best, 44 ms.

The latency summary of all the clusters after first optimization
is 100.2 ms and after the best is 70.9 ms. The throughput of our
algorithm is now at maximum and equals latency.

BRAM DSP48 FF LUT

CLUSTER 1 44 368 100060 99242

CLUSTER 2 34 254 64450 66763
CLUSTER 3 102 145 70602 61078

CL1+CL2+CL3 180 767 235112 227083

AVAILABLE 832 768 301440 150720

BALLANCE 652 1 66328 -76363

Table 6.39: The total area results of all clusters for the best latency
optimization policy.

CL1+CL2+CL3 BRAM DSP48 FF LUT

First 162 204 82212 80819

Second 180 767 235112 227083

CHANGE +11% +275% +186% +180%

Table 6.40: Test

In Table 6.39 we collected all the area results of the second
optimization. We see that our policy while the most time optimum,
created more area in LUT units than the available on the Virtex 6
board, which we have as a target device. Table 6.41 contains the results
of the execution times for all three architectures about the clustered
version of backprop. The column ”original” refers to the unclustered
version of backprop, with and without optimizations.

optimization Cluster 1 Cluster 2 Cluster 3 Cl1+Cl2+Cl3 Original

No 239 ms 78.5 ms 560 ms 877.5 ms 796 ms

FIRST 20 ms 17 ms 63.2 ms 100.2 ms 108.3 ms

SECOND 15.9 ms 11 ms 44 ms 70.9 ms

Table 6.41: Comparison of all the execution times
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Charts

In this section we will demonstrate via charts how does the design
change latency over area and we will explain why we used our different
optimization policies for the clustered version of Backpropagation. We
use as indication units the number of Flip Flops and LUTs as the
other ones, i.e., BRAMs and DSP48Es have small variations and are
not representative of the logic.
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Each pair of points on the graph represents an addition of a directive
on the architecture until the last two pairs, which show the overall
optimization that we achieved. The initial decrease on area and as well in
latency (at about 95 million clock cycles) is due to the appliance of the
Dataflow directive. From then on, as we gradually add directives, the
area follows a linear increase with respect to the latency decrease until
the last pair of points, where is the last directive we added.

Cluster 1

The next two charts are about Cluster 1 and about our policy for the first
and best optimization, which we applied on it. In other words, we tried
to extract the optimum point for our first optimization policy from the
curve that the latency and area correlation follows. Each pair of points
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represent an addition of directives as we have described in detail in the
previous chapters.

10 20 30 40 50

50

40

30

20

10

5

0

Area x 103

L
at

en
cy

(c
lk

cy
cl

es
)

x
10

6

Gradual addition of directives on Cluster 1 for the first optimization

LUTs
Flip Flops

10 20 30 40 50 60 70 80 90 100 110

40

30

20

10

5432
0

Area x 103

L
at

en
cy

(c
lk

cy
cl

es
)

x
10

6

Gradual addition of directives on Cluster 1 for the best optimization

LUTs
Flip Flops

82



CHAPTER 6. RESULTS

We observe that when the latency is decreased and reaches about
2-3 million clock cycles, the further we proceed in optimizing it, creates
much more area overhead so the trade-off is disadvantageous. That’s the
reason why we stopped our first optimization at this point.

Cluster 2
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The optimum point, at where the trade-off is the best, is at about
2.5 million clock cycles. From there every additional directive caused a
huge area penalty for a small further speed up, that’s why we chose that
point for our first policy optimum.

Cluster 3
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The optimum point at where the trade-off is the best is at about 10
million clock cycles. We notice that from then on the area and especially
the amount of Flip Flops are increased rapidly and so we chose that point
for our first policy optimum.

6.4 Integration

In this section we will present the integration and testing of our work on
RACOS, which is a system developed by a member of our lab [8]. As
we described in section 5.4, RACOS gives us the capability to load one
or multiple accelerators in an FPGA and schedule them to be used by
one or more applications following four policies, Simple, In Order, Out
of Order and Forced.

Single application use

Firstly, we tested the second architecture (clusters) without any
optimizations. For the worst case scenario, we measured the total time
that is needed for a cluster to be initialized and executed on an empty
FPGA. This worst time includes, the time necessary for the clusters, to
be transfered on the FPGA, to be loaded in the Partial Reconfiguration
Region, the time that it takes for the data to be fetched in the memory
of the FPGA and the execution time for the cluster. We did that
procedure 10 times for each cluster and the average times are represented
in Table 6.42.

THEORETICAL INTEGRATED

CL1 239ms 1214ms
CL2 78.5ms 1062ms
CL3 560m 1564ms

Total 877.5 3840ms

Table 6.42: Worst case scenario for each cluster of the not optimized
clustered architecture. The theoretical values are calculated on a Virtex
6 FPGA running at 125 MHz with Vivado HLS

We did also a second test trying to get the best time results. For
this case we got the same measurements, but for a ”Hot” system. This
means that we had already loaded the accelerator and the data in the
system, so we measured the net execution time. We did that process
again for 10 instances for each cluster and we have the results in table
Table 6.43.

With our experiments on RACOS we managed, in the best case
scenario, to approximate the theoretical results that we got from the
hardware simulation of Vivado for the execution times of the clusters
architecture of Backprop. The actual system was 62.5 ms slower
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THEORETICAL INTEGRATED

CL1 239ms 253ms
CL2 78.5ms 103ms
CL3 560s 584ms

Total 877.5ms 940ms

Table 6.43: Best average case scenario for the not optimized clustered
architecture. The theoretical values are calculations of the Vivado HLS
on a Virtex 6 FPGA running at 125 MHz

than our theoretical times (Table 6.43), fact that is explained by the
reconfiguration delay cost of the FPGA.

Use of Multiple applications

Next, we tested the systems capability for 10 applications (the same
application was executed 10 times with different input datasets) running
simultaneously and scheduling the accelerators (clustered architecture)
according to the four policies. The difference between the policies is that
they try to reduce the number of the reconfigurations, so that the latency
penalties are reduced. The ”Simple” policy has the most reconfigurations
and ”Forced” the less. Each application uses all three clusters, i.e. the
whole accelerator Table 6.44.

Policy Execution

Simple 29200ms
In Order 16400ms
Out of Order 8700ms
Forced 5900ms

Table 6.44: Execution times for 10 concurrent applications per policy

We did the same experiment to test the softwares performance. We
ran the software of the accelerators on three cores on a general CPU (Intel
i7, at 3 GHZ), corresponding to the three PRRs on the FPGA, for the
same 10 applications. The results are 339 ms execution time, which is
again, many times faster than the most optimal policy for the hardware.
From this experiment we can see the impact that the reconfiguration cost
has, considering the difference between the ”Simple” and the ”Forced”
policies. The reconfiguration cost explains also the difference between
the software and hardware performances.
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Best latency optimization

Finally, we tested the second architecture with the best latency
optimization. We measured, on a hot system, the average results of
10 executions for each cluster on RACOS, and we show in Table 6.45 the
best performance that we achieved.

THEORETICAL INTEGRATED

CL1 15.9ms 39ms
CL2 11ms 33ms
CL3 44ms 68ms

Total 70.9ms 140ms

Table 6.45: Best case scenario for the best latency optimized clustered
architecture. The theoretical values are calculated for a Virtex 6 FPGA
running at 125 MHz with Vivado HLS

We measured the time that it takes for the software of this
particular architecture to be executed on an Intel i7-950 at 3 GHz. The
software completes execution in 93 ms. From Table 6.45 we can conclude
that in theory we managed to exceed software for 22.1ms, but the actual
execution time on the hardware was 47ms slower. The reconfiguration
delay of each cluster on the Partially Reconfigurable Region of the FPGA
causes this difference.

Systems behavior for big input

Backprop and all MachSuite algorithms are designed to have relatively
small inputs, e.g, a few KB, namely the size of an average cache memory.
The size of Backprops all input matrices is about 65 KB. In this thesis we
tested the algorithm with bigger inputs, indicatively in the order of MB,
so that we can test the theoretical and actual behavior our our design.

The input dataset is stored in the BRAMs on an FPGA. There is
a finite amount of available BRAMs on an FPGA and in our case for the
Virtex 6 there are 832 BRAM 18KB. That is about 14,97 MB. When the
input dataset for any accelerator is increased, the only quantity that is
substantially increased is the amount of BRAMs that are needed to store
that data.

1. The next two tables (Table 6.46, Table 6.47 ) contain the results
of the two architectures without optimization for the different
amounts of input datasets.
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CL1 CL2 CL3 CL1+CL2+CL3 No Clusters

65 KB 239 ms 78.5 ms 560 ms 877.5 ms 796 ms

1 MB 2198 ms 1248 ms 6569 ms 10015 ms 44400 ms
2 MB 3748 ms 2341 ms 12526 ms 18615 ms 122700 ms
3 MB 6068 ms 3785 ms 20106 ms 29959 ms 230500 ms
4 MB 7770 ms 4915 ms 26203 ms 38888 ms 342800 ms

Table 6.46: The execution times for the two architectures WITHOUT
optimizations(The clusters design has only FIFOs to the inputs and
outputs)

CL1 CL2 CL3 CL1+CL2+CL3 No Clusters

65 KB 4 % 3.3 % 10.3 % 17.6 % 4 %

1 MB 42 % 35.5 % 143 % 220.5 % 41.8 %
2 MB 83.1 % 71.3 % 286.3 % 440.7 % 83.1 %
3 MB 151.9 % 128.6 % 509.3 % 789.8 % 149.9 %
4 MB 163.9 % 140.6 % 570.9 % 875.4 % 163.9 %

Table 6.47: The percent of BRAM utilization for the two architectures
WITHOUT optimizations. With BOLD are the cases where the BRAM
utilization is overflown as it was calculated for a VIRTEX 6 board that
contains 832 BRAMs

We can see from the results that although the second architecture
(Clusters) created memory overflow on the FPGA (fact that causes
delay because the data must be fetched from the external memory)
the original algorithm is significant slower (up to 9 times). This
means that the streaming design was significantly faster when
tested for bigger inputs.

2. Table 6.48 and Table 6.49 show the same results for the first
optimization versions of the two architectures.

CL1 CL2 CL3 CL1+CL2+CL3 No Clusters

65 KB 20 ms 17 ms 63.2 ms 100.2 ms 108.3 ms

1 MB 171 ms 229 ms 679 ms 1079 ms 1740 ms
2 MB 320 ms 428 ms 1331 ms 2079 ms 4870 ms
3 MB 510 ms 696 ms 2123 ms 3329 ms 9130 ms
4 MB 661 ms 906 ms 2769 ms 4336 ms 13590 ms

Table 6.48: The execution times for the two architectures
OPTIMIZED(First optimization)

We can see, firstly, from Table 6.49 that the optimized versions
of both architectures created no more BRAM overflow on the
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CL1 CL2 CL3 CL1+CL2+CL3 No Clusters

65 KB 5.2 % 4 % 12.2 % 21.4 % 6.2 %

1 MB 43.7 % 35.8 % 144.9 % 224.4 % 44.4 %
2 MB 84.8 % 71.8 % 287 % 443.6 % 85.3 %
3 MB 153.6 % 129 % 510.5 % 793.1 % 153.8 %
4 MB 165.6 % 141.1 % 572.1 % 878.8 % 166.1 %

Table 6.49: The percent of BRAM utilization for the two architectures
OPTIMIZED (First optimization). With BOLD are the cases where the
BRAM utilization is overflown as it was calculated for a VIRTEX 6 board
that contains 832 BRAMs

FPGA than the unoptimized ones. Secondly, with the applied
optimizations the difference between clustered and original design
was drastically reduced but the clustered design is still up to 3
times faster(4MB).

3. We calculated the software execution times for the same
accelerators with the same input datasets (1MB,2MB,3MB,4MB),
running on an Intel i7-950 at 3 GHz (Table 6.50). These results
are very close to the most optimized hardware architecture as we
can conclude from Table 6.48 but still software is up to 2.7 times
faster.

Software Hardware Difference

65 KB 93 ms 70.9 ms - 23%
1 MB 393.7 ms 1079 ms + 174%
2 MB 1136.3 ms 2079 ms + 83%
3 MB 2113.8 ms 3329 ms + 57.5%
4 MB 3196.7 ms 4336 ms + 35.5%

Table 6.50: Software runtime for CL1+CL2+CL3 compared with the
equivalent of the THEORETICAL hardware runtime Optimized (Best
optimization)
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6.5 Result Comparison and analysis

In this section we will describe graphically the results of our work and
provide our conclusions.

Area comparison

We begin showing in Table 6.51 the summary for the area utilization of
each architecture.

Backprop BRAM DPS48E FF LUT

First HW Architecture
(No optimization)

34 112 34856 38593

First HW Architecture
(Optimization)

52 254 86882 91600

Second HW Architecture
(A Approach)

162 204 82212 80819

Second HW Architecture
(B Approach)

180 767 235112 227083

Table 6.51: Summary of area utilization for all architectures.

We conclude from Table 6.51 that:

A) The first HW architecture with (Optimization) and the second
HW architecture (A Approach) have about the same area utilization
except of the BRAMs. The second architecture has way more BRAMs
because in the design with the clusters we added arrays in each cluster
to store the streamed data from the FIFOs.

B) Comparing the second architecture A and B approaches we see
that the B approach utilized a massive amount of resources to achieve
the small speed up that it gained compared with the A approach.

Next, we show the area utilization with charts. The first chart is
about the memory utilization of the original algorithm for all available
memory units. The FF and LUT quantities are represented two orders
of magnitude lower so that the other quantities are visible.
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The next three charts have all the results of the memory utilization
about the Clusters. We present the area variations for the design without
directives and the design of the first and the second optimization.
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Latency results and comparison

Starting with the optimizations of the original algorithm and the second
architecture (the clusters) we have:

1. The original Backprop became 86.3% faster with the addition of
directives on HLS.

2. The clustered design (plus FIFOs) after the appliance of the same
directives as the original design became 88.6% faster than the
clustered design without optimizations.

3. The clustered design after achieving the best latency with
directives, became 91.9% faster than the clustered design without
optimizations.

4. The clustered design, finally, in comparison with the original design
after having the same hardware optimizations but with FIFOs that
streamed the data gave us Table 6.52:

The clustered design is 8.1 ms or 8% faster than the original,
meaning that our architecture achieved a small percentage of
concurrency between clusters via streaming the data.

As long as we have tested our architecture on a real system, it
is worthwhile to compare the actual results of the hardware with the
software respectively.
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Backprop Time Speed up

First HW Architecture
(No optimization)

796 ms 1

First HW Architecture
(Optimization)

108.3 ms 7.3

Second HW Architecture
(A Approach)

100.2 ms 7.9

Second HW Architecture
(B Approach)

70.9 ms 11.2

Table 6.52: Summary of execution time for all architectures and speed
up in account of the first Architecture(No optimization)

For the clustered version (without optimization) we had initially
calculated from Vivado HLS the execution time at 877.5ms which is
our theoretical base. When tested on RACOS we got execution time
at 940ms (Table 6.43). Those results are pretty close, having the real
system 62.5ms slower. The reconfiguration overhead that needs to be
paid on the real system, justifies the latency difference.

Our second experiment, that included multiple runs of the
accelerator for ten applications, aimed to demonstrate, the impact of
the reconfiguration cost to the total performance. So, the first policy,
i.e., the ”simple” one, where the system has to pay the reconfiguration
cost EVERY time required 29200ms to finish, in comparison with the
last policy, the ”forced” one, where the system pays that cost only once
(one time for each cluster) needed 5900ms to complete. We notice that
because the net execution time of the accelerator is generally small(a
few hundred ms) the partial reconfiguration overhead, while small, has
a noticeable impact. However, the software execution time of the same
experiment on the i7 processor was 339 ms, which is 17 times faster.

Finally, the best theoretical time that we managed to achieve for
the three clusters together, is a total 70.9 ms, from 877.5 ms which
was the execution time before the optimization. The results for the
same architecture on RACOS were 140 ms execution time. Meanwhile,
the software execution time that we had initially calculated for the
three clusters is 93ms. So, comparing this software time with the
best theoretical result, we see that theoretically we managed to exceed
software in speed for 22.1 ms. However, the actual execution time on a
physical system is 47 ms slower than the software.

A final useful calculation and comparison would be the estimation
of the energy consumption for the two cases. A) The energy consumption
of our 2nd architecture as it was executed on the real system on the
FPGA. B) The analogous energy consumption of the 2nd architecture
on software.
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Dataset Software 1st Archit 2nd Archit (A) 2nd Archit (B)

Time Time Time Time

65KB 93 ms 108.3 ms 100.2 ms 70.9 ms
1MB 393.7 ms 1740 ms 1521 ms 1079 ms
2MB 1136.3 ms 4870 ms 3256 ms 2079 ms
3MB 2113.8 ms 9130 ms 4960 ms 3329 ms
4MB 3196.7 ms 13590 ms 6936 ms 4336 ms

Table 6.53: Summary of all times for all Architectures and the software
run for each input dataset. (A, B refers to the Approaches of the Second
Architecture )

Given that the average energy consumption of the i7 CPU is about 130
W and the average energy consumption of the FPGA is about 9.5 W,
we can calculate the energy performance of our architecture on Joules
(W*s).

Energy consumption

Hardware 0.00037 J
Software 0.00335 J

Difference x 9

Table 6.54: Estimated energy consumption of the 2nd architecture on
hardware and software
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Conclusions on the use of directives

Finally, some conclusions about the choices we made for the specific
directives that we used.

• Dataflow
The Dataflow directive is for optimizing the overall throughput. It
ensures that every function and every loop will start operating as
soon as the data is available (task-level pipeline). It adds memory
channels between tasks in order to keep the data ”flowing”. In
our case of the second architecture these memory channels were
set to FIFO interfaces. The overall effect of this directive in our
algorithm was to make changes all over the design, gaining some
percent of area resources and a small amount of latency improve.
The throughput of our algorithm was already at maximum and
equal the latency due to default settings of the Vivado tool that
exploits concurrency where ever possible.

• FIFO
The FIFO interface directive specifies the inputs and outputs of
the clusters to be implemented as a FIFO in order to stream data
during the dataflow optimization. This directive was applied only
to the clustered architecture in order to stream data between the
clusters. This addition caused a small latency speed up and a
small area decrease due to the replacement of some registers and
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Latency area

Dataflow BRAMs DSP48 FF LUT

Original -0.06% -12.5% - -12.8% -13.3%

Cl1+Cl2+Cl3 -0.02% - - -1.2% -1%

Table 6.55: The Dataflow appliance on the original Backprop and on the
Clustered architecture

arrays with FIFO structures. The overall performance improve that
caused on the clustered architecture was 8% , i.e. 8ms to the total
timing.

Latency area

FIFO BRAMs DSP48 FF LUT

Cl1+Cl2+Cl3 -2% - - -0.8% -1.4%

Table 6.56: The FIFO directives on the Clustered architecture

• Pipeline
The Pipeline directive improves throughput by allowing the
concurrent execution of operations within a loop or function. When
applied on a function it unrolls all loops in the hierarchy causing
a drastic latency improve but for the same reason it causes a big
increase in the area that is required. Our algorithm consists mainly
of for-loops so we used this directive extensively. When trying to
pipeline a loop some issues may appear. Bottlenecks may appear
when many memory accesses are occurring at the same time on a
Block RAM that has limited ports (2-port BRAMs). This issue
is resolved with the addition of an Array Partition directive, but
in some cases this solution was not efficient because this directive
created too much area utilization penalty. Array partition was
used mainly in our second policy for the best latency optimization.
An other issue that may appear is a carried dependency constrain
between loop iterations. In this case an operation on a loop must
finish before the next iteration starts. A solution to this would be to
create multiple instances of this operation and apply array partition
on the operants, but with huge resources penalty. Both issues are
resolved with efficacy by increasing the Initiation Interval (II) in
the pipeline directive (loosing a few clock cycles). The run time of
a pipelined loop is (Loop trip count -1) * II + Depth. (Depth=
number of cycles needed to complete one iteration)

• Loop unrolling This directive unrolls loops to create multiple
independent operations rather than a single collection of
operations. This causes the area utilization to increase because
multiple copies of the logic in a loop are required. This directive also
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Latency area

Pipeline BRAMs DSP48 FF LUT

Original -77.5% +17.6% +114% +142% +113%

Cl1+Cl2+Cl3 -85.5% +9.5% +57% +121% +76%

Table 6.57: The total optimization of all the pipeline directives that were
applied on the original Backprop and on the Clustered architecture

usually requires array partition. As we stated above the pipeline
directive unrolls fully a loop. In some cases though, a full unrolled
loop isn’t the most efficient choice, due to the trade-off between
latency and area. In our algorithm some functions, that are called
many times, were partially unrolled (with factors 2 and 4) in order
to achieve the best trade -off between area and latency.

Latency area

Loop Unroll BRAMs DSP48 FF LUT

Original -11.1% +35.2% +25% +17.7% +34.3%

Cl1+Cl2+Cl3 -2.4% - - +1.5% +11.6%

Table 6.58: The total optimization of all the partially unroll directives
that were applied on the original Backprop and on the Clustered
architecture
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Conclusions and future work

Summary

In conclusion of the thesis we can say that we provided a detailed
description of all MachSuites accelerators. More specifically, we
elaborated what the Backprop algorithm is, how it functions and why
we chose it for our thesis.

Secondly, we created an analysis of the memory requirements for
every MachSuite benchmarks algorithm. We demonstrated also, what is,
for a specific target board, the actual area utilization of every accelerator
in detail.

Afterwards, we analyzed the architecture of the original Backprop
accelerator and we described the way the HLS tool maps the commands
in C language into hardware, deploying the four available resource
units (BRAM18K, DSP48E, Flip Flops and Look Up Tables). We also
introduced a different architecture for this current algorithm, where we
split the algorithm into three parts, that improves its efficiency and
exploits parallel execution.

We used the HLS tool to apply latency optimization directives on
both original and second architectures, achieving 86.3% speed up for the
original architecture. We described in details the gradual latency improve
contribution of each directive for both architectures.

For the second architecture we explored furthermore the
optimization capabilities pointing out two baselines. First, we suggested
an optimization technique that aimed for the best trade-off between
latency and area. This first technique produced a total 88.6% speed
up for the second architecture. Second, the best optimization technique
aimed for the most optimal latency improve of the second architecture,
regardless the resources utilization and was made in order to test the
capabilities of the hardware in comparison with the software. This
technique gave us a 91.9% speed up which is the best one we can achieve
(Table 6.58).

Our clustered architecture aimed on creating a ”pipelined” version
of the Backprop algorithm that streams the data. This version managed
to be 8% faster than the original Backprop and couldn’t be more optimal
due to the nature of algorithm that has many data dependencies.

Finally, we tested our most latency optimal design of the second
architecture (Clusters) of Backprop algorithm both on a hardware
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simulator (Vivado HLS) and on a real hardware system (RACOS) and
found that the performance on the real system was almost 2 times slower
than the simulation.

Future Work

This thesis can be used for possible future extensions including:

• The memory analysis of MachSuite that we provided can lead
to further research on the other accelerators included in the
benchmark. Also, the second architecture for Backprop algorithm
that we introduced can help others to apply our technique on other
applications on FPGAs.

• The optimized Backprop algorithm that we provided can be used
unaltered to optimize applications on neural networks. In addition,
the results of our latency optimization over Backprop algorithm can
be generalized and be used on other hardware accelerators.

• Some of the issues and weaknesses we faced in this thesis due to
limitations of the board that we used can be further analyzed and
solved using a more modern FPGA board.
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Appendix A

Here some helpful figures.

Figure A.1: This fixed module does an addition between two 64 bit
operators and is an essential part of Backprops architecture

Figure A.2: The design of a Block RAM as it is implemented by Vivado
HLS tool. It is a simple straightforward design, with the main body
(ram reg) and some modules (an AND module and a Mux) to regulate
the write enable and read from the RAM and some registers to store the
data before the RAM output.
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