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Abstract. In this paper we propose a stochastic programming to analyze limit and shakedown of 

plate bending under uncertainty conditions of strength. The Kirchhoff plate theory is used to formulate 

chance constrained problems. Based on the duality theory, the shakedown load multiplier formulated 

by the kinematic theorem is proved actually to be the dual form of the shakedown load multiplier for-

mulated by static theorem. In this investigation a dual chance constrained programming algorithm is 

developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit 

and the shakedown limit.  
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1 INTRODUCTION 

An essential concern in mechanical and civil engineering design is to determine the ulti-

mate load bearing capacity of structures beyond the elastic limit. Structures are considered 

safe if a state is reached after initial plastic deformation, such that the system does neither fail 

due to instantaneous or incremental collapse nor due to alternating plasticity. Using the classi-

cal step-by-step methods for such calculations can be cumbersome and computationally ex-

pensive in many cases. Furthermore, the disadvantage of these methods is that the exact 

knowledge of the loading history is necessary, which is not realistic in many technical appli-

cations. Limit and shakedown analysis are appropriate direct methods to avoid these problems. 

Reliability analysis of the structures takes the uncertainty of the actual load-carrying capacity 

of the structure into consideration since all resistance and loading variables are random in na-

ture [1, 9, 10, 20].  

Chance constrained programing is an approach of stochastic programming to limit and 

shakedown analysis under uncertainty [1, 2]. Under uncertainty the shakedown problem can 

be stated with random objective function or with random constraints. A probability is set with 

which the constraint has to be satisfied. Deterministic limit analysis of plates subjected to 

bending has been studied analytically and numerically. Both the Kirchhoff plate and the 

Mindlin plate models are considered based on the kinematic theorem of limit analysis and the 

finite element method. Based on the duality theory, Tran [3] developed a dual algorithm to 

calculate simultaneously both the upper and lower bounds of the plastic collapse limit and 

shakedown load of plates. In this study, we present a new primal-dual numerical algorithm of 

the shakedown problem under uncertainty in which the material strength is considered as a 

normally distributed random variable. Using chance constrained programming, we obtain de-

terministic equivalent formulations based on upper bound and lower bound theorems and then 

prove that formulations are actually dual to each other. The four-node discrete Kirchhoff 

quadrilateral (DKQ) element is used to analyze the problem. The proposed algorithm shows 

good performance in numerical test examples. 

2 SHAKEDOWN ANALYSIS OF PLATE BENDING 

2.1 Basic relations  

Similar to the elastic theory, the inelastic behavior of thin plates may be analyzed under 

Kirchhoff’s assumption that the normal to the middle plane of the plate remains straight and 

normal to the deformed middle plane. This assumption yields ,
w w

u z v z
x y

 
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 
, in which 

,x y  are the coordinates in the middle plane of the plate, z  is the distance from the middle 

plane, w  is the deflection, u  and v  are the displacements in the x  and y  directions respec-

tively. By differentiation, the strains are obtained as  
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The vector 
T

x y xy     χ  is called the vector of curvatures. 

The kinematic relations can be written as follows: 

                                                       2w χ                                                                   (2) 

where χ  is the curvature rate vector and w  is the transversal velocity. 

In this paper, the von Mises yield criterion is considered. Expressing in terms of moments, the 

criterion takes the form  
1/2

2 2 2

0( , , ) 3 0x y xy x x y y xyf m m m m m m m m m      .  

In matrix form the von Mises yield criterion can be written as follows: 

                                          T

0( ) 0f m  m m Pm                                                         (3) 

where 
T

, ,x y xym m m   m  is the vector of bending and twisting moments, 
2

0 / 4ym t  is the 

plastic limit moment per unit length of a plate section, t  is the thickness of the plate, 
y  is the 

yield stress of the material, and 

                                                    

2 1 0
1

1 2 0
2

0 0 6

 
 

 
 
  

P  .                                                          (4) 

 

2.2 Static formulation  

Consider a convex polyhedral load domain  and a special loading path consisting of all 

load vertices ˆ ( 1,..., )kP k m  . Let a point on the problem domain A  (the midplane) be 

identified by a vector variable x  and the fictitious elastic moment vector be E
m . The static 

shakedown theorem states that shakedown occurs if, and only if, there exists a time-

independent self-equilibrium residual moment field ρ  which is statically admisible so that the 

actual moment field E m m ρ  does not anywhere violate the yield condition at any point 

of the structure and for all posible load combinations. Based on this theorem, we can find a 

statically admisible residual moment field in order to obtain a maximum load domain   

that guarantees (3). Therefore, the shakedown load factor    can be obtained by solving the 

following optimization problem: 

                                  2

E
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( ) 0 in
. . :
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s t

f m

 



 

 
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 

ρ x

m ρ

                                                     (5) 

By discretizing the entire problem domain into finite elements and applying the Gauss-

Legendre integration technique, Eqs (5) can be rewritten in the following form: 
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1
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( ) 1, , 1,

NG
T

i i i

i

E

ik i

w A

f m i NG k m

 













      

 B ρ

m ρ

                                              (6) 

in which iB  is the deformation matrix, iw is integration weight at Gauss point i ; NG  denotes 

the total number of Gauss points of the structure, and m  is the number of load vetices.. 

 

2.3 Kinematic formulation  

An upper bound to the shakedown limit of plate can be obtained using the kinematic 

shakedown theorem which has the following two statements: 

(a) Shakedown will occur for a structure subject to repeated or cyclic loads, if the plastic dis-

sipation power exceeds the work rate of external forces for any admissible plastic strain-

rate cycles and all loading paths 

(b) Shakedown cannot occur, if the plastic dissipation power is less than the work rate of ex-

ternal forces for any one admissible plastic strain-rate cycle or any one loading path. 

We introduce here an admissible cycle of plastic curvature field pχ . At each load vertex, the 

plastic curvature rate may not necessarily be compatible at each instant during the time cycle, 

but the plastic curvature accumulation over the cycle is required to be kinematically 

compatible such that 

                        2

1

m
p p

k

k

w


   χ χ .                                                                (7) 

Based on the above statements and the mathematical programming theory, an upper bound of 

the shakedown load factor can be found by solving the following convex nonlinear program-

ming (the superscript p  is neglected for simplicity): 
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                        (8) 

where int ( )D χ  is the plastic dissipation power per unit area. According to the von Mises yield 

condition, the plastic dissipation can be expressed in term of the curvature rates of the middle 

surface: int 0( ) T

k kD mχ χ Qχ  

with  
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1
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Q P                                          (9) 

We denote the nodal variables of the finite element by  
T

/ /w w x w y    q , the discre-

tized formulation by FEM is as follows: 
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                                    (10) 

3 STOCHASTIC SHAKEDOWN ANALYSIS OF PLATE BENDING BY CHANCE 

CONSTRAINED PROGRAMMING 

3.1 Static Approach to chance constrained programming 

Consider the situation that the strength of material is not given, fixed quantity, but must be 

modelled ( )R R   through random variables on a certain probability space. Hence, the 

shakedown problem (6),(10), respectively, under stochastic uncertainty must be reformulated 

by appropriate deterministic problems which are provided by adopting stochastic optimization 

techniques. A technique used effectively called chance constrained programming is presented 

here. 

For stochastic plastic moment ( )i m  depending on some random  , a stochastic formulation 

can be obtained by assuming that the inequality constraints of (6) are satisfied at least by a 

chance  0.5 ; 1   (or reliability level) at Gauss point i . 
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                 (11) 

Based on the methodology of chance constrained programming, the stochastic program (11) is 

to be relaxed into an equivalent deterministic optimization problem: 

1
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                                   (12) 
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where ,i i  , 1( )i i    is the mean value, standard deviation and the inverse of the cumu-

lative distribution function of plastic moment at Gauss point i , respectively.  

3.2  Kinematic approach to chance constrained programming 

As mentioned above the deterministic formulation to calculate an upper bound shakedown 

load factor:  
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                                                                               (13) 

If the yield stress of material is random, then the plastic moment is uncertainty quantity and 

the objective function of (13) is a stochastic variable. Firstly, we must properly define the 

minimum of a random function. This can be done in such a way that one looks for a minimum 

lower bound   objective function under the constraint that the probability of violation of that 

bound is prescribed [4].  

T
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                                                               (14) 

The chance constrained program technique also can convert the stochastic program (14) into 

an equivalent deterministic program as follows: 
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                                                       (15) 

 

4 DUALITY APPROACH TO CHANCE CONSTRAINED PROGRAMMING  

4.1 Dual theorem for chance constrained programming 

Some new notations is intruduced for the sake of simplicity: 
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1/2

ik i ikwk Q χ ,  1/ 2
T

E

ik ik

t Q m ,     
1/ 2ˆ

i i iwB Q B                                     (16) 

where 

 1/ 2 1/ 2 1/ 2 1/ 2,   
T

  Q Q I Q Q Q                                                                            (17) 

By substituting (16) into (15) one obtains a simplified version for upper bound of shakedown 

limit load (primal problem) 

1 1

1

1 1

min ( )

ˆ 1, (a)

s.t. :

1 0 (b)
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 
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 
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k k

k B q 0

k t

                             (18) 

It is seen that in the case of limit analysis there exists a dual form for (18), see, e.g. Heitzer 

and Staat [16] , Andersen et al. [17]. Vu et al. [18], [19] generalized this theory for the case of 

shakedown analysis. An extension of their theory to shakedown analysis of plate is 

investigated in this work through the following theorem: 

Theorem. If there exists a finite solution 
  for the upper bound shakedown limit load 

multiplier (20) then the static formulation (12) is exactly the dual problem of the kinematic 

one (20) such that 

 

 
1

,
1 1

0

min ( ) max
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ik T
i i i

i
E
ik i
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T

i i i ik ik

k i w

f

m



    



 


  


  

   


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h k q 0
B ρ 0

m ρ

k k                                                 (19) 

4.2 Primal-dual shakedown algorithm  

A difficult happening when dealing with the non-linear constrained optimization problem 

(20) is that the objective function is not everywhere differentiable. In order to allow a direct 

non-linear, smooth optimization problem, a ‘smooth regularization method’ should be used 

for overcoming this barrier. For this purpose, a very small positive number, 2

0  will be added 

to int ( )kD χ . An efficient technique for large-scale optimization problems, which are success-

fully applied in [13] is used. Using penalty method to eliminate the first constraint in (18) lead 

to a penalty function 

 2

0

1 1 1 1

ˆ ˆ( )
2

T
NG M m m

T

i i i ik ik ik i ik i

i k k k

c
P m   

   

     
         

     
   k k k B q k B q                   (20) 

where c  is a penalty parameter such that 1c . The corresponding Lagrangian of (20) is 

                             
1 1

1
NG m

T

ik ik

i k

L P 
 

 
   

 
k t                                                                   (21) 
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We denote  

                            
1

ˆ
m

i ik i

k

c


 
   

 
β k B q                                                                           (22) 

By employing Newton method to solve the KKT conditions of the Lagrangian in (39) and 

after some manipulations, one gets the following system: 

                1 2( d )d      K q Kq f f                                                                      (23)  

in which 

1
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1
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
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 
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 
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f B E M β t

k k

f B E M k k t

                                                           (24) 

Solving the system (23), we have the incremental vectors of nodal variables q , curvature rate 

ikk  and iβ  as follows : 

 

 

 

1 2

1 2

1 2

( ) ( )

( ) ( )

ik ik ik

i i i

d d d d

d d d d

d d d d

 

 

 

  

  

  

q q q

k k k

β β β

                                                                                (25) 

and 

              
 

 

1
1 1

2
1 1

1
NG m

T

ik ik ik

i k

NG m
T

ik ik

i k

d

d

d

   

 

  
 

 




t k k

t k

                                                          (26) 

The vectors d ,d ,dik iq k β  and d  are actually Newton directions which assure that a suita-

ble step along them will lead to a decrease of the objective function of the primal problem (18)

and to an increase of the objective function of the objective function of the dual problem (12). 

Based on(25), (26) we can update the vectors of , , ik iq k β  and  . 

5 NUMERICAL EXAMPLES 

In this section, the numerical solution of some problems is presented to test the 

performance of the dual shakedown algorithm. Plates subjected to uniform or concentrated 

loads are considered. The 4-node DKQ plate element is applied for structural discretization. 

For all examples the following was assumed: length 10L m , plate thickness 0.1mt  , the 

3014



N.T. Tran, T.N. Tran, H.G. Matthies, G.E. Stavroulakis and M. Staat 

mean value of yield stress E( ) 250MPay   and the standard deviation 0.1E( )y  . A 

reliability level 0.9999   is chosen. 

y

x

q

L/2 L/2

L/2

L/2

t

x

z

q

 

 

 

 

                      Figure 1. Square plate and L-shape plate loaded by a uniform pressure 

5.1  Limit analysis of square plate subjected to uniform load 

Firstly, we consider a square plate subjected to uniform pressure q  as shown on Figure 1. In 

this analysis, the plate is modelled by 256 DKQ elements due to symmetry. Table 1 shows the 

comparison of the present numerical results for both cases, simply supported and clamped 

plates.  

Authors Upper/Lower bound (deterministic) 
Upper/Lower bound  

(random strength) 

 Spl. supported Clamped Spl. supported Clamped 

Hodge et al. [14] 26.54/24.86 49.25/42.86 –/– –/– 

Lubliner [17] 27.71/23.81 52.01/– –/– –/– 

Capsoni et al. [15] 25.02/– 45.29/– –/– –/– 

Le et al. [16] 25.01/– 45.29/– –/– –/– 

Present 25.04/25.04 45.06/45.06 15.72/15.72 28.36/28.36 

Table 1. Limit load factor of square plates in comparison with other solutions 
0

2

m

qL

 
 
 

. 

q 

L/2 L/2 

L/2 

L/2 
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Figure 2. Clamped square plate: Convergence of limit load factors. 
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Figure 3. Dependence of load factors on the coefficient of variation 
E


 
 

 
 

. 

5.2      L-shaped plate subjected to uniform load. 

In the second example, we investigate an L-shape plate subjected to uniform pressure q  

(Figure 1) which can be constant or vary within a range max[0 ]q q . In this analysis, the plate 

is modelled by 768 DKQ elements. Figure 4 and figure 5 show the convergence of the upper 

bound and lower bounds for the simply supported case. 
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Figure 4: L-shape Plate: Convergence of limit load factors. 
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Figure 5: L-shape Plate: Convergence of shakedown load factors 

Authors 
Upper/Lower bound 

(deterministic) 

Upper/Lower bound  

(random strength) 

 Limit Shakedown Limit Shakedown 

Le et al. [16] 6.289/– –/– –/– –/– 

Present 6.19/5.85 4.28/4.28 3.89/3.67 2.69/2.69 

Table 2. Limit load factor of plate in comparison with other solutions 
0

2

m

qL

 
 
 
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6 CONCLUSIONS  

 Direct structural reliability design can be achieved by chance constraint programming. 

 In the general case chance constraint programming is a hard problem because proba-

bilities have to be calculated as high dimensional integrals during in the optimization 

algorithm. 

 For normally distributed stochastic variables deterministic equivalents can be formu-

lated (for linear programming). 

 Extension to nonlinear programming is on its way. 

For engineering design: 

 Structural reliability is post design 

 Stochastic programming is (pre) design 

 The load factor decreases “quickly” with increasing coefficient of variation of the 

strength. 

 High structural reliability can be achieved with moderate reduction of the load factor 
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