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Abstract

Turbo Codes are a class of high-performance error-correcting codes and they were the first
practical codes to achieve performance close to Shannon limit. Turbo codes are used in both 3G
and 4G mobile communication networks, WiMAX, and (deep space) satellite communications
as well as other applications where designers seek to achieve reliable information transfer over
the bandwidth or latency constrained communication links in the presence of data-corrupting
noise. In this thesis, we examine the basic principles behind channel coding and Turbo Coding
and the essential parts of Turbo encoding and decoding algorithms which are used in several
applications. Furthermore, we examine how the size of the interleaver, for both block and
pseudorandom interleavers, affects the overall performance of the code.
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Chapter 1

Introduction

In telecommunication field, channel coding is a technique used for controlling errors in data
transmission over unreliable or noisy channels. The central idea is that the sender encodes the
message in a properly designed, redundant way by using a channel encoder which implements
an error correction code. The redundant bits which are added to each message provide the code
with the capability of combating the channel noise and, hence, allow the receiver to detect a
limited number of errors that may occur during transmission.

1.1 General Informations

A common diagram of the general structure of a digital telecommunication system is :

Figure 1.1: Digital Telecommunication System

The role of channel encoder is to protect the bits which are transmitted over a channel from
noise, distortion and interference. Generally, the channel encoder transforms the input sequence
x, which is called information sequence, into a discrete, alternative encoded sequence c possessing
redundancy, whose role is to provide immunity from the various channel impairments. This
encoded output sequence, c, is called codeword. In most instances, c is also a binary sequence,
although in some applications nonbinary codes can be used. As it is mentioned before, the
goal of the design and the implementation of channel encoders/decoders is to combat the noisy
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8 CHAPTER 1. INTRODUCTION

environments in which codewords are transmitted. Hence, the redundancy provided by the
channel encoder is introduced in a structured way, precisely to provide error control capability.

On the other hand, the role of the channel decoder is to recover the initial input to the channel
encoder from the channel output in spite of the presence of noise, distortion and interference
in the received codeword. That is, channel decoder transforms either the received sequence r
or the estimated codeword c̃ into a binary sequence x̃, which is called estimated information
sequence. Ideally, x̃ will be a replica of the transmitted information sequence x, although the
noise may cause some decoding errors. The pair of channel encoder and decoder forms a (n,k)
channel code, where k and n correspond to the length of the input and the output vectors of
the channel encoder, respectively .

A well-defined channel coding schema has the following properties : it is easy to decode, it
has large minimum distance dmin, and the number of codewords at distance dmin from any other
codeword is small.

A class of both channel encoder and decoder are Turbo Codes. Turbo Codes, that were first
published in 1993 from Berrou, Glavieux and Thitimajshima, are a class of high-performance
error-correcting codes and they were the first practical codes to closely approach the channel
capacity. Turbo codes are used in both 3G and 4G mobile communication networks, WiMAX,
and in (deep space) satellite communications as well as other application where designers seek to
achieve reliable information transfer over the bandwidth or latency constrained communication
links in the presence of data-corrupting noise.

The performance of a coded communication system is measured by its probability of decoding
errors, which is called error probability, and its coding gain over the uncoded system that
transmits information sequences at the same rate. Typically, the best code designs contain a
large amount of structure, either algebraic or topological, as is the case with most convolutional
codes, which can be represented using trellis or tree diagrams. The structure is a key component
of the code design, since it can be used to guarantee good minimum distance properties for the
code and since particular decoding methods are based on this structure. In fact, one can say
generally that the more structure a code contains, the easier it is to decode; however, structure
does not always result in the best distance properties for a code, and most highly structured
code designs usually fall far short of achieving the performance promised by Shannon. Turbo
coding succeeds in achieving a randomlike code design with enough structure to allow for an
efficient iterative decoding method. Because of this feature, these codes have exceptionally good
performance, particularly at moderate BERs and for large block lengths. In fact, for essentially
any code rate and information block lengths greater than about 104 bits, Turbo Codes alongside
with iterative decoding schemes can achieve BERs as low as 10−5 at SNRs within 1 dB of the
Shannon limit, that is, the value of Eb

N0
for which the code rate equals channel capacity.

Another important feature of turbo codes is their basic structure. They are composed of two
or more simple constituent codes along with a pseudorandom interleaver. Because the interleaver
is part of the code design, a complete maximum likelihood decoder for the entire code would
be prohibitively complex; however, because more than one code is used, it is possible to employ
simple SISO decoders for each constituent code in an iterative fashion, in which the soft-output
values of one decoder are passed to the other, and vice versa, until the final decoding estimate
is obtained. This simple, suboptimum, iterative decoding approach almost always converges to
the maximum likelihood solution.

In summary, turbo coding consists of two fundamental ideas: a code design that produces
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a code with randomlike properties, and a decoder design that makes use of soft-output values
and iterative decoding.

Although, turbo codes suffer from two disadvantages: a large decoding delay, owing to the
large block lengths and many iterations of decoding procedure which are required for near-
capacity performance, and significantly weakened performance at BERs below 10−5 owing to
the fact that the codes have a relatively poor minimum distance, which manifests itself at very
low BERs. This phenomenon is called error floor and it is due to unusual weight distribution of
turbo codes. The large delay appears to make turbo codes unsuitable for real-time applications
such as voice transmission and packet communication in high speed networks. It is possible,
though, to trade delay for performance in such a way that turbo codes may be useful in some
real-time applications involving block lengths on the order of a few thousands, or even a few
hundred bits. Interleavers can be designed to improve the minimum distance of the code, thus,
lowering the error floor. Also, an outer code, or a second layer of concatenation, can be used
with turbo code to correct many of the errors caused by the small minimum distance, at a cost
of small decrease in overall rate.

1.2 Basic Terms

1.2.1 Mathematical Notation

Throughout the analysis of channel coding, the following mathematical notation will be used.
Let F2 be the set with only two elements in it, 0 and 1. In this field, the arithmetic operations
are defined as :

0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0
0 ∗ 0 = 0 0 ∗ 1 = 0 1 ∗ 0 = 0 1 ∗ 1 = 1

Let Fn2 denotes the vector space of n-tuples and Fn2 denotes the vector space of k-tuples of
elements of F2, respectively. For an (n,k) binary code and a telecommunication system as
shown in figure (1.1), the input of channel encoder x ∈ Fk2 and the output of channel encoder
c ∈ Fn2 . A channel encoder adds redundancy to the information sequence by assigning to each
message of k bits, a longer message of n bits which is called codeword. Hence, an (n,k) binary
code is a set of 2k distinct points in Fn2 .

1.2.2 Codeword

A code with input vectors of length k and output vectors of length n constitutes a (n,k) code.
For a (n,k) code, the set of all possible codewords is defined as the set of n-length vectors which
are produced by the encoder for every input vector x ∈ Fk2 . Each codeword of a binary code has
length of n. Thus, generally, there are 2n possible codewords. But, only a part of them forms
the codeword set of the code. The input x of the encoder is a k-length vector, that is, there are
2k possible input vectors. Additionally, a codewords should match to exactly one input vector
x. Hence, only a part of 2k discrete vectors from the total 2n vectors which constitute the vector
space Fn2 are the acceptable codewords of a (n,k) code. That is, the set of codewords of a (n,k)
code forms a subspace of the vector space Fn2 .
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1.2.3 Linear Code

A code is called linear, if any linear combination of two (or more) codewords is, also, a codeword.
That is, if x and y are codewords, then

z = ax+ by ∀a, b ∈ R (1.1)

is also a codeword. Hence, for a linear code, the all-zero vector is always part of its codeword
set, since z = x+ (−1) ∗ x = a− a = 0 .

1.2.4 Rate of a Code

The rate of an (n,k) code is defined as :

R =
k

n
(1.2)

where k is the number of code’s input bits at each time unit and n is the number of code’s output
bits at the same time unit. The rate of a code expresses the average number of information bits
carried by each encoded bit. For any code (n,k), n is greater to k (k < n), thus, the rate of a code
is less or almost equal to unity. When k < n, n − k redundant bits are added to each message
to form a codeword. These redundant bits carry no new information and their main function is
to provide the code with the capability of detecting and correcting transmission errors caused
by the channel noise or interference.

1.2.5 Hamming Distance

The Hamming distance (denoted by dH) of any two vectors x,y ∈ Fk2 is defined as the number
of elements where the two vectors differ.

1.2.6 Euclidean Distance

The Euclidean distance (denoted by dE) of any two vectors x,y ∈ Fk2 is defined as :

dE(x,y) =

√√√√ k∑
i=1

(xi − yi)2 (1.3)

1.2.7 Weight of a Codeword

The weight of a vector x ∈ Fk2 is equal to the number of its nonzero elements. Alternatively, the
weight of a vector x can be defined as the Hamming distance of x compared with the all-zero
vector :

w(x) = dH(x,0) (1.4)
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1.2.8 Minimum Distance

The minimum distance of an (n,k) code is defined as :

dmin = min
i 6=j

dH(xi,xj) ∀xi,xj ∈ X (1.5)

where dH(xi,xj) is the Hamming distance of the vectors xi and xj. For a linear code, the
minimum distance of its codewords can be computed as :

dmin = min
i 6=j

dH(xi,xj) = min
i 6=j

dH(xi − xj,xj − xj)

= min
x
dH(x,0) = min

x
w(x), ∀x 6= 0

(1.6)

1.2.9 Weight Distribution

The weight distribution of a code is important for computing its error performance. We define
Ai as the number of code sequences of weight i. Thus, as weight distribution of a code is defined
the set {A0, A1, . . . , Ai, . . . }. Especially, for a linear code, its weight distribution can be defined
as {Admin

, Admin+1, . . . }, where dmin denotes the minimum distance of the linear code. Thus,
we can conclude that for any linear code A1 = A2 = · · · = Admin−1 = 0.

It is convenient to represent the weight distribution as a polynomial :

A(z) = A0 +A1z +A2z
2 + · · ·+Anz

n (1.7)

This polynomial is called the weight enumerator. The weight enumerator is the z-transform of
the weight distribution sequence.

1.2.10 Memoryless Channel

As memoryless channel is defined the channel in which the output rn at the n-th symbol time
depends only on the current input sn. In case of the combination of an M-ary input modulator,
the physical channel and a Q-ary output demodulator can be modeled as a discrete memoryless
channel (DMC). A DMC is completely described by a set of transition probabilities P (j|i), 0 ≤
i ≤ M − 1 and 0 ≤ i ≤ M − 1, where i represents a modulator input symbol, j represents
a demodulator output symbol and P (j|i) is the probability of receiving j given that i was
transmitted. Thus, given the input of the channel at time n, channel’s output is statistically
independent of the outputs at other times and the likelihood function p(r|s) can be factored as
:

p(r|s) = p(r1, r2, . . . , rm|s1, s2, . . . , sm) =

m∏
i=1

p(ri|si) (1.8)

Memoryless channels are also called random-error channels and the codes which are designed
for those channels are called random-error correcting codes.

1.2.11 Additive White Gaussian Channel

Additive White Gaussian Channel (AWGN) is a basic model used in information theory to
mimic the effect of many random processes that occur in nature. The modifiers denote specific
characteristics :



12 CHAPTER 1. INTRODUCTION

• Additive: because it is added to any noise that might be intrinsic to the information system

• White: refers to the idea that it has uniform power across the frequency band for the
information system.

• Gaussian: because it has a normal distribution in the time domain with an average time
domain value of zero.

AWGN model is used as a channel model in which the only impairment to communication is
the linear addition of white noise with a constant spectral density and a Gaussian distribution
of amplitude.

Suppose that the input to the modulator consists of symbols selected from a finite and
discrete alphabet X =

[
x1, . . . , xM−1

]
and the output of the demodulator is left unquantized.

In this case, the combination of the modulator, the physical channel and the demodulator results
is a discrete-input, continuous-output channel. The channel output is a random variable. If the
physical channel is subject only to AWGN with zero mean and one-side PSD N0, then the
channel output is a Gaussian random variable with zero mean and variance σ2 = N0

2 . In this
case, we obtain a discrete-input, continuous-output memoryless channel Gaussian channel. This
channel is completely characterized by a set of M conditional probability density functions,
p(y|x), ∀x ∈ {0, . . . ,M − 1}.

A special case of the AWGN channel, which was described above, is the Binary-Input AWGN
(BI-AWGN). For the BI-AWGN, the code bits are mapped to the channel inputs as xi = (−1)vi ∈
{±1} so that xi = +1 when vi = 0. The BI-AWGN is completely characterized by the channel
transition probability density function p(yi|xi) given by :

p(yi|xi) =
1√
2πσ

exp

[
−(yi − xi)2

2σ2

]
(1.9)

where σ2 is the variance of the zero-mean Gaussian noise sample ni that the channel adds to
the transmitted value xi, so that yi = xi + ni

1.2.12 Binary Symmetric Channel (BSC)

At a sufficiently coarse level of detail, the modulator/demodulator system along with the additive
AWGN channel can be viewed as a solid channel. This group of the modulator, the channel,
and the detector collectively constitutes a channel which accepts bits at the input and emits bits
at the output. This end-to-end system forms a BSC channel. The BSC crossover (transition)
probability, pe, is just the uncoded BPSK bit error probability for equally likely signals given
by :

pe = Q

(√
2Eb
N0

)
(1.10)

where

Q(x) =
1√
2π

∫ ∞
x

exp
−y2

2 dy, x ≥ 0 (1.11)

is the complementary error function of Gaussian statistics. The above equation is used in
evaluation of the error performance of a code. Both AWGN and BSC are memoryless channels.
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1.2.13 Error Correction Capability

The error correction capability of any given code is equal to :⌊
dmin − 1

2

⌋
(1.12)

This quantity measures the maximum number of errors which are introduced at the received
codeword and the code can detect and correct successfully. Thus, it sets the lower achievable
BER.

1.2.14 Constraint Length

As constraint length of a code we define the number of inputs (current input and previous)
which are used by the code in order to produce its codewords. The constraint length may also
be given as the number of memory elements, m, for convolutional codes or as the maximum
possible states of the encoder (typically 2m).

1.2.15 Coding Gain

The coding gain is defined as the reduction in the SNR required to achieve a specific error
probability for a coded communication system compare to an uncoded system. Although, there
is a threshold, especially for low values of SNR, below which the coding gain becomes negative.
This SNR is called coding threshold.

1.2.16 Bandwidth Expansion

Two important and related parameters in any digital communication system are the speed of
the information transmission and the bandwidth of the channel. Because one encoded symbol
is transmitted every T seconds, the symbol transmission rate (baud rate) is 1

T , In a coded

system with rate R = k
n < 1, k information bits correspond to the transmission of n symbols.

Thus, the information transmission rate (data rate) is equal to R
T bits per second. In addition

to signal modulation due to the effects of noise, most communication channels are subject to
signal distortion owing to bandwidth limitations. To minimize the effect of this distortion on the
detection process, the channel should have bandwidth W of at least T

2 Hz. In an uncoded system
(R=1), the data rate 1

T = 2W is therefore limited by the channel bandwidth. In a binary coded
system, with a code rate R < 1, the data rate R

T = 2W is reduced by the factor R compared
with an uncoded system. Comparing the data rate of an uncoded and a encoded system :

R

T
= 2W ⇔ 1

T
=

2W

R
= 2W

′ ⇔W
′

=
W

R
(1.13)

where W
′

and W are the required bandwidth of the encoded and the uncoded system, respec-
tively. Due to the fact that the rate R < 1 ⇔ 1

R > 1, the required bandwidth of the encoded
system is greater than the bandwidth of the uncoded one. Hence, to maintain the same data
rate as an uncoded system, the encoded system requires bandwidth expansion by a factor of
1
R . Thus, the coded system requires a larger channel bandwidth for signal transmission than
the uncoded system. This is because redundant symbols must be added to the transmitted in-
formation sequence to combat channel noise. Therefore, coding gain is achieved at the expense
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of bandwidth expansion. To overcome this problem, coding must be used in conjunction with
bandwidth-efficient multilevel modulation (M-ary modulation with M > 2).

If coding and modulation are combined properly and designed as a single entity, coding gain
can be achieved without bandwidth expansion. Such combination of coding and modulation
is called coded modulation. The basic concept of coded modulation is to encode information
symbols onto an expanded modualtion signal set (relative to that needed for the uncoded modu-
lation). This signal set expansion provides the needed redundancy for the error control without
increasing the signal rate and hence without increasing the bandwidth requirement. Coding is
used to form structured signal sequences with large minimum Euclidean distance between any
two transmitted signal sequences.

Basically, coding for error control is achieved by adding properly designed redundancy to the
transmitted information sequence. The redundancy is obtained either by adding extra symbols
to the transmitted information sequences or by the channel signal-set expansion in which a
larger signal set is used for mapping transmitted information sequence into a signal sequence.
Coding by adding redundant symbols results in bandwidth expansion and is suitable for error
control in power-limited communication systems. Coding by channel signal set expansion allows
coding gain without bandwidth expansion and is suitable for error control in bandwidth-limited
communication systems.

1.2.17 Systematic Codes

For any code (n,k), the codeword c is generated by the transformation of input vector x, as
c = F (x) where x = [x1, . . . , xk], and it is equals to

[
c1c2 . . . cn

]
. When the code is systematic,

the codeword c is equal to
[
x1 . . . xk p1 . . . pn−k

]
. Therefore, the codeword c can be rewritten

in a more compact way as c = [x p], where x is an exact copy of code’s input vector (that is,
information sequence x) and vector p is generated by the code. Those additional bits are called
parity check bits, and the vector p is called parity check vector.

1.2.18 Hard-Decision and Soft-Decision Decoding

In figure (1.1), when binary demodulator output quantization is used (quantization levelsQ = 2),
the channel decoder processes binary inputs (hard decision inputs). This type of decoding is
referred to as hard-decision decoding. Generally, the decoding algorithm which uses only the
quantized received bit values and not their reliabilities is referred to as hard-decision decoding.
Many coded digital communication systems use binary coding with hard-decision decoding owing
to the resulting simplicity of the implementation. The metric which is used in hard-decision
decoding in order to describe the channel decoding schema, is the Hamming distance. A hard
decision of a received signal results in a loss of information, which degrades the performance of
the decoder. This loss comes as result of the information loss which is being applied due to the
demodulator’s output quantization.

However, when the demodulator output is quantized to more than two levels (Q > 2) or if
it is left unquantized , the demodulator is said to make soft decisions. In this case, the channel
decoder must accept multilevel (or continuous valued inputs) and processes soft decision inputs.
This type of decoding is referred to as soft-decision decoding. Generally, a decoding algorithm
which takes into account reliability information or uses probabilistic or likelihood values rather
than quantized data is called soft-decision decoding algorithm. Although this makes the decoder
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more difficult to implement, soft-decision decoding offers significant performance improvement
compared with hard-decision decoding. As a general rule,soft-decision decoding can provide as
much as 3 dB of gain over hard-decision decoding.

1.2.19 SISO Decoder

A soft-input soft-output (SISO) decoder is a type of soft-decision decoder used with error correct-
ing codes. Soft-input refers to the fact that the incoming data may takes values to a continuous
space. Soft-output refers to the fact that each bit in the decoded output also takes a value on a
continuous space. Generally, a soft-output decoder would provide decoded values accompanied
by an associated reliability measure, or a probabilistic distribution of the decoded bits. Hence,
the soft output is used as the soft input to an outer decoder in a system using concatenated
codes, or to modify the input to a further decoding iteration such as in the decoding of turbo
codes.

1.2.20 State Diagram

The state diagram is a graph that consists of nodes, representing the states of the diagram,
and directed lines, representing the state transitions. Each directed line is labeled with an
input/output pair. Given a current state, the input value shows which is the next state. Further,
given a initial state, the information sequence at the input determines the path through the state
diagram and the corresponding output sequence. For example,

Figure 1.2: State Diagram

1.2.21 Trellis Representation

A Trellis representation is created by stacking bipartite graphs to show several time steps.
These bipartite graphs are representing all possibles connections from the states at one time
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instant to the states at the next time instant. Hence, a trellis diagram corresponds to a state
diagram expanded over time. Further, a code trellis diagram can be treated as an edge-labeled
directed graph in which every path represents a codeword for block codes, or a code sequence
for convolutional codes. Generally, a trellis diagram is illustrated as :

Figure 1.3: Trellis Diagram

where xt is the code’s input vector which produce the codeword ct, at is the modulated
version of the corresponding codeword ct and rt denotes the received vector at the same time
unit t. Also, Ψt and Ψt+1 denote the current state in time unit t and t + 1, respectively. Note
that the trellis stages between time units t and t+1 are exact replicas of the corresponding state
diagram.

1.2.22 Decision Rule

Let S denotes the transmitted value with prior probability P (S = s). The receiver uses the
received point R = r to make a decision about what the transmitted signal S is. The decision
rule which minimizes the probability of error is to choose ŝ to be that value of s which maximizes
P (S = s|r), where the possible values of s are those in the signal constellation S. That is,

ŝ = arg max
s∈S

P (S = s|r) (1.14)

Using Bayes’ rule, we can rewrite the above equation as :

ŝ = arg max
s∈S

P (R = r|S)P (S = s)

P (r)
= arg max

s∈S
P (R = r|S)P (S = s) (1.15)

since the denominator does not depend on s. This is called the maximum a posteriori (MAP)
decision rule. In the case that all the prior probabilities are equal, this rule can be simplified
to :

ŝ = arg max
s∈S

P (R = r|S) (1.16)

which is called the maximum likelihood (ML) decision rule.
The above decision rules minimize the codeword error probability. However, a special case of

MAP decision rule exists which minimizes the bit error probability and which is called bit-wise
MAP decision rule. This bit-wise MAP criterion is :

ŝ = arg max
si∈S

P (R = r|S = si)P (S = si)

P (r)
= arg max

si∈S
P (R = r|S)P (S = si) (1.17)
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1.2.23 Shannon’s Noisy Channel Coding Theorem

Shannon’s noisy channel coding theorem implies that arbitrarily low decoding error probabilities
can be achieved at any transmission rate R less than the channel capacity C by using sufficiently
long block (or constraint) lengths. The channel capacity is a measure of how much information
the channel can convey. In particular, Shannon proved that randomly chosen codes, along with
maximum likelihood decoding (MLD), can provide capacity-achieving performance. He did this
by providing that the average performance of a randomly chosen ensemble of codes results in an
exponentially decreasing decoding error probability with increasing block (or constraint) length.
However, the channel coding theorem is an existence theorem but no how to construct practical
codes.

1.2.24 Channel Capacity

The capacity of a channel is defined as :

C = max
Pr(x)

I(X;Y ) (1.18)

where I(X;Y ) is the mutual information of the channel output Y and the channel input X.
Furthermore, I(X;Y ) is equal to :

I(X;Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y ) (1.19)

where H(Y ) = E{− log2 P (Y )} = −
∑

y P (y) log2 P (y) and H(Y |X) = E{− log2 P (Y |X)} =
−
∑

y

∑
x P (x)P (y|x) log2 P (y|x) and which are called entropy and conditional entropy, respec-

tively. Thus, the channel capacity is the maximum mutual information between the input X and
the output Y, where the maximization is over the channel input probability distribution, or, the
amount of information that can be transmitted reliably through the channel. All the codes with
rate R < C are said to be achievable in the sense that reliable communication is achievable at
this rate. Conversely, if the rate of the code R is greater that the channel capacity C, that is
R > C, no reliable communication can be achieved.

1.2.25 Error Floor

The error floor is a phenomenon encountered in modern iterated graph-based error correcting
codes like Turbo Codes. As a result of this phenomenon, there is a region in high SNRs, which
is called the error floor region, in which the performance of the code flattens. This performance
floor is an outcome of the error correction capability of the code and, thus, it depends on the
minimum distance of the code.

1.3 Typical Operation of Turbo Codes

The following remarks are related to the typical operation of Turbo Codes :

• To achieve performance close to the Shannon limit, the information block length and, as
a result, the size of the interleaver K, is chosen to be very large, usually at least several
thousand bits.
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• The best performance at moderate BERs down to about 10-5 is achieved with short con-
straint length constituent encoders, typically v=4 or less.

• The constituent codes are normally generated by the same encoder, but this is not nec-
essary for good performance. In fact, some asymmetric code designs have been shown to
give very good performance

• Recursive constituent codes, generated by systematic recursive (feedback) encoders, give
much better performance than nonrecursive constituent codes.

• Bits can be punctured from the parity sequences to produce higher code rates.

• Bits can also be punctured from the information sequence to produce partially systematic
or nonsystematic turbo codes

• Because only the ordering of the bits is changed by the interleaver, the sequence that enters
the second encoder has the same weight as the sequence that enters the first encoder.

• The interleaver is an integral part of the overall encoder, and thus the state complexity of
turbo codes is extremely large, making trellis-based ML or MAP decoding impossible

• Suboptimum iterative decoding, which employs individual SISO decoders for each of the
constituent codes in an iterative manner, typically, achieves performance within a few
tenths of a decibel of overall ML or MAP decoding. The best performance is obtained
when the BCJR, or any MAP, algorithm is used as the SISO decoder for each constituent
code.

• Because the MAP decoder uses a forward-backward algorithm, the information is arranged
in blocks. Thus, the first constituent encoder is terminated by appending v bits to return
to the 0 state. Because the interleaver reorders the input sequence, the second encoder
will not normally return to the 0 state, but this has little effect on the performance for
large block lengths. If desired, though, modifications can be made to ensure termination
of both encoders.

• Block codes can be also used as constituent codes in turbo encoders

• Decoding can be stopped, and final decoding estimate declared, after some fixed number of
iterations (usually on the order of 10-20) or based on a stopping criterion that is designed
to detect when the estimate is reliable with very high probability
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Basic Structure

A turbo encoder refers to the concatenation of two or more (n,k) recursive systematic convolu-
tional encoders separated by interleavers. On the other hand, a turbo decoder consists of two (or
more) soft-in/soft-out (SISO) convolutional decoders separated by interleavers which iteratively
feed probabilistic information (soft information) back and forth to each other in a manner that
is reminiscent of the turbo engine. This probabilistic information is called extrinsic information
and it is updated at each iteration. Because the interleaver is part of the code design, a complete
maximum likelihood decoder P (x|r) for the entire codeword is prohibitively complex. Thus, we
use a different approach than maximum likelihood decoder, which is called bit-wise maximum
likelihood decoder P (Xt = x|r). This decoder approach is suboptimal but it almost always
converges to the maximum likelihood solution. Turbo Codes with more than two encoders and
decoders are called multiple turbo codes.

There are several classes of Turbo Codes, like Parallel Concatenated Convolutional Code
(PCCC) and Serial Concatenated Convolutional Code (SCCC). The first class of Turbo Codes
was based on the Parallel Concatenated Convolutional Code and was introduced by Claude
Berrou. For reasons of bandwidth efficiency, parallel concatenation is preferred over serial con-
catenation. In fact, parallel concatenation that combines two codes with rates R1 and R2 gives
an overall rate R equal to :

R =
R1R2

1− (1−R1)(1−R2)
(2.1)

This is a rate higher than that of a serially concatenated code, which is :

R = R1R2 (2.2)

for the same values of R1 and R2, and the lower these rates, the larger the difference. Thus, with
the same performance of component codes, parallel concatenated offers a better global rate, but
this advantage is lost when the rates come close to unity. Some other popular classes of turbo
coding are Turbo Product Codes and Repeat-accumulate Code.

19
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2.1 Parallel Concatenated Convolutional Code - PCCC

Turbo codes are a subclass of the parallel-concatenated code schema where convolutional codes
are being used as the encoding algorithm. The general structure of a PCCC encoder and decoder
is described below.

2.1.1 Encoder

The conventional arrangement for the parallel-concatenated convolutional code (PCCC) encoder
consists of two (or more) convolution encoders called constituent encoders and one (or more)
interleaver, which permutes the input symbols prior to input to the next constituent encoder.
This structure is called parallel concatenation because the two encoders operate on the same
input sequence, in comparison with the serial concatenated codes where the second constituent
encoder operates on the encoded output sequence from the first encoder. Hence, the basic
structure of a PCCC encoder is :

Figure 2.1: Basic Structure of a PCCC Encoder

2.1.2 Decoder

The decoder of a parallel-concatenated convolution code (PCCC) follows directly from the turbo
principle. Per the turbo principle, only extrinsic log likelihood ratio information is sent from
one decoder to the other, with appropriate interleaving-deinterleaving processing in accordance
with the inteleaving mechanism of the PCCC encoder. After a number of iterations, the decoder
can sum the log likelihood ratio from the channel, from its companion decoder and from its own
computations to produce the total log likelihood ratio values for the data bits xk. The decisions
are made from the total log likelihood ration (LLR) values as : x̃k = sign

[
LLR(xk)

]
. The two

(or more) constituent decoders are SISO decoders matched to the corresponding top and bottom
encoders of the PCCC encoder. The basic structure of a PCCC decoder is :

Figure 2.2: Basic Structure of a PCCC Decoder
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where Ltotal1 and Ltotal2 is the total log likelihood information at the output of Decoder 1 and
Decoder 2, respectively. The log likelihood quantity L1→2 is the extrinsic information sent from
Decoder 1 to Decoder 2, and similarly for L2→1.



Chapter 3

Convolutional Codes

3.1 General Informations

Convolutional codes were first introduced by Elias in 1955 as an alternative to block codes and
has been widely in use for wireless, space and broadcast communications since about 1970.
In 1967, Viterbi proposed a maximum likelihood decoding algorithm that was relatively easy
to implement for soft-decision decoding of convolutional codes with small constraint length,
which is called Viterbi algorithm. In 1974, Bahl, Cocke, Jelinek and Ravik (BCJR) introduced
a maximum a-posteriori probability decoding algorithm for convolutional codes with unequal
a-priori probabilities for the information bits, which is called BCJR algorithm. The BCJR
algorithm has been applied to soft-decision iterative decoding schemes in which the a-priori
probabilities of the information bits change from iteration to iteration.

The convolutional codes are linear codes with additional structure in their generator matrix,
which allows the encoding procedure to be viewed as a filtering (or convolutional) operation.
Hence, the convolutional encoder can be viewed as a set of digital linear and time-invariant
filters with the code sequence being the interleaved output of the filter output. Convolutional
codes have better performance over block codes of comparable encode-decode complexity. Fur-
thermore, they are among the earliest codes for which effective soft-decision decoding algorithms
were developed.

The encoder of a convolutional code accepts k-bit blocks of the information sequence x and
produces an encoded sequence c of n-symbol blocks. However, each encoded block depends not
only on the corresponding k-bit message block at the same time unit but also on m previous
message blocks. Hence, the encoder has a memory order of m.

A rate R = k
n convolutional encoder with memory order m can be realized as a k-input,

n-output linear sequence circuit with input memory m; that is, inputs remain in the decoder
for additional m time units after entering. Typically, for convolutional codes, the arguments
n and k are small integers with k < n. The encoder divides the information sequence into
blocks of length k, and produce the output sequence that is divided into blocks of length n.
In the important special case when k = 1, the input sequence is not divided into blocks and
it is processed continuously as a continuous stream. In this case, convolution codes can be
viewed as stream codes because they often operate on continuous streams of symbols and not
on partitioned discrete message blocks. Unlike with block codes, large minimum distances and
low error probabilities are achieved not by increasing k and n, but by increasing the memory

22
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order m, as demonstrated below.
The capability of a noisy channel to transmit information reliably was determined by Shan-

non in his original work. This result, called noisy channel coding theorem, states that every
channel has a capacity C, and that for any rate R < C, there exist codes of rate R that, with
maximum likelihood decoding, have an arbitrarily small decoding error probability P (E). In
particular, for any (n, k) convolutional codes with rate R < C and sufficiently large memory
order m, the error probability is bounded by:

P (E) ≤ 2−(m+1)nEc(R) (3.1)

where m is equal to the memory of the encoder and Ec(R) is a positive function of R and
it is completely determined by the channel characteristics. Thus, we can conclude that for a
given code with fixed rate R, arbitrarily small error probabilities and large minimum distance
are achievable with convolutional coding by increasing memory order m, while holding k and
n constant. A maximum likelihood decoding scheme for convolutional codes requires approxi-
mately 2km computations to decode each block of k information bits. Hence, the computational
complexity of the decoding scheme increases exponentially as the length k of the input block
and the memory order m increase, and, as a result, we can not arbitrarily increase neither the
code’s input nor the code’s memory order m.

Encoders for convolutional codes fall into two general categories: feedforward and feedback.
A feedforward encoder (or FIR encoder) is called the encoder which has only polynomial entries
in its generator matrix. A feedback encoder (or IIR encoder) is called the encoder which has
either both rational and polynomial entries or only rational entries. Further, within each cate-
gory, encoders can be either classified as systematic or non-systematic. For a given constraint
length, the systematic feedback encoders have generally superior distance properties compared
to systematic feedforward encoders.

For an (n, k) convolutional code, the encoder can be implemented using k shift registers to
store the input sequences and nmodulo-2 adders to form the output sequences. Specifically, the k
input sequences enter the left end of each shift register, and the n output sequences are produced
by modulo-2 adders external to the shift registers. Such realization is called Controller Canonical
Form. Additionally, convolutional encoders can be implemented in Observer Canonical Form. In
general, for observer canonical form encoder realization, there is one shift register corresponding
to each of the n output sequences, the k input sequences enter modulo-2 adders internal to the
shift register, and the outputs at the right end of each shift register form the n output sequences.
Any feedforward and feedback encoder can be realized in both manners. Moreover, any encoder
in controller canonical form can be transformed in observer canonical form, and vice versa.
However, throughout our analysis, we use the controller canonical form because there is a direct
correspondence between equations and the realization of an encoder in controller canonical form.

At this point, we will mention some useful terms that we are going to use during the following
analysis of convolutional codes. Let vi be the length of the ith shift register in a convolutional
encoder with k input sequences, i = 1, 2, . . . , k. The encoder memory order m, then, is defined
as :

m = max
1≤i≤k

vi (3.2)

and the overall constraint length v of the encoder is defined as :

v =
∑

1≤i≤k
vi (3.3)
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Primarily, the performance of a convolutional code depends on the decoding algorithm em-
ployed and the distance properties of the code. The most important criterion in construction
of good convolutional codes is the maximization of the minimum distance. Then, as secondary
criterion, the first term of the weight distribution Admin

, which is referred to the number of
codewords with weight dmin, should be minimized. Generally speaking, dmin is of primary im-
portance in determiniing performance at high SNRs, but as the SNR decreases, the influence
of the number of nearest-neighbors Admin

increases, and for very low SNRs the entire weight
spectrum plays a role. Because convolutional codes are linear codes, their minimum distance
can be computed as :

dmin = min
i 6=j

dH(ci, cj)

= min
i 6=j

w(ci − cj)

= min
c
w(c)

= min
x
w(xG), ∀x 6= 0

(3.4)

where c is the codeword corresponding to the information sequence x and G is the generator
matrix of the code. Based on the above equation, we can conclude that the minimum distance is
defined by the generator matrix G of the code and, thus, is a feature of the code. For a certain
code rate and constraint length, nonsystematic feedforward encoders imply more free distance in
comparison with systematic feedforward encoders for the same code rate and constraint length.
Thus, if a systematic encoder realization is desired, it is better to construct a nonsystematic
feedforward encoder with large dmin and then convert it to an equivalent systematic feedback
encoder.

Since a convolutional encoder can be realized as a linear sequential circuit, it can be described
using a finite state machine (FSM). The state of the encoder is defined as its memory content
(content of the shift registers). For a (n,k) encoder in controller canonical form, the ith shift

register at time unit l, contains vi bits, denoted as
(
s

(i)
l−1, s

(i)
l−2, . . . , s

(i)
l−vi
)
, where s

(i)
l−1 represents

the contents of the leftmost delay element, and s
(i)
l−vi represents the content of the rightmost

delay element, 1 ≤ i ≤ k. As a result, the state of the encoder σl at time unit l is the binary
tuple:

σl =
(
s

(1)
l−1, s

(1)
l−2, . . . , s

(1)
l−vi , s

(2)
l−1, s

(2)
l−2, . . . , s

(2)
l−vi , . . . , s

(k)
l−1, s

(k)
l−2, . . . , s

(k)
l−vi
)

(3.5)

Hence, for both encoding and decoding, it is useful to think of the state machine, which is a
representation of the temporal relationships between the states portraying current state - next
state relationship as a function of the inputs and the outputs. For an implementation with
overall constraint length equal to v, there are 2v states in the state diagram. Throughout this
analysis, we assume that all shift registers have equal length. Thus, based on equations (3.3)
and (3.2), the overall constraint length v of the (n, k) code is equal to km. As a consequence,
there are 2km states in the state diagram. Each new input block of k bits causes the encoder to
shift; that is, there is a transition to a new state. Hence, there are 2k branches leaving each state
in the state diagram, one corresponding to each different input blocks. The codeword produced
at each time unit depends on both current state and encoder’s input sequence. Hence, the state
machine of a convolutional code is a Mealy machine. Also, maximum likelihood decoding and
maximum a posteriori probability decoding of convolutional codes require a decoding complexity
that is proportional to the number of states in the encoder state diagram, thus, we always
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seek an encoder realization with a minimal number of states, that is, with a minimal overall
constraint length. These encoders are called minimal encoders. Another useful representation
is a graph representing the connections from states at one time instants to states at the next
time instant. This type of representation is called Trellis representation. We note here that
the convolutional encoders whose generator matrix and the associated encoder diagram do not
change with time are called time-invariant convolutional encoders. However, when the state
diagram of a convolutional encoder changes with time, those encoders are called time-variant
convolutional encoders. A special case of time-varying convolutional encoder is used in the class
of Turbo Codes.

In the case of systematic convolutional encoders which are implemented based on controller
canonical form, the realization of the encoder requires only (n− k) shift registers, since k input
sequences appear directly to the encoder’s output sequences. Those (n − k) shift registers are
responsible for the computation of the (n−k) parity check sequences. In many cases, where the
number of the encoder’s output sequences, n, and the number of the encoder’s input sequences,
k, are comparable, the realization of systematic convolutional encoder is more simple than the
realization of the corresponding non-systematic convolutional encoder from both hardware and
encoder’s computational complexity perspective. From hardware perspective, fewer logical units
(shift registers and modulo-2 adders) are used for the implementation of a systematic encoder.
From the perspective of the encoder’s computational complexity, as we mentioned earlier, the
encoders complexity is equal to 2v, where v refers to the overall constraint length of the encoder.
The overall constraint length is given from the equation (3.3) and is equal to the sum of the size of
the each shift register. Hence, the systematic convolutional encoder has smaller overall constraint
length than the non-systematic encoder and, as a result, lower computational complexity.

3.2 Convolutional Codes

Generally, the encoder for an (n, k) convolutional code accepts blocks of k-bits from the infor-
mation sequence and produces an encoded sequence of n-bits symbols blocks. However, each
encoded block depends not only on the corresponding k-bit input message block at that current
time unity but also on m previous input message blocks. Hence, the encoder has a memory of
some order m. Typically, k and n are small integers, and more redundancy is added by increasing
the memory order m of the code while holding k and n fixed.

The information sequence x =
(
x0 x1 x2 x3 . . .

)
, that we want to encode, can be rewritten as(

x(1) x(2) . . .x(k)
)
, where each x(i) is equal to

(
x

(i)
0 x

(i)
1 x

(i)
2 . . .

)
=
(
xi−1 xi−1+k xi−1+2k . . .

)
,

∀i = 1, . . . , k, and which, essentially, contains the information bits that correspond to the input of

ith encoder at each time point. The output sequence c can be written as
(
c

(1)
0 . . . c

(n)
0 c

(1)
1 . . . c

(n)
1 . . .

)
=
(
c0 c1 . . . ct . . .

)
where ct denotes the codeword produced at the time unit t and is equal to(

c
(1)
t . . . c

(n)
t

)
. In a similar manner to the definition of x(i), we define the sequence c(j) which

is equal to
(
c

(j)
0 c

(j)
1 . . .

)
and which represents the output sequence of the jth encoder at each

time unit. The equation that produce each sequence c(j) is :

c(j) =
k∑
i=1

x(i) ~ g
(j)
i ∀j = 1, . . . , n (3.6)
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where ~ denotes the discrete convolution and all operation are modulo-2. The impulse response

g
(j)
i =

(
g

(j)
i,0 g

(j)
i,1 . . . g

(j)
i,m

)
, which corresponds the input i to the output j, is called generator

sequences. This equation is the basic equation that produces any (n, k) convolutional code. The
following diagram is schematically shown the procedure followed by a convolutional encoder to
produce the output sequence c, as described above.

Figure 3.1: Convolutional Encoder

As we can see, the output sequences c(j) are multiplexed for the purpose of producing the
final output sequence c. The module ”Adders” denotes the set of modulo-2 adders that combine

the components of the shift registers in order to produce the c
(j)
t at each time unit.

In a matrix representation manner, the basic equation which generates an (n, k) convolutional
codes can be expressed as :

c = xG (3.7)

where all operations are, also, modulo-2. The matrix G is called the (time domain) generator
matrix of the encoder. In the general case of an (n, k) feedforward encoder with memory order
m, the generator matrix is given by:

G =


G0 G1 G2 . . . Gm 0 0 . . .
0 G0 G1 . . . Gm−1 Gm 0 . . .
0 0 G0 . . . Gm−2 Gm−1 Gm . . .
...

...
...

. . .
...

...
...

. . .

 (3.8)

where each Gi is a (k x n) submatrix whose entries are :

Gi =


g

(1)
1,i g

(2)
1,i . . . g

(n)
1,i

g
(1)
2,i g

(2)
2,i . . . g

(n)
2,i

...
...

. . .
...

g
(1)
k,i g

(2)
k,i . . . g

(n)
k,i

 (3.9)

Each submatrix Gi is being constructed by the generator vectors, which represent the generator
sequence corresponding to the input i and the output j. Note that each set of k rows of G is
identical to the previous set of rows but shifted n places to the right and that G is semi-infinite
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matrix, corresponding to the fact that the information sequence x is of arbitrarily length. If x
has finite length h, then G has h

k rows and n(m+ h
k ) columns. Consequently, c has length equal

to n(m+ h
k ).

In case of systematic feedforward encoders, the generator matrix G is given by :

G =


IP0 0P1 0P2 . . . 0Pm 0 0 . . .
0 IP0 0P1 . . . 0Pm−1 0Pm 0 . . .
0 0 IP0 . . . 0Pm−2 0Pm−1 0Pm . . .
...

...
...

. . .
...

...
...

. . .


Based on the above notation, we can conclude that each Gi can be written either as :

[IP0] =



1 0 0 . . . 0 p
(1)
1,0 p

(2)
1,0 . . . p

(n−k)
1,0

0 1 0 . . . 0 p
(1)
2,0 p

(2)
2,0 . . . p

(n−k)
2,0

0 0 1 . . . 0 p
(1)
3,0 p

(2)
3,0 . . . p

(n−k)
3,0

...
...

...
. . .

...
...

...
. . .

...

0 0 0 . . . 1 p
(1)
k,0 p

(2)
k,0 . . . p

(n−k)
k,0


, i = 0

or as :

[0Pi] =



0 0 0 . . . 0 p
(1)
1,i p

(2)
1,i . . . p

(n−k)
1,i

0 0 0 . . . 0 p
(1)
2,i p

(2)
2,i . . . p

(n−k)
2,i

0 0 0 . . . 0 p
(1)
3,i p

(2)
3,i . . . p

(n−k)
3,i

...
...

...
. . .

...
...

...
. . .

...

0 0 0 . . . 0 p
(1)
k,i p

(2)
k,i . . . p

(n−k)
k,i


, i 6= 0

where I and 0 are the (k x k) identity matrix and all-zero matrix, respectively. Comparing
the generator matrix of a general convolutional code to the generator matrix of a systematic
feedforward code, we can conclude that, any Pi is a (k x (n-k)) matrix whose entries are equal
to :

Pi =


g

(k+1)
1,i g

(k+2)
1,i . . . g

(n)
1,i

g
(k+1)
2,i g

(k+2)
2,i . . . g

(n)
2,i

...
...

. . .
...

g
(k+1)
k,i g

(k+2)
k,i . . . g

(n)
k,i

 (3.10)

3.2.1 Polynomial (Transform Domain) Representation

As we know, in any linear system, all time domain operations involving convolution can be
replaced by more convenient transform domain operations involving polynomial multiplication.
Because a convolutional encoder is a linear system, each sequence in the decoding equation can
be replaced by a corresponding polynomial, and the convolution operation can be replaced by
polynomial multiplication. In the polynomial representation of a binary sequence, the sequence
itself is represented by the coefficients of the polynomial; that is, any sequence x =

(
x0 x1 x2 . . .

)
can be written in polynomial form like x(D) = x0 +x1D+x2D

2 + . . . . Thus, the basic equation
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of the convolutional codes c(j) =
∑k

i=1 x
(i) ~ g

(j)
i can be transformed to :

c(j)(D) =
k∑
i=1

x(i)(D)g
(j)
i (D) (3.11)

where the output sequence c(j) can be described as c(j)(D) = c
(j)
0 + c

(j)
1 D + c

(j)
2 D2 + . . . , the

input sequence x(i) as x(i)(D) = x
(i)
0 + x

(i)
1 D + x

(i)
2 D2 + . . . and the generator sequence as

g
(j)
i (D) = g

(j)
0,i +g

(j)
1,iD+g

(j)
2,iD

2 + . . . . The polynomials g
(j)
i (D) are called generator polynomials.

The indeterminate D can be interpreted as a delay operator, where the power of D denotes the
number of time units a bit is delayed with respect to the initial bit in the sequence.

Hence, the basic equation (3.7) can be written as :

c(D) = x(D)G(D) (3.12)

where x(D) =
[
x(1)(D) x(2)(D) . . . x(k)(D)

]
is the k-tuple of the input sequences, c(D) =[

c(1)(D) c(2)(D) . . . c(n)(D)
]

is the n-tuple of the output sequences and the generator matrix
G(D) is equal to :

G(D) =


g

(1)
1 (D) g

(2)
1 (D) . . . g

(n)
1 (D)

g
(1)
2 (D) g

(2)
2 (D) . . . g

(n)
2 (D)

...
...

. . .
...

g
(1)
k (D) g

(2)
k (D) . . . g

(n)
k (D)


The matrix G(D) is called generator matrix. Moreover, from equation (3.12) we can conclude
that a convolutional code in time domain can be represented as a linear block code, in transform
domain. Thus, any theorem of a linear block code can be applied to a convolutional code after the
transformation of the code from time to transform domain, and vice versa. As a consequence,
we can conclude that block and convolutional codes are dual codes. After multiplexing, the
overall encoder’s output sequence can be expressed as :

c(D) = c(1)(Dn) +Dc(2)(Dn) + · · ·+Dn−1c(n)(Dn) (3.13)

We can rewrite the equations (3.12) and (3.13) to provide a means of representing the multiplexed
codeword c(D) directly in the terms of the input sequences. A little algebraic manipulation yields

c(D) =
k∑
i=1

x(i)(Dn)gi(D) (3.14)

where gi(D) = g
(1)
i (Dn) +Dg

(2)
i (Dn) + · · ·+Dn−1g

(n)
i (Dn), 1 ≤ i ≤ k is a composite generator

polynomial relating the ith input sequence to the multiplexed c(D).
Using the polynomial notation, any systematic feedforward encoders can be written as :

G(D) =


1 0 . . . 0 g

(k+1)
1 (D) . . . g

(n)
1 (D)

0 1 . . . 0 g
(k+1)
2 (D) . . . g

(n)
2 (D)

...
...

. . .
...

...
. . .

...

0 0 . . . 1 g
(k+1)
k (D) . . . g

(n)
k (D)

 =
[
I P (D)

]
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where

P (D) =


p

(1)
1 (D) p

(2)
1 (D) . . . p

(n−k)
1 (D)

p
(1)
2 (D) p

(2)
2 (D) . . . p

(n−k)
2 (D)

...
...

. . .
...

p
(1)
k (D) p

(2)
k (D) . . . p

(n−k)
k (D)

 =


g

(k+1)
1 (D) g

(k+2)
1 (D) . . . g

(n)
1 (D)

g
(k+1)
2 (D) g

(k+2)
2 (D) . . . g

(n)
2 (D)

...
...

. . .
...

g
(k+1)
k (D) g

(k+2)
k (D) . . . g

(n)
k (D)



3.2.2 Systematic Recursive Convolutional Codes - SRCC

High-rate codes are most efficiently represented in a systematic feedback form. An application
of systematic feedback convolutional encoders is turbo coding. Any nonsystematic feedfor-
ward convolutional code can be converted to a systematic feedback code using elementary row
operations. These systematic feedback encoders generate the same codes as corresponding non-
systematic feedforward encoders but exhibit a different mapping between information sequences
and codewords. The key characteristic of feedback encoders is that their impulse response has
infinite duration. In particular, for nonrecursive codes, information sequence of weight 1 pro-
duce finite-length codewords, whereas for recursive codes, information sequences of weight 1
produce codewords of infinite length. Thus, the feedback shift register realization is an infinite
impulse response (IIR) linear system. For this reason, the (time-domain) generator matrix G
contains sequences of infinite length. Because the response to a single nonzero input in a feed-
back encoder has infinite duration, the codes produced by feedback encoders are called recursive
convolutional codes (RSCC). Hence, a more convenient way to examine the feedback code is
through transform domain representation. This property of recursive codes turns out to be a
key factor in the excellent performance achieved by the class of turbo codes.

Feedback encoders are more easily described using the transform domain representation
generator matrices G(D) whose entries are contain rational functions, rather than the corre-
sponding time-domain representation generator matrices G whose entries contain sequences of
infinite length. Thus, we say that a systematic feedback encoder produces a systematic recursive
convolutional code (RSCC). In general, any nonsystematic feedforward convolutional encoder
with a k x n polynomial generator matrix G(D) can be transformed to a RSCC with polynomial
generator matrix G′(D) using elementary polynomial row operations. It is important to note
that elementary rows operations do not change the row space of a matrix. Thus, the RSCC pro-
duced by the systematic feedback encoder generates the same code as the initial nonrecursive
convolutional code; however, the mapping between information sequences and corresponding
codewords is different in two cases.

The generator matrix of a systematic feedback encoder has rational entries
a
(j)
i (D)

b
(j)
i (D)

, where

a
(j)
i (D) = a0 + a1D+ · · ·+ amD

m and b
(j)
i (D) = 1 + b1D+ · · ·+ bmD

m. Note that, b0 should be

always equal to 1 or, equivalent, the denominator polynomial b
(j)
i (D) is delay free. This means

that it can always be written in a form where the common factor Di has been pulled out. The

assumption of b0 = 1 implies that g
(j)
i is a causal transfer function and, hence, is realizable.
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This can be proven as :

c(j)(D) = x(i)(D)g
(j)
i (D) = x(i)(D)

a(D)

b(D)
⇔

b(D)c(j)(D) = x(i)(D)b(D)
F−1

⇐⇒ b[t] ~ c(j)[t] = a[t] ~ x(i)[t]⇔
+∞∑

k=−∞
b[k]c(j)[t− k] =

+∞∑
k=−∞

a[k]x(i)[t− k]⇔
+∞∑
k=0

b[k]c(j)[t− k] =
+∞∑
k=0

a[k]x(i)[t− k]⇔

b0c
(j)[t] + b1c

(j)[t− 1] + · · ·+ bmc
(j)[t−m] = a0x

(i)[t] + a1x
(i)[t− 1] + · · ·+ amx

(i)[t−m]⇔
b0c

(j)[t] = a0x
(i)[t] + a1x

(i)[t− 1] + · · ·+ amx
(i)[t−m]− b1c(j)[t− 1]− · · · − bmc(j)[t−m]

(3.15)

If b0 = 0, it makes the situation untenable, i.e, c(j)[t] can not be determined from the
inputs x(i)[t], . . . , x(i)[t−m] and the outputs c(j)[t− 1], . . . , c(j)[t−m]. Consequently, a general
(transform-domain) generator matrix G(D) for a RSC code can be written as :

G(D) =



1 0 . . . 0
a
(k+1)
1 (D)

b
(k+1)
1 (D)

. . .
a
(n)
1 (D)

b
(n)
1 (D)

0 1 . . . 0
a
(k+1)
2 (D)

b
(k+1)
2 (D)

. . .
a
(n)
2 (D)

b
(n)
2 (D)

...
...

. . .
...

...
. . .

...

0 0 . . . 1
a
(k+1)
k (D)

b
(k+1)
k (D)

. . .
a
(n)
k (D)

b
(n)
k (D)


Generally, it is not mandatory to use different denominators in each entry. Therefore, we can

replace each b
(j)
i (D) with a universal denominator b(D).

The structure of a feedback (recursive) shift register is shown below :

Figure 3.2: Feedback Shift Register
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3.3 Catastrophic Encoders

A convolutional encoder is called catastrophic when a finite number of channel errors causes an
infinite number of decoding errors. Catastrophic encoders should not be avoided. Generally,
an encoder G(D) for a convolutional code is catastrophic if there exists message sequence x(D)
such that w(x(D)) =∞ and the weight of the coded sequence w(c(D)) <∞. A mean which can
be used in order to check if an encoder is catastrophic, is the existence of the inverse generator
matrix, G−1(D). Additionally, an encoder is catastrophic if and only if the state diagram of
the code contains a cycle with zero output weight other than the zero-weight cycle around the
initial state S0. Systematic convolutional encoders always posses a polynomial inverse matrix
G−1(D), which makes them always noncatastrophic.

3.4 Rate of Convolutional Codes

An (n,k) convolutional encoder can generate infinitely long encoded sequences. Because n en-
coded bits are produced for each k information bits, R = k

n is called the rate of the convolutional
encoder. For a finite-length information sequence of h time units, or K = kh bits, it is customary
to begin encoding in the all-zero state; that is, the initial contents of the shift registers are all
zeros. When we consider trellis-based decoding, unless the final state is known, the last several
decoded bits will be somewhat unreliable. Thus, to facilitate decoding, it is necessary to return
the encoder to an known state or the all-zero state after the last information block has entered
the encoder. This requires that some additional input blocks equal to the memory order m of
the encoder, should enter the encoder to force it to return to the all-zero state. This sequence of
bits is called zero-append sequence. For feedforward encoders, it can be seen from the encoder
diagram that these m termination blocks must be all zeros, whereas for feedback encoders, the
termination blocks depend on the information sequence. Thus, we can not foresee which bit se-
quence can drive the encoder’s state machine back to the all-zero state, as we can assume from
figure (3.2). In both cases, these termination blocks are not part of the information sequence,
since they are fixed and cannot be chosen arbitrarily. We note that for controller canonical form
encoder realizations with v < km, only v bits are required for termination. Thus, km− v bits in
the termination block can be information bits. A similar situation holds in the case of observer
canonical form realizations.

In case of additional blocks are added in order to drive the state machine back to the all-
zero state, the actual rate of the code is smaller than the theoretical one. More precisely,
for a finite-length information sequence with K = kh bits and memory order m, the output
sequence has length N = n(h + m). Thus, the actual code rate is equal to R = K

N = kh
n(m+h) .

If h >> m, then h
h+m ' 1 and the actual code rate is approximately equal with the theoretical

one. Contrariwise, if h is small compared to the memory order m, the actual code rate is reduced
below the convolutional encoder rate R by a fractional amount

k
n −

kh
n(h+m)

k
n

=
m

h+m
(3.16)

which is called the fractional rate loss.
For short information sequences, the fractional rate loss can be eliminated by simply not

transmitting the nm termination bits and considering the first N = nh encoder output bits as
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the codeword. However, if the termination bits are not transmitted, the performance of the code
is degraded. One way to combat this problem is to allow the encoder to start in an arbitrary
state (the initial contents of the shift registers are not necessarily all-zeros) and then force it to
return to the same at the end of the information sequence. It turns out that if the starting state
is chosen properly, no extra bits are required to force the encoder back to the same state, so no
fractional rate loss is incurred. This technique results in so-called tail-bitting codes.

3.5 Decoders for convolutional codes

There exist several decoding algorithms for convolutional codes, including the majority-logic
decoder, the sequential decoder, the Viterbi decoder and the BCJR decoder. The choice of the
decoding algorithm depends on the application. In case of turbo codes, the chosen decoding
algorithms are maximum-likelihood sequence decoder (MLSD), which is implemented via a vari-
ation of the Viterbi algorithm which is called soft-output Viterbi algorithm (SOVA) and the
bit-wise maximum a-posteriori (MAP) decoder which is implemented via BCJR algorithm. The
SOVA algorithm provides not only decoded symbols but also an indication of the reliability of
the decoded values. The MLSD decoder minimizes the probability of code-sequence error, while
MAP minimizes the probability of information-bit error. Suboptimal decoding algorithms are
also occasionally of interest, particularly the constraint length is large.



Chapter 4

Viterbi

The Viterbi algorithm was proposed by Andrew Viterbi in 1967 and it is an optimal decoding
algorithm for convolutional codes with low constraint length (typically ≤ 8). It is a maximum
likelihood (ML) decoding algorithm for convolutional codes; that is, the decoder output selects
always the codeword that maximize the conditional probability of the received sequence. Thus,
Viterbi algorithm minimizes the codeword error probability. Essentially, it is a shortest path
algorithm, roughly analogous to Djikstra’s shortest path for computing the shortest path through
the trellis associated with the code. Further, the Viterbi algorithm is equivalent to a dynamic
programming solution to the problem of finding the shortest path through a weighted graph. The
Viterbi algorithm has been applied to a variety of communication problems, including maximum
likelihood sequence estimation in the presence of intersymbol interference and optimal reception
of spread-spectrum multiple access communication. It also appears in many other problems
where a ”state” can be defined, such as in hidden Markov modeling.

Generally, a decoder based on the Viterbi algorithm takes the received sequence r = {r0, . . . ,
rL−1} and determines an estimation of the transmitted data a = {a0,a1, . . . ,aL−1} and from
that an estimation of the sequence of the input data x = {x0,x1, . . . ,xL−1}, as is shown in the
following figure :

Figure 4.1: Viterbi Decoder

The basic idea behind the Viterbi algorithm is that a coded sequence {c0, . . . , cL−1}, or its
signal-mapped equivalent {a0, . . . ,aL−1}, corresponds to a path through the encoder’s trellis.
Due to noise in the channel, the received sequence r may or may not correspond exactly to
a path through the trellis. The decoder finds a path through the trellis which is closest to
the received sequence, where the measure of ”closest” is determined by the likelihood function
appropriate for the channel. Especially, for a BSC channel and an AWGN channel, the maximum

33



34 CHAPTER 4. VITERBI

likelihood path corresponds to the path through the trellis which is closest to the Hamming and
the Euclidean distance to r, respectively.

4.1 Viterbi Algorithm

The Viterbi algorithm is a maximum likelihood sequence estimator in conjuction with the BCJR
algorithm which is a bit-wise maximum a-posteriori bit estimator. Assume that the information

sequence x = {x0,x1, . . . ,xL−1}, where xi = {x(1)
i , x

(2)
i , . . . , x

(k)
i } for each i = 0, . . . , L − 1,

is encoded into the codeword c = {c0, c1, . . . , cL−1}, where ci = {c(1)
i , c

(2)
i , . . . , c

(n)
i } for each

i = 0, . . . , L−1, and be transmitted over a memoryless channel, as shown in the following figure:

Figure 4.2: Transmission

where the received sequence is represented by r. The decoder must produce an estimate
sequence x̂ of the information sequence x based on the received sequence r. A maximum
likelihood (ML) decoder for a memoryless channel chooses the sequence x̂ that maximizes the
log-lokelihood function log p(r|a). The maximum likelihood function is equal to :

p(r|a) = p(rL−10 |aL−10 ) = p(r0, . . . , rL−1|a0, . . . ,aL−1) (4.1)

If the channel is memoryless, the above equation can be computed as :

p(r|a) =
L−1∏
i=0

p(ri|ai) =
L−1∏
i=0

( n∏
j=1

p(r
(j)
i |a

(j)
i )

)
(4.2)

As regards the log-likelihood function log p(r|a), it follows that :

log p(r|a) =

L−1∑
i=0

log p(ri|ai) (4.3)

where log p(ri|ai) is a channel transition probability equals to :

log p(ri|ai) = log

n∏
j=1+

p(r
(j)
i |a

(j)
i ) =

n∑
j=1

log p(r
(j)
i |a

(j)
i ) (4.4)

Now, consider a sequence x̂t−1
0 = {x̂0, . . . , x̂t−1} which leaves the decoder in state Ψt = p at

time t. This sequence determines a path, or sequence of states, through the trellis for the code,
which we abstractly denote as Πt or Πt

(
xt−1

0

)
. Thus,

Πt = {Ψ0,Ψ1, . . . ,Ψt} (4.5)
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The log-likelihood function for the sequence is :

log

[
p
(
rt−1

0 |x̂t−1
0

)]
=

t−1∑
i=0

log

[
p
(
ri|x̂i

)]
(4.6)

Let Mt−1(p) = − log

[
p
(
rt−1

0 |x̂t−1
0

)]
denotes the path metric for the path Πt through the trellis

defined by the sequence x̂t−1
0 and terminating in state p (the minus sign means that we seek to

minimize the path metric in order to maximize the likelihood function). Now, let the sequence
x̂t0 = {x̂0, . . . , x̂t−1, x̂t} be obtained by appending the input x̂t to x̂t−1

0 and suppose the input
x̂t is such that the state at time t+1 is Ψt+1 = q. The path metric for this larger sequence is :

Mt(q) = −
t∑
i=0

log p
(
ri|x̂i

)
= −

t−1∑
i=0

log p
(
ri|x̂i

)
− log p

(
rt|x̂t

)
= Mt−1(p)− log p

(
rt|x̂t

)
(4.7)

Let µt(rt, x̂t) = − log p
(
rt|x̂t

)
denotes the negative log-likelihood a prosteriori probability for the

input rt. The quantity µt(rt, x̂t) = − log p
(
rt|x̂t

)
is called branch metric for the decoder. Since

x̂t moves the trellis from state p to state q at time t+1, we can write µt(rt, x̂t) as µt
(
rt, x̂

(p,q)
t

)
.

Then :
Mt(q) = Mt−1(p) + µt(rt, x̂t) = Mt(q) = Mt−1(p) + µt

(
rt, x̂

(p,q)
t

)
(4.8)

Thus, the path metric along a path to state q at time t is obtained by adding the path metric
to the state p at time t-1 to the branch metric for an input which moves the encoder from state
p to state q.

Suppose Mt−1(p1) is the path metric of a path ending at state p1 at time t and Mt−1(p2) is
the path metric of a path ending at state p2 at time t. Suppose further that both of these states
are connected to state q at time t+1. The resulting path metrics to state q are Mt−1(p1) +
µt(rt, x̂

(p,q)) and Mt−1(p2) + µt(rt, x̂
(p,q)), as shown in the following figure :

Figure 4.3: Merging paths
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The governing principle of Viterbi algorithm is that in order to obtain the shortest path
through the trellis, the path to state q must be the shortest possible. Thus, when two or
more paths merge, the path with the shortest path metric is retained and the other paths are
eliminated from further consideration. That is :

Mt(q) = min
pi∈Q
{Mt−1(pi) + µt

(
rt, x̂

(pi,q)
)
} (4.9)

where Q denotes the aggregation of the states of the trellis. The path with the minimal length
becomes the path to the state q. This path is called survivor path. In the event that the path
metrics of merging paths are equal, a random choice can be made with no negative impact on
the decoding error probability.

Since it is not known at time t ≤ L which states the final path passes through, the paths to
each state are found for each time. The Viterbi algorithm, thus, maintains the following data:

• A path metric to each state at time t,

• A path to each state at time t

Cumulatively, the Viterbi algorithm is summarized as:

• For each state q at time t+1, find the path metric for each path to state q by adding
the path metric Mt(q) of each survivor path to state p at time t to the branch metric

µt
(
rt, x̂

(p,q)
t

)
,

• The survivor path to q is selected as the path to state q which has the smallest path
metric,

• Store the path and the path metric to each state q,

• Increment t and repeat until complete.

Consequently, we can assume that the Viterbi algorithm is a recursive algorithm. In the begin-
ning of the decoding process, we assume that the initial state is always Ψ0 = 0.

In case of BSC with crossover probability p < 1
2 , the received sequence r is binary and the

log-likelihood function (4.4) becomes :

log p(ri|ai) = d(ri,ai) log
p

1− p
+ n log(1− p) (4.10)

where d(ri,ai) denotes the Hamming distance between ri and ai. Because p
1−p < 0 and n log(1−

p) is constant for all a, an maximum likelihood decoding scheme for a BSC chooses a that
minimizes the overall Hamming distance :

d(r,a) =
L−1∑
i=0

d(ri,ai) (4.11)

Hence, when Viterbi algorithm is applied to the BSC, d(ri,ai) becomes the branch metric and
the algorithm must find the path through the trellis with the smallest metric, that is, the path
closest to r in Hamming distance.
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In case of AWGN channel, the a-posteriori probability p(ri|ai) is equal to :

p(ri|ai) = p
(
r

(1)
i , . . . , r

(n)
i |a

(1)
i , . . . , a

(n)
i

)
=

n∏
j=1

(
1√

2πσ2

)
exp

(
−
|r(j)
i − a

(j)
i |2

2σ2

)

=

(
1√

2πσ2

)n n∏
j=1

exp

(
−
|r(j)
i − a

(j)
i |2

2σ2

)

=

(
1√

2πσ2

)n
exp

(
−
∑n

j=1 |r
(j)
i − a

(j)
i |2

2σ2

)
=

(
1√

2πσ2

)n
exp

(
− ‖ri − ai‖2

2σ2

)

(4.12)

where ‖ri − ai‖2 = |
(
r

(1)
i − a

(1)
i

)2
+
(
r

(2)
i − a

(2)
i

)2
+ · · ·+

(
r

(n)
i − a

(n)
i

)2
| = |

∑n
j=1

(
r

(j)
i − a

(j)
i

)2
| =∑n

j=1 |
(
r

(j)
i − a

(j)
i

)2
| because each term

(
r

(j)
i − a

(j)
i

)2
is greater or equal than zero and according

to inequality |a1 + a2 + · · · + an| ≤ |a1| + |a2| + · · · + |an| ⇒ |a1 + a2 + · · · + an| = |a1| +
|a2|+ · · ·+ |an| only if ai ≥ 0 for each i = 1, 2, . . . , n, we can conclude that |

∑n
j=1

(
r

(j)
i − a

(j)
i

)2
|

=
∑n

j=1 |
(
r

(j)
i − a

(j)
i

)2
|.

As regards the log-likelihood function log p(r|a), the channel transition probability log p(ri|ai)
is equals to :

log p(ri|ai) = −n log(
√

2πσ2)− ‖ri − ai‖2

2σ2
(4.13)

where ‖ri − ai‖2 is the squared Euclidean distance between ri and ai. The quantity log p(ri|ai)
becomes the branch metric.

We can further process the equation (4.4) as follows :

log p(ri|ai) = log

n∏
j=1

p
(
r

(j)
i |a

(j)
i

)
= log

n∏
j=1

(
1√

2πσ2

)
exp

(
−
|r(j)
i − a

(j)
i |2

2σ2

)

= −n log(
√

2πσ2)−
n∑
j=1

(
|r(j)
i − a

(j)
i |2

2σ2

)

= −n log(
√

2πσ2)− 1

2σ2

n∑
j=1

[
(|r(j)

i − a
(j)
i |

2)

]

= −n log(
√

2πσ2)− 1

2σ2

n∑
j=1

[
(r

(j)
i )2 − 2r

(j)
i a

(j)
i + (a

(j)
i )2

]

= −n log(
√

2πσ2)− 1

2σ2

n∑
j=1

[
(r

(j)
i )2 + (a

(j)
i )2

]
+

1

σ2

n∑
j=1

[
r

(j)
i a

(j)
i

]

= −n log(
√

2πσ2)− 1

2σ2

n∑
j=1

[
(r

(j)
i )2 + (a

(j)
i )2

]
+

1

σ2
riai

(4.14)
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In case of a BPSK modulation scheme, we can assume that the above equation depends only on
the inner product (correlation) of the received vector ri and codeword ai.

Thus, for a BSC channel , the Viterbi algorithm (MLSD decoding schema) chooses the code
sequence which is closest to the channel output r in a Hamming distance sense, while for a
AWGN channel, it chooses the code sequence which is closest to channel output in a Euclidean
distance.

After the termination of the Viterbi algorithm, the final state of the Trellis diagram can be
any possible state Ψt ∈ Q. However, a different approach can be used where the final state of
the Trellis diagram should be a specific one, usually the all-zero state; that is, Ψt = Q0. In order
to achieve this, an all-zero sequence should be appended to the information sequence x before
the encoding stage. The length of this sequence is equal to k ∗m, where m is the memory order
of the encoder and which is given by the equation (3.2). This version of Viterbi algorithm is
called zero append sequence Viterbi algorithm.

4.2 Code gain of Viterbi algorithm

In this section, we examine the coding gain of the Viterbi algorithm regarding with the perfor-
mance of an uncoded telecommunication system.

Figure 4.4: Coding gain of Viterbi Algorithm

As we can conclude, the Viterbi algorithm provides performance improvement compared to
an uncoded system as it was expected from the theoretical analysis early at this chapter.



Chapter 5

BCJR Algorithm

In 1974, Bahl, Cocke, Jelinek and Raviv introduced a bit-wise maximum a posteriori probability
(MAP) decoding algorithm that can be applied to any linear code, either convolutional or block
codes, with unequal a priori probabilities for the information bits and trellis structure, which
was named BCJR algorithm. The bit-wise MAP criterion minimizes the probability of the bit
error rather than the probability of codeword error. This bit-wise MAP criterion is :

x̃t = argmax
xt

P (at = a|r) = argmax
xt

P (r|at = a)P (at)

p(r)
(5.1)

where at = 2xt − 1 and r = [r0 r1 . . . ]. The optimality condition for the BCJR algorithm is
slightly different than for the Viterbi algorithm: in MAP decoding, the probability of information
bit error is minimized, whereas in ML decoding the probability of codeword error is minimized.
In order to minimize the BER, the a posteriori probability P (Xt = x|r) of the information bit x
given the received sequence r must be maximized. The computational complexity of the BCJR is
greater than that of the Viterbi algorithm and thus Viterbi decoding is preferred in case of equally
likely information bits. But, even in case of equally likely information bits, Viterbi algorithm does
not guarantee that BER is minimized Hence, Viterbi algorithm results in near-optimum BER
performance compared to BCJR algorithm which results optimum BER performance. However,
when the information bits are not equally likely or when iterative decoding is employed and,
thus, the a priori probabilities of the information bits change from iteration to iteration, better
performance is achieved with MAP decoding. The BCJR algorithm is a SISO decoding algorithm
and it has been applied in recent years to soft-decision iterative decoding schemes in which the a
priori probabilities of the information bits change from iteration to iteration. While the Viterbi
algorithm produces an estimated bit sequence which corresponds to a continuous path through
the trellis, the BCJR (and generally MAP algorithm) may not.

5.1 BCJR Algorithm

For an (n,k) code, the received vector rt can be represented as [r
(1)
t r

(2)
t . . . r

(n)
t ]. Thus, the input

sequence can be divided as :

r =
[
r0 . . . rt−1 rt rt+1 . . .

]
=
[
r<t rt r>t

]
(5.2)

39
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Hence, the a posteriori probability P (Xt = x|r) can be analyzed as :

P (Xt = x|r) =
1

p(r)
P (Xt, r) =

1

p(r)
P (Xt = x, r<t, rt, r>t)

=
1

p(r)

∑
(p,q)∈Sx

p(Ψt = p,Ψt+1 = q, r<t, rt, r>t)

=
1

p(r)

∑
(p,q)∈Sx

p(r>t|Ψt = p,Ψt+1 = q, r<t, rt)p(Ψt = p,Ψt+1 = q, r<t, rt)

=
1

p(r)

∑
(p,q)∈Sx

p(r>t|Ψt = p,Ψt+1 = q, r<t, rt)p(Ψt+1 = q, rt|r<t,Ψt = p)p(r<t,Ψt = p)

=
1

p(r)

∑
(p,q)∈Sx

p(r>t|Ψt+1 = q)p(Ψt+1 = q, rt|Ψt = p)p(r<t,Ψt = p)

(5.3)

where Sx denote the set of state transitions (p, q) which corresponds to the input x. Hence,

Sx = {(p, q) : x(p,q) = x} (5.4)

Furthermore, since knowledge of the state at any particular time renders irrelevant knowledge
about prior states or received data, we can conclude that p(r>t|Ψt = p,Ψt+1 = q, r<t, rt) =
p(r>t|Ψt+1 = q) and p(Ψt+1 = q, rt|r<t,Ψt = p) = p(Ψt+1 = q, rt|Ψt = p). In equation (5.3), the
factor 1

p(r) is common for each P (Xt = x|r) ∀x ∈ X and it is nothing more than a normilization
factor which does not need to be explicitly computed. Thus, we can proceed as :

p(Xt = x|r) =
∑

(p,q)∈Sx

p(r>t|Ψt+1 = q)p(Ψt+1 = q, rt|Ψt = p)p(r<t,Ψt = p) (5.5)

Based on the above equation (5.3), we define the factors :

αt(p) = p(r<t,Ψt = p) (5.6)

βt+1(q) = p(r>t|Ψt+1 = q) (5.7)

γt(p, q) = p(Ψt+1 = q, rt|Ψt = p) (5.8)

As a result, equation (5.5) can be written as :

p(Xt = x|r) =
∑

(p,q)∈Sx

αt(p)γt(p, q)βt+1(q) (5.9)

We can further proceed the computation of γt(p, q) :

γt(p, q) = p(Ψt+1 = q, rt|Ψt = p)

= p(rt|Ψt = p,Ψt+1 = q)P (Ψt+1 = q|Ψt = p)

= p(rt|Ψt = p,Ψt+1 = q)P (Xt = x(p,q))

= P (Xt = x(p,q))p(rt|at = a(p,q))

(5.10)
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Especially, in the case of AWGN channel, the computation of γt(p, q) is equal to :

γt(p, q) = P (Xt = x(p,q))

(
1√

2πσ2

)n
exp

(
− ‖rt − a

(p,q)‖2

2σ2

)
(5.11)

where r
(i)
t = a

(i)
t + n

(i)
t , n

(i)
t ∼ N (0, σ2) and σ2 = N0

2 .
Given at(p) for all states p ∈ {0, 1, . . . , Q−1}, where Q is equal to the number of total states

of the decoder (Q = 2km), the values at+1(q) can be forward computed as :

at+1(q) = p(r<t+1,Ψt+1 = q) = p(r<t, rt,Ψt+1 = q)

=

Q−1∑
p=0

p(r<t, rt,Ψt = p,Ψt+1 = q)

=

Q−1∑
p=0

p(rt,Ψt+1 = q|r<t,Ψt = p)p(r<t,Ψt = p)

=

Q−1∑
p=0

p(rt,Ψt+1 = q|r<t,Ψt = p)p(r<t,Ψt = p)

=

Q−1∑
p=0

p(rt,Ψt+1 = q|Ψt = p)p(r<t,Ψt = p)⇔

at+1(q) =

Q−1∑
p=0

at(p)γt(p, q)

(5.12)

A backward recursion can similarly be developed for βt(p) as :

βt(p) = p(r>t−1|Ψt = p) = p(rt, r>t|Ψt = p)

=

Q−1∑
q=0

p(rt, r>t,Ψt+1 = q|Ψt = p)

=

Q−1∑
q=0

p(rt,Ψt+1 = q|Ψt = p)p(r>t|rt,Ψt = p,Ψt+1 = q)

=

Q−1∑
q=0

p(rt,Ψt+1 = q|Ψt = p)p(r>t|Ψt+1 = q)⇔

βt(p) =

Q−1∑
q=0

γt(p, q)βt+1(q)

(5.13)

The αt(p) probabilities are computed starting at the beginning of the trellis with the set
α0(p), p = {0, 1, . . . , Q−1}, and forward through the trellis. This computation is called forward
pass. The βt−1(q) probabilities are computed starting at the end of the trellis with the set
βN (p), p = {0, 1, . . . , Q − 1}, and working backward through the trellis. This computation is
called backward pass. Because the computation of αt(p and βt−1(q) is such essential part of the
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BCJR algorithm, it is sometimes also referred to as the forward-backward algorithm. Hence,
the recursive equations (5.12) and (5.13) are initialized as :[

a0(0) a0(1) . . . a0(Q− 1)
]

=
[
1 0 . . . 0

]
(5.14)

because the encoder always starts in state 0. If the encoder terminates in the zero state (that
is, the zero append sequence has been concatenated with the information sequence in the same
manner as in case of the Viterbi algorithm), then :[

βN (0) βN (1) . . . βN (Q− 1)
]

=
[
1 0 . . . 0

]
(5.15)

On the other hand, if encoder terminates in any state with uniform probabilities, then :[
βN (0) βN (1) . . . βN (Q− 1)

]
=
[

1
Q

1
Q . . . 1

Q

]
(5.16)

Since P (Xt = x|r) is a probability mass function, we have
∑

x∈Sx
P (Xt = x|r) = 1. But ig-

noring the factor 1
p(r) from equation (5.3), this equality lapses. Thus, we can retrieve a posteriori

probability P (Xt = x|r) from equation (5.5) using a normalization formula, as :

P (Xt = x|r) =
p(Xt = x|r)∑
x∈X p(Xt = x|r)

(5.17)

For notational purposes it is sometimes convenient to express the BCJR algorithm in a ma-
trix formulation. Let

αt =


αt(0)
αt(1)

...
αt(Q− 1)

 and βt =


βt(0)
βt(1)

...
βt(Q− 1)


which are initialized as [1 0 . . . 0]T and [1 0 . . . 0]T or [ 1

Q
1
Q . . .

1
Q ]T , respectively. Further,

we define the matrix Gt, which is the probability matrix with elements gt,i,j defined by gt,i,j =
γt(i, j). Thus, we can express the equation (5.12) as :

αt+1 = GTt αt (5.18)

and the equation (5.13) as :

βt = Gtβt+1 (5.19)

Moreover, we need to define a matrix describing all the possible transitions in the trellis. Let
T (x) be defined with elements ti,j(x) by :

ti,j(x) =

{
1 if (i, j) is a state with x(i,j) = x
0 otherwise

(5.20)

for each x ∈ X . Thus, the equation (5.5) can be expressed as :

p(Xt = x|r) =
[
αTt
(
T (x)�Gt

)
βt+1

]
(5.21)
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where � denotes the element-by-element multiplication of the matrices T (x) and Gt.

In case of an (n,k) systematic convolutional code, the equation (5.5) can be further developed
as :

p(Xt = x|r) =
∑

(p,q)∈Sx

p(r>t|Ψt+1 = q)p(Ψt+1 = q, rt|Ψt = p)p(r<t,Ψt = p)

=
∑

(p,q)∈Sx

p(r>t|Ψt+1 = q)p(rt|Ψt = p,Ψt+1 = q)p(Ψt+1 = q|Ψt = p)p(r<t,Ψt = p)

=
∑

(p,q)∈Sx

p(r>t|Ψt+1 = q)p(rt|Ψt = p,Ψt+1 = q)p(Xt = x(p,q))p(r<t,Ψt = p)

= P (Xt = x)
∑

(p,q)∈Sx

p(r>t|Ψt+1 = q)p(rt|Ψt = p,Ψt+1 = q)p(r<t,Ψt = p)

= P (Xt = x)
∑

(p,q)∈Sx

p(r>t|Ψt+1 = q)p(r
(1:k)
t , r

(k+1:n)
t |Ψt = p,Ψt+1 = q)p(r<t,Ψt = p)

= P (Xt = x)
∑

(p,q)∈Sx

p(r>t|Ψt+1 = q)p(r
(1:k)
t |Ψt = p,Ψt+1 = q)p(r

(k+1:n)
t |Ψt = p,Ψt+1 = q)p(r<t,Ψt = p)

= P (Xt = x)
∑

(p,q)∈Sx

p(r>t|Ψt+1 = q)p(r
(1:k)
t |Xt = x(p,q))p(r

(k+1:n)
t |at = a(k+1:n,p,q))p(r<t,Ψt = p)

= P (Xt = x)p(r
(1:k)
t |Xt = x)

∑
(p,q)∈Sx

p(r>t|Ψt+1 = q)p(r
(k+1:n)
t |at = a(k+1:n,p,q))p(r<t,Ψt = p)

(5.22)

where r
(1:k)
t = [r

(1)
t r

(2)
t . . . r

(k)
t ] and r

(k+1:n)
t = [r

(k+1)
t r

(k+2)
t . . . r

(n)
t ] correspond to the system-

atic bits and the parity bits of the received vector rt, respectively. Moreover, p(r
(1:k)
t , r

(k+1:n)
t |Ψt) =

p,Ψt+1 = q) is equal to p(r
(1:k)
t |Ψt = p,Ψt+1 = q)p(r

(k+1:n)
t |Ψt = p,Ψt+1 = q) because both

AWGN and BSC are memoryless channels. In the special case of an (2,1) systematic convolu-
tional encoder and BPSK signal mapper, the above equation is equal to :

p(Xt = x|r) = P (Xt = x)p(r
(1)
t |Xt = x)

∑
(p,q)∈Sx

p(r>t|Ψt+1 = q)p(r
(2)
t |at = a(2,p,q))p(r<t,Ψt = p)

(5.23)
This special case is essential in turbo coding. Based on (5.23), we define the following
quantities :

Pp,t(x) = P (Xt = x) (5.24)

Ps,t(x) = p(r
(1)
t |Xt = x) (5.25)

and
Pe,t(x) =

∑
(p,q)∈Sx

p(r>t|Ψt+1 = q)p(r
(2)
t |Ψt = p,Ψt+1 = q)p(r<t,Ψt = p)

=
∑

(p,q)∈Sx

p(r>t|Ψt+1 = q)p(r
(2)
t |at = a(2,p,q))p(r<t,Ψt = p)

=
∑

(p,q)∈Sx

αt(p)p(r
(2)
t |at = a(2,p,q))βt+1(q)

(5.26)
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where Pp,t(x) and Ps,t(x) are called Prior and Systematic probabilities, respectively. The quan-
tity Pe,t(x) is called Extrinsic Information. In assotiation with the equations (5.5) and (5.9), we
can conclude that, in case of systematic coding, γt(p, q) is equal to :

γt(p, q) = p(r
(2)
t |at = a(2,p,q)) (5.27)

Thus, (5.23) can be rewritten as :

p(Xt = x|r) = Pp,t(x)Ps,t(x)Pe,t(x) (5.28)

In case of a AWGN channel, γt(p, q) can be computed as :

γt(p, q) =

(
1√

2πσ2

)n
exp

(
− ‖rt − a

(p,q)‖2

2σ2

)
(5.29)

The Prior probability Pp,t(x) represents the a priori information available about the bits
before any decoding occurs, arising from a source other than the received systematic or parity
data. It is sometimes called Intrinsic Information, to distinguish it from the Extrinsic Infor-
mation. In the iterative decoder, after the first iteration, the prior is obtained from the other
decoder.

The Systematic probability Ps,t(x) represents the information about xt explicitly available

from the measurement of the uncoded information r
(1)
t . This is equal to the a posterior proba-

bility.

The value Pe,t is called Extrinsic Information of the systematic BCJR and it is the in-
formation produced by the decoder based on the received sequence and prior information, but

excluding the information from the received systematic bit r
(1)
t and the prior information related

to the bit Xt. Thus, we can conclude that the extrinsic information depends only on the infor-
mation which produced exclusively by the code. As we note from equations (5.12) and (5.13),
both αt(p) and βt+1(q) do not depend on Xt, but only on the received data at other times. Also,

we note that p(r
(2)
t |αt = α(2,p,q)) does not depend on the received systematic information r

(1)
t .

Thus, the extrinsic probability is independent from the information conveyed by the systematic
data about Xt. The extrinsic probability Pe,t(x) conveys all the information about P (Xt = x)
that is available from the structure of the code, separate from information which is obtained

from an observation of Xt via r
(1)
t or from prior information. In case of nonsystematic BCJR, as

extrinsic information is used the whole quantity P (Xt = x|r). The extrinsic information is an
important part of the turbo decoding algorithm. It is the information passed between decoders
to represent the prior probability.

Finally, the BCJR algorithm for an AWGN channel, is summarized as follows :

1. Initialize α0(p), ∀p = {0, . . . , Q− 1}, according to the equation (5.14),

2. Compute and store γt(p, q), ∀t = 0, 1, . . . , τ , based on either equation (5.11), if the code is
nonsystematic, or on equation (5.29), if the code is systematic

3. For t = 1, 2, . . . , τ compute the next values of αt(q) using the recursive equation (5.12) for
each q = {0, 1, . . . , Q− 1}
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4. Initialize βN (q), ∀q = {0, 1, . . . , Q − 1}, according to the equation (5.15), if the encoder
terminates in state all-zero, or according to the equation (5.16), if the encoder terminates
in a random state

5. For t = 1, 2, . . . , τ compute the next values of βt(p) using the recursive equation (5.13) for
each p = {0, 1, . . . , Q− 1}

6. Compute the a posteriori probability p(Xt = x|r) based on either the equation (5.9), if
the code is nonsystematic, or based on the equation (5.28), if the code is systematic

7. Finally, for each t = 0, 1, . . . , τ , we choose the symbol x with the bigger a posteriori
probability

5.1.1 Log BCJR Algorithm

For encoders with a single binary input, the log likelihood ration is usually used in the detection
problem. In the special case we use BPSK as signal mapper with mapping function 2x− 1, the
log likelihood ration of an (2,1) systematic convolutional code is equal to :

λt(r) = log

[
P (Xt = 1|r)

P (Xt = 0)|r)

]
= log

[
1
p(r)P (Xt = 1, r)

1
p(r)P (Xt = 0, r)

]
= log

[
P (Xt = 1, r)

P (Xt = 0, r)

]

= log

[∑
(p,q)∈S1

p(Ψt = p,Ψt+1 = q, r)∑
(p,q)∈S0

p(Ψt = p,Ψt+1 = q, r)

]
= log

[∑
(p,q)∈S1

αt(p)γt(p, q)βt+1(q)∑
(p,q)∈S0

αt(p)γt(p, q)βt+1(q)

]

= log

[
p(Xt = 1)p(r

(1)
t |Xt = 1)

∑
(p,q)∈S1

p(r>t|Ψt+1 = q)p(r
(2)
t |at = a(2,p,q))p(r<t,Ψt = p)

p(Xt = 0)p(r
(1)
t |Xt = 0)

∑
(p,q)∈S0

p(r>t|Ψt+1 = q)p(r
(2)
t |at = a(2,p,q))p(r<t,Ψt = p)

]

= log

[
Pp,t(1)Ps,t(1)Pe,t(1)

Pp,t(0)Ps,t(0)Pe,t(0)

]
= log

[
Pp,t(1)

Pp,t(0)

]
+ log

[
Ps,t(1)

Ps,t(0)

]
+ log

[
Pe,t(1)

Pe,t(0)

]
(5.30)

Based on the above equation, we can define the following terms :

λp,t = log

[
Pp,t(1)

Pp,t(0)

]
= log

[
p(Xt = 1)

p(Xt = 0)

]
(5.31)

λs,t = log

[
Ps,t(1)

Ps,t(0)

]
= log

[
p(r

(1)
t |Xt = 1)

p(r
(1)
t |Xt = 0)

]
(5.32)

λe,t = log

[
Pe,t(1)

Pe,t(0)

]
= log

[∑
(p,q)∈S1

p(r>t|Ψt+1 = q)p(r
(2)
t |at = a(2,p,q))p(r<t,Ψt = p)∑

(p,q)∈S0
p(r>t|Ψt+1 = q)p(r

(2)
t |at = a(2,p,q))p(r<t,Ψt = p)

]
(5.33)

which are called Log Prior Ratio, Log Systematic Ratio and Extrinsic Information, respectively.
Consequently, the equation (5.30) can be written as :

λt(r) = λp,t + λs,t + λe,t (5.34)
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Thus, the log likelihood ratio is expressed as the sum of the log of the posterior probabilities for
the systematic bits, plus the log likelihood ration of the prior probabilities, plus the extrinsic
information.

Especially, in case of AWGN channel with variance σ2 and BPSK signal mapper, the Log
Systematic Ratio, which is also called soft channel input, can be computed as :

λs,t = log

[
p(r

(1)
t |Xt = 1)

p(r
(1)
t |Xt = 0)

]
= log

[ 1√
2πσ2

exp

(
− (r

(1)
t −
√
Ec)2

2σ2

)
1√

2πσ2
exp

(
− (r

(1)
t −
√
Ec)2

2σ2

)]

=
−1

2σ2

[(
r

(1)
t −

√
Ec
)2

+
(
r

(1)
t +

√
Ec
)2]

=
−1

2σ2

[(
r

(1)
t

)2 − 2
√
Ecr

(1)
t + Ec −

(
r

(1)
t

)2 − 2
√
Ecr

(1)
t − Ec

]
=

4r
(1)
t

√
Ec

2σ2
=

2r
(1)
t

√
Ec

σ2
= Lcr

(1)
t

(5.35)

where Lc is called channel reliability and it is equal to :

Lc =
2
√
Ec
σ2

=
2
√
REb
σ2

(5.36)

where Ec refers to the power of a codeword and Eb refers to the power of each bit.
Since P (Xt = 1) +P (Xt = 0) = 1, we can compute the prior probabilities straight from Log

Prior Ratio as :

exp(λp,t) =
P (Xt = 1)

1− P (Xt = 1)
⇔


P (Xt = 1) = 1

1+exp(−λp,t)

P (Xt = 0) = 1
1+exp(λp,t)

(5.37)

The extrinsic information λe,t is the information that is passed from one decoder to the next
as the turbo decoding algorithm progresses. This extrinsic information can be computed directly
from equation (5.34) as :

λe,t = λt(r)− λp,t − λs,t (5.38)

The decision on transmitted symbol x at each time unit is taken based on the sign of the
total log likelihood ration. Thus, we have that :

λt(r) = log

[
P (Xt = 1|r)

P (Xt = 0)|r)

]
xt=1
≶
xt=0

0 (5.39)

Finally, the log BCJR algorithm for an AWGN channel and BPSK as signal mapper, is
summarized as follows :

1. Initialize and compute the terms αt(p), γt(p, q) and βt+1(q) as described in the previous
section.

2. Compute the log likelihood ratio of equation (5.33) starting from computing the sum term
over set S1 and then over set S0.
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3. Compute the Log Prior and the Log Systematic ratios of equations (5.31) and (5.32),
respectively.

4. Sum the Log Likelihood Ratios according to equation (5.34) and take a decision on the
transmitted symbol x based on the sign

[
λt(r)

]
.

5.1.2 Max-Log BCJR Algorithm

The log likelihood ratio of an (2,1) convolutional code can be rewritten as :

λt(r) = log

[
P (Xt = 1|r)

P (Xt = 0|r)

]
= log

[∑
(p,q)∈S1

αt(p)γt(p, q)βt+1(q)∑
(p,q)∈S0

αt(p)γt(p, q)βt+1(q)

]

= log

[∑
(p,q)∈S1

exp
(
α̃t(p) + γ̃t(p, q) + β̃t+1(q)

)∑
(p,q)∈S0

exp
(
α̃t(p) + γ̃t(p, q) + β̃t+1(q)

)] (5.40)

where α̃t+1(q) = log[αt(q)], β̃t(p) = log[βt(p)] and γ̃t(p, q) = log[γt(p, q)].

It is known that the max(x, y) function is equal to log[ ex+ey

1+e−|x−y| ], that is,

max(x, y) = log

[
ex + ey

1 + e−|x−y|

]
= log(ex + ey)− log(1 + e−|x−y|)⇔

log(ex + ey) = max(x, y) + log(1 + e−|x−y|)

(5.41)

Then, we define the function :

max
x,y

∗(x, y) = log(ex + ey) = max(x, y) + log(1 + e−|x−y|) (5.42)

It can be proven that we can apply recursively the max∗ function to sums of more than two
exponential terms. For example, max∗(x, y, z) = max∗

[
max∗(x, y), z

]
.

As a consequence, equation (5.40) is equal to :

λt(r) = log

[ ∑
(p,q)∈S1

exp
(
α̃t(p) + γ̃t(p, q) + β̃t+1(q)

)]
− log

[ ∑
(p,q)∈S0

exp
(
α̃t(p) + γ̃t(p, q) + β̃t+1(q)

)]

= max
S1

∗
(
α̃t(p) + γ̃t(p, q) + β̃t+1(q)

)
−max

S0

∗
(
α̃t(p) + γ̃t(p, q) + β̃t+1(q)

)
(5.43)

Moreover, the recursive equations (5.12) and (5.13) can be, respectively, calculated as :

α̃t+1(q) = log[αt(q)] = log

[
Q−1∑
p=0

αt(p)γt(p, q)

]

= log

[
Q−1∑
p=0

exp(α̃t(p) + γ̃t(p, q))

]
= max

p

∗(α̃t(p) + γ̃t(p, q)
)
, ∀p ∈ {0, 1, . . . , Q− 1}

(5.44)
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and

β̃t(p) = log[βt(p)] = log

[
Q−1∑
q=0

βt+1(q)γt(p, q)

]

= log

[
Q−1∑
q=0

exp(β̃t+1(q) + γ̃t(p, q))

]
= max

q

∗(β̃t+1(q) + γ̃t(p, q)
)
, ∀q ∈ {0, 1, . . . , Q− 1}

(5.45)

Generally, in case of AWGN channel, the computation of γ̃t(p, q) according to (5.11) is equal to:

γ̃t(p, q) = log
[
γt(p, q)

]
= log

[
P

(
Xt = x(p,q)

)]
+ n log

(
1√

2πσ2

)
− ‖rt − a

(p,q)‖2

2σ2
(5.46)

where, in our case, n = 2. Further, we can ignore the term n log

(
1√

2πσ2

)
as a constant and

independent of the algorithm.
The recursive equations (5.44) and (5.45) are initialized as :[

α̃0(0) α̃0(1) . . . α̃0(Q− 1)
]

=
[
0 −∞ . . . −∞

]
(5.47)

and as [
β̃N (0) β̃N (1) . . . β̃N (Q− 1)

]
=
[
0 −∞ . . . −∞

]
(5.48)

if encoder terminates to zero state, or[
β̃N (0) β̃N (1) . . . β̃N (Q− 1)

]
=
[
− logQ − logQ . . . − logQ

]
(5.49)

if encoder terminates to a random state, respectively.
Now, if we intend to use this type of log likelihood ration BCJR algorithm in turbo coding,

we can further continue our analysis based on the assumption that our code is an (2,1) systematic
code and we use BPSK as signal mapper. Starting from the log likelihood MAP rule, we have
that :

L(xt) = log

[
P (xt = 1|r)
P (xt = 0|r)

]
= log

[∑
(p,q)∈S1

αt(p)γt(p, q)βt+1(q)∑
(p,q)∈S0

αt(p)γt(p, q)βt+1(q)

]

= log

[∑
(p,q)∈S1

αt(p)P (Xt = 1)p(rt|at = a(p,q))βt+1(q)∑
(p,q)∈S0

αt(p)P (Xt = 0)p(rt|at = a(p,q))βt+1(q)

]

= log

[
P (xt = 1)

P (xt = 0)

]
+ log

[∑
(p,q)∈S1

αt(p)p(rt|at = a(p,q))βt+1(q)∑
(p,q)∈S0

αt(p)p(rt|at = a(p,q))βt+1(q)

]

= log

[
P (xt = 1)

P (xt = 0)

]
+ log

[∑
(p,q)∈S1

exp
(
α̃t(p) + log

(
p(rt|at = a(p,q))

)
+ β̃t+1(q)

)∑
(p,q)∈S0

exp
(
α̃t(p) + log

(
p(rt|at = a(p,q))

)
+ β̃t+1(q)

)]

= log

[
P (xt = 1)

P (xt = 0)

]
+ max

S1

∗
[
α̃t(p) + log

(
p(rt|at = a(p,q))

)
+ β̃t+1(q)

]
−

−max
S0

∗
[
α̃t(p) + log

(
p(rt|at = a(p,q))

)
+ β̃t+1(q)

]
(5.50)
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Based on the above equation, we set the following term :

Le(xt) = log

[
Pr(Xt = 1)

Pr(Xt = 0)

]
(5.51)

Thus, the a priori probability of each symbol x ∈ F2 at a specific time stamp t can be computed
as :

P (xt) =

(
exp

[−Le(xt)
2

]
1 + exp

[−Le(xt)
2

]) exp

[
at
Le(xt)

2

]
= At exp

[
at
Le(xt)

2

] (5.52)

where at stands for the modulated version of corresponding xt. In equations (5.56), the term
log
(
p(rt|at = a(p,q))

)
for an (2,1) systematic code is equal to :

log
(
p(rt|at = a(p,q))

)
= log

(
1

2πσ2

)
− ‖rt − a

(p,q)‖2

2σ2
(5.53)

where the first term can be ignored since it is independent of xt. Moreover, the quantity

‖rt − a(p,q)‖2 is equal to :

‖rt − a(p,q)‖2 =

(
r

(1)
t − a(1,p,q)

)2

+

(
r

(2)
t − a(2,p,q)

)2

=

(
r

(1)
t

)2

− 2r
(1)
t a(1,p,q) +

(
a(1,p,q)

)2

+

(
r

(2)
t

)2

− 2r
(2)
t a(2,p,q) +

(
a(2,p,q)

)2

(5.54)
Substitution of (5.53) and (5.54) into (5.56) yields :

λt(r) = Le(xt)+

+ max
S1

∗

[
α̃t(p)−

(
r

(1)
t

)2
2σ2

+
r

(1)
t a(1,p,q)

σ2
−
(
a(1,p,q)

)2
2σ2

−
(
r

(2)
t

)2
2σ2

+
r

(2)
t a(2,p,q)

σ2
−
(
a(2,p,q)

)2
2σ2

+ β̃t(q)

]
−

−max
S0

∗

[
α̃t(p)−

(
r

(1)
t

)2
2σ2

+
r

(1)
t a(1,p,q)

σ2
−
(
a(1,p,q)

)2
2σ2

−
(
r

(2)
t

)2
2σ2

+
r

(2)
t a(2,p,q)

σ2
−
(
a(2,p,q)

)2
2σ2

+ β̃t(q)

]
(5.55)

where only the terms
r
(1)
t a(1,p,q)

σ2 and
r
(2)
t a(2,p,q)

σ2 survive after the subtraction. Thus, our final
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equation is determined as :

λt(r) = Le(xt) + max
S1

∗

[
α̃t(p) +

r
(1)
t a(1,p,q)

σ2
+
r

(2)
t a(2,p,q)

σ2
+ β̃t(q)

]
−

−max
S0

∗

[
α̃t(p) +

r
(1)
t a(1,p,q)

σ2
+
r

(2)
t a(2,p,q)

σ2
+ β̃t(q)

]

= Le(xt) + max
S1

∗

[
α̃t(p) +

r
(1)
t (+1)

σ2
+
r
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t a(2,p,q)

σ2
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]
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t (−1)

σ2
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]
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r
(1)
t

σ2
+
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σ2
+ β̃t(q)

]
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S0

∗

[
α̃t(p)−

r
(1)
t

σ2
+
r

(2)
t a(2,p,q)

σ2
+ β̃t(q)

]

= Le(xt) + 2
r

(1)
t

σ2
+ max

S1

∗

[
α̃t(p) +

r
(2)
t a(2,p,q)

σ2
+ β̃t(q)

]
−max

S0

∗

[
α̃t(p) +

r
(2)
t a(2,p,q)

σ2
+ β̃t(q)

]
(5.56)

Compare to (5.34), we can conclude that λp,t = Le(xt) and λs,t = 2
r
(1)
t
σ2 , since it dependents

only on the systematic part of the received vector rt. Hence, as extrinsic information, we define
the quantity :

max
S1

∗

[
α̃t(p) +

r
(2)
t a(2,p,q)

σ2
+ β̃t(q)

]
−max

S0

∗

[
α̃t(p) +

r
(2)
t a(2,p,q)

σ2
+ β̃t(q)

]
(5.57)

As we mentioned earlier, in turbo decoding algorithm, the extrinsic information produced
from one decoder is used as prior information to the other decoder. Thus, for decoder 1, the
equation (5.56) can be expressed as :

λt(r) = Le21(xt) + 2
r

(1)
t

σ2
+ Le12(xt) (5.58)

where Le21(xt) denotes the extrinsic information which is transferred from decoder 2 to decoder 1.
Thus, this log likelihood ratio is used as prior information to the decoder 1. Respectively, Le12(xt)
denotes the extrinsic information which is transferred from decoder 1 to decoder 2. Hence, this
log likelihood ratio is used as prior information from decoder 2. Similarly, for decoder 2, the
equation (5.56) can be expressed as :

λt(r) = Le12(xt) + 2
r

(1)
t

σ2
+ Le21(xt) (5.59)

In equation (5.41), we can ignore the term log(1 + e−|x−y|), which is called correction term,
and, thus, the function max

x,y

∗(x, y) becomes equal to the original max
x,y

(x, y) function. This type

of Max-Log BCJR algorithm is suboptimal than the other versions of BCJR algorithm, but
it has almost comparable complexity to Viterbi algorithm. Essentially, this type of BCJR is
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like two iterations of Viterbi algorithm, one forward recursion, which is equivalent to a forward
Viterbi, and one backward recursion, which is equivalent to a backward Viterbi algorithm.
The performance loss of this version of BCJR algorithm is more pronounced when it is used
for iterative decoding, since the approximation error accumulates as additional iterations are
performed.



Chapter 6

Turbo Codes

Turbo Codes were introduced in 1993 as an approach to error correction coding which could
provide very long codewords with relatively modest decoding complexity. Turbo codes have
been also termed as parallel concatenated convolutional codes. They are based on the idea of
parallel concatenated coding and the iterative decoding algorithms (Turbo Principle). Turbo
coding consists of two fundamentals ideas; a code design that produces a code with randomlike
properties, and a decoder design that makes use of soft-output values and iterative decoding.
Because the decoding complexity is small for the dimension of the code, very long codes are
possible through them, so that the bounds of Shannon’s channel coding theorem become, for all
practical purposes, achievable.

6.1 Encoder

The turbo encoder consists of two (or more) systematic codes which share message data via
interleavers as shown in figure (2.1). In its most conventional realization, the codes are obtained
from recursive (feedback) systematic convolutional (RSC) codes, because they have a better
performance than feedforward codes.

The basic system of turbo coding consists of an information sequence x, two (2,1) systematic
recursive convolutional encoders and an interleaver. The information sequence x contains K∗

information bits plus m termination bits to return the first encoder to the all-zero state, where
m is the memory order of the first encoder. Hence, the information sequence is considered to
be a block of total length K = K∗ + m. The interleaver reorders or permutes the K bits in
the information sequence so that the second encoder receives a permuted information sequence
x
′

different from the first. Hence, the second encoder may or may not return to the all-zero
state. The performance degradation produced by an unknown final state of the second encoder
is negligible when a pseudo-random interleaver is used with a large interleaving size N. Moreover,
because the interleaver is part of the turbo code design, a complete maximum likelihood decoder
for the entire codeword would be prohibitively complex. However, because more than one code is
used, it is possible to employ simple soft-in soft-out (SISO) decoders for each constituent code in
an iterative fashion, in which the soft output values of one decoder are passed to the other, and
vice versa, until the final decoding estimation is obtained. This iterative decoding approximation
is suboptimal. The overall code length has N = 3K and rate R = K∗

N = K−m
3K ≈ 1

3 . To achieve
performance near to Shannon limit, the information block length K∗ should be chosen to be very

52
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large, usually at least several thousand bits. The best performance at moderate BERs down
to about 10−5 is achieved with short constraint length (and, as a consequence, small memory
order) constituent encoders, typically v = 4 or less.

In conclusion, the basic structure of turbo encoder consists of two binary rate-1
2 recursive

systematic convolutional (RSC) encoders separated by an interleaver. Thus, the information
sequence is encoded twice, with an interleaver between the two encoders serving to make the
two encoded data sequences approximately statistically independent of each other. Both RSC
encoders use the same generator matrix G because there is no evidence for any performance
improvement, in case of different constituent encoders are used. Finally, the encoded sequences
are multiplexed and transmitted.

Hence, the standard structure of a turbo encoder is :

Figure 6.1: Turbo Encoder

where x
′

is the interleaved version of the input sequence x and the output sequence c is the
systematic part of the overall output sequence produced by the second decoder. This sequence
c is not transmitted. The polynomial generator matrix G(D) of both constituent RSC encoders
can be represented as :

G(D) =
[
1 a(D)

b(D)

]
Often, the two parity sequences c(2) and c(3) are punctured before being transmitted. This

puncturing of the parity information allows a higher coding rate to be realised. Note that the
systematic sequence are rarely punctured, since this degrades the performance of the code more
dramatically than puncturing the parity sequences.
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6.2 Decoder

In this section, we will describe the structure of each turbo decoder based on the different
versions of BCJR algorithm that described previously. Generally, a turbo decoder use two soft-
in soft-out decoders linked by inteleavers in a structure similar to that of that of the encoder.
A key development in turbo codes is the iterative decoding algorithm. In the iterative decoding
algorithm, decoders for each constituent encoder take turns operating on the received data. Each
decoder produces an estimation of the probabilities of the transmitted symbols,that is, they are
soft-output decoders. These probabilities of the transmitted symbols, which are called extrinsic
information, are being reordered in a proper way and being passed to the other decoder, where
they are used as a priori probabilities. Further, each constituent decoder takes two additional
inputs; the systematic encoded channel output bits and the parity bits transmitted from the
associated encoder. Hence, the decoder is also a soft-input decoder. These soft inputs along with
the soft outputs provide not only an estimation on the initial information sequence, but also a
likelihood ratio which gives the probability that a bit has been correctly decoded. In the first
iteration the first decoder provides a soft output giving an estimation of the original information
sequence based on the channel inputs alone. It also provides an extrinsic information for each bit
of the information sequence x, which is used by the second decoder as a priori information. After
that, the second decoder takes action, generating both his own estimation on the information
sequence and his extrinsic information, which is passed back to the first decoder. Finally, the
whole process starts again till a certain number of iterations elapses. Note that, with every
iteration the BER of the decoded bits tends to fall. However, the improvement in performance
obtained with increasing numbers of iterations decreases as the number of iterations increases.
Hence, for complexity reasons, usually only about 10 iterations are used.

6.2.1 BCJR

This is the basic structure of a turbo decoder which is based on the equation (5.9) or (5.28).

Figure 6.2: Turbo Decoder using BCJR algorithm

Initially, the received sequence r is divided into its structural sequences r(1), r(2) and r(3),
which correspond to the systematic, encoded and interleaved-encoded sequences, respectively.
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Afterwards, the concatenation of r(1) and r(2) sequences is driven to decoder 1 with uniform
prior probabilities. At the same time, r(1) sequence is driven to the interleaver in order to be
permuted and match with the order of r(3) sequence. When decoder 1 terminates its decoding
process, it pipeline the extrinsic information to the second decoder (decoder 2), who use it as
a priori probabilities for his own process. After the end of its decoding process, the decoder
2 passes its extrinsic information back to the decoder 1, in order to start the whole procedure
again. These steps constitute an iteration. The turbo decoder repeats its decoding schema for
10 to 20 iterations, or until the decoder determines that the process has converged. Finally,
when the iterative process stops, the decoder 2 produce an estimation about the information
sequence x.

6.2.2 Log BCJR

This version of a turbo decoder is based on the log likelihood BCJR as described from equation
(5.34).

Figure 6.3: Turbo Decoder using Log BCJR

Initially, the demultiplexed sequence r(1) that corresponds to the systematic part of the
received sequence, passes through the ”Compute Soft Channel Input” module in order to com-
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pute the log systematic ratio λs,t = Lcr
(1). Then, turbo decoding process starts, as described

previously. As we can see, the extrinsic information is computed based on the equation (5.38).
This version of a turbo decoder is based on the log likelihood BCJR as introduced by Prof.

Shu Lin and it is described by the equation (5.56).

Figure 6.4: Turbo Decoder using Log BCJR

where the quantities Le12 and Le21 denote the extrinsic information which is passed from
decoder 1 to decoder 2, and vice versa.

6.3 Stopping Criterion

As the decoding approaches the performance limit of a given turbo code, any further iteration
results in very little improvement. Therefore, it is important to devise an efficient criterion to
stop the iteration process and prevent unnecessary computations and decoding delay. Generally,
decoding process can be stopped, and a final decoding estimate declared, after some fixed number
of iterations (usually on the order of 10 - 20) or based on a stopping criterion that is designed
to detect when the estimate is reliable with very high probability. One such stopping criterion
has been devised based on the cross entropy between the distributions of the estimates at the
outputs of the decoders at each iteration. This criterion is known as cross entropy criterion. It
effectively stops the iteration process with very little performance degradation.

Another method of terminating the iterative decoding process is to use systematic cyclic
redundancy checks (CRC). In the encoder, the input information is encoded by a eRe code,
and the output of the CRC encoder is passed to the turbo encoder. In the receiver, the turbo
decoder output at each iteration is fed to the eRe error detector. If the CRC code detects no
errors in the decoder output, the iterative decoding is terminated.

Other stopping criterions are Sign Change Ratio (SCR) Criterion and Hard Decision Aided
(HDA) Criterion.



Chapter 7

Interleaver

Interleaving is a process of rearranging the ordering of a data sequence in a one-to-one deter-
ministic format. The inverse of this process is called deinterleaving which restores the received
sequence to its original order. Thus, an interleaver takes a sequence of symbols and permutes
them. At the receiver, the sequence is permuted back into the original order by a deinterleaver.

The definition of interleaver can be expressed as, an interleaving function of size N is any
bijective function from Π : {1, . . . , N} → {1, . . . , N}. Given an array x of length N, where
x = [x1, . . . , xN ]T ∈ XN , an interleaver is a function fΠ : XN → XN , where x̃ = fΠ(x) with
x̃k = xΠ(k) for each k ∈ {1, . . . , N}. We abuse the notation and write x̃k = Π(x) instead of
x̃k = xΠ(k).

The interleaver is an essential part of the Turbo Codes because it breaks the structure that
has been introduced by the encoders and, as a result, the Turbo Codes become randomlike.
Thus, Turbo Codes can achieve low decoding error probabilities, as Shannon’s noisy channel
coding theorem implies. The interleaver in turbo coding is a scrambler defined by a permutation
of N elements with no repetition. The interleaving is employed before the information data is
encoded by the second component encoder. The role of the interleaver is to decorrelate the inputs
to the two decoders so that an iterative suboptimal decoding algorithm based on information
exchange between the two component decoders can be applied. If the input sequences to the
two component decoders are decorrelated, there is a high probability that after the correction
of some of the errors in one decoder some of the remaining errors should become correctable in
the second decoder. The interleaving pattern should be known to both encoder and decoder.

In the original Turbo Code schema, a pseudorandom block interleaver is used where the
information is written row by row and read out following a non-uniform rule, based on randomly
generated numbers. The interleaver of a turbo code affects the performance of the code at both
low and high SNRs. Precisely, the length of the interleaver is critical for the code performance,
particularly at low SNR while the structure of the interleaver is important for the performance
at high SNR, as it affects the distance properties of the overall turbo code. It determines the
code free distance which has a dominant effect on the asymptotic performace.

7.1 Spectral Thinning

The turbo code error performance is determined by the code distance spectrum. The interleaver
in a turbo encoder can reduce the error coefficients of low weight codewords through a pro-
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cess called spectral thinning. Specifically, in the parallel concatenated coding schema, as turbo
coding, there has been a shift from the lower-weight codewords to higher-weight codewords rel-
ative to the convolutional code. This shifting of low-weight codewords toward higher weights
in the parallel concatenation of feedback convolutional encoders has been termed spectral thin-
ning and results when interleaving causes almost all the low-weight parity sequences in the first
constituent code to be matched with high-weight parity sequences in the second constituent
code.

The difficulties of low-weight codewords notwithstanding, turbo codes are outstanding per-
formers. The interleaver ensures that if the input parity sequence has low weight, the output
parity sequence has higher weight with high probability. The distance spectrum of a code is a
listing of the (Wd, Ad) information as a function of the codeword weight d, Wd, and Ad which is
the multiplicity of the codewords at weight d. Turbo codes are said to have sparse distance spec-
trum if the multiplicities of the low-weight codewords is relatively small. Higher multiplicities
result in more contribution to the probability of error, so that a higher SNR must be achieved
before the probability of error term becomes negligible.

The result of the thinned spectrum is that there are relatively few codewords of low weight,
hence relatively few codewords near to other codewords. Thus codewords selected at random will,
with high probability, be decoded correctly. Spectral thinning has little effect on the minimum
distance, but it greatly reduces the multiplicities of the low weight codewords. Further, there
is only a small spectral thinning effect if feedforward constituent encoders are used. This is an
other reason why feedback encoders are used in turbo coding.

7.2 Interleaver Analysis

Turbo codes typically do not have large minimum distances causes the performance curve flatten
out at BERs below 10−5. This phenomenon is called error floor and it is due to the unusual
weight distribution of the Turbo Codes. Interleavers can be designed to improve the minimum
distance of the code and ,thus, lowering the error floor. Hence, the role of the interleaver at
Turbo Coding is to add randomlike behavior and improves the error correction performance of
the turbo coding schema.

The performance of a turbo code with RSC component codes is affected by the interleaver.
The structure of the interleaver is important for the performance at high SNR’s, as it affects
the distance properties of the overall turbo code. It determines the code free distance which has
a dominant effect on the asymptotic performance. There are two different approaches in the
construction procedure of an interleaver, the deterministic (block and convolutional) and the
pseudorandom interleavers. Generally, in order to achieve better error correction performance
in turbo coding, it is important that low-weight parity sequences from the first encoder get
matched with high-weight parity sequences from the second encoder almost all the time. This
requires that the interleaver breaks the patterns in the input sequences that produce low-weight
parity sequences after the encoding procedure. Interleavers with structure, such as block or con-
volutional, tend to preserve too many of these ”bad” input patterns, resulting in poor matching
properties and limited spectral thinning. Pseudorandom interleavers, on the other hand, break
up almost all the bad patterns and thus achieve the full effect of spectral thinning. Hence, the
best interleavers reorder the bits in a pesudorandom manner. It is important that the interleaver
has pseudorandom properties.
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The length N of the interleaver is critical for the code’s performance, particularly at low
SNR. In fact, the sparse distance spectrum is typically for long interleavers. Specifically, as
the block length (interleaver size) N increases, the spectral thinning of the code becomes more
dramatic. Increasing the size of the interleaver has the effect of randomizing the information
sequence at the input of the second decoder. A general rule is that, as the size N of the cor-
responding interleaver increases, the weight distribution of parallel concatenated convolutional
codes begins to approximate a randomlike distribution, that is, the distribution that would re-
sult if each bit in every codeword were selected randomly from an independent and identically
distributed probability distribution. This rule can be also expressed as, for even larger values
of N, the codeword and bit multiplicities of the low-weight codewords in the turbo code weight
spectrum are reduced by roughly a factor of N, the interleaver size, compared with the termi-
nated convolutional code. The interleaver size N is significantly larger than the code memory v
and the interleaver vector elements are chosen randomly. The basic role of the interleaver is to
construct a long block code from small memory convolutional codes, as long codes can approach
the Shannon capacity limit. Secondly, it spreads out burst errors. More precise, by increasing
the interleaver size N times, the bit error probability is reduced by a factor N. This is called the
interleaving performance gain. Hence, long interleavers will be required in order to ensure that
the soft information exchanged between the SISO modules remains highly uncorrelated.

Traditional block or convolutional interleavers do not work well in turbo coding, particularly
when the block length is large. Hence, block or convolutional interleavers are used in turbo
coding schema when the block lengths N of the interleaver is relatively short. However, due
to their deterministic definition, they are more easy to be implemented. On the other hand,
pseudorandom interleavers generate a weight spectrum that has the same characteristics as the
binomial distribution, which is equivalent to the weight spectrum assumed by Shannon in his
random-coding proof of the noisy-channel coding theorem. Pseudorandom interleavers offer
a better performance than block interleavers in Turbo Codes but they are more complex in
implementation and they affect overall channel coding delay.

By increasing the number of iterations in the decoding process the bit error probability
approaches the channel capacity. The final role of the interleaver is to break low weight in-
put sequences, and hence increase the code free Hamming distance or reduce the number of
codewords with small distances in the code distance spectrum.

7.3 Block Interleavers

Traditional block or convolutional interleavers do not work well in turbo coding, particularly
when the block length is large. A block interleaver of length N formats the input sequence in
a matrix of m rows and n columns, such that N = m x n. The number of rows, m, in the
interleaver matrix is also called the interleaver degree (or depth) and the number of columns, n,
is called the interleaver span.

Block (Rectangular) interleavers and deinterleavers are easy to implement. However, they
may fail to break certain low weight input patterns. Generally, a block interleaver is a memory
matrix m×n filled with channel-coded symbols on a row-by-row basis, which are then read out
on a column-by-column basis, as it is shown in the below diagram (7.1) :
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Figure 7.1: A 3x4 block interleaver and deinterleaver

A rectangular interleaver, which is the easiest from an implementation point of view, leads
to degraded coder performance compared to a pseudorandom interleaver, because it can leads
to a large value of Nfree. Thus, it is important to use an interleaver which is closer to a true
random interleaver.

7.4 Pseudorandom Interleavers

Pseudorandom interleavers generate a weight spectrum that has many of the same characteristics
as the binomial distribution, which is equivalent to the weight spectrum assumed by Shannon
in his noisy channel coding theorem. Turbo coding with pseudorandom interleaving results in
a way of constructing codes with weight distribution similar to a binomial and a simple, near
optimal iterative decoding scheme.

Pseudorandom interleaving patterns can be generated in many ways. One way is by using a
primitive polynomial to generate a maximum-length shift-register sequence whose cycle structure
determines the permutation. Another method uses a computationally simple algorithm based
on the quadratic congruence :

cm =
Nm(m+ 1)

2
mod K, 0 ≤ m < N (7.1)

to generate an index mapping function cm → cm+1(modK), where N is the interleaver size, and
N is an odd integer. For K a power of 2, it can be shown that these quadratic interleavers have
statistical properties similar to those of randomly chosen interleavers, and thus they give good
performance when used in turbo coding. Other good interleaving patterns can be generated by
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varying N and r, and the special case r = K
2 results in an interleaver that simply interchanges

pairs of indices. This special case is particularly interesting in terms of implementation, since
the interleaving and deinterleaving functions are identical. Finally, when K is not a power of 2,
the foregoing algorithm can be modified to generate similar permutations with good statistical
properties.

7.5 Effect of interleaver

At this point, we will compare how the size and the type of the interleaver (block or random)
affect the performance of Turbo coding. Further, we will examine how the number of iteration
during decoding procedure will affects the performance of Turbo coding. The Turbo Coding
schema that we use to extract the results is based on the basic (3,1) turbo code.

7.5.1 Different size of interleaver

In this section, we compare how the size of interleaver affects the accumulative performance
of turbo decoding schema for both block and random interleavers. The decoding algorithm
is executed for 10 repeats in order to ensure that the final BER will not be affected by the
insufficient number of iterations. Below, there are three different figures which illustrate the
performance of the turbo decoding for both block and pseudorandom inteleavers with size 100,
1000 and 10000 bits which will be determined as small, medium and large size interleavers,
respectively.

Figure 7.2: BER for interleaver of 100 bits size
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As we can conclude from the above figure, for this small interleaver size, both types of
interleavers (block and random) perform about the same, especially for small SNRs. This small
size of interleaver is used during real time applications where little delay is desired.

At the following figure, we examine the performance of a medium size interleavers (interleaver
size of 1000 bits).

Figure 7.3: BER for interleaver of 1000 bits size

As we can conclude, for this medium size of interleaver, the overall performance of both
types of interleaver is better than the performance of the small size interleaver. Hence, while we
increase the interleaver size, we can conclude that the overall performance of the code is increased
till the theoretical performance bound (error floor) is achieved. However, the BER for the
pseudorandom interleaver is smaller than the respective performance of block interleaver. Thus,
we can expect that the error floor performance should be reached faster for the (pseudo)random
than for the block interleaver.

At the next figure, we examine the performance of a large size interleaver (interleaver size
of 10000 bits).
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Figure 7.4: BER for interleaver of 10000 bits size

As we can conclude from the above figure of both large size block and random interleavers,
the overall performance is greater than the performance of all the previous interleavers’ sizes.
Further, as we can see, the coding gain between the block and the random interleaver is greater
than the coding gain between both interleavers’ tyoe at the previous cases. Additionally, the
random interleaver has reached the theoretical performance’s limit of Turbo Coding, while the
performance of the block one can be further improved.

As a summary of the previous results, we can conclude that while the size of the interleaver
is increased, the overall performance of the code is improved. Further, for small interleaver size,
the coding gain of both type of interleavers is approximately the same. However, while the
interleaver size is increased, the coding gain of random interleaver is improved rapidly regarding
the improvement’s rate of the coding gain for the block interleaver.



Chapter 8

Conclusions

In this thesis, we examined the individual parts of the Turbo Coding schema and how the size
of the interleaver effects the overall coding performance. We concluded that as the interleaver
size is increased, the code performance is increased. However, when pseudorandom interleavers
are used, the coding gain is improved more rapidly as the size of the interleaver is upsized in
comparison with the case where block (non-random) interleavers are used. Further, while the
size of the interleaver is increased (or while the number of decoding iterations is increased), the
total delay of the Turbo Coding algorithm is increased. Thus, small size is preferred when the
application is time dependent (as the voice transmission application). In this case, both type of
interleavers perform similar for a certain SNR. Hence, a block interleaver realization is preferred
over a pseudorandom one, because it is more easily to be implemented as part of hardware
configuration of a telecommunication system.
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