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ABSTRACT

This thesis addresses a central question in the �eld of Quantum Information
Science and Technology. The object of concern is the quantum entanglement
(i.e. quantum correlations) between two parts of a bipartite quantum system,
each of which is mathematically described by a set of state vectors, all lying in a
real vector space. The question then is formulated as follows: "Is it possible to
reduce the number of vectors describing each subsystem of the bipartite quan-
tum system and still have the same amount of total quantum entanglement ?"
Hence the question, abbreviated to the name entanglement compression, is that
of dimensional reduction of local sub-spaces composing the bipartite system, un-
der the constraint of preserving the initial entanglement. In descriptive terms,
the problem may be cast in the form: "can I have the same with less?" Given
that quantum entanglement is treated par excellence as the new type of resources
required by quantum technology, and the fact that the sub-systems, aimed to
be dimensionally reduced, are composed by multiple qubits, the question then
amounts to one of optimal handling of resources. Building upon previous works
and recent developments, the thesis then proceeds to exploit a heuristic idea.
Given that the coupling of sub-systems under study is mathematically deter-
mined by a coe¢ cient-matrix, specifying the multi-tensor state vector of the
bi-partite, a choice is made: use for coe¢ cient-matrix any matrix describing a
grayscale digital image. Digital images of e.g. Schroedinger, Lena are employed
to build state vectors of multi-qubit bi-partite quantum systems. This situation
motivates the exploitation of low rank matrix approximation techniques from
image compression within the context of entanglement compression. Employ-
ing as quantitative measure of entanglement the quantum Rényi entropy of the
marginal (reduced) density matrix of the bipartite system, the aim becomes
to achieve dimensional reduction of the total bipartite state vector, while pre-
serving (or optimizing on) the Rényi entropy of a quantum subsystem. The
thesis shows that the �rst task of dimensional reduction is achieved via low
rank approximation in the Singular Value Decomposition (SVD) of the image-
state-vector matrix. A quantum algorithmic implementation of the classical
technique to the quantum context is provided. The second task of the com-
pression, that of entanglement preservation, is achieved via an algorithm, akin
to Bell state generation quantum circuit, generalized to the context of multi-
qubit systems. This part of the entanglement compression procedure utilizes
tools from matrix analysis, such as pair-wise Hadamard product of matrices
and related inequalities, to show that there is a trading between the two tasks,
namely dimensional reduction and entanglement (entropy) preservation. This
leads to building an iterative procedure, which involves unitary gates combined
with higher dimensional oracle-driven projections acting on multi-qubit vectors.
A thorough numerical investigation, based on exemplary cases of image-states,
con�rms the feasibility and the e¢ ciency of quantum entanglement compression
iterative procedure.
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1 Quantum Information

1.1 Introduction

It all began with the "bit", the fundamental representation of information in
the digital computer system. This became the cornerstone of computer science
as a whole, with information theory and conventional computation methods
bene�ting greatly from its deterministic nature.
However, technological advancements have led to the development of the

quantum computer system, which may exploit quantum e¤ects to compute in
ways that are faster or more e¢ cient than, or even impossible, on conventional
computers. Various quantum properties like supersposition and entanglement
are the main assets of such systems, resulting in the exponential amount of par-
allelism in computation [2]. It should also be noted that quantum computation
is not possible with the deterministic "bit", but with the probabilistic quantum
"bit" or "qubit".

1.2 The qubit

The qubit (short for quantum bit) is the basic unit of quantum information. It
is used to decribe the state of a quantum system and, as it turns out, quantum
states behave mathematically in an analogous way to physical vectors [3]. For
this reason, every qubit exists in a column vector form in a complex domain
called Hilbert space H. In this space, such vectors are called "kets", with the
symbol j�i according to the Dirac notation.
While a classical bit may be either in the state 0 or in the state 1, the

qubit j i may exist in the state j0i or in the state j1i, but may also exist in
a superposition state a j0i + b j1i, with a,b being complex numbers. In this
way, the values of such qubits do not exist in a real discrete domain prior to
measurement, but in a continuous one in the form of C2. However, when the
qubit j i is measured, it is going to be found either in the state j0i or in the state
j1i. According to the laws of quantum mechanics, the modulus squared of a,b
corresponds to the probability of �nding the qubit in state j0i or j1i respectively
[3], meaning that:

j i = a j0i+ b j1i (1)

with pj0i = jaj2, pj1i = jbj2.

Since the states j0i, j1i are the only possible outcomes after the measure-
ment, the coe¢ cients a,b are constrained by the requirement that jaj2+ jbj2 = 1,
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which is atributed to the completeness theorem. In general, if a qubit j i may
be found in one out of n possible states ju0i, ju1i,...,juni after measurement,
then:

j i = c0 ju0i+ c1 ju1i+ :::+ cn juni =
nX
i=1

ci juii

with
nX
i=1

jcij2 = 1.

In this case, it can be seen that the qubit j i is expressed in terms of the
states j0i, j1i. These state vectors form a two-dimensional orthonormal basis,

with their vector representations being j0i =
�
1
0

�
and j1i =

�
0
1

�
.As a result,

the equivalent vector representation for j i (eq. 1) is:

j i = a

�
1
0

�
+ b

�
0
1

�
=

�
a
0

�
+

�
0
b

�
=

�
a
b

�
Even though there are numerous orthonormal basis, the basis fj0i ; j1ig is

exclusively used in this thesis.

1.3 The Hilbert space

Being a vector domain, the Hilbert space H has its dual vector domain called
H�, whose elements are row vectors and are called "bras", with the symbol
h�j. It can be seen that there is a 1 � 1 correspondence between those two
vectors spaces, resulting in the fact that, for every ket j i 2 H , there is the bra
h j 2 H�, with h j = (j i)y = ((j i)�)T [16].
Several properties regarding Hilbert space H are shown below:

�Linearity
For any state vectors jai, jbi of the Hilbert space H, every linear combination

c1 jai+c2 jbi, with c1,c2 being complex numbers, also belongs in the same Hilbert
space H.

�Inner Product
The inner product of the state vectors jai, jbi is a complex number and is

known with the symbol haj jbi, called bra-ket.
Some useful properties are the following:
! haj jbi = hbj jai�
! haj j�bi = � haj jbi for every complex number �
! h�aj jbi = �� haj jbi for every complex number �
! ha+ cj jbi = haj jbi+ hcj jbi
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! haj jb+ ci = haj jbi+ haj jci
! haj jai � 0 (refers to the norm of the vector a: haj jai = kak)
! haj jai = 0() jai = 0

�Vector Orthogonality
Two state vectors jai and jbi of the Hilbert spaceH are orthogonal i¤ haj jbi =

0.

�Orthonormal basis
A set of state vectors fjeiig forms an orthonormal basis of Hilbert space

H, i¤ they are all unit vectors (meaning keik = 1 for every i) and they are
orthogonal to each other. Every vector jai with jai 2 H may be expressed as a
linear combination of the basis state vectors of that Hilbert space H, as shown
below:

jai =
1X
i=1

ci jeii

�First postulate of quantum information
Every property of a quantum system can be described by a normalized vector

j i of the Hilbert space H, meaning that h j j i = k k = 1.

�Superposition of states
Let jai, jbi be two linearly independent normalized state vectors in H. Every

linear combination j i = c1 jai+ c2 jbi, with c1, c2 2 C,
results in another normalized state vector of the Hilbert space H.

1.4 Multiple qubits

Much like classical information, the need arises for the study of more than one
qubits at a single time in the �eld of quantum information. So far, a two-
dimensional Hilbert space H is enough for the description of quantum states
j i of a single qubit. However, in order to describe composite quantum systems
of two (or more) qubits, a more complex Hilbert space H of a greater dimension
is needed. Such systems may be expressed in terms of their components with
the use of the Kronecker product 
 (known as tensor product in quantum
information). This type of product has the following properties for random
state vectors jxi, jyi, jpi, jqi:
- (jxi 
 jyi) � (jpi 
 jqi) = (jxi � jpi)
 (jyi � jqi)
- jxi 
 (jyi+ jpi) = jxi 
 jyi+ jxi 
 jpi
- (jxi+ jyi)
 jpi = jxi 
 jpi+ jyi 
 jpi
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- (a jxi)
 jyi = jxi 
 (a jyi) = a(jxi 
 jyi) for any scalar a 2 C
The same properties apply to any choice of matrices A, B, C, D, even

combined with vectors. For example: (A
B) � (jpi 
 jqi) = (A jpi)
 (B jqi)

So, the combination of two (or more) subsystems into a composite one j i
is primarily attributed to the tensor product. However, the expression of the
state vector j i may be either factorized or un-factorized with respect to its
subsystems. These two cases are presented below:

Case #1: Factorized/ Uncorrelated/ Un-entangled quantum states

Let there be a composite quantum system j i that consists of two qubits

j 1i = a1 j0i + b1 j1i =
�
a1
b1

�
, j 2i = a2 j0i + b2 j1i =

�
a2
b2

�
with a1, b1, a2,

b2 2 C. Then:
j i = j 1i 
 j 2i
j i = (a1 j0i+ b1 j1i)
 (a2 j0i+ b2 j1i)
j i = a1a2(j0i 
 j0i) + a1b2(j0i 
 j1i) + b1a2(j1i 
 j0i) + b1b2(j1i 
 j1i)
j i = a1a2 j00i+ a1b2 j01i+ b1a2 j10i+ b1b2 j11i

It should be noted that the term j0i
j1i is the same as j01i. This substitution
takes place on the grounds of abbreviation. In general: jii 
 jji = jii jji = jiji
for every (i; j).

Using their respective vector forms, it can be seen that:

j i = j 1i 
 j 2i =
�
a1
b1

�


�
a2
b2

�
=

0BB@
a1a2
a1b2
b1a2
b1b2

1CCA

Case #2: Un-factorized/ Correlated/ Entangled quantum states

In this case, j i 6= j 1i 
 j 2i. However, certain states of j 1i may be
correlated with speci�c states of j 2i, as shown in the examples below:

e.g. j i = a j0i 
 j0i+ b j1i 
 j1i with a; b 2 C

j i = a[

�
1
0

�


�
1
0

�
] + b[

�
0
1

�


�
0
1

�
]

j i = a

0BB@
1
0
0
0

1CCA+ b
0BB@
0
0
0
1

1CCA =

0BB@
a
0
0
b

1CCA
or

e.g. j i = a j0i 
 j1i+ b j1i 
 j0i with a; b 2 C
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j i = a[

�
1
0

�


�
0
1

�
] + b[

�
0
1

�


�
1
0

�
]

j i = a

0BB@
0
1
0
0

1CCA+ b
0BB@
0
0
1
0

1CCA =

0BB@
0
a
b
0

1CCA
In any case, the state vector j i describes a quantum system and its squared

coe¢ cients should correspond to the probabilities of �nding the system in one
of these states upon measurement. So:
case #1: ka1a2k2 + ka1b2k2 + kb1a2k2 + kb1b2k2 = 1
case #2: kak2 + kbk2 = 1
As for the respective Hilbert space H of j i, it is the outcome of the tensor

product H = H1 
 H2 as well. In these cases, both of the component Hilbert
spaces involved are two-dimensional ones, while the orthonormal basis for j i
is clearly the four-dimensional one, whose basis vectors are presented below:

j00i = j0i 
 j0i =

0BB@
1
0
0
0

1CCA ; j01i = j0i 
 j1i =
0BB@
0
1
0
0

1CCA
j10i = j1i 
 j0i =

0BB@
0
0
1
0

1CCA ; j11i = j1i 
 j1i =
0BB@
0
0
0
1

1CCA
In general, a quantum state of n two-dimensional qubits exists in a Hilbert

space H of 2n dimensions, with the basis vectors needed being also 2n. This
exponential growth of the domain dimensions, as a result of the linear increase
in the number of qubits, is the main reason for the exponential increase in speed
of quantum computations [16].
It can be seen that the distinction between factorized and un-factorized

quantum states j i is inextricably linked to the degree of correlation between
possible states of di¤erent subsystems. This property of un-factorized systems
is better known as quantum entanglement. The qualitative assessment of the
entanglement of a system involves the determinant of the square matrix con-
taining the coe¢ cients of every possible state the system may be found in. If
the determinant is equal to zero, then the system is factorized (un-entangled),
whereas a non-zero determinant implies that the system is entangled to a cer-
tain extent. This speci�c procedure, regarding the abovementioned cases, is
presented below:

Case #1: Un-entangled system

j i = a1a2 j00i+ a1b2 j01i+ b1a2 j10i+ b1b2 j11i
In this case, the square matrix of the coe¢ cients of j i = c00 j00i+c01 j01i+

c10 j10i+ c11 j11i is:
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A =

�
c00 c01
c10 c11

�
=

�
a1a2 a1b2
b1a2 b1b2

�
The determinant of this matrix is:
det(A) = c00c11 � c01c10
det(A) = a1a2b1b2 � a1b2b1a2

det(A) = 0

Case #2: Entangled system

j i = a j00i+ b j11i
The square matrix of the coe¢ cients of j i = c00 j00i+ c01 j01i+ c10 j10i+

c11 j11i in this case is:

A =

�
c00 c01
c10 c11

�
=

�
a 0
0 b

�
So, the determinant is obviously: det(A) = a � b 6= 0 when a; b 6= 0.

In cases of correlated systems, the amount of entanglement depends on the
values of the coe¢ cients a,b. However, the issue of the quantitative assessment
of the entanglement will be addressed later.

1.5 Bipartite quantum system

In the previous section, it was seen that composite quantum systems j i may
consist of more than one qubits. The simplest example of such a system has
two qubits and it is known as a bipartite quantum system. In particular, the
expression of a bipartite quantum system j i with reference to its two distinct
qubit components j�i and jxi is the following:

j i =
n1X
i=1

n2X
j=1

cij j�ii 
 jxji

with cij 2 C and
n1X
i=1

n2X
j=1

jcij j2 = 1.

However, this de�nition may be extended to quantum systems that have
more than two qubits (multipartite systems). In this case, a bipartite system
j i consists of two quantum subsystems j�i and jxi, each one being a system
of two or more qubits. There are a lot of di¤erent interpretations of the same

8



multipartite system as a bipartite one, due to the various scenarios of two com-
plementary sets of qubits. Such consideration is bene�cial to the study of the
correlation (thus entanglement) between these two sets of qubits.

1.6 Transformations and operators on quantum states

An operator is a mathematical rule that can be applied to a function to trans-
form it into another function [3]. Technically, an operator A is a matrix that
acts on a state vector j i of the Hilbert space H, resulting in another state
vector

�� 0� of the same domain: �� 0� = A j i

with
�� 0� also in H.

Operators can also act on bras, with the result being another bra:

 0
�� = h jB

with h j,


 0
�� in H�.

Every operator has a matrix representation in respect to a given orthonor-
mal basis, thus making its action on a state vector a simple matter of matrix
multiplication. For the purposes of this thesis, the matrix representation of
every operator is expressed in terms of the basis fj0i ; j1ig.
It should be mentioned that the entirety of the operators used in this project

are linear operators. An operator A is linear, if the following relationship holds,
given complex numbers ai and the state vectors juii:

A(

nX
i=1

ai juii) =
nX
i=1

ai(A juii)

with ai 2 C.

Some basic linear operators are shown below:

�Zero operator O
O jai = jai for every jai 2 H

�Identity operator I
I jai = jai for every jai 2 H

�Inverse operator T�1
T jai = jbi then T�1 jbi = jai for every jai,jbi 2 H
It can be seen that the application of the inverse operator T�1 neutralizes

the e¤ect of T :
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T�1T jai = T�1 jbi = jai

and

TT�1 jbi = T jai = b

So the concecutive application of T�1 and T is equivalent to the application
of the identity operator:

T�1T = TT�1 = I

�Unitary operator U
An operator U is unitary i¤ its inverse is equal to its conjugate tranpose,

meaning that U�1 = (U�)T = Uy. A few notable properties of the unitary
operators include the following:
�The product of unitary operators is a unitary operator.
�The tranpose of a unitary operator is a unitary operator.
�The inverse of a unitary operator is a unitary operator.
�Every unitary operator preserves the norm of the vector it acts on.

kjaik = kU jaik

�Hermitian operator T
An operator T is hermitian i¤ it is equal to its conjugate tranpose one,

meaning T = (T �)T = T y.
Some useful properties are:
�The addition of two hermitian operators is hermitian.
�The product of hermitian operators is hermitian.
�The eigenvalues of a hermitian operator are real numbers.

�Projection operator P
Suppose that a given vector space has n dimensions and a basis given by

orthonormal state vectors jii with 1 � i � n. The projection operator P =
mX
i=1

jii hij (with m < n) projects any state vector j i onto the subspace spanned

by the set jii with 1 � i � m.
Properties of the projection operator include the following:
�For every projection operator P , it stands P 2 = P .
�Every projection operator has eigenvalues 0 and 1.

Let two complementary projection operators P" =
mX
i=1

jii hij (with m < n)

and P# =
nX

i=m+1

jii hij. It can be seen that:
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! P" + P# =
mX
i=1

jii hij+
nX

i=m+1

jii hij =
nX
i=1

jii hij = I

! P" � P# = 0

The complementary projection operators of basis fj0i ; j1ig are:

P0 = j0i h0j =
�
1 0
0 0

�
P1 = j1i h1j =

�
0 0
0 1

�

In addition, an operator A may be applied in an "adjoint" way Ad(A) on
a system B, meaning that Ad(A)B = ABAy. This type of action serves only
abbreviation purposes. A useful property of this notation is:

Ad(A)Ad(B)C = Ad(AB)C

According to the second postulate of quantum mechanics, every dynamical
variable A that is a physically measurable quantity has an operator A in the
Hilbert space H corresponding to it. The set of eigenvectors of such an operator
form an orthonormal basis and its eigenvalues are real numbers. That is the
reason for the Hermitian operators being used exclusively in the �eld of quantum
information.

1.7 Quantum gates: 1-qubit and 2-qubit cases

In quantum information, gates acting on qubits are represented by hermitian
and unitary operators. Unlike classical logic gates, quantum gates need to be
reversible, guaranteed by its hermiticity, and they need to preserve the norm of
their input quantum state vector j i, leading to the prerequisite of unitarity.
Quantum gates may act on a single qubit, or more qubits at once.
A set of quantum single-qubit gates that have fundamental importance in

quantum computation are the Pauli gates, named after the physicist Wolfgang
Pauli. The matrix representation of these gates are expressed with reference to
the orthonormal basis fj0i ; j1ig as:

�1 = X =

�
0 1
1 0

�
, �2 = Y =

�
0 �i
i 0

�
,�3 = Z =

�
1 0
0 �1

�
The X gate is the quantum NOT gate, leading to the reverse of any quantum

state j i = a j0i+ b j1i as shown below:
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X j i = X(a j0i+ b j1i) = X(a

�
1
0

�
+ b

�
0
1

�
) = X(

�
a
0

�
+

�
0
b

�
) = X

�
a
b

�
X j i =

�
0 1
1 0

��
a
b

�
=

�
b
a

�
=

�
b
0

�
+

�
0
a

�
= b

�
1
0

�
+ a

�
0
1

�
So:

X(a j0i+ b j1i) = b j0i+ a j1i

Another important single-qubit gate is called the Hadamard operator, whose
matrix representation in the basis fj0i ; j1ig is:

H =
1p
2

�
1 1
1 �1

�
This gate transforms the basis state vector j0i and j1i into the superposition

states j0i+j1ip
2

and j0i�j1ip
2

respectively.

Also, the two-qubit gate that is the cornerstone of every quantum computer
system is the "controlled-not" gate Ucn. As its name suggests, its operation is
actually a controlled application of the X gate over the second Hilbert space,
depending on the value of the target qubit of the �rst Hilbert space.

Ucn(jxi 
 jyi) = jxi 
 jx�2 yi
In particular, this two-qubit gate "�ips" the second qubit, if the �rst qubit

is equal to j1i, and it does nothing to the second qubit, if the �rst one is equal
to j0i. This procedure may be expressed in terms of unitary operators acting
on the respective Hilbert space as shown below:

Ucn = P0 
 I+ P1 
X
Ucn =

�
1 0
0 0

�


�
1 0
0 1

�
+

�
0 0
0 1

�


�
0 1
1 0

�

Ucn =

2664
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3775
This is the matrix representation of the Ucn operator with reference to the

orthonormal basis fj0i ; j1ig. The explicit formula for the matrix representation
of this gate acting on the linear combination of the two-qubits jxi and j i is:

Ucn =
1X

x=0

1X
y=0

(jxi 
 jx�2 yi)(hxj 
 hyj) =
1X

x=0

1X
y=0

jxi hxj 
 jx�2 yi hyj

The "controlled-not" gate (or quantum XOR-gate) can be used for many
practical tasks of quantum information processing such as quantum state swap-
ping, entangling quantum states, performing Bell measurements, dense coding,
quantum teleportation and more.
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1.8 Density operator

In many cases, the need arises for the study of a composite quantum system
that is comprised of a number of di¤erent systems. Such a collection is known
as an ensemble. Each member of the ensemble may be found in one of two or
more di¤erent quantum states, according to their given probabilities. However,
there is also the probability of the composite system being found in one of the
members of this ensemble. In the latter level, the use of probability is acting on
a classical way, thus re�ecting a simple statistical mixture of quantum systems.
In such cases, the calculation of usual quantities for this composite quantum

system becomes more complex, since the mathematical rules mentioned so far
are not enough to bypass the restrictions imposed by the two levels of probabili-
ties. The operator used for the in-depth study of any quantum system is known
as the density operator.
So, let there be a quantum system j i in the Hilbert space H that may be

found in one of the states j ii with respective probabilities pi. The density
operator � is de�ned as shown below:

� =
X
i

pi j ii h ij

The density operator � provides a greater insight to the quantum system,
since it makes its study focus around the application of operators, whose use is
more practical than that of individual state vectors.
So, an operator � is the density operator of an ensemble fj ii, pig, i¤ the

following requirements are met:
�A density operator � is Hermitian, meaning that � = �y.
�A density operator � is Positive, meaning that h j � j i � 0 for any state

vector j i.
�Tr(�) = 1. This property is attributed to the completeness theorem.

It should be mentioned that, for the purposes of this thesis, the term "density
matrix" is used instead of "density operator".
Based on their formation, an ensemble may be put into one of two categories:
�The ensemble with a single quantum system (described by j i) does not

have the probabilistic feature of the statistical mixture mentioned above. In
these cases, it is said that the composite system is in a pure state and the
respective density matrix � is expressed as � = j i h j.
�The ensemble with more than one quantum system is the general case of a

composite system. In these cases, it is said that the system is in a mixed state.
It can be seen that, for systems in a pure state, their respective density

matrix � has the additional property of �2 = �, thus becoming a projection
operator. This makes the identi�cation of such systems much easier, since �2 6= �
for any other quantum system.
Several important properties of the density matrix include the following:
- If � is a density matrix, then �T is also a density matrix.

13



�If �a is a density matrix on a Hilbert space Ha and �b is a density matrix
on a Hilbert space Hb, then �a
�b is also a density matrix on the Hilbert space
Ha 
Hb.
- The action of a unitary operator U on an ensemble of systems may be

expressed in terms of the respective density matrix � as: �! U�Uy.

1.8.1 Reduced density operator

Perhaps the deepest application of the density operator is as a descriptive tool
for subsystems of a composite system. Such a description is provided by the
reduced density operator [1].
Let there be a bipartite system with density matrix:

� =
X
x

X
y

X
k

X
l

�xykl jxi hyj 
 jki hlj

A reduced density matrix �i is produced by the application of trace over
all of the basis states of the other Hilbert space alone. So, in this case, this
process may yield two reduced density matrices �1 and �2, depending on the
perspective, as shown below:

�1 � Tr2(�)

�2 � Tr1(�)

The partial tracing involved in the calculation of �1 is presented below:
�1 = Tr2(�)

�1 =
X
x

X
y

X
k

X
l

�xykl jxi hyj � Tr(jki hlj)

�1 =
X
x

X
y

X
k

X
l

�xykl jxi hyj � hlj jki

�1 =
X
x

X
y

jxi hyj � (
X
k

�xykk)

As for the reduced density matrix �2:

�2 =
X
k

X
l

jki hlj � (
X
x

�xxkl)

The reduced density operator is virtually indispensable in the analysis of
composite quantum systems. The partial trace operation involved is the unique
operation that gives rise to the correct description of observable quantities for
subsystems of a composite system [1].
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1.9 Quantum entanglement measures

From qualitative to quantitative measures:

One of the most unusual and fascinating aspects of quantum mechanics is
the fact that particles or systems can become entangled. The fact that two
quantum systems (say A and B) are entangled, means that the values of certain
properties of system A are correlated with the values that those properties will
assume for system B [3]. This e¤ect is preserved even when the two systems
are spatially separated, no matter the distance. That is why this phenomenon
was initially perceived as "spooky action at a distance".
In an entangled quantum system, any measurement upon one of the com-

ponent subspaces provides accurate information about the state of the other
subsystem, without the need for any measurements upon it. It should be noted
that the concept of entanglement is of paramount importance to quantum infor-
mation theory, since an entangled quantum system is capable of providing more
information than its subsystems combined. Due to this feature, even greater
transmission rates and faster information processing in this �eld are possible
[16].
In a previous section, it was seen that a quantum system is considered to

be entangled as long as its state vector j i cannot be expressed as the tensor
product of the state vectors of its subsystems. The "factoriz-ability" of a given
system (known as separability) may be assessed directly by the value of the
determinant of the matrix of its coe¢ cents. In particular, a determinant that
is equal to zero implies that the system is un-entangled (separable), whereas a
non-zero determinant is attributed to an entangled system. However, the exact
value of the non-zero determinant corresponds to the degree of factorization of
the composite quantum system j i, which is inextricably linked to the amount
of entanglement this system has. The assessment of the amount of entanglement
in any system is attributed to the concept of quantum entropy.

1.10 Quantum entropy

The entropy characterizes a degree of disorder in systems with �uctuating phys-
ical observables [18]. The interpretation of order is related to the statistical
properties of the system. Such properties of classical and quantum systems
are described within the framework of the probability-distribution formalism in
classical domain and the density matrices in quantum domain. For example,
the Shannon entropy determines the characteristics of classical states based on a
probability distribution, while the von Neumann entropy represents the amount
of entanglement that is associated with a quantum-state density matrix. In
particular, the formula for the von Neumann entropy is:
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S(�) = �Tr(� log �)

The association of the density matrix � with the concept of quantum entropy
is attributed to the fact that its diagonal elements form a probability distrib-
ution, regarding the possible states that the respective system may be found
in. The same distribution is also formed by its respective eigenvalues �i that
correspond to its eigendecomposition:

� = UDUy = U

2664
�1 0 ::: 0
0 �2 ::: 0
::: ::: ::: :::
0 0 ::: �n

3775Uy
with U being the unitary matrix of its eigenvectors. Therefore, the von

Neumann quantum entropy may as well be expressed as:

S(�) = �
nX
i=1

�i log �i

It should be mentioned that several generalizations, regarding the mathemat-
ical formulas used for the calculation of quantum entropy, have been proposed
over the years. One of them is the quantum Rényi Entropy, whose formula is
used thoughout this project.

1.10.1 Rényi entropy

The Rényi Entropy, developed by Hungarian mathematician Alfred Rényi, was
introduced on axiomatic grounds as a generalization of Shannon entropy. For a
discrete probability distribution P = (p1; :::; pn), the Rényi Entropy of order a
(a � 0) is de�ned as:

Ha(P ) =
1

1� a log(
nX
i=1

pai )

This de�nition may be extended to continuous random variables X by

Ha(X) =
1

1� a log(
Z
fX(x)

adx)

Unlike the discrete case, the value of the Rényi Entropy may be negative
for continuous random variables. Therefore, the Rényi Entropy is typically only
used for cases of discrete variables.

16



Several special cases based on its order a are mentioned below:

! a = 0
The Rényi Entropy H0 of order a = 0 is known as the max-entropy or

Hartley Entropy. It is obvious that is is equal to the logarithm of the number
of probabilities regarding the given classical system.

! a = 1
In this case, the expression of the Rényi entropy is perceived as the limit of

a approaching 1. So:

H1(P ) = lim
a!1

(
1

1� a log(
nX
i=1

pai ))

It should be noted that the Rényi Entropy of order a = 1 results in the
Shannon Entropy, as:

H1(P ) = lim
a!1

(
1

1� a log(
nX
i=1

pai )) = �(
nX
i=1

pi log pi)

So, the Rényi Entropy may be thought of as a more fundamental concept of
which Shannon Entropy is just an important special case.

! a =1
As in the case of a = 1, the Rényi Entropy of order a = 1 is perceived as

the limit of a approaching 1. So:

H1(P ) = lim
a!1

(
1

1� a log(
nX
i=1

pai )) = � log(maxfpig)

This case is known as the min-entropy, since it converges to the negative
logarithm of the probability of the most probable outcome.

A few notable theorems regarding the classical Rényi Entropy are presented
below:
�"The Rényi Entropy Ha(P ) is a continuous function is P for a > 1 and

discontinuous for a � 1"
�"Let a 2 (0; 1] and let P be a probability distribution over Z+.Then there

exists a sequence of distributions Pn converging to P with respect to the total
variation distance, such that, for arbitrary r 2 [0;1],

lim
n!1

Ha(Pn) = Ha(P ) + r

�"Ha(P ) is a convex function in P for a � 1 and is neither convex nor concave
for a > 1."
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In the quantum setting, the Rényi Entropy S of order a is given as:

Sa(�) =
1

1� a log(Tr(�
a))

with � being the density matrix of the system. The special cases of order a
of this de�nition are:
! The quantum Rényi Entropy of order a = 1 converts to the von Neumann

entropy as:

S1(�) = lim
a!1

(
1

1� a log(Tr(�
a))) = �Tr(� log �)

!The Rényi Entropy of order a = 1 results in the min-entropy as well,
since:

S1(�) = lim
a!1

(
1

1� a log(Tr(�
a))) = � log(k�k)

with k�k denoting the operator norm.

A complication regarding the quantum domain is that the values for the
entropy must usually range between 0 (pure state) and 1(maximally entangled).
However, the dimension n of the reduced density matrix �1 may be greater than
2, resulting in the entropy becoming greater than 1. Therefore, the base of the
logarithm used in the entropy formula is n, thus limiting the value of the Rényi
Entropy between 0 and 1.

It should be mentioned that the phenomenon of entanglement is a speci�c
particularity of strong quantum correlations, some aspects of which can be char-
acterized by the values of entropies of the subsystem states [18]. Therefore, the
calculation of entropy and the assessment of the amount of entanglement of a
bipartite quantum system occurs from the perspective of a chosen subsystem
with the use of a reduced density matrix.

1.11 Schmidt decomposition of quantum states

Considering any orthonormal basis fjkigd1k=1 of H1 and any orthonormal basis
fjligd2l=1 ofH2, a bipartite quantum system j i inH = H1
H2 may be expressed
as:

j i =
d1X
k=1

d2X
l=1

ckl jki 
 jli
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with ckl 2 C being the elements of the matrix of coe¢ cients C. It is obvious
that the size of this matrix is d1 � d2. The singular value decomposition UDV y

of matrix C results in ckl =
rX
i=1

UkiDii(V
y)il, where D is a diagonal matrix with

non-negative elements, U ,V are unitary matrices and r is the rank of matrix C.
So, by substitution:

j i =
d1X
k=1

d2X
l=1

rX
i=1

UkiDii(V
y)il jki 
 jli

j i =
rX
i=1

Dii(

d1X
k=1

Uki jki)
 (
d2X
l=1

(V y)il jli)

De�ne ji1i �
d1X
k=1

Uki jki, ji2i �
d2X
l=1

(V y)il jli and �i � Dii. Then:

j i =
rX
i=1

�i ji1i 
 ji2i

This expression is the Schmidt decomposition of the bipartite quantum
system j i. The bases fji1igd1i=1 and fji2ig

d2
i=1 are also orthonormal bases

of the Hilbert spaces H1 and H2 respectively (known as Schmidt bases) and
r = minfd1; d2g. The coe¢ cients �i are non-negative real numbers satisfying
rX
i=1

�2i = 1 and are known as Schmidt coe¢ cients. Since �i � Dii, the Schmidt

coe¢ cients �i correspond to the singular values of the matrix representation C
of quantum system j i.
The number of the non-zero values �i is called the Schmidt number for the

state j i. The Schmidt number is an important property of a composite quan-
tum system, which in some sense quanti�es the amount of entanglement between
the two subsystems of system j i [1]. In particular, this number indicates the
separability of the given system, since:
�If a system is separable, the Schmidt number is 1.
� If a system is entangled, the Schmidt number is greater than 1. A pure

state for which all Schmidt coe¢ cients �i are equal to 1p
r
is called a maximally

entangled state.
It should be noted that the Schmidt coe¢ cients �i are invariant under local

unitary transformations U1 
 U2 applied to the bipartite quantum state j i.
Therefore, the Schmidt number is preserved under such local transformations.
In addition, the Schmidt decomposition implies that both partial traces of

any bipartite pure state j i have the same nonzero part of the spectrum:
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�1 = Tr2(j i h j) =
rX
i=1

�2i ji1i hi1j

�2 = Tr1(j i h j) =
rX
i=1

�2i ji2i hi2j

As a result, the eigenvalues of �1 and �2 are identical, namely �
2
i , for both

density matrices. Many important properties of quantum systems are com-
pletely determined by the eigenvalues of the reduced density matrix of the sys-
tem, so, for a pure state of a composite system, such properties will be the same
for both systems [1].

1.12 The "double-wedge" notation

It is known that any bipartite quantum system may be described by the state

vector j i =
n1X
i=1

n2X
j=1

cij j�ii
jxji, with
n1X
i=1

n2X
j=1

jcij j2 = 1. Consider the following

state vector j i of two qubits in fj0i ; j1ig:

j i = c00 j00i+ c01 j01i+ c10 j10i+ c11 j11i =
�
j0i j1i

� �c00 c01
c10 c11

��
j0i
j1i

�

There is an equivalent expression for bipartite systems called "double-wedge"
ket vector jAii. In particular, A is the matrix representation of a quantum
system j i, whose element in position (i; j) is the respective coe¢ cient cij of
j i. So, in this case:

�
j0i j1i

� �c00 c01
c10 c11

��
j0i
j1i

�
�
�����c00 c01
c10 c11

���
= jAii

Due to this system description, a double-wedge ket jAii must also be nor-
malized as a prerequisite of the completeness theorem, meaning that kjAiik2 =
kAkF = 1.
This "double-wedge" notation exploits the correspondence between quantum

state vectors inH1
H2 and n1 �n2 matrices, where n1 and n2 are the dimensions
of H1 and H2 respectively. Due to the isomorphism of matrices A 2 Cn1;n2 and
vectors jAii 2 Cn1�n2 , it can be seen that:
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A =

n1X
i=1

n2X
j=1

Aij jii hjj $ jAii =
n1X
i=1

n2X
j=1

Aij jii 
 jji

Similar to the vector representation, there is also a "double-wedge" bra vec-
tor:

hhA j = (jAii)y =
���

c�00 c�01
c�10 c�11

�����
Some notable properties of the double-wedge ket notation include the fol-

lowing (Appendix D - Proposition 1 ):
�(C 
K) jAii =

��CAKT
��

�(C 
 I) jAii = jCAii
�(I
K) jAii =

��AKT
��

�kjAiik2 =
p
hhA j jAii =

p
Tr(AyA) = kAkF

�hhA j jBii = Tr(AyB)
�jA+Bii = jAii+ jBii

Several notable examples of double-wedge ket systems are presented below:

jXii =
���� 1p

2

�
0 1
1 0

���
= 1p

2
(j01i+ j10i)

j iY ii =
���� ip

2

�
0 �i
i 0

���
= 1p

2
(j01i � j10i)

jZii =
���� 1p

2

�
1 0
0 �1

���
= 1p

2
(j00i � j11i)

j Iii =
���� 1p

2

�
1 0
0 1

���
= 1p

2
(j00i+ j11i)

Considering that a bipartite system is in a pure state, its respective density
matrix � is equal to j i h j, which is equivalent to jAii hhA j with reference to its
double-wedge ket notation. In addition, the calculation of the reduced density
matrices is done according to the following formulas (Appendix D - Proposition
2 ):

�1 = AAy (2)

�2 = ATA� (3)

21



1.13 The Hadamard product map

Consider the "controlled-not" gate Ucn mentioned in a previous section. The
action of this quantum XOR-gate onto a chosen set of basis states fjiig with
i 2 f0; 1g of the Hilbert space of each qubit has been de�ned as:

Ucn jii jji = jii ji�2 ji

This two-qubit transformation has the following properties:
�it is unitary and thus reversible,
� it is Hermitian,
� i�2 j = 0 if and only if i = j.
However, for many practical tasks of quantum information processing, it is

often desirable to extend the basic notion of such a quantum XOR-operation to
higher-dimensional Hilbert spaces. The desired generalized quantum XOR-gate
(Uxor-gate) should act on two n-dimensional quantum systems. In principle,
this Uxor gate could be de�ned in a straightforward way, with the exception of
performing i�n j, as shown below:

Uxor jii jji = jii ji�n ji

Despite the fact that this process is also unitary, it is is not Hermitian for
n > 2, thus becoming irreversible. Therefore, the inverse Uxor-gate has to be
obtained from this Uxor-gate by iteration, meaning that

U�1xor = Un�1xor = Uyxor 6= Uxor

As it turns out, all these inconvenient properties of this initial approach can
be removed by the following de�nition [5]:

Uxor jii jji = jii ji	n ji

The symbol 	n denotes the di¤erence i � j modulo n. This de�nition pre-
serves all the necessary properties for arbitrary values of n, namely:
�it is unitary,
�it is Hermitian,
� i	n j = 0 if and only if i = j (recall that i; j 2 [0; n� 1]).

An interesting class of nonlinear quantum maps can be implemented with the
help of this Uxor-gate. Together with �ltering measurements acting on a target
qubit system, the Uxor-gate induces nonlinear transformations of quantum states
of a control system [5].
Consider the n-dimensional quantum state vectors:
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j i =
n�1X
i=0

ai jii =

0BB@
a0
a1
:::
an�1

1CCA

j�i =
n�1X
j=0

bj jji =

0BB@
b0
b1
:::
bn�1

1CCA
with ai; bj 2 C for every (i; j).
Recalling the generalized Uxor-gate mentioned earlier, the following opera-

tion is de�ned:

V � (I
 P0)Uxor (4)

with P0 corresponding to the projector of state j0i in the n-dimensional vec-
tor domain. It should be noted that this transformation is not unitary and so it
does not preserve the norm of the system it acts on. However, it is indeed possi-
ble to realize this transformation in the lab; it is only a question of technological
di¢ culties and therefore time [6].
The application of this V process on the composite system j i 
 j�i is:

V(j i 
 j�i) = (I
 P0)Uxor((j i 
 j�i))! j � �i 
 j0i (5)

with

j � �i =
n�1X
i=0

(ai � bi) jii =

0BB@
a0b0
a1b1
:::

an�1bn�1

1CCA
So, this non-linear operation generates the elementwise multiplication (also

known as the Hadamard Product) of the state coe¢ cients of the n-dimensional
quantum state vectors involved. The fact that the norm of the state is not pre-
served poses a problem of minimum signi�cance, since it is possible to normalize
this output if necessary [6].

This Hadamard Product map may also be applied to the combination of two
square complex matrices A;B of the same dimension n in a slightly di¤erent way.
In particular, the adjoint application of process V (as Ad(V) = Ad((I
P0)Uxor))
on (A
B) yields the following result (Appendix D - Proposition 3 ):

Ad(V)(A
B) = (I
 P0)Uxor(A
B)Uyxor(I
 P0)! (A �B)
 P0 (6)

with � denoting the Hadamard Product of the matrices involved.

23



1.14 Oracle algebra

Given a set with N elements, it is possible to �nd 1 � k � N marked elements
from this set, via a "black box" (known as oracle) that answers queries [8]. This
"black box" can be described by an oracle boolean function f : f1; 2; :::; Ng !
f0; 1g, introduced as the characteristic function of subset I � f1; 2; :::; Ng of
marked items,with f(i) = 1 for i 2 I and f(i) = 0 otherwise.
Let a boolean function f : f1; 2; :::; Ng ! f0; 1g and the orthogonal vectors

jxi = 1p
n

NX
i=1

f(i) jii and
��x?� = 1p

n?

NX
i=1

(1 � f(i)) jii, with n =
NX
i=1

f(i) and

n? =
NX
i=1

(1�f(i)),which generate the Hilbert spaceH2 = Vx = spanfjxi ;
��x?�g

and the unit element S0 = jxi hxj +
��x?� 
x?��. The oracle algebra is de�ned

as the vector space Af = fM 2 CNxN ;MS0M
y = S0g, generated by the

elements S1 = jxi


x?
�� + ��x?� hxj, S2 = �i jxi



x?
�� + i

��x?� hxj and S3 =

jxi hxj �
��x?� 
x?��.

The matrices Si are Hermitian and satisfy the commutation relations [Sa; Sb] =
2iSc (cyclically) and [S0; everything] = 0. It can be seen that the set fS0; S1; S2; S3g
is analogous to the set of Pauli matrices and Af � u(2), i.e. oracle algebra is
isomorphic to u(2) matrix algebra [10].
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2 Iterative Entanglement Compression Algorithm

2.1 Introduction

It is a well known fact that every matrix A of digital (classical) information has
a Singular Value Decomposition A = USV y. As mentioned in the appendix,
this process transforms a matrix of dimensions n � m into a sum of rank-one
matrices, whose coe¢ cients are the singular values �i of the matrix:

A = USV y =
rX
i=1

�iuiv
y
i

with r being the rank of the matrix A.

Through the Singular Value Decomposition, the information included in a
matrix A may be compressed by omitting rank-one matrices, whose coe¢ cients
�i are considered to be very small compared to the rest. The "small" criteria
vary between the various applications of this method, depending on their con-
tribution to certain matrix properties. So, the matrix is composed by a linear
combination of fewer rank-one matrices, thus reducing its rank while maintain-
ing the "lion�s share" of the initial information.
This compression method is a vital mathematical tool in the �eld of digital

image processing. After all, every digital image may be expressed as a two di-
mensional matrix, whose elements correspond to the pixels of the image. The
properties of each pixel, such as brightness (the intensity of light) and color,
are described by real numbers, that are stored in the respective position in the
two dimensional image matrix. The simplest example is the grayscale digital
image. The information contained in this image is considered to be the changes
of brightness between pixels (as shades of gray), with no color information what-
soever. Therefore, the elements of its matrix representation are just single real
positive integer values, ranging from pure black (minimum value 0) to pure
white (maximum value). It should be mentioned that the maximum pixel value
depends on the amount of binary digits (bits) used to describe image brightness
(also known as "bits-per-pixel"). For 8 bits per pixel, the maximum pixel value
is 28 � 1 = 255.
With the use of its Singular Value Decomposition, a grayscale digital image

A may be approximated by a digital image of a lesser rank 1 < k � r, as shown
below:

A =
rX
i=1

�iuiv
y
i ! A0 =

kX
i=1

�iuiv
y
i

This Low Rank Matrix Approximation is considered to be a lossy com-
pression method of images, since any extra information corresponding to the
rank-one matrices of the last r � k singular values is lost. However, several
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image features are preserved to an extent depending on the amount of "small"
singular value components omitted. The greater the amount, the fewer image
details are preserved in the result, leading to a higher compression ratio.

In this thesis, the matrix representation of a square grayscale digital image
A of dimension n is considered to be the coe¢ cient matrix of a bipartite quan-
tum system jAii as well. This way, the normalized pixel values of the image
correspond to the coe¢ cients of all the possible states that the system may be
found in, as presented in the following example (with black (�), gray (�) and
white(�) pixels):

��������
0BB@
� � � �
� � � �
� � � �
� � � �

1CCA
++

=
�
j00i j01i j10i j11i

�0BB@
� � � �
� � � �
� � � �
� � � �

1CCA
0BB@
j00i
j01i
j10i
j11i

1CCA
.
In particular, such an image is viewed as the entangling factor between two

pairs of log2 n qubits from the perspective of quantum information, with each
subsystem having n possible states, as shown below (here image 256x256):

�
ja0b0c0d0e0f0g0h0i ::: ja1b1c1d1e1f1g1h1i

�

266666666666664 Lena

377777777777775

0@jj0k0l0m0n0p0q0t0i
:::

jj1k1l1m1n1p1q1t1i

1A

The goal of this iterative algorithm is the compression of the information
contained in an input image Ain, in terms of the amount of entanglement of the
respective bipartite system jAinii. This process involves two main stages: the
dimensional reduction of the input image down to its Low Rank Approximated
Matrix Al of a certain rank k and the iterative application of the Hadamard
product for a number of iterations, on the grounds of the optimum restoration
of the initial entanglement. In other words, the output quantum system jAoutii
of this algorithm is a better approximation of the original system jAinii than
the Low Rank Approximated system jAlii in terms of entropy.
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2.2 Preliminary material

In order for this algorithm to have any e¤ect, a main prerequisite have to be
met regarding the consideration of the digital image Ain as the double-wedge
ket vector jAinii. Also, two mathematical processes, that are the cornerstone
of the proposed compression scheme, are presented in this section.

2.2.1 Quantum prerequisite

Consider the Singular Value Decomposition (SVD) of the matrix representation
of a given grayscale image A. This decomposition is A = UDAV

y, with U ,V
being unitary matrices and DA diagonal matrix, the elements of the latter being
the singular values of matrix A. It should be noted that this decomposition
exists for every complex matrix A 2Mm;n.
In this thesis, the focus lies on real square matrices of dimension 2n (n 2 N�),

rather than complex ones of random dimension. The reasons for such criteria
include the consideration of these matrices to be both digital images (hence
real) and double-wedge kets describing the entanglement between two pairs of
n qubits (hence square of dimension 2n). In the special case that A 2 R, then
U ,V may be taken to be real orthogonal matrices [13]. As a result, the following
decomposition is considered:

A = UDAV
T

However, for any matrix A to be a valid representation of a quantum system,
its norm must be equal to one as a prerequisite attributed to the completeness
theorem. So, in order that the double-wedge ket jAinii is to be valid, its ar-
gument matrix A must be normalized in terms of its Frobenius norm since
kjAiniik2 = kAinkF = 1. The norm of initial matrix A is:

kAkF =

vuut rX
i=1

�2i = kDAkF

So, the normalized version of A is:

Ain =
A

kAkF

By substitution of A with its respective SVD representation, it can be seen
that:

jAinii = (U 
 V ) jDii (7)
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with D being the normalized diagonal matrix of singular values.

Due to the isomorphism of matrices D and double-wedge ket vectors jDii,
the following correlation is valid:

D =
rX
i=1

�i jii hij $ jDii =
rX
i=1

�ijii 
 jii (8)

with r being the rank of matrix A.

So, equation (7) becomes:

jAinii =
rX
i=1

�iU jii 
 V jii

jAinii =
rX
i=1

�i ji0i 
 ji00i

with

ji0i � U jii
ji00i � V jii

and

kAinkF =

vuut rX
i=1

�2i = 1

2.2.2 Orthogonal decomposition

Given the set of r singular values in D, it is possible to mark 1 � k � r of
them via a "black box" (known as oracle) that answers queries. This "black
box" can be described by an oracle boolean function f : f1; 2; :::; rg ! f0; 1g.
For the purposes of this thesis, the oracle function f decomposes the set of
singular values �i of the input matrix Ain into two orthogonal sets xlarge =
f�i : f(i) = 1g and xsmall = f�i : f(i) = 0g. The set xlarge contains the k
largest singular values, while the set xsmall contains the r � k smallest ones. It
should be noted that this type of partitioning occurs in the "black box" for a
�xed value k over di¤erent inputs Ain, without any prior knowledge regarding
the way it is performed. Also, it is impossible to interfere with this partitioning
process.
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The singular values � corresponding to each of the sets xlarge; xsmall are
then assigned as the diagonal elements of the matrices Dlarge and Dsmall, in a
way that D = Dlarge +Dsmall. Due to the non-increasing order of the singular
values in D (Appendix B), the matrix Dlarge has k consecutive elements � in the
diagonal positions 1 through k, whereas the matrix Dsmall has r�k consecutive
elements � in the diagonal positions k + 1 through r.
Following this assignment, the following matrices are de�ned:

Alarge � UDlargeV
T =

kX
i=1

�i ji0i hi00j (9)

and

Asmall � UDsmallV
T =

rX
i=k+1

�i ji0i hi00j (10)

with ji0i = U jii and ji00i = V jii.

While hAlarge; Asmalli = hAsmall; Alargei = 0, this corresponds to the or-
thogonal decomposition of Ain = Alarge +Asmall.

Concerning the respective double-wedge ket form, it is obvious that:
jAinii = jAlarge +Asmallii
jAinii = jAlargeii+ jAsmallii

Since the initial matrixA is normalized into jAinii, the addition of jAlargeii+
jAsmallii is normalized as well. However, each of the terms Alarge, Asmall is
not. So, they are normalized into Al; As respectively, as shown below:

Al =
Alarge
cl

(11)

with cl � kAlargekF = kDlargekF =

vuut kX
i=1

�2i

and

As =
Asmall
cs

(12)

with cs � kAsmallkF = kDsmallkF =

vuut rX
i=k+1

�2i

By substitution, it can be seen that:

jAinii = cl jAlii+ cs jAsii (13)
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In an analogous way, the diagonal matrices corresponding to the "large" and
"small" components of Ain are normalized as:

Dl � Dlarge

cl

Ds � Dsmall

cs

2.2.3 Generating correlation

With the use of an auxiliary qubit (say j0i), it is possible to build-up correlation
between the two orthonormal parts jAlii ; jAsii and the states of that qubit.
This process includes the creation of superposition states through the Hadamard
operator, followed by proper projections over the auxilliary qubit. It should be
noted that the availability of the initial state jX0i = j0i 
 jAinii for further
processing is required.
At �rst, with the use of the Hadamard Operator over the �rst Hilbert space,

the creation of superposition states between two instances of jAinii takes place
as shown below:
jX1i = (H 
 I ) jX0i
jX1i = (H 
 I)(j0i 
 jAinii)
jX1i = H j0i 
 I jAinii
jX1i = ( j0i+j1ip

2
)
 jAinii

jX1i =
1p
2
(j0i 
 jAinii+ j1i 
 jAinii) (14)

As mentioned above, it is possible to establish correlation between the sys-
tems jAlii ; jAsii and the states of the auxiliary qubit through proper projec-
tions. In particular, such projections include the transformation of each instance
of jAinii into its respective componentsjAlii and jAsii. For this purpose, the
following projector operators are de�ned:

Plarge � jAlii hhAl j (15)

and

Psmall � jAsii hhAs j (16)

These projection operators have the following applications:
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Plarge jAinii = cl jAlii (17)

Psmall jAinii = cs jAsii (18)

Such projections are performed with the use of a "controlled" projection
operator over the state jX1i, targeting each instance of jAinii and projecting it
into cl jAlii ; cs jAsii with reference to the state of the auxilliary qubit j0i ; j1i
respectively. This "controlled" projection operator is shown below:

Psel � P0 
 Plarge + P1 
 Psmall (19)

Its application upon the state jX1i yields the following result :
jX2i = Psel jX1i
jX2i = (P0 
 Plarge + P1 
 Psmall)( 1p2 (j0i jAinii+ j1i jAinii))

jX2i =
1p
2
[(P0 j0i 
 Plarge jAinii) + (P0 j1i 
 Plarge jAinii)+

+ (P1 j0i 
 Psmall jAinii) + (P1 j1i 
 Psmall jAinii)]

Recall that: P0 j0i = j0i , P1 j1i = j1i and P0 j1i = 0 , P1 j0i = 0

As a result:
jX2i = 1p

2
(j0i 
 cl jAlii+ 0 + 0 + j1i 
 cs jAsii)

jX2i =
1p
2
(cl j0i 
 jAlii+ cs j1i 
 jAsii) (20)

It should be mentioned that this speci�c correlating process is inspired by
the Bell State correlation mechanism j�abi = (H 
 I)Ucn(jai
 jbi) for arbitrary
qubits jai ; jbi presented below:

Bell state correlation
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While this mechanism results in the correlation between the values of the
two qubits involved (such as j�00i =

j00i+j11ip
2

), the proposed process establishes
correlation between the values of an auxiliary qubit and the components of a
bipartite system.

Proposed correlation process

This correlation is of paramount importance, since the measurement upon
the auxiliary qubit provides accurate information about the state of the bipartite
system, without the need for further measurements upon the latter.

2.3 Compression process

The process of quantum compression refers to the dimensional reduction of
a bipartite quantum system jAinii, while preserving most of the amount of
entanglement contained in the system. The dimensional reduction implies the
omission of the components of the Schmidt decomposition of the given bipartite
system, whose coe¢ cients are relatively small compared to the rest. This is the
equivalent process of extracting the respective quantum system corresponding
to the Low Rank Approximation (LRA) Al, of a certain rank k, out of the initial
Ain. A quantum process is then applied to this system, in an attempt to restore
a signi�cant amount of the entropy of the initial system upon it.
In this thesis, the proposed compression algorithm of quantum information

focuses on the optimum restoration of the initial entropy through the iterative
application of the Hadamard Product between the "large" component of the
previous output (Aout)l and the "large" component of the initial input Al. The
main idea involves the indirect multiplication of the singular values of these
components, thus inducing an exponential reduction in their size, since their
values are positive numbers between 0 and 1. In this way, the contributions of
the various components to the entropy of the current output bipartite quantum
system become more disproportionate, allowing the omission of several compo-
nents with no relative e¤ect on the general structure of the system.
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The stages for this proposed compression method are analyzed below:

2.3.1 Compression process - Stage 0: Input state

The �rst step of this process requires that the quantum state jX0i = j0i
 j0i
��ATin��
jAinii be available for processing. It can be seen that this state consists
of 2 auxilliary qubits j0i, the double-wedge ket jAinii as well as its "transpose"
system

��ATin��.
At this point, the use of a boolean function f with respect to oracle matrix

algebra decomposes the set of the singular values of Ain into two subsets, one
containing the largest k singular values in xlarge and the other one containing
the rest, meaning the r � k smallest singular values in xsmall. As mentioned in
a previous section, these sets may correspond to the complementary diagonal
matrices Dlarge and Dsmall, with D = Dlarge + Dsmall. This leads to the
orthogonal decomposition of matrix Ain = Alarge +Asmall with:

Alarge � UDlargeV
T

Asmall � UDsmallV
T

Since the initial matrixA is normalized into jAinii, the addition of jAlargeii+
jAsmallii is normalized as well. However, each of the terms Alarge, Asmall is
not. So, they are normalized into Al; As respectively, as shown below:

Al =
Alarge
cl

As =
Asmall
cs

with cl � kAlargekF and cs � kAsmallkF .

In an analogous way, the diagonal matrices corresponding to the "large" and
"small" components of Ain are normalized as:

Dl � Dlarge

cl

Ds � Dsmall

cs
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By substitution, it can be seen that:

jAinii = cl jAlii+ cs jAsii

Considering that the transpose matrix ATin has the same singular values
as Ain, the use of the same boolean function f on ATin yields the following
orthogonal decomposition:

V DlargeU
T = (UDlargeV

T )T = (Alarge)
T

V DsmallU
T = (UDsmallV

T )T = (Asmall)
T

It can be easily seen that the norms of the orthogonal components (Alarge)T ; (Asmall)T

are cl; cs respectively. As a result, the bipartite quantum system corresponding
to ATin may be expressed as:��ATin�� = cl

��ATl ��+ cs ��ATs ��

2.3.2 Compression process - Stage 1: Generating correlation

As described thoroughly in a previous section, it is possible to establish corre-
lation between the orthonormal parts jAlii ; jAsii of jAinii and the values of
an auxiliary qubit with the use of a Hadamard Operator and proper projections
over that qubit. In this case, such operations are extended over two auxiliary
qubits, thus requiring the assignment of each auxiliary qubit to its respective
set of Hilbert spaces regarding the double-wedge ket vectors. Despite the fact
that it is binding for the entirety of this algorithm, the choice concerning the
correlated sets of Hilbert spaces is arbitrary and di¤erent choices yield the same
results. For the purposes of this thesis, the auxiliary qubit 1 corresponds to the
bipartite system

��ATin�� (position 3) and the auxiliary qubit 2 corresponds to the
bipartite system jAinii (position 4). These results involve the composite corre-
lation between pairs of the orthonormal components jAlii ; jAsii ;

��ATl �� ; ��ATs ��
of jAinii,

��ATin�� and the values of the auxiliary qubits fj0i ; j1ig.
At �rst, the action of the Hadamard Operator occurs over the �rst two

Hilbert spaces, corresponding to the two auxiliary qubits. This application
serves as a means to build-up the correlation mentioned above.
(H 
H 
 I
 I) jX0i = (H 
H 
 I
 I)(j0i 
 j0i 


��ATin��
 jAinii)
(H 
H 
 I
 I) jX0i = H j0i 
H j0i 
 I

��ATin��
 I jAinii
(H 
H 
 I
 I) jX0i = ( j0i+j1ip

2
)
 ( j0i+j1ip

2
)


��ATin��
 jAinii
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(H 
H 
 I
 I) jX0i = 1
2 [(j0i+ j1i)
 (j0i+ j1i)


��ATin��
 jAinii]
(H 
H 
 I
 I) jX0i =

1

2
(j00i 


��ATin��
 jAinii+ j01i 
 ��ATin��
 jAinii+
+ j10i 


��ATin��
 jAinii+ j11i 
 ��ATin��
 jAinii)
The quantum circuit corresponding to this application is shown below:

Building-up correlation

Up to this point, the quantum state includes the superposition states con-
sisting of pairs of

��ATin�� ; jAinii. As mentioned in a previous section, the ap-
plication of a "controlled projection" can establish the correlation between the
orthonormal parts of jAinii to the respective auxiliary qubit. In this case, the
"controlled projection" is extended, while the results of its application include
the correlation between pairs of the orthonormal components of jAinii ;

��ATin��
to the bipartite system of the auxiliary qubits.
Recall that the orthogonal decomposition of the quantum systems jAii ;

��AT ��
is based on the distinction between large and small singular values in sets,
which is attributed to the use of the oracle boolean function f . Since their
respective matrix representations have the same singular values, it is obvious
that the partitioning process results in the same sets xlarge and xsmall. Due to
the fact that there is no prior knowldge about the actual "large" and "small"
components generated by the oracle function, each of the orthonormal compo-
nents jAlii ; jAsii ;

��ATl �� ; ��ATs �� may as well be assigned to one of the abstract
double-wedge ket vectors j largeii and jsmallii, depending on the set of the sin-
gular values they contain. With this notation in mind, the following matrices
are de�ned:
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Plarge = j largeii hhlarge j (21)

and

Psmall = jsmallii hhsmall j (22)

Provided that the double-wedge kets j largeii and jsmallii correspond to
normalized state vectors, it can be seen that these matrices are indeed Her-
mitian (P ylarge = Plarge; P

y
small = Psmall) and P 2large = Plarge; P

2
small = Psmall,

thus being in fact projector operators. The form of the actual large and small
projectors depends on the matrix, whose singular values are split by the ora-
cle function f in each case. Nevertheless, the use of the j largeii and jsmallii
notations provides the following general results:

Plarge jAinii = cl jAlii (23)

Psmall jAinii = cs jAsii (24)

Plarge
��ATin�� = cl

��ATl �� (25)

Psmall
��ATin�� = cs

��ATs �� (26)

Taking the "controlled" projection process Psel presented earlier into account
(eq. 19), the "controlled" projection of this scenario has the following form:

Psel � P0 
 P0 
 Plarge 
 Plarge + P0 
 P1 
 Plarge 
 Psmall+
+ P1 
 P0 
 Psmall 
 Plarge + P1 
 P1 
 Psmall 
 Psmall (27)

The application of this "controlled" projection may as well be split into
two separate projections, in accordance with the correlated Hilbert spaces of
the composite system (here 1 � 3 and 2 � 4). So, the following "controlled"
sub-projections are de�ned:

P13 � P0 
 I
 Plarge 
 I+P1 
 I
 Psmall 
 I (28)

P24 � I
 P0 
 I
 Plarge + I
 P1 
 I
 Psmall (29)

with

Psel = P13 � P24 = P24 � P13 (30)

At �rst, the application of the "controlled projection" over the Hilbert spaces
1� 3 results in (Appendix D - Proposition 4 ):
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P13(H
H
I
I) jX0i =
1

2
(cl j00i


��ATl ��
jAinii+cl j01i
��ATl ��
jAinii+
+ cs j10i 


��ATs ��
 jAinii+ cs j11i 
 ��ATs ��
 jAinii) (31)

In addition, the application of the other "controlled" sub-projection over
the Hilbert spaces 2 � 4 of the previous state is shown below (Appendix D -
Proposition 5 ):

jX1i =
1

2
(c2l j00i 


��ATl ��
 jAlii+ clcs j10i 
 ��ATs ��
 jAlii+
+ clcs j01i 


��ATl ��
 jAsii+ c2s j11i 
 ��ATs ��
 jAsii) (32)

This quantum process has the following circuit representation:

Controlled projection

With reference to the Bell State correlation mechanism mentioned earlier,
the corresponding quantum circuit of this extended correlating process is the
following:
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Extended correlating process

2.3.3 Compression process - Stage 2: Hadamard product

So far, a correlation between pairs of the orthonormal components of jAinii,��ATin�� and the values of the auxiliary qubits has been established in the quan-
tum state jX1i.
After further processing, the state jX1i may be expressed as:

jX1i =
1

2
(c2l j00i
(I
Al) j Iii
(Al
I) j Iii+clcs j10i
(I
As) j Iii
(Al
I) j Iii+

+ clcs j01i
 (I
Al) j Iii
 (As
 I) j Iii+ c2s j11i
 (I
As) j Iii
 (As
 I) j Iii)

which is equivalent to:

jX1i =
1

2
�(c2l j00i
(I
(Al
Al)
I)(j Iii
j Iii)+clcs j10i
(I
(As
Al)
I)(j Iii
j Iii)+

+clcs j01i
(I
(Al
As)
I)(j Iii
j Iii)+c2s j11i
(I
(As
As)
I)(j Iii
j Iii))

As mentioned above, there is a quantum process (called V in this thesis),
whose adjoint action Ad(V) upon a combination of matrices A 
 B results in
their Hadamard Product and the matrix P0:

Ad(V)(A
B) = (A �B)
 P0
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This quantum process is properly extended into a new one V 0 = I
Ad(V)
I,
which is suitable for application upon the combination of two bipartite quantum
systems in the form of

��AT ��
 jBii, yielding the following result:
V 0(
��AT ��
 jBii) = �� (A �B)T ��
 jP0ii

The explicit formula corresponding to the extended Hadamard Product map
V 0 is (Appendix D - Proposition 6 ):

V 0 =
n�1X
i=0

n�1X
j=0

jji hjj 
 jii hij 
 j0i hij 
 j0i hjj (33)

With the application of the quantum process I2
V 0 upon the state jX1i, the
extended process V 0 acts on the respective Hilbert spaces corresponding to the
pairs of the orthonormal components Al;s of Ain, resulting in their Hadamard
product

�� (Al;s �Al;s)T �� and the system described by jP0ii, as shown below
(Appendix D - Proposition 7 ):

jX2i =
1

2
(c2l j00i


�� (Al �Al)T ��
jP0ii+ clcs j10i
 �� (As �Al)T ��
jP0ii+
+ clcs j01i 


�� (Al �As)T ��
 jP0ii+ c2s j11i 
 �� (As �As)T ��
 jP0ii) (34)

Due to the commutative property of the Hadamard Product, it can be seen
that: (As �Al) = (Al �As))

�� (As �Al)T �� = �� (Al �As)T ��. So:
jX2i =

1

2
[c2l j00i


�� (Al �Al)T ��
jP0ii+clcs(j01i+j10i)
�� (Al �As)T ��
jP0ii+
+ c2s j11i 


�� (As �As)T ��
 jP0ii] (35)

As a result of the application of the Hadamard product map, the third set of
Hilbert spaces is now occupied by the possible Hadamard Products between the
orthonormal parts of the matrix Ain, whereas the fourth set of Hilbert spaces
includes a bipartite quantum system described by jP0ii. Since this quantum
system is a common one along the entire linear combination of components,
it may be set aside, resulting in the following equivalent expression for the
quantum state vector jX2i:

jX2i =
1

2
[c2l j00i 


�� (Al �Al)T ��+ clcs(j01i+ j10i)
 �� (Al �As)T ��+
+ c2s j11i 


�� (As �As)T ��]
 jP0ii (36)
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This quantum process has the following circuit implementation:

Elementwise multiplication

It should be mentioned that there is no guarantee that the quantum system
jX2i is a normalized one. This is attributed to the fact that the double-wedge
kets of the third set of Hilbert spaces describe completely di¤erent systems
now, without any useful property about the norm of the Hadamard Product.
Nevertheless, for the purposes of this thesis, the normalization process of the
result takes place right before the end of the next stage of the algorithm, ensuring
the validity of the output.

2.3.4 Compression process - Stage 3: Output state

Up to this point, the correlation that was initially established between pairs
of the orthonormal components of jAinii,

��ATin�� and the respective values of
the auxiliary qubits has been passed on to their respective Hadamard Prod-
ucts. This stage involves the assessment of the contribution of each Hadamard
Product to the entropy of the composite system, allowing the omission of com-
ponents whose contribution seems insigni�cant. In this way, the "lion�s share"
of the entanglement is preserved, while compressing the entire system in terms
of dimensional reduction.
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The density matrix � of the composite quantum system jX2i is de�ned as:

� = jX2i hX2j

This quantum state spans over 6 Hilbert spaces, 2 corresponding to the aux-
illiary qubits, 2 corresponding to the bipartite system of the Hadamard Products
and 2 corresponding to jP0ii. At this point, the omission of the last subsystem
regarding jP0ii takes place with the use of partial tracing, thus focusing more on
the study of the remaining components that contain the processed information
about the initial image Ain. The application of the proper partial trace over
the density matrix � is:

Tr5;6(�) = Tr5;6(jX2i hX2j)

This reduced density matrix Tr5;6(�) describes the correlated system consist-
ing of the auxiliary qubits and the Hadamard Product systems

�� (Al �Al)T ��,�� (Al �As)T ��, �� (As �As)T ��. However, from a rather abstract point of view,
the system described by

�� (Al �Al)T �� is relatively more interesting than the
rest, since it may as well be considered as the optimum approximation of the
composite system jX2i in the same way that the matrix Al is to the initial ma-
trix Ain. Therefore, for the purposes of this thesis, it is assumed that the "lion�s
share" of the quantum information of the composite system is contained in the
respective component of the system

�� (Al �Al)T ��, which allows the omission of
the rest components. This is feasible with the direct application of the proper
projection regarding the auxiliary qubits upon the reduced density matrix, as
shown below:

(P0 
 P0 
 I
 I)Tr5;6(�)(P0 
 P0 
 I
 I)y

The result of this process is the following density matrix:

1

4
c4l (j00i h00j 


�� (Al �Al)T �� 

(Al �Al)T ��)
This density matrix corresponds to bipartite quantum system spanning over

4 Hilbert spaces, 2 regarding the auxiliary qubits and 2 regarding the double-
wedge system

�� (Al �Al)T ��. Like the subsystem jP0ii before, the �rst one
corresponding to the auxiliary bipartite system serves no purpose whatsoever
and it is bound to be omitted, since there is no need for correlation between the
various components of the quantum system jAii anymore. The result of this
action is the following reduced density matrix:

�0 = Tr1;2(
1
4c
4
l (j00i h00j 


�� (Al �Al)T �� 

(Al �Al)T ��))
�0 = 1

4c
4
l � Tr1;2(j00i h00j 


�� (Al �Al)T �� 

(Al �Al)T ��)
�0 = 1

4c
4
l � Tr(j00i h00j) �

�� (Al �Al)T �� 

(Al �Al)T ��
�0 = 1

4c
4
l � h00j j00i �

�� (Al �Al)T �� 

(Al �Al)T ��
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�0 = 1
4c
4
l � 1 �

�� (Al �Al)T �� 

(Al �Al)T ��
�0 =

1

4
c4l
�� (Al �Al)T �� 

(Al �Al)T ��

It should be mentioned that the bipartite quantum system described by this
density matrix is also not normalized. The normalization of this state implies
that its density matrix meets the requirement Tr(�0) = 1 as an equivalent
interpretation of the completeness theorem. So, the trace of this density matrix
is:

Tr(�0) = Tr( 14c
4
l

�� (Al �Al)T �� 

(Al �Al)T ��)
Tr(�0) = 1

4c
4
l � Tr1;2(

�� (Al �Al)T �� 

(Al �Al)T ��)
Tr(�0) = 1

4c
4
l � Tr[(Al �Al)T � ((Al �Al)T )y]

Tr(�0) = 1
4c
4
l � Tr[(Al �Al)T � ((Al �Al)T )T ] (since (Al �Al)T is real)

Tr(�0) = 1
4c
4
l � Tr[(Al �Al)T � (Al �Al)]

Tr(�0) =
1

4
c4l �

(Al �Al)T2F
In order for Tr(�0) = 1, then �0 becomes �out:
�out =

�0

Tr(�0)

�out =
1
4 c

4
l j (Al�Al)

T iihh(Al�Al)
T j

1
4 c

4
l �k(Al�Al)T k2F

�out =

�� (Al �Al)T �� 

(Al �Al)T ��
k(Al �Al)T k2F

This density matrix corresponds to the normalized quantum system:

jAoutii =
�� (Al �Al)T ��
k(Al �Al)T kF

This bipartite quantum system is considered to be the output of this algo-
rithm after one iteration. It should be noted that the rank r_out of the matrix
(Al �Al)T is bounded between 1 and k2 , since:

rank(A�B) � rank(A)rank(B)) rank(Al�Al) � rank(Al)rank(Al)) r_out � k2

Provided that k2 < r_in, with r_in being the rank of the initial matrix
Ain, the dimensional reduction between the Schmidt decompositions of jAinii
and jAoutii is obvious. A simple table schematic regarding the correspond-
ing Singular Value Decompositions Ain = UinDinV

T
in, Aout = UoutDoutV

T
out is

presented below (considering dimension n):
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jAinii =
�
log2 n qubits

�
Uin

26666664
�1 0 0 0 0 0
0 ::: 0 0 0 0
0 0 ::: 0 0 0
0 0 0 �r_in 0 0
0 0 0 0 0::: 0
0 0 0 0 0 :::0

37777775V
T
in

0@ log2 n
qubits

1A

jAoutii =
�
log2 n qubits

�
Uout

26666664
�1 0 0 0 0 0
0 ::: 0 0 0 0
0 0 �r_out 0 0 0
0 0 0 0 0 0
0 0 0 0 0::: 0
0 0 0 0 0 :::0

37777775V
T
out

0@ log2 n
qubits

1A

2.3.5 Compression process - Iterations

This compression process may be applied iteratively to the input image Ain.
In particular, each iteration results in an output quantum state vector in the
form of jAoutii =

�� ((Al � ::: �Al)l �Al)T �� , which, in turn, becomes the input
quantum system to the next iteration of the algorithm as:

jX0i = j0i 
 j0i 
 jAoutii 
 jAii

The physical implementation of an iterative quantum algorithm may be split
into consecutive levels, each corresponding to an iteration of the algorithm, as
shown below:

Iterative quantum circuit
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It should be mentioned that the oracle value k chosen remains �xed for every
iteration. The iterative process of this �gure has the following stages:

Iteration #1:
!At �rst, the algorithm has two inputs, jAinii and

��ATin��. Along with
two auxiliary qubits set to j0i,they form the quantum state jX0i = j0i 
 j0i 
��ATin��
 jAinii.
!Using a boolean function with the parameter k, an oracle decomposes each

of these inputs orthonormally into jAlii,jAsii and
��ATl ��,��ATs �� respectively.

A "controlled projective" process then establishes correlation between the these
components and the auxiliary qubits.
!The application of the process V 0 induces the Hadamard Products between

the orthonormal terms.
! During the output stage, the subsystem containing the Hadamard Prod-

uct term
�� (Al �Al)T ��| {z } is extracted.

Iteration #2:
!This time, the inputs of the algorithm are jAinii and

�� (Al �Al)T ��| {z }. Along
with two auxilliary qubits set to j0i,they form the quantum state jX0i = j0i 

j0i 


�� (Al �Al)T ��| {z }
 jAinii.
!Using a boolean function with the parameter k, an oracle decomposes each

of these inputs orthonormally into jAlii,jAsii and
�� (Al �Al)Tl ��,�� (Al �Al)Ts ��

respectively. A "controlled projective" process then establishes correlation be-
tween the these components and the auxiliary qubits.
!The application of the process V 0 induces the Hadamard Products between

the orthonormal terms.
! During the output stage, the subsystem containing the Hadamard Prod-

uct term
�� ((Al �Al)l �Al)T ��| {z }| {z } is extracted. It can be seen that the matrix

((Al �Al)l �Al)T is formed as the Hadamard product of the "large" component
of Al � Al, whose rank is equal to k due to the oracle boolean function f , and
the "large" component Al, also of rank k.

In general, the output of this algorithm after a number of iterations is com-
posed of the components shown below:
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Output components

For example, the outputs of this algorithm for the �rst 3 iterations are:
jAoutii1 = (Al �Al)T
jAoutii2 = ((Al �Al)l �Al)T
jAoutii3 = ((((Al �Al)l �Al))l �Al)T

It should be mentioned that this iterative feature of the algorithm causes a
great demand in quantum information resources (such as auxiliary qubits).

45



2.4 Results

After extensive experimentation using the MATLAB interface, a few notable
results are presented below:

No.1: "Lena"

The INITIAL image
Dimensions : 512x512

Rank : 507
Entropy : 0.382491

Lena->INITIAL image

The LRA image for k = 10
Rank : 10

Entropy : 0.176076
Entropy Percentage of initial : 46.03%

Lena->LRA (k=10)
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a BETTER image OPTIMUM image
Rank : 100 Rank : 100
Iterations : 3 Iterations : 8

Entropy : 0.319821 Entropy : 0.340687
Entropy Percentage of initial : 83.62% Entropy Percentage of initial : 89.07%

Lena->BETTER image Lena->OPTIMUM image

The graphs for the entropy percentages with respect to the initial system
and the ranks of output vs the number of iterations for the value k = 10 are
shown below:

Lena->Entropy Graph (k=10) Lena->Output RANKS (k=10)
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No.2: "Schroedinger"

The INITIAL image
Dimensions : 256x256

Rank : 256
Entropy : 0.299594

Schroedinger->INITIAL image

The LRA image for k = 6 The LRA image for k = 7
Rank : 6 Rank : 7

Entropy : 0.142830 Entropy : 0.156270
Entropy Percentage of initial : 47.67% Entropy Percentage of initial : 52.16%

Schroedinger->LRA (k=6) Schroedinger->LRA (k=7)
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a BETTER image (k = 6) ... a BETTER image (k = 7) ...
Rank : 36 Rank : 49
Iterations : 2 Iterations : 2

Entropy : 0.244263 Entropy : 0.263798
Entropy Percentage of initial : 81.53% Entropy Percentage of initial : 88.05%

Schroedinger->BETTER(6) Schroedinger->BETTER(7)

The graphs for the entropy percentages with respect to the initial system vs
the number of iterations for the values k = 6, k = 7 are shown below:

Schroedinger->Entropy Graph (k=6) Schroedinger->Entropy Graph (k=7)
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Some worthmentioning comments regarding the abovementioned results are
the following:

!The rank of any output system jAoutii (no matter the number of itera-
tions) is limited by the value of k. Since any output matrix ((Al � :::�Al)l �Al)T
is formed as the Hadamard product of the "large" component (:::(Al � :::)l �Al)l
(whose rank is equal to k due to the oracle boolean function) and the "large"
component Al (also of rank k), the upper bound for its rank is set to k2, due to
the property regarding the Hadamard Product:

rank(A �B) � rank(A)rank(B)

!While every image Ain is considered to be the bipartite quantum system
jAinii, the entropy in question is calculated with respect to its �rst subsystem,
with the use of the reduced density matrix �1. The speci�c formula used for
the purposes of this thesis is the Rényi Entropy of order a = 1

2 . The reason for
the assignment of this value to the order a becomes clear in the proof of the
following equation.
Consider the Singular Value Decomposition of a real matrix A describing a

bipartite quantum system as A = UADAV
T
A , with UA, VA real orthogonal and

DA diagonal matrices. The Rényi Entropy of order a = 1
2 with respect to its

�rst subsystem is (Appendix D - Proposition 8 ):

SR(�1) = 2 logn(Tr(DA)) = 2 logn(
rX
i=1

�i) (37)

with r being the rank of matrix A and �i its (normalized) singular values.
This speci�c formula is used for the calculation of the entropy of the initial,the
LRA and every output quantum systems of this algorithm. The base of the
logarithm used in the entropy formula is n (the dimension of the image Ain),
thus limiting the value of the Rényi Entropy between 0 and 1.

!The upper bound for the entropy of a quantum system of dimension n,
composed with just k singular values is equal to logn k, in terms of any Rényi
entropy of order a. In general, the entropy of any rank-k approximation of a
quantum system is bounded by (Appendix D - Proposition 9 ):

0 � SR(�1) � logn k (38)

!The goal for the optimum entropy restoration is achieved at the expense of
image quality. This is attributed to the iterative application of the Hadamard
Product (aka elementwise multiplication) upon the respective Low Rank Ap-
proximation components of (Al � ::: � Al)l and Al, while preserving the unit
norm of the result in the process. The more iterations are needed, the greater
the gap between "high" and "low" pixel values becomes. Consider the following
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3D representations of intensity (z axis) versus image position (x,y) of the Lena
images shown above:

Lena->LRA 3D

Lena->BETTER 3D Lena->OPTIMUM 3D

The Hadamard Product application results in more pixels being considered
as black, with only the relatively high value pixels remaining intact. This way,
the fewer visible edges are preserved and so, the more distorted the output image
becomes.
It should be mentioned that the pixel value range of the output image Aout

is properly adjusted to that of the initial image A using a custom MATLAB
function.

!The red highlighted areas in the entropy graphs represent the entropy
percentage values between those of the Low Rank Approximated system jAlii
(black lower bound) and the initial image (always 100% - upper bound). It
can be seen that, as the rank k of the LRA system increases, the width of
this band decreases (see Schroedinger->Entropy Graphs). This is attributed
to the increase of the entropy of the LRA system as its rank rises, gradually
"bridging the gap" with the entropy of the initial system and practically "closing
it" after a certain rank, depending on the image properties and singular value
distribution. As a result, the Hadamard Product map as well as its iterative
application become more redundant as the value k rises, since the "lion�s share"
of the initial entropy is already restored in the approximated quantum system
jAlii.
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3 Conclusions

In conclusion, it is feasible to compress most of the amount of entanglement
contained in a bipartite quantum system in fewer components of its Schmidt
decomposition. In the special cases of digital grayscale images Ain being the ma-
trix representation of this bipartite system, the proposed algorithm compresses
the entropy of the system jAinii, while preserving its main image characteristics
as well. This property is attributed to two factors:
- the Schmidt coe¢ cients of a given system jAinii corresponds to the Sin-

gular values of its respective image matrix Ain. So, the quality of the Low
Rank Approximation of the image Al is analogous to the quantity of entropy
contained in the respective approximation of the initial system jAlii for a given
rank k.
- the process used iteratively on the grounds of entropy restoration is the

Hadamard Product. This type of product preserves a substantial amount of
the initial image details, which is proportionate to the number of its iterative
applications.
Based on the given results, the parameter k, corresponding to the amount of

Schmidt coe¢ cients of the approximated system jAlii, is of paramount impor-
tance to the performance of this algorithm, with a trade-o¤ constantly looming
between the image quality of the output and the probability of needing a so-
lution for a better preservation of the entanglement after a few iterations. In
particular, small values for k have a higher chance of yielding one or more bet-
ter solutions regarding the restoration of the initial entropy, with the quality of
the respective images being rather poor. On the other hand, large values for k
results in fewer chances for a need of a better solution entropy-wise, but with a
respective image representation of much greater standards. In fact, the quality
of the output image depends greatly on the number of consecutive applications
(iterations) of the Hadamard Product ((Al � ::: �Al)l �Al)T needed for a better
(or the optimum) ratio of entropy preservation.
It should be mentioned that there is no guarantee for a better solution for

every possible value k for any given image Ain of rank r. While k < r, the
rank of the output bounded by k2 may actually attain an exponentially higher
value, even r, thus violating the dimensional reduction criterion of this com-
pression algorithm. As a consequence, only relatively small values for k << r
are recommended, so that k2 < r as well.
Still, the application of this algorithm may be extended to systems described

by images of random dimensions. Such double-wedge kets may be the entangling
factor between two sets of random number of qubits. Also, the order a of the
Rényi Entropy may be �xed (a = 1

2 ) for the purposes of this thesis, but it might
as well be a contributing factor to the entropy restoration scheme.
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Appendix A: The Hadamard product

The Hadamard Product is simply the entrywise multiplication of two or
more matrices, according to the following de�nition:
"Let A and B be m � n matrices with entries in C. The Hadamard product

of A and B is de�ned as (A �B)ij = AijBij for all 1 � i � m, 1 � j � n."
The Hadamard Product inherits the same bene�ts (and restrictions) of mul-

tiplication in C [15]. It is obvious that the matrices involved in a Hadamard
Product need to be the same size, but not necessarily square.

Some useful basic properties of the Hadamard Product are the following:

!"Let A and B be m � n matrices with entries in C. Then A �B = B �A."
Proof: This follows directly from the fact that the multiplication in C is

commutative. For every element of the matrices, it can be seen that:
(A �B)ij = AijBij = BijAij = (B �A)ij , therefore A �B = B �A.

!"The identity matrix under Hadamard Product is the m � n matrix will
all entries equal to 1, denoted as Jmn. That is [Jmn]ij = 1 for all 1 � i � m,
1 � j � n."
Proof: Take any m �n matrix with entries in C. Then [Jmn �A]ij = [Jmn]ij �

[A]ij = 1 � [A]ij = [A]ij , and so Jmn �A = A. Due to the commutative property
of the Hadamard Product, Jmn �A = A � Jmn = A. Therefore, the matrix Jmn
is de�ned as the identity matrix under the Hadamard Product.

!" Let A be anm�n matrix. Then A has a Hadamard inverse, denoted A0
, if

and only if Aij 6= 0 for all 1 � i � m, 1 � j � n. Furthermore, A
0

ij = (Aij)
�1."

Proof: Let A be an m �n matrix with Hadamard inverse A0. This means that
A � A0 = Jmn. That is [A � A0]ij = [A]ij � [A0]ij = 1) [A0]ij =

1
[A]ij

= (Aij)
�1,

which is only possible when all entries of A are invertible. In other words,
[A]ij 6= 0 for all 1 � i � m, 1 � j � n.
Also, take any m � n matrix A such that [A]ij 6= 0 for all 1 � i � m,

1 � j � n. Then, there exists (Aij)�1 for all entries i,j. This implies that
Aij � (Aij)�1 = (Aij)�1 � Aij = 1, and so A has a Hadamard inverse A0 de�ned
by A

0

ij = (Aij)
�1 for all i,j.

!(Linearity)"Let a 2 C and A,B,C are m �n matrices. Then C � (A+B) =
C �A+ C �B and a(A �B) = (aA) �B = A � (aB)"
Proof:
As for the �rst part:
[C � (A+B)]ij = [C]ij [A+B]ij
[C � (A+B)]ij = [C]ij([A]ij + [B]ij)
[C � (A+B)]ij = [C]ij [A]ij + [C]ij [B]ij
[C � (A+B)]ij = [C �A]ij + [C �B]ij
[C � (A+B)]ij = [C �A+ C �B]ij
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As for the second part:
[a(A �B)]ij = a[A �B]ij
[a(A �B)]ij = a[A]ij [B]ij
[a(A �B)]ij = [aA]ij [B]ij
[a(A �B)]ij = [aA �B]ij
and
[a(A �B)]ij = a[A]ij [B]ij
[a(A �B)]ij = [A]ija[B]ij
[a(A �B)]ij = [A]ij [aB]ij
[a(A �B)]ij = [A � aB]ij

!"LetA andB be square matrices of size n. Then rank(A�B) � rank(A)rank(B)"
Proof:
For the purposes of this proof, the rank-one decompositions of A and B are

required. Suppose A has rank �1 with singular values �k, 1 � k � n, and B
has rank �2 with singular values �l, 1 � l � n. Then, according to the Singular
Value Decomposition:

A =

�1X
k=1

�kxky
T
k and B =

�2X
l=1

�lvlw
T
l

where xk,vl the left singular vectors and yk,wl the right singular vectors.
Then:
[A �B]ij = [A]ij [B]ij

[A �B]ij = [
�1X
k=1

�kxky
T
k ]ij [

�2X
l=1

�lvlw
T
l ]ij

[A �B]ij =
�1X
k=1

�2X
l=1

[�kxky
T
k ]ij [�lvlw

T
l ]ij

[A �B]ij =
�1X
k=1

�2X
l=1

[((�kxk) � (�lvl))(yk � wl)T ]ij

[A �B]ij = [
�1X
k=1

�2X
l=1

((�kxk) � (�lvl))(yk � wl)T ]ij

So, A �B has at most rank �1�2 = rank(A)rank(B).
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Appendix B: The Singular value decomposition

The Singular Value Decomposition (SVD) is matrix decomposition that was
de�ned many times from independent mathematicians through the ages. It was
�nally published in its latest form by Eugenio Beltrami in 1873, Gamille Jordan
in 1875, J.Sylvester in 1889, L. Autonne in 1913 and C. Eckart and G. Young
in 1936. The de�nition proposed by C.D.Meyer is the following [14]:

"For every matrix A 2 Cm�n of order r, there are unitary matrices U of
dimension m �m, V of dimension n �n and real diagonal matrix D of dimension
r � r, with D = diag(�1; �2; :::; �r�1; �r) such that

A = U

�
Drxr 0
0 0

�
V y

with �1 � �2 � ::: � �r�1 � �r."

The values �i are called the singular values of A and are real non-zero values.
Also, the column vectors of the unitary matrices U ,V are called left- and right-
singular vectors respectively.

Low rank matrix approximation

Let the singular value decomposition of a random matrix A be:

A = U

�
Drxr 0
0 0

�
V y

with Drxr being the diagonal matrix containing the singular values �i in a
descending order along its main diagonal

Drxr =

266664
�1 0 ::: 0 0
0 �2 ::: 0 0
::: ::: ::: ::: :::
0 0 ::: �r�1 0
0 0 ::: 0 �r

377775
Theorem: The matrix A may be represented as the sum of r rank-one ma-

trices, as shown below:

A =
rX
j=1

�jujv
y
j

with the vectors uj ,vj being the column vectors of the unitary matrices U ,V
respectively. This theorem implies that every matrix A may be approximated
by the sum of rank-one matrices of equal dimension.

Theorem: For every 0 � k � r , the following matrix Ak is de�ned:
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Ak =
kX
j=1

�jujv
y
j

This approximation is called Low Rank Matrix Approximation. So, this
process leads to a matrix Ak, which is a matrix of rank k � r. As it turns out,
every other matrix B of rank k has a greater L2�norm di¤erence from A than
that between Ak and A, meaning that:

kA�Akk2 < kA�Bk2

A useful property is that the L2�norm of the di¤erence between A and Ak
is equal to the k + 1-th singular value of A, as:

kA�Akk2 = �k+1

In the special case that k = r = minfm;ng, then �k+1 = 0, leading to
kA�Akk2 = �k+1 = 0. In other words, if the approximation process takes into
account every rank-one component matrix of A, then the matrix Ak is identical
to the matrix A, resulting in a perfect approximation.

Several theorems regarding the Singular Value Decomposition in general are
presented below, some of which are accompanied by their proof.

Theorem:
"The non-zero singular values of a matrix A are the sqaure roots of the

non-zero eigenvalues of the matrices AAy and AyA."

Proof:
Let the singular value decomposition of A be A = UDV y, with D having

the singular values of A along its main diagonal. Then:
AAy = UDV y(UDV y)y

AAy = UDV yV DyUy

AAy = UDDyUy

However, the matrix D is a real diagonal matrix, so:

AAy = UD2Uy

This way, the unitary U resembles a similarity transformation, thus the
eigenvalues of AAy are included in D2. If �i are the eigenvalues of AAy, then

�2i = �i =) �i =
p
�i
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Theorem:
"The rank r of a matrix is equal to the number of its non-zero singular

values."

Proof:
It is known that the rank of a diagonal matrix is equal to the number of

its non-zero elements. Regarding the singular value decomposition of A into
A = UDV y, it can be said that the matrices U ,V are unitary, thus being full
rank. The matrix D is diagonal, so the rank of A is the same with the rank of
the matrix D, which is equal to the number of its non-zero singular values.

Theorem:
"The Frobenius norm of a matrix A is equal to the square root of the sum

of the squared singular values"

kAkF =
q
�21 + �

2
2 + :::+ �

2
r

Proof:
Let the singular value decomposition of A be A = UDV y.Then, its Frobenius

norm is equal to:

kAkF =
UDV y

F
= kDkF ;

since the Frobenius norm is similarity invariant. So:

kAkF = kDkF =
q
�21 + �

2
2 + :::+ �

2
r

Theorem:
"For every k with 0 � k � r, the Frobenius norm of the di¤erence of the

matrices A and Ak is equal to the square root of the sum of the squared singular
values �i for i � k + 1. This means that:

kA�AkkF =
q
�2k+1 + �

2
k+2 + :::+ �

2
r

Proof:
Let the singular value decomposition of A be A = UDV y. Then, according

to the Low Rank Matrix Approximation theorem, the matrices A and Ak may
be expressed as:

A =
rX
j=1

�jujv
y
j and Ak =

kX
j=1

�jujv
y
j
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with

A�Ak =
rX
j=1

�jujv
y
j �

kX
j=1

�jujv
y
j =

rX
j=k+1

�jujv
y
j

So, taking the previous theorem into account, the Frobenius norm of the
di¤erence between the matrices A and Ak is equal to:

kA�AkkF =
q
�2k+1 + �

2
k+2 + :::+ �

2
r

Theorem:
" For every matrix A 2 CNxN , the absolute value of its determinant is equal

to the product of its singular values."

jdet(A)j =
NY
j=1

�j

Proof:
Let the singular value decomposition of A be A = UDV y. Then its deter-

minant can be expressed as:
jdet(A)j =

��det(UDV y)�� = jdet(U)j � jdet(D)j � ��det(V y)��
Since unitary matrices have determinants equal to one, it can be seen that:

jdet(A)j = jdet(D)j =
NY
j=1

�j

Theorem:
" Every matrix A 2 CMxN has a singular value decomposition. The singular

values �i are uniquely de�ned."
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Applications of SVD

The singular value decomposition, along with the low rank matrix approxi-
mation theorem, are considered mathematical rules of paramount importance,
that may be put to a variety of uses. The two basic features that make them so
important include the relatively easy calculation of the singular value decompo-
sition as well as the trimming of the smaller singular values in low rank matrix
approximation, while still maintaining the best possible rank k matrix. Besides
their contribution on the theoretical �eld, such properties become extremely
useful when dealing with matrices of higher dimensions (e.g. dimensions being
in the thousands).
The solution of systems of equations, search engines, data compression-image

processing are just a few of the many applications of SVD and Low Rank Ap-
proximation. In particular, the application concerning the data compression-
image processing is analyzed below:

Suppose that there is an image A that needs compression. It is known that
every image A may be expressed as an m � n matrix, whose element values are
determined in terms of the respective pixels forming the image. So, in a way, an
image is nothing more than a data matrix. The elements of this matrix are real
numbers and their values depend on properties of the pixels themselves, such as
brightness or color. In the special case of a grayscale image, the matrix element
values range from 0 (black) to 255(white), if that image is encoded according
to the rule of "8-bit-per-pixel" (leading to 28 = 256 variations of gray).
It can be seen that such a matrix needs m � n real values for its complete

de�nition. However, if its dimension become even greater, the number m � n
becomes huge, resulting in the storage and processing of such information being
too di¢ cult. The goal of the compression is the approximation of such matrices
with fewer elements than m � n, thus making its storage and processing much
easier.

Let A be a data matrix of dimensions m �n, with the following singular value
decomposition:

A = UDV y

with the matrix D including all of the singular values of A, even the zero
ones as shown below:

D = diag(�1; �2; :::; �r�1; �r; 0; :::; 0)

Then, according to the Low Rank Approximation theorem, the matrix A
may be approximated by the matrix Ak, that is the sum of rank-one matrices,
as shown below:

A =
rX
j=1

�jujv
y
j and Ak =

kX
j=1

�jujv
y
j
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with 1 � k � r .
It can be seen that the values needed for this approximation include k sin-

gular values and k + k = 2k singular vectors. So, recalling that every singular
vector involved in a rank-one matrix has m and n values, it is obvious that
km + kn + k = (m + n + 1)k values are required for the representation of the
low rank approximation Ak. It is quite clear that the number (m + n + 1)k is
less than m � n, with the di¤erence rising, depending on the choice for k.
While this is a lossy approximation of A, the approximation error is de�ned

as the relative information lost during the process. In particular, the following
matrix is de�ned:

Sb =
rX

j=k+1

�jujv
y
j

This matrix represents the information lost to the low rank approximation
of a matrix. So, an relative error variable err is de�ned as shown [16]:

err =
kSbkF
kAkF

=

vuuuuuuut
rX

j=k+1

�2j

rX
i=1

�2i

So, depending on the margin for error of a speci�c application, the optimum
value for k is chosen.
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Appendix C: Entropy-optimum low rank approximation

For the purposes of this section, let A be a real matrix of dimension n = 2x

with singular value decomposition A = UDV T . The reasons for such arbritrary
requirements include the consideration of this matrix A as a digital grayscale
image (with each element corresponding to a variation of gray) as well as the
assumption that this digital image describes a bipartite quantum system, in
terms of a double-wedge state vector jAii.
It is a well known fact that the Low Rank Matrix Approximation Ak of

any matrix A is considered to be the best approximation of A of rank k, with
reference to the norm of the di¤erence between A and Ak kA�Akk. However,
nothing can be deduced about the entropy of the bipartite quantum system,
described by the double-wedge ket jAii. In the special case of the rank of the
approximation being k = 2, there is a quantum algorithm that increases the
entropy of the quantum system jAkii with the iterative application of a certain
non-local process. Its goal is the increase of the entropy restoration ratio of the
approximation as close to 1 as possible. That is why this algorithm results in
the entropy-optimum low rank matrix approximation jAoptii.
Let the low rank matrix approximation of the matrix A be A2 = UD2V

T =
2X
i=1

�iuiv
T
i . This matrix has rank k = 2. For such a matrix to correspond to the

bipartite quantum system jA2ii, its normalization is required, as shown below:

kjA2iik2 = kA2kF = 1 =)

vuut 2X
i=1

�i = 1 =) �21 + �
2
2 = 1

Such values for �1, �2 may as well be expressed in terms of sinusoidal func-
tions, since �21 + �22 = 1 = cos2(�) + sin2(�) for every � 2 [0; 2�). In particu-
lar, since the prerequisite �1 � �2 stands, it is de�ned that �1 � cos(�) and
�2 � sin(�), with � 2 (0; �4 ], where cos(�) > sin(�) in that value range. So, the
bipartite state vector jA2ii may be written as:
jA2ii =

��UD2V
T
��

jA2ii = (U 
 V ) jD2ii

jA2ii = (U 
 V )

����������

266664
cos(�) 0 0 ::: 0
0 sin(�) 0 ::: 0
0 0 0 ::: 0
::: ::: ::: ::: :::
0 0 0 ::: 0

377775
++

It turns out that the amount of entanglement included in a quantum system
depends on the distribution of its singular values. In particular, the more it
resembles the uniform distribution, the higher the level of "uncertainty" of the
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system rises, thus the greater its entropy becomes. Using the above representa-
tion for the quantum system jA2ii, it can be seen that the increase of the argu-
ment � of the sinusoidal function , up to �0 = �

4 , causes the shrinking of the �rst
singular value �1 � cos(�) and the increase of the second one �2 � sin(�), while
preserving the various initial restrictions such as �21 + �22 = 1 =) kA2kF = 1
and �1 � �2. In this way, the distribution of the two singular values resembles
the uniform one even more, which leads to the increase in the entropy of the
quantum system.

So, for a given angle �0, the following process may be applied to the system
jA2ii,in order to increase its entropy:

Ushift_gen = (U
V )(cos(�0)I
2 log2 n�sin(�0)(Z
I
2 log2 n�1)X
2 log2 n)(UT
V T )

with n being the dimension of the square matrix A (n = 2x). It is obvious
that this non-local process is hermitian, but not unitary.

The application of this process is shown below, for the special case of n = 2:
Ushift_gen jA2ii = [(U
V )(cos(�0)I
2�sin(�0)(Z
I)X
2)(UT
V T )]

��UD2V
T
��

Ushift_gen jA2ii = [(U
V )(cos(�0)I
2�sin(�0)(Z
I)X
2)]
��UTUD2V

TV
��

Ushift_gen jA2ii = [(U 
 V )(cos(�0)I
2 � sin(�0)(Z 
 I)X
2)] jD2ii
Ushift_gen jA2ii = (U
V )[cos(�0)(I
I) jD2ii�sin(�0)(Z
I)(X
X) jD2ii]

Below is the separate calculation of the components of the linear combination
seen in the above application:
cos(�0)(I
 I) jD2ii = cos(�0) j ID2Iii
cos(�0)(I
 I) jD2ii = cos(�0) jD2ii

cos(�0)(I
 I) jD2ii = cos(�0)
�����cos(�) 0

0 sin(�)

���
cos(�0)(I
 I) jD2ii =

�����cos(�0) cos(�) 0
0 cos(�0) sin(�)

���
Also:
sin(�0)(Z 
 I)(X 
X) jD2ii = sin(�0)(Z 
 I)

��XD2X
T
��

sin(�0)(Z
I)(X
X) jD2ii = sin(�0)(Z
I)
�����0 1
1 0

�
�
�
cos(�) 0
0 sin(�)

�
�
�
0 1
1 0

���
sin(�0)(Z 
 I)(X 
X) jD2ii = sin(�0)(Z 
 I)

�����sin(�) 0
0 cos(�)

���
sin(�0)(Z 
 I)(X 
X) jD2ii = sin(�0)

����Z �sin(�) 0
0 cos(�)

�
I
��

sin(�0)(Z
I)(X
X) jD2ii = sin(�0)
�����1 0
0 �1

�
�
�
sin(�) 0
0 cos(�)

�
�
�
1 0
0 1

���
sin(�0)(Z 
 I)(X 
X) jD2ii = sin(�0)

�����sin(�) 0
0 � cos(�)

���
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sin(�0)(Z 
 I)(X 
X) jD2ii =
�����sin(�0) sin(�) 0

0 � sin(�0) cos(�)

���
So:

Ushift_gen jA2ii = (U
V )[
�����cos(�0) cos(�) 0

0 cos(�0) sin(�)

���
�
�����sin(�0) sin(�) 0

0 � sin(�0) cos(�)

���
]

Ushift_gen jA2ii = (U
V )
�����cos(�0) cos(�)� sin(�0) sin(�) 0

0 cos(�0) sin(�) + sin(�0) cos(�)

���
Recall the following trigonometric identities:
cos(�0) cos(�)� sin(�0) sin(�) = cos(� + �0)
cos(�0) sin(�) + sin(�0) cos(�) = sin(� + �0)

So:

Ushift_gen jA2ii = (U 
 V
�����cos(� + �0) 0

0 sin(� + �0)

���
Ushift_gen jA2ii = (U 
 V ) jD0ii

jAoptii = Ushift_gen jA2ii =
��UD0V T

��
As result, the two singular values �1 and �2 were transformed from cos(�)

and sin(�) to cos(�+ �0) and sin(�+ �0) respectively. As long as the argument
� + �0 belongs in (0;

�
4 ], the D

0 matrix is a valid singular value matrix, with
increased entropy compared to D. It should be noted that this process may
be applied to matrices of dimensions r > 2 as well, as seen in its general form
above.
Moreover, this process is iterative, meaning that consecutive applications

of this operator upon the double-wedge ket jAkii are possible. Each iteration
brings the two singular values �1 and �2 even closer, thus increasing the entropy
of the given system. However, it should be noted that it is required that the
respective argument � + �0 be in range (0;

�
4 ] after every iteration.

This process results in the entropy-optimum low rank matrix approximation
of rank k = 2 after a number of iterations, since it causes the entropy of the
system to range between its initial approximated value and the maximum value
this system may attain. In particular, the entropy of any given system of di-
mension n and rank k = 2 is limited between 0 and logn 2 with reference to the
Rényi entropy formula (Appendix D - Proposition 9 ). So, there are two possible
scenarios regarding the entropy of the system:
� If the entropy of the initial system jAii is less than logn 2, then, after

a �nite number of iterations, this iterative process will result in the optimum
value for the entropy, with an error depending on the given value for �0 (the
smaller �0 is, the more accurately the initial entropy is approximated).
�If the entropy of the initial system jAii is greater or equal to logn 2, then

the optimum entropy value of the approximated system jAkii will be assigned
to logn 2 after a number of iterations, with the accuracy depending once again
on the value for �0.
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Appendix D: Proofs

The mathematical propositions regarding many de�ned parameters as well
as a few of the more complex properties are presented in this section. Each of
them is properly cited throughout this project. These propositions are listed
below:

�Proposition 1: Properties of the double-wedge ket notation
�Proposition 2: �1 = AAy and �2 = ATA� for system jAii (eq.2, 3)
�Proposition 3: Hadamard Product map on matrices (eq. 6)
�Proposition 4: Application of P13 upon (H 
H 
 I
 I) jX0i (eq.31)
�Proposition 5: Application of P24 upon P13(H 
H 
 I
 I) jX0i (eq.32)
�Proposition 6: Equivalent formula of V for quantum systems (eq.33)
�Proposition 7: Application of Hadamard Product map V 0 (eq.34)
�Proposition 8: Expression of Rényi Entropy of order a = 1

2 (eq.37)
�Proposition 9: Upper bound logn k for Rényi Entropy (eq.38)

Proposition 1: Properties of the double-wedge ket notation

Consider the double-wedge ket vector jAii =
d1X
i=1

d2X
j=1

Aij jii 
 jji, with d1,d2

the dimensions of matrix A and Aij 2 C. Also, let C,K be random matrices of
size n� d1 and m� d2 respectively as shown below:

C =

nX
x=1

d1X
y=1

Cxy jxi hyj, K =

mX
p=1

d2X
q=1

Kpq jpi hqj

Proof that (C 
K) jAii =
��CAKT

��
:

(C 
K) jAii = [(
nX
x=1

d1X
y=1

Cxy jxi hyj)
 (
mX
p=1

d2X
q=1

Kpq jpi hqj)](
d1X
i=1

d2X
j=1

Aij jii 
 jji)

(C 
K) jAii = (
nX
x=1

d1X
y=1

mX
p=1

d2X
q=1

CxyKpq jxi hyj 
 jpi hqj)(
d1X
i=1

d2X
j=1

Aij jii 
 jji)

(C 
K) jAii =
nX
x=1

d1X
y=1

mX
p=1

d2X
q=1

d1X
i=1

d2X
j=1

CxyKpqAij jxi hyj jii 
 jpi hqj jji

The inner product hyj jii is equal to 1 i¤ y = i 2 [1; d1]. Similarly, the inner
product hqj jji is equal to 1 i¤ q = j 2 [1; d2]. So:

64



(C 
K) jAii =
nX
x=1

mX
p=1

d1X
i=1

d2X
j=1

CxiKpjAij jxi 
 jpi

(C 
K) jAii =
nX
x=1

mX
p=1

d1X
i=1

d2X
j=1

CxiAijK
T
jp jxi 
 jpi

(C 
K) jAii =
nX
x=1

mX
p=1

d1X
i=1

Cxi � (
d2X
j=1

AijK
T
jp) jxi 
 jpi

(C 
K) jAii =
nX
x=1

mX
p=1

(

d1X
i=1

Cxi(AK
T )ip) jxi 
 jpi

(C 
K) jAii =
nX
x=1

mX
p=1

(CAKT )xp jxi 
 jpi

(C 
K) jAii =
��CAKT

��
For K = I, then (C 
 I) jAii =

��CAIT �� = jCAii .
For C = I, then (I
K) jAii =

�� IAKT
��
=
��AKT

��
.

Proof that kjAiik2 =
p
hhA j jAii =

p
Tr(AyA) = kAkF :

kjAiik2 =
p
hhA j jAii

kjAiik2 =

vuut( d1X
i=1

d2X
j=1

Aij jii 
 jji)y(
d1X
x=1

d2X
y=1

Axyjxi 
 jyi)

kjAiik2 =

vuut( d1X
i=1

d2X
j=1

A�ij hij 
 hjj)(
d1X
x=1

d2X
y=1

Axyjxi 
 jyi)

kjAiik2 =

vuut d1X
i=1

d2X
j=1

d1X
x=1

d2X
y=1

A�ijAxy hij jxi � hjj jyi

The inner product hij jxi is equal to 1 i¤ x = i 2 [1; d1]. Similarly, the inner
product hjj jyi is equal to 1 i¤ y = j 2 [1; d2]. So:

kjAiik2 =

vuut d1X
i=1

d2X
j=1

A�ijAij

kjAiik2 =

vuut d2X
j=1

(

d1X
i=1

AyjiAij)

kjAiik2 =

vuut d2X
j=1

(AyA)jj

kjAiik2 =
p
Tr(AyA)

At this point, consider the Singular Value Decomposition ofA = UDV y, with
U ,V unitary matrices and D diagonal matrix containing the singular values �i
of A.
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kjAiik2 =
p
Tr[(UDV y)y(UDV y)]

kjAiik2 =
p
Tr(V D2V y) (U unitary and D diagonal)

kjAiik2 =
p
Tr(D2) (since trace is similarity-invariant)

kjAiik2 =
sX

i

�2i = kAkF

Consider another double-wedge ket vector jBii =
d1X
k=1

d2X
l=1

Bkljki 
 jli, with

d1,d2 the dimensions of matrix B and Bkl 2 C.
Proof that hhA j jBii = Tr(AyB):

hhA j jBii = (
d1X
i=1

d2X
j=1

Aij jii 
 jji)y(
d1X
k=1

d2X
l=1

Bkljki 
 jli)

hhA j jBii = (
d1X
i=1

d2X
j=1

A�ij hij 
 hjj)(
d1X
k=1

d2X
l=1

Bkljki 
 jli)

hhA j jBii =
d1X
i=1

d2X
j=1

d1X
k=1

d2X
l=1

A�ijBkl hij jki � hjj jli

The inner product hij jki is equal to 1 i¤ k = i 2 [1; d1]. Similarly, the inner
product hjj jli is equal to 1 i¤ l = j 2 [1; d2]. So:

hhA j jBii =
d1X
i=1

d2X
j=1

A�ijBij

hhA j jBii =
d2X
j=1

(

d1X
i=1

AyjiBij)

hhA j jBii =
d2X
j=1

(AyB)jj

hhA j jBii = Tr(AyB)

Finally, the property jA+Bii = jAii+ jBii is an obvious one as:

jAii+ jBii = (
d1X
i=1

d2X
j=1

Aij jii 
 jji) + (
d1X
i=1

d2X
j=1

Bij jii 
 jji)

jAii+ jBii =
d1X
i=1

d2X
j=1

(Aij +Bij)jii 
 jji

jAii+ jBii =
d1X
i=1

d2X
j=1

(A+B)ij jii 
 jji = jA+Bii

� � � � � � � � � � � � � � � � � � � � � � � �
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Proposition 2: �1 = AAy and �2 = ATA� for system jAii (eq.2, 3)

Let the matrix A =

d1X
i=1

d2X
j=1

Aij jii hjj of dimensions d1 � d2 be the repre-

sentation of a double-wedge ket of a bipartite quantum system. Due to the
isomorphism of matrices A 2 Cd1�d2 and vectors jAii 2 Cd1�d2 :

jAii =
d1X
i=1

d2X
j=1

Aij jii 
 jji

As a result, any partial trace a of the density matrix � may be expressed as:

Tra(jAii hhA j) = Tra[(

d1X
i=1

d2X
j=1

Aij jii 
 jji)(
d1X
x=1

d2X
y=1

Axyjxi 
 jyi)y]

Tra(jAii hhA j) = Tra[(

d1X
i=1

d2X
j=1

Aij jii 
 jji)(
d1X
x=1

d2X
y=1

A�xy hxj 
 hyj)]

Tra(jAii hhA j) = Tra(

d1X
i=1

d2X
j=1

d1X
x=1

d2X
y=1

AijA
�
xyjii hxj 
 jji hyj)

So:

! a = 2
�1 = Tr2(jAii hhA j)

�1 =

d1X
i=1

d2X
j=1

d1X
x=1

d2X
y=1

AijA
�
xyjii hxj � Tr(jji hyj)

�1 =

d1X
i=1

d2X
j=1

d1X
x=1

d2X
y=1

AijA
�
xyjii hxj � hyj jji

Since y; j 2 [1; d2], the inned product hyj jji is equal to 1 i¤ j = y 2 [1; d2].
So:

�1 =

d1X
i=1

d1X
x=1

d2X
y=1

AiyA
�
xyjii hxj

�1 =

d1X
i=1

d1X
x=1

(

d2X
y=1

AiyA
y
yx)jii hxj

�1 = AAy
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! a = 1
�2 = Tr1(jAii hhA j)

�2 =

d1X
i=1

d2X
j=1

d1X
x=1

d2X
y=1

AijA
�
xy � Tr(jii hxj)
 jji hyj

�2 =

d1X
i=1

d2X
j=1

d1X
x=1

d2X
y=1

AijA
�
xy hxj jii 
 jji hyj

Since y; j 2 [1; d1], the inned product hxj jii is equal to 1 i¤ i = x 2 [1; d1].
So:

�2 =

d2X
j=1

d1X
x=1

d2X
y=1

AxjA
�
xyjji hyj

�2 =

d2X
j=1

d2X
y=1

(

d1X
x=1

ATjxA
�
xy)jji hyj

�2 = ATA�

� � � � � � � � � � � � � � � � � � � � � � � �

Proposition 3: Hadamard Product map on matrices (eq. 6)

Consider the following matrices:

A =
n�1X
x=0

n�1X
y=0

Axy jxi hyj

B =
n�1X
k=0

n�1X
l=0

Bkl jki hlj

with Axy; Bkl 2 C for every (x; y; k; l).

Recall that Ad(V) = Ad((I
 P0)Uxor). The explicit form of each operation
involved is presented below:

I
 P0 =
n�1X
q=0

jqi hqj 
 j0i h0j, since I =
n�1X
q=0

jqi hqj and P0 = j0i h0j

and

Uxor =
n�1X
i=0

n�1X
j=0

(jii 
 ji	n ji)(hij 
 hjj) =
n�1X
i=0

n�1X
j=0

jii hij 
 ji	n ji hjj

So:
V = (I
 P0)Uxor

V = (
n�1X
q=0

jqi hqj 
 j0i h0j)(
n�1X
i=0

n�1X
j=0

jii hij 
 ji	n ji hjj)
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V =
n�1X
q=0

n�1X
i=0

n�1X
j=0

jqi hqj jii hij 
 j0i h0j ji	n ji hjj

Since q 2 [0; n� 1] and i 2 [0; n� 1], the inner product hqj jii equals 1 only
for q = i 2 [0; n� 1]:

V =
n�1X
i=0

n�1X
j=0

jii hij 
 j0i h0j ji	n ji hjj

Based on the third property of the generalized quantum XOR gate, i	nj = 0
if and only if i = j, since i; j 2 [0; n�1]. So, the inner product h0j ji	n ji equals
1 only for i = j:

V =
n�1X
i=0

jii hij 
 j0i hij

Also:

A
B = (
n�1X
x=0

n�1X
y=0

Axy jxi hyj)
 (
n�1X
k=0

n�1X
l=0

Bkl jki hlj)

A
B =
n�1X
x=0

n�1X
y=0

n�1X
k=0

n�1X
l=0

AxyBkl jxi hyj 
 jki hlj

In addition:
Vy = [(I
 P0)Uxor]y

Vy = [
n�1X
i=0

jii hij 
 j0i hij]y

Vy =
n�1X
i=0

jii hij 
 jii h0j

Moreover:

V(A
B) = (
n�1X
i=0

jii hij 
 j0i hij)(
n�1X
x=0

n�1X
y=0

n�1X
k=0

n�1X
l=0

AxyBkl jxi hyj 
 jki hlj)

V(A
B) =
n�1X
i=0

n�1X
x=0

n�1X
y=0

n�1X
k=0

n�1X
l=0

AxyBkl jii hij jxi hyj 
 j0i hij jki hlj

Since i 2 [0; n� 1] and x 2 [0; n� 1], the inner product hij jxi equals 1 only
for i = x 2 [0; n� 1]:

V(A
B) =
n�1X
x=0

n�1X
y=0

n�1X
k=0

n�1X
l=0

AxyBkl jxi hyj 
 j0i hxj jki hlj

Also, the inner product hxj jki equals 1 only for k = x 2 [0; n� 1]:

V(A
B) =
n�1X
x=0

n�1X
y=0

n�1X
l=0

AxyBxl jxi hyj 
 j0i hlj
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Finally:
Ad(V)(A
B) = V(A
B)Vy

Ad(V)(A
B) = (
n�1X
x=0

n�1X
y=0

n�1X
l=0

AxyBxl jxi hyj 
 j0i hlj)(
n�1X
p=0

jpi hpj 
 jpi h0j)

Ad(V)(A
B) =
n�1X
x=0

n�1X
y=0

n�1X
l=0

n�1X
p=0

AxyBxl jxi hyj jpi hpj 
 j0i hlj jpi h0j

Since y 2 [0; n� 1] and p 2 [0; n� 1], the inner product hyj jpi equals 1 only
for p = y 2 [0; n� 1]:

Ad(V)(A
B) =
n�1X
x=0

n�1X
y=0

n�1X
l=0

AxyBxl jxi hyj 
 j0i hlj jyi h0j

Also, for l = y 2 [0; n� 1]:

Ad(V)(A
B) =
n�1X
x=0

n�1X
y=0

AxyBxy jxi hyj 
 j0i h0j

Ad(V)(A
B) = (
n�1X
x=0

n�1X
y=0

AxyBxy jxi hyj)
 j0i h0j

At this point, it can be noticed that:
n�1X
x=0

n�1X
y=0

AxyBxy jxi hyj = (
n�1X
x=0

n�1X
y=0

Axy jxi hyj) � (
n�1X
x=0

n�1X
y=0

Bxy jxi hyj)

n�1X
x=0

n�1X
y=0

AxyBxy jxi hyj = A �B

with � denoting the elementwise multiplication (or Hadamard Product) of
the matrices involved. So:

Ad(V)(A
B) = (A �B)
 j0i h0j

Ad(V)(A
B) = (A �B)
 P0

� � � � � � � � � � � � � � � � � � � � � � � �

Proposition 4: Application of P13 upon (H 
H 
 I
 I) jX0i (eq.31)

P13(H 
H 
 I
 I) jX0i = (P0 
 I
 Plarge 
 I+P1 
 I
 Psmall 
 I)�

�(1
2
(j00i


��ATin��
jAinii+j01i
��ATin��
jAinii+j10i
��ATin��
jAinii+j11i
��ATin��
jAinii))
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P13(H 
H 
 I
 I) jX0i =
1

2
(P0 j0i 
 I j0i 
 Plarge

��ATin��
 I jAinii+
+P0 j0i
I j1i
Plarge

��ATin��
I jAinii+P0 j1i
I j0i
Plarge ��ATin��
I jAinii+
+P0 j1i
I j1i
Plarge

��ATin��
I jAinii+P1 j0i
I j0i
Psmall ��ATin��
I jAinii+
+P1 j0i
I j1i
Psmall

��ATin��
I jAinii+P1 j1i
I j0i
Psmall ��ATin��
I jAinii+
+ P1 j1i 
 I j1i 
 Psmall

��ATin��
 I jAinii)
Recall that:
P0 j0i = j0i , P1 j1i = j1i, P0 j1i = 0 , P1 j0i = 0
and
Plarge

��ATin�� = cl
��ATl ��, Psmall ��ATin�� = cs

��ATs ��
So:

P13(H
H
I
I) jX0i =
1

2
(cl j00i


��ATl ��
jAinii+cl j01i
��ATl ��
jAinii+
+ cs j10i 


��ATs ��
 jAinii+ cs j11i 
 ��ATs ��
 jAinii)
� � � � � � � � � � � � � � � � � � � � � � � �

Proposition 5: Application of P24 upon P13(H 
H 
 I
 I) jX0i (eq.32)

P24P13(H 
H 
 I
 I) jX0i = (I
 P0 
 I
 Plarge + I
 P1 
 I
 Psmall)�

� [ 1
2
(cl j00i 


��ATl ��
 jAinii+ cl j01i 
 ��ATl ��
 jAinii+
+ cs j10i 


��ATs ��
 jAinii+ cs j11i 
 ��ATs ��
 jAinii)]

P24P13(H 
H 
 I
 I) jX0i =
1

2
(clI j0i 
 P0 j0i 
 I

��ATl ��
 Plarge jAinii+
+clI j0i
P0 j1i
I

��ATl ��
Plarge jAinii+csI j1i
P0 j0i
I ��ATs ��
Plarge jAinii+
+csI j1i
P0 j1i
I

��ATs ��
Plarge jAinii+clI j0i
P1 j0i
I ��ATl ��
Psmall jAinii+
+clI j0i
P1 j1i
I

��ATl ��
Psmall jAinii+csI j1i
P1 j0i
I ��ATs ��
Psmall jAinii+
+ csI j1i 
 P1 j1i 
 I

��ATs ��
 Psmall jAinii)
Recall that:
P0 j0i = j0i , P1 j1i = j1i, P0 j1i = 0 , P1 j0i = 0
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and
Plarge jAinii = cl jAlii, Psmall jAinii = cs jAsii
So:

P24P13(H
H
I
I) jX0i =
1

2
(c2l j00i


��ATl ��
jAlii+clcs j10i
��ATs ��
jAlii+
+ clcs j01i 


��ATl ��
 jAsii+ c2s j11i 
 ��ATs ��
 jAsii)

� � � � � � � � � � � � � � � � � � � � � � � �

Proposition 6: Equivalent formula of V for quantum systems (eq.33)

The need arises for the calculation of an equivalent formula V 0 for the adjoint
action of V, that is suitable for application upon composite quantum systems
in the form of

V 0(
��AT ��
 jBii) = V 0(I
A
B 
 I)(j Iii 
 j Iii)

with A;B square complex matrices of the same dimension n.

Recall that Ad(V) = Ad((I
 P0)Uxor). The explicit form of each operation
involved is presented below:

I
 P0 =
n�1X
q=0

jqi hqj 
 j0i h0j, since I =
n�1X
q=0

jqi hqj and P0 = j0i h0j

and

Uxor =
n�1X
i=0

n�1X
j=0

(jii 
 ji	n ji)(hij 
 hjj) =
n�1X
i=0

n�1X
j=0

jii hij 
 ji	n ji hjj

So:
V = (I
 P0)Uxor

V = (
n�1X
q=0

jqi hqj 
 j0i h0j)(
n�1X
i=0

n�1X
j=0

jii hij 
 ji	n ji hjj)

V =
n�1X
q=0

n�1X
i=0

n�1X
j=0

jqi hqj jii hij 
 j0i h0j ji	n ji hjj

Since q 2 [0; n� 1] and i 2 [0; n� 1], the inner product hqj jii equals 1 only
for q = i 2 [0; n� 1]:

V =
n�1X
i=0

n�1X
j=0

jii hij 
 j0i h0j ji	n ji hjj

Based on the third property of the generalized quantum XOR gate, i	nj = 0
if and only if i = j, since i; j 2 [0; n�1]. So, the inner product h0j ji	n ji equals
1 only for i = j:
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V =
n�1X
i=0

jii hij 
 j0i hij

Also:

Vy =
n�1X
j=0

jji hjj 
 jji h0j

It is obvious that:
(I
Ad(V)(A
B)
 I)(j Iii 
 j Iii) = (I
 (A �B)
 P0 
 I)(j Iii 
 j Iii)
(I
Ad(V)(A
B)
 I)(j Iii 
 j Iii) =

�� (A �B)T ��
 jP0ii
So, the explicit form of the action of V 0 = I
Ad(V)
 I upon the composite

quantum system
��AT ��
 jBii is:

V 0(
��AT ��
 jBii) = V 0(I
A
B 
 I)(j Iii 
 j Iii)

V 0(
��AT ��
 jBii) = (I
Ad(V)
 I)(I
A
B 
 I)(j Iii 
 j Iii)

V 0(
��AT ��
 jBii) = (I
Ad(V)(A
B)
 I)(j Iii 
 j Iii)

V 0(
��AT ��
 jBii) = (I
 V(A
B)Vy 
 I)(j Iii 
 j Iii)

V 0(
��AT ��
 jBii) = (I
 (n�1X

i=0

jii hij 
 j0i hij)(A
B)�

� (
n�1X
j=0

jji hjj 
 jji h0j)
 I)(j Iii 
 j Iii)

V 0(
��AT ��
 jBii) = (I
 (n�1X

i=0

n�1X
j=0

jii hijA jji hjj 
 j0i hijB jji h0j)
 I)�

� (j Iii 
 j Iii)

V 0(
��AT ��
jBii) = (n�1X

i=0

n�1X
j=0

I
jii hijA jji hjj
j0i hijB jji h0j
I)(j Iii
j Iii)

V 0(
��AT ��
 jBii) = n�1X

i=0

n�1X
j=0

(I
 jii hijA jji hjj) j Iii
 (j0i hijB jji h0j 
 I) j Iii

V 0(
��AT ��
 jBii) = n�1X

i=0

n�1X
j=0

[
�� (jii hijA jji hjj)T ��
 jj0i hijB jji h0jii]

V 0(
��AT ��
 jBii) = n�1X

i=0

n�1X
j=0

(
�� jji hjjAT jii hij��
 jj0i hijB jji h0jii)

V 0(
��AT ��
jBii) = n�1X

i=0

n�1X
j=0

(jji hjj
(jii hij)T )
��AT ��
(j0i hij
(jji h0j)T ) jBii
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V 0(
��AT ��
 jBii) = (n�1X

i=0

n�1X
j=0

jji hjj 
 jii hij 
 j0i hij 
 j0i hjj)(
��AT ��
 jBii)

As a result, the formula for V 0 is:

V 0 =
n�1X
i=0

n�1X
j=0

jji hjj 
 jii hij 
 j0i hij 
 j0i hjj

� � � � � � � � � � � � � � � � � � � � � � � �

Proposition 7: Application of Hadamard Product map V 0 (eq.34)

jX2i = (I2 
 V 0) jX1i

jX2i = [I2 
 V 0][
1

2
(c2l j00i 
 (I
 (Al 
Al)
 I)(j Iii 
 j Iii)+

+clcs j10i
(I
(As
Al)
I)(j Iii
j Iii)+clcs j01i
(I
(Al
As)
I)(j Iii
j Iii)+
+ c2s j11i 
 (I
 (As 
As)
 I)(j Iii 
 j Iii))]

jX2i =
1

2
[c2l I2 j00i 
 V 0(I
 (Al 
Al)
 I)(j Iii 
 j Iii)+

+ clcsI j10i 
 V 0(I
 (As 
Al)
 I)(j Iii 
 j Iii)+
+ clcsI j01i 
 V 0(I
 (Al 
As)
 I)(j Iii 
 j Iii)+

+ c2sI j11i 
 V 0(I
 (As 
As)
 I)(j Iii 
 j Iii))]

jX2i =
1

2
[c2l j00i 
 (I
 (Al �Al 
 P0)
 I)(j Iii 
 j Iii)+

+ clcs j10i 
 (I
 (As �Al 
 P0)
 I)(j Iii 
 j Iii)+
+ clcs j01i 
 (I
 (Al �As 
 P0)
 I)(j Iii 
 j Iii)+

+ c2s j11i 
 (I
 (As �As 
 P0)
 I)(j Iii 
 j Iii))]

jX2i =
1

2
(c2l j00i


�� (Al �Al)T ��
jP0ii+ clcs j10i
 �� (As �Al)T ��
jP0ii+
+ clcs j01i 


�� (Al �As)T ��
 jP0ii+ c2s j11i 
 �� (As �As)T ��
 jP0ii)
� � � � � � � � � � � � � � � � � � � � � � � �
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Proposition 8: Expression of Rényi Entropy of order a = 1
2 (eq.37)

Recall that the density matrix � is equal to � = jAii hhA j for any bipartite
quantum system jAii . Subsequently, the reduced density matrix �1 regarding
the �rst subsystem is:

�1 = Tr2(�)
�1 = Tr2(jAii hhA j)
�1 = AAy

With the SVD of A being A = UADAV
T
A , since A is a real matrix, then by

substitution:
�1 = (UADAV

T
A )(UADAV

T
A )

y

�1 = (UADAV
T
A )(UADAV

T
A )

T (since A real)
�1 = UADAV

T
A VAD

T
AU

T
A

�1 = UADAV
T
A (since VAreal orthogonal and DA diagonal)

The expression of the reduced density matrix �1 raised to the power of a
results in:

�a1 = (UAD
2
AU

T
A )

a

�a1 = UAD
2a
A U

T
A (since UA is real orthogonal)

So, the trace of this expression is:
Tr(�a1) = Tr(UAD

2a
A U

T
A )

Tr(�a1) = Tr(D2a
A ) (since trace is similarity-invariant)

As a result, the Rényi Entropy of order a is equal to:
SR(�1) =

1
1�a log(Tr(�

a
1))

SR(�1) =
1

1�a log(Tr(D
2a
A ))

So, for the order of the Rényi Entropy a = 1
2 , the formula above changes

into:
SR(�1) =

1
1� 1

2

log(Tr(D
2 12
A ))

SR(�1) = 2 log(Tr(DA)) = 2 log(
rX
i=1

�i)

� � � � � � � � � � � � � � � � � � � � � � � �
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Proposition 9: Upper bound logn k for Rényi Entropy (eq.38)

Consider the system jAkii that corresponds to the rank-k approximation
of the n-dimensional system jAii. This means that the singular value of the
matrix Ak is:

Ak = UDkV
y = U

266666666664

�1 0 0 0 0 ::: 0 0
0 �2 0 0 0 ::: 0 0
0 0 ::: 0 0 ::: 0 0
0 0 0 �k 0 ::: 0 0
0 0 0 0 0 ::: 0 0
::: ::: ::: ::: ::: ::: ::: :::
0 0 0 0 0 ::: 0 0
0 0 0 0 0 ::: 0 0

377777777775
V y

with U ,V unitary matrices and Dk the diagonal matrix containing its (nor-
malized) singular values.
Since the entanglement contained in a system is inextricably linked to the

probability distribution formed by its singular values, it is clear that the system
jAkii is maximally entangled, provided that its singular values are all equal
to 1p

k
. This way, they form a uniform distribution while maintaining the unit

norm of the system. In this case, the Rényi Entropy of order a 6= 1 is:
SR(�1) =

1
1�a logn(Tr(D

2a
k ))

SR(�1) =
1

1�a logn(
kX
i=1

�2ai )

SR(�1) =
1

1�a logn[

kX
i=1

( 1p
k
)2a]

SR(�1) =
1

1�a logn[
kX
i=1

( 1k )
a]

SR(�1) =
1

1�a logn[k � (
1
k )
a]

SR(�1) =
1

1�a logn(
k
ka )

SR(�1) =
1

1�a logn(k
1�a)

SR(�1) = (1� a) 1
1�a logn k

SR(�1) = logn k

So, the bounds for the entropy of any system with reference to the amount
k of its singular values that are taken into consideration is:

0 � SR(�1) � logn k

� � � � � � � � � � � � � � � � � � � � � � � �
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