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NEPIAHWH

H TTapoloca SITTAWPATIKY EpYACia AOXOAEITAI IE EVO KEVTPIKO
gpwTtnua oto medio Tng emoTtAuNG NG KBavTiknAg MNMAnpogopiag
Kal Texvoloyiag. To avTikeiuevo evBIapEPOVTOG OTTOTEAET O
KBavTikdG evayKaMopds (U GAAa AGyIa KBAVTIKEG GUGYETIOEIG)
MeTagl OUo TUNUATWY EVOS DINEPOUS KBAVTIKOU GUGTAUATOG,
KaBEva aTTé Ta OTTOia TTEPIYPAPETAI HABNUATIKA OTTO £va
OUVOAO KATOOTATIKWVY DIAVUOUATWY, TO OTTOI0 EUTTEPIEXETAI OE
€va TpayuaTiké diavuopaTiké xwpo. Emera, 10 epwthua
diatutrwveTal wg €&n¢G: «Eival duvatév va peiwbei o apiBuég
Twv SIOVUGHATWY TTOU TTEPIYPAPOUV KABE UTTOGUGTNUA TOU
diuepoUg kBavTikoU cuoTruaTog evw Ba diatnpnOei 10 Tocod
TOU GUVOAIKOU KBavTIKOU evaykaAiopou;» MNa 1o Adyo autd, 10
ZnToUpEVO, €V CUVTOUIO CUNTTIEON evayKaAiouoU, TrEpIAAUBAVEI
N OI00TATIKA EAATTWOTN TWV TOTTIKWY UTTOdIACTNHATWY, TTOU
arapTi¢ouv 1o dIYEPEG cUCTNUA, UTTG TOV TTEPIOPICHS TG
diatipnong Tou apyikou evaykaAiouou. Me Trepiypa@ikolg
6poug To TTPORANUA PTTOPEl Va BIaTUTTWOET PE TNV €EAG MOPPA:
«UTTOPW Va EXw TO idI0 e AiydTepa;» AedopEvou 6T 0
KBavTikéG evaykaAMouog Bewpeital o TePICNTNTOG VEOG TUTTOG
TOPWV TTOU ATTAITEITAI OTN KPAVTIKA TEXVOAOYIQ KAl TO YEYOVOG
0TI TO UTTOCUCTAATA, TTOU UTTOKEIVTAI T dlacTaTIKA EAATTWON,
atroteAoUvTal atrd TTOAAATTAG qubits, TO EPWTNHA CUVETTWG
avayetal oTo BEATIOTO XEIPICUO Twv TTOpwV. Baciouévn og
TTPONYOUHEVEG £PYATiEG Kal TTPOOQATN £pEUVA, N DITTAWUATIKNA
£pYacia TTPOXWPE EKKIVWVTAG JE Mia UPETIKN 10€a. Me Tnv
TPoUTT60e0n OTI N 0UJEUEN TWV UTTO PEAETN UTTOCUGTNUATWY
gival yaBnuaTikd TPoadiopIGuEVN aTTd VA TTIVOKO GUVTEAECTWV
TTOU KaBOoPiZel TO CUVOAIKO KATACTATIKG dIAvUoHa Tou dIEPOUG,
yiveral n €€AG €MAOYN: WG TTIVOKAG CUVTEAEGTWV ETTIAEYETAI
£VOG OTTOIOCOATTOTE TTiVOKAG TTOU TTEPIYPAPE! hia grayscale
wneiakn gikéva. Yneiokég eikdveg dmwg 1.X. Schroedinger,
Lena xpnoiyoTToIoUVTal VIO TNV KOTAOKEUR KATACTATIKWV



OIOVUOUATWY BIPEPWYV KBAVTIKWY CUCTANATWY TTOAATTAWY
qubits. AuT n KATAOTACN EUVOEI TNV EKUETAANEUCT TEXVIKWV
TTPOCEYYIONG TTivaKa XAUNARG TAgNG atrd 1o TTEdiO TNG
OudTTiEGNG €IKOVAG OTO TTEDIO TNG EPAPUOYAS TNG CUNTTIECTG
evaykaAiopoU. ETTIAEyovTag wg YETPO TTOGOTIKOTTOINGNG TOU
EVAYKOAIGUOU Tnv KBavTikA evipoTria Rényi Tou TrepIBwpIou
(eAaTTWPEVOU) TTiVAKA TTUKVOTNTAG TOU DIUEPOUG KBAVTIKOU
OUGTAUATOG, 0 GTOXO0G ETTAVADIOTUTTWVETAI WG N ETTITEUEN TNG
BI1aCTATIKAG EAATTWONG TOU CUVOAIKOU dIEPOUG KATACTATIKOU
diavuouarog evw diartnpeital ( BeAnioTotroicitar) n Rényi
EVTPOTTIa VOGS KBaVTIKOU utTTooUoTAMAaTOS. H dimAwpaTikh
epyacia Oeixvel 0TI TO TTPWTO {NTOUUEVO, QUTO TNG DIACTATIKAG
eAATTWONG, EMAUETAI HEGW TNG TTPOCEYYIONG XAUNANG TA&NS
NG Aildotraong 18iadoucwv Tipwv (SVD) Tou Trivaka
KataoTatikoU dlaviouaTtog eIkévag. MNpog TolTo TTapouciddeTal
MIa KBavTIKA aAyopIOuIKA UAOTTOINGN TNG KAQGGCIKAG TEXVIKAG
oupTrieang oTo KBavTiké Tedio. To deuTteEPO {NTOUUEVO TG
oupdTTieong, auTo TnG diatTAPNoNg EVayKaAIoPoU, ETTIAUETAI HECW
€VOG aAyopiBuou pe KBAvTIKO KUKAWA TTAPOUOI0 EKEIVOU TNG
Tapaywyng kataoTaocswv Bell, yevikeupévo yia Tnv TTepITITwon
ouoTnUATwy TToAAaTTAWY qubits. Auté To THAMA ThG Bladikaciag
oupuTTieong evaykaAiopoU Kavel xpAion epyaAciwy atro tnv
avaAuon TTIVAKWY, OTTWG TO CNUEIOKO YIVOUEVO OTOIXEIWY
TIIVAKWY KOl OXETIKWV AVICOTHATWY, TTPOKEIPEVOU VA KATADEIEE!
OTI UTTAPXEI MIa eVAVTIO avaAoyia JeTagl Twv dUo CnTOUMEVWY,
OUYKEKPIYEVA TNG DIAOTATIKAG EAATTWONG KAl TNG dlaTAPNoNG
TOU EVOYKAAIGUOU (evTpoTriag). AuTtéd odnyei oTnv avdarmTuén piag
€TavaAnTITIKAG 81adIKaoiag, TTou TTEPIAaNBAVE yiouviTapi
TTUAEG O OUVOUAGCUO UE PAVTEIO-0DNYOUUEVES TTPOBOAEG
uynAdTepwy JI0CTACEWY TTAVW O€ BIavUoUATA TTOAATTAWY
qubit. TEAOG avaTITUGOETAI PIA AETITOUEPIOKT] APIBUNTIKA
Oiepelivnon, BAcIGPEVN OE TTAPADEIYUATIKEG TIEPITITWOEIG
€IKOVO-KATACTACEWV, N OTT0i0 ETTIRERAIWVEI TNV
uhoTtroincIgéTNTA KAl TNV ATTOdOTIKATNTA TNG ETTAVAANTITIKAS
diadikaciag cupTrieong KBavTikoU evaykaAiIGuoU.



ABSTRACT

This thesis addresses a central question in the field of Quantum Information
Science and Technology. The object of concern is the quantum entanglement
(i.e. quantum correlations) between two parts of a bipartite quantum system,
each of which is mathematically described by a set of state vectors, all lying in a
real vector space. The question then is formulated as follows: "Is it possible to
reduce the number of vectors describing each subsystem of the bipartite quan-
tum system and still have the same amount of total quantum entanglement 7"
Hence the question, abbreviated to the name entanglement compression, is that
of dimensional reduction of local sub-spaces composing the bipartite system, un-
der the constraint of preserving the initial entanglement. In descriptive terms,
the problem may be cast in the form: "can I have the same with less?" Given
that quantum entanglement is treated par excellence as the new type of resources
required by quantum technology, and the fact that the sub-systems, aimed to
be dimensionally reduced, are composed by multiple qubits, the question then
amounts to one of optimal handling of resources. Building upon previous works
and recent developments, the thesis then proceeds to exploit a heuristic idea.
Given that the coupling of sub-systems under study is mathematically deter-
mined by a coefficient-matrix, specifying the multi-tensor state vector of the
bi-partite, a choice is made: use for coefficient-matrix any matrix describing a
grayscale digital image. Digital images of e.g. Schroedinger, Lena are employed
to build state vectors of multi-qubit bi-partite quantum systems. This situation
motivates the exploitation of low rank matrix approximation techniques from
image compression within the context of entanglement compression. Employ-
ing as quantitative measure of entanglement the quantum Rényi entropy of the
marginal (reduced) density matrix of the bipartite system, the aim becomes
to achieve dimensional reduction of the total bipartite state vector, while pre-
serving (or optimizing on) the Rényi entropy of a quantum subsystem. The
thesis shows that the first task of dimensional reduction is achieved via low
rank approximation in the Singular Value Decomposition (SVD) of the image-
state-vector matrix. A quantum algorithmic implementation of the classical
technique to the quantum context is provided. The second task of the com-
pression, that of entanglement preservation, is achieved via an algorithm, akin
to Bell state generation quantum circuit, generalized to the context of multi-
qubit systems. This part of the entanglement compression procedure utilizes
tools from matrix analysis, such as pair-wise Hadamard product of matrices
and related inequalities, to show that there is a trading between the two tasks,
namely dimensional reduction and entanglement (entropy) preservation. This
leads to building an iterative procedure, which involves unitary gates combined
with higher dimensional oracle-driven projections acting on multi-qubit vectors.
A thorough numerical investigation, based on exemplary cases of image-states,
confirms the feasibility and the efficiency of quantum entanglement compression
iterative procedure.
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1 Quantum Information

1.1 Introduction

It all began with the "bit", the fundamental representation of information in
the digital computer system. This became the cornerstone of computer science
as a whole, with information theory and conventional computation methods
benefiting greatly from its deterministic nature.

However, technological advancements have led to the development of the
quantum computer system, which may exploit quantum effects to compute in
ways that are faster or more efficient than, or even impossible, on conventional
computers. Various quantum properties like supersposition and entanglement
are the main assets of such systems, resulting in the exponential amount of par-
allelism in computation [2]. It should also be noted that quantum computation
is not possible with the deterministic "bit", but with the probabilistic quantum
"bit" or "qubit".

1.2 The qubit

The qubit (short for quantum bit) is the basic unit of quantum information. It
is used to decribe the state of a quantum system and, as it turns out, quantum
states behave mathematically in an analogous way to physical vectors [3]. For
this reason, every qubit exists in a column vector form in a complex domain
called Hilbert space H. In this space, such vectors are called "kets", with the
symbol |-) according to the Dirac notation.

While a classical bit may be either in the state 0 or in the state 1, the
qubit |¢) may exist in the state |0) or in the state |1), but may also exist in
a superposition state a|0) + b|1), with a,b being complex numbers. In this
way, the values of such qubits do not exist in a real discrete domain prior to
measurement, but in a continuous one in the form of C2. However, when the
qubit |¢) is measured, it is going to be found either in the state |0) or in the state
|1). According to the laws of quantum mechanics, the modulus squared of a,b
corresponds to the probability of finding the qubit in state |0) or |1) respectively
[3], meaning that:

) = al0) + b 1) (1)
with Dloy = |CL\2, pny = |b‘2~

Since the states |0), |1) are the only possible outcomes after the measure-
ment, the coefficients a,b are constrained by the requirement that |a|* 4 |b|* = 1,



which is atributed to the completeness theorem. In general, if a qubit |¢) may
be found in one out of n possible states |ug), |u1),...,|un) after measurement,
then:

n
V) = co |ug) + c1 |ur) + . + ¢ fun) = ZCi |ui)
i=1

n
with Y [e;* = 1.
i=1

In this case, it can be seen that the qubit |1)) is expressed in terms of the
states |0), |1). These state vectors form a two-dimensional orthonormal basis,

with their vector representations being |0) = (é) and |1) = (?).As a result,

the equivalent vector representation for |¢) (eq. 1) is:

=) ()= 6)+ () - ¢)

Even though there are numerous orthonormal basis, the basis {|0),|1)} is
exclusively used in this thesis.

1.3 The Hilbert space

Being a vector domain, the Hilbert space H has its dual vector domain called
‘H*, whose elements are row vectors and are called "bras", with the symbol
(|- Tt can be seen that there is a 1 — 1 correspondence between those two
vectors spaces, resulting in the fact that, for every ket |¢)) € H , there is the bra
(wl e e, with (] = ()T = ((4)))T [16].

Several properties regarding Hilbert space H are shown below:

-Linearity

For any state vectors |a), |b) of the Hilbert space H, every linear combination
¢1 |a)+ca |b), with ¢q,co being complex numbers, also belongs in the same Hilbert
space H.

-Inner Product

The inner product of the state vectors |a), |b) is a complex number and is
known with the symbol (a||b), called bra-ket.

Some useful properties are the following:

= (ol &) = (]]a)"

— (a| |Ab) = A (a] |b) for every complex number A

— (Aa| [b) = A* {(a| |b) for every complex number A

— (a+c[|b) = {al [b) + (c[ b)



— (al [b+¢) = (a] [b) + {al |¢)
— (a||a) > 0 (refers to the norm of the vector a: (a||a) = ||a||)

- Vector Orthogonality
Two state vectors |a) and |b) of the Hilbert space H are orthogonal iff (a| [b) =

-Orthonormal basis

A set of state vectors {|e;)} forms an orthonormal basis of Hilbert space
H, iff they are all unit vectors (meaning |le;|| = 1 for every ) and they are
orthogonal to each other. Every vector |a) with |a) € H may be expressed as a
linear combination of the basis state vectors of that Hilbert space H, as shown
below:

a) =3 e led)
=1

-First postulate of quantum information
Every property of a quantum system can be described by a normalized vector
|1) of the Hilbert space H, meaning that (¢||¢) = ||| = 1.

-Superposition of states

Let |a), |b) be two linearly independent normalized state vectors in H. Every
linear combination |[¢) = ¢ |a) + ¢3 |b), with ¢1, ¢co € C,

results in another normalized state vector of the Hilbert space H.

1.4 Multiple qubits

Much like classical information, the need arises for the study of more than one
qubits at a single time in the field of quantum information. So far, a two-
dimensional Hilbert space H is enough for the description of quantum states
|1} of a single qubit. However, in order to describe composite quantum systems
of two (or more) qubits, a more complex Hilbert space H of a greater dimension
is needed. Such systems may be expressed in terms of their components with
the use of the Kronecker product ® (known as tensor product in quantum
information). This type of product has the following properties for random
state vectors |x), |y), |p), |q):

- () @ 1y) - (Ip) @ lg)) = (|z) - [p)) @ (|y) - |a))

- |z} @ (ly) +Ip)) = =) ® |y) + |x) @ |p)

- (lz) + 1) @ p) = =) © p) + |y) @ |p)

ot



-(a]z) @ |y) = |z) @ (aly)) = a(|z) ® |y)) for any scalar a € C
The same properties apply to any choice of matrices A, B, C, D, even
combined with vectors. For example: (A® B) - (|p) ® |¢)) = (A |p)) ® (B]q))

So, the combination of two (or more) subsystems into a composite one |¢)
is primarily attributed to the tensor product. However, the expression of the
state vector |¢)) may be either factorized or un-factorized with respect to its
subsystems. These two cases are presented below:

Case #1: Factorized/ Uncorrelated/ Un-entangled quantum states

Let there be a composite quantum system [¢)) that consists of two qubits

o) = o)+ tal1) = (5. 1ea) = aal0) + 2y = (52) with a1, . e
by € C. Then:

V) = [¥1) ® |95)

1) = (a1]0) +b1 (1)) © (a2 |0) + b2 (1))

[¢) = a1a2(]0) ©10)) + a1b2(10) ® |1)) + bras(|1) ©[0)) + brba(|1) ©[1))
|ﬂ» ::alaz|OO>4—a1b2|01)%—b1a2|10>%—b1b2|11>

It should be noted that the term |0)®]|1) is the same as |01). This substitution
takes place on the grounds of abbreviation. In general: |i) ® |j) = |i) |§) = |ij)

for every (i, 7).

Using their respective vector forms, it can be seen that:
aias

) = [4,) ® [iy) = (Zi) ® <b> ~ |

b1b2

Case #2: Un-factorized/ Correlated/ Entangled quantum states

In this case, |) # |[¢1) ® |15). However, certain states of |i;) may be
correlated with specific states of |1),), as shown in the examples below:

e.g. [¥)y=al|0)®]0)+b|1) ®|1) with a,b € C

S-a( W)= ()

—_ o oo
SO O R

e.g. [1) = al0) ® [1) +b|1) ® |0) with a,b € C



=)o Qs ()

0
0 J—
1
0

0 0
1 a
Y)Y =a 0 +b =1
0 0

In any case, the state vector |¢) describes a quantum system and its squared
coefficients should correspond to the probabilities of finding the system in one
of these states upon measurement. So:

case #1: [laraz||® + [Jasba|® + [[braz||® + ||brbo|® = 1

case #2: [la]® + ||b]|> = 1

As for the respective Hilbert space H of |}, it is the outcome of the tensor
product ‘H = H;1 ® Hs as well. In these cases, both of the component Hilbert
spaces involved are two-dimensional ones, while the orthonormal basis for |¢)
is clearly the four-dimensional one, whose basis vectors are presented below:

1 0
0 1
00) =10y @ [0) = | ¢ | o1y = 0) @ 1) = |
0 0
0 0
0 0
) =mel)="|:m=mnepn=|,
0 1

In general, a quantum state of n two-dimensional qubits exists in a Hilbert
space ‘H of 2" dimensions, with the basis vectors needed being also 2". This
exponential growth of the domain dimensions, as a result of the linear increase
in the number of qubits, is the main reason for the exponential increase in speed
of quantum computations [16].

It can be seen that the distinction between factorized and un-factorized
quantum states |¢) is inextricably linked to the degree of correlation between
possible states of different subsystems. This property of un-factorized systems
is better known as quantum entanglement. The qualitative assessment of the
entanglement of a system involves the determinant of the square matrix con-
taining the coefficients of every possible state the system may be found in. If
the determinant is equal to zero, then the system is factorized (un-entangled),
whereas a non-zero determinant implies that the system is entangled to a cer-
tain extent. This specific procedure, regarding the abovementioned cases, is
presented below:

Case #1: Un-entangled system

1)) = a1a2 |00) 4 a1b2 |01) + bras [10) + b1bs [11)
In this case, the square matrix of the coefficients of 1)) = ¢og |00) + o1 [01) +
C10 |10> + c11 |11> is:



A — |co0 cor| _ |araz a1by
clo  C11 biaz  biby

The determinant of this matrix is:
det(A) = CopC11 — Co1C10
det(A) = ajasbibs — arbabias

det(4) =0

Case #2: Entangled system

[)) = a|00) +b|11)
The square matrix of the coefficients of |1)) = coo|00) + co1 |01) + c10 |10) +

c11]11) in this case is:
~_|Co Co1| _ |@ 0
A= [610 C11} B [0 b]

So, the determinant is obviously: det(A4) =a-b # 0 when a,b # 0.

In cases of correlated systems, the amount of entanglement depends on the
values of the coefficients a,b. However, the issue of the quantitative assessment
of the entanglement will be addressed later.

1.5 Bipartite quantum system

In the previous section, it was seen that composite quantum systems [¢) may
consist of more than one qubits. The simplest example of such a system has
two qubits and it is known as a bipartite quantum system. In particular, the
expression of a bipartite quantum system |¢)) with reference to its two distinct
qubit components |¢) and |z) is the following:

ni no
) =D > cijlos) @ ;)
i=1 j=1
ni na
with ¢;; € C and ZZ |cij|2 =1.
i=1 j=1

However, this definition may be extended to quantum systems that have
more than two qubits (multipartite systems). In this case, a bipartite system
|1)) consists of two quantum subsystems |¢) and |x), each one being a system
of two or more qubits. There are a lot of different interpretations of the same



multipartite system as a bipartite one, due to the various scenarios of two com-
plementary sets of qubits. Such consideration is beneficial to the study of the
correlation (thus entanglement) between these two sets of qubits.

1.6 Transformations and operators on quantum states

An operator is a mathematical rule that can be applied to a function to trans-
form it into another function [3]. Technically, an operator A is a matrix that
acts on a state vector |¢) of the Hilbert space H, resulting in another state
vector |¢'> of the same domain:

') = Aly)
with |¢") also in H.
Operators can also act on bras, with the result being another bra:

(W' =B
with (1], (¢'| in H*.

Every operator has a matrix representation in respect to a given orthonor-
mal basis, thus making its action on a state vector a simple matter of matrix
multiplication. For the purposes of this thesis, the matrix representation of
every operator is expressed in terms of the basis {|0),|1)}.

It should be mentioned that the entirety of the operators used in this project
are linear operators. An operator A is linear, if the following relationship holds,
given complex numbers a; and the state vectors |u;):

A ailui)) = ai(Alu;))
1=1 =1
with a; € C.

Some basic linear operators are shown below:

-Zero operator O
O |a) = |a) for every |a) € H

-Identity operator 1
Ila) = |a) for every |a) € H

-Inverse operator T—!

T |a) = |b) then T—1|b) = |a) for every |a),|b) € H

It can be seen that the application of the inverse operator 7! neutralizes
the effect of T



T T |a) =T7'|b) = |a)

and

TT b)) =Tla) =0

So the concecutive application of T—! and T is equivalent to the application
of the identity operator:

T T=TT"'=1

-Unitary operator U

An operator U is unitary iff its inverse is equal to its conjugate tranpose,
meaning that U~! = (U*)T = Ut. A few notable properties of the unitary
operators include the following:

— The product of unitary operators is a unitary operator.

— The tranpose of a unitary operator is a unitary operator.

— The inverse of a unitary operator is a unitary operator.

— Every unitary operator preserves the norm of the vector it acts on.

e}l = 1U |a)]|

-Hermitian operator T'

An operator T is hermitian iff it is equal to its conjugate tranpose one,
meaning T = (T*)T = T".

Some useful properties are:

— The addition of two hermitian operators is hermitian.

— The product of hermitian operators is hermitian.

— The eigenvalues of a hermitian operator are real numbers.

-Projection operator P
Suppose that a given vector space has n dimensions and a basis given by
orthonormal state vectors |i) with 1 < ¢ < n. The projection operator P =

m
Z i) (i| (with m < n) projects any state vector |¢) onto the subspace spanned
=1

=
by the set |7) with 1 <14 <m.
Properties of the projection operator include the following:
— For every projection operator P, it stands P? = P.
— Every projection operator has eigenvalues 0 and 1.

m
Let two complementary projection operators P; = Z i) (i| (with m < n)
i=1

n

and P| = Z |#) (i]. It can be seen that:

1=m-+1
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=P+ Pr=) |0+ Y 1) El=) =1
i=1

= i=m+1 i=1
— PT . Pl =0

The complementary projection operators of basis {|0),[1)} are:

R = |0><0|=[(1) 8]

no= =

In addition, an operator A may be applied in an "adjoint" way Ad(A) on
a system B, meaning that Ad(A)B = ABAT. This type of action serves only
abbreviation purposes. A useful property of this notation is:

Ad(A)Ad(B)C = Ad(AB)C

According to the second postulate of quantum mechanics, every dynamical
variable A that is a physically measurable quantity has an operator A in the
Hilbert space H corresponding to it. The set of eigenvectors of such an operator
form an orthonormal basis and its eigenvalues are real numbers. That is the
reason for the Hermitian operators being used exclusively in the field of quantum
information.

1.7 Quantum gates: 1-qubit and 2-qubit cases

In quantum information, gates acting on qubits are represented by hermitian
and unitary operators. Unlike classical logic gates, quantum gates need to be
reversible, guaranteed by its hermiticity, and they need to preserve the norm of
their input quantum state vector |¢), leading to the prerequisite of unitarity.
Quantum gates may act on a single qubit, or more qubits at once.

A set of quantum single-qubit gates that have fundamental importance in
quantum computation are the Pauli gates, named after the physicist Wolfgang
Pauli. The matrix representation of these gates are expressed with reference to
the orthonormal basis {|0),|1)} as:

0 1 0 —i 1 0
Ul_X_[l 0}"’2_3/_[@ 0}”3_2_[0 —1]

The X gate is the quantum NOT gate, leading to the reverse of any quantum
state |¢) = a|0) + b|1) as shown below:

11



X |[Y) = X(a)0) +b[1) = X(a (é) +b<(1))) =X(<8) + (2)) =X (Z)

Xh) - TG =0 =) () =0 )+ ()

So:
X(al0) +b]1)) =b]0) + all)

Another important single-qubit gate is called the Hadamard operator, whose
matrix representation in the basis {|0),|1)} is:

11 1
=Gl ]
This gate transforms the basis state vector |0) and |1) into the superposition

states ‘0):/%‘” and |O>\;§|l> respectively.

Also, the two-qubit gate that is the cornerstone of every quantum computer
system is the "controlled-not" gate U,.,. As its name suggests, its operation is
actually a controlled application of the X gate over the second Hilbert space,
depending on the value of the target qubit of the first Hilbert space.

Uen(lz) @ |y)) = |2) ® |z @2 9)
In particular, this two-qubit gate "flips" the second qubit, if the first qubit
is equal to |1), and it does nothing to the second qubit, if the first one is equal
to |0). This procedure may be expressed in terms of unitary operators acting

on the respective Hilbert space as shown below:
U =P @1+P X

=y oo S+ )

1.0 0 0
01 0 0
0 0 01

0

This is the matrix representation of the U,, operator with reference to the
orthonormal basis {|0),|1)}. The explicit formula for the matrix representation
of this gate acting on the linear combination of the two-qubits |z) and [¢) is:

1 1

U = 33 (12) @ 2 @2 ) (el @ (y) = 303" [a) o] @ | B2 ) (o]

x=0y=0 x=0y=0

The "controlled-not" gate (or quantum XOR-gate) can be used for many
practical tasks of quantum information processing such as quantum state swap-
ping, entangling quantum states, performing Bell measurements, dense coding,
quantum teleportation and more.

12



1.8 Density operator

In many cases, the need arises for the study of a composite quantum system
that is comprised of a number of different systems. Such a collection is known
as an ensemble. Each member of the ensemble may be found in one of two or
more different quantum states, according to their given probabilities. However,
there is also the probability of the composite system being found in one of the
members of this ensemble. In the latter level, the use of probability is acting on
a classical way, thus reflecting a simple statistical mixture of quantum systems.

In such cases, the calculation of usual quantities for this composite quantum
system becomes more complex, since the mathematical rules mentioned so far
are not enough to bypass the restrictions imposed by the two levels of probabili-
ties. The operator used for the in-depth study of any quantum system is known
as the density operator.

So, let there be a quantum system [¢) in the Hilbert space H that may be
found in one of the states |¢,) with respective probabilities p;. The density
operator p is defined as shown below:

P = sz 19;) (¥4l

The density operator p provides a greater insight to the quantum system,
since it makes its study focus around the application of operators, whose use is
more practical than that of individual state vectors.

So, an operator p is the density operator of an ensemble {|1);), p;}, iff the
following requirements are met:

— A density operator p is Hermitian, meaning that p = pf.

— A density operator p is Positive, meaning that (| p|¢) > 0 for any state
vector |1).

—Tr(p) = 1. This property is attributed to the completeness theorem.

It should be mentioned that, for the purposes of this thesis, the term "density
matrix" is used instead of "density operator".

Based on their formation, an ensemble may be put into one of two categories:

— The ensemble with a single quantum system (described by [¢)) does not
have the probabilistic feature of the statistical mixture mentioned above. In
these cases, it is said that the composite system is in a pure state and the
respective density matrix p is expressed as p = [¢) (¢¥].

— The ensemble with more than one quantum system is the general case of a
composite system. In these cases, it is said that the system is in a mixed state.

It can be seen that, for systems in a pure state, their respective density
matrix p has the additional property of p? = p, thus becoming a projection
operator. This makes the identification of such systems much easier, since p? # p
for any other quantum system.

Several important properties of the density matrix include the following:

- If p is a density matrix, then p” is also a density matrix.

13



—If p, is a density matrix on a Hilbert space H, and p, is a density matrix
on a Hilbert space Hp, then p, ® p, is also a density matrix on the Hilbert space
Ho ® Hp.

- The action of a unitary operator U on an ensemble of systems may be
expressed in terms of the respective density matrix p as: p — UpUT.

1.8.1 Reduced density operator

Perhaps the deepest application of the density operator is as a descriptive tool
for subsystems of a composite system. Such a description is provided by the
reduced density operator [1].

Let there be a bipartite system with density matrix:

P=DD 0> pegmle) (@ k) (1
x Yy k l

A reduced density matrix p, is produced by the application of trace over
all of the basis states of the other Hilbert space alone. So, in this case, this
process may yield two reduced density matrices p; and p,, depending on the
perspective, as shown below:

pr = Trap)
ps = Tri(p)

The partial tracing involved in the calculation of p; is presented below:
T?‘Q )

Z Z Z mel [2) (] - Tr(k) (1))
= ZZ?;W @) (yl - {1l k)
o = 1) Wl O puyir)
As for the reduced density ?natyrix Do k

p2 =Y D B (- (D Pawkt)
k l T

The reduced density operator is virtually indispensable in the analysis of
composite quantum systems. The partial trace operation involved is the unique
operation that gives rise to the correct description of observable quantities for
subsystems of a composite system [1].

14



1.9 Quantum entanglement measures

From qualitative to quantitative measures:

One of the most unusual and fascinating aspects of quantum mechanics is
the fact that particles or systems can become entangled. The fact that two
quantum systems (say A and B) are entangled, means that the values of certain
properties of system A are correlated with the values that those properties will
assume for system B [3]. This effect is preserved even when the two systems
are spatially separated, no matter the distance. That is why this phenomenon
was initially perceived as "spooky action at a distance".

In an entangled quantum system, any measurement upon one of the com-
ponent subspaces provides accurate information about the state of the other
subsystem, without the need for any measurements upon it. It should be noted
that the concept of entanglement is of paramount importance to quantum infor-
mation theory, since an entangled quantum system is capable of providing more
information than its subsystems combined. Due to this feature, even greater
transmission rates and faster information processing in this field are possible
[16].

In a previous section, it was seen that a quantum system is considered to
be entangled as long as its state vector ) cannot be expressed as the tensor
product of the state vectors of its subsystems. The "factoriz-ability" of a given
system (known as separability) may be assessed directly by the value of the
determinant of the matrix of its coeflicents. In particular, a determinant that
is equal to zero implies that the system is un-entangled (separable), whereas a
non-zero determinant is attributed to an entangled system. However, the exact
value of the non-zero determinant corresponds to the degree of factorization of
the composite quantum system |¢), which is inextricably linked to the amount
of entanglement this system has. The assessment of the amount of entanglement
in any system is attributed to the concept of quantum entropy.

1.10 Quantum entropy

The entropy characterizes a degree of disorder in systems with fluctuating phys-
ical observables [18]. The interpretation of order is related to the statistical
properties of the system. Such properties of classical and quantum systems
are described within the framework of the probability-distribution formalism in
classical domain and the density matrices in quantum domain. For example,
the Shannon entropy determines the characteristics of classical states based on a
probability distribution, while the von Neumann entropy represents the amount
of entanglement that is associated with a quantum-state density matrix. In
particular, the formula for the von Neumann entropy is:
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S(p) = =Tr(plogp)

The association of the density matrix p with the concept of quantum entropy
is attributed to the fact that its diagonal elements form a probability distrib-
ution, regarding the possible states that the respective system may be found
in. The same distribution is also formed by its respective eigenvalues A; that
correspond to its eigendecomposition:

MO 0
p=UDU'=U 0 X 0|t
0 0 .. A\

with U being the unitary matrix of its eigenvectors. Therefore, the von
Neumann quantum entropy may as well be expressed as:

S(p) == Ailog\;
i=1

It should be mentioned that several generalizations, regarding the mathemat-
ical formulas used for the calculation of quantum entropy, have been proposed
over the years. One of them is the quantum Rényi Entropy, whose formula is
used thoughout this project.

1.10.1 Rényi entropy

The Rényi Entropy, developed by Hungarian mathematician Alfred Rényi, was
introduced on axiomatic grounds as a generalization of Shannon entropy. For a
discrete probability distribution P = (p1,...,pn), the Rényi Entropy of order a
(a > 0) is defined as:

1 .
Ho(P) = ——log(y _pf)
=1

This definition may be extended to continuous random variables X by

1

Ho(X) = 1—a

log(/fX (z)%dx)

Unlike the discrete case, the value of the Rényi Entropy may be negative
for continuous random variables. Therefore, the Rényi Entropy is typically only
used for cases of discrete variables.
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Several special cases based on its order a are mentioned below:

—a=0

The Rényi Entropy Hy of order a = 0 is known as the max-entropy or
Hartley Entropy. It is obvious that is is equal to the logarithm of the number
of probabilities regarding the given classical system.

—a=1
In this case, the expression of the Rényi entropy is perceived as the limit of
a approaching 1. So:

Hy(P) = lim i - log(Zp?))

It should be noted that the Rényi Entropy of order a = 1 results in the
Shannon Entropy, as:

Hy(P) = lim(

a—1 1 log Zpl _(Z Y23 logpz)
i=1

So, the Rényi Entropy may be thought of as a more fundamental concept of
which Shannon Entropy is just an important special case.

— a = 00
As in the case of a = 1, the Rényi Entropy of order a = oo is perceived as
the limit of a approaching co. So:

H(P) = lim ( log Zpl = —log(max{p;})

This case is known as the min-entropy, since it converges to the negative
logarithm of the probability of the most probable outcome.

A few notable theorems regarding the classical Rényi Entropy are presented
below:

"The Rényi Entropy H,(P) is a continuous function is P for a > 1 and
discontinuous for a < 1"

‘"Let a € (0,1] and let P be a probability distribution over Z,.Then there
exists a sequence of distributions P,, converging to P with respect to the total
variation distance, such that, for arbitrary r € [0, oo],

lim H,(P,) = H.(P)+r

n—oo

"H,(P) is a convex function in P for a < 1 and is neither convex nor concave
fora > 1."
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In the quantum setting, the Rényi Entropy S of order a is given as:

Salp) = T log(Tr ("))

—Qa

with p being the density matrix of the system. The special cases of order a
of this definition are:

— The quantum Rényi Entropy of order a = 1 converts to the von Neumann
entropy as:

S1(p) = lim (

a—1'1—a

log(T'r(p*))) = =Tr(plogp)

—The Rényi Entropy of order a = oo results in the min-entropy as well,
since:

So(p) = lim (3——log(T7(p%))) = —log(|loll)
with [|-]] denoting the operator norm.

A complication regarding the quantum domain is that the values for the
entropy must usually range between 0 (pure state) and 1(maximally entangled).
However, the dimension n of the reduced density matrix p; may be greater than
2, resulting in the entropy becoming greater than 1. Therefore, the base of the
logarithm used in the entropy formula is n, thus limiting the value of the Rényi
Entropy between 0 and 1.

It should be mentioned that the phenomenon of entanglement is a specific
particularity of strong quantum correlations, some aspects of which can be char-
acterized by the values of entropies of the subsystem states [18]. Therefore, the
calculation of entropy and the assessment of the amount of entanglement of a
bipartite quantum system occurs from the perspective of a chosen subsystem
with the use of a reduced density matrix.

1.11 Schmidt decomposition of quantum states

Considering any orthonormal basis {|k)}{", of H; and any orthonormal basis
{|)}2 of Ha, a bipartite quantum system [¢) in H = H; ®Ha may be expressed
as:

di  d2

V) = ZZCM k) ® 1)

k=11=1
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with ¢; € C being the elements of the matrix of coefficients C'. It is obvious
that the size of this matrix is d; - d2. The singular value decomposition U DVt
T

of matrix C results in ¢y = Z UriDy;(VT)y, where D is a diagonal matrix with
i=1

non-negative elements, U,V are unitary matrices and r is the rank of matrix C.

So, by substitution:
d1 d2 T

V) = Z Z Z Uri Dis (V)i [K) @ |1)
k=11=1 i=1
da

T d1
) =" Du(> Ui k) @ O (Vi |1))
i=1 k=1 =1
da

dy
Define |i;) = ZUM k), |i2) = Z(VT)H [I) and \; = Dy;. Then:
k=1 =1

) = Z)\i li1) ® liz)
i=1

This expression is the Schmidt decomposition of the bipartite quantum
system |1). The bases {[i1)}%, and {|ig)}2, are also orthonormal bases
of the Hilbert spaces H; and Hsy respectively (known as Schmidt bases) and
r = min{dy,ds}. The coefficients A; are non-negative real numbers satisfying

T
Z )\f =1 and are known as Schmidt coefficients. Since A\; = D;;, the Schmidt
i=1
coefficients \; correspond to the singular values of the matrix representation C'
of quantum system |1)).

The number of the non-zero values A; is called the Schmidt number for the
state |¢). The Schmidt number is an important property of a composite quan-
tum system, which in some sense quantifies the amount of entanglement between
the two subsystems of system [¢)) [1]. In particular, this number indicates the
separability of the given system, since:

— If a system is separable, the Schmidt number is 1.

— If a system is entangled, the Schmidt number is greater than 1. A pure
state for which all Schmidt coefficients A; are equal to \iﬁ is called a maximally
entangled state.

It should be noted that the Schmidt coefficients A; are invariant under local
unitary transformations U; ® Us applied to the bipartite quantum state |1).
Therefore, the Schmidt number is preserved under such local transformations.

In addition, the Schmidt decomposition implies that both partial traces of
any bipartite pure state |¢) have the same nonzero part of the spectrum:
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P1 Tra(]) ZA li1) (x|

py = Tri(|¥)( Z/\ li2) (iz]

As a result, the eigenvalues of p; and p, are identical, namely )\?, for both
density matrices. Many important properties of quantum systems are com-
pletely determined by the eigenvalues of the reduced density matrix of the sys-
tem, so, for a pure state of a composite system, such properties will be the same
for both systems [1].

1.12 The "double-wedge" notation

It is known that any bipartite quantum system may be described by the state

ni na ni na

vector |1)) = Z Z Cij |¢;) ®|x;), with Z Z \c”| = 1. Consider the following
i=1 j=1 i=1j=1

state vector [¢) of two qubits in {|0),|1)}:

€10 C11

|¥) = co0 |00) + o1 [01) + 10 [10) + c11 [11) = (|0) [1)) [COO 601} (I?;)

There is an equivalent expression for bipartite systems called "double-wedge"
ket vector | A)). In particular, A is the matrix representation of a quantum
system |¢), whose element in position (,7) is the respective coefficient ¢;; of

[1). So, in this case:
(o my [ e (1) = oo ]}y -1

Due to this system description, a double-wedge ket | A)) must also be nor-
malized as a prerequisite of the completeness theorem, meaning that ||| 4)), =
JAlp = 1.

This "double-wedge" notation exploits the correspondence between quantum
state vectors in H1 ®Hs and nq-ne matrices, where n; and ny are the dimensions
of Hy and Hs respectively. Due to the isomorphism of matrices A € C"*"2 and
vectors | A)) € C"'™2_ it can be seen that:
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ni na ni no

A=3"5"Aliy Gle 1A) =303 Ayl @ 5)

i=1 j=1 i=1 j=1

Similar to the vector representation, there is also a "double-wedge" bra vec-

tor:
o= ({5 5]

Some notable properties of the double-wedge ket notation include the fol-
lowing (Appendix D - Proposition 1):
—(C® K)|A)) = [CAKT))
(C®ID)[A) =|CA))
(I® K)|A)) =|AKT))
AN, = /{(A][A)) = /Tr(ATA) = | All
((A]|B)) = Tr(A'B)
—|A+ B)) =[4)) +|B))

Several notable examples of double-wedge ket systems are presented below:

20 =|% (1 5 )))=galon+10)
=] (¢ 3))) = daton oy
=] (o 5 )))= a0 -1y
M=% (o 1)) =00+

Considering that a bipartite system is in a pure state, its respective density
matrix p is equal to |¢) (1|, which is equivalent to | A)) ((A| with reference to its
double-wedge ket notation. In addition, the calculation of the reduced density
matrices is done according to the following formulas (Appendiz D - Proposition
2):

PL= AAT (2)

py = AT A" (3)
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1.13 The Hadamard product map

Consider the "controlled-not" gate U., mentioned in a previous section. The
action of this quantum XOR-gate onto a chosen set of basis states {|i)} with
i € {0,1} of the Hilbert space of each qubit has been defined as:

Uen |0} |7) = 13} [i ®2 j)

This two-qubit transformation has the following properties:

— it is unitary and thus reversible,

— it is Hermitian,

— 1G9 j =0 if and only if i = j.

However, for many practical tasks of quantum information processing, it is
often desirable to extend the basic notion of such a quantum XOR-operation to
higher-dimensional Hilbert spaces. The desired generalized quantum XOR-gate
(Uzor-gate) should act on two n-dimensional quantum systems. In principle,
this Uz, gate could be defined in a straightforward way, with the exception of
performing i @, j, as shown below:

Usor [i) |7) = [2) i ®n )

Despite the fact that this process is also unitary, it is is not Hermitian for
n > 2, thus becoming irreversible. Therefore, the inverse U,,.-gate has to be
obtained from this U,,,-gate by iteration, meaning that

Upor = Ul = UL, # Ugor

As it turns out, all these inconvenient properties of this initial approach can
be removed by the following definition [5]:

Usor [i) |7) = [2) i ©n 5)

The symbol &,, denotes the difference ¢ — j modulo n. This definition pre-
serves all the necessary properties for arbitrary values of n, namely:

— it is unitary,

— it is Hermitian,

~ 16, j =0if and only if s = j (recall that 4,5 € [0,n — 1]).

An interesting class of nonlinear quantum maps can be implemented with the
help of this U,,.-gate. Together with filtering measurements acting on a target
qubit system, the U,,.-gate induces nonlinear transformations of quantum states
of a control system [5].

Consider the n-dimensional quantum state vectors:
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n—1
. a
) = Y aly=|
-
Qp—1
n—1 bO
. b
6 = D b= "
=
bnfl

with a;,b; € C for every (3, 7).
Recalling the generalized U,,,.-gate mentioned earlier, the following opera-
tion is defined:

V= (]I®PO)UIOT (4)

with Py corresponding to the projector of state |0) in the n-dimensional vec-
tor domain. It should be noted that this transformation is not unitary and so it
does not preserve the norm of the system it acts on. However, it is indeed possi-
ble to realize this transformation in the lab; it is only a question of technological
difficulties and therefore time [6].

The application of this V process on the composite system |¢) ® |¢) is:

V([Y) @ 18) = (I® Po)Usor(([9) @ |9))) — [0 ¢) ® |0) (5)
with
n—1 aobo
Wod) =S (mobli)=| “
=0 anflbnfl

So, this non-linear operation generates the elementwise multiplication (also
known as the Hadamard Product) of the state coefficients of the n-dimensional
quantum state vectors involved. The fact that the norm of the state is not pre-
served poses a problem of minimum significance, since it is possible to normalize
this output if necessary [6].

This Hadamard Product map may also be applied to the combination of two
square complex matrices A, B of the same dimension 7 in a slightly different way.

In particular, the adjoint application of process V (as Ad(V) = Ad((I& Py)Uszor))
on (A ® B) yields the following result (Appendiz D - Proposition 3):

Ad(V)(A® B) = (1& Po)Uror(A® B)UJ,, (1@ Py) — (Ao B)® Py (6)

with o denoting the Hadamard Product of the matrices involved.
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1.14 Oracle algebra

Given a set with IV elements, it is possible to find 1 < k < N marked elements
from this set, via a "black box" (known as oracle) that answers queries [8]. This
"black box" can be described by an oracle boolean function f : {1,2,..., N} —
{0,1}, introduced as the characteristic function of subset I C {1,2,..., N} of
marked items,with f(i) =1 for ¢ € I and f(i) = 0 otherwise.

Let a boolean function f : {1,2,..., N} — {0,1} and the orthogonal vectors

N N N
|z) = ﬁZf(z) i) and |2t) = \/%Z(l — f(2))]9), with n = Zf(z) and
N 1=1 i=1 i=1

nt = Z(l—f(i)),which generate the Hilbert space Hy = V, = span{|z) , |¢+1)}
i=1

and the unit element Sy = |z) (z| + |z*) <xL| The oracle algebra is defined

as the vector space Ay = {M € CN*N:MS,Mt = Sy}, generated by the

elements S1 = |z) (zt| + |2t) (2], S2 = —ilz) (at| + i|zt) (2] and S5 =

|lz) (x| — |at) (a*|.

The matrices S; are Hermitian and satisfy the commutation relations [Sg, Sp] =
2iS,. (cyclically) and [Sp, everything] = 0. It can be seen that the set {Sy, S1, Sa, S5}
is analogous to the set of Pauli matrices and Ay ~ u(2), i.e. oracle algebra is
isomorphic to u(2) matrix algebra [10].
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2 Iterative Entanglement Compression Algorithm

2.1 Introduction

It is a well known fact that every matrix A of digital (classical) information has
a Singular Value Decomposition A = USV*. As mentioned in the appendix,
this process transforms a matrix of dimensions n - m into a sum of rank-one
matrices, whose coefficients are the singular values o; of the matrix:

i=1

with 7 being the rank of the matrix A.

Through the Singular Value Decomposition, the information included in a
matrix A may be compressed by omitting rank-one matrices, whose coefficients
o; are considered to be very small compared to the rest. The "small" criteria
vary between the various applications of this method, depending on their con-
tribution to certain matrix properties. So, the matrix is composed by a linear
combination of fewer rank-one matrices, thus reducing its rank while maintain-
ing the "lion’s share" of the initial information.

This compression method is a vital mathematical tool in the field of digital
image processing. After all, every digital image may be expressed as a two di-
mensional matrix, whose elements correspond to the pixels of the image. The
properties of each pixel, such as brightness (the intensity of light) and color,
are described by real numbers, that are stored in the respective position in the
two dimensional image matrix. The simplest example is the grayscale digital
image. The information contained in this image is considered to be the changes
of brightness between pixels (as shades of gray), with no color information what-
soever. Therefore, the elements of its matrix representation are just single real
positive integer values, ranging from pure black (minimum value 0) to pure
white (maximum value). It should be mentioned that the maximum pixel value
depends on the amount of binary digits (bits) used to describe image brightness
(also known as "bits-per-pixel"). For 8 bits per pixel, the maximum pixel value
is 28 — 1 = 255.

With the use of its Singular Value Decomposition, a grayscale digital image
A may be approximated by a digital image of a lesser rank 1 < k < r, as shown
below:

T k
A= g oiuivg — A = g aiuivg
i=1

i=1

This Low Rank Matrix Approximation is considered to be a lossy com-
pression method of images, since any extra information corresponding to the
rank-one matrices of the last r — k singular values is lost. However, several
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image features are preserved to an extent depending on the amount of "small"
singular value components omitted. The greater the amount, the fewer image
details are preserved in the result, leading to a higher compression ratio.

In this thesis, the matrix representation of a square grayscale digital image
A of dimension n is considered to be the coefficient matrix of a bipartite quan-
tum system | A)) as well. This way, the normalized pixel values of the image
correspond to the coefficients of all the possible states that the system may be
found in, as presented in the following example (with black (H), gray (¢) and
white(O) pixels):

N EE 0N 100)
: E % ; >>=( 00y 01) [10) [11) ) : E g E {(1)(1);
moOm "I 1)

In particular, such an image is viewed as the entangling factor between two
pairs of logy, n qubits from the perspective of quantum information, with each
subsystem having n possible states, as shown below (here image 256x256):

ljokolomonopoqoto)
(laobocodoeo fogoho) .- larbierdier figiha))
lj1kiliminipigity)

Lena

The goal of this iterative algorithm is the compression of the information
contained in an input image A;,, in terms of the amount of entanglement of the
respective bipartite system | A;,)). This process involves two main stages: the
dimensional reduction of the input image down to its Low Rank Approximated
Matrix A; of a certain rank k£ and the iterative application of the Hadamard
product for a number of iterations, on the grounds of the optimum restoration
of the initial entanglement. In other words, the output quantum system | Ay ))
of this algorithm is a better approximation of the original system | A;,)) than
the Low Rank Approximated system | A;)) in terms of entropy.
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2.2 Preliminary material

In order for this algorithm to have any effect, a main prerequisite have to be
met regarding the consideration of the digital image A;, as the double-wedge
ket vector | A;,)). Also, two mathematical processes, that are the cornerstone
of the proposed compression scheme, are presented in this section.

2.2.1 Quantum prerequisite

Consider the Singular Value Decomposition (SVD) of the matrix representation
of a given grayscale image A. This decomposition is A = UD4VT, with U,V
being unitary matrices and D 4 diagonal matrix, the elements of the latter being
the singular values of matrix A. It should be noted that this decomposition
exists for every complex matrix A € M™"™,

In this thesis, the focus lies on real square matrices of dimension 2" (n € N*),
rather than complex ones of random dimension. The reasons for such criteria
include the consideration of these matrices to be both digital images (hence
real) and double-wedge kets describing the entanglement between two pairs of
n qubits (hence square of dimension 2"). In the special case that A € R, then
U,V may be taken to be real orthogonal matrices [13]. As a result, the following
decomposition is considered:

A=UD,VT

However, for any matrix A to be a valid representation of a quantum system,
its norm must be equal to one as a prerequisite attributed to the completeness
theorem. So, in order that the double-wedge ket | A;,)) is to be valid, its ar-
gument matrix A must be normalized in terms of its Frobenius norm since
Il Ain)) |l = ||Ain|l = 1. The norm of initial matrix A is:

T
1Al = 4| >0 =1Dall
=1

So, the normalized version of A is:

A
1Al

Ain =
By substitution of A with its respective SVD representation, it can be seen
that:

|Ain)) = (U@ V)| D)) (7)
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with D being the normalized diagonal matrix of singular values.

Due to the isomorphism of matrices D and double-wedge ket vectors | D)),
the following correlation is valid:

D =Y oili) (il = D)= aili) @) (®)
i=1 i=1
with r being the rank of matrix A.

So, equation (7) becomes:

| Ain)) = ZaiUm ® Vi)

| Ain)) = Zgi |7’/> ® |i//>
i=1

with

and

2.2.2 Orthogonal decomposition

Given the set of r singular values in D, it is possible to mark 1 < k < r of
them via a "black box" (known as oracle) that answers queries. This "black
box" can be described by an oracle boolean function f : {1,2,...,7} — {0,1}.
For the purposes of this thesis, the oracle function f decomposes the set of
singular values o; of the input matrix A;, into two orthogonal sets Ziqrge =
{o; : f(i) = 1} and zgman = {o; : f(i) = 0}. The set zjqrge contains the k
largest singular values, while the set x4 contains the r — k smallest ones. It
should be noted that this type of partitioning occurs in the "black box" for a
fixed value k over different inputs A;,, without any prior knowledge regarding
the way it is performed. Also, it is impossible to interfere with this partitioning
process.
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The singular values o corresponding to each of the sets Zjurge, Tomat are
then assigned as the diagonal elements of the matrices Djyrge and Dy, in a
way that D = Djgrge + Dsmau- Due to the non-increasing order of the singular
values in D (Appendiz B), the matrix Djq,qe has k consecutive elements o in the
diagonal positions 1 through k, whereas the matrix Dg,,q;; has r — k consecutive
elements ¢ in the diagonal positions k + 1 through r.

Following this assignment, the following matrices are defined:

k
Alarge = UDla'rgeVT = Z g |Z/> <7;//| (9)
=1
and
Asmall = UDsmallVT = Z oF |Z/> <i//| (10)
i=k+1

with i) = U i) and |i") = V |4).

While (Ajarges Asmail) = (Asmatis Alarge) = 0, this corresponds to the or-
thogonal decomposition of A;, = Ajgrge + Asmail-

Concerning the respective double-wedge ket form, it is obvious that:
|A2n>> = |Alarge + Asmall>>
|Azn>> = |Alarge)> + |Asmall>>

Since the initial matrix A is normalized into | A;5,)), the addition of | Ajgrge))+
| Asmaur)) is normalized as well. However, each of the terms Ajgrge, Asmau is
not. So, they are normalized into A;, As respectively, as shown below:

A
A, = arge 11
! ” (11)

with ¢ = HAlargeHF = ”DlargeHF =

and

with Cs = HAsmall”F = ||Dsmall||F =

By substitution, it can be seen that:

|Ain>> =q |Al>> +cs |A5>> (13)
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In an analogous way, the diagonal matrices corresponding to the "large" and
"small" components of A;, are normalized as:

Dl = Dlarge
Ci

Ds = Dsmall
Cs

2.2.3 Generating correlation

With the use of an auxiliary qubit (say |0)), it is possible to build-up correlation
between the two orthonormal parts |A;)),|As)) and the states of that qubit.
This process includes the creation of superposition states through the Hadamard
operator, followed by proper projections over the auxilliary qubit. It should be
noted that the availability of the initial state |Xo) = |0) ® | A;p,)) for further
processing is required.

At first, with the use of the Hadamard Operator over the first Hilbert space,
the creation of superposition states between two instances of | 4;,)) takes place
as shown below:

|X1) = (Hel)|Xo)
|X1) = (H®T)(|0) ® [Ain)))
|X1) = H|0) @[ Ain))
1X1) = (24 @] 4;))

L0y ® [ Ain)) +11) @ | Ain))) (14)

[ X1) = 7

As mentioned above, it is possible to establish correlation between the sys-
tems | A;)), | As)) and the states of the auxiliary qubit through proper projec-
tions. In particular, such projections include the transformation of each instance
of | A;n)) into its respective components| 4;)) and | As)). For this purpose, the
following projector operators are defined:

P)large = |Al>> <<Al| (15)

and

Psmall = |As>> <<As| (16)

These projection operators have the following applications:
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I:)large |Azn>> =C |Al>> (17)
Poman |Azn>> =GCs ‘As>> (18)

Such projections are performed with the use of a "controlled" projection
operator over the state |X1), targeting each instance of | A;;,)) and projecting it
into ¢; | A;)),cs | As)) with reference to the state of the auxilliary qubit |0),]1)
respectively. This "controlled" projection operator is shown below:

PselEPO®Plarge+P1®Psmall (19)

Its application upon the state | X7) yields the following result :
|X2> = Psel |X1)
|X2> = (PO & P)large + Pl ® Psmall)(%(|0> |Aln>> + |1> |Azn>>))

[ X2) = %[(Po 10) @ Piarge | Ain))) + (Po [1) @ Plarge | Ain)))+
+ (Pl |0> ® Psmall |Azn>>) + (Pl ‘1> & Psmall |A7.n>>)]

Recall that: Py|0) =|0) , P1|1) =|1) and Py|1)=0,P1|0)=0

As a result:
[X2) = 5(10) @ | A)) +0+0+[1) @cs | As)))

Xy) = %@l 0) @ | A1) + ¢ [1) ® | A))) (20)

It should be mentioned that this specific correlating process is inspired by
the Bell State correlation mechanism |3,,) = (H @ [)Ucy(Ja) ® |b)) for arbitrary
qubits |a) , |b) presented below:

|a> H — |a>

UCFI

o> - |a®,b>

Bell state correlation
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While this mechanism results in the correlation between the values of the
two qubits involved (such as |8yq) = %), the proposed process establishes
correlation between the values of an auxiliary qubit and the components of a

bipartite system.

Auxiliary H Auxiliary
qubit qubit
Bipartite | — | Bipartite

I::‘sel
system | ————| system

Proposed correlation process

This correlation is of paramount importance, since the measurement upon
the auxiliary qubit provides accurate information about the state of the bipartite
system, without the need for further measurements upon the latter.

2.3 Compression process

The process of quantum compression refers to the dimensional reduction of
a bipartite quantum system |A;,)), while preserving most of the amount of
entanglement contained in the system. The dimensional reduction implies the
omission of the components of the Schmidt decomposition of the given bipartite
system, whose coefficients are relatively small compared to the rest. This is the
equivalent process of extracting the respective quantum system corresponding
to the Low Rank Approximation (LRA) A;, of a certain rank k&, out of the initial
Ain. A quantum process is then applied to this system, in an attempt to restore
a significant amount of the entropy of the initial system upon it.

In this thesis, the proposed compression algorithm of quantum information
focuses on the optimum restoration of the initial entropy through the iterative
application of the Hadamard Product between the "large" component of the
previous output (Ayy:); and the "large" component of the initial input A;. The
main idea involves the indirect multiplication of the singular values of these
components, thus inducing an exponential reduction in their size, since their
values are positive numbers between 0 and 1. In this way, the contributions of
the various components to the entropy of the current output bipartite quantum
system become more disproportionate, allowing the omission of several compo-
nents with no relative effect on the general structure of the system.
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The stages for this proposed compression method are analyzed below:

2.3.1 Compression process - Stage 0: Input state

The first step of this process requires that the quantum state | Xg) = |0) ® |0) ®
| AL))®| Ain)) be available for processing. It can be seen that this state consists
of 2 auxilliary qubits |0), the double-wedge ket | A;,,)) as well as its "transpose”
system | A7))).

At this point, the use of a boolean function f with respect to oracle matrix
algebra decomposes the set of the singular values of A;, into two subsets, one
containing the largest k singular values in j4rg. and the other one containing
the rest, meaning the r — k smallest singular values in g4y As mentioned in
a previous section, these sets may correspond to the complementary diagonal
matrices Digrge and Dgman, With D = Digrge + Dsmau. This leads to the
orthogonal decomposition of matrix A, = Ajarge + Asman with:

Alarge = UDlargevT
Asmall = UDsmallVT

Since the initial matrix A is normalized into | A;y,)), the addition of | Aj4rge))+
| Asmanr)) is normalized as well. However, each of the terms Ajgrge, Asmau is
not. So, they are normalized into A;, As respectively, as shown below:

Al _ Alarge
a
As _ Asmall
Cs
with ¢; = ||Ajargell o and ¢ = || Asmait|| -

In an analogous way, the diagonal matrices corresponding to the "large" and
"small" components of A;,, are normalized as:

Dl = Dlarge
Ci

Ds = Dsmall
Cs
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By substitution, it can be seen that:

|Ain>> =q |Al>> + cs |A6>>

Considering that the transpose matrix A’ has the same singular values
as A;p, the use of the same boolean function f on A;f';l yields the following
orthogonal decomposition:

VDlargeUT = (UDlargeVT)T = (Alarge)T
VDsnLallUT (UDsmallVT)T - (Asmall)T

It can be easily seen that the norms of the orthogonal components (Almnge)T, (Agmann)™
are ¢, cs respectively. As a result, the bipartite quantum system corresponding
to AT may be expressed as:

| AL)) = e[ AT)) + es [ AS))

2.3.2 Compression process - Stage 1: Generating correlation

As described thoroughly in a previous section, it is possible to establish corre-
lation between the orthonormal parts | A;)),|As)) of | A;,)) and the values of
an auxiliary qubit with the use of a Hadamard Operator and proper projections
over that qubit. In this case, such operations are extended over two auxiliary
qubits, thus requiring the assignment of each auxiliary qubit to its respective
set of Hilbert spaces regarding the double-wedge ket vectors. Despite the fact
that it is binding for the entirety of this algorithm, the choice concerning the
correlated sets of Hilbert spaces is arbitrary and different choices yield the same
results. For the purposes of this thesis, the auxiliary qubit 1 corresponds to the
bipartite system ‘ Aﬁ>> (position 3) and the auxiliary qubit 2 corresponds to the
bipartite system | A;,,)) (position 4). These results involve the composite corre-
lation between pairs of the orthonormal components | 4;)) ,| As)), | AF)) .| AT))
of [ Ain)), |AL)) and the values of the auxiliary qubits {|0),[1)}.

At first, the action of the Hadamard Operator occurs over the first two
Hilbert spaces, corresponding to the two auxiliary qubits. This application
serves as a means to build-up the correlation mentioned above.

(HoHRI®I)|Xo)=(H®HIx)(|0)®[0)® |AL)) @ |Am)))

(HoHRI®I)|Xo)=HI[0)® H|0) 1|AL)) @I|Awm))

(He Helal)|Xo) = () o (W) @ | AL )) @ | As))
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(H® HRI®TI)|Xo) = 5[(10) + 1)) @ (10) + (1)) @ | AL )) @ | Ain))]

(H © H @101 Xo) = 5(100) @ | 4%,)) @] i) +101) @ | 4%,)) @] i) +
+110) ® [ 47,)) ® [ Ain) + [11) @ | AL)) @ | Ain)))

The quantum circuit corresponding to this application is shown below:

|
|
| Auxiliary qubits
|
|

| Xo> |

| Bipartite system
|

|
| Bipartite system
|

Building-up correlation

Up to this point, the quantum state includes the superposition states con-
sisting of pairs of |Afn>> ,| Ain)). As mentioned in a previous section, the ap-
plication of a "controlled projection" can establish the correlation between the
orthonormal parts of | A;,,)) to the respective auxiliary qubit. In this case, the
"controlled projection" is extended, while the results of its application include
the correlation between pairs of the orthonormal components of | A;,)) , | AL ))
to the bipartite system of the auxiliary qubits.

Recall that the orthogonal decomposition of the quantum systems | A)) , | AT))
is based on the distinction between large and small singular values in sets,
which is attributed to the use of the oracle boolean function f. Since their
respective matrix representations have the same singular values, it is obvious
that the partitioning process results in the same sets zjqrge and Tgmai. Due to
the fact that there is no prior knowldge about the actual "large" and "small"
components generated by the oracle function, each of the orthonormal compo-
nents | A;)), | As)), {A;‘F>> .| AT)) may as well be assigned to one of the abstract
double-wedge ket vectors |large)) and | small)), depending on the set of the sin-
gular values they contain. With this notation in mind, the following matrices
are defined:
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Plarge = |large)) ((large| (21)

and

Psman = | small)) ((small | (22)

Provided that the double-wedge kets |large)) and |small)) correspond to
normalized state vectors, it can be seen that these matrices are indeed Her-
mitian (]Dltlrge = ]Dlargeapjmall = R@mall) and Plzarge = ]Dlargea Pgmall = Psmall;
thus being in fact projector operators. The form of the actual large and small
projectors depends on the matrix, whose singular values are split by the ora-
cle function f in each case. Nevertheless, the use of the |large)) and | small))

notations provides the following general results:

Plarge | Ain)) = ci| A1) (23)
Ponanr | Ain)) = €5 | As)) (24)
Piarge | AL)) = at | AT)) (25)
Poman | A7p)) = ¢s | A7) (26)

Taking the "controlled" projection process Ps.; presented earlier into account
eq. , the "controlled" projection of this scenario has the following form:
19), the "controlled" jecti f thi io has the following f

PselEPO®PO®-Plarge®}Dlarge+PO®Pl®Plarge®Psmall+
+P1®PO®Psmall®le’ge+Pl ®P1®Psmall®Psmall (27)

The application of this "controlled" projection may as well be split into
two separate projections, in accordance with the correlated Hilbert spaces of
the composite system (here 1 — 3 and 2 — 4). So, the following "controlled"
sub-projections are defined:

P13 = PO X I X Plarge ® ]I+P1 & I & Psmall & I (28)
Py =1® Py @1 ® Parge +1® P ®1® Pypan (29)

with
Piot = Pig - Poy = Poy - P13 (30)

At first, the application of the "controlled projection" over the Hilbert spaces
1 — 3 results in (Appendiz D - Proposition 4):
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1
Piy(HRHRIRI) [ Xo) = (e [00)@[ A7) @[ Ain))+e [01) @[ A7) ) @] Ain)) +
+ e |10) ® |AT)) @ [Ain) + o [11) @ | AT)) @ | Ain)))  (31)
In addition, the application of the other "controlled" sub-projection over

the Hilbert spaces 2 — 4 of the previous state is shown below (Appendiz D -
Proposition 5):

X1) = 5(6100) ©] AT)) © | 4} + crea [10) © | AT)) © | A +
+ac,01) © | A7) @ |40) + 2 1) © |AT)) @ |4) (32

This quantum process has the following circuit representation:

]
Auxili bit
uxiliary qubits | i °

Bipartite system Pis |X1>

L
|
|
) |
| |
Bipartite system ! P24 j:

PseL
L — —

Controlled projection

With reference to the Bell State correlation mechanism mentioned earlier,
the corresponding quantum circuit of this extended correlating process is the
following:
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| H | | | |
Auxiliary qubits | | | Auxiliary qubits
[ H [ L I I
| | ' |
Bipartite system | ) P13 | | Bipartite system
| | | I
Bipartite system | ! Pos || | Bipartite system
PseL |
| —————

Extended correlating process

2.3.3 Compression process - Stage 2: Hadamard product

So far, a correlation between pairs of the orthonormal components of | A;y,)),
| Az;l>> and the values of the auxiliary qubits has been established in the quan-
tum state | X7).

After further processing, the state |X1) may be expressed as:

[ X1) = %(012 00)®(I0A4;) | 1)) @(ARI) [I))+ecs [10)®(IRA,) | 1)) @(ARI) [I)) +
+aes [01) @ (I® A 1) ® (A, @ 1) |I) + ¢ [11) © (1@ 4s) [T)) @ (A 9 T) | T)))

which is equivalent to:

| X1) = %'(c? 00)@(I2(A4;@A))(| 1) @|1)))+ercs [10)@ (IR (A2 A)RT)(|T))®| 1))+
+ecs [01) (IR (AR A)RD) (| D)@ 1)) +c2 1)@ (IR (A2 A4,) L) (|I)) | 1))

As mentioned above, there is a quantum process (called V in this thesis),
whose adjoint action Ad(V) upon a combination of matrices A ® B results in
their Hadamard Product and the matrix Fy:

AdV)(A® B) = (Ao B)® Py
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This quantum process is properly extended into a new one V' = I® Ad(V)®I,
which is suitable for application upon the combination of two bipartite quantum
systems in the form of |AT>> ® | B)), yielding the following result:

V([AT)) @ |B) = (Ao B)T)) @ | Ry))

The explicit formula corresponding to the extended Hadamard Product map
V' is (Appendiz D - Proposition 6):

n—1n—1

V=3 S I Gle b 6l @ (o) il @ [0) ¢ (33)

i=0 j=0

With the application of the quantum process I ® V' upon the state | X7 ), the
extended process V' acts on the respective Hilbert spaces corresponding to the
pairs of the orthonormal components A; ¢ of A;,, resulting in their Hadamard
product |(A;s0A;)T)) and the system described by | Py)), as shown below
(Appendiz D - Proposition 7):

1 Xy) = %(c% 00) @ | (A0 A)T))Y @ | Po)) + cics [10) ® | (As 0 A)T)) @ | Po)) +
+acs|01) @ [ (A0 A)T)) @ [ Ro)) + 2 [11) @ | (As 0 A)T)) @ | Bo)))  (34)

Due to the commutative property of the Hadamard Product, it can be seen
that: (As0 A;) = (A0 Ay) = | (As0 A)T)) = | (410 A)T)). So:

[ Xa) = %[C? 100)®] (A1 0 A1) 7))@ Po))+eres(01)+[10)@| (Ar 0 A)T))@| Po)) +
+et 1) @ (A0 A)T)) @ | Ry))] - (35)

As a result of the application of the Hadamard product map, the third set of
Hilbert spaces is now occupied by the possible Hadamard Products between the
orthonormal parts of the matrix A;,, whereas the fourth set of Hilbert spaces
includes a bipartite quantum system described by | Pp)). Since this quantum
system is a common one along the entire linear combination of components,
it may be set aside, resulting in the following equivalent expression for the
quantum state vector | Xs):

| X,) = %[012 100) ® | (As 0 A)T)) + cics(101) + 10)) ® | (A 0 A)T)) +
+2 1) ® [ (As0 A)" )@ | Po))  (36)
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This quantum process has the following circuit implementation:

V!

Elementwise multiplication

It should be mentioned that there is no guarantee that the quantum system
| X2) is a normalized one. This is attributed to the fact that the double-wedge
kets of the third set of Hilbert spaces describe completely different systems
now, without any useful property about the norm of the Hadamard Product.
Nevertheless, for the purposes of this thesis, the normalization process of the
result takes place right before the end of the next stage of the algorithm, ensuring
the validity of the output.

2.3.4 Compression process - Stage 3: Output state

Up to this point, the correlation that was initially established between pairs
of the orthonormal components of | A;,)), | AL, )) and the respective values of
the auxiliary qubits has been passed on to their respective Hadamard Prod-
ucts. This stage involves the assessment of the contribution of each Hadamard
Product to the entropy of the composite system, allowing the omission of com-
ponents whose contribution seems insignificant. In this way, the "lion’s share"
of the entanglement is preserved, while compressing the entire system in terms
of dimensional reduction.
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The density matrix p of the composite quantum system |X5) is defined as:
p = |X2) (Xs

This quantum state spans over 6 Hilbert spaces, 2 corresponding to the aux-
illiary qubits, 2 corresponding to the bipartite system of the Hadamard Products
and 2 corresponding to | Py)). At this point, the omission of the last subsystem
regarding | Py)) takes place with the use of partial tracing, thus focusing more on
the study of the remaining components that contain the processed information
about the initial image A;,. The application of the proper partial trace over
the density matrix p is:

Trse(p) = Trs6(|X2) (X2|)

This reduced density matrix T'r5 ¢(p) describes the correlated system consist-
ing of the auxiliary qubits and the Hadamard Product systems ’(Al ) Al)T>>,
| (A0 A)T)), | (As 0 A5)T)). However, from a rather abstract point of view,
the system described by |(Al o AZ)T>> is relatively more interesting than the
rest, since it may as well be considered as the optimum approximation of the
composite system | Xo) in the same way that the matrix A; is to the initial ma-
trix A;,. Therefore, for the purposes of this thesis, it is assumed that the "lion’s
share" of the quantum information of the composite system is contained in the
respective component of the system } (4;0 Al)T>>, which allows the omission of
the rest components. This is feasible with the direct application of the proper
projection regarding the auxiliary qubits upon the reduced density matrix, as
shown below:

(Po® Py ®@T@1)Trs56(p)(Po ® Py @I @I

The result of this process is the following density matrix:

ic?(|00> (00 ® | (Ar 0 A)™Y) (Ao A)™ )

This density matrix corresponds to bipartite quantum system spanning over
4 Hilbert spaces, 2 regarding the auxiliary qubits and 2 regarding the double-
wedge system |(A; 0 A))T)). Like the subsystem |Py)) before, the first one
corresponding to the auxiliary bipartite system serves no purpose whatsoever
and it is bound to be omitted, since there is no need for correlation between the
various components of the quantum system | A)) anymore. The result of this
action is the following reduced density matrix:
P Trl 2(1et(|00) (00 @ | (A0 AT >> {{(A1oA)T|))
f=1ct. Trl 2(100) (00] @ | (A 0 A)TY) (((A1 0 AT )
4. Tr(]00) (00]) - | (4,0 A)) >><< (4,0 A)) T|
¢ - (00][00) - | (A0 A)T)) ({(Ar 0 A)T |

o=
/
P
/
P = 4€
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o= heb 1o (Aro A)T)) (Ao AT |

= et (Ao A0 (Ao )T

It should be mentioned that the bipartite quantum system described by this
density matrix is also not normalized. The normalization of this state implies
that its density matrix meets the requirement Tr(p’) = 1 as an equivalent
interpretation of the completeness theorem. So, the trace of this density matrix
is:

Tr(p') =Tr(3ct | (Ao A)T)) ({(Aro A)T])
Tr(p') = %c? Try (] (A oAl)T>> ({(A10 A)T])
Tr(p) = Lt Trf{Are 40T (4o 40T
Tr(p') = %c? “Tr[(Ay o AT - ((A; 0 A)T)T] (since (A; o A;)T is real)
Tr(p') = 3¢ - Tr[(Ajo A)T - (40 A)]
1
Tr(p) = ch ||(Al o Ay) ”F
In order for Tr(p’) = 1, then p’ becomes p,,,;:
Pout = fzp)
1t AloAl)T>><<(AloAl)T|
Pout = LT (A0 A) T
oAy (i |
out —

(A 0 A)T[%

This density matrix corresponds to the normalized quantum system:

[ (Ao A)T))

[ Aout)) = 1045 AT,

This bipartite quantum system is considered to be the output of this algo-
rithm after one iteration. It should be noted that the rank r _out of the matrix
(A; 0 A))T is bounded between 1 and k?, since:

rank(AoB) < rank(A)rank(B) = rank(Aj0A;)) < rank(A)rank(A;) = r_out < k?

Provided that k* < r_in, with r in being the rank of the initial matrix
Aqn, the dimensional reduction between the Schmidt decompositions of | A;p,))
and | Ayyt)) is obvious. A simple table schematic regarding the correspond—
ing Singular Value Decompositions A;, = Ui DinViL, Aout = Uput Dout Vil
presented below (considering dimension n):
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A O 0 0 0 0 7]
0o ... 0 0 0 0 log,
2
| Ain)) = (10g2 n qubits) Uin 0 0 .. 0 0 0 VT
0 0 0 A in O 0 wm .
0 0 0 0 0.. 0 qubits
0 0 0 0 0 .0
At 0 0 0 0 0
0 ! 00 0 log, n
i 0 0 A . 0 0 0 2
| Agut)) = (logan  qubits) Uy 0 0 760“ 0 o0 o Ve, |
0 0 0 0 0.. 0 qubits
00 0 0 0 .0

2.3.5 Compression process - Iterations

This compression process may be applied iteratively to the input image A;,.
In particular, each iteration results in an output quantum state vector in the
form of | Aput)) = | ((Aro...0 A;); 0 A)T)), which, in turn, becomes the input
quantum system to the next iteration of the algorithm as:

[ Xo0) = 10) ©10) @[ Aout)) ® | A))

The physical implementation of an iterative quantum algorithm may be split
into consecutive levels, each corresponding to an iteration of the algorithm, as
shown below:

|0> — — 0> |0> — — |0>
0> — — 10> o> — — (0>
& T
_literation#1|___IA°A>>  |yteration#2|
|AinT>>_: _ [((Ae AP A)>>
|Ain>>_: TPU>> |Ain>>_: — |Pg>>

Iterative quantum circuit
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It should be mentioned that the oracle value k chosen remains fixed for every
iteration. The iterative process of this figure has the following stages:

Iteration #1:

—At first, the algorithm has two inputs, | A;,)) and |AZ;L>> Along with
two auxiliary qubits set to |0),they form the quantum state |Xo) = |0) ® [0) ®
| AT)) ® | Ain))-

—Using a boolean function with the parameter k, an oracle decomposes each
of these inputs orthonormally into |A,;)),| As)) and | AT)),[ AT)) respectively.
A "controlled projective" process then establishes correlation between the these
components and the auxiliary qubits.

—The application of the process V' induces the Hadamard Products between
the orthonormal terms.

— During the output stage, the subsystem containing the Hadamard Prod-
uct term | (A, o A)T)) is extracted.

—_————

Iteration #2:
—This time, the inputs of the algorithm are | A;,)) and | (4; o A)T)). Along
—_———

with two auxilliary qubits set to |0),they form the quantum state |Xo) = |0) ®
0) ® | (Ao A)T)) @[ Am)).
—

—Using a boolean function with the parameter k, an oracle decomposes each
of these inputs orthonormally into | A;)),| As)) and | (4; 0 A)f)),| (Ao A)T))
respectively. A "controlled projective" process then establishes correlation be-
tween the these components and the auxiliary qubits.

—The application of the process V' induces the Hadamard Products between
the orthonormal terms.

— During the output stage, the subsystem containing the Hadamard Prod-
uct term | ((A; o Ap) o A))T)) is extracted. It can be seen that the matrix

((A;0 Ap);0 AT is formed as the Hadamard product of the "large" component
of A; o A;, whose rank is equal to k due to the oracle boolean function f, and
the "large" component A;, also of rank k.

In general, the output of this algorithm after a number of iterations is com-
posed of the components shown below:
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AI AI A| ..... A|
l

| Iteration 1 |

!
)

(ArA) A A
|l lteration 2 l|
((A|cAl.)|cA|). ..... A
............... A
| &erationxl |
Oulgput

(--(Ap. ..)|GA|)\GA\)T

Output components

For example, the outputs of this algorithm for the first 3 iterations are:
|Aout>>1 = (Ao Al)T

|Aout>>2 = ((Al © Al)l o Al)T

| Aout))s = (Ao Ap)io Ap))io AT

It should be mentioned that this iterative feature of the algorithm causes a
great demand in quantum information resources (such as auxiliary qubits).
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2.4 Results

After extensive experimentation using the MATLAB interface, a few notable
results are presented below:

No.1l: "Lena"

The INITIAL image
Dimensions : 512x512
Rank : 507
Entropy : 0.382491

Lena->INITTAL image

The LRA image for & = 10
Rank : 10
Entropy : 0.176076
Entropy Percentage of initial : 46.03%

Lena->LRA (k=10)
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a BETTER image
Rank : 100
Iterations : 3
Entropy : 0.319821
Entropy Percentage of initial

Lena->BETTER image

OPTIMUM image

Rank : 100

Iterations : 8

Entropy : 0.340687

: 83.62% Entropy Percentage of initial : 89.07%

Lena->OPTIMUM image

The graphs for the entropy percentages with respect to the initial system
and the ranks of output vs the number of iterations for the value k£ = 10 are

shown below:
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Entropy percentages in terms of the initial entropy

[ /vrea of Better Entropy
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Lena->Entropy Graph (k=10)
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No.2: "Schroedinger"

The INITTAL image
Dimensions : 256x256
Rank : 256
Entropy : 0.299594

Schroedinger->INITIAL image

The LRA image for k =6 The LRA image for k=7
Rank : 6 Rank : 7
Entropy : 0.142830 Entropy : 0.156270

Entropy Percentage of initial : 47.67% Entropy Percentage of initial : 52.16%

Schroedinger->LRA (k=6) Schroedinger->LRA (k=7)
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Entropy Percentage of initial : 81.53%

a BETTER image (k = 6) ...
Rank : 36
Iterations : 2
Entropy : 0.244263

a BETTER image (k=7) ...

Rank : 49

Tterations : 2
Entropy : 0.263798

Entropy Percentage of initial : 88.05%

Schroedinger->BETTER(6)

Schroedinger->BETTER(7)

The graphs for the entropy percentages with respect to the initial system vs
the number of iterations for the values k = 6, k = 7 are shown below:

Entropy percentage %

Entropy percentages in terms of the initial entropy

[ Area of Better Entropy
—&— Entropy of Cutput
= =Entrapy of AL

Entropy of BETTER image

0 10 20 30 40 50 60 70 80
Iterations

Schroedinger->Entropy Graph (k=6)
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Some worthmentioning comments regarding the abovementioned results are
the following:

—The rank of any output system | A,,:)) (no matter the number of itera-
tions) is limited by the value of k. Since any output matrix ((4;0...0 A;);0 A;)T
is formed as the Hadamard product of the "large" component (...(4;0...);0 A;);
(whose rank is equal to k due to the oracle boolean function) and the "large"
component A; (also of rank k), the upper bound for its rank is set to k2, due to
the property regarding the Hadamard Product:

rank(A o B) < rank(A)rank(B)

—While every image A;, is considered to be the bipartite quantum system
| Air)), the entropy in question is calculated with respect to its first subsystem,
with the use of the reduced density matrix p;. The specific formula used for
the purposes of this thesis is the Rényi Entropy of order a = % The reason for
the assignment of this value to the order a becomes clear in the proof of the
following equation.

Consider the Singular Value Decomposition of a real matrix A describing a
bipartite quantum system as A = Us D4V}, with Uga, V4 real orthogonal and
D4 diagonal matrices. The Rényi Entropy of order a = % with respect to its

first subsystem is (Appendiz D - Proposition 8):

Sr(p1) = 2log, (Tr(Da)) = 2log, () 74) (37)
i=1
with r being the rank of matrix A and o; its (normalized) singular values.
This specific formula is used for the calculation of the entropy of the initial,the
LRA and every output quantum systems of this algorithm. The base of the
logarithm used in the entropy formula is n (the dimension of the image A;,),
thus limiting the value of the Rényi Entropy between 0 and 1.

—The upper bound for the entropy of a quantum system of dimension n,
composed with just k singular values is equal to log, k, in terms of any Rényi
entropy of order a. In general, the entropy of any rank-k approximation of a
quantum system is bounded by (Appendiz D - Proposition 9):

0 < Sr(py) < log, k (38)

—The goal for the optimum entropy restoration is achieved at the expense of
image quality. This is attributed to the iterative application of the Hadamard
Product (aka elementwise multiplication) upon the respective Low Rank Ap-
proximation components of (A; o ... o A;); and A;, while preserving the unit
norm of the result in the process. The more iterations are needed, the greater
the gap between "high" and "low" pixel values becomes. Consider the following
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3D representations of intensity (z axis) versus image position (x,y) of the Lena
images shown above:

Image Intensity vs Position (x,y)

Lena->LRA 3D

Image Intensity vs Position (x.y) Image Intensity vs Position (x.y)

™
—

500
‘"'\\\
200

500
st m\\\

it

= R S 7t

0o 0o

Lena->BETTER 3D Lena->OPTIMUM 3D

The Hadamard Product application results in more pixels being considered
as black, with only the relatively high value pixels remaining intact. This way,
the fewer visible edges are preserved and so, the more distorted the output image
becomes.

It should be mentioned that the pixel value range of the output image A+
is properly adjusted to that of the initial image A using a custom MATLAB
function.

—The red highlighted areas in the entropy graphs represent the entropy
percentage values between those of the Low Rank Approximated system |A;))
(black lower bound) and the initial image (always 100% - upper bound). It
can be seen that, as the rank k of the LRA system increases, the width of
this band decreases (see Schroedinger->Entropy Graphs). This is attributed
to the increase of the entropy of the LRA system as its rank rises, gradually
"bridging the gap" with the entropy of the initial system and practically "closing
it" after a certain rank, depending on the image properties and singular value
distribution. As a result, the Hadamard Product map as well as its iterative
application become more redundant as the value k rises, since the "lion’s share"
of the initial entropy is already restored in the approximated quantum system

| Ar)).-
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3 Conclusions

In conclusion, it is feasible to compress most of the amount of entanglement
contained in a bipartite quantum system in fewer components of its Schmidt
decomposition. In the special cases of digital grayscale images A;, being the ma-
trix representation of this bipartite system, the proposed algorithm compresses
the entropy of the system | A;;,)), while preserving its main image characteristics
as well. This property is attributed to two factors:

- the Schmidt coefficients of a given system | A;,)) corresponds to the Sin-
gular values of its respective image matrix A;,. So, the quality of the Low
Rank Approximation of the image A; is analogous to the quantity of entropy
contained in the respective approximation of the initial system | A;)) for a given
rank k.

- the process used iteratively on the grounds of entropy restoration is the
Hadamard Product. This type of product preserves a substantial amount of
the initial image details, which is proportionate to the number of its iterative
applications.

Based on the given results, the parameter k, corresponding to the amount of
Schmidt coefficients of the approximated system | A4;)), is of paramount impor-
tance to the performance of this algorithm, with a trade-off constantly looming
between the image quality of the output and the probability of needing a so-
lution for a better preservation of the entanglement after a few iterations. In
particular, small values for k have a higher chance of yielding one or more bet-
ter solutions regarding the restoration of the initial entropy, with the quality of
the respective images being rather poor. On the other hand, large values for k
results in fewer chances for a need of a better solution entropy-wise, but with a
respective image representation of much greater standards. In fact, the quality
of the output image depends greatly on the number of consecutive applications
(iterations) of the Hadamard Product ((4;0...0 4;); 0 A;)T needed for a better
(or the optimum) ratio of entropy preservation.

It should be mentioned that there is no guarantee for a better solution for
every possible value k for any given image A;, of rank r. While k£ < r, the
rank of the output bounded by k% may actually attain an exponentially higher
value, even r, thus violating the dimensional reduction criterion of this com-
pression algorithm. As a consequence, only relatively small values for £ << r
are recommended, so that k2 < r as well.

Still, the application of this algorithm may be extended to systems described
by images of random dimensions. Such double-wedge kets may be the entangling
factor between two sets of random number of qubits. Also, the order a of the
Rényi Entropy may be fixed (a = %) for the purposes of this thesis, but it might
as well be a contributing factor to the entropy restoration scheme.
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Appendix A: The Hadamard product

The Hadamard Product is simply the entrywise multiplication of two or
more matrices, according to the following definition:

"Let A and B be m - n matrices with entries in C. The Hadamard product
of A and B is defined as (A o B)ij = AjjB;j forall 1 <i<m,1<j<n"

The Hadamard Product inherits the same benefits (and restrictions) of mul-
tiplication in C [15]. It is obvious that the matrices involved in a Hadamard
Product need to be the same size, but not necessarily square.

Some useful basic properties of the Hadamard Product are the following:

—"Let A and B be m - n matrices with entries in C. Then Ao B = Bo A."
Proof: This follows directly from the fact that the multiplication in C is

commutative. For every element of the matrices, it can be seen that:
(A o B)” = AijBij = Biinj = (B o A)ija therefore Ao B = Bo A.

—"The identity matrix under Hadamard Product is the m - n matrix will
all entries equal to 1, denoted as Jy,y,. That is [Jy,]i; = 1 for all 1 <4 < m,
1<j<n"

Proof: Take any m - n matrix with entries in C. Then [Jy,, 0 Alij = [Jmnlij -
[A];; = 1-[A];j = [A]ij, and s0 Jp,, 0 A = A. Due to the commutative property
of the Hadamard Product, J,,, c A = Ao J,,, = A. Therefore, the matrix J,,,
is defined as the identity matrix under the Hadamard Product.

—" Let A be an m-n matrix. Then A has a Hadamard inverse, denoted A, if
and only if A;; #0 for all 1 <4 <m, 1 < j <n. Furthermore, A;j = (Aij)’l.”

Proof: Let A be an m-n matrix with Hadamard inverse A’. This means that
Ao A = Jmn That is [A o Al]ij = [A]” . [A/]ij =1= [A/]” = ﬁ = (Aij)_l,
which is only possible when all entries of A are invertible. In other words,
[Al;j #0forall 1 <i<m,1<j<n.

Also, take any m - n matrix A such that [A];; # 0 for all 1 < ¢ < m,
1 < j < n. Then, there exists (A4;;)~! for all entries 4,j. This implies that
Aij - (Aij)~t = (Ai;)" - Aij = 1, and so A has a Hadamard inverse A’ defined
by A;j = (A;;)7! for all 4,j.

—(Linearity)"Let a € C and A,B,C are m-n matrices. Then Co (A+ B) =
CoA+CoBanda(AoB)=(aA)oB = Ao (aB)"

Proof:

As for the first part:

[Co(A+ B)|i; = [Cli;[A+ Bl

[C o (A+ B)|ij = [Clij([Ali; + [Blij)
[Co(A+ B)ij = [Clij[Ali; + [Cli;[Blij
[Co(A+ B)]m =[Co A]ZJ [Co B]ZJ
[Co(A—i—B)]” [COA"’COB]U
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As for the second part:

[a(A o B)lij = a[A o Bly;
la(A o B)i; = a[A];;[Bl;;
[a(A o B)i; = [adli;[Bli;
la(A o B)li; = [aA o Bl;;

and

[a(A o B)lij = alA};;[Bli;
[a(A o B)];; = [AlijalBli
[a(Ae B)li; = [A ]LJ[aB]U
[a(Ao B)l;; =[AocaBl;j

—"Let A and B be square matrices of size n. Then rank(AoB) < rank(A)rank(B)"
Proof:
For the purposes of this proof, the rank-one decompositions of A and B are
required. Suppose A has rank p; with singular values A\g, 1 < k < n, and B
has rank p, with singular values A;, 1 <1 < n. Then, according to the Singular

Value Decomposition:
P1

A= Z Mezryi and B = Z Nowf
k=1
where x,v; the left smgular vectors and yx,w; the right singular vectors.
Then:
[Ao Bl;; = [A]w [Blij

[A o BJ;; Z)\kxkyk ij Z)\wlwl
P1 102

[Ao B Z Z )\kxkyk ij )\lUlwl ]

k=11=1
P1 P2

[Ao Blij => > () o (M) (yk 0 wi) )i

k=11=1
P1 P2

AOB ZZ ((Awzk) o (M) (Y Owl)T]ij

k=11=1
So, A o B has at most rank p, p, = rank(A)rank(B).
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Appendix B: The Singular value decomposition

The Singular Value Decomposition (SVD) is matrix decomposition that was
defined many times from independent mathematicians through the ages. It was
finally published in its latest form by Eugenio Beltrami in 1873, Gamille Jordan
in 1875, J.Sylvester in 1889, L. Autonne in 1913 and C. Eckart and G. Young
in 1936. The definition proposed by C.D.Meyer is the following [14]:

"For every matrix A € C™™ of order r, there are unitary matrices U of
dimension m - m, V of dimension n -n and real diagonal matrix D of dimension
r-r, with D = diag(o1,02,...,0,-1,0,) such that

_ D'rwr O T
a=o[Pr Oy

with oy > 09> ... > 0,1 > 0,."

The values o; are called the singular values of A and are real non-zero values.
Also, the column vectors of the unitary matrices U,V are called left- and right-
singular vectors respectively.

Low rank matrix approximation

Let the singular value decomposition of a random matrix A be:

_ Dra:r 0 T
A—U[O O}V

with D,,, being the diagonal matrix containing the singular values o; in a
descending order along its main diagonal

op 0 .. 0 0
0 o2 .. 0 0
Dyyr=1... .. ..
0 0 e Op_1 0
0o 0 .. 0 O

Theorem: The matrix A may be represented as the sum of r rank-one ma-
trices, as shown below:

I
_ P |
A= g ojU;V;
Jj=1

with the vectors u;,v; being the column vectors of the unitary matrices U,V
respectively. This theorem implies that every matrix A may be approximated
by the sum of rank-one matrices of equal dimension.

Theorem: For every 0 < k < r, the following matrix Ay is defined:
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k

_ T

A = g o UV}
=1

This approximation is called Low Rank Matrix Approximation. So, this
process leads to a matrix Ay, which is a matrix of rank k& < r. As it turns out,
every other matrix B of rank k has a greater L2 — norm difference from A than
that between Ay and A, meaning that:

|4 = Axlly < [|A = Bll,

A useful property is that the L2 —norm of the difference between A and Ay
is equal to the k 4 1-th singular value of A, as:

|A = Aglly = or41

In the special case that &k = r = min{m,n}, then ox11 = 0, leading to
|A — Agll, = ok+1 = 0. In other words, if the approximation process takes into
account every rank-one component matrix of A, then the matrix Ay is identical
to the matrix A, resulting in a perfect approximation.

Several theorems regarding the Singular Value Decomposition in general are
presented below, some of which are accompanied by their proof.

Theorem:
"The non-zero singular values of a matrix A are the sqaure roots of the
non-zero eigenvalues of the matrices AAT and ATA."

Proof:

Let the singular value decomposition of A be A = UDV', with D having
the singular values of A along its main diagonal. Then:

AAY =UDVT(UDVT)T

AAT =UDVIVDIUT

AAt =UDD'UT

However, the matrix D is a real diagonal matrix, so:

AAY = UD?*Ut

This way, the unitary U resembles a similarity transformation, thus the
eigenvalues of AAT are included in D?. If ); are the eigenvalues of AAT, then

0—3:)\1 :>Ui:\//\>i
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Theorem:
"The rank r of a matrix is equal to the number of its non-zero singular
values."

Proof:

It is known that the rank of a diagonal matrix is equal to the number of
its non-zero elements. Regarding the singular value decomposition of A into
A = UDVT, it can be said that the matrices U,V are unitary, thus being full
rank. The matrix D is diagonal, so the rank of A is the same with the rank of
the matrix D, which is equal to the number of its non-zero singular values.

Theorem:
"The Frobenius norm of a matrix A is equal to the square root of the sum
of the squared singular values"

|Allp = /o? + 03 + ...+ 2
Proof:
Let the singular value decomposition of A be A = UDV . Then, its Frobenius
norm is equal to:

1Allp = [UDV o = D],

I

since the Frobenius norm is similarity invariant. So:

|Alr = IDIlp = /o1 + 03+ ...+ 02

Theorem:

"For every k with 0 < k£ < r, the Frobenius norm of the difference of the
matrices A and Ay, is equal to the square root of the sum of the squared singular
values o; for ¢ > k + 1. This means that:

1A= Aullp = \JoRy + 024+t 0

Proof:

Let the singular value decomposition of A be A = UDV'. Then, according
to the Low Rank Matrix Approximation theorem, the matrices A and Ay may
be expressed as:

r k
_ o _ |
A= E ojU;V; and A, = OjU;V;
=1 i=1
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with

So, taking the previous theorem into account, the Frobenius norm of the
difference between the matrices A and Ay, is equal to:

A~ Ak”F = \/U%-«-l +U%+2 + ...t o?

Theorem:
" For every matrix A € CN*NV | the absolute value of its determinant is equal
to the product of its singular values."

N
det(4)| = [[ o;
j=1

Proof:

Let the singular value decomposition of A be A = UDVT. Then its deter-
minant can be expressed as:

|det(A)| = |det(UDVT)| = |det(U)| - |det(D)]| - |det(VT)|

Since unitary matrices have determinants equal to one, it can be seen that:

N
|det(A)| = |det(D)| = Haj

Theorem:
" Every matrix A € CM*N has a singular value decomposition. The singular
values o; are uniquely defined."
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Applications of SVD

The singular value decomposition, along with the low rank matrix approxi-
mation theorem, are considered mathematical rules of paramount importance,
that may be put to a variety of uses. The two basic features that make them so
important include the relatively easy calculation of the singular value decompo-
sition as well as the trimming of the smaller singular values in low rank matrix
approximation, while still maintaining the best possible rank k matrix. Besides
their contribution on the theoretical field, such properties become extremely
useful when dealing with matrices of higher dimensions (e.g. dimensions being
in the thousands).

The solution of systems of equations, search engines, data compression-image
processing are just a few of the many applications of SVD and Low Rank Ap-
proximation. In particular, the application concerning the data compression-
image processing is analyzed below:

Suppose that there is an image A that needs compression. It is known that
every image A may be expressed as an m - n matrix, whose element values are
determined in terms of the respective pixels forming the image. So, in a way, an
image is nothing more than a data matrix. The elements of this matrix are real
numbers and their values depend on properties of the pixels themselves, such as
brightness or color. In the special case of a grayscale image, the matrix element
values range from 0 (black) to 255(white), if that image is encoded according
to the rule of "8-bit-per-pixel" (leading to 2% = 256 variations of gray).

It can be seen that such a matrix needs m - n real values for its complete
definition. However, if its dimension become even greater, the number m - n
becomes huge, resulting in the storage and processing of such information being
too difficult. The goal of the compression is the approximation of such matrices
with fewer elements than m - n, thus making its storage and processing much
easier.

Let A be a data matrix of dimensions m-n, with the following singular value
decomposition:
A=UDV!
with the matrix D including all of the singular values of A, even the zero
ones as shown below:
D = diag(0o1,09,...,00-1,0,,0,...,0)

Then, according to the Low Rank Approximation theorem, the matrix A
may be approximated by the matrix Ay, that is the sum of rank-one matrices,
as shown below:

T k
A= Zajujv; and A, = Zajujv;
j=1

j=1
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with 1 <k <r.

It can be seen that the values needed for this approximation include & sin-
gular values and k + k = 2k singular vectors. So, recalling that every singular
vector involved in a rank-one matrix has m and n values, it is obvious that
km + kn+ k = (m + n + 1)k values are required for the representation of the
low rank approximation Ag. It is quite clear that the number (m + n + 1)k is
less than m - n, with the difference rising, depending on the choice for k.

While this is a lossy approximation of A, the approximation error is defined
as the relative information lost during the process. In particular, the following
matrix is defined:

T
_ T
Sy = Z ojU;V;
j=kt1

This matrix represents the information lost to the low rank approximation
of a matrix. So, an relative error variable err is defined as shown [16]:

So, depending on the margin for error of a specific application, the optimum
value for k is chosen.
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Appendix C: Entropy-optimum low rank approximation

For the purposes of this section, let A be a real matrix of dimension n = 2*
with singular value decomposition A = UDVT. The reasons for such arbritrary
requirements include the consideration of this matrix A as a digital grayscale
image (with each element corresponding to a variation of gray) as well as the
assumption that this digital image describes a bipartite quantum system, in
terms of a double-wedge state vector | A)).

It is a well known fact that the Low Rank Matrix Approximation Ay of
any matrix A is considered to be the best approximation of A of rank k, with
reference to the norm of the difference between A and Ay ||A — A||. However,
nothing can be deduced about the entropy of the bipartite quantum system,
described by the double-wedge ket | A)). In the special case of the rank of the
approximation being k = 2, there is a quantum algorithm that increases the
entropy of the quantum system | Ax)) with the iterative application of a certain
non-local process. Its goal is the increase of the entropy restoration ratio of the
approximation as close to 1 as possible. That is why this algorithm results in
the entropy-optimum low rank matrix approximation | Ap)).

Let the low rank matrix approximation of the matrix A be Ay = UD,VT =

2
Z oiuwiT. This matrix has rank £ = 2. For such a matrix to correspond to the
=1

bipartite quantum system | As)), its normalization is required, as shown below:

Ay = A2l p =1 = ||D oi=1= of+03=1

i=1

Such values for o1, 02 may as well be expressed in terms of sinusoidal func-
tions, since 07 + 05 = 1 = cos?(#) + sin?(f) for every 0 € [0,27). In particu-
lar, since the prerequisite o1 > o9 stands, it is defined that o1 = cos(f) and
o9 = sin(f), with 6 € (0, §], where cos(f) > sin(f) in that value range. So, the
bipartite state vector | A2)) may be written as:

| A2)) = [UD,VT)

|42)) = (U@ V) |D2))

cos(0) 0 0 0
0 sin(f) 0 ... 0

A0y = (UeV)|| o 0 0 .. 0 >>
0 0 O 0

It turns out that the amount of entanglement included in a quantum system
depends on the distribution of its singular values. In particular, the more it
resembles the uniform distribution, the higher the level of "uncertainty" of the
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system rises, thus the greater its entropy becomes. Using the above representa-
tion for the quantum system | A5)), it can be seen that the increase of the argu-
ment 6 of the sinusoidal function , up to g = 7, causes the shrinking of the first
singular value o1 = cos() and the increase of the second one oy = sin(6), while
preserving the various initial restrictions such as 03 + 03 =1 = ||4s], =1
and o1 > 09. In this way, the distribution of the two singular values resembles
the uniform one even more, which leads to the increase in the entropy of the
quantum system.

So, for a given angle ¢, the following process may be applied to the system
| A2)),in order to increase its entropy:

Ushige_gen = (UBV)(cos(¢g) 12182 " —sin(¢)(Z@I#2 082"~ 1) x €2 leea ) (UT oV T)

with n being the dimension of the square matrix A (n = 2%). It is obvious
that this non-local process is hermitian, but not unitary.

The application of this process is shown below, for the special case of n = 2:
Ushift_gen | Az2)) = [(URV)(cos(¢) 1% —sin(¢p)(Z@D) X *)(UT@VT)] [UD:VT))
Ushift_gen | A2)) = [(URV)(cos(dy)I¥? —sin(¢) (ZRT) X #?)] LUTUD2VTV>>
Ushige_gen | A2)) = [(U @ V)(cos()I®* — sin(¢g)(Z @ 1) X“?)] | D2))

Ushift_gen | A2)) = (UQV)[cos(¢g) (IQT) | D2)) —sin(¢y)(Z®I) (X ®X) [ Ds))]

Below is the separate calculation of the components of the linear combination
seen in the above application:

cos(¢y) (I ® 1) | D2)) = cos(¢yg)
cos(¢)(I® 1) | Da)) = cos(¢y)
)

cos(¢y) I @ 1) | Da)) = cos(¢g

| LD,T))
| D2))

0 o))

[coS(%%COS(Q) cos(fbo(; sin(0) >>

cos(¢g)(I®1)| D)) =

Also:

Sin(69)(Z01) (X@X) | D)) = sin(go) (Z&1) 1

—= O
. O =
[

sin(90)(Z ® (X ® X)| Da)) = sin(6y)(Z

&
sin(¢)(Z @ I)(X @ X) | D)) = sin(¢,) | Z [Sin(e) 0 | ]I>>

A ACTRRAR

sin(60)(Z @ (X © X)| D)) = sin(go) [Slno(e) — cox(t) >>

sin(¢g)(Z@1)(X®X) | Dy)) = sin(¢,)
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sin(¢y)(Z @ I)(X @ X) | Dy)) =

[sin(¢o()) sin(0) B sin(¢>2) c08(9)} >>

So:
cos(¢g) cos(0) 0 sin(¢,) sin(0) 0
Ushift_gen | A2)) = (UBV)] [ 0() cos(¢y) sin(@)] >>_ { 00 —sin(¢,) cos(0)
- cos(¢g) cos(#) — sin(¢p,) sin(d) 0
Ushift_gen | A2)) = (URV) ‘ { 0 0 ’ cos(¢g) sin(#) + sin(¢) cos(6)

Recall the following trigonometric identities:
cos(¢g) cos(f) — sin(¢) sin(f) = cos(d + ¢,)
cos(y) sin(#) + sin(gy) cos(d) = sin(f + ¢,)

So:
Ushift_gen|A2)) = U QV cos(6 + o) 0 }>>

0 Sin(9 + ¢())
Ushiftigen ‘A2>> = (U by V) |D/>>

| Aopt)) = Ushige_gen | A2)) = [UD'VT))

As result, the two singular values 07 and oy were transformed from cos(6)
and sin(#) to cos(f + ¢,) and sin(6 + @) respectively. As long as the argument
0 + ¢y belongs in (0, 7], the D" matrix is a valid singular value matrix, with
increased entropy compared to D. It should be noted that this process may
be applied to matrices of dimensions r > 2 as well, as seen in its general form
above.

Moreover, this process is iterative, meaning that consecutive applications
of this operator upon the double-wedge ket | A;)) are possible. Each iteration
brings the two singular values o and o4 even closer, thus increasing the entropy
of the given system. However, it should be noted that it is required that the
respective argument 6 + ¢, be in range (0, §] after every iteration.

This process results in the entropy-optimum low rank matrix approximation
of rank k = 2 after a number of iterations, since it causes the entropy of the
system to range between its initial approximated value and the maximum value
this system may attain. In particular, the entropy of any given system of di-
mension n and rank k£ = 2 is limited between 0 and log,, 2 with reference to the
Rényi entropy formula (Appendiz D - Proposition 9). So, there are two possible
scenarios regarding the entropy of the system:

— If the entropy of the initial system |A)) is less than log, 2, then, after
a finite number of iterations, this iterative process will result in the optimum
value for the entropy, with an error depending on the given value for ¢, (the
smaller ¢, is, the more accurately the initial entropy is approximated).

— If the entropy of the initial system | A)) is greater or equal to log,, 2, then
the optimum entropy value of the approximated system | Ax)) will be assigned
to log,, 2 after a number of iterations, with the accuracy depending once again
on the value for ¢,.
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Appendix D: Proofs

The mathematical propositions regarding many defined parameters as well
as a few of the more complex properties are presented in this section. Each of
them is properly cited throughout this project. These propositions are listed
below:

-Proposition 1: Properties of the double-wedge ket notation
-Proposition 2: p; = AA" and p, = AT A* for system | A)) (eq.2, 3)
-Proposition 3: Hadamard Product map on matrices (eq. 6)
-Proposition 4: Application of Pj3 upon (H ® H @ I®1)|Xo) (eq.31)
-Proposition 5: Application of Py upon Pi3(H @ HQI®1)|Xy) (eq.32)
-Proposition 6: Equivalent formula of V for quantum systems (eq.33)
-Proposition 7: Application of Hadamard Product map V' (eq.34)
-Proposition 8: Expression of Rényi Entropy of order a = % (eq.37)
-Proposition 9: Upper bound log,, k for Rényi Entropy (eq.38)

Proposition 1: Properties of the double-wedge ket notation

dq do
Consider the double-wedge ket vector | A)) = Z Z Aijli) @ |7), with dy,ds
i=1 j=1
the dimensions of matrix A and A;; € C. Also, let C,K be random matrices of
size n X d; and m X do respectively ab shown below:

¢= ZZC}MI (yl, K = ZZKM‘ZD

rz=1y=1 p=1qg=1

Proof that (C ® K)|A)) = |CAKT)):

m  ds d1 do

(CRK)|A) = chxy\w YD @ OO K Ip) (aD]O D Ayli) ®15))
rz=1y=1 p=1qg=1 =1 j=1
n di m do dy  do

(COK)A) =0 D D Caylpglo) (W@ 1p) (a) (DD Aili) ©17))
r=1y=1p=1qg=1 i=1 j=1

n di m d di d2

(CRE)[A) =D > D> > > Cuylpedijlz) (yl D) @ [p) (al 17)

rz=1y=1p=1qg=1 i=1 j=1

The inner product (y| |¢) is equal to 1 iff y =4 € [1,d;]. Similarly, the inner
product (g||j) is equal to 1 iff g = j € [1,d3]. So:
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n m di do

CRE)[A) =)D CriKyjAij|z) @ |p)
r=1p=1i=1 j=1
n m di do

(CRE)[A) =333 CudyKL|z) @ p)
z=1p=1i=1 j=1
n m di

Cor)A) =333 Cu- ZAWK ) © |p)
z=1p=1 i= 1

(CoK)|A) =D ZCM AKT)ip) |z) @ |p)

r=1p=1 i=1
n m

(CRK)|A) =) (CAKT),, |z) ® |p)

=1 p=1

(C® K)|4)) = |CAKT))

For K =1, then (C ®1)|A)) = |CAI")) = |CA)).
For C =1, then (I® K) |A)) = [IAKT)) = | AK™)).

Proof that ||| A))|l, = V/({A[[A)) = /Tr(ATA) = || A] f:
1Az = V(AT A))

di ds di  do
AN, = [ Q2D Auli) ® )TQ D Awylz) ®1y))

=1 j=1 r=1y=1
di ds di da

AN = (| QD A5 i@ GDOQ_ D Awyla) @ 19))
i=1 j=1 r=1y=1

ANy = ZZZZA (il ) - (gl )

i=1 j=1z=1y=1
The inner product (i| |z) is equal to 1 iff x = ¢ € [1,d;]. Similarly, the inner
product (j||y) is equal to 1 iff y = 5 € [1,ds]. So:

dy do
AN, = | DD AL A;

da di

ANl = | >3- ALiAy)
Jd—2 =

1401, = || (At A,

I A))l, = /Tr(ATA)

At this point, consider the Singular Value Decomposition of A = UDVT, with
U,V unitary matrices and D diagonal matrix containing the singular values o;
of A.
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AN, = VIr[(UDVH (UDVT)]
Il AN, = /Tr(VD?VT) (U unitary and D diagonal)
AN, = /Tr(D?) (since trace is similarity-invariant)

114)) ||2\/Z>a 1Al

1 2
Consider another double-wedge ket vector | B)) = Z ZBM\M ® |I), with
k=11=1
dy,do the dimensions of matrix B and By, € C.

Proof that <<A| |B>> =Tr(A'B):

dy d2 dy  do
((A]1B)) ZZA11| NI D Bulk) @ |1)

(Al1B) = QD A til® <J’D(i > Bulk) @ 1)
i=1 j=1 k=1 1=1

1 2 1 2
(AIB) =D 3 AyBu (il k) - (il 1)
i=1 j=1k=11=1
The inner product (i| |k) is equal to 1 iff k =14 € [1,d;]. Similarly, the inner

product (j||{) is equal to 1 iff [ = j € [1,ds]. So:

(Al BY) iiA

AT1B) = 3500 AL
j=1 i=1
do

((Al1B)) = Z(ATB)jj

((A]|B)) = Tr(A'B)
Finally, the property |A+ B)) =|A)) +|B)) is an obvious one as:

dy  d2 dy  da
1A +[B) =0 Ayl @) + O Bijli) @14))
i= 1] 1 i=1 j=1
)) + | B)) ZZAWLBU ) ®15)
=1 j=1
)) +1B)) ZZMBU\ ®j) =|A+ B))

i=1 j=1
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Proposition 2: p; = AA" and p, = AT A* for system | A)) (eq.2, 3)

dy  d2

Let the matrix A = ZZAij i) (§] of dimensions d; x dy be the repre-
i=1 j=1
sentation of a double-wedge ket of a bipartite quantum system. Due to the
isomorphism of matrices A € C%*%2 and vectors | A)) € C%*d2;

di do

=D > Ayl @15)

i=1 j=1

As a result, any partial trace a of the density matrix p may be expressed as:

dy da dy d2

Tra(|A)) (( =Trq| ZZAU| ® 7)) ZZALy|x ® |y)) ]
zdll jd21 wdll yd21

Tra(| A)) ((A]) = Tra[(Q Y Ail)) @ 1) (D D Ay (@l @ (yl)]
= lj 1 r=1y=1

Tro(| A)) ((A]) = Tr, ZZZZA”AW (z] @13} (y)

i=1 j=1z=1y=1
So:

—a=2

p1 = Tra(] A)) ((A])
d dy dy da

pL=D_ D > > AyAsli) (=] - Tr(l5) (y)

i=1 j=1a=1y=1
di da di d2

=3 D DD AGAL D @l - (wl 19)

i=1 j=1z=1y=1
Since y, j € [1,ds], the inned product (y||j) is equal to 1 iff j =y € [1,ds].

So:
dy di ds

pL=Y_ D> > Ay Ayl (@

i=1 x=1y=1
dq dq do

=2 O Ayl (x

i=1x=1 y=1

= AAf
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—a=1

po = Tr1(|4)) ((A])

dy do di d2

p2=3 0 D> Ay, - Tr(li) ) @ 1) (yl

i=1 j=1z=1y=1
dq do di dso

=33 DY Ay, (el © 1)

i=1 j=1z=1y=1
Since y,j € [1,dy], the inned product (z||i) is equal to 1 iff i = = € [1,d4]

"

So:
da

dy

= w:ly:l
>
y=1

ZAJTxA;y (yl

1
Jj=1 x=1

py = ATA*

Proposition 3: Hadamard Product map on matrices (eq. 6)

Consider the following matrices:

n—1n—1

A=) Y Agyla) (y

=0 y=0

n—1ln—1

B=Y "> Bulk)(

k=0 1=0
with Ay, Br € C for every (z,y,k,1).

Recall that Ad(V) = Ad((I® Py)Uyor). The explicit form of each operation
involved is presented below:

n—1
I1® Py = Z|q gl ®0) (0], since T="Y " |g) (q| and Py = |0) (0]
q=0
and
n—1ln—1 n—1n—1
Usor = »_ > _([)) @ li©n i)l @ (1) =D Y 1i) (il @ |i & 5) (]
i=0 j=0 i=0 j=0
So:
V=(010& Py)Usor
n—1 n—1n—1
- Z|q (al @10y DS ST 1) il @ li 04 4) ()
1=0 j=0
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—1n—

n—1
v=>
q=0

1n—1
=0 =0 j:[)

lg) (al17) (il ©10) (O] [i ©n 5) (4]

Since g € [0,n — 1] and ¢ € [0,n — 1], the inner product (g||¢) equals 1 only
forg=14€[0,n—1]
n—1ln—1
V=232 1) il @0) (0] i ©n 5) (il
1=0 5=0
Based on the third property of the generalized quantum XOR gate, i6,j =0
if and only if ¢ = j, since 4, j € [0,n—1]. So, the inner product (0] |i ©, j) equals
1 only for ¢ = j:

n—1

V=" ") (i @10) (il
1=0
Also:
n—1ln—1 n—1ln—1
AeB=0"3" A la) ) o OO0 S Bulk) (1)
=0 y=0 k=0 =0

n—1ln—1n—1n-—1

AeB=33S"3 AuyBula) (4l @ k) ()

=0 y=0 k=0 =0

In addition:
VT = [(]I & PO)(].’ICOT‘]T

n—1

ZI (il @ 0) (i
Z\ (il @ i)

Moreover:
n—1ln—1n—1n—1

V(A® B) = Z| @ @10) AN DD AwyBula) (yl @ |k) (1)

=0 y=0 k=0 [=0
nlnlnlnlnl

VA B) =355 53 AuyBuli) il ) (9] ©10) (il ) {1

1=0 =0 y=0 k=0 (=0

Since i € [0,n — 1] and « € [0,n — 1], the inner product (i||z) equals 1 only
fori=xz€[0,n—1]:

n—1ln—1ln—1n-—1

VA©B) =3 S35 AuyBule) ] @10) (al ) ()

=0 y=0 k=0 [=0
Also, the inner product (z||k) equals 1 only for k =z € [0,n — 1]:

n—ln—1n—1

=0 y=0 [=0
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Finally:
Ad(V)(A® B) = V(A® B)Vf

n—ln—1n—1

AdW)(A® B)= (DY > Ay Bulz) (vl ®10) (1) le (pl @ Ip) (0])
=0 y=0 1=0
n—ln—-1n—1n-1

Ad)AB) =SS5 AuyButl2) (9l ) (6l  [0) (1] 1) (0

=0 y=0 [=0 p=0

Since y € [0,n — 1] and p € [0,n — 1], the inner product (y||p) equals 1 only
forp=ye€[0,n—1]

n—1ln—1n-—1

AdWV)(A@B) =YY" AwyBulz) (yl @ |0) (1] [y) (0]

=0 y=0 [=0

Also, for l =y € [0,n — 1]:

n—1n—1

AdV)(A@B) = > Y AyyBay lz) (y| ®10) (0]
=0 y=0
n—1n—1

AdW)(A® B) = (D) AwyBuyle) (y]) @ 10) (0]

=0 y=0

At this point, it can be noticed that:

n—1n—1 n—1ln—1 n—1ln—1

D2 AwBayla) (9l = (3 D Awyla) (W) o (3 D Buy ) (y)
=0 y=0 =0 y=0 =0 y=0

n—1n—1

> AwyBaylz) (yl = Ao B

=0 y=0

with o denoting the elementwise multiplication (or Hadamard Product) of
the matrices involved. So:
Ad(V)(A® B) = (Ao B) ®10) (0

Ad(V)(A@ B)=(AoB)® Py

Proposition 4: Application of Py3 upon (H® H @ I® 1) |Xo) (eq.31)

P13(H QHRI®I)|X) = (Po®L® Parge @ 1+P; @I ® Pyppau ® I)-
( (100)®| AT ))®| Ain))+ 01| AT )V @] Ain))+]10)@| AL ) )@ Ain))+[11)®] AL ) )R] Ain))))
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Pi3(H® H@Iol)|X) = ( 10) @110) @ Prarge | A7,,)) @ T| Ain)) +

+ Py [0)®T[1)® Plarge | A7, >>®H|Ain>>+Po|1>®H|0>®Pzarge’Az;z>>®ﬂ|14m>>+

+Po [1)@L|1) @ Prarge | A7, )) 1| Ain)) + P [0)RL|0) @ Paman | A, )) Q1| Ain)) +

+P; |0)®1(1)® Poau | AL )Y ST | Ain))+P1 [1) QT [0)® Pagrans | AL ) ) RL | Ain)) +
+ P [1) @ I|1) ®@ Pynau | AL)) @ 1| Ain)))

Recall that:
Pyl0)=10), P [1)=|1), Ry|1) =0, P1|0) =0

and
Barge‘Ag;L>>—cl|A >>; small‘A >>203’AZ>>
O:

Pis(HQ HRIRI) | Xo) = %(q 00)@| A ))®| Ain))+c1 [01) @] A )Y ®] Ain)) +
+6]10) ® | AT)) @ Ain)) + ¢ [11) @ | AT)) ® | Ain)))

Proposition 5: Application of Py upon Pi3(H @ H @ I® 1) |Xo) (eq.32)

P24P13(H®H®H®H) |X0> :(H®PO®H®P)large+]I®Pl ®H®Psmall)'
1
[5(e100) @ [AT)) @ [ Ain)) + 1 [01) @ [ AT )) @ | Ain)) +
+¢5[10) ® |AD)) @ Ain)) + ¢s [11) @ | A])) @ | Ain)))]

PyuPis(H® HRIRI)|Xo) = %(cl]l 0) ® Po|0) @ T|A)) ® Prarge | Ain)) +
+1[0)® Py 1)L | AT Y)® Plarge | Ain))+ca1|1)@ Py [0)RL | AT Y)® Plarge | Ain)) +
+e.I|1)@P [1)®T | AT Y)@Piarge | Ain))+al|0)@P1 0)&T | A )) @ Poman | Ain)) +
+al[0)@ Py [1)®T | A]))©Panatt | Ain))+¢s1 1)@ Py [0)QT | AT)) @ Pomair | Ain)) +

+c1[1) @ P1 1) @ T| AT)) ® Pananr | Ain)))

Recall that:
Fy|0)=10), P |1) =11), Pb[1) =0, P1[0) =0
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and

Barge |Azn>> = |Al>> small |Azn>> = Cs |As>>
So:

Py, Pi3(HRHRIRI) | Xo) = %(cf 00)®| AT ))@| Ai))+arcs [10)@| AT )@ Ap)) +
+acs [01) @ |A])) ©|Ay)) + & [11) ® | AT)) © ] A,)))

|
Proposition 6: Equivalent formula of V for quantum systems (eq.33)

The need arises for the calculation of an equivalent formula V' for the adjoint
action of V, that is suitable for application upon composite quantum systems
in the form of

V'(|AT)) @ |B))) =V (I A® BoD)(I) @ |I))
with A, B square complex matrices of the same dimension n.

Recall that Ad(V) = Ad((I ® Py)Usor). The explicit form of each operation
involved is presented below:

n—1 n—1
I®Py=>lq) (gl ®10) (0], since I=""|g) (g] and Py =0)(0|
and
n—1n—1 n—1ln—1
Usor = > D (1) @ i 00 20l @ Gl) = S 3 li) (il @ i 60 ) (il
i=0 j=0 i=0 j=0
So:

V= (H & PO)U.'L'()T'
n—1

V=3 la) {al ©10) OD(Y " 10) (@i €)1

V=3 > la){alli) (il ®10) {0l li ©n 5) (]

q=0 i=0 j=0

Since ¢ € [0,n — 1] and ¢ € [0,n — 1], the inner product {(g||¢) equals 1 only
forg=1i€[0,n—1]:
n—1ln—1
V= ZZ\ (i ©10) Ol i ©n 4) (]
=0 j=0
Based on the third property of the generalized quantum XOR gate, i©,7 =0
if and only if ¢ = j, since 4, j € [0,n—1]. So, the inner product (0] |i ©, j) equals
1 only for ¢ = j:
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Also:

V=15 1) 0

It is obvious that:

(H®Ad(V)(A®B)®H)(IH>>®|H>>) (H®(A03)®Po®ll)(|]1>>®|H>>)
(I® Ad(V)(A® B)@D)(|I)) ® 1)) = | (Ao B)T)) ® | Ry))

So, the explicit form of the action of V' =1® Ad(V) ® I upon the composite
quantum system | AT)) ® | B)) is:
V'(|AT))®|B))) =V ([I® A BaI)()® D))
V(| ATY) © |BY) = (19 Ad(V) o DI ® A® B (D) ® |1))
(|AT)) ®|B)) = (I® Ad(V)(A® B) @ I)(|1)) ® |T)))
V/([AT)) ®|B)) = [@ V(A BV o D(|I) ® 1))

V(IATY) | BY) = Lo (3 li) il @ 10) i)(A @ B).
1=0

Q1 @) (o) e (D) @ 1))

=0

n—1ln—1

V(AT @ |B) = Te (Y Y 1) (il Alj) (il @ 10) (@] Blj) (0]) © 1)

(D) © 1))
VI(|AT))®|B))) = ZZH®\ (i A7) Gle0) (@ B7) (0@ D(|T)©[1)))

n—1ln—1

VI([AT)) @ B))) =D > (W@li) (il Alj) (i) D) ® (|0) (i Bj) (0] @ 1) 1))
1=0 j5=0

V'(|AT)) ® | B))) ZZ (il A15) (ID™)) @ 110) (il B |5) (0)]
=0 j=0
n—1n—1

V'(|AT)) ®|B))) ZZH] ) GIAT 1) (il)) @ 1]0) (i B 1) (0)))

V(| AT))®|B))) ZZ 1) Gle(l) @D [ AT))@(10) (i@ (l5) )T B))

=0 j=0
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n—1ln—1

VI([AT)) @ B)) = (D D 1i) Gl @li) (@l @10) (i @ [0) (j1)(| AT)) ® | B)))

=0 j=0

As a result, the formula for V' is:

n—1n—1

=D D il @10) (i ®10) (]

i=0 j=0

Proposition 7: Application of Hadamard Product map V' (eq.34)

|X2) = (L@ V") [X1)

| Xa) = []12®V][ (c7100) ® (I® (4 ® A) @ I)(|1) ® | 1))+

+ercs |10)@ (I (A, ®Az) D(|IN@| D)) +cres [01) (IR (A @A) QL) (| I @| 1))+
+ 311 @ (I1® (4, ® 4,) @ D)(|T)) @ |I))))]

X2) = 5[ [00) @ V(I ® (4 ® 4) I(1T) © | 1)+
+ acsl|10) @ V(1@ (4, ® A) @ I)(|I)) ® |I)))+
+ c1c,I01) @ V(I @ (A ® As) @ I)(|T)) @ 1))+

+I1) @ V(I (A ® A,) @ D(|T) @ |1)))]

1X5) = 5[¢7100) @ (L8 (A0 A @ Py) ©I)(11)) © [ 1)+

)
+ 165 [10) ® (1@ (Ag 0 4 @ Py) @ I)(|I)) @ |I)))+
+cs [01) @ (I® (A0 Ay @ Po) @ I)(|1)) @ 1))+
+c2[11) @ (1@ (As 0 A ® Bo) @ )(IT)) © | 1))))]

|X2) = %(c% 100) @[ (A0 A)T)) ® | o)) +eres [10) @ | (As 0 A)T)) @ | Po)) +
+acs [01) ® [ (A0 A)T)) @ | Po)) + €2 [11) ® | (A, 0 A)T)) ® | Po)))
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Proposition 8: Expression of Rényi Entropy of order a = % (eq.37)

Recall that the density matrix p is equal to p = | A)) ((A] for any bipartite
quantum system | A)) . Subsequently, the reduced density matrix p; regarding
the first subsystem is:

p1 = Tr2(p)
p1 =Tra(| A)) ((A])
py = AAT

With the SVD of A being A = UsDaV7, since A is a real matrix, then by
substitution:

p1=(UaDaVi)(UaDaVi)T

p1 = (UaDAVI)UaDAVI)T (since A real)

P1 = UADAVEVADZUZ

p1 = UaD VT (since Vyreal orthogonal and D, diagonal)

The expression of the reduced density matrix p; raised to the power of a
results in:

pi = (UaD3UT)"

p¢ = UaD%U?% (since Uy is real orthogonal)

So, the trace of this expression is:
Tr(pt) = Tr(UaD3UY)
Tr(py) = Tr(D%*) (since trace is similarity-invariant)

As a result, the Rényi Entropy of order a is equal to:
Sr(p1) = 155 log(Tr(pf))
Sr(p1) = 135 log(Tr(DY"))

So, for the order of the Rényi Entropy a = %, the formula above changes
into:

Sr(p1) = iy log(Tr(D}?))

Sr(py) = 2log(I'r(Da)) = 2log() _ 04)
i=1
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Proposition 9: Upper bound log,, k for Rényi Entropy (eq.38)

Consider the system | Ay)) that corresponds to the rank-k approximation
of the n-dimensional system | A)). This means that the singular value of the
matrix Ay, is:

[0 0 0 0 0 0 0]

0 oo 0 0 0 0 0

0 0 .. 0 0 0 0

0 0 0 op O 0 0
_ t_ k t
Ae=UDVI=U\ o o o o o oV

0 0 0 0 0 .. 0 0

(00 0 0 0 .. 0 0]

with U,V unitary matrices and Dy, the diagonal matrix containing its (nor-
malized) singular values.

Since the entanglement contained in a system is inextricably linked to the
probability distribution formed by its singular values, it is clear that the system
| Ax)) is maximally entangled, provided that its singular values are all equal
to ﬁ This way, they form a uniform distribution while maintaining the unit

norm of the system. In this case, the Rényi Entropy of order a # 1 is:
Sr(p1) = 125 log,, (Tr(DR"))

k
Sr(p1) = 145 108, (D o7*)
i=1

k
Srp1) = 155 log, > (F2)*]
zil
Sr(p1) = 25 log,[> ()]
i=1
Sr(p1) = 125 log, [k - ()]
Sr(p1) = mlogn(ﬁ)

So, the bounds for the entropy of any system with reference to the amount
k of its singular values that are taken into consideration is:

0 < Sr(p,) < log, k
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