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Abstract

In our days, natural disasters occur on a daily basis and typically require immediate
human rescue team intervention, in order to minimize casualties. In most cases, the
scene conditions may be prohibitive for human rescuers to intervene and the rescue
mission may be delayed, possibly with serious consequences. Such scenarios are ideal
for deploying autonomous mobile robot systems, which may provide assistance to the
human rescuers by autonomously searching for threatened individuals and, in gen-
eral, by providing information about the current situation. In this thesis, we present
the use of a multi-drone team as a support tool to search-and-rescue missions. Using
drones can potentially help to reduce the search time, because they can provide useful
information from various locations through their sensors. Particularly, we focus on the
optimization of the task allocation problem among the drone team members by using
a distributed sequential auction method. The (simulated) auction has low compu-
tation and communication requirements, is purely decentralized, and eliminates the
need for a centralized auctioneer. A number of tasks (target locations) that the drones
must visit for the purpose of acquiring information is communicated to all drones at
the start of the process. Then, the drones localize themselves in the environment and
they initiate the auction mechanism for negotiating the targets, one at a time. Within
the auction, we implemented and tested different objectives for the calculation of bids,
which serve a variety of team goals in different missions this project may be used on.
At the end of the auction, the drones have allocated all tasks among themselves and
they proceed to visiting each one of the won tasks in the already determined order. A
simple, collision-free navigation method ensures that the drones will not collide dur-
ing path following. The entire project has been implemented within the Robot Oper-
ating System (ROS) and is available as an open source package. All experiments were
conducted on the Gazebo robot simulator in obstacle-free environments to demon-
strate the results of the proposed approach on smaller and larger problems with as
many as 20 drones and 50 tasks. The main advantage of the proposed scheme is the
ability to run in a fully-distributed manner over a team of inter-connected drones, or
other mobile robots in general, and to provide an efficient approach for task allocation,
a key problem in search-and-rescue missions.



Περίληψη

Στις μέρες μας, συμβαίνουν φυσικές καταστροφές σε καθημερινή βάση και συνήθως απαιτείται

άμεση ανθρώπινη επέμβαση ομάδων διάσωσης, ώστε να μειωθούν οι ανθρώπινες απώλειες. Στις πε-

ρισσότερες περιπτώσεις, οι συνθήκες στο χώρο του συμβάντος ενδέχεται να είναι απαγορευτικές για

την παρέμβαση των διασωστών και η αποστολή διάσωσης μπορεί να καθυστερήσει, ενδεχομένως

με σοβαρές συνέπειες. Τέτοια σενάρια είναι ιδανικά για χρήση αυτόνομων κινητών ρομποτικών

συστημάτων, τα οποία μπορούν να παρέχουν βοήθεια στους διασώστες με αυτόνομη αναζήτηση

απειλούμενων ατόμων και γενικότερα με την παροχή πληροφοριών σχετικά με την τρέχουσα κα-

τάσταση. Στην παρούσα διπλωματική εργασία, παρουσιάζουμε τη χρήση μιας ομάδας από drones ως
εργαλείο υποστήριξης σε αποστολές αναζήτησης και διάσωσης. Με τη χρήση drones έχουμε μείωση
του χρόνου έρευνας σε αυτές τις αποστολές, καθώς μπορούν να παρέχουν χρήσιμες πληροφορίες

από διάφορες τοποθεσίες μέσω των αισθητήρων τους. Ιδιαίτερα, επικεντρωνόμαστε στη βελτιστο-

ποίηση του προβλήματος ανάθεσης καθηκόντων μεταξύ των μελών της ομάδας, χρησιμοποιώντας

μια κατανεμημένη μέθοδο ακολουθιακής δημοπρασίας. Η (εικονική) δημοπρασία έχει χαμηλές απαι-

τήσεις υπολογιστικής ισχύος και επικοινωνίας, είναι πλήρως κατανεμημένη και εξαλείφει την ανάγκη

ενός κεντρικού δημοπράτη. Κατά την έναρξη της διαδικασίας, ένας αριθμός καθηκόντων (τοποθε-

σίες στόχων), που πρέπει να επισκεφθούν τα drones για την απόκτηση πληροφοριών, διαβιβάζεται
σε όλα τα μέλη της ομάδας. Στη συνέχεια, τα drones εντοπίζουν τη θέση τους στο περιβάλλον
και ξεκινούν τον μηχανισμό δημοπράτησης για το διαμοιρασμό των στόχων, έναν σε κάθε γύρο

δημοπρασίας. Στο πλαίσιο της δημοπρασίας, υλοποιήσαμε και δοκιμάσαμε διαφορετικά αντικειμε-

νικά κριτήρια για τον υπολογισμό των προσφορών, τα οποία εξυπηρετούν ποικίλους στόχους σε

διαφορετικές αποστολές, όπου η παρούσα εργασία μπορεί να χρησιμοποιηθεί. Στο τέλος της δημο-

πρασίας, τα drones έχουν κατανείμει όλα τα καθήκοντα μεταξύ τους και προχωρούν στην επίσκεψη
κάθε ενός από τα ανατεθέντα καθήκοντα με την σειρά που έχει ήδη οριστεί. Μια απλή μέθοδος

πλοήγησης με αποφυγή συγκρούσεων διασφαλίζει ότι τα drones δεν θα συγκρουστούν κατά τη
διάρκεια της διαδρομής που θα ακολουθήσουν. Η εργασία στο σύνολό της έχει υλοποιηθεί στο

πλαίσιο του RobotOperatingSystem(ROS) και διατίθεται ως πακέτο ανοιχτού κώδικα. ΄Ολα τα
πειράματα διεξήχθησαν στον προσομοιωτή ρομπότ Gazebo, μέσα σε ένα περιβάλλον χωρίς εμπόδια,
για να επιδειχθούν τα αποτελέσματα της προτεινόμενης προσέγγισης τόσο σε μικρότερα όσο και

σε μεγαλύτερα προβλήματα (20 drones, 50 tasks). Το κύριο πλεονέκτημα της προτεινόμενης με-
θόδου είναι η ικανότητα να εκτελείται με πλήρως κατανεμημένο τρόπο σε μια ομάδα διασυνδεδεμένων

drones ή γενικότερα άλλων κινητών ρομπότ και να παρέχει μια αποδοτική προσέγγιση για ανάθεση
καθηκόντων, ένα βασικό πρόβλημα στις αποστολές έρευνας και διάσωσης.
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Chapter 1

Introduction

These days, natural hazards happen nearly on a daily basis and generally require im-
mediate rescue intervention, so as to avert human casualties. Much of the time, the
scene conditions can be entirely unusual or can be changed in amazingly quick rates
because of factors that can’t be constrained by people. Additionally, the conditions
might be restrictive for human rescuers to provide instant aid, as they have to act
in extreme environments, like air-poisoned situations, radioactive areas or collapsed
buildings. Furthermore, sometimes there is a need to immediately examine a wide
area, so as to decide an appropriate approaching scenario.

Numerous associations and research groups are creating rescuing robots in order
to assist “human” emergency intervention groups. These mobile robots can be geared
up with a variety of sensors, cameras and embedded processing units, depending on
the scenario they are expected to assist. As a result, due to their specialized struc-
ture, they can achieve sufficient maneuverability in the terrain they were designed for.
Hence, they can perform searching and reconnaissance procedures by processing the
captured data from their sensors. These robots can either be self-sufficient or remotely-
controlled, depending on their current setup, and consequently enhance the rescuers’
actions.

Nevertheless, in instances of natural disasters, like earthquakes, floods, and fires,
the remote control of the robot may be restricted or inapplicable. The control of mobile
robots can be accomplished manually by trained pilots, but this approach may not
lead to good efficiency, as the coordination between pilots during such events is not
straightforward.
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1. INTRODUCTION

The robots needs to be capable to determine their own pose in the environment and
communicate with the users. In cooperative multi-robot scenarios, it is also critical for
the robots to be able to identify and communicate with other robots during the search-
and-rescue operation. By doing so, this ability helps to reduce the search time and
increase the number of successful rescues. Furthermore, assuming that the mobile
robots can communicate with each other and know their relatives positions in the
environment, auction mechanisms can provide fast allocations of their tasks and more
efficient results.

Therefore, mobile robots in search-and-rescue missions need to be specially mod-
ified and programmed to reach a position where they face problems better than hu-
mans could do and cooperate with other robots, in order to accomplish their mission
more efficiently.

1.1 Thesis Contribution

This thesis focuses on the search-and-rescue problem of deploying a team of multiple
drones and addresses their collaboration with each other. Particularly, we focus on
the problem of multi-robot routing, where a team of mobile robots (drones in our case)
must coordinate to visit and serve a set of target locations.

The tasks for the robots are known locations, which are given to them in the beg-
ging of the operation. Firstly, the robot has to locate itself in relation to the environ-
ment and the other robots. Then, collaboration is accomplished through an auction-
based approach, which is decentralised and is based on a bidding-auctioning process.
This process tries to solve the multi-robot task allocation problem sequentially in mul-
tiple rounds, whereby the robot with the best bid wins one task in each round. A task
gets assigned to the most suitable robot, according to the bidding value calculated us-
ing an appropriate cost function based on distances between robots and tasks. Finally,
when all the tasks are allocated, each robot follows the path of the tasks it has won.

This collaborative approach is designed to make the best out of the auction process,
with respect to robots’ computational capabilities, as the requirements for communi-
cation and computation are rather low. The entire project has been implemented as
a package within the Robot Operating System (ROS) and is supported for any multi-
robot system, including any type of mobile robots within a natural terrain.
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1.2 Thesis Outline

1.2 Thesis Outline

In Chapter 2 we present all the background information needed for this thesis. We
give a brief overview of the software and the basic components we use in this thesis,
such as the Robot Operating System, Gazebo and RViz. Furthermore, we provide basic
information and knowledge about mobile robot localization. In Chapter 3 we state the
problem of cooperative multi-robot response to natural disasters, referencing related
approaches. In Chapter 4, we describe in detail the implementation steps of the pro-
posed cooperative multi-robot approach based on distributed auctions. In Chapter 5,
we present the results of our implementation through different simulated scenarios.
This work is concluded in Chapter 6, in which are presented some future plans that
could extend our approach.
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Chapter 2

Background

In this chapter, we provide a brief overview of the software, the algorithms and the

technologies used to implement the approach of this thesis, in order for the readers

to further comprehend and understand each part of the development process. The

topics that are going to be examined, which are critical for the comprehension of the

development process, are the Robot Operating System, Gazebo, RViz and the basics of

mobile robot localization.

2.1 Robot Operating System (ROS)

The Robot Operating System(namely ROS) [26] is a framework designed by Willow

Garage and Stanford University as a part of STAIR project, as a free and open-source

robotic middleware for maintenance and development of complex robotic applica-

tions. The primary advantage of ROS is that it permits different devices to coexist in

the created environment and interact with each other through a peer-to-peer network.

Each device in this space represents a node, that is a process of performing compu-

tation. A node is able to communicate with another one by passing a message. A mes-

sage is carefully composed information structure, which supports standard primitive

types (like integer, floating point and so forth), arrays of primitive types and arrays of

different messages. A node sends a message by publishing it to a given topic. If a node

is interested in a particular sort of information, it will subscribe to the suitable topic.

There may be multiple simultaneous publishers and subscribers for a single topic and
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2. BACKGROUND

Figure 2.1: A PoseStamped Message.

a single node may publish and/or subscribe to multiple topics. Generally, publishers

and subscribers are not aware of each others’ presence.

The message shown in Figure1 2.1 is a PoseStamped message, that any drone can

publish. Every PoseStamped message comes with a header parameter that includes the

time stamp and the frame information, which identifies it uniquely in time and gives

information of the frame that it was taken in respect to. Also, position and orientation
define the position and the orientation of the drone in that frame and time.

In contrast with topics, in case of a Remote Procedure Call (RPC) request/reply

interaction, there is a need of two-way communication. Especially, given a node with

a providing service, a client firstly calls the service by sending a request and awaits

service node’s reply, after the service initialization. However in services’ case, only

one node can advertise a service with a certain name. Lastly, the communication can

also be done via a parameter server, which is a shared multi-variate lexicon that is

available by means of network APIs. Nodes utilize this server to store and retrieve

parameters at runtime. This way of exchanging data is used for sharing static, non-

binary data such as configuration files. Basically it is a shared, multi-variate lexicon

that is accessible from all nodes to store and retrieve data from.

1https://docs.ros.org/diamondback/api/geometry_msgs/html/msg/PoseStamped.html
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2.2 Gazebo

For example, a ROS environment could be a single drone with a camera that pub-
lishes on topics the information about all its sensors and his pose. It could also, publish
a topic of the localization process that executes on its embedded processor. Further-
more, it could provide two services, like setting the camera parameters or resetting
the belief of it’s position, in which an another computer or drone on the same ROS
environment could call. Also, there could be a scenario including of two connected
drones in the same ROS environment, in which through communication and cooper-
ation will explore an unknown area. In this scenario, those drones can share informa-
tion through their published topics about their state and belief and by the data fusion
they can cooperate and navigate in the unknown environment and accomplish certain
given tasks.

In conclusion, ROS framework usability, wide-range of capabilities and it’s open
source philosophy are some of the reasons for choosing it as the basis framework of
our scenario. In particular, our vision is to create a distributed network of drones that
through the process of action will allot the tasks in between them. By using this ROS
framework, this project can be applied in every multi robot scenario, not specifically
drones, that have the appropriate modifications.

2.2 Gazebo

The Gazebo [16] software is making a 3D dynamic multi-robot environment capable of
reproducing the complex scenes and worlds that will be experienced by robots in the
real world. As a result, Gazebo is intended to precisely recreate the dynamic environ-
ments a robot may experience. Every simulated object has mass, velocity and various
other different attributes that enable them to behave realistically in simulations. These
actions can be utilized as vital parts of an experiment, like in our scenario.

Gazebo has a noteworthy element to effortlessly making new robots, actuators,
sensors, and arbitrary items. Thus, Gazebo keeps up an easy API for addition of
those objects, that we will in general term models, and also the important hooks for
interaction with client programs. Gazebo has many dependencies, as seen in Fig-
ure 2.2 [14], and utilizes a various number of third party libraries to represent the
physics, the visualization and the rendering. Gazebo utilizes ODE (Open Dynamics
Engine) [23], Bullet [2], Simbody [28] and Dynamic Animation and Robotics Toolkit
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Figure 2.2: Gazebo Dependency Graph.

(DART) [4] to mimic the dynamics and kinematics related with articulated rigid bod-

ies. OpenGL [24] and GLUT [7] are utilized as the default visualization tools. So as to

have correspondence between various segments in gazebo, it uses open source Google

Protobuf [12] for the message serialization and boost::ASIO [1] for the transport mech-

anism. Gazebo uses OGRE [22] as a rendering library for rendering 3D scenes to both

GUI and sensor libraries. Lastly, Gazebo provides Qt for users to interact with the

simulation.

Gazebo provides an exceptionally basic and simple approach to access the re-

sources by using plugins, in order to control objects in a simulation. A plugin is a lump

of code that is compiled as a shared library and is inserted into the simulation. There

are six sorts of plugins, which are the World,the Model,the Sensor,the System,the Vi-

sual and the GUI. Each one of them gives access to an alternate part of the model, for

instance: a Sensor and a Model plugin controls every aspect of a sensor and a model

respectively.

In spite the fact that plugins are the least demanding and an ideal approach to

access the assets, yet there is an alternate way also. Access to the simulator can be done

through the utilization of Gazebo’s APIs. We can do the exact things that Gazebo does

at the time of startup and make pointers to every element. In any case that technique

Georgios Vastardis 8 July 2019



2.3 RViz

requires a very great degree of comprehension of how gazebo functions and how it

utilizes its APIs.

A Gazebo simulation to function properly has seven fundamental components [3].

The first component is the World Files, which contains description about all the ele-

ments in a simulation. That includes the robots and their sensors, the static items and

the lights. This component is formatted by utilizing the SDF library [27] and com-

monly has a .world expansion. The Model File contains all the data about a specific

entry. Those data are connected and behave as a single body and this type of file is

formatted by utilizing the SDF library.

The next component is the Environmen variables. Gazebo utilizes a few of them to

know about the files which are going to load at startup. Those files include word files,

model files, plugins and so forth. An other component of Gazebo is the Server, which

is and its workhorse. The Server given on the command line, it parses a world de-

scription file and then it simulates the world by utilizing a physics and sensor engine.

The last two components are the Graphical Client and the Server and Graphical Client.
The first one, of those two, connects with a running gzserver and visualizes the compo-

nents. This is additionally a tool which enables you to adjust the running simulation.

For the other one, the Gazebo command combines server and client in one executable.

To conclude, Gazebo software is an essential tool in our scenario. By utilizing real-

istic scenarios in a well-structured and designed simulator, we can quickly test algo-

rithms, train AI systems and design robots. Gazebo offers the ability to precisely and

efficiently simulate robots in complex conditions in indoor and outdoor environments.

For that reasons Gazebo is the perfect tool for the creation of a distributed network of

drones in an outdoor environment. By using Gazebo, this project can be simulated in

different scenarios with exceptional resemblance to real life situations.

2.3 RViz

In computational science and computer graphics, it is very useful to visualize and

represent information in the real domain. RViz [15] is a 3D visualization toolkit for

ROS, that can visualize newly invented data structures and algorithms and is also,

independent of the input information data structures.
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Figure 2.3: RViz dataflow and interface model.

RViz makes easy for the user to view the simulated robot model. Also to look
at the log sensor data from the robot’s sensors and it can replay the logged sensor
data. Furthermore, from the visualization of what the robot is “seeing" and “doing",
meaning the sensor inputs and the planned actions, the debugging process of a robot
application is made much simpler. In the form of point clouds or depth images we can
see, in RViz, the display of 3D sensor data (from sensors like lasers, etc.). On the other
hand, as image data we can view the 2D sensor data (from sensors like cameras) and
2D laser range finders.

If a real (or a virtual) robot is communicating with a computer system that is run-
ning RViz, then the program will display the robot’s current configuration on its rep-
resentation in the RVIz environment. ROS topics will be shown as depictions of the
sensor data, that are published by sensors that exist in the robot’s system. Robot sys-
tems and controllers can be developed and debugged more easily. Rviz provides a
configurable Graphical User Interface (GUI) to enable the user to show just the data
that he needs for his task.

For example, if we had a dataflow model like the one in Figure1 2.3 (left side),
informations are caught in specific data structures and after that they are changed

1www.semanticscholar.org/paper/RViz3A-a-toolkit-for-real-domain-data-visualization-Kam-Lee/
e4ab668238eebb31801a2c2c19d4517aae4baabf/figure/0

Georgios Vastardis 10 July 2019

www.semanticscholar.org/paper/RViz3A-a-toolkit-for-real-domain-data-visualization-Kam-Lee/e4ab668238eebb31801a2c2c19d4517aae4baabf/figure/0
www.semanticscholar.org/paper/RViz3A-a-toolkit-for-real-domain-data-visualization-Kam-Lee/e4ab668238eebb31801a2c2c19d4517aae4baabf/figure/0


2.4 Mobile Robot Localization

Figure 2.4: RViz interface example.

by some filters. On the contrary, in Figure 2.3 (right side),information is viewed as
an execution of the basic interface and this enables adaptability in choosing what to
display in the GUI, different data structures and algorithms that are pertinent to his
task.

To summarize, the visualization of real domain data, that are created by arbitrary
data structures and algorithms, is the main aim of the RViz toolkit. An example of
the RViz interface is shown in Figure 2.4. It is the package that used in this thesis for
the visualization of algorithms and data structures and it helped a lot in the different
scenarios that we implemented.

2.4 Mobile Robot Localization

Mobile robot localization [21] is a standout amongst the most crucial issues in robot
navigation and is the problem of deciding the pose of a robot in respect to a given
environment/map. In a scenario that the robot requires knowledge of its location,
namely to establish correspondence between its local coordinate system and the global
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coordinate system, so it can express the location of any surrounding objects or even

obstacles in a relation to it. The localization issue can be solved by exploiting robot

sensors data that regularly originates from two unique sensors, the motion sensors and

the perception sensors. Motion sensors give information about the robot movements

(e.g odometer readings) and the perception sensors give spatial data relative to the

robot position.

The localization problem can be divided in three main categories, depending on

the type of knowledge that is available at the first moment of the navigation process

and at run-time, which are with an increasing degree of difficulty as follows [31]:

• Position Tracking : In position tracking the initial pose of the robot is known and

this problem is characterized as the issue of localization of a moving robot. We

assume that the robot’s motion model error is small and can be approximated.

The solution of the localization problem is given through the odometry informa-

tion, by compensating the robot’s motion model uncertainty, we update the local

robot pose belief in relation with the initial pose.

• Global Localization : is the issue when the robot has the need of locating itself

in a known environment and it has no information about its initial pose. The

robot must exploit various observations from its sensors, to infer its location in

the environment and then proceed with the position tracking approach.

• Kidnapped robot problem : During this scenario, that is a variation of the global

localization problem, the robot can be moved whenever and set to a different

area in comparison to the one it was, without getting notified. The main objective

is to make the robot realize that it was kidnapped and then adapt accordingly

(e.g. initialize its belief about its pose in the environment).

2.4.1 Robot Pose

All mobile robots that operate in planar environments have their state described by a

three dimensional vector, as shown in Equation 2.1, this is known as a robot’s pose.

Robot’s pose is described, at time step k, by three variables, the two translational in
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Figure 2.5: Drone poses in a 3D global coordinate system.

each dimension (x and y) and one that defines the angular orientation (θ). In three-

dimensional space, the pose is described by six variables, the robot’s three dimen-

sional Cartesian coordinates (x, y, z) and its three Euler angles (φ, θ, ψ), describing the

translation and rotation of its body relative to an external coordinate frame as shown

in Equation 2.2. For example, the robot pose of a drone in a 3D coordinate system can

be shown in Figure 2.5 [13].

IR2 : xk =

x
y
θ

 (2.1)

IR3 : xk =

x
y
θ

 and θk =

φ
θ
ψ

 (2.2)
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2.4.2 Motion Model

A mobile robot has most of the times some type of locomotion mechanisms to be able

to move and navigate in an environment. They are equipped with actuators like ser-

vos, motors etc. for that purpose. Nonetheless, the use of these actuators can be noisy

and may result to a difference between the purposed motion and the one that actually

happens. With this error, that gradually is added to the odometry information, the lo-

calization vadility is affected. To solve this problem, robots are fitted with additional

sensors that measure the occured deviation. After the action has taken place, the data

about the real action that happened are available. Hence, given the current state of the

robot xk and the current control input uk ( “the action"), the robot can make a transition

to a new state x′k. These transitions description is the probabilistic model that is named

motion model and is formed as:

P(xk|xk−1, uk) (2.3)

This model describes the posterior distribution of the robot pose xk in time step k,

given that at time step k− 1 had the pose xk−1 by performing the action uk . Last to

note, that the motion model adopts the Markov property of the memoryless stochastic

process, as it depends only on the previous pose and the current action.

2.4.3 Sensor Model

A reliable localization process cannot be done without any external sensors and based

only on the motion model. There must be external sensors that can provide additional

information of the robot’s environment, like a range finder, a camera or even and a

global positioning system. So, the robot can be able to locate features in its surround-

ing environment and estimate its position in it.

Unfortunately, sensors also have noise to their measurements. For this reason, we

can describe in probabilistic terms the sensing of the robot, as a conditional probability

distribution. This probabilistic model is called sensor model and is written as follows:

P(zk|xk) (2.4)
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This Equation 2.4 describes the likelihood of making the observation zk at time step
k, given the pose xk at the same time step. Likewise, this model adopts the Markov
property, as motion model in Chapter 2.4.2, specifically given the latest state, observa-
tions are independent of history.
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Chapter 3

Problem Statement

3.1 Drone Teams in Search-and-Rescue Scenarios

Search-and-rescue operations are performed every day in emergency situations, which

are caused by natural disaster outbreaks or are due to human error and sometimes (un-

fortunately) due to human intention. Natural hazards have, sadly, become a very com-

mon phenomenon lately, with numerous recent instances, like forest fires that cleared

out many sections of forest area, destroyed properties and sometimes resulted in hu-

man losses. Subsequently to the way that the majority of these perils demonstrated

are amazingly dangerous, it is critical for search-and-rescue teams to be well prepared

to face and resolve them in order to maximize the number of survivors. By employing

a team of multiple drones we can address those issues.

Fast allocation of targets in a search-and-rescue mission is critical for its success.

Particularly, in most cases the operation of a drone is performed by a user and the

allocation of tasks is done using his judgment, which in many cases is not the best. By

using a sequential auction algorithm with the appropriate cost function, we can im-

prove the efficiency of the allocation and eliminate human user errors. Clearly mobile

robots need to have the ability to allocate the tasks efficiently for better results in such

scenarios and by using the proposed auction algorithm we can achieve that.

In addition, multi-robot approaches are often suggested, as they have several ad-

vantages compared to single robot systems, especially in search-and-rescue scenarios.

Through their cooperation, robots can manage and assign each requested task accord-
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ing to the current system status, they can merge overlapping information and thus

accomplish single tasks faster than a single robot system would do. However, these

approaches require careful fine tunning and sufficient problem awareness, in order to

create an effective cooperative solution.

In conclusion, this thesis will focus on a decentralised, multi-round, sequential

auction mechanism, providing near-optimal allocations of the tasks given, by using

different cost objectives. In addition, we simulate a number of task allocations sce-

narios with n mobile robots (drones in our case) and m tasks (locations in our case)

within an obstacle-free environment. We aim to provide a system that could be easily

implemented on multi-robot teams and used in real-time scenarios.

3.2 Related Work

In recent years, auction based systems have been an area of increasing research inter-

est. The problem of Multi-Robot Task Allocation (MRTA) is fundamental in multi-

robot systems and it has been modelled in a number of different ways, the most

representative method is CNP( Contact Network Protocol) which was proposed by

Smith [29]. Other typical examples include The Power of Sequential Single-Item Auc-

tions for Agent Coordination [17] and MURDOCH [10]. This is a non-deterministic

polynomial-time (NP) hard problem [20] and can require a large amount of time to

solve efficiently. These solutions can be segmented into two categories centralised

and distributed.

For multi-robots systems, like ours, distributed solutions are more effective. A

highly efficient distributed solution uses auction-based task allocation [18], in which

tasks are locally sold to nearby robots and the more capable robots are able to bid

higher than the less capable ones. Also, there can be used bidding rules to minimize

the total cost, the maximum cost and the average service cost, like in [19] where the au-

thors presented the first theoretical complexity analysis of the performance of auction-

based methods for multi-robot routing for different objective functions.

Finally, the implementation of these algorithms is facilitated by using the Robot

Operation System (ROS), described in Section 2.1. One of them is a behavioural task

allocation architecture known as ALLIANCE [25], which recently was implemented
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in ROS [5]. The one that is close related to our work is a ROS package which is called
task allocation 1, which implements a centralised auction mechanism.

Our approach is differentiated from these works by essentially being a package for
ROS and not a research conjecture of how these algorithms work and are optimized.
ROS middleware is used as the network infrastructure, due to its open-source philos-
ophy and its high modularity on package construction and deployment. Furthermore,
our implementation is not a centralised auction, but a distributed sequential auction,
that allocates the tasks to robots, by using certain cost objectives, given a series of tasks
and a number of robots.

1https://github.com/Nick-Sullivan/task_allocation
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Chapter 4

Our Approach

4.1 Total Coordinate System Setup and tf Library

Robots are complex systems as they have a lot of moving parts, sensors and other
complex mechanisms. When doing assignments with a robot it is significant that the
robot knows about where it is itself as well as where the rest of the world is in relation
to itself. Like in our scenario, where many drones coexist in the same environment and
need in every moment to know their position in relation to the world. This creates
a need to represent the position and orientation of the robots, including their sub-
systems parts, in the same coordination system.

After we establish a coordinate system, we cal locate any point P in the coordinate
frame A with a 3x1 vector, like a point in space, as we see in Equation 4.1. Thus, it
is fundamental to represent a point in space and also to describe the orientation of
a body. To accomplish that we attach a coordinate system to the body and then we
give a description of this coordinate system relative to the reference system. So, on
a coordinate system A, the description of body-attached coordinate system B can be
written by expressing the unit vector if its three principal axis in reference to A.

AP =

px
py
pz

 (4.1)

As shown in Figure 4.1, we denote the unit vector giving the principal directions
of coordinate system B as the X̂B , ŶB and ẐB . Also, the principal direction vectors
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Figure 4.1: The relative position of A and B coordinate systems.

are denoted in coordinate system A, as AX̂B , AŶB and AẐB . Therefore, we define the

matrix of the expressed B principal axis in A coordinate system as in Equation 4.2,

which is known as the rotation matrix, as it describes the frame B relative to A.

A
B R =

[
AX̂B

AŶB
AẐB

]
=

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (4.2)

Also, Equation 4.2 can be expanded as follows,

A
B R =

[
AX̂B

AŶB
AẐB

]
=

BX̂T
A

BŶT
A

BẐT
A

 = B
ART (4.3)

Thus, A
B R is the description of the frame B relative to A and is given by the trans-

pose B
AR, which is also the inverse of the rotation matrix. Hence we have,

A
B R = B

AR−1 = B
ART (4.4)

Thence, the frame of B is described relative to A as,

B =
{A

B R, APBORG
}

(4.5)
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Lastly, the mapping/transformation of a point P in coordinate system B to A, is
denoted by A

B T and forms as follows,

AP = A
B T, where A

B T =

[ A
B R APBORG
000 1

]
(4.6)

However, many complex robot systems are consisted with parts that are moved
with respect to the base frame. This means that the transformation matrix between
two specific moving parts (frames) is differentiated from time to time. Thus, it’s nec-
essary to store the time-stamp information when any of those transformation is cal-
culated, despite if it’s static or not. The ROS communication infrastructure, which we
discussed in Section 2.1, is based on timestamps and frames to express measurements,
robot poses and more, as they were posted at a given time in the corresponding coordi-
nate system. The ROS ecosystem has an integrated transform library, the tf [6], which
follows the aforementioned “frame philosophy”, supports fully the previous trans-
formation methods and is for the most part utilized as essential approach to monitor
positional data. Therefore, it is extensively used in our approach as we need constantly
information about the robots’ relative poses and their positions in the generated map
frame.

Thus, we created a dedicated ROS node to provide the hexacopter static trans-
forms. We precisely measured the sensor position in reference to a common hexa-
copter body point (assumed the base frame origin) and included the resulted real world
positions into the tf tree. By this way, the tf tree contains frame transformations de-
scribed in real world units, and hence, any processed measurement and extracted
results will be spatially described in the same way. The hexacopter tf tree node is
illustrated in Figure 4.2 and its structure visualization in the RViz plug-in, shown in
Figure 4.3.

Figure 4.2: Hexacopter firefly tf tree in frames.
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Figure 4.3: Hexacopter firefly tf tree in RViz.

In conclusion, by using the tf library every hexacopter have perception of its exact
position in relation to the environment-wolrd that its inside, in every frame. That is
crucial for the follow-up process.
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4.2 Distributed Sequential Auction

4.2.1 Classification

Initially, we need to attempt to respond to the principal query of which robot ought
to execute which task. This question is actually a multi-robot task allocation problem
(MRTA). The task allocation downside tends to the subject of finding the task-to-robot
assignments that improve utility objectives or global cost. Consequently, most of basic
methodologies are approximate or heuristic in nature. MRTA might be an essential
issue of the multi-robot systems, which epitomizes the high-level system organization
and operation mechanism. The performance of a multi-robot system is legitimately
impacted by the quality of the task allocation algorithm.

Thus, we followed a classification that proposed by Gerkey and Mataric [11] for
the task allocation problem. It is portrayed in the following way,

• Single-task robots (ST) vs. multi-task robots (MT): single-task robot indicates that
every robot is able to execute at most one task at a time, in opposition to multi-
task robot, which indicates that some robots are capable of executing many tasks
synchronously.

• Single-robot tasks (SR) and multi-robot tasks (MR): single-robot tasks are tasks that
demands at most one robot to achieve it, in opposition to multi-robot tasks,
where some tasks demand many robots.

• Instantaneous (IA) and time-extended (TA) assignment: In Instantaneous assign-
ments there is no arrangement for future allocations and the robots are only con-
cerned with the task that they are executing or plan to execute. On the contrary,
in time-extended assignments more information is available and they can turn
up with longer term plans involving task schedules.

Of the above taxonomy, we find eight different combinations of task allocation. The
combination ST-SR-IA is the simplest, and is actually a case of the Optimal Assignment
Problem (OPA) [9]. This combination of robots, tasks and assignments is the one that
we used in our scenario. Every drone can execute one task at any given moment and
every task demands exactly one robot to achieve it. The data concerning the robots,
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the tasks and the map/environment allows only an instantaneous assignment of the

initially tasks to robots, with no arrangement for future task distributions.

4.2.2 Auction Mechanism

In multi agents systems, auctions have become common place when allocating tasks.

There is a variety of auctions formats that can be used when allocating a group of

tasks, like in our scenario where drones allocate a group of tasks that they must visit.

The most well known mechanisms are the sequential and the combinatorial auctions.

The sequential auction is an auction in which several tasks/items are allocated by

the seller. Throughout the auction, the format stays the same for early and late tasks.

One after the other the tasks are allocated to the same group of bidders. As the auction

proceeds sequentially, the bid value of an additional task depends on the number of

tasks procured by the bidders up until this point. Complements arise if the value of an

additional task increases in the number of acquired tasks, as long as substitutes arise

if the value decreases in the number of acquired tasks.

On the other hand, combinatorial auctions allow bidders to submit bids to a num-

ber of tasks/items, that are auctioned simultaneously. Then for each task separately,

the price and the allocation is resolved, depending entirely on the bids that are sub-

mitted on it.

We selected to implement a sequential auction in this thesis. Combinatorial auc-

tions can be computationally complex to implement, although they provide economi-

cally efficient allocations. In our multi-drone scenario, a sequential auction fits better

than a combinatorial. Drones have minimal processing power and computationally

complexity of the implementation of combinatorial auctions is sometimes too heavy

to handle.

Additionally, there was a dilemma between a distributional and a centralized ap-

proach. A distributional approach, as we saw in Section 3.2, is more common and

is also highly efficient for the MRTA problem. On the other hand, a centralized ap-

proach will prove restrictive in a multi-agent scenario, as too many bidders (drones

in our case) may overload the server-auctioneer. Hence, making the whole auction

process less responsive than the auctioneers and buyers would prefer.
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For those reasons, we conclude that the best combination of auction mechanisms
is a distributed sequential auction. Every drone can participate in this auction model
with minimal computational power. The need of a central server that allocates the
tasks is eliminated, making the whole system more portable, which is a crucial need
in search-and-rescue scenarios.

4.2.3 Auction Framework

Our auction-based coordination system for multi-robot task allocation follows the
steps as described bellow,

1. Our system considers the robots as bidders and therefore the tasks as merchan-
dise. All tasks are initially unallocated and known to every robot. Then each
robot creates its topic and subscribes to the newly created topics of the other
robots, as we saw in Section 2.1.

2. During every round of bidding, all robots bid on unallocated tasks. Firstly, every
robot calculates its bid for every unallocated task. Then it selects the lowest bid
and bid it for the round.

3. Hence, each robot individually publishes the selected bid to the created topic and
wait until all the robots in the environment made a bit or until a given default
time.

4. After the collection of the round’s bids is complete, through the subscriptions,
each robot finds the lowest bid of the round locally and automatically learns the
winner of the task.

• If the robot is the winner, it allocates that specific task to its path and re-
moves it from the unallocated task list.

• If the robot is not the winner, it changes the status of the unallocated task to
allocated.

5. A new round of bidding will reinitiate , as explained in steps 2, 3 and 4 until all
the tasks have been allocated to robots.
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A pseudo-code of this described algorithm can be seen at Algorithm 1. It is needed
to emphasize the fact that each robot needs to bid only on a single task at each round.
In particular on the task for which its bid is the lowest and then all that bid, since
all the other bids from the same robot have no chance of winning. In addition, we
point out that each robot publish its bid to a certain topic and subscribes to the all
the respectively topics of the other robots. Through these subscriptions, every robot
receives the bids of the other robots in each round.

Upon allocation of all tasks, every robot computes a path for visiting the tasks
allocated to it and then moves along that path. If no tasks are allocated to a robot,
then it stays at its initial position. Satisfactory bid choice and path calculation are key
factors in group performance.

The primary advantage of this multi-round auction mechanism is its simplicity and
the fact that it allows for a decentralized implementation on real robots. Without any
doubt, there is no requirement for a central auctioneer and as a result there is no single
purpose of failure.

4.2.4 Cost Objectives

As we indicated before, the objective of multi-robot routing is to find an allocation of
tasks to robots, along with finding a path for each robot. Then the robot visits all its
tasks that was allocated to it. All that is done, so a team objective can be optimized.
Through the bidding process of the auction we implemented, we try to optimize this
team objective.

We focus our research in three team objectives, which are the MiniSum, the Mini-
Max and the MiniAve [19]. As we have seen in Section 4.2.3, each robot must calculate
a set of bids independently for each round. The bidding algorithm decides the value
of the bids and sequentially which tasks they bid on.

For each one of the three objectives, we created the corresponding bidding algo-
rithm. The user can, through input, determine which algorithm will run, depending
on the scenario he implements. The bidding algorithms are as seen below,

1. MiniSum
The MiniSum objective is to minimize the sum of robot path costs over all robots.
In respond to this objective, we created the MiniSum Algorithm. Every task is bid
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Algorithm 1 Auction Framework
1: Input:
2: n← number o f robots
3: m← number o f tasks
4: Initialize: publisher → p, subscribers→ {s1, . . . , sn}, queue.Add(tasks)
5: if (n <= 0) or (m <= 0) then
6: done
7: else
8: while queue not empty do
9: bids← Calculate Bids

10: bid← Select min (bids)
11: publish← bid
12: f inalBids← other robots bids, bid
13: FindWinner (finalBids)
14: if winner then . Round Winner
15: add task to path
16: end if
17: queue.Remove(allocated task)
18: end while
19: end if

on and the bidding amount is determined by the following. To determine the
bidding value on every unallocated task we perform the following,

• Determine the cost of completing both the currently allocated tasks and the
task being bid on.

• Calculate the cost of completing currently allocated tasks.

The final bid is the difference between those costs. So, by using this MiniSum
algorithm, we allocate the tasks to the robots that can complete them with the
smallest extra cost.

2. MiniMax
The MiniMax objective is to minimize the maximum robot path cost over all
robots. In respond to this objective, we created the MiniMax Algorithm. Every
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task is bid on and the bidding amount is dictated by computing the cost of com-
pleting both the currently allocated tasks and the task being bid on. The final
bid is the cost of the path. With this bidding algorithm, the tasks will be alloted
fairly evenly between robots.

3. MiniAve
The MinAve objective is to minimize the average target path cost over all targets.
The MiniAve Algorithm was created in response to that objective. Every task is
bid on and the bidding amount is determined by calculating the cumulative av-
erage cost of completing both the currently allocated tasks and the task being bid
on and then subtract the cumulative average cost of completing the currently al-
located tasks. This algorithm tries to balance the solutions given by the MiniSum
and MiniMax algorithms and for that reason the solutions are somewhat in be-
tween.

From the three biding algorithms that was implemented, the MinAve Algorithm is
the most optimal for search-and-rescue missions. In this missions we want the drones
to coordinate between each other to accomplish tasks in the minimum amount of time
while saving the maximum number of survivors.

4.2.5 Auction Resolution Algorithms

The last step in every round is to properly allocate the task to the winner. After the
creation and the collection of the bids in Section 4.2.4, the selection of the winning bid
is done by the auction resolution algorithm. There are two different algorithms that we
implemented. Those are as follows,

i. Lowest Bid
This algorithm finds the lowest bid and assign the task to its bidder. It is the
most common approach to these MRTA problems.

ii. Least Contested Bid
In this algorithm [30], we find the the task with the largest difference between
the two lowest bids. Then, we allocate to the bidder the task. So, we have faster
allocation of tasks that can be completed by one robot.
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In our implementation, we set as default the Lowest Bid algorithm, which is and
the most common. If the user wants to allocate the tasks with the Least Contested Bid
algorithm, he must give and the appropriate input in our package.

4.3 Waypoint Navigator

Following the finale of our auction, every robot has a set of tasks. Each robot must
follow those tasks with the order it won them, namely to follow the waypoint path
it created through the auction. We wanted a waypoint follower that can simulate
realistically real-life scenarios and make easy the transition from simulation to real
robots. The Waypoint Navigator1 package that was developed by the Autonomous
Systems Lab in ETH Zurich, is a perfect match to what we want to achieve.

This package contains a high level waypoint following mechanism for drones. An
example of this, is provided in the RotorS simulator [8]. An instance of this package is
shown in Figure 4.4. With this package we have secured a high-end trajectory tracking
controller with collision avoidance and path planing. We opted for using this package
and not creating our own, because it made easier the transition from simulation to real
drones.

Figure 4.4: A screenshot of the RotorS simulator.

1https://github.com/ethz-asl/waypoint_navigator
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The connection of the waypoint navigator with our work was done with the use
of services. As we saw in Section 2.1, the publish-subscribe model is a very adaptable
communication example, however its many-to-many one-way transport is not proper
for RPC request-reply interactions, which are frequently required in a distributed sys-
tem like our own. Each drone, at the end of the auction, sends its waypoint path to
the waypoint navigator. The waypoint navigator receives the waypoints as a list of
geometry messages 1 and command the drone to follow the path.

1http://docs.ros.org/jade/api/geometry_msgs/html/msg/Pose.html
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Chapter 5

Results

In this chapter, we will see how the auction mechanism, that was explained in the
previous chapter, works through three scenarios. All the scenarios belong in the ST-
SR-IA case, as seen in Chapter 4.2.1 and in every scenario is used the MiniSum cost
objective 1. and Lowest Bid Algorithm i.. That is done so we can compare more
easily the results. Simulations are performed many times, so we can confirm that they
produced the same results, as expected.

5.1 Scenario 1

This scenario involved two drones and six tasks. The tasks are randomly placed in a
(5x5x3) metre area. The task are as follows in the table below,

x y z
task 1 -4 2 1
task 2 -3 -4 3
task 3 -1 -4 3
task 4 -1 2 1
task 5 3 4 2
task 6 1 1 1

Table 5.1: Unallocated tasks coordinates.

And the drones firefly0 and firefly1 are at positions (0, 0, 0) and (2, 0, 0) respectively.
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After they locate themselves in the environment, they start the auction process, as
described in Chapter 4.2.3. Firstly, they create a set of bids of all the tasks and select
the lowest bid (in red) and bid it for the round.

task1 task2 task3 task4 task5 task6
bids 4.6 5.8 5.1 2.4 5.4 1.7

Table 5.2: firefly0 round 1 bids.

task1 task2 task3 task4 task5 task6
bids 6.4 7.1 5.8 3.7 4.6 1.7

Table 5.3: firefly1 round 1 bids.

Then, they publish their bid and collect the bid of the other drone. Each now has
the following table,

task1 task2 task3 task4 task5 task6
firefly0 -1 -1 -1 -1 -1 1.7
firefly1 -1 -1 -1 -1 -1 1.7

Table 5.4: Round 1 winner selection.

where the winner is firefly0, because when two or more robots bid the same value
the winner is the first robot alphabetically. Then, firefly0 adds the task to its path,
firefly1 marks task6 as allocated and we continue to the next round.

task1 task2 task3 task4 task5 task6
firefly0 bids 5.1 6.7 5.7 2.2 3.7 -1
firefly1 bids 6.4 7.1 5.8 3.7 4.6 -1

Table 5.5: Round 2 bids.

In round two the same process repeats itself. As we see in Table 5.5, the drones
select their lowest bid for the round and bid it. Then the lowest bid is found and
consequently the winner (Table 5.6), which is firefly0 for task 4.
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task1 task2 task3 task4 task5 task6
firefly0 -1 -1 -1 2.2 -1 -1
firefly1 -1 -1 -1 3.7 -1 -1

Table 5.6: round 2 winner selection

The same process repeats itself until all the tasks are allocated. As we see in the
tables below,

task1 task2 task3 task4 task5 task6
firefly0 3 6.6 6.3 -1 4.6 -1
firefly1 6.4 7.1 5.8 -1 4.6 -1

Table 5.7: round 3 bids

task1 task5
firefly0 3 -1
firefly1 -1 4.6

Table 5.8: round 3 winner

task1 task2 task3 task4 task5 task6
firefly0 -1 6.4 7 -1 7.3 -1
firefly1 -1 7.1 5.8 -1 4.6 -1

Table 5.9: round 4 bids

task2 task5
firefly0 6.4 -1
firefly1 -1 4.6

Table 5.10: round 4 winner

task1 task2 task3 task4 task5 task6
firefly0 -1 6.4 7 -1 -1 -1
firefly1 -1 10 9 -1 -1 -1

Table 5.11: round 5 bids

task2 task3
firefly0 6.4 -1
firefly1 -1 9

Table 5.12: round 5 winner

task1 task2 task3 task4 task5 task6
firefly0 -1 -1 2 -1 -1 -1
firefly1 -1 -1 9 -1 -1 -1

Table 5.13: round 6 bids

task3
firefly0 2
firefly1 9

Table 5.14: round 6 winner

After the last task allocation, the auction process is complete and each drone has its
own path of waypoints, as seen in Table 5.15. Then, each drone visits their won way-
points with the correct order. By using the Waypoint Navigator package, described in
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Chapter 4.3, we create the path that the drones will follow as depicted in Figure 5.1,
Figure 5.2 and Figure 5.3. In the RViz environment, the pink sphere represents the
drone and the red squares represent the tasks that must be visited.

firefly0 task6 task4 task1 task2 task3
firefly1 task5

Table 5.15: Navigation path for each drone.

Figure 5.1: View of the drones in the
Gazebo environment.

Figure 5.2: View of the drones paths in 2D
in the RViz environment.

Figure 5.3: View of the drones path in 3D in the RViz environment.
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5.2 Scenario 2

This scenario involved five drones (firefly0...firefly4) and twenty tasks (task0..task19).
The tasks are randomly placed in a (40x40x20) metre area. The task are randomly
generated in this area and the drones are also randomly placed within the same area,
at ground position. The initial positions of the drones are shown in Table 5.16 and the
coordinates of the tasks in Table 5.17.

x y
firefly0 9 -7
firefly1 -13 10
firefly2 7 -8
firefly3 -15 10
firefly4 20 -4

Table 5.16: Initial positions of the drones.

x y z x y z
task0 -9 -13 10 task10 -6 11 20
task1 8 3 6 task11 9 18 12
task2 -3 -16 18 task12 -2 -7 16
task3 7 -17 3 task13 2 18 2
task4 -17 2 16 task14 -5 14 8
task5 20 4 13 task15 -11 9 7
task6 -17 14 15 task16 -12 6 2
task7 -7 18 5 task17 -8 19 1
task8 7 -19 13 task18 -3 -14 18
task9 -11 16 14 task19 11 16 7

Table 5.17: Initial coordinates of the tasks.

After the auction process is complete and the last task is allocated, each drone has
its own path of waypoints, as seen in Table 5.18. We observe that according to their
initials positions some drones have more tasks to visit than others, which is expected.
Lastly, in Figure 5.4 and in Figure 5.5 we observe the path following of the drones
in the Gazebo environment. In Figure 5.6 we visualize each drone’s path in the RViz
environment, firstly in 2D in Figure 5.7 and then in 3D Figure 5.8.

firefly0 task1 task5
firefly1 task16 task15 task0 task4 task6 task9 task10 task14 task7 task17 task13 task19 task11
firefly2 task3 task8 task2 task18 task12
firefly3 -
firefly4 -

Table 5.18: Navigation path for each drone.

This scenario was also tested with the MiniMax and MiniAve objectives, so we can
have a comparison between them. The navigation paths of each objective are shown in

Georgios Vastardis 37 July 2019



5. RESULTS

Figure 5.4: View of the drones in the
Gazebo environment.

Figure 5.5: Another view of the drones in
the Gazebo environment.

Figure 5.6: View of the drones path in 2D in the RViz environment.

Table 5.19 for MiniMax and in Table 5.20 for MiniAve. As we observe, the results are as

expected. With the MiniMax, the tasks are allocated fairly evenly between the drones

and with the MiniAve the results are somewhat in between the other two objectives.

In Figure 5.9 and in Figure 5.10, we see the MiniMax paths visualization in 2D and in
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Figure 5.7: View of the drones path in 3D in the RViz environment.

Figure 5.8: View of the drones path in 3D in the RViz environment.
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3D respectively in the RViz environment. The MiniAve paths visualization is shown
in Figure 5.11 and in Figure 5.12.

firefly0 task1 task19 task11 task10
firefly1 task16 task14 task7 task17 task13
firefly2 task3 task8 task2 task18
firefly3 task15 task0 task9 task6 task4
firefly4 task5 task12

Table 5.19: Navigation path for each drone with the MiniMax objective.

firefly0 task1 task19 task13
firefly1 task16 task14 task7 task17
firefly2 task3 task8 task2 task18 task12
firefly3 task15 task0 task9 task6 task4
firefly4 task5 task11 task10

Table 5.20: Navigation path for each drone with the MiniAve objective.

Figure 5.9: View of the drones path in 2D in the RViz environment (MiniMax).
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Figure 5.10: View of the drones path in 3D in the RViz environment (MiniMax).

Figure 5.11: View of the drones path in 2D in the RViz environment (MiniAve).
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Figure 5.12: View of the drones path in 3D in the RViz environment (MiniAve).
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5.3 Scenario 3

This scenario involved twenty drones(firefly0...firefly19) and fifty tasks (task0..task49).

The tasks are randomly placed in a (75x75x20) metre area. The task are randomly

generated in this area and the drones are also randomly placed within a smaller area

of (20x20) meters, at ground position. After the auction process is complete we will

have the navigation path for each drone.

firefly0 task21
firefly1 -
firefly2 -
firefly3 -
firefly4 -
firefly5 task40 task39 task19 task4 task3 task0 task1 task2
firefly6 -
firefly7 -
firefly8 -
firefly9 task26 task7 task5

firefly10 -
firefly11 -
firefly12 -
firefly13 task47 task11 task10 task28 task15
firefly14 -
firefly15 -
firefly16 task35 task24 task23 task46 task29 task22 task43 task48 task31 task18 task44 task14 task32 task25 task38
firefly17 task33
firefly18 task20 task16 task13 task41 task36 task37 task49 task27 task45 task42
firefly19 task9 task34 task17 task30 task6 task8 task12

Table 5.21: Navigation Path for each drone.

As we see in Table 5.21, some drones have many tasks (like drones firefly16 and fire-
fly18) and some none (like drones firefly10 and firefly15). This is a normal process, be-

cause some drones are closer to some tasks than others and seemingly they are gonna

win them. The drones initial positions are shown in Figure 5.13 and the tasks positions

in Figure 5.14. We can see the drones and the tasks positions in the same environment

in Figure 5.15 and the drones’ paths in Figure 5.16. The paths in 2D may seem oddly

allocated. Some drones visit tasks that are further away firstly and then tasks that are

closer. That happens, because in the 2D diagrams we loose the height (z) informa-

tion. So, a task may seem further away than others, but in reality it is closer to the

drone. One clear example of this case is firefly19, where it visits first task9 in position

(44, 18, 2) and then task17 in (50, 26, 13), although in 2D it seems that the first choice
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must be task17. In Figure 5.17, in Figure 5.18 and in Figure 5.19 we see the the paths in
3D, so we can have the missing z info displayed clearer.

Figure 5.13: Drones positions. Figure 5.14: Tasks positions.

Figure 5.15: Drones and tasks positions.
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Figure 5.16: View of the drones paths in 2D.

Figure 5.17: View of the drones paths in 3D.
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Figure 5.18: View of the drones paths in 3D.

Figure 5.19: View of the drones paths in 3D.
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This scenario was also tested with the MiniMax and MiniAve objectives, so we can
have a comparison between them. The navigation paths of each objective are shown in
Table 5.22 for MiniMax and in Table 5.23 for MiniAve. As we observe, the results are as
expected. With the MiniMax, the tasks are allocated fairly evenly between the drones
and with the MiniAve the results are somewhat in between the other two objectives.
In Figure 5.20 and in Figure 5.21, we see the MiniMax paths visualization in 3D in the
RViz environment. The MiniAve paths visualization is shown in Figure 5.22 in 2D and
in Figure 5.23 in 3D.

firefly0 task24 task23 task21
firefly1 task30 task6 task8
firefly2 task18 task31 task48
firefly3 task34 task12
firefly4 task44
firefly5 task40 task39 task19 task4 task3 task0 task1 task2
firefly6 task7 task5
firefly7 task32 task25
firefly8 task10
firefly9 task26

firefly10 task33
firefly11 task41 task49 task27 task42
firefly12 task11
firefly13 task47
firefly14 -
firefly15 task14 task38
firefly16 task35 task46 task29 task22 task43
firefly17 task17
firefly18 task20 task16 task13 task36 task37 task45
firefly19 task9 task28 task15

Table 5.22: Navigation Path for each drone with MiniMax.
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Figure 5.20: View of the drones paths in 3D (MiniMax).

Figure 5.21: View of the drones paths in 3D (MiniMax).
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firefly0 task24 task22 task1
firefly1 task30 task6
firefly2 task18 task31 task19
firefly3 task34 task28
firefly4 task44 task43 task0
firefly5 task16 task13 task36 task2
firefly6 task7 task5
firefly7 task32 task14 task38
firefly8 task10 task12
firefly9 task26 task25

firefly10 task33 task3
firefly11 task40 task39 task49
firefly12 task11 task42
firefly13 task47 task45
firefly14 task23 task48
firefly15 task46 task29 task27
firefly16 task35 task21 task4
firefly17 task17 task8
firefly18 task20 task41 task37
firefly19 task9 task15

Table 5.23: Navigation Path for each drone with MiniAve.
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Figure 5.22: View of the drones paths in 2D (MiniAve).

Figure 5.23: View of the drones paths in 3D (MiniAve).
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Chapter 6

Conclusion

6.1 Discussion

This thesis describes a multi-robot collaboration approach, in witch a team of drones

cooperate to solve a basic Search-and-Rescue scenario. Assuming that we have a team

of drones in an environment and a set of known tasks-locations that must be visited,

we implemented a distributed sequential auction to distribute the tasks. Foremost, each

drone finds its position in relation to the environment, by using the tf library. Af-

terwards, in every round, each drone communicate with each other to determine the

winner of the task with the best bid. The bidding value is calculated as the distance

between the robot and the task by using a set of algorithms, as we saw in Chapter 4.2.4.

The winner bid is by default the lowest, which is found by using the Lowest Bid Algo-

rithm i.. The user has the option to choose the winning bid with the Least Contested

Bid Algorithm ii. by giving the correct input. Finally, after all the tasks has been al-

located, a waypoint navigator package is used to command the drone to follow the

created path. Each system part is presented in detail and the entire system is ready for

real-world experiments. The entire project has been implemented within the Robot

Operating System (ROS), as an open source package.
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6.2 Future Work

6.2.1 Advanced Bidding Model

In our approach, we used a bidding model, where the robot’s bid is based on its dis-
tance from the task-location. Also, the drones have not any sensors with them, like
high quality cameras, 3D LiDAR, etc. First of all, in real life situations each robot will
have sensors and the sensors will not be necessary the same in all the robots. One
robot may have a sensor for radiation detection and another may have a thermal cam-
era. Also, the percentage of the battery of each drone could count as an extra "sensor",
because they can fly as long as they have enough battery. Through, those sensors addi-
tions, the bidding model must be reevaluated and improved in many areas. Weights to
the bidding process must be introduced, each one depending to the different sensors
and the battery level that the drones will have. This will allow for a better simulation
based on real-life search-and-rescue scenarios and also for better results in real-life
situations.

6.2.2 Real-World Experiments

In this thesis, out of eight combinations of the Optimal Assignment Problem (OPA) we
focused only in the simplest case, which is the ST-SR-IA (Single-task robot - Single-robot
task - Instantaneous assignment). In real-life search-and-rescue missions all the combi-
nations exist. Tasks that demand more than one robot and robots that can execute
multiple tasks synchronously are some of the cases that firstly must be studied and
simulated in different scenarios, so they can implemented in real situations. Our sce-
nario must also, be tested in real circumstances, so along with the others cases we
can minimize the amount of time needed, while saving the maximum number of sur-
vivors.

6.2.3 Additional Path-Finding Algorithms

Ultimately, this proposal concentrated uniquely in three out of several algorithms that
exist for finding a minimum path cost. A path can also be assessed without a mini-
mum cost by many more algorithms, in various ways and speeds. Additionally, in our
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case the three algorithms that were utilized can be additionally refined, with the goal
that they will become progressively more effective and quick. In this way, through dif-
ferent experiments a superior version of the utilized algorithms or even a brand new
algorithm could be implemented to calculate better paths that the robots will follow,
so as to to get to the objectives in the minimum amount of time.
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