

TECHNICAL UNIVERSITY OF CRETE

SCHOOL OF ELECTRICAL AND COMPUTER
ENGINEERING

MASTER THESIS

TensorGlue:
A Framework for FPGA-based

Deep Learning Design

Pavlos Giakoumakis

Committee

Professor Apostolos Dollas
Associate Professor Ioannis Papaefstathiou, AUTH

Professor Michael Zervakis

November 26, 2019

Abstract:
In a deep learning framework, the designer provides a description of the

neural network architecture, in the form of a computational graph (data-flow
graph). The tool is able process this graph and either run it efficiently on fixed-
hardware, or generate automatically additional graphs to train the neural net-
work. Nevertheless, this kind of formalization using computational graphs is very
close to the hardware design process. The graph can be processed in many
ways to not only run the described architecture on fixed-hardware, but to gen-
erate hardware designs as well.

In this work, we designed and implemented a novel framework that resem-
bles deep learning frameworks but generates hardware designs in the form of
synthesizable C++.

Keywords: Design Flow Optimization, Very High-Level Synthesis, Artificial Intelli-
gence, Machine Learning, Deep Learning, Computational Graphs, Hardware Acceler-
ators, Field Programmable Gate Arrays

iv

Contents

1 Introduction 1
1.1 Deep Learning . 1
1.2 Hardware Evolution and Deep Learning 2
1.3 Programming Paradigms . 2
1.4 About this Thesis . 3
1.5 Framework Goals . 3
1.6 Detailed Motivation . 4
1.7 Contribution . 5
1.8 Thesis Structure . 6

2 Background and Related Work 7
2.1 Introduction . 7
2.2 Deep Learning Background . 7

2.2.1 Stochastic Gradient Descent 8
2.2.2 Back-Propagation . 8
2.2.3 CNN Architectures . 8

2.3 Deep Learning Frameworks . 9
2.4 Hardware Description Languages and FPGAs 9
2.5 High Level Synthesis Tools and FPGAs 10
2.6 Current Hardware . 11

2.6.1 Graphcore . 11
2.6.2 Current FPGAs . 12

2.7 Related Tools . 13

3 Requirement Analysis and Modeling 17
3.1 Requirement Analysis . 17

3.1.1 Problem Formulation . 17
3.1.2 Developer Classes . 18
3.1.3 Short Term User Goals . 18
3.1.4 User Goal Description . 19
3.1.5 Performance Indices . 22
3.1.6 Design Priorities . 22

3.2 Foundational Modeling . 22
3.2.1 Modeling Process . 22
3.2.2 Modules and Trainable Modules 23
3.2.3 Computational Graphs . 23

v

3.2.4 Forward and Backward Computational Graphs 24
3.2.5 Operators . 24
3.2.6 Wires . 24
3.2.7 Conditionals . 25
3.2.8 Commands and Execution Periods 26
3.2.9 Control Graphs . 26
3.2.10 Control Nodes . 26
3.2.11 Control Tasks . 27
3.2.12 Graph Factories and Op Factories 27
3.2.13 Linker Nodes . 27
3.2.14 Submodules . 27

4 System Architecture and Implementation 29
4.1 Proposed Design Flow . 29
4.2 Proposed Tool Stack . 30

4.2.1 Why Python . 30
4.2.2 Used Schemes of Code Generation 31
4.2.3 HLS C++ and Jinja 2 . 31
4.2.4 The Trade-off . 32

4.3 Framework Architecture . 32
4.3.1 Wires . 33
4.3.2 Wire Configuration . 36
4.3.3 Operators . 37
4.3.4 Operator Factories . 39
4.3.5 Refined Control Graphs . 40
4.3.6 Modules . 40
4.3.7 Trainable Modules . 43
4.3.8 Memory Wires and Caching Mechanism 45
4.3.9 Classes for Handling Vivado HLS 46
4.3.10 Dataset and Dataset Exporter 46

4.4 Important Implementation Concepts 48
4.4.1 Graph Traversal . 48
4.4.2 Graph Updating . 50
4.4.3 Root System . 50
4.4.4 Python Execution . 51
4.4.5 Python Synthesis Pipeline . 52
4.4.6 Graph Trimming Stage . 53
4.4.7 Parent Registration Stage . 53
4.4.8 Memory Trimming Stage . 53
4.4.9 Output Expansion Stage . 54
4.4.10 Operator Injection Stage . 54
4.4.11 Dispenser Injection . 55
4.4.12 Assignment Injection . 56
4.4.13 Implementation of Operator injection Stage 57
4.4.14 Translation Stage and HLS Modules 58
4.4.15 Backpropagation . 61

vi

5 Framework Validation and Evaluation 65
5.1 Introduction . 65
5.2 Framework Validation . 65
5.3 Evaluation of Installation and Prerequisites 66
5.4 Task-based Evaluation . 67

5.4.1 TensorGlue Module Definition 67
5.4.2 TensorGlue Trainable Module Definition 69
5.4.3 Framework Tesbench Definition 69
5.4.4 Arbitrary Precision Types and Streams 70
5.4.5 Generating Vivado HLS C++ Project 71
5.4.6 Op Definition . 71

5.5 Performance Evaluation . 72
5.5.1 Testing Script . 72
5.5.2 Testing Configurations . 73
5.5.3 Synthesis Execution Time . 73
5.5.4 Device Utilization and Latency 75

6 Conclusion and Future Work 79
6.1 Conclusion . 79
6.2 Future Work . 79

A Input and Generated Code 81
A.1 Input Code . 81
A.2 Generated Code . 82

B Measurements in Detail 89
B.1 Device Utilization and Latency . 89

vii

viii

List of Figures

1.1 Framework Goals . 4

3.1 User Goals - Framework Hardware Developers 18
3.2 User Goals - Framework Software Developers 19
3.3 User Goals - External Engineers . 19
3.4 Framework Modeling Process . 23
3.5 Example computational graph . 24
3.6 Wire categorization . 25
3.7 Conditional . 26

4.1 Proposed Design Flow . 30
4.2 Proposed Tool Stack . 31
4.3 Framework Architecture . 33
4.4 Wire configuration C++ struct. 37
4.5 Use Case: New Op . 38
4.6 Operator classes. 39
4.7 Control Graph Example . 40
4.8 Use Case: New Module . 41
4.9 Module Control Graph . 43
4.10 Trainable Module Control Graph . 45
4.11 The directory structure that holds the exported Dataset. 47
4.12 An example computational graph. 48
4.13 The unfolded version of the computational graph presented in

figure 4.12. 49
4.14 The API to alter children. 51
4.15 Python synthesis pipeline. 52
4.16 Graph trimming stage. 53
4.17 Output Expansion. 54
4.18 Dispenser Special Operator. 55
4.19 Dispenser injected to cope with an output that requires attention. 55
4.20 Dispenser injected to broadcast a stream of data into multiple ones. 56

ix

4.21 Assignment operators injected to cope with a computational graph
root. The root has been expanded during the root expansion
phase. Multiple assignment injections are required to handle with
root nodes that have multiple parents, but due to root expansion
we do not have to handle this case at all. Moreover, the combi-
nation of cases 1, 2 and 3 will handle it effectively. Note as well
that injection on wi is required only if wi is a scalar. 57

4.22 Generated Vivado HLS C++ source file structure. 59
4.23 Backpropagation implementation as a special Graph Factory, the

Backward Graph Factory. 61
4.24 Computational graph example with all partial derivatives shown

on the arrows next to the corresponding Operators. 62
4.25 An example of a generated backward graph. 63
4.26 Backpropagation example with input dependency. 64

5.1 Python and Vivado C++ Synthesis results, BRAM utilization. 75
5.2 Python and Vivado C++ Synthesis results, DSP48E utilization. 76
5.3 Python and Vivado C++ Synthesis results, FF utilization. 76
5.4 Python and Vivado C++ Synthesis results, LUT utilization. 77
5.5 Python and Vivado C++ Synthesis results, latency results. 77

x

List of Tables

2.1 Graphcore Colossus . 12

4.1 Wire types . 34
4.2 Wire properties . 35
4.3 Wire API . 36
4.4 The main API of the module. 42
4.5 The API of trainable modules (only the differences from simple

modules). 44
4.6 Abstract graph API. 50
4.7 The API of Vivado HLS module. 60

5.1 Framework Prerequisites . 66
5.2 Testing Configurations . 73
5.3 Synthesis Elapsed Time with 8 Neurons per layer. 73
5.4 Synthesis Elapsed Time with 64 Neurons per layer. 74
5.5 Synthesis Elapsed Time with 128 Neurons per layer. 74
5.6 Synthesis Elapsed Time with 8 Neurons per layer and training en-

abled. 74
5.7 Synthesis Elapsed Time with 64 Neurons per layer and training en-

abled. 74
5.8 Synthesis Elapsed Time with 128 Neurons per layer and training

enabled. 75

B.1 Python and Vivado C++ Synthesis results for 8 Neurons per layer
and training disabled. 89

B.2 Python and Vivado C++ Synthesis results for 64 Neurons per layer
and training disabled. 89

B.3 Python and Vivado C++ Synthesis results for 128 Neurons per layer
and training disabled. 90

B.4 Python and Vivado C++ Synthesis results for 8 Neurons per layer
and training enabled. 90

B.5 Python and Vivado C++ Synthesis results for 64 Neurons per layer
and training enabled. 90

B.6 Python and Vivado C++ Synthesis results for 128 Neurons per layer
and training enabled. 91

B.7 Python and Vivado C++ Synthesis results for fixed16, 8 Neurons per
layer and training disabled. 91

xi

B.8 Python and Vivado C++ Synthesis results for fixed16, 64 Neurons
per layer and training disabled. 91

B.9 Python and Vivado C++ Synthesis results for fixed16, 128 Neurons
per layer and training disabled. 92

B.10 Python and Vivado C++ Synthesis results for fixed16, 8 Neurons per
layer and training enabled. 92

B.11 Python and Vivado C++ Synthesis results for fixed16, 64 Neurons
per layer and training enabled. 92

B.12 Python and Vivado C++ Synthesis results for fixed16, 128 Neurons
per layer and training enabled. 93

xii

List of Code Snippets

4.1 Jinja 2 Template (example.jinja). 32
4.2 Python Code to call. 32
4.3 Generated C++ Code. 33
4.4 Wire configuration HLS C++ base struct. 37
4.5 Wire configuration definition example. 37
4.6 Op pseudocode template. 39
4.7 Simplified Graph Traversal. 49
4.8 Backward Graph Factory Algorithm. 64
5.1 Script beginning . 67
5.2 Custom module constructor. 68
5.3 Custom module architecture. 68
5.4 Custom module instantiation. 68
5.5 Custom trainable module constructor. 69
5.6 Example implementation of the forward method in a trainable

module. 69
5.7 Custom trainable module instantiation. 70
5.9 Arbitrary precision type example. 70
5.10 Stream type example. 70
5.8 Example testbench. 71
5.11 Commands to generate the Vivado HLS project. 71

xiii

xiv

Chapter 1

Introduction

The available data and processing elements are becoming nearly abundant.
Because both are space-oriented, we will eventually have to employ space-
oriented programming paradigms for any applications that could benefit from
this abundance. Dataflow computing, which is inherently space-oriented, is
the most obvious paradigm and software frameworks are required to enable
an efficient development. Such schemes generally tend to load the process-
ing elements heterogeneously. At the same time, the state-of-the-art tech-
nology to produce integrated circuits is becoming more and more expensive
and thus a greater limiting factor for the diversity of the computer chips that
can be produced, which contrasts the needs for heterogeneous elements. On
the other hand, FPGAs do not impose such limits. Hence, FPGA-based sys-
tems are the most promising platform for dataflow computing. Furthermore,
with the rise of deep learning, artificial intelligence is becoming ubiquitous and
deep learning frameworks - special very high-level dataflow software frame-
works with advanced mathematical features - are the leading technology in
this trend as these algorithms are data and resource hungry. FPGAs are already
used in such applications and deep learning frameworks especially designed
for FPGAs must be developed.

1.1 Deep Learning

Artificial neural networks are biologically inspired models that employ arith-
metic computations organized in multiple layers designed to cope with various
machine learning tasks. Deep learning is a sub-field of machine learning that
utilizes deep neural networks. Deep neural networks are neural networks of
many layers. Most state of the art applications use some kind of deep learning
and this trend is projected to increase, primarily because of the ease of training
high-performing neural networks when the data are sufficient.

1

1.2 Hardware Evolution and Deep Learning

The initial abrupt success of deep learning was driven from the hardware evo-
lution, but currently - as the field emerged and grows continuously - the roles
have changed and the hardware design is the one that is driven from deep
learning. The corresponding market is huge and a diversity of ASIC solutions is
expected to try to enter the market for addressing all kinds of problems and
exploiting different approaches.

From the one hand this diversity could be seen as a negative omen for
FPGAs, as there would be multiple optimized ASIC solutions on the market.
However, on the other hand, FPGAs are reconfigurable and this diversity can
be also seen as a possibility to thrive. First, innovation will become eventually
a harder goal to reach and prototyping will grow in importance. Second, the
hardware required to for a solution in a AI problem may be impossible to be
foreseen until later development stages. Third, the cost to produce integrated
circuits progressively increases and thus imposes significant limits to what can
be implemented in an ASIC. Nevertheless, FPGA tools and infrastructure must
be improved to let FPGAs be a viable solution.

1.3 Programming Paradigms

Typical software design is control-flow driven. This paradigm is perfect for sys-
tems that follow the von Neumann Architecture. In such systems contain a
central control unit which decides what is the next operation to execute. Typ-
ical digital hardware design follows the register-transfer level (RTL) abstraction,
in which someone models the flow of signals between registers. In RTL, the
designer must cautiously handle the time and the required clock signals that
synchronize the circuit. Dataflow computing is from the programmer side in the
middle between these two paradigms. The designer models the flow of the
data between different processing elements which somewhat resembles the
RTL abstraction. However, in dataflow computing we do not explicitly model
the system behavior in time and the need to model clock-related behavior
is eliminated. Moreover, the programmer writes factories that instantiate and
connect processing elements, which in turn act as factories that process data.
Designing individual processing elements normally follows typical software and
hardware design principles. The higher levels of the code also follow typical
software design, except that the programmer does write factories. Thus, typi-
cal languages are perfect candidates for dataflow frameworks. Very high-level
dataflow computing differs from usual dataflow computing in many aspects.
The most important difference is the availability of very coarse-grained APIs
and the continuous endeavor to develop new even coarser APIs. At the same
time, a high-level dataflow framework is accompanied from advanced fea-
tures that greatly enhance the generated design.

2

1.4 About this Thesis

The main purpose of this thesis is the implementation of a deep learning frame-
work to foster research and development of FPGA-aided deep learning algo-
rithms and applications. This framework is not designed with software devel-
opment in mind. Instead, it is designed for hardware engineering. Initially, the
main goal is to aid the process of directly mapping a neural network architec-
ture to hardware resources and define the corresponding API. Hardware devel-
opers will extend this framework to improve the generated hardware and ma-
chine learning experts will use it to explore new algorithms out of the restrictions
of current ASICs1. Hence, to achieve this, the tool through its API exposes ab-
stracted hardware implementation details. Software engineers are now able
to get hands on hardware development using a very familiar paradigm, which
could have a great impact for reconfigurable devices in general in the future.

The framework is implemented in Python and HLS C++. Python is utilized
for implementing most of the framework, while HLS C++ is required mainly to
provide a library of kernels that can be employed from the generated code.
Hence, the framework currently requires Python which is open source and the
corresponding FPGA tools (currently the Xilinx Vivado Suite). The provided user
code is in Python and can be processed to generate a Vivado HLS IP Core,
that can compute both the described neural network and, optionally, the logic
needed to update it (backward graph). All the logic is translated into a hard-
ware module. While the generated code is HLS C++ the formalization is suitable
for generating VHDL or Verilog. HLS tools have the drawback that designer is
restricted. The designer cannot change the tool itself and must use specific
design patterns to achieve the best results. However, the functionality that HLS
tools provide is sufficient at least for this stage of the framework development.
The user code can also run in CPU without any translation to hardware (without
requiring Xilinx Vivado). This can be very helpful in the design phase.

1.5 Framework Goals

The goals of this framework are presented in figure 1.1:

• Maintenance reduction for applications such as deep neural networks,
where a significant portion of the generated circuit may be inferred from
a brief high-level specifications.

• Fast prototyping using Python scripting.

• Intuitive workflow to enhance creativity and conception.

• Truly hierarchical design flow, in which the tools escalate in complexity in
a hierarchical manner.

1We consider all new GPUs that are specially designed to accelerate deep learning appli-
cations as ASICs too.

3

• Generate code that is readable and easy to interact with.

• Fast execution on fixed hardware.

Maintance
Reduction

Fast Prototyping

Intuitive
Workflow

Trully Hierachical
Workflow

Generated Code
Readability &

Interaction

Fast Execution
on Fixed

Hardware

Figure 1.1: The goals of the implemented framework.

1.6 Detailed Motivation

There are numerous reasons to implement such a framework. We present some
of them here. First of all, we need tools that specialize on hardware develop-
ment for deep learning. Furthermore, it has been shown in the past that design-
ing better hardware for deep learning applications is far more important and
has greater impact than designing better algorithms that cannot run efficiently
on current hardware. Neural networks where there many years before, but
deep learning emerged only after the arrival of the powerful GPGPUs and es-
pecially CUDA. Second, it has been shown that deep learning algorithms have
direct impact on the required hardware implementation and thus we need
tools that consider both problems as one to better utilize FPGA resources. Third,
we need deep learning frameworks that expose the hardware implementation
to the designer as hyper-parameters. Current frameworks are more or less im-
plemented and optimized to generate software not hardware. Thus, they sup-
port specific hardware and their APIs do not reflect the reconfigurable nature
and the flexibility of an FPGA. Fourth, the evaluation of all current algorithms is
closely tied with their performance on current hardware, especially GPUs. With
such tools, by merging the processes of algorithm and FPGA-based hardware

4

development, we unchain the development of algorithms from current hard-
ware. Fifth, we need a new layer of high level tools built on top of existing tool
suites where a common programming language is used as a design hub for an
FPGA project. An API that simplifies tasks will increase the productivity exponen-
tially. The programming paradigm of deep learning frameworks suits perfectly
for this task. The programmer describes a computational graph and this graph
is optimized statically before execution, a scheme and a programming style
that resembles HDL languages. In fact it may be the first time where software
engineers become familiar with a programming style so close to the HDL de-
sign process. Hence, a sixth reason is to exploit this situation and help software
engineers participate in hardware design. Seventh, current software-oriented
frameworks have very different objectives and their APIs and the internal infras-
tructure changes extremely fast. These changes are more or less an additional
burden for the hardware community. For example, the hardware community
requires guarantees that the API will change only when it is necessary, espe-
cially when building the infrastructure behind the APIs.

Personal motivations included:

1. Get involved with deep learning.

2. Gain an intuition about the current trends in both software and hardware.

3. Get familiar with the maths behind neural networks.

4. Delve into the process of implementing a new deep learning framework.

1.7 Contribution

Contributions of this thesis include:

• To the best of our knowledge, this is the first deep learning framework in-
tended for hardware design (and more specifically FPGA-based).

• To the best of our knowledge, this is the first framework that not only gen-
erates the hardware it was directly instructed for (forward computational
graph), but it can also generates other computational elements automat-
ically (backward computational graph).

• Currently, the framework generates the HLS C++ code and the corre-
sponding Vivado HLS project. It is a Python library that can be used to de-
fine modules with computational graphs and testbenches, run the Python
program in CPU, generate the HLS code, generate the HLS testbench,
generate the test data, generate the Vivado HLS project, and finally con-
tinue to the Vivado HLS to generate the hardware module, run RTL simu-
lation etc.

5

• The framework employs a unique hierarchical and structured design flow
to design hardware. A high-level scripting language is used for the top
levels of the design while in the bottom layers employs other lower level
languages. The top-layer scripts do not work like other languages that
restrict the hardware developer. They adhere to the lower levels. For ex-
ample, our tool allows to provide many HLS directives on the Python if
required1.

• Simple implementation of automatic differentiation to allow easy imple-
mentation of new operators and support back-propagationon hardware.
Thus, the generated module executes both inference and training tasks.

• Single-line changes can generate vastly different hardware (e.g. gener-
ate only a module for inference versus generating a module that can be
trained too). We hope that by finding methods that easily generate a va-
riety of hardware implementations we could better exploit the fine grain
reconfiguration capabilities of an FPGA. Current tools take one source
and generate one version of the hardware, while our vision is to create a
batch of implementations out of a single source. HLS Stream and arbitrary
precision types of Xilinx Vivado HLS are supported. It is very easy to add
new custom data types.

• We acknowledge that the programing paradigm employed by deep learn-
ing framework somewhat resembles hardware design and we present a
new design methodology for FPGAs. To the best of our knowledge it is
the only HLS scheme that allows generating both optimal software and
hardware. In the future it could achieve top performance in software out-
of-the-box using the same source code, whereas other hardware design
techniques cannot run efficiently in software.

1.8 Thesis Structure

The rest of this thesis is organized as follows. In chapter 2 we present a brief
background on the filed and the related work. In chapter 3, we provide their
requirement analysis for the framework and its abstract modeling. In chapter 4,
we describe the framework architecture. In chapter 5, we provide information
about the framework verification and we also present examples of important
tasks during its use for allowing the reader to evaluate the API design. Finally, in
chapter 6 we have the conclusion to this work and we also provide ideas for
future work.

1Note that as a very high-level framework normally we prefer to model the mechanism to
generate the such directives if possible

6

Chapter 2

Background and Related Work

2.1 Introduction

The implementation of a deep learning framework that generates hardware
designs is a complex task that requires knowledge on many fields. This means
a huge amount of literature to explore:

• Deep learning theory.

• Deep learning applications.

• Deep learning frameworks.

• Deep learning accelerators (GPGPUs, ASICs and FPGA-based accelera-
tors).

• Hardware design flows.

• Hardware Description Languages.

• High Level Synthesis languages and methodologies.

• Field Programmable Gate Arrays (FPGAs), their architecture, capabilities
and draw backs.

Enumerating and presenting all this work would be extraordinary and it is
not in our purpose. Moreover, in this chapter we present some of the most
important ideas in that relate with this thesis.

2.2 Deep Learning Background

The most substantial parts of the theory behind deep learning existed long be-
fore its emergence. A more classical approach to neural networks and is well
presented in [1]. Nonetheless, the book [2] is the most concise and current
book about deep learning.

7

2.2.1 Stochastic Gradient Descent

Gradient descent [3] is a first order iterative optimization algorithm for approx-
imating the solution to minimization problems. Its variation stochastic gradient
descent is a variation is one of the most important optimization algorithms used
in deep learning application. It was first used in ADALINE [4], a single layer ar-
tificial neural network. The learning rule of ADALINE was the LMS algorithm [4],
which employees least mean square error as the cost function and stochastic
gradient descent (SGD) as the optimization algorithm.

2.2.2 Back-Propagation

Back-propagation [5, 6, 7, 8, 9] can be seen as a way to generalize the LMS
algorithm for multi-layer neural networks. It is a special case of automatic dif-
ferentiation. Hence, as such, it is based mathematically on the chain-rule of
calculus [10, 11]. The back-propagation essentially is an optimized way to
compute the gradients which required from optimization algorithms such as
SGD to update the network parameters. A neural network is composed from
several layers of computations. Each layer can be also seen as a composition
of smaller elemental computations. Every elemental computation is matched
with way to compute its derivatives in respect to its inputs. In back-propagation
the chain rule is applied progressively in a backward manner, from the output
layer of the network to the input. As an example consider the single dimension
case h(x) = f (g(r(x))), with h, f , g, r : R → R. By applying the chain rule we
obtain:

∂h(x)
∂x

=
∂ f (x)

∂x
∂g(x)

∂x︸ ︷︷ ︸
Step 1.

∂r(x)
∂x

︸ ︷︷ ︸
Step 2.

.

So in this example with pack-propagation we will first compute the step 1 and
then we will use the result to compute the step 2. Step 2 will employ the result
of step 1 to compute the final gradient.

2.2.3 CNN Architectures

In [12], authors, among other, present the key differences of the most important
deep convolutional neural network architectures. An even more synoptic list is
the following:

• LeNet (1998) [13].

• AlexNet (2012) [14].

• VGGNet (2014) [15].

• GoogLeNet (2014) [16].

8

• ResNet (2015) [17].

The most easily noticed evolution is the increase of network depth. From
our point of view, we also note that initially CNN architectures consisted of
homogenous layers, a single computation. However, while they evolve pro-
gressively their layers tend become more heterogenous. This may be a hint
that, at some point in the future, the layers of CNN architectures may become
somewhat more complex. Hence, they may require hardware with different
programming model than GPUs to run them efficiently. Alternatively, the restric-
tions that rise from nature of the currently available hardware may limit us from
taking advantage of more heterogenous layers. Furthermore, we observe that
the state of the art architecture changes very fast. Thus, the reconfigurability
of FPGAs could be proven very useful, particularly with the right combination
of tools.

2.3 Deep Learning Frameworks

A huge variety of frameworks that aid deep learning exists. Examples are Ten-
sorFlow [18], Torch [19], PyTorch [20], Caffe [21]. These frameworks provide an
API to let someone define computational graphs and enable the efficient ex-
ecution of these in various hardware configurations, such as CPUs or GPGPUs.
At the same time, deep learning frameworks contain automatic differentiation
packages to allow conveniently support neural network training out of the box.
Furthermore, most of them contain useful visualization packages and other util-
ities.

While all these frameworks are trying to solve the same problem in a very
similar way, they have different priorities. This can result in a great difference on
the features supported by each of them. Nevertheless, we aim to create a new
API from the beginning, similar with other deep learning tools, but closer to the
hardware designer. In FPGA design the program is mainly the hardware design
itself. We do not want to generate or schedule the software to execute on
a specific hardware design. Current deep learning frameworks have different
design priorities and do not help in this direction. At the same time, we need a
much more flexible solution in which we could change the tool in every aspect
with hardware development characteristics in mind. Therefore, using one of
the existing tools would not help at all. Because, these tools are very rigid to
alter them in a considerable way.

2.4 Hardware Description Languages and FPGAs

The main goal of hardware description languages (HDL), such as Verilog and
VHDL, is to model in detail digital logic circuits. These languages have a sub-
stantial role in FPGA design. However, software suites for FPGA design often
support older subsets of the these languages. Moreover, in many cases tools

9

support different support subsets and may show a slightly different behavior. An
interesting approach is MyHDL [22, 23], an open-source Python package that
enables using Python as a hardware description and verification language that
can generate VHDL or Verilog code. Nonetheless, the input format resembles
itself an HDL language and thus we consider it as such. Furthermore, a large
portion of the merits of using a high level scripting language to describe hard-
ware are greatly diminished.

HDL languages differ from programming languages. One very important
difference is that in HDLs, the designer explicitly describes the circuit behavior
in time. An other is that in hardware design we mostly model the flow of data
and control signals where programming languages are control-flow driven. The
programing paradigm of deep learning frameworks, where the programmer
provides a computational graph, is probably lying right in the middle between
hardware description languages and software programming, from a program-
mers side. The notions of time and clock are removed but at the same time the
computation is defined as a static construct: the computational graph that
describes the neural network architecture, a construct that implicitly follows
the dataflow paradigm.

2.5 High Level Synthesis Tools and FPGAs

Current HLS tools for FPGAs are able to generate very high-quality hardware
from high level languages. Vivado HLS [24] can process C, C++ or SystemC
source code and generate the hardware that implements the corresponding
functionality. The tool undertakes the process of datapath and control extrac-
tion from the source code, while at the same time allows for easy interface con-
figuration. The generated hardware can be tweaked by using special com-
mands or pragmas. Vivado HLS supports tcl commands and scripts, which can
be employed from external tools to instruct the tool. The quality of the result in
many cases can be extremely good. The language is perfect for a low-level or
intermediate abstraction of a design.

However, HLS programming is still very painful. The source code is too rigid
and must follow a special programming style to really generate efficient hard-
ware. It requires from the programmer to use the corresponding source lan-
guage in a non-intuitive way, very different than using the same language for
software design. Therefore, the language does not abstract the design well to
serve as the top level of design.

Moreover, the reconfigurable nature of FPGAs require more research on the
field. Vivado HLS, while it allows a much faster development cycle than tradi-
tional RTL tools, it does not really take advantage of the reconfigurability by it-
self. To change the hardware, you must substantially change the source, which
could fast become a tedious process. As a consequence, it is nearly impossible
to generate different working versions of the design in acceptable time. A new
layer of very high-level tools that sits above current HLS solutions could help in
the direction of better exploiting the capabilities of current HLS solutions.

10

2.6 Current Hardware

From our point of view, the most innovative architectures are the NVIDIA Volta
GPUs [25], the Graphcore Colossus IPU [26] and the work of Wave Computing.
The Volta is more than a GPU or a GPGPU. It incorporates a whole ASIC archi-
tecture to accelerate deep learning applications. Its most notable innovation
is the Tensor Core, which supports mixed precision operations that have been
found to be very efficient in terms of performance, area and power. Graph-
core Colossus is an accelerator that is designed to hold all the model param-
eters on-chip (see 2.6.1). Lastly, Wave Computing is a company that designs
Coarse Grained Reconfigurable Arrays (CGRAs) especially designed for deep
learning applications. The neural network is fully mapped into hardware re-
sources like FPGAs, but the architecture is much coarser and it is designed es-
pecially for such applications. We revisit the Graphcore’s approach in subsec-
tion 2.6.1. In subsection 2.6.2 we talk about the current state of FPGAs.

2.6.1 Graphcore

Graphcore [26] is a semiconductor company founded in 2016 by Nigel Toon
and Simon Knowles. The company develops massively parallel accelerators for
machine learning. These machines - called Intelligent Processing Units (IPUs) -
are optimized to execute computational graphs.

The researchers at Graphcore acknowledge some of the main characteris-
tics of current deep learning algorithms:

1. The memory bandwidth is an important limiting factor in stateful neu-
ral network architectures and these architectures are the also the most
promising for the future.

2. Computational graphs in deep learning applications are mostly static, al-
lowing for compile-time communication optimizations.

3. The power budget of the IC is an important limiting factor that can be
solved with by serializing very fast deterministic processing phases with
deterministic communication phases. The determinism allows for deter-
ministic scheduling during compile-time, and thus the power limits can be
respected by saving time in processing communication.

The most important characteristics of an IPU are:

1. the complete absence of external memory and the innovative commu-
nication subsystem. The whole memory resides on chip and is distributed
among thousands of processors. This means that the whole model resides
in chip with a huge memory bandwidth available.

2. The communication system is not a crossbar, but instead, it is a software-
controlled non-blocking system that allows for future scaling. It follows Bulk
Synchronous Parallel model [27] and relies in the static nature of the graph
that allows a compile-time scheduling.

11

3. An innovative software infrastructure framework which is even more im-
portant that the chip design itself. Poplar is a scalable graph program-
ming framework that provides seamless interfacing to current and ma-
chine learning tools.

The first IPU to be realized is Colossus and its features will be probably these
presented on table 2.1.

Process 16 nm
Number of Transistors 23.6 Bn
Chip-to-chip bandwidth 2.5TBps chip-to-ship bandwidth
Memory 300 MB on-chip
Memory Bandwidth 30TB/s
Host connection PCIe Gen4.0 x16 with 31.5 GB/s
Cores 1216 independent IPU-Cores
Processing Performance 100 GFLOPS per IPU-Core
Parallelism More than 7000 programs executing in par-

allel.
On-chip Communication 8TB/s non-blocking software controlled IPU-

EXCHANGE

Table 2.1: The characteristics of Graphcore Colossus. Colossus is the the first
IPU.

2.6.2 Current FPGAs

Current FPGA Architectures [28, 29] contain not only a huge amount of logic
elements but also a lot of embedded memory resources. Specifically for Xilinx
FPGAs, UltraRAM [30, 31] allows a good amount of in-device storage of neural
network parameters (up to 500Mb of total on-chip memory). This capability
seems very important for to enable the implementation of fast and low power
accelerators. The cost to load the weights from an external memory is huge
in area, power and performance. Thus, for deep learning applications local
memory resources are probably much more important than the processing
capacity of the device. Hence, this extraordinary availability of embedded
memory is very important. Nevertheless, we expect to see FPGA architectural
refinements due to deep neural network applications.

Recently, the trend of incorporating an FPGA and powerful processing Units
on the same chip emerged significantly, a trend that also have great merits
for deep learning applications. Intel designed a hybrid chip, the Intel Xeon
Gold 6138P, consisting of a Intel Xeon processor and an Intel Arria 10 GX 1150
FPGA device [32]. Xilinx recently designed Versal. Versal is described as an
Adaptive Compute Acceleration Platform (ACAP) [33, 34, 35], a hybrid het-
erogenous compute platform that combines a scalar processor, an FPGA, and
a vector processor, connected all together with a network-on-chip (NoC) via a

12

memory-mapped interface. The scalar engines comprise of a dual-core Arm
Cortex-A72 Application Processing Unit (APU) and a dual-core Arm Cortex-
R5 Real-Time Processing Unit (RPU). The on-chip memory resources of the pro-
grammable logic is up to 203.6 Mb of UltraRAM and 90.4 Mb of BlockRAM for
the largest Versal device.

2.7 Related Tools

Maxeler Technologies [36] provides tools and infrastructure to generate hard-
ware designs from low-level dataflow graphs and then utilize them. MaxCom-
piler [37, 38] is the software tool that generates the hardware. It employs an
extended Java version called MaxJ that supports operator overloading and
provides a set of libraries that the developer has to extend to describe the re-
quired functionality. Running the description generates the hardware design.
The programming language and the API is standardized as OpenSPL (Open
Spatial Programming Language) [39]. MaxCompiler utilizes very similar con-
cepts with deep learning frameworks.

Moreover, a deep learning framework is in its core strongly related with the
MaxCompiler due to the fact that both rely on dataflow graphs and use similar
mechanisms to describe these. However, they are vastly different. The main
differences are four:

1. A deep learning framework contains also many advanced arithmetic fea-
tures related with neural networks that MaxCompiler lacks as it is not de-
signed especially for neural network applications. It is not specialized for
neural network prototyping and consequently all the related features and
libraries are missing. The most important lacking feature is the absence of
an automatic differentiation package. For fast neural network prototyp-
ing these features are essential.

2. A deep learning framework generates software for already implemented
hardware while the MaxCompiler generates hardware designs.

3. MaxCompiler is organized towards a closed proprietary scheme. There-
fore, it is much more complicate and restrictive. It is very strictly defined,
engineered to allow describing as much computational kernels as possi-
ble and to completely replace other HLS or HDL languages from the de-
sign flow. It is engineered to ideally keep everything except the kernel
description hidden as a black-box.

4. Programming OpenSPL and MaxJ can be classified at a overwhelmingly
lower-level compared to deep learning frameworks. In detail, deep learn-
ing frameworks are normally stacked above software design. Software
design is at a higher-level than any HLS language and OpenSPL/MaxJ can
be considered as one of the lowest-level HLS languages, much lower than
Vivado HLS and just a bit above RTL design.

13

Nonetheless, a very high-level dataflow framework that complements the
ecosystem and programmatically divides the designs process into smaller sub-
problems that can then be solved in the most convenient way is needed. The
high-level computational graph must be defined using the high-level API, but
the building blocks of this computational graph are meant to be implemented
in other more convenient languages, depending on the case. For example, if
a portion of the design can be done more conveniently in a C++ based HLS
language, the developer must have the flexibility to swiftly isolate this portion,
solve it into this exact HLS language and finally employ it into the high-level
graph.

Furthermore, Maxeler software suite while it is intented for FPGA-based in-
frastructure, it requires specific proprietary hardware and software, designed
by Maxeler. This restricts the use cases of the resulting design. A tool with the
ability to generate IP cores that can be employed in other FPGA-designs or
generate designs that can run in a much broader range of hardware is re-
quired.

In [40] authors present LeFlow, a tool that generates hardware modules from
TensorFlow models. Their tool takes the LLVM IR code emitted from the Tensor-
Flow’s XLA compiler and then, after applying some transformations, uses the
LLVM back end of LegUp [41] to generate the Verilog design. While this design
flow may be useful it some cases, it has five major drawbacks:

1. It completely ignores the need for a deep learning framework with an
API especially designed for use with FPGAs. The problem from mapping
such a resource demanding dataflow architecture into hardware is a very
complex task. The preferable solution is dependent on many parameters
and can vary a lot. As an example, consider the case of a single low-
capacity FPGA versus an FPGA cloud infrastructure. We need to find ways
to expose conveniently these implementation details through the API.

2. The design flow will unnecessarily overburden the HLS tool, which will result
in inefficiencies. Taking a problem conveniently abstracted and formu-
lated with graphs, translate it into LLVM IR assembly language optimized
to be run as software, and then pass it to a hardware tool to generate
hardware can clearly become problematic. Moreover, many important
choices can be done more efficiently in the initial graph format.

3. The LLVM IR assembly language is too restrictive to be the first input that an
HLS will encounter. We believe that synthesizable C++ is to be preferred
for serving as input language to an HLS tool.

4. The LLVM IR assembly language is not user friendly. An intermediate format
such as synthesizable C++ would be a much better solution.

5. To implement this design flow you need access to the internals of the HLS
tool.

14

In [42], authors present a tool called hls4ml that builds machine learning
models to FPGA designs. The tool focuses on low latency and low power appli-
cations. On top of that, authors present a case study for neural network infer-
ence focusing on a classifier for jet substructure. The results seem very promising
for the aforementioned for low latency and low power applications. Neverthe-
less, they address a very different problem than the one we are trying to cope
with. We give high priority in the modeling of a deep learning problem, the
productivity of the hardware design process and the corresponding function-
ality of the tool itself, while they address an optimization problem for a specific
use case that is already modeled in an other deep learning package. In [43],
authors compare several other tools that build machine learning models and
generate FPGA designs. Regardless the actual achieved performance these
tools and the importance of their contributions, we note the following:

• These tools are not complete High-Level Synthesis tools, as opposing with
our vision. They have no modeling capacity except synthesis parame-
ters. With such low modeling capabilities the reconfigurability of FPGAs
will never be exploited effectively.

• Utilize rigid and shallow internal tool-flows tied with specific architectures
and choices, essentially optimizing specific applications.

• Hardcoded logic means inherently significant advantages over ASICs as
well.

• They do not really take into account the actual design flow. It may seems
at first that they present an alternative design flow where the neural net-
work is translated automatically into a hardware module. However, the
only sincere way to know which tool suits your application is more-or-less
to perform trials. Today, FPGA resources are plentiful even on a single de-
vice and the most important factor for is the design productivity.

• The toughest work is implemented by external deep-learning frameworks.
The neural networks are modeled, trained, optimized and exported from
the selected deep learning framework. Only a small step is performed by
the translation tool itself.

• These tools work for inference-only, whereas the training is inherently a
much more difficult task to solve and a much more important.

15

16

Chapter 3

Requirement Analysis and Modeling

In this chapter, we analyze the problem, perform a concise requirement anal-
ysis and then model the problem. The requirement analysis is presented in sec-
tion 3.1, and the foundational modeling is presented in section 3.2.

3.1 Requirement Analysis

In this section, we provide a concise requirement analysis on the framework de-
sign. We first formalize the problem, then note down all the developer classes
that are going to interact with the framework, and finally we provide a synoptic
list of their goals with a corresponding requirement description.

3.1.1 Problem Formulation

Current frameworks are designed for running deep learning applications on
GPUs and other hardwired ASICs. On the other hand, FPGAs functionality is not
predefined, they have a huge range of supported hardware functionality and
there is a need to design new frameworks that take this into account. Further
research is also required into this direction.

The main objective of this thesis is to develop a new deep learning frame-
work that generates FPGA-based hardware designs. The generated code is
currently HLS C++, but in the future it may be extended to generate block-
based designs or HDL code if it is required to. It is essentially a special HLS tool
and may be employed for other tasks too, especially for numeric computa-
tions.

The framework must incorporate modules. Modules are entities that can be
translated into hardware IP. Trainable modules are a special subclass of mod-
ules that automatically generate the hardware required to train any trainable
parameters. Each module (or trainable module) must be able to formalize a
computation with a collection of computational graphs. The building-block for
these graphs are the Ops. An Op has a predefined hardware implementation
that can be instantiated into the generated code. Loss functions are compu-

17

tational elements employed to compute the error between the prediction and
the true label of the training sample.

3.1.2 Developer Classes

We can divide the developers that are going to interact with the framework
into three classes:

1. Framework hardware developers.

2. Framework software developers.

3. External engineers.

Framework developers, try to develop and extend the framework. These
can be further divided into framework hardware developers and framework
software developers. The first try to design new operator implementations or
to find new ways to improve the generated hardware. The second try to im-
prove the API or add support for new tools, languages, etc. External engineers
(engineers that use the framework), will use the framework to build new AI ap-
plications or research on new deep learning neural network architectures.

3.1.3 Short Term User Goals

For each of the aforementioned classes of users, presented in subsection 3.1.2,
we can enumerate several goals. Not all goals can be formulated enough
to be considered in detail. Above all, framework developers are expected to
extend the framework in creative ways. These cases cannot formulated into
an analysis.

Implement a new Op

Framework Hardware Developer

Improve Op
implementation

Improve the translation
process

Framework Verification

Figure 3.1: Short-term user goals of framework hardware developers.

18

Add support for new tools

Framework Software Developer

Add support for other
languages

Implement a new
hardware module class

Implement a new loss
function

Model new functionality

Add support for more
optimization algorithms

Optimize framework
software

Framework verification

Figure 3.2: Short-term user goals of framework software developers.

 Define a hardware
module

External Engineer

Define a trainable
hardware module

Define a new loss function

Perform functional
simulation

Perform
hardware simulation and

verification

Figure 3.3: Short-term user goals of external engineers.

3.1.4 User Goal Description

In this subsection we provide a requirement description of the goals presented
in subsection 3.1.3.

19

Add support for new tools

It must be easy to extend the framework to support new tools or adapt to tool
changes. First, we will initially support only Xilinx Vivado HLS and we need to ex-
tend the framework to to support other tools and FPGA of different vendors too.
Second, tools can be replaced or updated considerably and the framework
must be able to easily adapt, and support these too.

Add support for new output languages

HLS languages are not standardized. Different tools support their own different
languages that change between different tool versions. Furthermore, even for
HDL languages, which are standardized, are not fully supported. Different tools
support different subsets and different versions of these standards. Hence, it is
crucial to be able to support new languages.

Add a new loss function

It must be convenient to add new loss functions. A loss function is a function
with a special role during the training process. We want to implement only a
subset of the framework in the beginning, and hence, we may initially have
only one loss function. Therefore, we need to be possible for developers to
easily extend it with more.

Model new functionality

In many cases, the framework is going to be extended in unpredictably. There-
fore, in these cases, the developers will extend the framework to model new
problems, or to model the same problems from different viewpoints. We need a
software architecture and a programming language that will allow such mod-
ifications.

Add support for new optimization algorithms

At the beginning, we are going to support only SGD. Thus, It must be feasible
to add new optimization algorithms effortlessly.

Framework verification

Framework developers will have to verify the framework. Particularly, after im-
plementing new Ops or altering the old ones. We need ways to aid this process.
First, we must be able to run the computational graph in CPU resources. Sec-
ond, we must be able to use the computational graph to generate test data
for the hardware verification process.

20

Implement new Op

Framework hardware developers have to implement new Ops (Operators).
Ops are essentially hardware that can be instantiated directly in the gener-
ated code. Adding new Ops must be as simple and intuitive as it is possible.

Improve Op implementation

Framework hardware developers will occasionally update Op implementa-
tions. However, this process is a small subset of the goal “Implement new Op”.

Improve the translation process

Framework hardware developers may find ways to generate better hardware.
For example a better control or different IO protocols. The tool must model
these, so that we could alter them without changing the framework mechan-
ics.

Define a hardware module

External engineers will usually have to describe at least one hardware module
during the design process. Each hardware module implements a set of com-
putational graphs. The input code must follow the paradigm of deep learning
frameworks. The control logic of the module must mbe modeled too, to en-
able easy modifications. Nevertheless, the control logic must be kept as much
as hidden it is possible to keep the input code simple.

Define a trainable hardware module

Trainable modules must extend modules to also implement the following:

• Extend the API to easily declare trainable parameters.

• Generate backward graphs automatically that implement back-propagation.

• Include optimization algorithms such as SGD.

• Extend the control to enable initialization and read access to the values
of the trainable parameters.

Perform functional simulation

External engineers may occasionally want to easily perform functional simula-
tion before generating the hardware module.

21

Perform generated hardware verification and simulation

We need mechanisms to allow engineers to smoothly verify the generated
hardware, or perform more detailed simulations to fix possible problems or un-
wanted behaviors.

3.1.5 Performance Indices

We want to prioritize and optimize several development tasks or use cases. For
this work, we do not aim to optimize the generated hardware. Instead, these
use cases constitute our performance index. These prioritized use cases are
presented in the next subsection (subsection 3.1.6).

3.1.6 Design Priorities

When designing new software it is crucial to enumerate all the important use
cases and prioritize these that fit better to the target philosophy. The framework
implementation is currently optimized primarily for two use cases:

1. New module definition. New module definition is the most important use
case. Defining a new hardware module must be very simple and intuitive,
otherwise the whole idea will collapse.

2. Extend the framework to add support for a new operator. The second
most important use case is to extend the framework with a new operator.
Having a rigid software that it is too hard to extend will not seriously help
the community in the long term.

3.2 Foundational Modeling

In this section, we present the foundational modeling upon which the frame-
work is build. Furthermore, we describe all fundamental concepts, while in the
end, we present a abstract object model of the framework with these.

3.2.1 Modeling Process

Figure 3.4 presents the modeling process in a deep learning framework that
generates hardware for FPGA-based designs. As shown in the figure, the frame-
work breaks the problem into three modeling processes. On the top, devel-
opers model deep learning architectures to to solve specific problems. On
the bottom, we have the fundamental hardware process, where developers
model elementary hardware building-blocks and define hardware implemen-
tation paradigms. Finally, on the center we have the core modeling process
where APIs are provided to allow the other two modeling process to proceed.

22

Deep Learning Architecture Modeling

Core Modeling Process

Fundamental Hardware Modeling

Framework Development

Figure 3.4: The deep learning modeling process for FPGA-based design.

3.2.2 Modules and Trainable Modules

Modules are collections of graphs that will be translated into a single hardware
module. Control logic is described with a special graph, the control graph
and every module class has a predefined control graph to simplify the design
process. Arithmetic computations are described with a set of computational
graphs. Trainable modules extend modules to also generate the hardware
to train any trainable parameter. Furthermore, additional methods are imple-
mented to automatically generate the hardware that trains these parameters.
The extra computational requirements are implemented through generating
additional computational graphs before translating them all into hardware re-
sources. The control graph is slightly altered to allow the training hardware to
be executed optionally.

3.2.3 Computational Graphs

For the context of this work, a computational graph is a directed acyclic graph
or simply DAG, that describes how module outputs can be computed from a
set of parameters by modeling all data dependencies and computations from
these parameters to the corresponding output. Moreover, this DAG can be
used to easily create valid execution plans and can be mapped into hard-
ware. These graphs inherently can be grouped into sets of graphs to form
bigger graphs that share no dependencies and could be executed simultane-
ously in the same period of time. To share data between different periods the
only way is store the results either externally by taking the output of the module,

23

or internally by using stateful parameters that cache signal values for later use.
The cached values can be only accessed in successive periods.

+

y

sin

w

temp

x z t

func

temp

+

y

sin

w

temp

x z t

func

temp

y = func(x, z, t) + sin(w)

Figure 3.5: Example computational graph.

3.2.4 Forward and Backward Computational Graphs

Simple modules can be used to create hardware modules from computational
graphs, for example to implement an inference-only neural network system.
However, we may want to generate modules that can be trained using hard-
ware resources. To achieve this the architecture of the neural network is pro-
cessed to generate the training logic. Furthermore, the “forward” computa-
tional graph that describes the architecture is used to generate the “back-
ward” computational graph that updates the network’s parameters. These
are then translated into hardware resources.

3.2.5 Operators

Operators or Ops are comprised of two parts: the actual hardware implemen-
tation, and the python class that holds the required metadata required from
the framework to employ this implementation. The implementation can be an
external source or a code generator.

3.2.6 Wires

The basic variable type in the framework is represented by the Wire class. We
have selected this name because we usually use Wires in the framework to de-
scribe and generate hardware entities that are conceptually close with wires.

24

For example, most of the direct Wire instantiations are needed when inter-
facing hardware modules and Operators and hardware developers tend to
imagine such interfacing entities as the pins and the corresponding connect-
ing wires of integrated circuit.

As shown in figure 3.6, Wires can be categorized according to what entity
are modeling. We have three types of interface wires: Inputs, Outputs and
Buses (bidirectional). In addition, we have Memories, Wires that represent ac-
cessible memory resources and Free Wires, which are represent memory ele-
ments that store temporary data that flow between processing elements. Inter-
face Wires translate into interface definitions and may not utilize local device
resources. On the other hand, Memories always utilize the corresponding local
device memory. Free (or Simple) Wires may utilize the corresponding mem-
ory resources, but the framework may is allowed to optimize them and may
get completely removed. Interface Wires and Free Wires can be marked as
Streams or TempRAM (Temporary Random Access Memories). Streams employ
FIFOs to cache any intermediate results. TempRAM will always utilize local re-
sources to hold all the data. For streams the framework is allowed to optimize
the size of their FIFOs1. Only Memories are guaranteed to hold their values
across different periods. In addition, Trainable Modules we can have trainable
Memories. Only trainable modules can have trainable signals. For these the
framework generates the hardware that allows to train them.

Wire

interface Memory

Input BusOutput

Free

default trainable

Figure 3.6: Wire categorization.

3.2.7 Conditionals

Conditionals are special nodes in the computational graphs that allow data
to be processed differently depending on a specified condition. Figure 3.7
shows a graph representation of an if-else conditional. Wire y cat be assigned
with the value of yt or y f depending on the condition c. Conditionals can be
seen either as hardware that executes optionally and can translated differently
based on the requirements and the capabilities of the target language. In an
eager translation the conditional c and the two outcomes yt or y f could be
computed in parallel and then select the correct yt or y f according to c. In
a more relaxed scheme, we could compute c, then compute one of yt, y f

1In our current implementation we do not optimize the FIFO size.

25

according to c and assign the result into y. In all cases, the condition, which
is also a computational graph, is computed first to decide how the processing
will proceed.

Conditional

y

c

yt

yf

condition

true

false

Figure 3.7: A Conditional node.

3.2.8 Commands and Execution Periods

The generated system receives commands and handles execution accord-
ingly. Commands may span across multiple execution periods. An execution
period is a slot in the scheduling scheme where a computational graph can
run. Specific computational graphs are tied with specific periods to implement
the desired functionality.

3.2.9 Control Graphs

Control graphs can be seen as a higher level execution plan above compu-
tational graphs that do not delve into how a specific computational graph
will be executed, but instead, how to handle the synchronization between dif-
ferent periods, or specific auxiliary tasks. They also describe how to serve the
incoming commands. It is a way to model the behavior of the module in a way
that can be altered and allow module subclasses to modify or extend this be-
havior. Therefore, it serves the role of allowing other module classes to be build
upon other more conveniently. Control graphs are composed of control nodes
and control tasks. Control graphs top priority when designing new functionality
for control graphs is the easiness of translation. Control graphs are designed
primarily for internal tool use. Hence, normally they are not instantiated by the
end designer (external framework designer).

3.2.10 Control Nodes

Control nodes are simple directives that describe the control flow that the
hardware module will follow. Usually they “resemble” well-known control state-

26

ments, such as Case statements, or If statements.

3.2.11 Control Tasks

Many control nodes require a control task. These control nodes execute spe-
cial methods of the control tasks to achieve various objectives, such as gen-
erating the logic to initialize a list of parameters or get and return their current
values.

3.2.12 Graph Factories and Op Factories

Graph factories are special functions that generate some kind of computa-
tional or control graph. They are very important as many of they employed for
implementing many important mechanisms. Op factories are graph factories
that instantiate Ops. Their role is to simplify the Op instantiation process. With-
out these instantiating Ops would not resemble normal function calls and using
Ops would be much less intuitive and more confusing.

3.2.13 Linker Nodes

Linker nodes allow computational graphs to employ control graphs. Like con-
trol graphs, linker nodes are normally not instantiated by the end designer (ex-
ternal framework designer). Up to now, Linker Nodes are not employed in our
final implementation.

3.2.14 Submodules

Submodules are secondary modules that do not generate their own unit of
code and usually serve as primitive graph nodes, or utility elements to mutate
a graph node. Support Subsystems implement functionality for simulations, tool
support etc. Supmodules are divided into control, functional and task sub-
modules. With control and task submodules we define control graphs. Task
submodules modify the functionality of control submodules. Functional sub-
modules define computational graphs together with Wires.

27

28

Chapter 4

System Architecture and
Implementation

In this chapter we present the proposed tool stack, the corresponding design
flow and the implementation of the framework.

4.1 Proposed Design Flow

Figure 4.1 presents the proposed design flow. Three new stages were adhered
to the HLS design flow:

1. Design Entry
The process begins with a Python script. The code somewhat resembles
that of TensorFlow/PyTorch. It provides a high-level functional description
to the tool. This description will be used later to generate a hardware
module.

2. Python Execution
The design is tested with a Python testbench. If everything is confirmed
that works as intended we can proceed to the next step, otherwise the
designer must fix the provided Python design.

3. Python Synthesis
An HLS C++ project that contains the required C++ libraries, the automati-
cally generate C++ modules, and the generated C++ testbench. The test-
bench corresponds to the Python testbench and can be used to ensure
that the generated hardware module continuous to function correctly.

The next steps remain the same as before. However, normally the designer
will not modify the C++ code directly. Instead he/she will modify the python
high-level description.

29

Design Entry

Python Execution

Python Synthesis

Python Design

C++ Functional
Simulation

C ++ Design and
Testbench

C++ Synthesis

RTL Design

RTL Simulation

Package IP

Packaged IP

Tr
ad

it
io

n
al

 H
LS

 C
++

 D
e

si
gn

 F
lo

w
Su

b
st

it
u

te
s

Fu
n

ct
io

n
al

 S
im

u
la

ti
o

n

Figure 4.1: The proposed design flow. Traditional design flow is inherited but in
the future is intended to become completely optional.

4.2 Proposed Tool Stack

The proposed tool stack is shown in figure 4.2. The designer describes the
required functionality in high level Python code. This code is then translated
into HLS C++ and an HLS project is generated (automatically). The generated
project is further processed by an HLS tool. Finally, a "traditional" RTL tool is
needed to synthesize the design and generate the bitstream to program the
FPGA.

4.2.1 Why Python

We selected Python for the following reasons:

1. It is a simple, intuitive, and very well known scripting language.

2. Most of the current deep learning frameworks are implemented in Python
or provide a Python API.

3. It supports object oriented programming and operator overloading.

30

User Code
(Python)

Framework

HLS Tools
(Vivado HLS etc.)

Traditional RTL Tools
(Vivado etc.)

Figure 4.2: The proposed tool stack.

4. The inspection package allows to get references to local variables and
this can be helpful for achieving some advanced features in some occa-
sions.

5. It is easy to extend and maintain a Python project.

6. It is very easy to design a prototype to implement a new idea.

4.2.2 Used Schemes of Code Generation

The framework employees three different types of code generation method-
ologies for different occasions. First, we can just extract special library code
as it is. Second, we employ templates, either by hard-coding a template into
Python or by using a special template file and using it as a guide. Third, we
generate code from by translating computational graphs.

4.2.3 HLS C++ and Jinja 2

The hardware implementation of the Operators is implemented in HLS C++ for
Vivado. Some special operators employ Jinja 2 [44]. Jinja 2 is a templating
language for Python. It is a very flexible and fast Python library that allows a
designer to generate text from parametric text templates. So far, we use it
to dynamically generate C++ files. Moreover, some Operators need a more
flexible way to get described properly that HLS C++ supports, as Vivado HLS
requires many statically defined structures. An example is shown in snippets 4.1,
4.2, and 4.3. First, we write a template file. Then we can call it through Python
with the parameter values depending the current case. This will generate the
code, which can be stored into a distinct file later.

31

Code Snippet 4.1 Jinja 2 Template (example.jinja).

{% for i in range(num_of_outputs) %}
hls::stream<typename CFG::array_t> &output_{{i}},
{% endfor %}

Code Snippet 4.2 Python Code to call.

from jinja2 import Template

str_template = open(’example.jinja’).read()
template = Template(str_template, trim_blocks=True, lstrip_blocks=True)
result_text = template.render(num_of_outputs=3)

4.2.4 The Trade-off

During the implementation of this framework, one trade-off is almost ubiqui-
tous: Utilization of long (software) pipelines of simple sub-tasks versus utilization
of short pipelines of complex sub-tasks. Initially, the first prototypes of the frame-
work were employing methodologies and graph abstractions that resulted on
short software pipelines of complex tasks. However, we shifted to a scheme of
long pipelines because there easier to conceive, maintain and extend. More-
over, while short pipelines have several advantages such as better processing
speed of graphs, it is easy for the code to become that complex that is hard
or even impossible to maintain. In conclusion, we have a strong preference of
long-pipelines.

4.3 Framework Architecture

Figure 4.3 presents an abstract view of the architecture. The framework is im-
plemented in Python and HLS C++. Python for the core functionality and HLS
C++ for the synthesizable libraries and the Python execution libraries. Moreover,
the code can be sorted into one or more of the following overlapping logical
groups depending the functionality that actually implements:

• Neural network modeling support.

• Operator modeling support.

• Implemented operator models.

• Translation logic.

• Python Execution support.

32

Code Snippet 4.3 Generated C++ Code.

hls::stream<typename CFG::array_t> &output_0,
hls::stream<typename CFG::array_t> &output_1,
hls::stream<typename CFG::array_t> &output_2,

Synthesizable
C++

Libraries

Simulation
C++

Libraries

Module

Data Type Translation
Models

Wire Trainable Module

Translation Utility
Classes

Testbench Modeling
Utility Scripts

Control Nodes

Operator Python
Models

Vivado HLS C++
Testbench Generator

Vivado HLS TCL
Command Registry

Operator Factories
Testbench Data File

Handling Scripts
Vivado HLS Handler Control Tasks

TCL Script Generation
Utilities

Figure 4.3: Framework Architecture.

• Vivado HLS support.

• Vivado HLS C++ language support.

These subsystems in many cases overlap especially in the Python code. During
implementation the initial concepts have been refined.

In this section we describe the refined concepts presented in the chapter 3.
Most concept entities are implemented with a corresponding class. However,
some did not or were implemented using multiple classes. Furthermore, in ad-
dition to the previously modeled concepts we have new functionality, such as
the Vivado HLS support subsystem. Hence, to the refined concepts we adhere
the the description of this functionality.

The most important classes of the framework are: Wires, Modules and Train-
able Modules. Wires serve as the variable type for code that defines compu-
tational graphs. Modules are classes that contain one or more computational
graphs and generate a hardware module. Trainable Modules subclass Mod-
ules and generate a hardware module that is able to learn from new training
data, using the back-propagation and SGD algorithms.

4.3.1 Wires

Wire is one of the most essential classes of the framework. It is the basic variable
type and every operator is defined to have one or more wires as inputs and one
wire as output.

Four types of Wires exist:

33

1. Input Wires serve as module inputs.

2. Output Wires serve as module outputs.

3. Bus (Bidirectional) Wires that can be used as both inputs and outputs.

4. Memories are all internal Wires that have a state.

5. Free or Simple are all internal Wires that are not Memories.

Type Description

Input A Wire that serves as a Module input.
Output A Wire that serves as a Module output.
Bus (Bidirectional) A Wire that serves as both, a Module input

and an output.
Memory Internal stateful Wire.
Simple or Free Internal Wire (normally not stateful but it

could generate stateful logic if required).

Table 4.1: Wire types.

Developers will normally declare Wires of Input, Output and Memory types.
Bus Wires are only generated internally by the tool for tasks that require bidi-
rectional interaction with external memory. Currently, in all module types each
Memory Wire is tied with a Bus to load and save its state from an external mem-
ory.

Except connecting operators, Wires serve mostly as a data structure to hold
properties of data at a specific point in the computational graph. Such prop-
erties are the shape, the data type and the number of dimensions. The most
important properties and their description is presented in table 4.2.

Each wire has a data type (dtype). For normal data types, it fairly easy to
define new data types. There is a special data type named stream which trans-
lates into hls::stream. Non-stream Wires translate to either scalar C++ variables
or C++ arrays. Wires may have arbitrary dimensions but we concluded that the
generated variable in the HLS C++ code must allowed to be only one of these
types. In the case of multiple dimensions must be translated into a C++ array,
this array has again only a single dimension, but it is large enough to hold the
data from all its initial dimensions.

Table 4.3 presents the most important methods of a wire. The constructor is
employed when a new wire is created. The properties of the wire such as the
data type of the handled data (dtype), its name, or its shape can be provided
as input arguments to the constructor. By providing the init value the newly
created wire will considered as stateful. This means that it will be mapped into
local device memory resources in the generated hardware logic. The recur-
sive method run runs the computational graph that is assigned to this wire and

34

Property Description

name The name of the Wire. For Wires without a
name the framework generates one au-
tomatically.

p Pointer to another Wire or an Operator
that will generate its value during execu-
tion. For Memory Wires it must be left to its
default value which is None.

input For Memory Wires only. Pointer to another
Wire or an Operator that will generate its
value during execution. For non-memory
Wires it must be left to its default value
which is None.

wireType The type of the Wire (see table 4.1).
dtype The data type.
value The value evaluating the sub-graph

Wire.p during execution of the graph on
Python.

shape The shape of the data. It is a Python tuple
like NumPy, for example (10,20).

size The total number of elements in the data
structure (e.g. if the shape is (10,20) size is
10× 20 = 200).

init The data to init a Memory.
ndim The number of dimensions.

Table 4.2: The most important properties of a Wire.

sets the property “value” with the computed result. All inputs of the compu-
tational graph must have their “value” properties initialized before execution.
Many Python operators, such as __add__ and __sub__ are overloaded for con-
venience.

Furthermore, wires have some functions related with the translation to HLS
C++ code specifically. The hls_pragmas registers HLS pragmas that will be uti-
lized in later stages. The get_hls_decl returns the internal set of all registered
pragmas. Moreover, hls is employed to translate the computational graph that
this wire points to.

Initially, the wire class API was far more complex. For example, it contained
two methods get_effective_wire and get_effective_name which were employed
for cases where we have chains of wires in the computational graph to ensure
that all connected wires in the chain are translated into the same variable in
the generated code. Nevertheless, these methods have been removed and
the API has been simplified in a step towards a scheme that implements dif-
ferent framework tasks using long software pipelines of simple and concrete
sub-tasks.

35

Method Description

constructor Instantiates a new wire of the specified by
the arguments properties.

eval Runs the computational graph that this
wire points to. Assigns the property
named “value” to the result. Also, returns
the result.

is_scalar This method returns True if the wire has a
size of 1.

overloaded operators Special Python methods that overload
operators are implemented too for con-
venient framework interaction.

hls_pragmas This method registers HLS pragmas to this
wire.

get_hls_pragmas This method returns the set with all the reg-
istered to this wire HLS pragmas.

get_hls_decl Intended for internal framework use. Gen-
erates a C++ declaration string that can
be utilized directly inside the main func-
tion body.

get_hls_arg_decl Intended for internal framework use. Gen-
erates a C++ argument declaration string
that can be utilized directly in function
headers.

hls Intended for internal framework use. It ini-
tiates or proceeds the translation process
of the computational graph that corre-
sponds to this wire. Works recursively.

Table 4.3: The most important methods of a Wire.

4.3.2 Wire Configuration

Wire configuration is a special framework struct in C++ that describes the char-
acteristics of the corresponding Wire. Hence, all wires have a wire configura-
tion. Its schematic representation is shown in figure 4.4. Synthesizable code for
Vivado HLS C++ must contain any performance critical information in a static
form. Due to the limitation of the Vivado HLS C++ language this struct must
be static. Nevertheless, this has other implications too. Most matrix and ten-
sor operations require knowledge about the exact shape of the inputs. Thus,
we needed to include to each wire configuration static information, about the
dimensions of each wire. We concluded that the best way (if not the only
one) was to generate multiple static constants and employ in the code a set
of custom C++ preprocessor commands. The framework generates one struct
for each wire and places it in the beginning of the generated source file. For

36

dtype

ndim

size

shape0

shape1

shapeN

Figure 4.4: Wire configuration C++ struct.

convenience there is a predefined base template struct, that the framework
extends it. Its definition is presented in snippet 4.4 and an example of the wire
configuration that extends it is shown in snippet 4.5.

Code Snippet 4.4 Wire configuration HLS C++ base struct.

template <
typename DataType,
unsigned int NDim,
unsigned int Size

>
struct WireConfiguration
{

typedef DataType dtype;

static const unsigned int ndim = NDim;
static const unsigned int size = Size;

};

Code Snippet 4.5 Wire configuration definition example.

#include "wire.h"

struct MyWire_conf : WireConfiguration<float, 2, 50> {
static const unsigned int shape0 = 5;
static const unsigned int shape1 = 10;

};

4.3.3 Operators

Operators or Ops normally are comprised of two parts: the HLS C++ implemen-
tation, and the Python class that holds the metadata about it.

37

The HLS C++ implementation is a template class with several methods. These
methods implement the hardware part of the Op. The Python code can select
which method to use depending on the current characteristics of its inputs.
Furthermore, the Python Op class is essentially a mix of three things:

1. Constraints on the input characteristics.

2. An abstract behavioral model, for efficient behavioral emulation (currently
NumPy). This can be employed for executing the graph on Python.

3. A graph factory that models the corresponding backward graph for this
node.

4. Several metadata about the Op implementation, such as the name of
the header file that contains the template implementation of the Op.

The capability of easily defining and incorporating new Operators was on
our top priorities. The relative diagram is shown in figure 4.5. The process be-

Implement the
Python part of the

Op

Implement an Op
Factory

Implement the HLS
C++ Class

Create a Python
Dataset

Test

For a BinaryOp
Constructor:
• Takes input Wires as arguments
• Provides info to the super

constructor about the C++
implementation.

Override Methods:
• are_shapes_valid()
• compute_derivatives_impl()
• run()

Figure 4.5: Use Case: New Op.

gins by implementing a Python class to provide metadata, derivative graphs,
and execution emulation methods to the framework. Secondly, an Op fac-
tory function is required.This function simply instantiates the Op, generates an
output Wire of the correct type and shape that points to this instance, and re-
turns it. Thirdly, an HLS C++ header file must be created to implement the Op
hardware. Finally, a testbench is defined and the Op is evaluated.

For convenience we have implemented the base operator classes shown in
figure 4.6.

HLS C++ implementations of Operators are dominated from two facts:

38

Unary Op

Op

Binary Op

Figure 4.6: Operator classes.

• Different implementations depending on characteristics of its arguments,
such as the number of dimensions or the data type. This is because HLS
C++ is overwhelmingly static, while C++ is normally designed as a dy-
namic language, which makes impossible for the static-natured gener-
ated design to conveniently handle these characteristics. However, we
have some cases, where the characteristics can be expressed in static
way so that the HLS C++ compiler can statically infer them. For example,
methods that handle stream arguments and array arguments can be cor-
rectly handled from the C++ compiler.

• Usually C++ implementations of Operators receive one Wire Configuration
template argument for each Wire argument.

4.3.4 Operator Factories

Op (Operator) Factories are a special case of graph factories that help with
the instantiation of new Ops and provide an easy-to-use interface for final de-
velopers. Snippet 4.6 shows the template pseudocode of a typical Op Factory.
Op factory implementations currently receive two types of input arguments,

Code Snippet 4.6 Op pseudocode template.

1. Create the return Wire.
2. Instantiate the Op,

Pass all input wires to the Op constructor.
3. Connect the Wire to the Op.
4. Return the Wire.

wires and static arithmetic values. The first step in every Factory that instanti-
ates new Ops directly is to decide the characteristics of the result and create
the corresponding Wire. Afterwards it has to instantiate the Op and finally re-
turn the result WIre. The only result is the return value, which is always a wire
that points on the generated computational graph.

39

Most op factories are defined in “functions.py”. However, loss functions,
which are also op factories, are defined in “losses.py”. Furthermore, these two
Python modules can contain graph factories that are not op factories. Instead,
it could contain graph factories that employ different ops depending on the
characteristics of the provided arguments. In addition, it can utilize other op
Factories or even generate and connect multiple ops, to implement a required
functionality. This means that these graph factories can undertake an early
optimization step if required or implement a new functionality by combining
ops and other op factories.

4.3.5 Refined Control Graphs

Computational graphs can describe very complicate arithmetic operations,
however there we need a way to manipulate the execution flow too. Even for
the deep learning, where the computation is usually structured in only one or
two rigid computational graphs (the forward and the backward graph), some
control logic is required (for example to load/save the weights or initiate the
processing).

CASE
Wire:

Command

ComListTask: Init ComList
Task:

Propagate

C
om

m
an

d
 = 0 C

om
m

an
d

 =
 2

Figure 4.7: Control graph example.

Figure 4.7 presents a very simple control graph. The root is a Case node that
has two ComList children nodes. Upon execution, a wire named "command"
selects which one to execute. Each ComList is tied with one task and a list of
Wires. The Init task instructs the system to initialize the Wire state from the DRAM,
while the Get task instructs it to save the current state of the Wire to the DRAM.

4.3.6 Modules

Modules are objects, the functionality of which is described by computational
and control graph ane during the translation process will generate a hardware
module. Currently, each one generates a distinct HLS C++ file to be synthe-
sized. Furthermore, each module contains a predefined control graph and
a set of user defined computational graphs. The control graph is required to
allow support for different types of modules. It primarily describes how to use

40

the computational graphs and sketches the generated control. From the other
side, computational graphs describe the arithmetic work. Computational and
control graphs are not executed upon their definition. Instead they are utilized
to generate a hardware module that will be able to perform the described
computations under the guidance of the control graph.

Extend the Module
Class

Declare Interface
Wires on the
Constructor

Create a Python
Dataset

Run
Override the

architecture() or
forward() method

Figure 4.8: Use Case: New Module.

One of our top priorities was the ability to define easily new modules. The
corresponding use case is shown in figure 4.8. Firstly, the developer extends the
corresponding class. In the constructor, we must declare all wires belonging to
the module’s interface. Moreover, the architecture() method must be overrid-
den. The role of this method is to define all the computational graphs. Finally, a
Python testbench object is created in Python and the module can be tested.

41

Method Description

constructor Constructs the module and - to build the
control graph - it calls init_control.

architecture Constructs the computational graphs. It
is abstract and hence the user must over-
ride it.

input Declares a wire as input. IIf it is called
with a string as argument it automatically
grabs any local variable with that name.

output Declares a wire as output. If it is called
with a string as argument it automatically
grabs any local variable with that name.

memory Declares a memory.
eval Runs one execution period (a single in-

struction to the module).
bus Registers a wire as an bus. Intended for

internal framework use currently.
get_local Finds a variable by its name and returns it.

Intended for internal framework use.

Table 4.4: The main API of the module.

Table 4.4 presents the most main API of the module. When defining a new
Module the only non-computational methods that a programmer will use are
memory, input, and output. With input and output we define the interface
of the module, while memory declares new stateful Wires. Normally, these
methods are called in the constructor and any declared wire can be used
when defining a new computational graph. For stateless wires the user does
not have to declare or create them, as the framework generates automatically
new wires when an op is called. User defined Modules have to implement
the constructor and override the method architecture. Inside the constructor
we define any Inputs, Outputs or Memories. Methods input and output can
also receive a Wire as an argument to register it accordingly as an input or
output. The method Bus take a Wire as an argument and registers it as a bus
(bidirectional). This method is currently intended for internal use only.

42

CASE
Wire:

Command

ComList
Task:

Propagate
ComList

Task:
Propagate

ComListTask: Init ComListTask: Init

ComListTask: Get ComListTask: Get

C
om

m
an

d
 = 0

C
om

m
an

d
 = 1

C
om

m
an

d
 =

 2

Figure 4.9: The control graph of Module class.

The control graph of a Module is shown in figure 4.9. Modules accept three
types of commands:

1. Init commands to initialize all Memories (all wires declared with memory).

2. Get commands to get the current value of a Memory.

3. Process commands to execute all computational graphs.

In the control graph, the command selection corresponds to a root Case node
with three children nodes, one for each command type. Init commands are
represented by a ComList tied with an Init task. Similarly, Get commands are
represented by a ComList with a Get task. These two tasks instruct the frame-
work to generate hardware for loading/saving, all the wires in their ComList.

Every Memory Wire is registered in both lists, so that the application can ini-
tialize or get their state. Finally, the main processing is instructed by the ComList
with the Propagate task. It is called Propagate because it simply calls the hls
method of every Wire in the ComList.

4.3.7 Trainable Modules

Trainable Modules extend the Module class to generate synthesizable code
that in addition to the user defined computational graphs, it contains the back-
ward graph to train a Neural Network (back-propagation algorithm).

Trainable Module class extends Module class and implements the architec-
ture method. As shown in table 4.5, User-defined Trainable Modules must ex-
tend the corresponding class, but they have to override the forward method.
Internally, three new methods are defined:

1. Method backward generates the backward graph, by calling the meth-
ods reset_derivatives and compute_derivatives.

43

Method Description

constructor Constructs Module. It first employs the su-
per constructor of the module and then
alters the control graph accordingly.

architecture This method is implemented for trainable
modules by the framework. It constructs
the computational graphs by utilizing the
methods forward and backward to con-
struct the forward and backward compu-
tational graphs respectively.

forward Builds the forward computational graphs.
It is abstract and hence the user must
override it.

backward Generates the backward graphs. It es-
sentially calls reset_derivatives and then
compute_derivatives.

memory Declares a Memory. It is now extended to
allow declaration of trainable memories

tmemory Declare a Trainable Memory. It is an alias
for memory with the argument train=True.

reset_derivatives Resets all derivative graphs. Must be
called to perform various initializations be-
fore calling compute_derivatives.

compute_derivatives Generates the backward graphs. Must
be called after calling reset_derivatives.

Table 4.5: The API of trainable modules (only the differences from simple mod-
ules).

2. Method reset_derivatives makes some simple initializations so to prepare
for computeDerivatives execution and mainly sets pointers to backward
graphs to None.

3. Method compute_derivatives is the one that actually generates all the
backward graphs. To achieve it is

Method memory is overridden to support the declaration of Trainable Memo-
ries. Also, tmemory is actually an alias for the same purpose.

Figure 4.10 presents the control graph for Trainable Modules. The process
branch is now updated to execute the forward graphs and then optionally run
the backward ones. The value of backward_flag, decides if we will run the
backward part of the execution.

44

CASE
Wire:

command

ComList
Task:

Propagate
ComList

Task:
Propagate

ComList
Task:

Propagate
ComListTask: Init ComListTask: Init ComListTask: Init

ComListTask: Get ComListTask: Get ComListTask: Get

C
om

m
an

d
 = 0

C
om

m
an

d
 = 1

C
om

m
an

d
 =

 2

ComList Task: TrainComList Task: TrainComList Task: Train

CASE
Wire:

backward_
flag

backward_flag = 1

ComList
Task:

Propagate
ComList

Task:
Propagate

ComList
Task:

Propagate

Figure 4.10: The control graph of Trainable Module class.

4.3.8 Memory Wires and Caching Mechanism

For each Memory Wire - trainable or not - another simple Wire is generated,
with the same name and the same characteristics. The Memory Wire points
into this simple Wire by using its “input” attribute. This representation allows for
cleaner and simpler code when applying algorithms that process the graph.
Furthermore, we could employ the usual pointer “p” and not “input”, but that
would create cycles in the graph that graph processing algorithms would re-
quire to perform complex checks to recognize when the processing must pro-
ceed to the sub-graphs or not. The use of two Wires with the same name helps
on optimizations. For example, we when we use the value of a Memory Wire,
there are cases when we want to utilize the value of a Memory Wire in the same
period we have updated it (this happens very often when caching a Wire). In
that case, we point to the simple Wire where the Memory “input” pointer indi-
cates. This wire has the same name so the generated code will be the same,
but also the main computational graph is compact and easy to process, as it
can be processed by utilizing only “p” pointers. In conclusion, the complexity

45

of the required code is very important and this special representation helps in
this directions.

Caching is a mechanism that allows the values of a Wire to be cached
into a stateful Wire, so that their values can be utilized in latter periods. Initially
we had implemented multiple caching strategies. However, this was far too
complex and inefficient, so in the last implementation we use one caching
mechanism and an additional stage in the Tanslation Pipeline, the “Memory
Trimming Stage”. The code is much more concrete this way.

4.3.9 Classes for Handling Vivado HLS

The framework has several classes for working with Vivado HLS, some of them
are described here. First, Command Helper is a class with that implements
functions that return strings of Vivado tcl commands depending on their ar-
guments. These methods share the same name with corresponding tcl com-
mands of Vivado HLS. Second, Command Writer defines methods for writing
specific Vivado HLS commands into a TCL file. Essentially, Command Writer im-
plements methods that wrap around the methods of Command Helper and
use the same names. the same methods but now writes them in a file. Third,
the class “Vivado HLS” is the central class for handling Vivado HLS projects. It
is responsible for generating the correct project structure, the tcl scripts, any
automatically generated testbenches and extracting any test data. To gen-
erate the testbench it utilizes another class named Test Bench Gen, which is
responsible for generating the C++ testbench files.

4.3.10 Dataset and Dataset Exporter

Datasets are collections of Python Dictionaries that contain simple commands
to execute. The developer that uses the framework can define a Dataset so
that data can be automatically exported later for other uses such us testing
the generated by the framework C++ code in Vivado HLS. Datasets can also
run in Python.

Dataset Exporters have the sole role of exporting the data of a Dataset into
a hard disk file structure. The corresponding structure is presented in figure 4.11.
The C++ testbench that is generated by the framework (and more specifically
from the TestBench Gen class) is carefully designed with the capability of inter-
acting with these disk file structures.

46

Parent Directory

Transaction
Count.txt

Transaction 1

x.txt

y.txt

command.txt

Transaction 2

x.txt

y.txt

command.txt

Figure 4.11: The directory structure that holds the exported Dataset.

47

4.4 Important Implementation Concepts

In this section, we describe many of the most important implementation con-
cepts that need to have a compact presentation.

4.4.1 Graph Traversal

Figure 4.12 shows an example computational graph. A computational graph
is comprised of wires and operations. Each wire points to the sub-graph that
can be utilized to compute its value. Each operation points to its input wires. A
list of all outputs is maintained for each module. Moreover, the graph can be
perceived as a collection of threes that optionally share parts.

+

w

ed

+

w

ed

y

z

w

y

z

w

tanh

+

z

ctemp

x

y

a b

Figure 4.12: An example computational graph.

The easiest way to cope many important tasks on the framework is to pro-
cess the graph as if it were a collection of trees, one for each output and use
a post-order processing pattern. Intermediate results can be stored to pre-
vent the recomputing of the shared sub-graphs. As presented in figure 4.13
the graph can be unfolded into a set of trees. Already computed sub-graphs
can be seen as inputs to the the tree that we currently process. The corre-
sponding algorithm is shown in pseudocode in snippet 4.7. Furthermore, node
preprocessing (pre-order processing pattern) can be employed simultaneously
for some tasks. The same algorithm can be used to process control graphs, al-
though their structure seems different and we have only one entry point (the
root of the control graph). Note that this is a very simplified version of the actual
algorithm that we are using.

48

y

z

w

y

z

w

y

tanh

+

z

ctemp

+

z

ctemp

+

z

ctemp

y

tanh

+

z

ctemp

+

z

ctemp

+

w

ed

+

w

ed

x

y

a b

x

y

a b

Figure 4.13: The unfolded version of the computational graph presented in fig-
ure 4.12.

Code Snippet 4.7 Simplified Graph Traversal.

ProcessGraph(G)
ForEach Output of G

Process(Output)

Process(Node)
Node.ForcePreprocess()

If IsAlreadyProcessed()
Return CachedResult

Node.Preprocess()

ForEach Child of Node
Process(Child)

Node.Process()

CacheResult()

Return Result

49

4.4.2 Graph Updating

To make updating graphs easy we need an abstract mechanism to alter a
node’s pointers to its children. At the same time, we want these pointer to
be accessible as class data member too, as convenience is one of our top
priorities. For example, we want to be able to directly refer to a child inside the
Operator methods, for example to use self.ina to address the first input of the
Operator.

Method Role Description

get_children(self, dict) Returns all children nodes in a list or - if
dict=True - all children nodes paired with
their names in a python dictionary.

set_child(self, name, value) Utilizes the buildin method setattr to alter a
pointer to a children node.

Table 4.6: Abstract graph API.

We need an abstract mechanism that allows accessing children nodes and
altering the corresponding pointers. Fortunately, Python has a builtin method
setattr() that allows setting an attribute by its name, for example: setattr(op,
’ina’, new_value). The solution is presented in table 4.6. We have two methods
get_children() and set_child()The first, receives one boolean input argument:

• If it is set to False (or left unassigned), the method returns a list with pointers
to all node’s children.

• If it is set to True the method will return a Python dictionary with both the
pointers and the corresponding attribute names so that the caller can use
set_child() to update them.

The second, utilizes setattr() and updates a pointer to a child by the attribute
name. While this method in most cases just calls setattr(), in the roots of the
graph we need special handling. We decided that defining a new method
would be a cleaner solution that overriding setattr().

The aforementioned concepts are shown in figure 4.14. For convenience,
Operator base classes come with a predefined version of get_children(). To
register a child Operator developers must call another predefined method of
Operators: input(attribute_name) to register the attribute name as an input.

4.4.3 Root System

We need a convenient way to alter the module’s attributes while processing its
graphs, especially the nodes that serve as graph roots. Root System is a Python
class, designed for use by graph algorithms that require to update the roots
of a graph. Its purpose is to wrap around a Module (or a Trainable Module)

50

B

op.get_children(True)
 returns:
{‘ina’, pointer to A, ‘inb’, pointer to B}

A B

Operator

ina inb

op

A C

Operator

ina inb

op

setattr(op, ‘inb’, C)

Figure 4.14: The API to alter children.

and provide the abstract Node API presented in subsection 4.4.2. Neverthe-
less, get_children() now returns a list (or dictionary) of predefined attributes of
the underlying Module, not attributes of the Root System. At the same time,
set_child() does not update the Root System attributes but the attributes of the
Module. This is required because

This has several advantages versus implementing these methods on Mod-
ules:

• The algorithms can manipulate the pointers from the module to the com-
putational graph in an abstract manner.

• We can select which attributes of the module will be considered.

• Modules have a cleaner API. The methods get_children() and set_child()
on Modules normally have a very different meaning, they return the inputs
of a Module, as in Operators and Wires.

4.4.4 Python Execution

Computational graphs can be utilized for efficient processing in any platform.
Many Python packages and frameworks can be employed to execute the de-
fined graph on any computer or cloud service using CPU or GPU resources.

51

In fact process is very efficient and can be optimized to achieve the highest
possible performance on these platforms.

Such a feature can play a very important role in our Framework. Firstly, it
can be very helpful in new module design because it allows to disentangle the
design process from the actual hardware implementation. The hardware de-
veloper can replace the behavioral simulation with a much faster process as it
will be optimized for general purpose hardware. Secondly, the framework can
utilize the “Python Execution” functionality to generate datasets automatically
for hardware verification.

To enable Python execution of the defined modules, the framework cur-
rently utilizes the Python NumPy library1. Inputs are initialized from the test data.
Then we evaluate all nodes of the computational graph. The used algorithm
is the same as presented in snippet 4.7. Each Operator must have a special
method, “Operator.run()”, that shows how to process the input data accord-
ingly. The postprocessing step of the algorithm is set to run these methods.
Executing the “Operator.run()” on the postprocessing step ensures that all sub-
trees have been processed and all children have data to process.

4.4.5 Python Synthesis Pipeline

Python synthesis can be a process of variable complexity depending on the
implementation. However, we use an HLS language as the target language
and so we prefer to push most of the complexity to the HLS C++ tool. We aim
in keeping the graphs that describe the system always in a clear, easy-to-read
state, so that is always easy for the developer to inspect the design and infer
what is going to occur next.

Graph
Creation

Graph
Trimming

Parent
Registration

Memory
Trimming

Output
Expansion

Automatic
Operator
Injection

Other Steps

Translation

Figure 4.15: Python synthesis pipeline.

The python synthesis pipeline is presented if figure 4.15. Firstly, the framework
builds the graph by calling the corresponding module methods which in their
turn call the corresponding operator factories. In this phase we also generate
the backward graph for Trainable Modules. Secondly, the graph is trimmed
by removing unnecessary Wires. Thirdly, we register all nodes that use each

1In the future, it is possible to employ an other package, for instance TensorFlow.

52

Wire, the parent nodes. Fourthly, the framework injects automatically special
operators, such as dispensers, which takes a Wire and broadcasts its values
in multiple Wires. This broadcast is required for stream Wires that must feed
multiple operators, because each data transmitted in a stream can be only
consumed once. Finally, we translate the enhanced graph. These stages are
described in detail in the subsections that follow.

4.4.6 Graph Trimming Stage

The graph may be trimmed and prepared for the next phases, otherwise we
would have to contemplate more corner cases and thus next phases would be
much more complex to leverage. During trimming we have to eliminate any
chains of wires (wires that point into other wires). To solve the trimming prob-
lem we use the same variation of depth-first search, presented in snippet 4.7.
Whenever, we find an operator, or a wire output, we perform a postprocessing
step. The postprocessing occurs after every child C of a node A is fully pro-
cessed. Thus, every child C has been already optimized. Hence, if the child C
is a wire that points to another wire W, then the second wire W is the optimum
and the node A must now point to W, not C. This is shown in figure 4.16.

A

C

w

A

C

w

A C

w

A C

w

Figure 4.16: Graph trimming stage.

4.4.7 Parent Registration Stage

In some cases, we require pointers to not only one node’s children, but parents
too. In this step we traverse the computational graphs and keep lists of each
Wire’s parents, so that the next stages can use them. We run depth-first search
of snippet 4.7 with the following simple forced preprocessing step: If the current
node is a Wire of register the calling node as one of its parents. This naive step
is enough, because the algorithm will run the forced preprocessing step once
for each parent.

4.4.8 Memory Trimming Stage

In this stage, we perform optimizations related with memories. For example:

53

• If a Memory points into another Memory currently the two are merged, so
that they generate less logic.

• If a Memory points into an output and it is not a stream then the graph
is updated in a manner that the memory gets updated first and then the
values are forwarded from the memory to the output. Moreover, the out-
put will point to the input of the Memory Wire (which has the same name
as the Memory Wire by convention).

• If a Memory points into an input or simple Wire that is not a stream then
the graph is updated in a manner that the memory is updated first and
then any further processing will utilize its values. Furthermore, any parent
nodes of the Wires will be updated to point into the input of the Memory
Wire (which has the same name as the Memory Wire by convention).

4.4.9 Output Expansion Stage

Output expansion Stage is a preparation step for the next stages. It helps for
a cleaner operation injection phase with better name handling on the gener-
ated code. Furthermore, if an output is reused internally for further processing
we have to specially handle it as interfaces have unique behavior target lan-
guages such as Vivado HLS C++. Additional Wire is needed to keep the inter-
nal version, but because interfacing Wires are indexed from the framework, we
have to carefully create a Wire, replace the corresponding output Wire and
make it point to the newly created Wire. This is called output expansion and
we have to expand all outputs that have parent Operators. Figure 4.17 shows
a minimal example of output expansion.

wOutput

wi

Op

w

Op

Output

Figure 4.17: Output Expansion.

4.4.10 Operator Injection Stage

In this stage we inject operators in the computational graphs. Currently we in-
ject two operators: Dispensers and Assignments. Dispensers are operators that
create multiple copies of the data of their input Wire. Assignment Operators
copy the value of a single wire to another one. While the two Operators are
quite similar, both the framework code and the generated code are cleaner
by separating them into two distinct Operators.

54

4.4.11 Dispenser Injection

Dispenser

w

w2 w3 wnw1

Figure 4.18: Dispenser Special Operator.

Dispenser, the graph representation of which is shown in figure 4.18, is an
Operator that broadcasts the values of one source Wire into multiple destina-
tion Wires. It is instantiated automatically from the network during the dispenser
injection stage. As shown in figures 4.19 and 4.20, Dispenser is injected in the
following cases:

• The values streamed through a (stream) Wire are required from multiple
Operators (figure 4.19).

• The values streamed through a (stream) Wire1 output are required for fur-
ther processing internally to the Module (figure 4.20).

Dispenser

wi

w w2

Op

Output
Stream

w
Output
Stream

wi

Op

Op

Op

Stream

Stream

Stream

w
Output
Stream

Op

Op

Root Expansion
Stage

Figure 4.19: Dispenser injected to cope with an output that requires attention.

Dispenser Operator node is instantiated through its special Operator Fac-
tory. The framework generates different HLS C++ implementations of the Dis-
penser dynamically depending on the number and the characteristics of its

1For non-streams we prefer injecting Assignment Operators.

55

Dispenser

w

W1 w2

Op

w

Op

Stream

Op

Op

Stream

Stream Stream

Figure 4.20: Dispenser injected to broadcast a stream of data into multiple
ones.

outputs. We use Jinja 2 template language package to conveniently define
the generated code using an easy-to-read template string. Note that Dis-
penser is the only Operator that is currently allowed to have multiple parent
Wires.

4.4.12 Assignment Injection

For non-stream Wires we will instantiate multiple assignment operators, so that
the generated code is easier to read. Scalar assignment injection is discussed
in the next subsection. We need to keep the complexity as low as possible and
the generated code easy to read and understand. In addition we have to
keep our framework design clear and transparent to the developers. Hence,
we need to handle the scalars differently, as programmers are used in builtin
C++ scalar operators and expressions. This in turn means that we may en-
counter large expressions of Wires and the framework must decide where to
generate an scalar-style assignment. The most suitable solution for our priorities
is to generate and inject into the graph a Assignments Operator. For scalar
operands the assignment will generate code that assigns a scalar C++ expres-
sion to the parent Wire. For non-stream Wires the assignment will generate
code that copies the contents of the children wire to the parent. This special
Operator must be generated automatically in the following cases:

1. A root node of the computational graph is scalar. An Assignment Opera-
tor is required to instruct the translation state to generate a scalar assign-
ment.

2. A scalar Wire has multiple parent operators similar with figure 4.21, thus
their values need to be reused multiple times.

3. We have encountered a Wire that is connected directly to another Wire.

56

wRoot

wi

Op

Op

wi

w

Op

Root

Assigment

Assigment

wt

Op

wRoot

Op

Op

Injection on w

Injection on w i

Figure 4.21: Assignment operators injected to cope with a computational
graph root. The root has been expanded during the root expansion phase.
Multiple assignment injections are required to handle with root nodes that have
multiple parents, but due to root expansion we do not have to handle this case
at all. Moreover, the combination of cases 1, 2 and 3 will handle it effectively.
Note as well that injection on wi is required only if wi is a scalar.

4. We have encountered a scalar Wire the value of which is directly required
by a non-scalar Operator. An assignment is required between the Wire
and its child node to ensure that the corresponding generated variable is
set, so that this variable can be later employed as an input argument by
the non-scalar operator.

5. The values assigned to a non-stream root are required for further process-
ing internally to the Module. In this case we have to insert multiple assign-
ments (figure 4.21) after the root expansion phase. The combination of
cases 1, 2 and 3 will, as well, handle this case effectively.

4.4.13 Implementation of Operator injection Stage

Implementation is greatly simplified due to the preceding phases. A set of spe-
cial Operator Factories are implemented to inject Dispenser and Assignment
Operators. In the highest level we have two functions:

• dispenser_injection(wire, fix_parents, trim_extra) and

• assignment_injection(wire, fix_parents, trim_extra).

57

These accept three arguments: the wire that will serve as the input to the in-
jected graph and two boolean flags. The flag fix_parents will update the lists of
parent nodes if True. The flag trim_extra will ensure that no direct wire-to-wire
assignments will generated from the injection. The cases described in subsec-
tions 4.4.11 and 4.4.12, after taking count the results of previous stages (espe-
cially the Root Expansion) can be rephrased into the following five cases:

1. A non-scalar root that points to another Wire which has multiple parents
requires a Dispenser.

2. Any scalar root requires a single assignment injection.

3. Streams with multiple parents always require a Dispenser.

4. Scalar Wires with multiple parents require an Assignment.

5. Scalar wires with parent Operator that is non-scalar require an Assign-
ment.

6. Any other Wire-to-Wire connections require an Assignment.

The case that a scalar output has multiple parents does not require special
handling as it is handled by the combination of cases 2 and 4.

Initially, the injection phase stage examines the root nodes to detect the
first two cases and handles them by calling two special operator factories ac-
cordingly. Afterwards, the stage executes the depth-first search of snippet 4.7,
parametrized with a preprocessing function that detects these the rest of the
cases.

4.4.14 Translation Stage and HLS Modules

The translation stage is the final step of the Python Synthesis pipeline. The gen-
erated code is divided in several parts. Jinja 2 templates are used for this pur-
pose. The generated file is logically divided into several areas shown in fig-
ure 4.22.

A Python class have been developed to aid the translation: C++ HLS Module
(in code is referred as CPPHLSModule). This class provides an API for registering,
C++ header inclusions, Wire Configurations,Operator Definitions, top level HLS
pragmas, as well as methods to directly write on the main body block and
methods to register global and local variables. Note that global variables are
utilized for memory wires and local for other non-interface wires. The API of C++
HLS Module is presented in table 4.7. A control graph, by definition, divides
computational graphs in different batches. Global Wires will share their values
between different batches, while Local ones will not.

The method hls initiates the Python synthesis and results in a HLS C++ file. All
the aforementioned methods are for internal usage and the framework user
will not have to interfere with them. The methods globalWire and localWire
help in Wire declaration. Their role is tied with the notion of control graphs The

58

Header Inclusions

Wire Configurations

Operator Definitions

Generated Module
Definition

Header Inclusions

Wire Configurations

Operator Definitions

Generated Module
Definition

Function Header

Vivado HLS Pragmas

Global Wire
Definitions

Main Body

Function Header

Vivado HLS Pragmas

Global Wire
Definitions

Main Body

Figure 4.22: Generated Vivado HLS C++ source file structure.

use of control flow graphs helps for even simpler translation process, because
it essentially instructs the framework how to structure the output HLS program.
The main algorithm for translation is also the one presented in snippet 4.7. The
process is performed by the hls methods that all modules and sub-modules
have implemented. Initially, the hls method of the module is called, this calls
the hls methods of the nodes of the control graph. The nodes of the control
graph call the hls methods of computational graphs or the hls methods of tasks.

59

Method Description

constructor Constructs a Vivado HLS Module. It re-
ceives a module (or trainable module) as
input.

hls Translates the module to a C++ source file.
Calls the hls_cpp_str and then saves the
string in the adequate file.

hls_wire_conf Registers a wire configuration string.
hls_op_def Registers an Op definition.
hls_interface_pragma Registers a Vivado HLS pragma.
hls_local_wire Registers a local wire.
hls_global_wire Registers a global wire.
hls_indent_incr Increases indentation for the output

source. To be used with hls_put and
hls_putline.

hls_indent_decr Decreases indentation for the output
source. To be used with hls_put and
hls_putline.

hls_put Puts a string into main code block.
hls_putline Puts a string and a newline character into

the main code block.
hls_decl Returns the header of the C++ function

that implements the hardware module.
hls_cpp_str Translates the module into string for later

use.
hls_fix_interface Performs some required steps

Table 4.7: The API of Vivado HLS module.

60

4.4.15 Backpropagation

Implementing backpropagation in a software package that receives as in-
structions computational graphs means that we have to add a package that
generates automatically a special computational graph as well. These gen-
erated graph is called backward graph and shows how to compute the first-
order derivatives efficiently. Note that the derivatives are required from opti-
mization algorithms to train all the network parameters that the network de-
signer marked as trainable.

Backward Graph Factory is a special Graph Factory, implemented to pro-
cess the forward graph and generate the backward graph1. This idea is shown
in figure 4.23. The framework treats the set of all already defined graphs that

Backward GraphForward Graph

Special
Graph
Factory

Figure 4.23: Backpropagation implementation as a special Graph Factory, the
Backward Graph Factory. It should be noted that the graph representations
are extremely abstracted. Especially the backward graph.

drive an output as the forward graph. The backward graph is somehow indis-
tinguishable, excepting the fact that normally backward graph is responsible
not to drive an output, but to train the network and drive Trainable Memory
Wires with their next values. Backward Graph Factory employs simple Graph
Factories implemented in each operator. These generate the computational
graph for the portion of the chain rule that corresponds to the Operator. Fur-
thermore, it takes into account the partial derivatives of the Operator outputs
with respect to its inputs.

In more detail, backpropagation exploits the chain rule to compute the
derivatives. For example, consider the scalar expression:

y = w2x3 = w3(x2 + w2) = w3(x1b1 + w2).

A representation using a low level computational graph of two elemental op-
erators - one for addition, one for multiplication - would require three compu-
tational nodes. Schematically the graph and the corresponding partial deriva-

1An alternative would be to employ an other software package with automatic differentia-
tion already implemented. Furthermore, we could transform the graph in a format acceptable
by some other package, compute the derivatives, and finally, transform back to our frame-
work’s graph model. Nevertheless, this implies that we would have to cope with all operators
implemented in the used package.

61

+

x3

w2

×

x2

w1x1

×

w3

y

w3 x3

1 1

w1 x1

Figure 4.24: Computational graph example with all partial derivatives shown
on the arrows next to the corresponding Operators.

tives are shown in figure 4.24. The arrows contain the derivatives of its Opera-
tors. In more detail these derivatives are: ∂y

∂w3
= x3, ∂y

∂x3
= w3, ∂x3

∂w2
= 1, ∂x3

∂x2
= 1,

∂x2
∂w1

= x1, ∂x2
∂x1

= w1. Assume an error function ε(y) and let ez =
de
dz for any wire z in

the graph. Note that in this example we do not have dependencies between
the inputs of operators. By applying the chain rule progressively we obtain for
example:

1. First, we obtain the graph to compute ew3 and ex3 :

ew3 =
de
dy

dy
dw3

= eyx3, ex3 =
de
dy

dy
dx3

= eyw3.

2. Second, we extend this graph for ew2 and ex2 .

ew2 =
de

dx3

dx3

dw2
= ex3 · 1 = ex3 , ex2 =

de
dx3

dx3

dx2
= ex3 · 1 = ex3 .

3. Finally, we extend the graph for ew1 and ex1 .

ew1 =
de

dx2

dx2

dw1
= ex2 x1, ex1 =

de
dx2

dx2

dx1
= ex2w1.

62

Error-related derivative information flow from the error function to all other
Wires that participate in the computation of the error function, in a way oppo-
site to the forward graph. Each Operator has to extend the backward graph
so that ensures that this flow can proceed from its output to its inputs. More-
over, it receives the graph to compute the derivatives of an error function with
respect to the operators outputs and extends the graph to describe how to
compute the partial derivatives of the error function with respect to the Oper-
ator’s inputs. This implies one application of the chain rule with one substitution
of the corresponding partial derivative of the operator, plus optimizations for
each input. The application of the chain rule is embedded into each operator
as a relatively simple Graph Factory. to allow easy optimizations depending on
the Operator for the case of multidimensional Wires. The backward graph for
our example is presented in figure 4.25.

w3 ew3
w3 ew3

w3 ex3
w3 ex3

w3 ew2
w3 ew2

w3 ex2
w3 ex2
w3 ex2

x1 w1

××

w3 ew1
w3 ew1
w3 ew1

w3 ex1
w3 ex1
w3 ex1

××

x3 w3ey

Previous

Mult #2 Derivative Factory

Add Derivate Factory

Next

Mult #1 Derivative Factory

Cached Cached

Cached Cached

Cached Cached

Cached Cached

Figure 4.25: The generated backward graph for the example of figure 4.24.

If we have a dependence from one input to another we have a slight dif-
ference. In this case, the total derivative is different from the partial derivative
and we normally have to use the chain rule. For example assume a function

63

f (x, u) with u = g(x) the total derivative d f
dx is:

d f
dx

=
∂ f
∂x

+
∂ f
∂u

du
dx

=
∂ f
∂x

+
∂ f
∂u

dg
dx

.

Thus we can temporarily ignore the dependence, proceed as before, and cre-
ate Add (or Sum) Operators for more than one dependency paths. An exam-
ple is shown in figure 4.26. To generate the graph that computes ex we have to

t1 t2

+

ex

××

u xey

t1 eu

w x

××

w3t2 w3w

×

w3u

y

×

x w

Figure 4.26: Backpropagation example with input dependency. The generated
backward graph is shown in the right of the arrow.

temporarily ignore the dependence of u from x, process the graph as before
and finally, employ an Add Operator to sum t1 and t2 together.

The algorithm that generates the backward graph is presented in snippet 4.8.

Code Snippet 4.8 Backward Graph Factory Algorithm.

1. Initialize all derivative pointers to None:
For each Module Output that has an error function assigned:

Run depth-first search from it and assign the
’e’ attribute of all Wires encountered to None.

2. Generate the graph:
For each Module Output that has an error function assigned:

Run depth-first search with a preprocessing step
that calls the corresponding derivative factory
of each encountered Operator.

64

Chapter 5

Framework Validation and Evaluation

5.1 Introduction

In this chapter we validate and evaluate the framework. We examine many
different aspects of the tools. The verification is performed by examining the
generated HLS C++ code and the it’s synthesizability. The key points of the
framework’s evaluation is its usability and extensibility. At this stage we do not
aim for generating the best performing hardware module. We aim primarily to
design a tool that other developers will use and improve.

The rest of this chapter is organized as follows. In section 5.2 we present
the framework validation methodology. Section 5.3 we analyze the installation
procedure and the prerequisites. In section 5.4 we evaluate various framework-
related tasks of high priority.

5.2 Framework Validation

The framework was developed in a incremental manner from the early begin-
ning. As consequence, the correctness of many many important subsystems
has been verified in different circumstances. For every new important update
new testing code has been written to test the new functionality, while older
testing code that remained compliant at the time has been reexamined. Nev-
ertheless, we have to note that this constant updating with new features com-
bined the pursue for extendability can is some occasions expose the frame-
work into flaws of the newest code. Hence, methods for faster or even auto-
matic testing must be explored at some point.

Testing and verification consecrated around the following:

• Op Verification: New Ops must be verified for expelling metadata inaccu-
racies, bugs in the HLS C++ implementation, Op factory flaws, differentia-
tion graph factory flaws, Python execution method misses.

• Automatic differentiation: Methods that generate the graphs that imple-
ment the back-propagation algorithm must be verified due to their impor-

65

tance. This functionality is partially checked during verifying the correct-
ness of an Op.

• Generated code synthesizability: During the development of new fea-
tures the synthesizability of generated code must be checked periodically
for small flaws that occasionally may raise.

• Python Execution and Simulation Subsystem: Python execution methods
are utilized very often even during verifying the framework itself, so it is
critical to function as expected.

5.3 Evaluation of Installation and Prerequisites

Prerequisites are very important when deciding to use a new tool. Open source
and easy installable prerequisites are generally preferred. Requiring other tools
that require explicit licenses is considered a big disadvantage. At the same
time a tedious installation procedure can play a considerable negative role.

All the framework’s prerequisites are shown in table 5.1. The only proprietary

Prerequisite Role Description

Python 3 The framework is written in Python 3.
Pip Required to install the framework and all the

Python prerequisites.
NumPy It is the main Python scientific package and the

framework relies on it for many tasks (Python ex-
ecution, random data generation etc.).

Jinja 2 It is a Python package that provides support for
Jinja 2 templating language. We use it to gen-
erate C++ code.

tqdm It is a python Package for displaying progress
bars on a terminal.

Xilinx Vivado Suite Required to translate the synthesizable C++ to
RTL and perform tasks from the traditional RTL
workflow (RTL Simulation, Synthesis, Map, PAR,
BitGen). The framework can generate code
and Vivado HLS projects even if Vivado is not
installed, but it cannot proceed any further.

Git Required for interaction with the framework’s
repository.

Setuptools & Wheels Python packages - required only for develop-
ment and distribution.

Table 5.1: Framework Prerequisites

software and the only that requires explicit license is the Xilinx Vivado Suite.

66

The framework is able to generate synthesizable C++ code without Vivado,
but cannot complete the workflow and generate the hardware IP or bitfile.
Furthermore, the framework can be developed and improved without Vivado.

Installation is extremely easy as the framework is distributed as other Python
packages. 1. First, install Python 3 and ensure that Pip is installed. 2. Second,
get the framework’s distribution. 3. Third (optional step), configure the file "con-
figuration.py" and set the path of Vivado bin folder. For development it is rec-
ommended to clone the git repository, install Setuptools and Wheels, and finally
install from the downloaded local git repository using the command:

pip install -e <path>

5.4 Task-based Evaluation

The framework is designed with some priorities. For example the ability to ex-
tend the framework or define new modules easily and intuitive. Initially, we
have to create a new Python module (a *.py file) inside the cloned project. As
shown in snippet 5.1, this file must import the framework main module and the
numpy library for modeling the test data (if required).

Code Snippet 5.1 Script beginning

import tensorglue as tg
import numpy as np

5.4.1 TensorGlue Module Definition

To define a new module the user must extend the Module class and implement
two methods:

1. the constructor __init__(), and

2. the method architecture().

These are presented in listings 5.2, and 5.3 respectively.
In the constructor we specify the directions of the interface’s wires, and any

stateful wires. We peaked a “loosely typed” scheme and do not specify the
type and the dimensions of the interface to allow cleaner, faster and more
flexible constructors. In the future we will also support strict definitions. Stateful
wires will be always translated into FPGA local memory resources. For initial-
ization we use NumPy arrays (here we generate random data and zeros using
NumPy). In method architecture() we have to provide a computational graph
that describes how the output can be computed from the inputs and memory
elements (stateful wires). Here, the graph is simple to make easier the compari-
son with the generated code and differences with trainable modules. Defining

67

Code Snippet 5.2 Custom module constructor.

class CustomModule(tg.Module):
def __init__(self, x, y):

super().__init__()

self.input(’x’)
self.output(’y’)

Memories
self.memory(’W’, np.random.randn(10,20),

dtype=tg.float)
self.memory(’b’, np.zeros(20), dtype=tg.float)

Code Snippet 5.3 Custom module architecture.

def architecture(self):

n = tg.matvecmul(self.x, self.W) + self.b
self.y = tg.softmax(n)

the graph resembles normal arithmetic operations and functions. These do
not actually execute the computations, but they create the corresponding
graph nodes. However, this similarity can greatly help in framework API famil-
iarization and code comprehension. Nevertheless, as with all deep learning
frameworks, problems may also arise from such similarity. For example using
normal Python control flow statements is counter-intuitive for software develop-
ers. Using them in graph definitions rather resembles the generate statements
of VHDL language. Finally, Local variables, such as n here, can be used for
convenience but they are simple pointers to graphs.

Code Snippet 5.4 Custom module instantiation.

x = tg.Wire(’x’, shape=[10], dtype=tg.float)
y = tg.Wire(’y’, shape=[20], dtype=tg.float)

Module instantiation
modeinst = CustomModule(x, y)

Snippet 5.4 shows how the module is instantiated. We need to instantiate a
module to be able to generate the HLS project. One wire must be declared
for each input and each output.

68

5.4.2 TensorGlue Trainable Module Definition

To define a new trainable module we have to extend the TrainableModule
class. The constructor, which is presented in snippet 5.5, works the same way as
simple modules, however we can now have trainable signals. In trainable mod-

Code Snippet 5.5 Custom trainable module constructor.

class CustomTrainableModule(tg.TrainableModule):
def __init__(self, x, y):

super().__init__()

self.input(’x’)
self.output(’y’)

Trainable sitgals
self.tmemory(’W’, np.random.randn(10,20),

dtype=tg.float)
self.tmemory(’b’, np.zeros(20), dtype=tg.float)

ules we implement the forward() method instead of architecture. An example
implementation of the method is shown in snippet 5.6. As we see, the function

Code Snippet 5.6 Example implementation of the forward method in a train-
able module.

def forward(self):

n = tg.matvecmul(self.x, self.W) + self.b
self.y = tg.softmax(n)

code for this example is identical with the architecture method of the simple
module defined in snipped 5.3. Trainable modules extend simple modules and
have an internal implementation of the architecture() method that calls the
forward method and then generates automatically the backward graph for
back-propagation.

To train the module we need an optimization algorithm and a loss function.
The first is internally defined as SGD, but we intent to support more algorithms
in the future. The second is defined during module instantiation as shown in
snippet 5.7. Each output has its own loss function.

5.4.3 Framework Tesbench Definition

An example testbench is presented in snippet 5.8. The data are generated
with the aid of NumPy, and then passed to the framework through a Python

69

Code Snippet 5.7 Custom trainable module instantiation.

Interface Connections
x = tg.Wire(’x’, shape=[10], dtype=tg.float)
y = tg.Wire(’y’, shape=[20], dtype=tg.float)

The loss function
y.loss = tg.losses.crossentropyloss

Module instantiation
modinst = CustomTrainableModule(x, y)

dictionary. Here we add three commands to the testbench. The first is addInit()
which adds an initialization command that will initialize all stateful signals to
their initial values. The second is an simple add() command which takes a
Python dictionary as argument that describes the case to test. Command
‘2’ means to execute the graphs. We do not need to specify the expected
values if we want just to test the generated HLS hardware module. The Python
simulation will be employed to generate the expected output values if these
are not specified explicitly in the testbench case. Nevertheless, someone could
simulate the module in Python or provide specify explicitly the output values for
the Vivado HLS simulation.

5.4.4 Arbitrary Precision Types and Streams

To create a Wire of an arbitrary fixed-point precision type one could simply
type:

Code Snippet 5.9 Arbitrary precision type example.

i is the number of bits for the integer part
d the number of bits for the decimal part
x = tg.Wire(’x’, shape=[10], dtype=tg.fixed(i, d))

To create a stream one could use for example:

Code Snippet 5.10 Stream type example.

x = tg.Wire(’x’, shape=[10], dtype=tg.stream(tg.float))

70

Code Snippet 5.8 Example testbench.

tb = tg.Testbench(testadd_inst)

Initialization command
tb.addInit()

Custom input data
x = np.random.uniform(0, 1, 10)

One Python dictionary per case
The expected correct outputs are computed in
Python automatically if missing
io_dict = {’x’:x, ’command’:2}

Adds the test case to the testbench
tb.add(io_dict)

Read stateful sitgal state
tb.addGet()

5.4.5 Generating Vivado HLS C++ Project

With a module already defined it is very easy to generate the Vivado HLS
project. We have only to run the code shown in snippet 5.11. The snippet is
only comprised of two lines. The first line instantiates a handler for Vivado HLS

Code Snippet 5.11 Commands to generate the Vivado HLS project.

tb.hls()

related tasks. The second creates the project files with all the module code,
simulation files, and simulation data.

5.4.6 Op Definition

To define a new Op we require three things:

1. The HLS C++ code that implements the Op.

2. A python class that can be used in computational graphs.

3. An Op Factory to enable easy instantiation.

All the three tasks are very straighforward to be implemented. The C++
code is simply a class template with one template parameter for each input
or output. The python class very simple too. The developer must extend one

71

class of Ops and provide some metadata (such as the name C++ header file,
or the allowed shapes for the Op inputs). Nevertheless, if this Op is intented
for use with TrainableModules, then we also have to implement another spe-
cial method too. This method is also an Op Factory that essentially defines the
backward graph for this Op. Finally, we have to implement an Op Factory in
“functions.py” that helps achieving easy and intuitive instantiation of the Op.

5.5 Performance Evaluation

To evaluate the performance of the Framework we run several tests. The ac-
tual performance of the generated hardware is a very important factor that
needs dedicated research and work that can be conducted only after a se-
rious portion of the framework infrastructure is already implemented and fully
functional. For this reason, we have decided to not clutter the framework code
with heavy optimization modifications and leave a significant portion of opti-
mizations as future work. Nevertheless, we have included a basic set of opti-
mizations, such as simple “HLS PIPELINE” directives on loops. In this section we
evaluate briefly the current performance characteristics of the framework. This
section is intended to map the behavior of the framework so that any latter
work can be compared-with and any improvement can be presented.

5.5.1 Testing Script

To map the behavior of the system we have created a small script (about 55
lines). Inside we first define a custom parametric feed-forward Neural Network.
The module extends the Module class of the framework (so it is essentially a
Python class) and accepts as parameters the data type, the number of lay-
ers and the size of the input and output vectors. Then in a for-loop we iterate
over different configurations, generate instances of the module and instruct the
framework to synthesize in python and Vivado HLS. The framework is also pro-
vided with different destination directories for each configuration. Furthermore,
the framework is instructed to time Python and C++ Synthesis. After running the
script, we have multiple projects in distinct directories, synthesized, with a file
time.txt with time statistics inside. The easiness to conduct such experiments is
quite noticeable. It is the result of this current work that prioritizes developer
friendliness and very fast prototyping. It is very uncommon for hardware devel-
opment tools to be governed from such elasticity. In a second series of evalu-
ation tests we ran the same configurations, but with Trainable Modules instead
so that the Python Synthesis will create the logic for training the neural network
parameters.

72

5.5.2 Testing Configurations

Our configuration to present an early performance behavior of the system is
shown in the following tables. The network is a feed-forward neural network
with ReLu activation functions in the hidden layers and softmax applied in the
output layer. All combinations of the characteristics presented in the table are
examined. For example, one combination is: float data types, 64 input size, 64
output size, 7 layers. The input size is set equal to output size to allow stacking
multiple layers easily. The target device is xc7k160tfbg484-1, the target clock
period is 4 ns and the module interface is selected to be m_axi. We currently
present results for 32 bit floats, but the framework can support any data type
that is supported from Vivado HLS and thus fixed point arithmetic is supported
too. We used Vivado 2019.1 for these tests.

Data types float
Layer Size 8, 64, 128

Layers 1, 4, 7, 10

Table 5.2: Testing Configurations

5.5.3 Synthesis Execution Time

The tables that follows presents the time required for Python and C++ synthesis
for each combination. All time values are in seconds. We can clearly see that
Python synthesis is orders of magnitude less time consuming that C++ synthe-
sis as expected. Enabling training by utilizing Training Modules increases the
required processing during Synthesis, but show a similar behavior. This justifies
continuing using Python for all the framework’s code excepting the HLS C++
kernel libraries or code generation templates. In the future, when we imple-
ment a more complicate optimization strategy, the numbers will likely increase.
Nevertheless, the coarse grain nature of the building blocks and the comple-
mentary to C++ Synthesis role, more or less ensure that they will remain much
smaller than the corresponding numbers of C++ Synthesis. The tests run on a
machine with Intel 7700K CPU and 16GB RAM. The OS was CentOS 7.6 and we
used Python 3.7 (Anaconda 2019.07). The TensorGlue was installed with pip in
development mode.

Number of Layers

1 4 7 10

Python Synthesis 0.030 0.027 0.017 0.022
C++ Synthesis 12.147 20.806 29.036 40.022

Total 12.177 20.833 29.053 40.044

Table 5.3: Synthesis Elapsed Time with 8 Neurons per layer.

73

Number of Layers

1 4 7 10

Python Synthesis 0.025 0.027 0.018 0.225
C++ Synthesis 12.059 20.395 30.365 38.621

Total 12.084 20.422 30.383 38.846

Table 5.4: Synthesis Elapsed Time with 64 Neurons per layer.

Number of Layers

1 4 7 10

Python Synthesis 0.028 0.0155 0.021 0.028
C++ Synthesis 12.922 18.803 26.687 38.876

Total 12.950 18.818 26.708 38.904

Table 5.5: Synthesis Elapsed Time with 128 Neurons per layer.

Number of Layers

1 4 7 10

Python Synthesis 0.037369 0.032046 0.047269 0.065149
C++ Synthesis 14.207448 34.233570 57.302809 85.935359

Total 14.244817 34.265616 57.350078 86.000509

Table 5.6: Synthesis Elapsed Time with 8 Neurons per layer and training enabled.

Number of Layers

1 4 7 10

Python Synthesis 0.031168 0.032550 0.048550 0.113427
C++ Synthesis 14.119601 31.540804 57.067342 86.105353

Total 14.150769 31.573354 57.115892 86.218780

Table 5.7: Synthesis Elapsed Time with 64 Neurons per layer and training en-
abled.

74

Number of Layers

1 4 7 10

Python Synthesis 0.015981 0.085570 0.088197 0.069962
C++ Synthesis 14.944453 32.882714 57.293712 88.165618

Total 14.960433 32.968284 57.381909 88.235579

Table 5.8: Synthesis Elapsed Time with 128 Neurons per layer and training en-
abled.

5.5.4 Device Utilization and Latency

In this subsection we present the device utilization and the achieved latency
results, from the C++ Synthesis of the generated modules. Most of the gener-
ated modules achieved the target clock period. Moreover, the same results
presented here, are provided in more detail in appendix B in tables. Module
interfacing employs s_axi and m_axi which also require resources to support.
We did not try to tweak any generated design at all. As expected trainable
modules generates more logic and it is far more expensive. In two cases - 7
and 10 layers with 128 neurons in each layer - the generated design requires
far more BRAM_18K resources that the selected device support. We also run
tests for fixed point arithmetic of 16 bits, where the generated code utilizes the
“ap_fixed” datatype of Vivado HLS. Furthermore, 4 bits for the integer part and
12 for the decimal. The following tables present the results for 10 layers with the
same characteristics as previously.

Figures 5.1 presents the BRAM utilization for each test configuration. As ex-

1 4 7 10
layers

0

200

400

600

800

1000

1200

1400
BRAM_18K

float, 8, trainable
float, 8
float, 64, trainable
float, 64
float, 128, trainable
float, 128
fixed, 8, trainable
fixed, 8
fixed, 64, trainable
fixed, 64
fixed, 128, trainable
fixed, 128

Figure 5.1: Python and Vivado C++ Synthesis results, BRAM utilization.

pected, the required resources scale almost linearly as the number of layers

75

increases. Nevertheless, the actual rate of the increase depends on the other
characteristics of the configuration. Trainable Modules require far more BRAM
resources that simple inference-only Modules. At the same time, utilizing float
(32-bit) data types requires much more resources that fixed (16-bit) types. Fig-
ure 5.2 shows the DSP utilization. While the DSP utilization scales, the utilization

1 4 7 10
layers

0

20

40

60

80

DSP48E

float, 8, trainable
float, 8
float, 64, trainable
float, 64
float, 128, trainable
float, 128
fixed, 8, trainable
fixed, 8
fixed, 64, trainable
fixed, 64
fixed, 128, trainable
fixed, 128

Figure 5.2: Python and Vivado C++ Synthesis results, DSP48E utilization.

is low and could possibly increase with small optimizations on the kernels. Fig-
ure 5.3 presents the utilization of flip-flop resources. The LUT utilization is shown

1 4 7 10
layers

0

10000

20000

30000

40000

50000

FF

float, 8, trainable
float, 8
float, 64, trainable
float, 64
float, 128, trainable
float, 128
fixed, 8, trainable
fixed, 8
fixed, 64, trainable
fixed, 64
fixed, 128, trainable
fixed, 128

Figure 5.3: Python and Vivado C++ Synthesis results, FF utilization.

in figure 5.4.

76

1 4 7 10
layers

0

10000

20000

30000

40000

50000

LUT

float, 8, trainable
float, 8
float, 64, trainable
float, 64
float, 128, trainable
float, 128
fixed, 8, trainable
fixed, 8
fixed, 64, trainable
fixed, 64
fixed, 128, trainable
fixed, 128

Figure 5.4: Python and Vivado C++ Synthesis results, LUT utilization.

Figure 5.5 shows the corresponding achieved latency. Note that the latency
increases considerably for Trainable Modules. This is expected as training re-
quires far more computations. Float data types require more latency as well
due to inherent latency of float operations.

1 4 7 10
layers

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

Latency

float, 8, trainable
float, 8
float, 64, trainable
float, 64
float, 128, trainable
float, 128
fixed, 8, trainable
fixed, 8
fixed, 64, trainable
fixed, 64
fixed, 128, trainable
fixed, 128

Figure 5.5: Python and Vivado C++ Synthesis results, latency results.

77

78

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Reconfigurability of FPGAs may be an exotic property for deep learning re-
search, but it currently remains more or less unexplored, unexploited and de-
graded because of the lack of the corresponding tools. In this work, we have
implemented the first deep learning framework for FPGA-based hardware de-
sign. We have acknowledged that designing such a framework is a three-part
modeling process. On the top developers that use the framework try to model
the solutions for the problems they try to solve. On the bottom, developers we
have the fundamental hardware modeling process. In the center, the core
modeling process where APIs are designed to provide the required functional-
ity for the other two processes.

Moreover, this framework could be seen as an HLS tool. Its greatest differ-
ence from other HLS tools is its extendability. We have endeavored to keep this
framework as simple as it was possible, so that it could be effectively extend-
able. All the internals of the tool are exposed to the designer and its easy to
extend it. Most (if not all) HLS tools lack this property but from our point of view
it is crucial to have.

6.2 Future Work

This work was designed to be extended further in many different ways. From
the one hand, extendability of the framework was a top priority. From the other,
one of its primary goals is to foster research. Some ideas for future work include:

• Allow modules to employ other modules on their computational graphs.
The framework was designed with this kind of modularity in mind. More-
over, its first versions included this functionality, but we temporarily disable
it and stalled its development in order to push for other features.

• Extend the framework to be able to generate block-level designs. While
currently we can generate IP cores using Vivado HLS, we would like to be
able to generate the full system design automatically.

79

• Research on graph partitioning, either to generate block-level designs
comprising of multiple generated IPs, or to utilize multi-FPGA infrastruc-
tures.

• Employ partial reconfiguration in order to schedule in time the compu-
tational graph by reconfiguring the hardware device. Moreover, a com-
putational graph can be broken up into smaller sub-graphs. These sub-
graphs can be then translated into different hardware modules and sched-
uled accordingly.

• Implement more Ops, Optimizations algorithms, and loss functions.

• Research for DNN architectures and algorithms that take advantage of
the characteristics of FPGA. Moreover, many of the current DNN architec-
tures and algorithms are more or less state-of-the-art depending on their
GPU performance.

• Support a carefully designed form of eager execution that may be helpful
for even efficient design flow.

• Design a high-level API resembling Keras as much as it is possible, but spe-
cially designed and extended to address hardware related concepts.

• Replace NumPy with TensorFlow wherever it is possible to allow running
the same code in top performance in non FPGA infrastructures.

• Support handling control flow statements in a way similar to TensorFlow
Autograph.

• Implement a runtime system that will manage and even automatically
handle FPGA infrastructure programming.

80

Appendix A

Input and Generated Code

A.1 Input Code

Listing A.1: TensorGlue custom Module.
import tensorglue as tg
import numpy as np

tg.set_vivado_path(’/opt/Xilinx/Vivado/2019.1/bin’)

class CustomModule(tg.Module):

def __init__(self, x, y):

super().__init__()

self.input(’x’)
self.output(’y’)

self.memory(f’W’, np.random.randn(20, 10), dtype=tg.
float)

self.memory(f’b’, np.zeros(20), dtype=tg.float)

def architecture(self):

n = tg.matvecmul(self.W, self.x) + self.b

self.y = tg.softmax(n)

x = tg.Wire(’x’, shape=(10,), dtype=tg.float)
y = tg.Wire(’y’, shape=(20,), dtype=tg.float)

inst = CustomModule(x, y)

81

Listing A.2: TensorGlue custom Trainable Module.
import tensorglue as tg
import numpy as np

tg.set_vivado_path(’/opt/Xilinx/Vivado/2019.1/bin’)

class CustomTrainableModule(tg.TrainableModule):

def __init__(self, x, y):

super().__init__()

self.input(’x’)
self.output(’y’)

W = self.tmemory(f’W’, np.random.randn(20, 10), dtype=
tg.float)

b = self.tmemory(f’b’, np.zeros(20), dtype=tg.float)

def forward(self):

n = tg.matvecmul(self.W, self.x) + self.b

self.y = tg.softmax(n)

x = tg.Wire(’x’, shape=(10,), dtype=tg.float)
y = tg.Wire(’y’, shape=(20,), dtype=tg.float)
y.loss = tg.losses.crossentropyloss

inst = CustomModule(x, y)

inst.hls()

A.2 Generated Code

Listing A.3: The generated code for a TensorGlue Module.
// Includes
#include "softmax.h"
#include <string.h>
#include "add.h"
#include "matvecmul.h"

82

// Op Configurations
struct x_conf : ArrayConfiguration<float, 1, 10> {
static const unsigned int shape0 = 10;

};

struct command_conf : ArrayConfiguration<unsigned int, 0, 1> {
};

struct y_conf : ArrayConfiguration<float, 1, 20> {
static const unsigned int shape0 = 20;

};

struct W_conf : ArrayConfiguration<float, 2, 200> {
static const unsigned int shape0 = 20;
static const unsigned int shape1 = 10;

};

struct b_conf : ArrayConfiguration<float, 1, 20> {
static const unsigned int shape0 = 20;

};

struct namelesswire_0_conf : ArrayConfiguration<float, 1, 20>
{
static const unsigned int shape0 = 20;

};

struct namelesswire_1_conf : ArrayConfiguration<float, 1, 20>
{
static const unsigned int shape0 = 20;

};

// Op Definitions
static MatVecMul<namelesswire_0_conf, W_conf, x_conf>

MatVecMul_namelesswire_0;
static Add<namelesswire_1_conf, namelesswire_0_conf, b_conf>

Add_namelesswire_1;
static Softmax<y_conf, namelesswire_1_conf> Softmax_y;

void CustomModule(float x[10], unsigned int command, float y
[20], float W_port[200], float b_port[20])

{
#pragma HLS INTERFACE s_axilite port=x
#pragma HLS INTERFACE s_axilite port=command
#pragma HLS INTERFACE s_axilite port=y
#pragma HLS INTERFACE m_axi port=W_port
#pragma HLS INTERFACE m_axi port=b_port

83

// Global Wires
static float b[20];
static float W[200];

switch (command) {
case 0:
// Case "init"
memcpy(W, W_port, 200 * sizeof(float));
memcpy(b, b_port, 20 * sizeof(float));

break;
case 1:
// Case "get"
memcpy(W_port, W, 200 * sizeof(float));
memcpy(b_port, b, 20 * sizeof(float));

break;
case 2:
// Case "process"

float namelesswire_0[20];

MatVecMul_namelesswire_0.run(namelesswire_0, W, x);

float namelesswire_1[20];

Add_namelesswire_1.run(namelesswire_1, namelesswire_0, b);
Softmax_y.run(y, namelesswire_1);

break;
}

}

Listing A.4: The generated code for a TensorGlue Trainable Module.
// Includes
#include "softmax.h"
#include "outer.h"
#include <string.h>
#include "matvecmul.h"
#include "scale.h"
#include "sub.h"

84

#include "add.h"
#include "copy.h"

// Op Configurations
struct learning_rate_conf : ArrayConfiguration<float, 0, 1> {
};

struct command_conf : ArrayConfiguration<unsigned int, 0, 1> {
};

struct x_conf : ArrayConfiguration<float, 1, 10> {
static const unsigned int shape0 = 10;

};

struct y_label_conf : ArrayConfiguration<float, 1, 20> {
static const unsigned int shape0 = 20;

};

struct backward_flag_conf : ArrayConfiguration<unsigned int,
0, 1> {

};

struct y_conf : ArrayConfiguration<float, 1, 20> {
static const unsigned int shape0 = 20;

};

struct y_cached_conf : ArrayConfiguration<float, 1, 20> {
static const unsigned int shape0 = 20;

};

struct W_conf : ArrayConfiguration<float, 2, 200> {
static const unsigned int shape0 = 20;
static const unsigned int shape1 = 10;

};

struct x_cached_conf : ArrayConfiguration<float, 1, 10> {
static const unsigned int shape0 = 10;

};

struct b_conf : ArrayConfiguration<float, 1, 20> {
static const unsigned int shape0 = 20;

};

struct namelesswire_0_conf : ArrayConfiguration<float, 1, 20>
{
static const unsigned int shape0 = 20;

85

};

struct namelesswire_1_conf : ArrayConfiguration<float, 1, 20>
{
static const unsigned int shape0 = 20;

};

struct namelesswire_4_conf : ArrayConfiguration<float, 1, 20>
{
static const unsigned int shape0 = 20;

};

struct W_error_conf : ArrayConfiguration<float, 2, 200> {
static const unsigned int shape0 = 20;
static const unsigned int shape1 = 10;

};

struct namelesswire_8_conf : ArrayConfiguration<float, 2, 200>
{

static const unsigned int shape0 = 20;
static const unsigned int shape1 = 10;

};

struct namelesswire_10_conf : ArrayConfiguration<float, 1, 20>
{

static const unsigned int shape0 = 20;
};

// Op Definitions
static Copy<x_cached_conf, x_conf> Copy_x_cached;
static MatVecMul<namelesswire_0_conf, W_conf, x_cached_conf>

MatVecMul_namelesswire_0;
static Add<namelesswire_1_conf, namelesswire_0_conf, b_conf>

Add_namelesswire_1;
static Softmax<y_cached_conf, namelesswire_1_conf>

Softmax_y_cached;
static Copy<y_conf, y_cached_conf> Copy_y;
static Sub<namelesswire_4_conf, y_cached_conf, y_label_conf>

Sub_namelesswire_4;
static Outer<W_error_conf, namelesswire_4_conf, x_cached_conf>

Outer_W_error;
static Scale<namelesswire_8_conf, learning_rate_conf,

W_error_conf> Scale_namelesswire_8;
static Add<W_conf, W_conf, namelesswire_8_conf> Add_W;
static Scale<namelesswire_10_conf, learning_rate_conf,

namelesswire_4_conf> Scale_namelesswire_10;

86

static Add<b_conf, b_conf, namelesswire_10_conf> Add_b;

void CustomTrainableModule(float learning_rate, unsigned int
command, float x[10], float y_label[20], unsigned int
backward_flag, float y[20], float b_port[20], float W_port
[200])

{
#pragma HLS INTERFACE s_axilite port=learning_rate
#pragma HLS INTERFACE s_axilite port=command
#pragma HLS INTERFACE s_axilite port=x
#pragma HLS INTERFACE s_axilite port=y_label
#pragma HLS INTERFACE s_axilite port=backward_flag
#pragma HLS INTERFACE s_axilite port=y
#pragma HLS INTERFACE m_axi port=b_port
#pragma HLS INTERFACE m_axi port=W_port

// Global Wires
static float x_cached[10];
static float y_cached[20];
static float b[20];
static float W[200];

switch (command) {
case 0:
// Case "init"
memcpy(b, b_port, 20 * sizeof(float));
memcpy(W, W_port, 200 * sizeof(float));

break;
case 1:
// Case "get"
memcpy(b_port, b, 20 * sizeof(float));
memcpy(W_port, W, 200 * sizeof(float));

break;
case 2:
// Case "process"
Copy_x_cached.run(x_cached, x);

float namelesswire_0[20];

MatVecMul_namelesswire_0.run(namelesswire_0, W, x_cached);

float namelesswire_1[20];

Add_namelesswire_1.run(namelesswire_1, namelesswire_0, b);

87

Softmax_y_cached.run(y_cached, namelesswire_1);
Copy_y.run(y, y_cached);

switch (backward_flag) {
case 0:

// Case "backward"

float namelesswire_4[20];

Sub_namelesswire_4.run(namelesswire_4, y_cached, y_label
);

float W_error[200];

Outer_W_error.run(W_error, namelesswire_4, x_cached);

float namelesswire_8[200];

Scale_namelesswire_8.run(namelesswire_8, learning_rate,
W_error);

Add_W.run(W, W, namelesswire_8);

float namelesswire_10[20];

Scale_namelesswire_10.run(namelesswire_10, learning_rate
, namelesswire_4);

Add_b.run(b, b, namelesswire_10);

break;
}

break;
}

}

88

Appendix B

Measurements in Detail

B.1 Device Utilization and Latency

Number of Layers

1 4 7 10

BRAM_18K 9 (1%) 24 (3%) 39 (6%) 54 (8%)
DSP48E 35 (5%) 41 (6%) 47 (7%) 53 (8%)

FF 7777 (3%) 15388 (7%) 22933 (11%) 30478 (15%)
LUT 8409 (8%) 16782 (16%) 25078 (24%) 33271 (32%)

Latency 843 2898 4953 7008
Interval 843 2898 4953 7008

Estimated Clock (ns) 3.5 ± 0.5 3.5 ± 0.5 4.087 ± 0.5 3.907 ± 0.5

Table B.1: Python and Vivado C++ Synthesis results for 8 Neurons per layer and
training disabled.

Number of Layers

1 4 7 10

BRAM_18K 20 (3%) 68 (10%) 116 (17%) 164 (25%)
DSP48E 35 (5%) 41 (6%) 47 (7%) 53 (8%)

FF 7644 (3%) 14697 (7%) 21684 (10%) 28671 (14%)
LUT 8437 (8%) 16867 (16%) 25220 (24%) 33470 (33%)

Latency 41836 165187 288538 411889
Interval 41836 165187 288538 411889

Estimated Clock (ns) 3.5 ± 0.5 3.5 ± 0.5 4.087 ± 0.5 3.907 ± 0.5

Table B.2: Python and Vivado C++ Synthesis results for 64 Neurons per layer and
training disabled.

89

Number of Layers

1 4 7 10

BRAM_18K 44 (6%) 164 (25%) 284 (43%) 404 (62%)
DSP48E 35 (5%) 41 (6%) 47 (7%) 53 (8%)

FF 7675 (3%) 14806 (7%) 21871 (10%) 28936 (14%)
LUT 8461 (8%) 16945 (16%) 25352 (25%) 33656 (33%)

Latency 165484 657859 1150234 1642609
Interval 165484 657859 1150234 1642609

Estimated Clock (ns) 3.5 ± 0.5 3.5 ± 0.5 4.087 ± 0.5 3.907 ± 0.5

Table B.3: Python and Vivado C++ Synthesis results for 128 Neurons per layer
and training disabled.

Number of Layers

1 4 7 10

BRAM_18K 16 (2%) 49 (7%) 82 (12%) 115 (17%)
DSP48E 39 (6%) 57 (9%) 75 (12%) 93 (15%)

FF 10271 (5%) 23759 (11%) 37216 (18%) 50704 (25%)
LUT 10605 (10%) 24846 (24%) 39109 (38%) 52940 (52%)

Latency 1145 5998 10784 15569
Interval 1145 5998 10784 15569

Estimated Clock (ns) 3.5 ± 0.5 4.584 ± 0.5 4.625 ± 0.5 4.153 ± 0.5

Table B.4: Python and Vivado C++ Synthesis results for 8 Neurons per layer and
training enabled.

Number of Layers

1 4 7 10

BRAM_18K 43 (6%) 172 (26%) 301 (46%) 430 (66%)
DSP48E 39 (6%) 57 (9%) 75 (12%) 93 (15%)

FF 10164 (5%) 23454 (11%) 36713 (18%) 50003 (24%)
LUT 10695 (10%) 25242 (24%) 39811 (39%) 53948 (53%)

Latency 54517 342288 625960 909631
Interval 54517 342288 625960 909631

Estimated Clock (ns) 3.5 ± 0.5 4.584 ± 0.5 4.625 ± 0.5 4.153 ± 0.5

Table B.5: Python and Vivado C++ Synthesis results for 64 Neurons per layer and
training enabled.

90

Number of Layers

1 4 7 10

BRAM_18K 115 (17%) 532 (81%) 949 (146%) 1366 (210%)
DSP48E 39 (6%) 57 (9%) 75 (12%) 93 (15%)

FF 10229 (5%) 23744 (11%) 37228 (18%) 50743 (25%)
LUT 10735 (10%) 25426 (25%) 40139 (39%) 54420 (53%)

Latency 215349 1364048 2496360 3628671
Interval 215349 1364048 2496360 3628671

Estimated Clock (ns) 3.5 ± 0.5 4.584 ± 0.5 4.625 ± 0.5 4.153 ± 0.5

Table B.6: Python and Vivado C++ Synthesis results for 128 Neurons per layer
and training enabled.

Number of Layers

1 4 7 10

BRAM_18K 9 (1%) 24 (3%) 39 (6%) 54 (8%)
DSP48E 27 (4%) 30 (5%) 33 (5%) 36 (6%)

FF 7486 (3%) 12832 (6%) 18181 (8%) 23530 (11%)
LUT 9789 (9%) 17589 (17%) 25341 (24%) 33173 (32%)

Latency 189 468 747 1026
Interval 189 468 747 1026

Estimated Clock (ns) 3.5 ± 0.5 3.5 ± 0.5 3.5 ± 0.5 3.5 ± 0.5

Table B.7: Python and Vivado C++ Synthesis results for fixed16, 8 Neurons per
layer and training disabled.

Number of Layers

1 4 7 10

BRAM_18K 16 (2%) 49 (7%) 82 (12%) 115 (17%)
DSP48E 27 (4%) 30 (5%) 33 (5%) 36 (6%)

FF 7632 (3%) 13896 (6%) 20160 (9%) 26424 (13%)
LUT 9898 (9%) 18235 (17%) 26524 (26%) 34893 (34%)

Latency 4392 17112 29832 42552
Interval 4392 17112 29832 42552

Estimated Clock (ns) 3.5 ± 0.5 3.5 ± 0.5 3.5 ± 0.5 3.5 ± 0.5

Table B.8: Python and Vivado C++ Synthesis results for fixed16, 64 Neurons per
layer and training disabled.

91

Number of Layers

1 4 7 10

BRAM_18K 28 (4%) 100 (15%) 172 (26%) 244 (37%)
DSP48E 27 (4%) 30 (5%) 33 (5%) 36 (6%)

FF 7660 (3%) 13906 (6%) 20152 (9%) 26398 (13%)
LUT 9922 (9%) 18268 (18%) 26566 (26%) 34944 (34%)

Latency 16872 66840 116808 166776
Interval 16872 66840 116808 166776

Estimated Clock (ns) 3.5 ± 0.5 3.5 ± 0.5 3.5 ± 0.5 3.5 ± 0.5

Table B.9: Python and Vivado C++ Synthesis results for fixed16, 128 Neurons per
layer and training disabled.

Number of Layers

1 4 7 10

BRAM_18K 14 (2%) 41 (6%) 68 (10%) 95 (14%)
DSP48E 30 (5%) 45 (7%) 60 (10%) 75 (12%)

FF 8706 (4%) 18219 (8%) 27701 (13%) 37233 (18%)
LUT 11319 (11%) 24267 (23%) 37239 (36%) 50133 (49%)

Latency 453 1712 2904 4095
Interval 453 1712 2904 4095

Estimated Clock (ns) 3.5 ± 0.5 3.5 ± 0.5 3.5 ± 0.5 3.5 ± 0.5

Table B.10: Python and Vivado C++ Synthesis results for fixed16, 8 Neurons per
layer and training enabled.

BRAM_18K 30 (4%) 108 (16%) 186 (28%) 264 (40%)
DSP48E 30 (5%) 45 (7%) 60 (10%) 75 (12%)

FF 9233 (4%) 20042 (9%) 30820 (15%) 41629 (20%)
LUT 11624 (11%) 25346 (24%) 39092 (38%) 52760 (52%)

Latency 17037 83498 145860 208221
Interval 17037 83498 145860 208221

Estimated Clock (ns) 3.5 ± 0.5 3.5 ± 0.5 3.5 ± 0.5 3.5 ± 0.5

Table B.11: Python and Vivado C++ Synthesis results for fixed16, 64 Neurons per
layer and training enabled.

92

Number of Layers

1 4 7 10

BRAM_18K 66 (10%) 288 (44%) 510 (78%) 732 (112%)
DSP48E 30 (5%) 45 (7%) 60 (10%) 75 (12%)

FF 9296 (4%) 20318 (10%) 31309 (15%) 42331 (20%)
LUT 11664 (11%) 25530 (25%) 39420 (38%) 53232 (52%)

Latency 66701 330538 577988 825437
Interval 66701 330538 577988 825437

Estimated Clock (ns) 3.5 ± 0.5 3.5 ± 0.5 3.5 ± 0.5 3.5 ± 0.5

Table B.12: Python and Vivado C++ Synthesis results for fixed16, 128 Neurons per
layer and training enabled.

93

94

Bibliography

[1] H. B. Demuth, M. H. Beale, O. De Jess, and M. T. Hagan, Neural Network
Design, 2nd ed. USA: Martin Hagan, 2014.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[3] A. L. Cauchy, “Méthode générale pour la résolution de systèmes
d’équations simultanées,” Compte rendu des séances de l’académie des
sciences, p. 536–538, Jul. 1847.

[4] B. Widrow and M. E. Hoff, “Adaptive Switching Circuits,” in 1960 IRE
WESCON Convention Record, Part 4. New York: IRE, 1960, pp. 96–104.

[5] P. Werbos, “Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Science,” Ph.D. dissertation, Harvard University, Cambridge,
MA, USA, Jan 1974.

[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Representations
by Back Propagating Errors,” Nature, vol. 323, pp. 533–536, 10 1986.

[7] D. Parker, Learning-logic: Casting the Cortex of the Human Brain in Silicon,
ser. Technical report: Center for Computational Research in Economics
and Management Science. Massachusetts Institute of Technology, Cen-
ter for Computational Research in Economics and Management Science,
1985.

[8] Y. LeCun, “Une procédure d’apprentissage pour réseau a seuil asym-
metrique (a Learning Scheme for Asymmetric Threshold Networks),” in Pro-
ceedings of Cognitiva 85, Paris, France, 1985, pp. 599–604.

[9] D. E. Rumelhart, J. L. McClelland, and C. PDP Research Group, Eds., Paral-
lel Distributed Processing: Explorations in the Microstructure of Cognition,
Vol. 1: Foundations. Cambridge, MA, USA: MIT Press, 1986.

[10] G. W. Leibniz, “Memoir using the chain rule,” 1676, (Cited in TMME 7:2&3
pp. 321-332, 2010).

[11] G. de l’Hôpital, “Analyse des infiniment petits, pour l’intelligence des lignes
courbes,” 1696, Paris: L’Imprimerie Royale.

95

http://www.deeplearningbook.org

[12] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, M. Hasan, B. C. V.
Esesn, A. A. S. Awwal, and V. K. Asari, “The history began from alexnet:
A comprehensive survey on deep learning approaches,” CoRR, vol.
abs/1803.01164, 2018. [Online]. Available: http://arxiv.org/abs/1803.01164

[13] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov 1998.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS’12. USA: Curran Associates Inc., 2012, pp. 1097–1105.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2999134.2999257

[15] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014. [Online].
Available: http://arxiv.org/abs/1409.1556

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” CoRR, vol. abs/1409.4842, 2014. [Online]. Available:
http://arxiv.org/abs/1409.4842

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[18] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[19] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like envi-
ronment for machine learning.”

[20] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,”
2017.

[21] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature
embedding,” arXiv preprint arXiv:1408.5093, 2014.

96

http://arxiv.org/abs/1803.01164
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1512.03385
https://www.tensorflow.org/

[22] J. Decaluwe, “Myhdl: A python-based hardware description language,”
Linux J., vol. 2004, no. 127, pp. 5–, Nov. 2004. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1029015.1029020

[23] Myhdl: Design hardware with python. [Online]. Available: https://http:
//www.myhdl.org/

[24] Xilinx Inc., “Vivado Design Suite User Guide: High-
Level Synthesis - UG902 (v2018.2),” Jul. 2018. [Online].
Available: https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2018_2/ug902-vivado-high-level-synthesis.pdf

[25] NVIDIA Corporation Inc., “NVIDIA TESLA V100 GPU ARCHITECTURE,”
Aug. 2017. [Online]. Available: https://images.nvidia.com/content/
volta-architecture/pdf/volta-architecture-whitepaper.pdf

[26] Graphcore. [Online]. Available: https://www.graphcore.ai/

[27] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990. [Online]. Available:
http://doi.acm.org/10.1145/79173.79181

[28] Xilinx Inc., “DS890 (v3.6) - UltraScale Architecture and Product Data Sheet:
Overview,” 2018. [Online]. Available: https://www.xilinx.com/support/
documentation/data_sheets/ds890-ultrascale-overview.pdf

[29] “Stratix 10 GX/SX Device Overview,” 2018. [Online]. Avail-
able: https://www.intel.com/content/dam/www/programmable/us/en/
pdfs/literature/hb/stratix-10/s10-overview.pdf

[30] Xilinx Inc., “UG573 (v1.9) - UltraScale Architecture Memory Re-
sources,” 2018. [Online]. Available: https://www.xilinx.com/support/
documentation/user_guides/ug573-ultrascale-memory-resources.pdf

[31] ——, “WP477 (v1.0) - UltraRAM: Breakthrough Embedded Memory Inte-
gration on UltraScale+ Devices,” 2016. [Online]. Available: https://www.
xilinx.com/support/documentation/white_papers/wp477-ultraram.pdf

[32] Intel Corporation, “Intel Xeon Processor Scalable Family
Datasheet, Volume One: Electrical,” May 2018. [Online].
Available: https://www.intel.com/content/www/us/en/processors/xeon/
scalable/xeon-scalable-datasheet-vol-1.html

[33] Xilinx Inc., “WP505 (v1.0) - Versal: The First Adaptive Compute Acceleration
Platform (ACAP),” Oct. 2018. [Online]. Available: https://www.xilinx.com/
support/documentation/white_papers/wp505-versal-acap.pdf

[34] ——, “WP506 (v1.0.2) - Xilinx AI Engines and Their Applications,” Oct. 2018.
[Online]. Available: https://www.xilinx.com/support/documentation/
white_papers/wp506-ai-engine.pdf

97

http://dl.acm.org/citation.cfm?id=1029015.1029020
https://http://www.myhdl.org/
https://http://www.myhdl.org/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug902-vivado-high-level-synthesis.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.graphcore.ai/
http://doi.acm.org/10.1145/79173.79181
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/s10-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/s10-overview.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/white_papers/wp477-ultraram.pdf
https://www.xilinx.com/support/documentation/white_papers/wp477-ultraram.pdf
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-datasheet-vol-1.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-datasheet-vol-1.html
https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf
https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf

[35] ——, “DS950 (v1.0) - Versal Architecture and Product Data Sheet:
Overview,” Oct. 2018. [Online]. Available: https://www.xilinx.com/
support/documentation/data_sheets/ds950-versal-overview.pdf

[36] Maxeler Technologies, Inc. [Online]. Available: http://maxeler.com/

[37] Maxeler Technologies, Inc., “MaxCompiler, White paper,” Feb.
2011. [Online]. Available: https://www.maxeler.com/media/documents/
MaxelerWhitePaperMaxCompiler.pdf

[38] ——, “Programming MPC Systems, White paper,” Jun. 2013.
[Online]. Available: https://www.maxeler.com/media/documents/
MaxelerWhitePaperProgramming.pdf

[39] ——, “OpenSPL: Revealing the Power of Spatial Computing,” Dec.
2013. [Online]. Available: http://www.openspl.org/wp-content/uploads/
OpenSPL-WP1.pdf

[40] D. H. Noronha, B. Salehpour, and S. J. E. Wilton, “Leflow: Enabling flexible
FPGA high-level synthesis of tensorflow deep neural networks,” CoRR, vol.
abs/1807.05317, 2018. [Online]. Available: http://arxiv.org/abs/1807.05317

[41] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “Legup: High-level synthesis for fpga-based
processor/accelerator systems,” in Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, ser. FPGA
’11. New York, NY, USA: ACM, 2011, pp. 33–36. [Online]. Available:
http://doi.acm.org/10.1145/1950413.1950423

[42] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis, J. Ngadiuba,
M. Pierini, R. Rivera, N. Tran, and Z. Wu, “Fast inference of deep neural
networks in fpgas for particle physics,” 2018.

[43] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping
convolutional neural networks on fpgas: A survey and future directions,”
ACM Comput. Surv., vol. 51, no. 3, pp. 56:1–56:39, Jun. 2018. [Online].
Available: http://doi.acm.org/10.1145/3186332

[44] Jinja 2. [Online]. Available: http://jinja.pocoo.org/

98

https://www.xilinx.com/support/documentation/data_sheets/ds950-versal-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds950-versal-overview.pdf
http://maxeler.com/
https://www.maxeler.com/media/documents/MaxelerWhitePaperMaxCompiler.pdf
https://www.maxeler.com/media/documents/MaxelerWhitePaperMaxCompiler.pdf
https://www.maxeler.com/media/documents/MaxelerWhitePaperProgramming.pdf
https://www.maxeler.com/media/documents/MaxelerWhitePaperProgramming.pdf
http://www.openspl.org/wp-content/uploads/OpenSPL-WP1.pdf
http://www.openspl.org/wp-content/uploads/OpenSPL-WP1.pdf
http://arxiv.org/abs/1807.05317
http://doi.acm.org/10.1145/1950413.1950423
http://doi.acm.org/10.1145/3186332
http://jinja.pocoo.org/

	Introduction
	Deep Learning
	Hardware Evolution and Deep Learning
	Programming Paradigms
	About this Thesis
	Framework Goals
	Detailed Motivation
	Contribution
	Thesis Structure

	Background and Related Work
	Introduction
	Deep Learning Background
	Stochastic Gradient Descent
	Back-Propagation
	CNN Architectures

	Deep Learning Frameworks
	Hardware Description Languages and FPGAs
	High Level Synthesis Tools and FPGAs
	Current Hardware
	Graphcore
	Current FPGAs

	Related Tools

	Requirement Analysis and Modeling
	Requirement Analysis
	Problem Formulation
	Developer Classes
	Short Term User Goals
	User Goal Description
	Performance Indices
	Design Priorities

	Foundational Modeling
	Modeling Process
	Modules and Trainable Modules
	Computational Graphs
	Forward and Backward Computational Graphs
	Operators
	Wires
	Conditionals
	Commands and Execution Periods
	Control Graphs
	Control Nodes
	Control Tasks
	Graph Factories and Op Factories
	Linker Nodes
	Submodules

	System Architecture and Implementation
	Proposed Design Flow
	Proposed Tool Stack
	Why Python
	Used Schemes of Code Generation
	HLS C++ and Jinja 2
	The Trade-off

	Framework Architecture
	Wires
	Wire Configuration
	Operators
	Operator Factories
	Refined Control Graphs
	Modules
	Trainable Modules
	Memory Wires and Caching Mechanism
	Classes for Handling Vivado HLS
	Dataset and Dataset Exporter

	Important Implementation Concepts
	Graph Traversal
	Graph Updating
	Root System
	Python Execution
	Python Synthesis Pipeline
	Graph Trimming Stage
	Parent Registration Stage
	Memory Trimming Stage
	Output Expansion Stage
	Operator Injection Stage
	Dispenser Injection
	Assignment Injection
	Implementation of Operator injection Stage
	Translation Stage and HLS Modules
	Backpropagation

	Framework Validation and Evaluation
	Introduction
	Framework Validation
	Evaluation of Installation and Prerequisites
	Task-based Evaluation
	TensorGlue Module Definition
	TensorGlue Trainable Module Definition
	Framework Tesbench Definition
	Arbitrary Precision Types and Streams
	Generating Vivado HLS C++ Project
	Op Definition

	Performance Evaluation
	Testing Script
	Testing Configurations
	Synthesis Execution Time
	Device Utilization and Latency

	Conclusion and Future Work
	Conclusion
	Future Work

	Input and Generated Code
	Input Code
	Generated Code

	Measurements in Detail
	Device Utilization and Latency

