
Technical University of Crete
Department of Electrical and Computer

Engineering

Large Differentially Private Data Synthesis

Diploma Thesis

Author: Christos Zacharioudakis (Student ID: 2014030056)
Supervisor: Professor Minos Garofalakis

Thesis Committee:

• Professor Minos Garofalakis

• Professor Antonios Deligiannakis

• Professor Vassilios Samoladas

February 16, 2020

Abstract

In our days, data exists in abundance, it is ever increasing and it finds numerous
uses. A most recent use is the training of Machine Learning models, software
capable of making their own decisions. However, using data to train said models
raises significant privacy concerns, especially when it comes to highly sensitive
data such as medical records. A solution to this predicament is the synthetic data
generation, the production of “fake” data that resembles the real one. However,
synthetic data generation does not provide any privacy guarantees on its own.
The need increases for a robust, meaningful, and mathematically rigorous defi-
nition of privacy, together with a computationally rich class of algorithms that
satisfy this definition. One such definition is Differential Privacy. This thesis
attempts to combine the concept of Differential Privacy with various Machine
Learning techniques to generate truly private data that can be utilized in place
of the real one effectively. The Machine Learning models that will concern us are
the Bayesian Networks and the Generative Adversarial Networks.

Acknowledgments

After five years of arduous and yet productive and interesting studies, the time
has finally come to present my thesis, which has benefited greatly from the sup-
port of many people, some of whom I would sincerely like to thank here.

To begin with, I would like to thank my supervisor Professor Minos Garo-
falakis for pointing me towards exciting and modern topics and for finding the
time to guide me and answer my questions, despite his overloaded schedule. I am
also grateful to all the professors of the department of Electrical and Computer
Engineering for all the knowledge they offered me in these five years.

Finally, I wish to thank my family for their financial and moral support
throughout my studies. I owe my deepest gratitude to my mother for her con-
stant and unconditional support, patience and encouragement, even in my most
pessimistic moments. Last but not least, I would like to thank my uncle Andreas
for bringing me in contact with computers when I was quite young, thus igniting
my interest in them and inspiring me to pursue this field of study.

CONTENTS

Contents

1 Introduction 1
1.1 Data and their privacy . 1
1.2 Shortcomings of Privacy-Preserving Data Analysis 3
1.3 What is Differential Privacy? . 6
1.4 What Differential Privacy does not promise 7
1.5 Implementing Differential Privacy with Machine Learning 8

1.5.1 Bayesian Networks . 8
1.5.2 Neural Networks . 8

1.6 Thesis Organization & Contributions 9

2 Differential Privacy 10
2.1 The model of computation . 10

2.1.1 Centralized model . 10
2.1.2 Local model . 10

2.2 Randomized Response . 11
2.3 Basic Terms . 12
2.4 Defining Differential Privacy . 13

2.4.1 Parameter ε . 13
2.4.2 Parameter δ . 15
2.4.3 Privacy Loss . 15

2.5 Useful probabilistic tools . 16
2.5.1 Laplace Mechanism . 16
2.5.2 Exponential Mechanism 18
2.5.3 Composition Theorems . 20

3 DP Data Generation with PrivBayes 22
3.1 Privacy-preserving data analysis with DP in the distributed model 22
3.2 Bayes’ Theorem . 24
3.3 Bayesian Networks . 25

3.3.1 Introduction . 25
3.3.2 Definition . 28

3.4 Distributed Bayesian Network Learning with Differential Privacy . 30
3.4.1 Introduction . 30
3.4.2 Learning Bayesian Networks from data 34

3.5 PrivBayes . 40
3.5.1 Introduction . 40
3.5.2 First Phase: Structure Learning 42
3.5.3 Second Phase: Parameter Learning 51

I

CONTENTS

3.5.4 Third Phase: Synthetic Data Generation 52
3.6 Experimental Evaluation . 61

3.6.1 Datasets . 62
3.6.2 Hyperparameters and classifiers 66
3.6.3 Experimental Evaluation 70

3.7 Conclusions & Future Work . 101

4 Neural networks 102
4.1 Introduction . 102
4.2 Machine Learning Tasks . 102
4.3 Training data and test data . 103
4.4 Introduction to Neural Networks 104

4.4.1 Deep Learning . 107
4.5 Learning Process - Minimizing the cost function 108

4.5.1 Forward propagation . 108
4.5.2 Gradient Descent . 111
4.5.3 Backpropagation . 113

4.6 Generative Adversarial Networks 121
4.6.1 Introduction . 121
4.6.2 Definition . 122
4.6.3 Nash Equilibrium . 124
4.6.4 Practical Applications . 124
4.6.5 Challenges of GAN models 125

5 Implementing DP with GANs 128
5.1 Introduction . 128
5.2 Differentially Private Synthetic Data Generation via GANs 129
5.3 Experimental Evaluation . 129
5.4 Conclusion & Future Work . 134

References 135

II

1 INTRODUCTION

1 Introduction

1.1 Data and their privacy

The term “privacy” denotes a socially defined ability of an individual (or orga-
nization) to determine whether, when, and to whom personal (or organizational)
information is to be released. (Saltzer and Schroeder (3,))

In computing, data is information that has been translated into a form that
is efficient for movement or processing. Relative to today’s computers and trans-
mission media, data is information converted into binary digital form. Raw data
is a term used to describe data in its most basic digital format. The concept of
data in the context of computing has its roots in the work of Claude Shannon, an
American mathematician known as the father of information theory. He ushered
in binary digital concepts based on applying two-value Boolean logic to electronic
circuits. Binary digit formats underlie the CPUs, semiconductor memories and
disk drives, as well as many of the peripheral devices common in computing to-
day, such as hard and solid-state drives.

The era spanning from the beginning of the 20th century to today is known as
the Information Age. This is largely due to the fact that the world’s technological
capacity to store information has grown from 2.6 exabytes in 1986 to 5 zettabytes
in 2014. Also, due to the extended use of the Internet (Social Media, Cloud Stor-
age e.t.c.) and with the growth of the Internet of Things (IoT),1 2.5 exabytes (2.5
million terabytes) of data is created every day and the pace is ever increasing.
In fact, it was estimated in 2013 that 90% of the data in the world was gener-
ated in 2011 and 2012. It is also estimated that the volume of the available data
is doubled every three years and by 2020, data is expected to double every 73 days.

Early on, the importance of data in business computing became apparent by
the popularity of the terms "data processing" and "electronic data processing,"
which, for a time, came to encompass the full spectrum of what is now known as
information technology. Over the history of corporate computing, specialization
occurred, and a distinct data profession emerged along with growth of corporate
data processing. Data processing refers to the process of collecting and manipu-

1The Internet of Things (IoT) is a system of interrelated computing devices, mechanical and
digital machines, objects, animals or people that are provided with unique identifiers (UIDs)
and the ability to transfer data over a network without requiring human-to-human or human-
to-computer interaction. In other words, IoT is composed of connected “smart” devices that
interact with each other and us while collecting all kinds of data. The number of these devices
is estimated from 2 billion devices in 2006 to a projected 200 billion by 2020.

1

1 INTRODUCTION

lating raw data to yield useful information. In technical terms it is the process
of converting raw data to machine-readable form and its subsequent processing
such as updating, rearranging, or printing by a computer.

Data processing has numerous applications in many sectors, such as health-
care, customer oriented service (Netflix, Amazon, e.t.c), telecommunication, mar-
keting, commerce, security and many others. As a result, data is considered ex-
tremely valuable and nowadays is one of the most important assets a company
has. With the rise of the data economy, companies find enormous value in collect-
ing, sharing and using data. Companies such as Google, Facebook, and Amazon
have all built empires atop the data economy. However, the usage of data from
others aside their owner, such as the aforementioned companies, raises significant
privacy concerns and risks accidental privacy breaches with serious consequences
for both data owners and analysts.

Privacy is a fundamental right, essential to autonomy and the protection of
human dignity, serving as the foundation upon which many other human rights
are built. As a consequence, the right to privacy is articulated in all of the major
international and regional human rights instruments (laws, degrees, agreements
e.t.c.). There are many categories of privacy such as personal and defensive pri-
vacy. The type of privacy that will concern us most in the current study, though,
is known as information or data privacy. Information privacy is the relationship
between the collection and dissemination of data, technology, the public expecta-
tion of privacy, legal and political issues surrounding them (26, 6). The challenge
of data privacy is to use data while protecting an individual’s privacy preferences
and their personally identifiable information. The fields of computer security,
data security, and information security design and use software, hardware, and
human resources to address this issue.

When one hears the term “data privacy”, the term “cryptography” will im-
mediately come to mind. Cryptography is indeed an indispensable tool used to
protect information in computing systems. It is used everywhere and by bil-
lions of people worldwide on a daily basis. However, although cryptography is
extremely useful and has a variety of applications, cryptography is also highly
brittle. The most secure cryptographic system can be rendered completely inse-
cure by a single specification or programming error. No amount of unit testing
will uncover a security vulnerability in a cryptosystem. Instead, to argue that
a cryptosystem is secure, we rely on mathematical modeling and proofs to show
that a particular system satisfies the security properties attributed to it. We often

2

1 INTRODUCTION

need to introduce certain plausible assumptions to push our security arguments
through. That being said, we have to distinguish between security and privacy.
Unfortunately, the fact that our data are securely stored today does not mean
that our privacy is protected; neither today nor in the future.

The problem of privacy-preserving data analysis has a long history spanning
multiple disciplines. As electronic data about individuals becomes increasingly
detailed, and as technology enables ever more powerful collection and curation
of these data, the need increases for a robust, meaningful, and mathematically
rigorous definition of privacy, together with a computationally rich class of algo-
rithms that satisfy this definition (Differential Privacy (DP), that we will work
with, is one such a definition).

The protection of privacy is a complicated and arduous task, especially when
it comes to information. Experience has repeatedly shown that when owners of
sensitive datasets release derived data, they often reveal more information than
intended. Even careful efforts to protect privacy often prove inadequate. Differ-
ential Privacy techniques address these problems by only collecting randomized
answers from each user, with guarantees of plausible deniability (see Chapter 2),
while maintaining the aggregator’s ability to build accurate models and predictors
by analyzing large amounts of such randomized data. As a result, Differential
Privacy is rapidly becoming a golden standard for privacy research. In this study,
we attempt to combine the concept of Differential Privacy with data generation
techniques, in order to produce synthetic private data that can be used in place
of real data.

1.2 Shortcomings of Privacy-Preserving Data Analysis

The effort required for achieving privacy is mostly due to the fact that data cannot
be fully anonymized and remain useful. Generally speaking, the richer the data,
the more interesting and useful it is. On the contrary, achieving more privacy for
the data decreases their usefulness and occasionally requires more computational
power and complicated algorithms to accomplish it. Consequently, there is a
constant trade-off between data privacy, data richness and computational power.
Therefore, we need to make a choice depending on the data in our disposal, the
applications we need it for and the privacy budget we have available. Originally,
there was the idea of “anonymization” and “removal of personally identifiable in-
formation,” where the hope is that portions of the data records can be suppressed
and the remainder published and used for analysis.

3

1 INTRODUCTION

Figure 1: From personal to ’anonymous’ data

In Figure 1, we simply removed the attributes that link the data to a specific
person, in other words, the person’s name. However, in most cases, this pro-
cess does not suffice to provide data privacy, because the individuals included in
the dataset are still vulnerable to a number of data-breaching attacks. The re-
identification of anonymized records not only reveals membership in the data set,
but it may also be that the record contains compromising information that, were
it tied to an individual, could cause harm. For example, a collection of medical
encounter records from a specific urgent care center on a given date may list only
a small number of distinct complaints or diagnoses. The additional information
that a person visited the facility on the date in question gives a fairly narrow
range of possible diagnoses for the person’s condition. The fact that it may not
be possible to match a specific record to the individual provides him with almost
no privacy protection. Some of the most common data-breaching attacks are:

1. Linkage attacks: The richness of the data enables “naming” an individual
by a sometimes surprising collection of fields, or attributes, such as the
combination of zip code, date of birth, and sex, or even the names of three
movies and the approximate dates on which an individual watched these
movies. This “naming” capability can be used in a linkage attack to match
“anonymized” records with non-anonymized records in a different dataset.
So in addition to this removal, we can add noise drawn from a distribution
(e.g Gauss or Laplace) to them, so as to avoid linkage attacks, but still be
able reach useful conclusions using them. Methods such as DP neutralize
linkage attacks.

2. Differencing attacks: Since we aim to protect the privacy of individuals,
questions about specific individuals cannot be safely answered with accu-
racy. Forcing queries to be over large sets is not a real solution either, as
shown by the following attack: Suppose the adversary has the following
auxiliary information; “Mr. X is in a certain database”. And the attacks
receive the answers to the two following queries:

• “How many people in the database have the Y trait?”

4

1 INTRODUCTION

• “How many people, not named X, in the database have the Y trait?”

Those queries are allowed by the database administrator, because they are
over a large dataset. It is obvious that the two answers indirectly yield the
sickle cell status of Mr. X, thus violating that person’s privacy.

In response to the aforementioned attacks, one might be tempted to audit the
sequence of queries and responses, with the goal of interdicting any response if,
in light of the history, answering the current query would compromise privacy.
For example, the auditor may be on the lookout for pairs of queries that would
constitute a differencing attack. However, query auditing has problems of its
own:

• It is possible that the very refusal to answer a query may reveal sensitive
information to an adversary.

• Query auditing can be computationally infeasible; indeed if the query lan-
guage is sufficiently rich there may not even exist an algorithmic procedure
for deciding if a pair of queries constitutes an attack.

Thus the process is prone to serious errors, that make it impractical for im-
plementing privacy.

Finally, in some cases a particular technique may in fact provide privacy
protection for “typical” members of a data set, or more generally, “most” members.
In such cases, one often hears the argument that the technique is adequate, as
it compromises the privacy of “just a few” participants. Besides the fact that
outliers may be precisely those people for whom privacy is most important, the
choice of whom to protect creates social and even moral problems, because it
discriminates the individuals. That differentiation may cause a great deal of
dissent among the individuals and the ones responsible for ensuring privacy. A
“just a few” privacy can be achieved by randomly selecting a subset of samples
and releasing them in their entirety. The random choice of rows ensures that
people from every social group will be protected but it is still a problem for the
individuals whose information is revealed. This is especially true in cases where
an individual is included in multiple databases, where the “just a few” method
is implemented, for the individual is easily made vulnerable to linkage attacks.
Differential Privacy provides an alternative when the “just a few” philosophy is
rejected.

5

1 INTRODUCTION

1.3 What is Differential Privacy?

So after all this talk about Differential Privacy, what is it? “Differential Privacy”
describes a promise, made by a data holder, or curator, to a data subject: “You
will not be affected, adversely or otherwise, by allowing your data to be used in
any study or analysis, no matter what other studies, data sets, or information
sources, are available.” At their best, differentially private database mechanisms
can make confidential data widely available for accurate data analysis, without
resorting to data clean rooms, data usage agreements, data protection plans, or
restricted views. Nonetheless, data utility will eventually be consumed: the Fun-
damental Law of Information Recovery states that overly accurate answers to too
many questions will destroy privacy in a spectacular way (1,). In other words,
too many queries of a possible adversary on a database inevitably grants infor-
mation that compromises privacy. So meaningful privacy guarantees come at a
price. The goal of algorithmic research on differential privacy is to postpone this
inevitability as long as possible.

Differential Privacy addresses the paradox of learning nothing about an indi-
vidual while learning useful information about a population. A medical database
may teach us that smoking causes cancer, affecting an insurance company’s view
of a smoker’s long-term medical costs. Has the smoker been harmed by the anal-
ysis? Perhaps he has. For instance, his insurance premiums may rise, if the
insurer knows he smokes. But he may also be helped: learning of his health risks,
he enters a smoking cessation program. Has the smoker’s privacy been compro-
mised? It has since more is known about him after the study than was known
before, but was his information “leaked”? Differential Privacy will take the view
that it was not, with the rationale that the impact on the smoker is the same
independent of whether or not he was in the study. It is the conclusions reached
in the study that affect the smoker, not his presence or absence in the data set.
Through the medical database, one reaches the conclusion that smoking causes
cancer, but should not be able to tell whether a specific individual is included
in the database or that he smokes or has cancer. This kind of privacy ensures
that the same conclusions, will be reached, independent of whether any individual
opts into or opts out of the data set. Specifically, it ensures that any sequence of
outputs (responses to queries) is “essentially” equally likely to occur, independent
of the presence or absence of any individual. The term “essentially” is captured
by a parameter, which we will call ε. A smaller ε will yield better privacy (but
less accurate responses). We will speak of the parameter in more detail in the
next chapter.

6

1 INTRODUCTION

Last but not least, DP is a definition, not an algorithm. That means it
informs one of the conditions that must be fulfilled in order to achieve DP for
their data, but gives no instructions on how to achieve it. As a result, for a given
computational task T and a given value of ε there will be many differentially
private algorithms for achieving T in an ε-differentially private manner. Some
will have better accuracy than others. When ε is small, finding a highly accurate
ε-differentially private algorithm for T can be difficult, as much as finding a nu-
merically stable algorithm for a specific computational task can require effort. We
devote an entire chapter to Differential Privacy, which constitutes an important
portion of the current study.

In conclusion, Differential Privacy promises:

• Protection against arbitrary risks

• Automatic neutralization of linkage attacks, including all those at-
tempted with all past, present, and future datasets and other forms and
sources of auxiliary information.

• Quantification of privacy loss: Differential Privacy is not a binary con-
cept, and has a measure of privacy loss. This permits comparisons among
different techniques.

• Composition: Perhaps most the most important characteristic of DP, the
quantification of loss also permits the analysis and control of cumulative
privacy loss over multiple computations. Understanding the behavior of
differentially private mechanisms under composition enables the design and
analysis of complex differentially private algorithms from simpler differen-
tially private building blocks.

• Group Privacy: Differential privacy permits the analysis and control of
privacy loss incurred by groups, such as families.

• Closure Under Post-Processing: Differential Privacy is immune to post-
processing: A data analyst, without additional knowledge about the private
database, cannot increase privacy loss, no matter what auxiliary informa-
tion is available.

1.4 What Differential Privacy does not promise

However not everything is as perfect as we would wish it to be. While Differential
Privacy is an extremely strong guarantee, it does not promise unconditional free-

7

1 INTRODUCTION

dom from harm. Nor does it create privacy where none previously exists. More
generally, DP does not guarantee that what one believes to be one’s secrets will
remain secret. It merely ensures that one’s participation in a survey will not in
itself be disclosed, nor will participation lead to disclosure of any specifics that
one has contributed to the survey. It is still very possible that conclusions drawn
from the survey may reflect statistical information about an individual.

1.5 Implementing Differential Privacy with Machine Learn-

ing

The majority of the current thesis is concerned with combining the imple-
mentation of Differential Privacy with Machine Learning methods, a subset of
Artificial Intelligence, that has received a lot of attention in the recent years and
more importantly, it still does! The two methods that will concern us are the
Bayesian and the Neural networks.

1.5.1 Bayesian Networks

Bayesian networks are graphical structures for representing the probabilistic re-
lationships among a large number of variables and doing probabilistic inference
with those variables. During the 1980’s, a good deal of related research was done
on developing Bayesian networks, algorithms for performing inference with them
and applications that used them. By exploiting conditional independencies en-
tailed by influence chains, we are able to represent a large instance in a Bayesian
network using little space, and we are often able to perform probabilistic inference
among the features in an acceptable amount of time. In addition, the graphical
nature of Bayesian networks gives us a much better intuitive grasp of the rela-
tionships among the features of a dataset.

The first and main objective of the current thesis will be to implement and
experiment with algorithms that learn Bayesian Networks from real data in a
differentiallly private manner and then use them in order to construct a synthetic
dataset that a data analyst can freely use for his own purposes without privacy
infringements and without the need to access the original data.

1.5.2 Neural Networks

Recent advances in Deep Learning methods (a subset of Machine Learning that
uses large neural networks) and the explosion of information collection across
a variety of electronic platforms based on artificial neural networks have led to

8

1 INTRODUCTION

breakthroughs in long-standing AI tasks such as speech, image, and text recogni-
tion, language translation, etc. Companies such as Google, Facebook, and Apple
take advantage of the massive amounts of training data collected from their users
and the vast computational power of GPU farms to deploy deep learning on a
large scale. The unprecedented accuracy of the resulting models allows them to
be used as the foundation of many new services and applications, including ac-
curate speech recognition and image recognition that outperforms humans.

The second objective of this thesis will be to implement Differential Private
Generative Adversarial Networks (DPGANs), artificial neural networks that pro-
duce private synthetic data using real data.

1.6 Thesis Organization & Contributions

In this section we jointly outline the organization of this thesis and its key con-
tributions:

• Chapter 2: We present the notion of Differential Privacy. We also enu-
merate the basic definitions, theorems, and the most common mechanisms
that are used in achieving Differential Privacy for our data.

• Chapter 3: We will present the definition of Bayesian Networks and the
algorithms that we will use to generate private synthetic data using them.

• Chapter 4: We make a short introduction to ANNs and Deep Learning
and we explain how the GANs operate.

• Chapter 5: We will experiment with DPGANs, neural networks capable
of generating synthetic image data that do not violate the privacy of the
original dataset.

9

2 DIFFERENTIAL PRIVACY

2 Differential Privacy

2.1 The model of computation

2.1.1 Centralized model

In the centralized model, we assume the existence of a trusted and trustwor-
thy curator (administrator) who holds the data of individuals in a database
D, typically comprised of some number n of rows. Each row contains the data
of a single individual and the privacy goal is to simultaneously protect every in-
dividual row while permitting statistical analysis of the database as a whole. In
the non-interactive, or offline, model the curator produces some kind of object,
such as a “synthetic database”.

Definition 2.1. (Synthetic Database) A synthetic database is a multiset drawn
from the universe X of possible database rows.

After this release the curator plays no further role and the original data may
be destroyed. The interactive, or online, model permits the data analyst to ask
queries 1 adaptively, deciding which query to pose next based on the observed
responses to previous queries.

2.1.2 Local model

However, the model that we interests us is the local model. In the centralized
model of data privacy, we assume the existence of a trusted administrator but
what if there is no trusted database administrator? Even if there is a suitable
trusted party, there are many reasons not to want private data aggregated by
some third party. The very existence of an aggregate database of private infor-
mation raises the possibility that at some future time, it will come into the hands
of an untrusted party, either maliciously (via data theft), or as a natural result
of organizational succession. As a result, individuals may be reluctant to share
private information with the central data curator. A superior model (from the
perspective of the owners of private data) would be a local model, in which agents
could (randomly) answer questions in a differentially private manner about their
own data, without ever sharing it with anyone else. The model we described
applies, for instance, in biomedical data analysis, and constitutes a major limi-
tation in biomedical research. Hospitals and other trustworthy entities maintain
the clinical records of individuals, but are unable to share and accurately analyze
them, due to the risk of privacy breaches. In this model, users randomly perturb
their own inputs to provide plausible deniability of their data without the need

1A query is a function to be applied to a database

10

2 DIFFERENTIAL PRIVACY

for a trusted party using an instance of a DP algorithm independently but col-
laboratively with the other users.

The local privacy model was first introduced in the context of learning. The
local privacy model formalizes randomized response (see next section): there is
no central database of private data. Instead, each individual maintains possession
of their own data element (a database of size 1), and answers questions about
it only in a differentially private manner. Formally, the database x ∈ N |X| is
a collection of n elements from some domain X and each xi ∈ x is held by an
individual. This model has been adopted recently by several major technology
organizations, including Google, Apple and Microsoft. This model was first sug-
gested by Evfimievski et al (28, 8) and formalized by Kasiviswanathan et al. (19,
9)

2.2 Randomized Response

Differential privacy will provide privacy by process; in particular it will intro-
duce randomness. An early example of privacy by randomized process is random-
ized response, a technique developed in the social sciences to collect statistical
information about embarrassing or illegal behavior, captured by having a prop-
erty P. Study participants are told to report whether or not they have property
P as follows:

1. Flip a coin.

2. If tails, then respond truthfully.

3. If heads, then flip a second coin and respond “Yes” if heads and “No” if tails.

“Privacy” comes from the plausible deniability of any outcome; in particular,
if having property P corresponds to engaging in illegal behavior, even a “Yes”
answer is not incriminating, since this answer occurs with probability at least 1/4
whether or not the respondent actually has property P . Accuracy comes from
an understanding of the noise generation procedure (the introduction of spurious
“Yes” and “No” answers from the randomization): The expected number of “Yes”

answers is
1

4
times the number of participants who do not have property P plus

3

4
the number having property P. Thus, if p is the true fraction of participants

having property P, the expected number of “Yes” answers is (
1

4
)(1 - p)+ (

3

4
)p =

(
1

4
) +

p

2
. Thus, we can estimate p as twice the fraction answering “Yes” minus

11

2 DIFFERENTIAL PRIVACY

1

2
, that is, 2(

1

4
+
p

2
) -

1

2
. Randomized response was first proposed by Warner in

1965. (27, 7)

2.3 Basic Terms

In this section, we will introduce some necessary definitions, so as to be able to
understand the concept of Differential Privacy.

Definition 2.2. Given a discrete set B, the probability simplex over B, denoted
(B) is defined to be:

∆(B) =

{
x ∈ <|B| : xi ≥ 0 for all i and

|B|∑
i=1

xi = 1

}

Definition 2.3. A randomized algorithm M with domain A and discrete range B
is associated with a mapping M : A → ∆(B). On input a ∈ A the algorithm M
outputs M(a) = b with probability (M(a))b for each b ∈ B. The probability space
is over the coin flips of the algorithm M.

We will think of databases x as being collections of records from a universe X.
It will often be convenient to represent databases by their histograms: x ∈ N|X|,
in which each entry xi represents the number of elements in the database x of
type i ∈ X.

Definition 2.4. The `1 norm of a database x is denoted ||x||1 and is defined to
be :

||x||1 =

|X|∑
i=1

|xi|

The `1 distance between two databases x and y is ||x− y||1 as well a measure
of how many records differ between x and y and ||x||1 is a measure of the size of
a database x (i.e. the number of records it contains).

Using the above definition we define the `1 sensitivity between two databases
x and y that differ in only one element (||x− y||1 = 1).

Definition 2.5. The `1 sensitivity of a function f : N|X| → <k is :

∆f = max
x,y∈ N|X|

||f(x)− f(y)||1

12

2 DIFFERENTIAL PRIVACY

The `1 sensitivity of a function f captures the magnitude by which a single
individual’s data can change the function f in the worst case, and therefore,
intuitively, the uncertainty in the response that we must introduce in order to
hide the participation of a single individual.

2.4 Defining Differential Privacy

Having presented the necessary definitions, we are finally ready to define differ-
ential privacy:

Definition 2.6. A randomized algorithm M with domain N|X| is (ε, δ)-differentially
private if and only if for all S ⊆ Range(M) and for all x, y ∈ N|X| such that
||x− y||1 ≤ 1:

Pr(M(x) ∈ S) ≤ exp(e) ∗ Pr(M(y) ∈ S) + δ

where the probability space is over the coin ips of the mechanism M. If δ = 0,
we say that M is ε-differentially private.

As we mentioned before, we are mostly interested in the local model of data
privacy (Local Differential Privacy).

Definition 2.7. A randomized algorithm M satisfies ε-local differential privacy,
where ε ≥ 0 if and only if for all S ⊆ Range(M) and for any input x, y, we have:

Pr(M(x) ∈ S) ≤ exp(e) ∗ Pr(M(y) ∈ S)

Local Differential Privacy (LDP) has a stronger privacy model than simple
DP, but it entails greater noise.

2.4.1 Parameter ε

Since we desire privacy for our data, we want the randomized algorithm M to
give similar outputs when implemented to the two databases x and y, so an adver-
sary cannot tell which was given as an input to the algorithm. In other words, we
wish for the two probabilities (Pr(M(x) ∈ S), P r(M(y) ∈ S)) to have similar or
even identical values, if possible. For that to occur, we need ε→ 0 (exp(ε)→ 1)

and δ → 0. A small ε (≤ 1.0) means that the difference of algorithm’s output
probabilities using x and y at S is small, which indicates high perturbations of
ground truth outputs (great amount of noise) and hence high privacy, and vice
versa (4,).

13

2 DIFFERENTIAL PRIVACY

It is worth discussing the meaning of the ε parameter when applied to real
data. If an individual’s data is used in a differentially private computation, the
probability of any given result changes by at most a factor of exp(ε), where ε
is a parameter controlling the trade-off between privacy and accuracy (6,). A
small ε means higher privacy, but it also means that the utility of the data sig-
nificantly decreases. In addition to that, more computational power and complex
algorithms are required to achieve said privacy.

That is due to another important consideration: ε controls how much noise
is needed to protect privacy, so it has a direct impact on accuracy. The noise
protects the membership of a data point in the dataset. For example, when
conducting a clinical experiment, sometimes a person does not want the observer
to know that he or she is involved in the experiment. This is due to the fact
that observer may link the test result to the appearance/disappearance of certain
person and harm the interest of that person. A proper membership protection
would ensure that replacing this person with another one will not affect the result
too much. This property holds only if the algorithm itself is randomized, i.e. the
output is associated with a distribution. And this distribution will not change too
much if certain data point is perturbed or even removed. This exactly what the
differential privacy tries to achieve. We speak of this further, when we analyze
the mathematical mechanisms that we utilize for differential privacy.

Figure 2: An simple example meant to illustrate the trade-off between privacy
and accuracy for small -> high ε values (7,)

Curiously, despite the importance of the parameter, experimental evaluations
of differential privacy, where a concrete choice of ε is required, often just pick a
value (ranging from 0.01 to 7) with little justification. It is the central parameter
controlling strength of the privacy guarantee, and hence the number of queries
that can be answered privately as well as the achievable accuracy. But ε is also a
rather abstract quantity, and it is not clear how to choose an appropriate value
in a given situation. A similar concern applies to a second parameter δ in (ε, δ)-
differential privacy, a standard generalization of differential privacy (6,).

14

2 DIFFERENTIAL PRIVACY

2.4.2 Parameter δ

As is the case with the ε parameter, we desire a small value of delta to achieve
maximum privacy and preferably we want δ = 0. Typically we are interested
in values of δ that are less than the inverse of any polynomial in the size of the

database. In particular, values of δ on the order of
1

||x||1
are very dangerous:

they permit “pre-serving privacy” by publishing the complete records of a small
number of database participants — precisely the “just a few” philosophy discussed
in Chapter 1.

Even when δ is negligible, however, there are theoretical distinctions between
(ε, 0) and (ε, δ)-differential privacy. Chief among these is what amounts to a
switch of quantification order. (ε, 0)-differential privacy ensures that, for every
run of the mechanism M(x), the output observed is (almost) equally likely to
be observed on every neighboring database, simultaneously. In contrast (ε, δ)-
differential privacy says that for every pair of neighboring databases x, y, it is
extremely unlikely that, ex post facto 1 the observed value M(x) will be much
more or much less likely to be generated when the database is x than when the
database is y.

The non-private case is given by ε =∞, where δ measures the violation of the
“pure” differential privacy. That is, there exists a small output range associated
with probability δ such that for some fixed point s in this area, no matter what
the value of ε is, one can always find a pair of datasets x and y, so that the
inequality of the definition holds.

During this study, we will mostly ignore the δ parameter and consider it equal
to 0.

2.4.3 Privacy Loss

In this section, we will introduce an important quantity, which allows us to
quantify how private our data is. Given an output ξ ≈ M(x) it may be possible
to find a database y such that ξ is much more likely to be produced on y than it
is when the database is x. That is, the mass of ξ in the distribution M(y) may
be substantially larger than its mass in the distribution M(x).

1An ex post facto law is a law that retroactively changes the legal consequences (or status)
of actions that were committed, or relationships that existed, before the enactment of the law.

15

2 DIFFERENTIAL PRIVACY

L(ξ)
M(x)=M(y) = ln

(
Pr(M(x) = ξ)

Pr(M(y) = ξ)

)
We refer to it as the privacy loss incurred by observing ξ. This loss might

be positive (when an event is more likely under x than under y) or it might be
negative (when an event is more likely under y than under x).

2.5 Useful probabilistic tools

In this section, we will introduce the mechanisms that allow us to implement
render our data differentially private.

Definition 2.8. A privacy mechanism, or simply a mechanism, is an algorithm
that takes as input a database, a universe X of data types (the set of all possible
database rows), random bits, and, optionally, a set of queries and produces an
output string.

The hope is that the output string can be decoded to produce relatively ac-
curate answers to the queries.

2.5.1 Laplace Mechanism

In this section, we will introduce one of the most commonly used mechanisms for
adding noise to our data, the Laplace Mechanism, which naturally lends itself to
differential privacy. First, we should introduce the Laplace Distribution:

Definition 2.9. The Laplace Distribution (centered at 0) with scale b is the
distribution with probability density function:

Lap(x|b) =
1

2b
∗ exp(−|x|

b
)

The variance of this distribution is σ2 = 2b. The Laplace distribution is a
symmetric version of the exponential distribution.

Figure 3: Laplace Probability
Density Function (8,)

Figure 4: Laplace Cumulative
Density Function (8,)

16

2 DIFFERENTIAL PRIVACY

We will now define the Laplace Mechanism. As its name suggests, the Laplace
mechanism will simply compute f, and perturb each coordinate with noise drawn
from the Laplace distribution. The scale of the noise will be calibrated to the
sensitivity of f (divided by ε).

Definition 2.10. Given any function f : N|X| → <k, the Laplace mechanism is
defined as

ML(x, f(), ε) = f(x) + (Y1, ..., Yk)

where Yi are i.i.d. random variables drawn from Lap(∆f/ε)

Theorem 2.1. The Laplace mechanism preserves (ε, 0)-differential privacy

Proof is in (1,), page 32.

An alternative is the Gaussian Mechanism, which operates similarly to the
Laplace Mechanism. Next, we will present some Laplace Mechanism applications
on certain types of queries (1,):

Counting Queries: Counting queries are queries of the form “How many ele-
ments in the database satisfy Property P ?” We will return to these queries again
and again, sometimes in this pure form, sometimes in fractional form (“What frac-
tion of the elements in the databases...?”), sometimes with weights (linear queries),
and sometimes in slightly more complex forms (e.g., apply f : N|X| → [0, 1] to
each element in the database and sum the results). Counting is an extremely pow-
erful primitive. It captures everything learnable in the statistical queries learning
model, as well as many standard data mining tasks and basic statistics. Since the
sensitivity of a counting query is 1 (the addition or deletion of a single individual
can change a count by at most 1), it is an immediate consequence of Theorem
2.1 that (ε, 0)-differential privacy can be achieved for counting queries by the ad-
dition of noise scaled to 1/ε, that is, by adding noise drawn from Lap(1/ε). The
expected distortion, or error, is 1/ε, independent of the size of the database.

Histogram Queries: In the special (but common) case in which the queries
are structurally disjoint we can do much better — we don’t necessarily have to let
the noise scale with the number of queries. An example is the histogram query.
In this type of query the universe N|X| is partitioned into cells, and the query
asks how many database elements lie in each of the cells. Because the cells are
disjoint, the addition or removal of a single database element can affect the count
in exactly one cell, and the difference to that cell is bounded by 1, so histogram
queries have sensitivity 1 and can be answered by adding independent draws from

17

2 DIFFERENTIAL PRIVACY

Lap(1/ε) to the true count in each cell.

An example of a real-world application for the Laplace Mechanism:

Most Common Medical Condition: Suppose we wish to know which con-
dition is (approximately) the most common in the medical histories of a set of
respondents, so the set of questions is, for each condition under consideration,
whether the individual has ever received a diagnosis of this condition. Since in-
dividuals can experience many conditions, the sensitivity of this set of questions
can be high. Nonetheless, as we next describe, this task can be addressed using
addition of Lap(1/ε) noise to each of the counts (note the small scale of the noise,
which is independent of the total number of conditions). Crucially, the m noisy
counts themselves will not be released (although the “winning” count can be re-
leased at no extra privacy cost).

An algorithm that can solve the above problem is known as Report Noisy
Max. We wish to determine which of m counting queries has the highest value.
So the algorithm adds independently generated Laplace noise Lap(1/ε) to each
count and return the index of the largest noisy count (we ignore the possibility
of a tie). Note the “information minimization” principle at work in the Report
Noisy Max algorithm: rather than releasing all the noisy counts and allowing
the analyst to find the max and its index, only the index corresponding to the
maximum is made public. Since the data of an individual can affect all counts,
the vector of counts has high `1-sensitivity, specifically, ∆f = m, and much more
noise would be needed if we wanted to release all of the counts using the Laplace
mechanism. The Report Noisy Max algorithm is (ε,0)-differentially private.

2.5.2 Exponential Mechanism

The utility 1 of a dataset is directly related to the noise values generated; that is,
the popularity of the name or condition is appropriately measured on the same
scale and in the same units as the magnitude of the noise.

The exponential mechanism was designed for situations in which we wish to
choose the “best” response, but adding noise directly to the computed quantity

1In any game (e.g. a contest or an auction), utility represents the motivations of players. A
utility function for a given player assigns a number for every possible outcome of the game with
the property that a higher number implies that the outcome is more preferred. utility functions
may either ordinal in which case only the relative rankings are important, but no quantity is
actually being measured, or cardinal, which are important for games involving mixed strategies
(9,)

18

2 DIFFERENTIAL PRIVACY

can completely destroy its value, such as setting a price in an auction, where the
goal is to maximize revenue, and adding a small amount of positive noise to the
optimal price (in order to protect the privacy of a bid) could dramatically reduce
the resulting revenue.

Example 2.1. Suppose we have an abundant supply of pumpkins and four bid-
ders: A, F, I, K, where A, F, I each bid $1.00 and K bids $3.01. What is the
optimal price? At $3.01 the revenue is $3.01, at $3.00 and at $1.00 the revenue
is $3.00, but at $3.02 the revenue is zero!

The exponential mechanism is the natural building block for answering queries
with arbitrary utilities (and arbitrary non-numeric range), while preserving dif-
ferential privacy. Given some arbitrary range R, the exponential mechanism is
defined with respect to some utility function u : N|X| x R → <, which maps
database/output pairs R to utility scores. Intuitively, for a fixed database x, the
user prefers that the mechanism outputs some element of R with the maximum
possible utility score. Note that when we talk about the sensitivity of the utility
score u : N|X| x R → <, we care only about the sensitivity of u with respect to
its database argument; it can be arbitrarily sensitive in its range argument:

∆u = max
r∈<

max
x,y:||x−y||1≤1

|u(x, r)− u(y, r)|

The intuition behind the exponential mechanism is to output each possible
r ∈ R with probability proportional to exp (εu(x, r)/∆u) and so the privacy loss
is approximately:

ln(
exp(εu(x, r)/∆u

exp(εu(y, r)/∆u
) =

ε ∗ [u(x, r)− u(y, r)]

∆u
≤ ε

Definition 2.11. The exponential mechanism ME(x, u,R) selects and outputs an

element r ∈ R with probability proportional to exp (
εu(x, r)

2 ∗∆u
).

In contrast to the Laplace Mechanism which is for cases that we wish to cal-
culate numeric values and aggregates (e.g. Counting Queries), the exponential
mechanism is appropriate for cases, we wish to receive a discrete set of answers
which has some utility. For instance, if we want to find the maximum value of
an attribute (Also see Report Noisy Max). However, if we return the value in a
deterministic way, there is no privacy due to the fact that we expose the individ-
ual to which the maximum value corresponds. If we were to add (e.g. Laplacian)
noise to the value of the tuple, its utility will be altered in an undesirable way due
to the fact that the noise and the utility are in calculated with different numeric
units. So the Laplace Mechanism is not appropriate for such queries. As a con-
sequence, instead of returning the output with the maximum utility, we choose a

19

2 DIFFERENTIAL PRIVACY

random output using the exponential distribution. Each output has a probability
given by the distribution and determined by its utility. The greater the utility,
the greater the probability of choosing the output. By using this method, we
sample the outputs, add randomness to our samples while maintaining a great
probability of returning the output with the maximum utility. However, there is
still a large enough probability of not doing so, which is desirable and contributes
to the privacy we wish to achieve. As a result, we will almost always return
a result approximately close to the real one due to the nature of the exponen-
tial distribution. Using the exponential mechanism, we succeed in having both
privacy for our users and a sufficient enough accuracy for our queries, without
damaging the utility of the dataset.

The exponential mechanism can define a complex distribution over a large
arbitrary domain, and so it may not be possible to implement the exponential
mechanism efficiently when the range of u is superpolynomially large in the nat-
ural parameters of the problem.

Returning to the pumpkin example, utility for a price p on database x is simply
the profit obtained when the price is p and the demand curve is as described by
x. It is important that the range of potential prices is independent of the actual
bids. Otherwise there would exist a price with non-zero weight in one dataset
and zero weight in a neighboring set, violating differential privacy.

Theorem 2.2. The exponential mechanism preserves (ε,0)-differential privacy.

Proof is in (1,), page 38 - 39.

2.5.3 Composition Theorems

Now that we have several building blocks for designing differentially private algo-
rithms, it is important to understand how we can combine them to design more
sophisticated algorithms. In order to use these tools, we would like for the com-
bination of two differentially private algorithms to be differentially private itself.
Indeed, as we will see, this is the case. Of course the parameters ε and δ will
necessarily degrade — consider repeatedly computing the same statistic using the
Laplace mechanism, scaled to give ε-differential privacy each time. The average
of the answer given by each instance of the mechanism will eventually converge
to the true value of the statistic, and so we cannot avoid that the strength of our
privacy guarantee will degrade with repeated use. This is mathematically proven
using the following theorems which are known as the composition theorems.

20

2 DIFFERENTIAL PRIVACY

Theorem 2.3. Let M1 : N|X| → R1 be an ε1-differentially private algorithm
and let M2 : N|X| → R2 be an ε2-differentially private algorithm. Then their
combination, defined to be M1,2 : N|X| → R1 x R2 by the mapping: M1,2(x) =
(M1(x),M2(x)) is ε1 + ε2 differentially private.

Proof is in (1,), page 42.

Theorem 2.4. Let Mi : N|X| → Ri be an (εi,δi)-differentially private algo-
rithm for i ∈ [k]. Then if M[k] : N|X| →

∏k
i=1 Ri is defined to be M[k](x) =

(M1(x), ...,Mk(x)), then M[k] is (
∑k

i=1 εi,
∑k

i=1 δi) differentially private.

This theorem is a more general version of the previous one. In other words, if
we use an algorithm that is composed of two or more differentially private algo-
rithms, then we can safely state that the algorithm is also differentially private,
with its ε parameter equal to the sum of the ε parameters of the algorithms that
it is composed of. The same holds true for the δ parameter.

21

3 DP DATA GENERATION WITH PRIVBAYES

3 DP Data Generation with PrivBayes

3.1 Privacy-preserving data analysis with DP in the dis-

tributed model

In this section, we will present a number of methods to learn from data in a
private manner using a Machine Learning structure known as Bayesian Network.
Before we proceed though, it is necessary to clarify certain terms that we will
frequently encounter during this study.

First of all, we must speak of the differences between data owners, data hold-
ers and data analysts. Every data field in every database in the organization
should be owned by a data owner, who is in the authority to ultimately decide
on the access to, and usage of, the data. The data owner could be the original
producer of the data, one of its consumers, a third party or even the individuals
that the dataset refers to. The data owner should be able to fill in or update its
value which implies that the data owner has knowledge about the meaning of the
field and has access to the current correct value. A data holder (or custodian)
is an individual, a number of individuals or an organization that is entrusted
the possession of the data by its data owner. More often than not, the data
owner and the data holder are one and the same. A data analyst is someone who
collects, processes and performs statistical analyses of data. In the traditional
(non-local) differential privacy model that we analyzed in Chapter 2, it is assumed
that there exists one data holder, trusted by the data owners also known as the
administrator. This entity has direct access to the private dataset and analyzes
it, ensuring that any output produced by the analysis satisfies differential privacy.
Therefore, the data holder and the data analyst is a common (and trusted) entity.

However, our ultimate goal is to process the data in our disposal and receive
useful information from it, while minimizing the danger to the data owners’ pri-
vacy. This process is known as privacy-preserving data mining1. More specifically,
we are interested in making inferences about a population, without compromising
the privacy of the individuals (data owners) whose data are used. Given the fact
that in the real world applications is horizontally distributed among mutually
distrustful parties, we will employ a local model (also see Chapter 2) where we

1Data mining is the process of analyzing hidden patterns of data according to different per-
spectives for categorization into useful information, which is collected and assembled in common
areas, such as data warehouses, for efficient analysis, data mining algorithms, facilitating busi-
ness decision making and other information requirements to ultimately cut costs and increase
revenue. Data mining is also known as data discovery and knowledge discovery.

22

3 DP DATA GENERATION WITH PRIVBAYES

will work with a distributed database. In this model, the data owners/holders are
considered reliable with regards to their own data, but not to the data of other
holders. Also since the data owners often do not trust the entity that collects and
analyzes their data, there is no centralized trusted data administrator and there-
fore all data analysts are required to access the real data a minimum amount of
times and always in a private manner. As a result, the data analyst (untrusted)
will be considered a separate entity from the data holder(s) (trusted). In partic-
ular, each data holder collects its subset of the sensitive data from the data owners
and either responds to queries, or performs arbitrary analyses on them; critically,
the answers given must satisfy differential privacy (using the standard definition),
and the overall privacy budget consumed must meet the privacy requirements.
Then the analyst only gets to see these answers and, since differential privacy is
immune to post-processing, the owners’ privacy is preserved. Our approach will
be based on the PrivBayes algorithm by Jun Zhang et al (21, 1).

What we seek to accomplish using the PrivBayes algorithm is data publishing
with differential privacy. Each data holder constructs a model (e.g. a probabilis-
tic graphical model which in our case is a Bayesian Network) or synopsis (e.g. a
histogram) of its dataset, which it then publishes, or uses to generate and publish
a synthetic dataset. If the published model/synopsis/dataset satisfies differential
privacy, then any analysis performed on it will also guarantee differential privacy,
since differential privacy is immune to post-processing. The analyst collects all
models/synopses/datasets, merges them, and runs a centralized, non-private al-
gorithm on the merged result.

The main advantage of this approach is that it produces a general and task in-
dependent result that can be used for arbitrary analyses. Hence, a vast literature
has been developed on data publishing with differential privacy. An important
line of work is based on constructing and publishing differentially private syn-
opses of the input dataset. The first connection between differential privacy and
probabilistic inference is due to Williams et al. (20, 0); they apply probabilistic
inference to the noisy data and, taking into account that the perturbation process
is known, they attempt to estimate the parameters of the model that generated
the data.

We aim to find efficient methods that are more general compared to older
approaches in privacy-preserving data mining and that can be implemented on
both non-distributed and distributed data. To that end, we examine three ap-
proaches in learning a model (Bayesian Network) that approximates the (high-

23

3 DP DATA GENERATION WITH PRIVBAYES

dimensional) data distribution as a product of low-order marginal and conditional
distributions. This is accomplished by exploiting dependencies that exist between
the attributes of the data distribution. Our first approach is an exact approach,
in that it requires each data holder to share noisy versions of the algorithm’s suffi-
cient statistics. The other two approaches are based on heuristic techniques which
usually yield better performance. Finally, once we have the privacy-preserving
approximation of the data distribution in hand, we are able to analyze our data
without the need of accessing them again. In this study, we will focus on the
classification of labeled samples from public datasets.

3.2 Bayes’ Theorem

In probability theory and statistics, Bayes’ theorem (alternatively Bayes’ law or
Bayes’ rule) describes the probability of an event, based on prior knowledge of
conditions that might be related to the event. For example, if cancer is related to
age, then, using Bayes’ theorem, a person’s age can be used to more accurately
assess the probability that they have cancer this can be done without knowledge
of the person’s age. Probability is at the very core of a lot of data science algo-
rithms. In fact, the solutions to so many data science problems are probabilistic
in nature. The very fact that we’re still learning about it shows how influential his
work has been across centuries! Bayes’ Theorem enables us to work on complex
data science problems and is still taught at leading universities worldwide.

Bayes’ theorem is named after Reverend Thomas Bayes, a monk who lived
during the eighteenth century, who first used conditional probability to provide
an algorithm that uses evidence to calculate limits on an unknown parameter,
published as "An Essay towards solving a Problem in the Doctrine of Chances"
(1763). In what he called a scholium, Bayes extended his algorithm to any un-
known prior cause. Independently of Bayes, Pierre-Simon Laplace in 1774, and
later in his 1812 “Théorie analytique des probabilités” used conditional probability
to formulate the relation of an updated posterior probability from a prior prob-
ability, given evidence. Sir Harold Jeffreys put Bayes’s algorithm and Laplace’s
formulation on an axiomatic basis. Jeffreys wrote that Bayes’ theorem “is to the
theory of probability what the Pythagorean theorem is to geometry".

Theorem 3.1. (Total Probability Theorem) : Let A1,...,An be disjoint events
that form a partition of the sample space (each possible outcome is included in
exactly one of the events A1,...,An) and assume P(Ai) > 0 for all i. Then, for

24

3 DP DATA GENERATION WITH PRIVBAYES

any event B, we have :

P (B) = P (A1, B) + ...+ P (An, B) = P (A1) ∗ P (B|A1) + ...+ P (An) ∗ P (B|An)

Theorem 3.2. (Bayes’ Theorem) : Let A1,...,An be disjoint events that form
a partition of the sample space, and assume P(Ai) > 0 for all i. Then, for any
event B such that P(B) > 0, we have :

P (Ai|B) =
P (Ai) ∗ P (B|Ai)

P (B)
=

P (Ai) ∗ P (B|Ai)
P (A1) ∗ P (B|A1) + ...+ P (An) ∗ P (B|An)

One of the many applications of Bayes’ theorem is Bayesian inference, a partic-
ular approach to statistical inference. When applied, the probabilities involved in
Bayes’ theorem may have different probability interpretations. With the Bayesian
probability interpretation the theorem expresses how a degree of belief, expressed
as a probability, should rationally change to account for availability of related
evidence. Bayesian inference is fundamental to Bayesian statistics.

3.3 Bayesian Networks

3.3.1 Introduction

As aforementioned, we consider the attributes of a dataset to be random variables,
where dependencies exist between them. These dependencies represent a situation
where one feature of an entity has a direct influence on another feature of that
entity. An accurate example presenting the need for Bayesian Networks is as
follows: (18, 8)

Example 3.1. The presence or absence of a disease in a human being obviously
has a direct influence on whether a test for that disease turns out positive or nega-
tive. For decades, Bayes’ theorem has been used to perform probabilistic inference
in this situation. In this case, a simple application of the Bayes’s Theorem would
suffice to solve this problem. We would use that theorem to compute the condi-
tional probability of an individual having a disease when a test for the disease
came back positive. However, consider the situation where several features are
related through inference chains. For example, whether or not an individual has
a history of smoking has a direct influence both on whether or not that individual
has bronchitis and on whether or not that individual has lung cancer. In turn, the
presence or absence of each of these diseases has a direct influence on whether
or not the individual experiences fatigue. Also, the presence or absence of lung
cancer has a direct influence on whether or not a chest X-ray is positive. In this
situation, we would want to do probabilistic inference involving features that are

25

3 DP DATA GENERATION WITH PRIVBAYES

not related via a direct influence. We would want to determine, for example, the
conditional probabilities both of bronchitis and of lung cancer when it is known
an individual smokes, is fatigued, and has a positive chest X-ray. Yet bronchitis
has no direct influence (indeed no influence at all) on whether a chest X-ray is
positive. Therefore, these conditional probabilities cannot be computed using a
simple application of Bayes’ theorem. There is a straightforward algorithm for
computing them, but the probability values it requires are not ordinarily accessi-
ble. Moreover, the algorithm has exponential space and time complexity, which is
not acceptable.

Bayesian networks were developed to address these difficulties. By exploiting
conditional independencies entailed by influence chains, we are able to represent
a large instance in a Bayesian network using little space, and we are often able
to perform probabilistic inference among the features in an acceptable amount
of time. In addition, the graphical nature of Bayesian networks gives us a much
better intuitive grasp of the relationships among the features. The power of
Bayesian Networks is twofold. Besides the computational gain they offer, by
allowing us to approximate a high-dimensional distribution as a product of low-
order conditional and marginal distributions, Bayesian Networks are also highly
interpretable models, and can hence be used for knowledge discovery.

i Xi Πi

1 A ∅
2 B {A}
3 C {A}
4 D {A}
5 E {B,D}

Table 1: The attribute-parent pairs in N1

26

3 DP DATA GENERATION WITH PRIVBAYES

Figure 5: PrivBayes Algorithm with Distributed Data

27

3 DP DATA GENERATION WITH PRIVBAYES

Before we proceed to the definition of a Bayesian Network, we will present
the following fundamental concepts:

Definition 3.1. (Conditional Probability): The conditional probability of an
event B is the probability that the event will occur given the knowledge that an
event A has already occurred. This probability is written P(B|A), notation for the
probability of B given A. In the case where events A and B are independent (where
event A has no effect on the probability of event B), the conditional probability
of event B given event A is simply the probability of event B, that is P(B). From
this definition, the conditional probability P(B|A) is easily obtained by dividing
by P(A):

P (B|A) =
P (A,B)

P (A)
, P (A) 6= 0

Definition 3.2. (Marginal Probability Mass Function): For discrete ran-
dom variables, the marginal probability mass function can be written as P(X =
X) and it is obtained by:

P (X = x) =
∑
y

P (X = x, Y = y) =
∑
y

P (X = x|Y = y) ∗ P (Y = y)

This definition is an application of the Law of Total Probability 1

3.3.2 Definition

Figure 6: A simple Bayesian Network N1 over five attributes

1The law of total probability is the proposition that if {Bn : n = 1, 2, 3, . . .} is a finite or
countably infinite partition of a sample space (in other words, a set of pairwise disjoint events
whose union is the entire sample space) and each event Bn is measurable, then for any event
A of the same probability space: Pr(A) =

∑
n Pr(A∩Bn) or, alternatively Pr(A) =

∑
n Pr(A |

Bn) Pr(Bn).

28

3 DP DATA GENERATION WITH PRIVBAYES

Let A be the set of attributes on a dataset D and N be the size of A. A
Bayesian network on A is a way to compactly describe the (probability) distribu-
tion of the attributes in terms of other attributes. Formally, a Bayesian network
is a directed acyclic graph (DAG 1) that (i) represents each attribute in A as
a node, and (ii) models conditional independence among attributes in A using
directed edges. As an example, Figure 6 shows a Bayesian network over a set A
of five attributes: A, B, C, D, E. For any two attributes X, Y ∈ A, there exist
three possibilities for the relationship between X and Y :

1. Direct dependence: There is an edge between X and Y , say, from Y to
X. This indicates that for any tuple in D, its distribution on X is determined
(in part) by its value on Y . We define Y as a parent of X, and refer to the
set of all parents of X as its parent set. For example, in Figure 6, the edge
from B to E indicates that the distribution of E depends on B.

2. Weak conditional independence: There is a path (but no edge) between
Y and X. Assume without loss of generality that the path goes from Y to
X. Then, X and Y are conditionally independent given X’s parent set. For
instance, in Figure 6, there is a two-hop path from A to E, and the parent
set of E is B, D. This indicates that, given B and D of an individual, its E
and A are conditionally independent.

3. Strong conditional independence: There is no path between Y and
X. Then, X and Y are conditionally independent given any of X’s and Y’s
parent sets. There are no such attribute pairs in Figure 6.

Definition 3.3. (Bayesian Network): A Bayesian Network N over A is de-
fined as a set of d attribute-parent (AP) pairs, (X1,Π1), ..., (Xd,Πd), such that:

1. Each Xi is a unique attribute in A.

2. Each Πi is a subset of the attributes in A \{Xi}. We say that Πi is the
parent set of Xi in N .

3. For any 1 ≤ i < j ≤ d, we have Xi /∈ Πi , i.e., there is no edge from Xj to
Xi in N . This ensures that the network is acyclic, namely, it is a DAG.

1A Directed Acyclic Graph (DAG) is a type of graph in which it’s impossible to come back
to the same node by traversing the edges. ’Directed’ means that the edges of the graph only
move in one direction, where future edges are dependent on previous ones. ’Acyclic’ means that
it is impossible to start at one point of the graph and come back to it by following the edges.
Whereas a cycle comes back around to it’s original starting point like a circle, an acyclic graph
continues moving in a linear direction and never does circle back to the starting point.

29

3 DP DATA GENERATION WITH PRIVBAYES

Definition 3.4. (Degree of Bayesian Network): We define the degree of N
as the maximum size of any parent set Πi in N .

For example, Table 1 shows the AP pairs in the Bayesian network N1 in Fig-
ure 6: N1’s degree equals 2, since the parent set of any attribute in N1 has a size
at most two.

Let Pr[A] denote the full distribution of tuples in database D. The d AP
pairs in N essentially define a way to approximate Pr[A] with d conditional
distributions Pr[X1|Π1],...,Pr[Xd|Πd].In particular, under the assumption that any
Xi and any Xj /∈Πi are conditionally independent given Πi, we have

Pr[A] = Pr[X1, X2, ..., Xd] =>

Pr[A] = Pr[X1] ∗ Pr[X2|X1] ∗ Pr[X3|X1, X2].. ∗ Pr[Xd|X1, ..., Xd−1] =>

Pr[A] =
∏d

i=1 Pr[Xi|Πi]

Let PrN [A] be the above approximation of Pr[A] defined by the Bayesian
Network N . Intuitively, if N accurately captures the conditional independence
among the attributes in A, then PrN [A] would be a good approximation of Pr[A].
In addition, if the degree of N is small, then the computation of PrN [A] is
relatively simple as it requires only N low-dimensional distributions Pr[X1|Π1], ...
, Pr[Xd|Πd]. Low-degree Bayesian networks are the core of our solution to release
high-dimensional data.

3.4 Distributed Bayesian Network Learning with Differen-

tial Privacy

3.4.1 Introduction

We will now clarify some assumptions that we will make during the remainder of
this study:

• We assume that our distributed database consists of homogeneous records,
and each record consists of d attributes X1,...,Xd , from a set A. In statis-
tical machine learning, each attribute can be viewed as a random variable,
and, thus, a record x (also known as data point or a tuple to database
administrators) can be viewed as a realization of the random vector X =
[X1, ..., Xd]

T . All attributes are observed, so no hidden variables exist. A
(relatively small) number of missing values may exist for some attributes.
Some of the methods for dealing with such values are:

30

3 DP DATA GENERATION WITH PRIVBAYES

1. Encode missing values as -1: This works reasonably well for nu-
merical features that are predominantly positive in value, and for tree-
based models in general. This used to be a more common method
in the past when the out-of-the box machine learning libraries and
algorithms were not very adept at working with missing data.

2. Encode missing values as another level of a categorical vari-
able: This works with tree-based models and other models if the fea-
ture can be numerically transformed (one-hot encoding, frequency en-
coding, etc.).

3. Deletion of missing data: Here you simply remove all data points
from the dataset that contain missing values. In the case of a very large
dataset with very few missing values, this approach could potentially
work really well. However, if the missing values are in cases that are
also otherwise statistically distinct, this method may seriously skew the
predictive model for which this data is used. Another major problem
with this approach is that it will be unable to process any future data
that contains missing values. If your predictive model is designed for
production, this could create serious issues in deployment.

4. Replace missing values with the mean/median value of the
feature in which they occur: This works for numerical features.
The choice of median/mean is often related to the form of distribution
that the data has. For imbalanced data, the median may be more ap-
propriate, while for symmetrical and more normally distributed data,
the mean could be a better choice.

5. Run predictive models that impute the missing data: This
should be done in conjunction with some kind of cross-validation scheme
in order to avoid leakage. This can be very effective and can help with
the final model.

Since missing values are few, we will use the first method.

• We also assume that we deal with discrete data, so for every i ∈ {1, ..., d}, Xi

takes values from the discrete alphabet domain (Xi). However continuous
attributes do exist in the datasets that we will use, so we either treat them
as discrete attributes or we use a discretization technique of our choice. The
method we implement is to split the value range of each continuous attribute
into sub-intervals (bins). Then we change the value of the attribute to the
value corresponding to the bin it belongs to. By having discrete data only,
we are able to accurately estimate quantities like the mutual information

31

3 DP DATA GENERATION WITH PRIVBAYES

I, which is an essential metric for the algorithms that we will implement.
On the contrary, estimating such quantities for continuous data is a much
more resource-consuming problem.

• We also assume that these distributed datasets are non-overlapping, so each
data owner’s record is stored by exactly one data holder.

We next introduce some notation in the following table, that will allow us to
describe our model.

Notation Description Definition

d
Data dimension - number of attributes

per data point
-

A Set of all attributes A = {X1, ..., Xd}

Xi

i-th attribute of set A where
i ∈ {1, ...d}

-

X or XA

The random vector that consists of all
N attributes in A

-

x or xA
A realization of X (a data point or in
other words a tuple of the dataset)

-

A’ A subset of the attribute set A
A′ = {Xi,Xj,...} ⊆ A for some

j ∈ {1, ..., d} and j 6= i

XA′
The random vector that consists of all

attributes in A’
-

xA′

A realization of XA′ (a tuple that
consists of the values that the

attributes in A take in data point x.)
-

dA′

The Cartesian product of the domains
of the attributes in A’. This set

includes all possible tuples that can
exist using all the attributes in A’. We

consider this set ordered

dA′ = domain(Xi) x domain(Xj)
x ...

dA′ [k] Represents the k-th element in dA′
dA′ [k] = (xi, xj, ...) for some
k ∈ {1, ..., d} where d = |dA′ |

D The (centralized) dataset -

M
Number of data holders (degree of

distribution)
-

Dj Dataset of holder j (j ∈ {1, ...,M}) -
nj Size of dataset of holder j nj = |Dj|
n Size of total dataset n =

∑M
j=1 nj = |D|

32

3 DP DATA GENERATION WITH PRIVBAYES

cXA′ or cA′
The joint frequency distribution of the

attributes in A’
cA′ = [c1 ... cd]T

ck

The number of times the k-th element
of dA′ (dA′ [k]) is included in the

database D (COUNT)
ck =

∑
x∈D 1 ∗ f(X, k)

f(X, k)

It has a value of one if dA′ [k] is equal
to the tuple of D we currently examine

and zero if it is not

f(X, k) = 1 if XA′ == dA′ [k] or
else it is 0

pXA′ or pA′
The joint probability distribution of

the attributes in A’
pA′ = [p1 ... pd]T

pk

The probability of the k-th element of
dA′ (dA′ [k]) to be equal to the XA′

(tuple) we currently examine
pk = Pr(XA′ = dA′ [k])

p̂A′

The maximum likelihood (empirical)
estimate of pA′ is computed from cA′

using the classical definition of
probability

p̂A′ = 1
|D| ∗ cA′

A simple example where will we use some of the aforementioned notation:

Example 3.2. We seek to study the following database D :

Attr1 Attr2

1 0
0 1
1 1
1 0
1 1
0 0
0 1
1 0

where the set of attributes is : A = {Attr1,Attr2} and their realizations
{attr1, attr2} ∈ {0, 1} (binary attributes). Calculate the variables:

1. N (Data dimension)

2. M (Data holders)

3. n (Size of dataset)

4. dA (The Cartesian product of the domains of the attributes in A)

33

3 DP DATA GENERATION WITH PRIVBAYES

5. cA (The joint probability distribution of the attributes in A)

6. p̂A (The maximum likelihood estimate of joint probability distribution of the
attributes in A)

Solution:

1. We have 2 attributes, so the data dimension is N = 2

2. We have only one dataset and one data holder, so M = 1

3. We have 8 tuples, so the size of the total dataset is n = 8

4. We consider an arbitrarily ordered dA equal to {{0,0},{0,1},{1,0},{1,1}}.

5. The joint frequency distribution of the attributes cA is equal to [1, 2, 3, 2].

6. The maximum likelihood estimate of joint probability distribution of the at-
tributes p̂A is equal to [1/8, 2/8, 3/8, 2/8]

3.4.2 Learning Bayesian Networks from data

In real-world applications, we assume that data follows a distribution p over a
set of attributes, that can be encoded by a Bayesian Network. Sometimes the
Bayesian Network structure is known; for example, it may be given by an expert,
or it may be determined by the physical properties of the application. However,
our focus is on the case that the structure is unknown, and our objective is to find
both the structure and the parameters of the Bayesian Network that best fits our
dataset D. The process through which we learn a model from data is known as
Structure Learning.

There are many approaches to learning Bayesian Networks of unknown struc-
ture from data. The most common is a score-based approach where the Bayesian
Network learning problem is viewed as a model selection problem and is solved
using an optimization method. The first step in score-based Bayesian Network
learning is to assign each possible Bayesian Network B a score. A natural choice
for scoring function is the likelihood function L, which measures the probability
of observing the data in D (assuming that individual data points are i.i.d.), given
a model. In our case, the model is a Bayesian NetworkB = (G,Θ) (where G is the
graph of the Bayesian Network and Θ its conditional probability distributions1),
so, denoting by pB the distribution encoded by B, we conclude that the score of

1We denote the set of all conditional probability tables by : Θ = {Θ1, ...,Θd} where Θi =
Pr[Xi|Πi] ∀i ∈ {1, ..., N}

34

3 DP DATA GENERATION WITH PRIVBAYES

B is:

L(B,D) =
∏

x∈D pB(x) =
∏

x∈D
∏d

i=1 PrXi|Πi
[Xi,Πi] =

∏d
i=1

∏
x∈D Θi(xi, xΠi

)

which illustrates the decomposability of the global likelihood into local likeli-
hoods (one for each parameter Θi), based on the Bayesian Network structure. If
we instead use the logarithm of L as scoring function, it turns out that:

logL(B,D) = n ∗
(d∑

i=1

Î(Xi,Πi)−
d∑
i=1

Ĥ(Xi)

)
where Ĥ is the empirical entropy:

Ĥ(X) = −
∑

x∈dom(X)

Pr[X = x] ∗ log(Pr[X = x])

2

and Î is the mutual information between two variables:

Î(X,Π) =
∑

x∈dom(X)

∑
Π∈dom(Π) Pr[X = x,Π = π] ∗ log

(Pr[X=x,Π=π]
Pr[X=x]∗Pr[Π=π]

)
The mutual information metric has some very useful properties that will assist

us during the experimental evaluation of the algorithms that we will use. Some
of them are:

1. I(X,Y) ≥ 0

2. Mutual information is symmetric: I(X,Y) = I(Y,X)

3. Mutual information is additive for independent variables: I(X,W,Y,Z) =
I(X,Y) + I(W,Z).

4. I(X, Y, Z) ≥ I(X, Y)

The next step is to find the Bayesian Network structure G that achieves the
highest score. Noting that the only term in the log-likelihood score that depends
on G is the empirical mutual information, gives that:

maxB(logL(B,D)) = maxG maxΘ(logL(G,Θ,D)) = maxG(logL(G,Θ,D)) =>

maxB(logL(B,D)) = maxG

∑d
i=1 Î(Xi,Πi)

2The domain of a random variable X is a sample space (dom(X)), which is interpreted as
the set of possible outcomes of a random phenomenon. For example, in the case of a coin toss,
only two possible outcomes are considered, namely heads or tails.

35

3 DP DATA GENERATION WITH PRIVBAYES

which demonstrates that the structure G* that maximizes the log-likelihood
score is the one that has the maximum sum over all attributes, of the mutual
information between each attribute and its parents in G*, when the maximum
likelihood parameters Θ̂ are used for G*.

Solving the aforementioned optimization problem turns out to be hard in
general. Specifically, taking into account that our graph consists of d nodes
(since there are d attributes), there are O(22d) potential structures that form
our search space (super-exponential in the number of attributes). Consequently,
using brute-force methods is out of the question and therefore heuristic (local-
search) algorithms are employed in practice. Nevertheless, for the special case
that k = 1 (Bayesian Networks with degree 1), the well-known Chow-Liu
algorithm (23, 3) allows us to greedily find the optimal structure.

An important limitation of the likelihood score is that it favors more complex
structures over simpler ones. In fact, if we do not artificially constrain the number
of parents allowed for each attribute (as in the case of the Chow-Liu algorithm),
then any algorithm using the likelihood score will almost always return a fully
connected structure. This stems from the fact that adding an additional parent
to any attribute will almost always increase the score (Check property 4 of mutual
information). Therefore, in practice, we learn fixed-degree Bayesian Networks as
we do in PrivBayes, where k is a parameter. There are methods with which the
algorithm can choose an appropriate value for k. We will speak of them in a later
section.

Algorithm 1: Chow-Liu Algorithm
Input: Dataset D
Output: Bayesian Network (Graph) G

1 Initialize G0 to a fully connected (undirected) graph
2 for i = 1 to N do
3 Estimate and store p̂Xi

from D
4 for j = 1 to i-1 do
5 Estimate and store p̂Xj ,Xi

from D
6 Compute weight Î(Xj, Xi) of edge (Xj, Xi) in G0

7 G = MaximumWeightSpanningTree (G0)
8 Give directions to edges in G
9 Return G

1

1A spanning tree is a subset of Graph G, which has all the vertices covered with minimum

36

3 DP DATA GENERATION WITH PRIVBAYES

Once the Bayesian Network structure G is known, we have to estimate the
parameters in Θ. A common approach to achieve this is to (once again) use
the maximum likelihood principle. The decomposability of the likelihood func-
tion, which we demonstrated earlier, allows us to maximize each local likelihood
Li(Θi,D) =

∏
x∈D Θi(xi, xΠi

) separately and then combine the solutions to get
the (global) maximum likelihood estimate Θ̂ for Θ :

Θ̂ = {Θ̂1, ..., Θ̂N} where Θ̂i = argmaxΘi
(Li(Θi,D))

We described a purely frequentist approach for learning Bayesian Networks
from data, in that we utilize the likelihood score to learn the structure and then
estimate the parameters that maximize the likelihood function. The process of
estimating the parameters of the model is known as Parameter Learning. An
alternative path would be to adopt a Bayesian approach and treat the candidate
structures (in the Structure Learning phase) or the parameters (in the Parameter
Learning phase) as random; we would assign them prior distributions, and we
would maximize the posterior distribution of the data, instead of the likelihood.
We do not further discuss the Bayesian approach here, but we mention that its
main advantage over the frequentist approach is that it avoids overfitting. Finally
we will present a simple example of finding a 1-degree Bayesian network from data
using Algorithm 1:

Example 3.3. (Chow-Liu Algorithm for 1-degree BN):

We are given the dataset:

A B C D
1 1 1 0
0 0 0 0
1 1 0 0
1 1 1 0
1 1 0 0
0 0 0 0
1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Build an 1-degree Bayesian Network that represents the given dataset.

possible number of edges. Hence, a spanning tree does not have cycles and it cannot be dis-
connected. By this definition, we can draw a conclusion that every connected and undirected
Graph G has at least one spanning tree. A disconnected graph does not have any spanning
tree, as it cannot be spanned to all its vertices. In this algorithm, we need the spanning tree
with the maximum weights, so that we have the maximum mutual information Î between the
attributes.

37

3 DP DATA GENERATION WITH PRIVBAYES

Solution:

1. We start from a random attribute. We choose A in this example. So our
Bayesian Network will look like this:

2. We select the next tree edge by its mutual information Î. We calculate the
mutual information between A and the other attributes and we pick the edge
with the highest value.

(a) I(B,A) = P(A = 0, B = 0) * log (P(A = 0, B = 0)/(P(A = 0) *
P(B = 0))) + P(A = 1, B = 0) * log (P(A = 1, B = 0)/(P(A = 1) *
P(B = 0))) + P(A = 0, B = 1) * log (P(A = 0, B = 1)/(P(A = 0) *
P(B = 1))) + P(A = 1, B = 1) * log (P(A = 1, B = 1)/(P(A = 1)
* P(B = 1))) = 1

(b) I(C,A) = P(A = 0, C = 0) * log (P(A = 0, C = 0)/(P(A = 0) *
P(C = 0))) + P(A = 1, C = 0) * log (P(A = 1, C = 0)/(P(A = 1) *
P(C = 0))) + P(A = 0, C = 1) * log (P(A = 0, C = 1)/(P(A = 0) *
P(C = 1))) + P(A = 1, C = 1) * log (P(A = 1, C = 1)/(P(A = 1)
* P(C = 1))) = 0.16 + 0 – 0.12 + 0.4 ' 0.4

(c) I(D,A) = P(A = 0, D = 0) * log (P(A = 0, D = 0)/(P(A = 0) *
P(D = 0))) + P(A = 1, D = 0) * log (P(A = 1, D = 0)/(P(A = 1)
* P(D = 0))) + P(A = 0, D = 1) * log (P(A = 0, D = 1)/(P(A =
0) * P(D = 1))) + P(A = 1, D = 1) * log (P(A = 1, D = 1)/(P(A
= 1) * P(D = 1))) = 0

So the edge with the highest mutual information is A→ B and the Bayesian
Network will look like this:

38

3 DP DATA GENERATION WITH PRIVBAYES

3. We select the next tree edge. The candidate edges are A→ C, A→ D which
remain from the previous step and since we connected A to B we also have
B → C and B → D. We compare the mutual information of these edges
and it occurs that:

(a) I(C,A) ' 0.4

(b) I(D,A) = 0

(c) I(C,B) = 0

(d) I(D,B) = 0.2

So the edge with the highest mutual information is A→ C and the Bayesian
Network will look like this:

4. We select the next tree edge. The candidate edges are A → D, B → C

and B → D from the previous step and since we connected A to C, we also
have C → D. We compare the mutual information of these edges 1 and it

1It is worth mentioning that if a term of the mutual information sum contains a zero prob-
ability, we set the term equal to 0. In other words, we ignore it.

39

3 DP DATA GENERATION WITH PRIVBAYES

occurs that the edge with the highest mutual information is C → D. Now
all nodes (except the node A from which we began) have 1 parent each, so
the 1-degree Bayesian network is complete:

3.5 PrivBayes

3.5.1 Introduction

This section presents PrivBayes, the state of the art solution in data publishing
first introduced by Zhang et al (21, 1) for releasing a high-dimensional dataset D
in an ε-differentially private manner. The authors identify that the main problem
in publishing high-dimensional data (that consist of a relatively large number of
attributes d = |A|) with differential privacy is that the perturbation required in-
evitably overlaps the signal in the data, rendering it useless in the process. The
proposed solution, namely PrivBayes, is inspired from the theory of probabilis-
tic graphical models, and is based on learning the Bayesian Network (directed
graphical model) that best fits the data, while satisfying differential privacy. The
learned Bayesian Network provides an approximation of the high-dimensional
data distribution as a product of low-order conditional and marginal distribu-
tions; these low-order distributions contain much more compact signal that is not
severely damaged by the required perturbation. Finally, a synthetic dataset is
published by sampling tuples (data points) from the approximate distribution.
Unlike our approach, PrivBayes uses the non-local definition of Differential Pri-
vacy and is applied on one dataset only (non-distributed data). However, the
algorithms that we will use are based on PrivBayes and therefore it is important
to present it in this thesis. Finally, a synthetic dataset is published by sampling
tuples (data points) from the approximate distribution. PrivBayes runs in three
phases :

40

3 DP DATA GENERATION WITH PRIVBAYES

1. Structure learning phase: During this phase, the analyst accesses the
private data in dataset D and uses an ε1-differentially private algorithm
to construct a k-degree Bayesian network over the attributes in D that
accurately encodes the conditional independencies that are present in the
underlying data distribution (k is a small value that can be either chosen
automatically by PrivBayes or by the user).

2. Parameter learning phase: During this phase, the analyst utilizes the
learned structure and again accesses the sensitive data in D. He uses an
ε2-differentially private algorithm to generate the parameters of the learned
Bayesian Network, a set of conditional distributions of D, such that for each
AP pair (Xi,Πi) in the network, we have a noisy version of the conditional
distribution Pr[Xi|Πi].

3. Synthetic data generation phase: During this phase, no access to the
sensitive data is performed. The analyst uses the Bayesian network (con-
structed in the first phase) and the d noisy conditional distributions (con-
structed in the second phase) to derive an approximate distribution of the
tuples in D and then sample n’ tuples (data points) from the approximate
distribution (encoded by the Bayesian Network) to generate a synthetic
dataset D’ of size n’. Since (as we argue in Theorem 3.3) the output of the
first two phases satisfies differential privacy, so does the result of the third
phase, since no additional access to the data is required) and no additional
perturbation is required.

In short, PrivBates utilizes a low-degree Bayesian network to generate a syn-
thetic dataset D’ that approximates the high dimensional input data D. The
construction of the Bayesian Network is highly non-trivial, as it requires care-
fully selecting AP pairs and the value of k to derive a close approximation of D
without violating differential privacy. By contrast, the second and third phases of
PrivBayes are relatively straightforward, especially the third phase. Next, we will
clarify the details of these phases, and prove the privacy guarantee of PrivBayes
for each of its first two phases using the following theorem:

Theorem 3.3. Let ε1 and ε2 be the privacy budget consumed during each of
the first two PrivBayes respectively. Then, the overall algorithm satisfies (ε1 +
ε2)-differential privacy

Theorem 3.3 is easy to prove using the composition theorem of differential
privacy. The choice of ε1 and ε2 determines the balance between the quality of

41

3 DP DATA GENERATION WITH PRIVBAYES

the learned structure and the learned parameters. The smaller the ε parameter,
the greater the noise required is. Obviously, greater noise introduces greater bias.1

3.5.2 First Phase: Structure Learning

The structure learning phase of PrivBayes is based on a greedy extension
of the Chow-Liu algorithm (Algorithm 1) for higher degree Bayesian Networks,
which we present in Algorithm 3.

Before we present the private version of the algorithm (Algorithm 3), we
describe the non-private version of the algorithm, which can also be found in the
PrivBayes paper (21, 1) to help us understand the more advanced algorithms
better.

Algorithm 2: GreedyBayes
Input: Dataset D, Bayesian Network degree k
Output: Bayesian Network (Graph) G

1 Initialize G = ∅ and V = ∅
2 Randomly select an attribute X1 from A
3 Add (X1,∅) to G

4 Add X1 to V
5 for i = 2 to d do
6 Initialize Ω = ∅
7 for each X ∈ A \ V and each Π ∈

(
V
k

)
a do

8 Add (X,Π) to Ω

9 Select a pair (Xi,ΠXi
) from Ω with the maximum mutual information

Î(Xi,ΠXi
)

10 Add (Xi,ΠXi
) to G and Xi to V

11 Return G

aThis binominal denotes the set of all subsets of V with size equal to min(k,|V|)

Algorithm 2 aims to build a Bayesian Network from data. Therefore, it is a
Structure Learning algorithm. Next, we will present an example where we use
Algorithm 2:

Example 3.4. We are given the same dataset as the previous example. Build a
k-degree Bayesian Network that represents the dataset.

1Assuming that the total available privacy budget is ε, and by setting ε1 = β ∗ ε and
ε2 = (1 − β) ∗ ε, the authors of PrivBayes experimentally conclude that the optimal split is
achieved for some β ∈ [0.2, 0.5].

42

3 DP DATA GENERATION WITH PRIVBAYES

Solution:

1. We start from a random attribute. We choose A in this example. So V={A}
and our Bayesian Network will look like this:

2. We have Ω = ∅ and then we add (B,A), (C,A) and (D,A) to it, so Ω =

{(B,A), (C,A), (D,A)}. Then we select one of the pairs in Ω, the one with
the highest mutual information Î. This step is the same with the previous
example, so the edge with the highest Î is A (Π2) → B (X2), V = {A,B}
and the Bayesian Network looks like:

3. We have Ω = ∅ and then since V = {A,B}, we add (C,{A,B}), (D,{A,B})
to it. We calculate the mutual information of each pair:

(a) I(C,{A,B}) = I(C,A) + I(C,B) = 0.4

(b) I(D,{A,B}) = I(D,A) + I(D,B) = 0.2

So we choose (C,{A,B}), V = {A,B,C} and the Bayesian Network looks
like this:

43

3 DP DATA GENERATION WITH PRIVBAYES

4. We have Ω = ∅ and then since V = {A,B,C}, we add (D,{A,C}), (D,{A,B}),
(D,{B,C}) to it. We calculate the mutual information of each pair and as a
result, we choose (D,{B,C}). So V = {A,B,C,D} and the (final) Bayesian
Network looks like this:

44

3 DP DATA GENERATION WITH PRIVBAYES

Now we are ready to present the private version of GreedyBayes, which uses
the exponential mechanism (see Chapter 2) to achieve differential privacy:

Algorithm 3: Private Greedy Bayesian Network Structure Learning
Input: Dataset D, Bayesian Network degree k, Privacy budget ε1
Output: Bayesian Network (Graph) G

1 Initialize G = ∅ and V = ∅
2 for each A′ ⊆ A such that |A′| ≤ k + 1 do
3 Estimate and store p̂A′ from D

4 Arbitrarily select an attribute X from A
5 Add (X,∅) to G and X to V
6 for i = 1 to d-1 do
7 Initialize Ω = ∅
8 for each X ∈ A \ V do
9 for each ΠX ⊆ V such that |ΠX | ≤ k do

10 Calculate Î(X,ΠX) using p̂X , p̂ΠX
and p̂X,ΠX

11 Add (X,ΠX , Î(X,ΠX)) to Ω

12 Sample a tuple (X,ΠX , Î(X,ΠX)) from Ω with probability ∝ Î(X,ΠX)∗ε1
2(d−1)∗∆Î

13 Add (X,ΠX) to G and X to V

14 Return G

The output G of Algorithm 3 consists of the d - 1 attribute-parent pairs
each of which was added using the exponential mechanism (Line 12) with the
empirical mutual information as scoring function and with privacy budget ε1

d−1
.

Thus, Theorem 3.4 directly follows (by the composition theorem):

Theorem 3.4. Algorithm 3 satisfies ε1-differential privacy.

Also to implement the algorithm, we need a mathematical formula for the
sensitivity of mutual information Î, which we derive from the following lemma:

Lemma 3.1. For any random variables X and Y , the sensitivity of Î(X, Y) is :

Lemma 3.1 quantifies the sensitivity of the empirical mutual information; the
proof can be found in the full PrivBayes paper (21, 1). We remark that the
sensitivity is computed using the definition of adjacent datasets that leads to

45

3 DP DATA GENERATION WITH PRIVBAYES

bounded differential privacy, so ∆Î expresses the maximum change in the em-
pirical mutual information that is caused by changing the value of one data point.

However, we are interested in applying the PrivBayes algorithm on distributed
data. As a result, instead of having one dataset D and one data holder/owner,
we have many datasets {D1, ..., DM} and M respective data holders/owners, as
we can also see in Figure 5. We also need to alter our existing algorithms, so that
they operate correctly in the distributed model. In order for us to do so, we must
first re-formulate the optimization problem of finding a k-degree Bayesian Net-
work, that represents the multiple datasets (distributed among an equal number
of data owners) in a greedy manner :

max
B

(log(L(B, D1, ..., DM))) = max
G

d∑
i=1

Î(Xi,Πi) =

max
G

d∑
i=1

∑
x∈dXi

, p∈dΠi

∑M
j=1 c

(j)
Xi,Πi

(x, p)

n
∗ log2

n ∗
∑M

j=1 c
(j)
Xi,Πi

(x, p)∑M
j=1 c

(j)
Xi

(x) ∗
∑M

j=1 c
(j)
Πi

(p)

The key question that needs to be answered is what information each data owner
shares with the analyst. Furthermore, depending on the answer to this question,
we need to figure out how to combine the information shared by different data
holders. We attempt to answer this question with the following approaches:

First Approach: Sharing the Noisy Sufficient Statistics

The first approach is based on asking each data holder to share its part of the
sufficient statistics, that is, all (k + 1)-dimensional frequency distributions. In
doing so, the analyst is able to compose the global sufficient statistics (since the
empirical frequency distribution is composable by simply summing the counts),
and evaluate the scoring function for all candidate structures. In that sense, this
approach, which we call Sharing the Noisy Sufficient Statistics (Algorithm 4), is
an exact approach. We will also refer to this algorithm as Structure Learning
1 during the experimental evaluation.

46

3 DP DATA GENERATION WITH PRIVBAYES

Algorithm 4: Sharing the Noisy Sufficient Statistics
Input: Datasets D1, ..., DM , Bayesian Network degree k
Output: Bayesian Network (Graph) G

1 Initialize G = ∅ and V = ∅
2 for each A′ ⊆ A such that |A′| ≤ k + 1 do
3 for j = 1 to M do
4 QUERY(Dj): retrieve local c̃(j)

A′

5 Estimate global p̃A′ = 1
nnoisy

∑M
j=1 c̃

(j)
A′

6 Arbitrarily select an attribute X from A
7 Add (X,∅) to G and X to V
8 for i = 1 to d-1 do
9 Initialize Ω = ∅

10 for each X ∈ A \ V do
11 for each ΠX ⊆ V such that |ΠX | ≤ k do
12 Calculate p̂X,ΠX

using the classical definition of probability and
p̂X , p̂ΠX

by marginalizing the proper distributions
13 Calculate Î(X,ΠX) using p̂X , p̂ΠX

and p̂X,ΠX

14 Add (X,ΠX , Î(X,ΠX)) to Ω

15 Select (X,ΠX) with the highest Î(X,ΠX)
16 Add (X,ΠX) to G and X to V

17 Return G

Advantages :

1. Once the analyst collects the frequency distributions, it does not need to access
the data again in any of the phases.

2. Once the Structure Learning phase is complete, the parameter learning Algorithm
8 utilizes the already-retrieved distributions and hence the entire privacy bud-
get can be consumed in the Structure Learning phase.

Disadvantages :

1. Each data holder has to share
(
d

k+1

)
frequency distributions, which may be pro-

hibitive for high-degree Bayesian Networks, in terms of both perturbation and
communication cost, as the amount noise required also significantly damages the
utility of the data and the bandwidth required to share the distributions is quite
large.

Before we proceed to the second approach, we need to clarify some important points
about Algorithm 4.

First of all, when we calculate the probabilities of the (k+1)-sized subsets A’ of
the attribute set A, we divide the sum of counts by a value we call nnoisy instead of

47

3 DP DATA GENERATION WITH PRIVBAYES

the dataset size n, that one might expect. However doing so is necessary so that the
probabilities are properly normalized. For each A′ ⊆ A, such that |A|= k + 1, each
data holder computes the (local) joint frequency distribution of the attributes (counts)
in A’. Therefore, if c(j) is the distribution that holder j ∈ {1, ...,M} computes, then,
assuming that |dA′ | = z, holder j shares the following z-dimensional vector:

c̃(j) = c(j) + η(j) = [c
(j)
1 ... c(j)

z] + [η
(j)
1 ... η(j)

z] = [c̃
(j)
1 ... c̃(j)

z]

where n is the Laplacian noise. Then, the analyst collects the noisy vectors c̃(1), ...
, c̃(M) (one vector for each data holder) and merges them as:

c̃ =
M∑
j=1

c̃(j) =
M∑
j=1

(c(j) + η(j)) = c +
M∑
j=1

η(j)

As a consequence, in order to estimate the corresponding probability distribution
correctly, we use:

p̃ =
1

nnoisy
∗ c̃

where nnoisy is :

nnoisy =

d∑
i=1

M∑
j=1

c̃
(j)
i =

d∑
i=1

M∑
j=1

(c
(j)
i + η

(j)
i) = n+

d∑
i=1

M∑
j=1

η
(j)
i

So nnoisy is the sum of the actual total dataset size n, plus the sum of z x M zero-
mean Laplace random variables and, hence, it is also random with E[nnoisy] = n.

Finally, we need to quantify the amount of noise we will add to the counts. In order
to ensure ε-Differential Privacy, the noise will be Laplacian with mean equal to 0 and

scale b equal to
2∗(d

k+1)
ε . This is indicated by the following theorem:

Theorem 3.5. Let b =
2∗(d

k+1)
ε . If ∀A′ ⊆ A such that |A’| = k + 1 , each data holder

shares c̃A′ = cA′ + η where η = [η1 ... ηz] is a random vector of i.i.d. Laplace(0,b) en-
tries, then Algorithm 4 preserves ε-differential privacy for any dataset Dj (j ∈ {1, ...,M}).

Proof is in (29, 9), page 26.

Second Approach: Noisy Majority Voting

Given the serious disadvantage of the previous method, we propose a second answer
(Algorithm 5), which is based on the notion of majority voting from the machine learn-
ing literature. Specifically, each data holder incrementally reports the highest mutual
information attribute-parent pair that it would add to the Bayesian Network. The ana-
lyst collects all votes, and adds the most-voted pair to the structure. We will also refer
to this algorithm as Structure Learning 2 during the experimental evaluation.

48

3 DP DATA GENERATION WITH PRIVBAYES

Algorithm 5: Noisy Majority Voting
Input: Datasets D1, ..., DM , Bayesian Network degree k
Output: Bayesian Network (Graph) G

1 Initialize G = ∅ and V = ∅
2 Arbitrarily select an attribute X from A
3 Add (X,∅) to G

4 Add X to V
5 for i = 1 to d-1 do
6 Initialize multi-set votes = ∅
7 for j = 1 to M do
8 QUERY(Dj): Select (X,ΠX) with the highest Î(X,ΠX), subject to

X ∈ A \ V and Πi ⊆ V
9 Add (X,ΠX) to multi-set votes

10 Find most-voted (X,ΠX) in multi-set votes (break ties arbitrarily)
11 Add (X,ΠX) to G and X to V

12 Return G

Each data holder responds to the queries on its dataset using the exponential mech-
anism with privacy budget ε1

d−1 . The probability with which a user chooses the pair
with the "highest" mutual information I is exactly the one we use in Algorithm 3 (Line
12).

Once we have received the Bayesian Network, Algorithm 8 is used to learn its param-
eters. If we use Algorithm 5 during the Structure Learning Phase, the analyst now has
to retrieve the d required frequency distributions to estimate the parameters (retrieved
== False), and the data holders respond to its queries using the Laplace mechanism,
with privacy budget ε2

d . If we use Algorithm 4, we are already in possession of the
required distributions and retrieving them during Parameter Learning is unnecessary
(retrieved == True) and no further privacy budget needs to be consumed.

Theorem 3.6. Let ε1 and ε2 be the total privacy budget that each data holder uses in
responding to the analyst’s queries, during the structure learning phase (Algorithm 5)
and the parameter learning phase (Algorithm 8 with input retrieved = False) respectively.
Then, the overall algorithm satisfies (ε1+ε2)-differential privacy for any dataset Dj (j ∈
{1, ...,M}).

Third Approach: Sharing the Noisy Model

Finally, each data holder locally executes PrivBayes on its dataset. In other words,
each user uses PrivBayes (Algorithm 3 for Structure Learning and Algorithm 7 for
Parameter Learning) to build a Bayesian Network and learn its parameters. The analyst
then generates, for each dataset, a synthetic dataset using the Prior Sampling technique.

49

3 DP DATA GENERATION WITH PRIVBAYES

Each dataset is of size proportional to that of the local dataset that was used to learn
the local model (n′j = nj). Then the analyst merges the smaller datasets to produce the
final synthetic dataset with size of n. We will also refer to this algorithm as Structure
Learning 3 during the experimental evaluation.

Algorithm 6: Sharing the Noisy Model
Input: Datasets D1, ..., DM , Bayesian Network degree k
Output: Bayesian Network (Graph) G

1 Initialize Dsynth = ∅
2 for k = 1 to M do
3 QUERY(Dj): get local model structure G(j), parameters Θj and dataset

size nj
4 Generate Dj,synth using Prior Sampling such that |Dj,synth| = nj

5 Add Dj,synth to Dsynth

6 Return Dsynth

Each data holder constructs its local model using Algorithms 3 and 7, which were
shown to jointly satisfy differential privacy (Theorem 3.3). The privacy budget for
Structure Learning is ε1 and for Parameter Learning is ε2 (ε1 + ε2 = ε). A disadvantage
of this method is that much is required from the data holders. However, it can be
considered much safer than the others, given that the analyst never accesses the real
data or its frequency distributions, as it did in previous methods. Since differential
privacy is immune to post-processing, we have the following theorem:

Theorem 3.7. Assume that each data holder shares an ε-differentially private local
model. Then, the global model that results by aggregating the local models according to
Algorithm 7, also also satisfies ε-differential privacy for any dataset Dj (j ∈ {1, ...,M}).

50

3 DP DATA GENERATION WITH PRIVBAYES

3.5.3 Second Phase: Parameter Learning

Algorithm 7: Bayesian Network Parameter Learning
Input: Dataset D, Bayesian Network graph G, Privacy budget ε2
Output: Bayesian Network parameters Θ

1 Initialize Θi = ∅, ∀i ∈ {1, ..., N}
2 for i = 1 to d do
3 Estimate p̂Xi,ΠXi

4 Calculate noisy p̃X,ΠXi
= p̂X,ΠXi

+ Laplace(0, 2∗d
n∗ε2)

5 Set negative values in p̃Xi,ΠXi
to 0 and normalize

6 Calculate Θ̃i = p̃Xi|ΠXi
by marginalizing p̃Xi,ΠXi

7 Add Θ̃i to Θ̃

8 Return Θ̃

The output of Algorithm 7 consists of the d conditional probability tables Θ̃i,
i ∈ {1, ..., d}, each of which represents the set of conditional distributions of an at-
tribute, given all realizations of its parents. Notice that each Θ̃i is constructed using a
noisy version of the maximum likelihood estimate of the joint probability distribution
of attribute Xi and its parents. In total, we estimate d noisy distributions using the
Laplace mechanism (Line 4), each with privacy budget ε2d , so (again) by the composition
theorem:

Theorem 3.8. Algorithm 7 satisfies ε2-differential privacy.

As we did before during the first phase, we must adjust the second phase of PrivBayes
(Algorithm 7) to the distributed model. As we mentioned before, depending on the
structure learning approach used, the analyst may need or need not re-access the data
to estimate the Bayesian Network parameters, depending on whether it has already
retrieved the required local distributions or not. Therefore, we introduce the boolean
parameter retrieved that indicates whether the analyst already possesses the distribu-
tions p̃Xi , p̃Πi and p̃Xi|Πi

∀i ∈ {1, ..., d} or not.

51

3 DP DATA GENERATION WITH PRIVBAYES

Algorithm 8: Distributed Bayesian Network Parameter Learning
Input: Datasets D1, ..., DM , Bayesian Network graph G, Boolean Variable

retrieved
Output: Bayesian Network parameters Θ

1 Initialize Θi = ∅, ∀i ∈ {1, ..., d}
2 for i = 1 to d do
3 if retrieved == False then
4 for j = 1 to M do
5 QUERY(Dj): retrieve local c̃(j)

Xi,Πi

6 Estimate p̃Xi,Πi = 1
n

∑M
j=1 c̃

(j)
Xi,Πi

7 Calculate Θ̃i = p̃Xi|ΠXi
by marginalizing p̃Xi,ΠXi

8 Add Θ̃i to Θ̃

9 Return Θ̃

Notice that since the analyst is not trusted, it is the data holders’ responsi-
bility to properly perturb their local frequency distributions, and handle any negative
frequencies that may appear, prior to sharing them. This is exactly what was done in
the distributed Structure Learning Algorithm 4.

3.5.4 Third Phase: Synthetic Data Generation

Since we now have the k-degree Bayesian Network G and its parameters Θ̃i (conditional
probabilities), we are finally ready to generate our synthetic dataset. The size n’ of the
new dataset D’ will be determined by the user, but it usually is equal to the size of
the original dataset. We can accomplish this by using a variety of simple but useful
sampling techniques. Before we speak of the techniques that will concern us, we will
speak of what sampling is and will present an example.

Sampling is not an easy problem. Our computers can only generate samples from
very simple distributions, such as the uniform distribution over [0,1). Even those sam-
ples are not truly random. They are actually taken from a deterministic sequence whose
statistical properties (e.g. running averages) are indistinguishable from a truly random
one. We call such sequences pseudorandom. All sampling techniques involve calling
some kind of simple subroutine multiple times in a clever way. In our case, we may
reduce sampling from a multinomial variable to sampling a single uniform variable by
subdividing a unit interval into k regions with region i having size θi. We then sample
uniformly from [0,1] and return the value of the region in which our sample belongs to.

52

3 DP DATA GENERATION WITH PRIVBAYES

Figure 7: Sampling from the uniform distribution over [0,1)

We can also express the above process as an algorithm:

Algorithm 9: Sampling from a given distribution
Input: A distribution over a number of random variables
Output: Sample

1 Get a sample z from the uniform distribution over [0,1]
2 Convert this sample u into an outcome for the given distribution by having each

outcome i associated with a sub-interval of [0,1) (θi) with sub-interval size
equal to probability of the outcome.

Example 3.5. The following probability distribution is given:

W P(W)
Rain 0.3
Sunny 0.4
Cloudy 0.2
Foggy 0.1

We implement Algorithm 9 and get a sample from the uniform distribution equal to
z = 0.67. We can receive a sample from interval [0,1) by running the random() function
using any programming language. Next, we compute the sub-intervals based on the given
distribution:

• [0, 0.3)→W = Rain

• [0.3, 0.7)→W = Sunny

• [0.7, 0.9)→W = Cloudy

• [0.9, 1)→W = Foggy

Finally, since z = 0.67, we have z ∈ [0.3, 0.7), so our sample is W=Sunny. If we
wish to sample more times, we simply repeat the first and the final step.

Before we proceed to the sampling methods, we will introduce the Big-O notation
as described by Cormen et al (24, 4):

Definition 3.5. For a given function g(n), we denote by O(g(n)) the set of functions:
O(g(n)) = {f(n) : there exist positive constants c and n0 such that 0 ≤ f(n) ≤
c ∗ g(n) for all n ≥ n0}

53

3 DP DATA GENERATION WITH PRIVBAYES

We use O-notation to give an upper bound on a function, to within a constant factor
and we write We write f(n) = O(g(n)) to indicate that a function f(n) is a member of
the set O(g(n)).

The sampling methods that will concern us are:

1. Prior (or Forward) Sampling: Given a probability p(x1, ..., xn) specified by
a Bayes net, we sample variables in topological order. We start by sampling the
variables with no parents; then we sample from the next generation by condition-
ing these variables’ CPDs to values sampled at the first step. We proceed like
this until all n variables have been sampled. Importantly, in a Bayesian network
over n variables, forward sampling allows us to sample from the joint distribution
x ∼ p(x) in linear O(n) time by taking by taking exactly 1 multinomial sample
from each CPD. “Forward sampling” can also be performed efficiently on undi-
rected models if the model can be represented by a clique tree with a small number
of variables per node. Calibrate the clique tree, which gives us the marginal dis-
tribution over each node, and choose a node to be the root. Then, marginalize
over variables in the root node to get the marginal for a single variable. Once
the marginal for a single variable x ∼ p(X1|E = e) has been sampled from the
root node, the newly sampled value X1 = x1 can be incorporated as evidence.
Finish sampling other variables from the same node, each time incorporating the
newly sampled nodes as evidence, i.e. x ∼ p(X2 = x2|X1 = x1, E = e) and
x ∼ p(X3 = x3|X1 = x1, X2 = x2, E = e) and so on. When moving down the tree
to sample variables from other nodes, each node must send an updated message
containing the values of the sampled variables.

2. Rejection Sampling: It is is a basic technique used to generate observations
from a distribution. It is also commonly called the acceptance-rejection method
or "accept-reject algorithm" and is a type of exact simulation method. The key
idea is to reject a sample once an evidence variable has been sampled to take on
a value inconsistent with the evidence of the query. The method works for any
distribution in Rm with a density. Rejection sampling is based on the observation
that to sample a random variable in one dimension, one can perform a uniformly
random sampling of the two-dimensional Cartesian graph, and keep the samples in
the region under the graph of its density function. This property can be extended
to N-dimension functions. The rejection sampling method generates sampling
values from a target distribution X with arbitrary probability density function
f(x) by using a proposal distribution Y with probability density g(x). There are
a number of extensions to this algorithm, such as the Metropolis algorithm and
the combination with ratio-of-uniforms approach. If we know the query we wish
to perform on the data in advance, this is a more efficient method.

3. Likelihood Weighting: Instead of creating a sample and then rejecting it,

54

3 DP DATA GENERATION WITH PRIVBAYES

it is possible to mix sampling with inference to reason about the probability
that a sample would be rejected. In importance sampling methods, each sample
has a weight, and the sample average is computed using the weighted average
of samples. Likelihood weighting is a form of importance sampling where the
variables are sampled in the order defined by a belief network, and evidence
is used to update the weights. The weights reflect the probability that a sample
would not be rejected. So rather than sampling the evidence variables, force them
to be consistent with the evidence and the re-weight the sample to account for
the CPTs 1 of the evidence variables. Like with Rejection Sampling, this method
is more efficient, if we know the query in advance. The process is described by
the following algorithm:

Algorithm 10: Likelihood Weighting
Input: Bayesian Network graph G, Evidence e, Query variable Q, Number

n of samples to generate
Output: Posterior Distribution over Q

1 Initialize arrays sample and counts to 0
2 for i = 1 to n do
3 sample = ∅
4 weight = 1
5 for each variable X ∈ B, in order do do
6 if X = V is in e then
7 sample[X] = v
8 weight = weight * P(X = V)

9 else
10 sample[X] = a random sample from P(X|ΠX)

11 v = sample[Q]
12 counts[v] = counts[v] + weight

13 Return counts∑
v counts[v]

To implement the aforementioned sampling techniques, we must first sort the nodes
of the generated Bayesian Network using the Topological Sorting definition (25, 5):

Definition 3.6. In computer science, a topological sort or topological ordering of a

1In statistics, the conditional probability table (CPT) is defined for a set of discrete and
mutually dependent random variables to display conditional probabilities of a single variable
with respect to the others (i.e., the probability of each possible value of one variable if we
know the values taken on by the other variables). For example, assume there are three random
variables x1, x2, x3 where each has K states. Then, the conditional probability table of x1
provides the conditional probability values P (x1 = ak | x2, x3) – where the vertical bar | means
“given the values of” – for each of the K possible values ak of the variable x1 and for each
possible combination of values of x2, x3. This table has K3 cells. In general, for M variables
x1, x2, . . . , xMx1, x2, . . . , xM with Ki states for each variable xi, the CPT for any one of them
has the number of cells equal to the product K1K2 · · ·KM . The tables 2, 3 and 4 of Example
3.2 are CPTs.

55

3 DP DATA GENERATION WITH PRIVBAYES

directed graph is a linear ordering of its vertices such that for every directed edge uv
from vertex u to vertex v, u comes before v in the ordering.

Topological sorting arises as a subproblem in most algorithms on directed acyclic
graphs. Topological sorting orders the vertices and edges of a DAG in a simple and
consistent way and hence plays the same role for DAGs that a depth-first search does
for general graphs. Topological sorting can be used to schedule tasks under precedence
constraints. Suppose we have a set of tasks to do, but certain tasks have to be performed
before other tasks. These precedence constraints form a directed acyclic graph, and any
topological sort (also known as a linear extension) defines an order to do these tasks
such that each is performed only after all of its constraints are satisfied.

Some important facts about topological sorting are:

1. Only DAGs (like the Bayesian Networks we utilize) can be topologically sorted,
since any directed cycle provides an inherent contradiction to a linear order of
tasks.

2. Every DAG can be topologically sorted, so there must always be at least one
schedule for any reasonable precedence constraints among jobs.

3. DAGs can often be topologically sorted in many different ways, especially when
there are few constraints. Consider n unconstrained jobs. Any of the n! permu-
tations of the jobs constitutes a valid topological ordering.

Now we will present an example for each of the sampling techniques mentioned:

Example 3.6. (Prior Sampling): We are given the following Bayesian Network:

Figure 8: 2-degree Bayesian Network with 4 states (attributes)

and the following values for its parameters (conditional probabilities):

56

3 DP DATA GENERATION WITH PRIVBAYES

A P(A)
1 0.8
0 0.2

A B P(B|A)
1 1 0.8
1 0 0.2
0 1 0.5
0 0 0.5

A C P(C|A)
1 1 0.7
1 0 0.3
0 1 0.1
0 0 0.9

B C D P(D|B,C)
1 1 1 0.3
1 1 0 0.7
1 0 1 0.1
1 0 0 0.9
0 1 1 0.2
0 1 0 0.8
0 0 1 0.9
0 0 0 0.1

All the attributes of the example have binary values.

1. Generate a synthetic dataset of n’ = 10 tuples.

2. Calculate P(D = 1), P(A = 0, C = 1), P(A = 1, B = 0, C = 1, D
= 0), P(B = 0 | C = 1) and P(D = 0 | A = 0, C = 1) based on the
generated dataset.

Solution:

1. First we need to decide the (topological) order with which we will calculate the
attributes. There are two possible orders: i){A,B,C,D} ii){A,C,B,D}. Both are
correct, but in this example we will work with the former. Next, as we have
4 attributes and we need 10 tuples, we will get 40 samples from the uniform
distribution over [0,1). The samples that we received are {0.59,0.11,0.7,0.07 ...}.
Now that we have our samples, we can begin generating the tuples:

(a) We begin with attribute A of the first tuple (due to the {A,B,C,D} order).
In order to sample for this attribute, we turn to the P(A) table, where the
attribute is the query.1 As a result, we use the first table. As we did in
the previous example, we split interval [0,1) to sub-intervals according to the
distribution table. So we have:

• [0, 0.8)→ A = 1

• [0.8, 1)→ A = 0

1If we have the conditional probability P(A|B,C), then we define query = A and evidence =
(B,C)

57

3 DP DATA GENERATION WITH PRIVBAYES

Since our first sample is 0.59 ∈ [0, 0.8)→ A = 1

(b) For attribute B, we use the P(B|A) table and we partition the interval [0,1)
in two ways, one for each value the evidence A takes. So for A = 1 we have:

• [0, 0.8)→ B = 1

• [0.8, 1)→ B = 0

and for A = 0 :

• [0, 0.5)→ B = 1

• [0.5, 1)→ B = 0

Since A = 1 for the current tuple, we use the first partitions. The second
sample is 0.11 ∈ [0, 0.8)→ B = 1

(c) For attribute C, we use the P(C|A) table and we partition the interval [0,1)
in two ways, one for each value the evidence A takes. So for A = 1 we have:

• [0, 0.7)→ C = 1

• [0.7, 1)→ C = 0

and for A = 0 :

• [0, 0.1)→ C = 1

• [0.1, 1)→ C = 0

Since A = 1 for the current tuple, we use the first partitions. The third
sample is 0.7 ∈ [0.7, 1)→ C = 0

(d) For attribute D, we use the P(D|B,C) table and we partition the interval
[0,1) in four ways, one for each value the evidence (B,C) takes. So for
(B,C) = (1,1) we have:

• [0, 0.3)→ D = 1

• [0.3, 1)→ D = 0

for (B,C) = (1,0) :

• [0, 0.1)→ D = 1

• [0.1, 1)→ D = 0

for (B,C) = (0,1) :

• [0, 0.2)→ D = 1

• [0.2, 1)→ D = 0

and for (B,C) = (0,0) :

• [0, 0.9)→ D = 1

• [0.9, 1)→ D = 0

Since (B,C) = (1,0) for the current tuple, we use the second partitions. The
fourth sample is 0.07 ∈ [0, 0.1)→ D = 0.

58

3 DP DATA GENERATION WITH PRIVBAYES

Consequently, the first generated tuple is (A,B,C,D) = (1,1,0,1). We continue
the process by calculating the attribute A of the second tuple using the fifth sample
and so on, until we have our 10 tuples.

The final result is:

A B C D
1 1 0 1
1 0 0 0
1 0 1 1
1 0 1 0
0 1 1 0
0 1 0 0
0 1 1 1
0 0 0 0
1 1 0 1
0 0 0 0

2. (a) P(D = 1) = Tuples with D=1
Tuples = 4

10

(b) P(A = 0, C = 1) = Tuples with (A,C)=(0,1)
Tuples = 2

10

(c) P(A = 1, B = 0, C = 1, D = 0) = Tuples with (A,B,C,D)=(1,0,1,0)
Tuples = 1

10

(d) P(B = 0 | C = 1) = Tuples with (B,C)=(0,1)
Tuples with C=1 = 2

4

(e) P(D = 0 | A = 0, C = 1) = Tuples with (A,C,D)=(0,1,0)
Tuples with (A,C)=(0,1) = 1

2

Example 3.7. (Rejection Sampling): We are given the Bayesian Network and the
parameters of the previous example. Perform the Rejection Sampling technique for the
query: P(D = 0 | B = 1).

Solution:

First we need to decide the (topological) order with which we will calculate the at-
tributes. There are two possible orders: i){A,B,C,D} ii){A,C,B,D}. Both are correct,
but in this example we will work with the former. Next, we once again get samples from
the uniform distribution over [0,1). The samples that we received are {0.14,0.87,0.69,
...}. Now that we have our samples, we can begin generating the tuples:

1. We begin with attribute A of the first tuple (due to the {A,B,C,D} order). In order
to sample for this attribute, we turn to the P(A) table, where the attribute is the
query. As a result, we use the first table. We split interval [0,1) to sub-intervals
according to the distribution table. So we have:

• [0, 0.8)→ A = 1

• [0.8, 1)→ A = 0

59

3 DP DATA GENERATION WITH PRIVBAYES

Since our first sample is 0.14 ∈ [0, 0.8)→ A = 1

2. For attribute B, we use the P(B|A) table and we partition the interval [0,1) in
two ways, one for each value the evidence A takes. So for A = 1 we have:

• [0, 0.8)→ B = 1

• [0.8, 1)→ B = 0

and for A = 0 :

• [0, 0.5)→ B = 1

• [0.5, 1)→ B = 0

Since A = 1 for the current tuple, we use the first partitions. The second sample
is 0.87 ∈ [0.8, 1) → B = 0. However, B = 1 in the query, so we reject this tuple
and begin working on a new one, starting again with attribute A and using the
0.69 sample.

In other words, we follow the same algorithm as in Example 3.6, except for the fact
that we will reject tuples that do not agree with the evidence of the query we are given,
tuples who have B = 0.

Example 3.8. (Likelihood Weighting): We are given the Bayesian Network and the
parameters of the previous examples. Perform the Likelihood Weighting technique for
the query: P(D = 1 | A = 0, B = 1).

Solution:

First we need to decide the (topological) order with which we will calculate the at-
tributes. There are two possible orders: i){A,B,C,D} ii){A,C,B,D}. Both are correct,
but in this example we will work with the former. Next, we once again get samples from
the uniform distribution over [0,1). The samples that we received are {0.98,0.52, ...}.
Now that we have our samples, we can begin generating the tuples:

1. We begin with attribute A of the first tuple (due to the {A,B,C,D} order). In
order to sample for this attribute, we turn to the P(A) table, where the attribute
is the query. As a result, we use the first table. However, since attribute A is
included in the query evidence, we force the tuple to have the value of the query
for this attribute. As a result, A = 0. We also set a weight for this attribute (for
the current tuple) equal to 0.2, because P(A = 0) = 0.2 according to the P(A)
table.

2. For attribute B, we use the P(B|A) table. Again, since attribute B is included
in the query evidence, we force the tuple to have the value of the query for this

60

3 DP DATA GENERATION WITH PRIVBAYES

attribute. As a result, B = 1. We also set a weight for this attribute (for the
current tuple) equal to 0.5, because P(B = 1 |A = 0) = 0.5 according to the
P(B|A) table.

3. C and D are not evidence variables, so we use our samples (0.98 and 0.52 respec-
tively) to decide their values, like we did in Example 3.2. We set a weight equal to
1 to these attributes. So the total weight of this tuple is the product of the weights
of all its attributes: W = 0.2 * 0.5 * 1 * 1 = 0.1.

4. We continue generating tuples, using the same steps.

Example 3.9. (Answering probabilistic queries from weighted samples): We
are given the following weighted samples:

A B C D Weight
1 0 0 1 0.5
0 0 0 0 0.2
0 1 0 1 0.3
1 0 0 0 0.4
0 1 1 0 0.1
0 1 0 1 0.2
0 0 0 1 0.1
0 0 0 0 0.7
1 0 0 1 0.5
0 0 0 0 0.6

Answer the queries: P(C = 0), P(A = 0, B = 0, C = 1,D = 0) and P(D = 0 | A
= 1, C= 0)

Solution:

1. P(C = 0) = Sum of weights that have C=0
Sum of weights of all samples = 0.5+0.2+0.3+0.4+0.2+0.1+0.7+0.5+0.6

0.5+0.2+0.3+0.4+0.2+0.1+0.7+0.5+0.6+0.1

= 3.5
3.6 = 0.97

2. P(A = 1, B = 0, C = 0,D = 1) = Sum of weights that have (A,B,C,D)=(1,0,0,1)
Sum of weights of all samples =

0.5+0.5
0.5+0.2+0.3+0.4+0.2+0.1+0.7+0.5+0.6+0.1 = 1

3.6 = 0.27

3. P(D = 0 | A = 1, C = 0) = Sum of weights that have (A,C,D)=(1,0,0)
Sum of weights of samples that have (A,C)=(1,0 =

0.4
0.5+0.4+0.5 = 0.4

1.4 = 0.28

3.6 Experimental Evaluation

Now that we have completed the explanation of the algorithms that interest us, we are
finally ready to perform a series of experiments that illustrate what we have accom-
plished. We remind you at this point that our ultimate goal is to produce synthetic
data, which a data analyst may use as they see fit without compromising the privacy of
any real individual. We achieve that by building a model (Bayesian Network) of the real

61

3 DP DATA GENERATION WITH PRIVBAYES

data and by learning its parameters while we ensure the privacy of the data by accessing
it the minimum possible amount of times and always in a differentially private manner.
To conduct our experiments, we implement the aforementioned algorithms using the
Python programming language. We also import certain libraries/packages to assist us
in our implementation. The most important of them are:

1. SciPy

2. NumPy

3. Scikit-learn

4. NetworkX

5. MultiProcessing

and various others.

3.6.1 Datasets

For our experiments, we use real-world datasets from UCI Machine Learning Repository.
All of them are labeled and that means that each tuple belongs to a particular (and
known to us) category (class). The type of Machine Learning that uses labeled samples
is known as Supervised Learning. For more information on Supervised Learning, check
Chapter 5. The datasets are:

1. Heart Disease Dataset

2. Poker Hand Dataset

3. Adult Dataset

Our program infers the domain of each attribute i.e. the values it takes, while
reading the dataset.

Heart Disease: This dataset contains 303 instances of patients and it was created
by V.A. Medical Center, Long Beach and Cleveland Clinic Foundation. It contains 13
attributes for each patient which are:

Name Type Values Meaning

Age Continuous Real -

Sex Categorical 0,1 Female,Male

Chest Pain Categorical 0,1,2,3,4 No pain, ... , A lot of pain

Blood Pressure Continuous Real -

Cholesterol Continuous Real -

Blood Sugar Categorical 0,1 Less than 120 mg/dl,More than 120 mg/dl

Cardiogram Results Categorical 0,1,2 Normal, Serious, Very serious

62

https://www.scipy.org/
https://numpy.org/
https://scikit-learn.org/
https://networkx.github.io/
https://docs.python.org/3.8/library/multiprocessing.html
https://archive.ics.uci.edu/
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Poker+Hand
https://archive.ics.uci.edu/ml/datasets/Adult

3 DP DATA GENERATION WITH PRIVBAYES

Max Pulses Continuous Real -

Exercise Induced Angina Categorical 0,1 No, Yes

Oldpeak Continuous Real -

Slope Categorical 1,2,3 -

Number of major vessels Continuous Real -

Thal Categorical 3,6,7 Normal, Stable damage, Reversible damage

Each patient in the dataset belongs to a category/class according to the diagnosis
based on the 13 attributes. These are:

Name Meaning

Class 0 No heart disease

Class 1 Not likely to have a heart disease

Class 2 More likely to have a heart disease than class 1

Class 3 More likely to have a heart disease than class 2

Class 4 Most likely to have a heart disease

We applied additional pre-processing to the dataset, so as to make it suitable to our
purposes:

1. We encoded the (few) missing values (?) as "-1".

2. We converted the continuous attributes to categorical using the method described
in Section 3.4.1.

Poker Hand: This dataset contains 1025010 instances and it was created by Franz
Oppacher, Carleton University, Department of Computer Science Intelligent Systems
Research Unit. Each record is an example of a hand consisting of five playing cards
drawn from a standard deck of 52. Each card is described using two attributes (suit and
rank), for a total of 10 predictive attributes. The order of cards is important, which is
why there are 480 possible Royal Flush hands as compared to 4. More specifically we
have:

Name Type Values Meaning

Suit of card 1 Categorical 1,2,3,4 Hearts,Spades,Diamonds,Clubs

Rank of card 1 Categorical 1,2,3,4,5,6,7,8,9,10,11,12,13 Ace,2,3,...,Queen,King

Suit of card 2 Categorical 1,2,3,4 Hearts,Spades,Diamonds,Clubs

Rank of card 2 Categorical 1,2,3,4,5,6,7,8,9,10,11,12,13 Ace,2,3,...,Queen,King

Suit of card 3 Categorical 1,2,3,4 Hearts,Spades,Diamonds,Clubs

Rank of card 3 Categorical 1,2,3,4,5,6,7,8,9,10,11,12,13 Ace,2,3,...,Queen,King

Suit of card 4 Categorical 1,2,3,4 Hearts,Spades,Diamonds,Clubs

Rank of card 4 Categorical 1,2,3,4,5,6,7,8,9,10,11,12,13 Ace,2,3,...,Queen,King

63

3 DP DATA GENERATION WITH PRIVBAYES

Suit of card 5 Categorical 1,2,3,4 Hearts,Spades,Diamonds,Clubs

Rank of card 5 Categorical 1,2,3,4,5,6,7,8,9,10,11,12,13 Ace,2,3,...,Queen,King

Each poker player hand in the dataset belongs to a category/class based on the 10
attributes. These are:

Name Meaning

Class 0 Nothing in hand; not a recognized poker hand

Class 1 One pair; one pair of equal ranks within five cards

Class 2 Two pairs; two pairs of equal ranks within five cards

Class 3 Three of a kind; three equal ranks within five cards

Class 4 Straight; five cards, sequentially ranked with no gaps

Class 5 Flush; five cards with the same suit

Class 6 Full house; pair + different rank three of a kind

Class 7 Four of a kind; four equal ranks within five cards

Class 8 Straight flush; straight + flush

Class 9 Royal flush; Ace, King, Queen, Jack, Ten + flush

There is no need for pre-processing, because:

1. There are no missing values

2. All attributes are already categorical

Adult This dataset contains 48842 instances and it was created by Ronny Kohavi
and Barry Becker, Data Mining and Visualization Silicon Graphics department. Each
record refers to an adult individual and categorizes them in two classes, depending
whether they earn more or less than 50000 $ every year. 14 attributes describe each
adult:

Name Type Values Meaning

Age Continuous Real

Workclass Categorical 0,1,2,3,4,5,6,7
Private, Self-emp-not-inc, Self-emp-inc,

Federalgov,Local-gov, State-gov,
Without-pay, Never-worked

Fnlwgt Continuous Real

Education Categorical 0,1,2,3,4,...,15

Bachelors, Some-college,11th,HS-grad,
Prof-school, Assoc-acdm,
Assoc-voc, 9th,7th-8th,
12th, Masters,1st-4th,

10th,Doctorate,5th-6th,Preschool

Education number Continuous Real

64

3 DP DATA GENERATION WITH PRIVBAYES

Marital Status Categorical 0,1,2,3,4,5,6

Married-civ-spouse, Divorced,Never-
married, Separated,

Widowed, Married-spouse-absent,
Married-AF-spouse

Occupation Categorical 0,1,2,3,4,...,13

Tech-support, Craft-repair,
Other-service, Sales,

Exec-managerial, Prof-specialty,
Handlers-cleaners, Machine-op-inspct,

Adm-clerical, Farming-fishing,
Transport-moving, Priv-house-serv,

Protective-serv, Armed-Forces

Relationship Categorical 0,1,2,3,4,5
Wife, Own-child, Husband,Not-in-
family, Other-relative,Unmarried

Race Categorical 0,1,2,3,4
White, Asian-Pac-Islander,

Amer-Indian-Eskimo, Other, Black

Sex Categorical 0,1 Female,Male

Capital gain Continuous Real

Capital loss Continuous Real

Hours per week Continuous Real

Native country Categorical 0,1,2,3,...,40

United-States, Cambodia,
England, Puerto-Rico,
Canada, Germany,

Outlying-US(Guam-USVI-etc), India,
Japan, Greece,
South, China,
Cuba, Iran,

Honduras, Philippines,
Italy, Poland,

Jamaica, Vietnam,
Mexico, Portugal,
Ireland, France,

Dominican-Republic, Laos,
Ecuador, Taiwan,
Haiti, Columbia,

Hungary, Guatemala,
Nicaragua, Scotland,
Thailand, Yugoslavia,

El-Salvador Trinadad&Tobago,
Peru, Hong, Holand-Netherlands

Each adult in the dataset belongs to a category/class based on the 14 attributes.

65

3 DP DATA GENERATION WITH PRIVBAYES

These are:

Name Meaning

Class 0 earns > 50000 $ per year

Class 1 earns ≤ 50000 $ per year

We applied additional pre-processing to the dataset, so as to make it suitable to our
purposes:

1. We encoded the (few) missing values (?) as "-1".

2. We converted the continuous attributes to categorical using the method described
in Section 3.4.1.

3. The categorical attributes of the original dataset had string values (Check fourth
column of the attribute table). To be able to use the built-in classifiers that
Python offers, we encoded these values as integers as shown in the third column
of the attribute table.

3.6.2 Hyperparameters and classifiers

In our experiments, we will use the real dataset to generate a synthetic one. Then we
split the real dataset into a training set (80% of the dataset) and a testing set (20% of
the dataset). The training set is used to "train" our model to recognize samples and
place them in the correct class. The testing set is composed of samples that the model
has never seen before and is used to "test" how well trained the model is by having it to
place the test samples in classes. This process is known as classification. Then by using
the whole synthetic dataset as a training set and the testing set from the real data, we
perform classification again. If classification using the synthetic data as a training set
performs as well as classification using the real data does, then we have succeeded in
generating data that can be used in the place of real data. We perform this experiment
for many different cases by adjusting the following (hyper)parameters:

Name Use Values Meaning

dataset_choice Dataset that we will use 1,2,3 Heart Disease, Poker Hand,
Adult

M
Number of data holders
(sub-datasets)

1, 5, splitting
method
3 or 4 choice

split_choice
Method with which we split the
original dataset into many

0,1,2,3,4

One centralized dataset,
Equal-sized datasets,
Random-sized datasets,
Split by class,
Split by random attribute

66

3 DP DATA GENERATION WITH PRIVBAYES

k
degree of generated Bayesian
Network

1,2

str_choice Structure Learning method 1,2,3
Algorithm 4,
Algorithm 5,
Algorithm 6

ε
Parameter that determines the
level of DP

0.01,0.02,0.05,
0.1,0.2,0.5,1,
5,10,20

High Privacy,...,Low Privacy

Next we will speak of the classifiers that we will use:

1. Decision Tree Algorithm (CART): A decision tree is a tree where each node
represents a feature (attribute), each link (branch) represents a decision (rule)
and each leaf represents an outcome (categorical value). When training a dataset
to classify a variable, the idea of the Decision Tree is to divide the data into
smaller datasets based on a certain feature value until the target variables all
fall under one category. A computer splits the dataset based on the maximum
information gain 1. Every tree starts with a root node, i.e. the first split. The
decision tree will then consider all the possible splits and choose the one with
the highest information gain. This process will repeat itself until the nodes can
be split no more or some user-defined criteria are fullfiled. The new samples are
classified by placing them in their respective leaf nodes according to the splits.

2. AdaBoost Algorithm: AdaBoost, short for “Adaptive Boosting”, is the first
practical boosting algorithm proposed by Freund and Schapire in 1996. It focuses
on classification problems and aims to convert a set of weak classifiers into a strong
one. It places weights on the training samples, weights which are originally equal
to the inverse the size of the training set. These weights are constantly updated
during the training process and finally we have a prediction for each sample from
each individual classifier. The final prediction is the one with the most votes, the
one chosen by the majority of classifiers.

3. XGBoost Algorithm (XGB): XGBoost is a decision-tree-based ensemble 2

Machine Learning algorithm that uses a gradient boosting framework. XGBoost
algorithm was developed as a research project at the University of Washington.
This algorithm tends to surpass all other classification algorithms in problems
with structured data (images, text, e.t.c.). The reason for that is that it improves
the framework of Gradient Boosting with optimizations like Parallelization and

1The information gain is based on the decrease in entropy after a data-set is split on an
attribute.

2An ensemble is just a collection of predictors which come together (e.g. mean of all predic-
tions) to give a final prediction. The reason we use ensembles is that many different predictors
trying to predict same target variable will perform a better job than any single predictor alone.

67

3 DP DATA GENERATION WITH PRIVBAYES

Tree Pruning and techniques like Regularization, Sparsity Awareness, Weighted
Quantile Sketch, Cross-Validation and others.

4. Random Forest Algorithm: Random Forest is a learning method that operates
by constructing multiple decision trees. The final decision is made based on the
majority of the trees and is chosen by the random forest. The fundamental
concept behind random forest is a simple but powerful one — the wisdom of
crowds. In data science speak, the reason that the random forest model works so
well is that a large number of relatively uncorrelated models (trees) operating as
a committee will outperform any of the individual constituent models. The low
correlation between models is the key. Uncorrelated models can produce ensemble
predictions that are more accurate than any of the individual predictions. The
reason for this wonderful effect is that the trees protect each other from their
individual errors (as long as they don’t constantly all err in the same direction).
While some trees may be wrong, many other trees will be right, so as a group the
trees are able to move in the correct direction.

5. Support Vector Algorithm (SVC): “Support Vector Machine” (SVM) is a
supervised machine learning algorithm which can be used for both classification
or regression challenges. However, it is mostly used in classification problems. In
this algorithm, we plot each data item as a point in n-dimensional space (where n
is number of features you have) with the value of each feature being the value of
a particular coordinate. Our objective is to find a plane that has the maximum
margin, i.e the maximum distance between data points of both classes. Maximiz-
ing the margin distance provides some reinforcement so that future data points
can be classified with more confidence. Hyperplanes are decision boundaries that
help classify the data points. Data points falling on either side of the hyperplane
can be attributed to different classes. Also, the dimension of the hyperplane de-
pends upon the number of features. If the number of input features is 2, then
the hyperplane is just a line. If the number of input features is 3, then the hy-
perplane becomes a two-dimensional plane and so on. Support vectors are data
points that are closer to the hyperplane and influence the position and orientation
of the hyperplane. Using these support vectors, we maximize the margin of the
classifier.

6. Linear Support Vector Algorithm (Linear SVC): A version of the support
vector algorithms where the margins of the hyperplane have linear form.

7. Gradient Boosting Algorithm: Gradient boosting is a machine learning tech-
nique for regression and classification problems, which produces a prediction
model in the form of an ensemble of weak prediction models, typically decision
trees.

8. Gaussian Naive Bayes Algorithm (GNB): This algorithm calculates an apri-

68

3 DP DATA GENERATION WITH PRIVBAYES

ori probability P(ci) = Number of Instances in ci class/Total number of instances
for every class. Next for every sample x and class ci, we calculate the aposteriori
probability P (X|ci) = P (X1|ci) ∗ P (X2|ci) ∗ ...P (XN |ci), where Xi are the at-
tributes of the sample. Each one of the aposteriori probabilities is drawn from the
Gaussian distribution, after we calculate the mean and the variance for each at-
tribute given the respective class ci. Finally we calculate the probability P (ci|X)

for each sample X and class ci. So the sample X belongs to class ci which has the
largest probability P (ci|X).

9. Linear Discriminant Analysis Algorithm (LDA): Linear Discriminant Anal-
ysis or Normal Discriminant Analysis or Discriminant Function Analysis is a
dimensionality reduction technique which is commonly used for the supervised
classification problems. It is also used for modeling differences in groups i.e. clas-
sification. It is used to project the features in higher dimension space into a lower
dimension space. It calculates the mean and the co-variance matrices for each
class and uses the Bayes Theorem to calculate the probability that a sample X
belongs to class C for every X,C. As in Gaussian Naive Bayes, the X is classified
to the class C with the largest probability P(C|X).

10. Quadratic Discriminant Analysis Algorithm (QDA): An extended version
of Linear Discriminant Analysis, where classes are no longer assumed to have the
same co-variance and the decision boundary is not necessarily linear. As a result,
QDA tends to be more flexible than LDA.

11. Multi-layer Perceptron Algorithm (MLP): Multi-layer Perceptron is a fully
connected feed-forward artificial neural network. MLP is composed of at least
three layers. The output layer are has as many nodes as the number of classes.
For more details on neural networks, see Chapter 4.

12. K-Nearest Neighbors Algorithm (KNN): The k-nearest neighbors algorithm
is a simple, easy-to-implement supervised machine learning algorithm that can
be used to solve both classification and regression problems. The KNN algorithm
assumes that similar things exist in close proximity. In other words, similar things
are near to each other. The training examples are vectors in a multidimensional
feature space, each with a class label. As a result, this algorithm believes that
an unlabeled sample belongs to the same class that the k-nearest neighbouring
training samples belong to (k is a user-defined variable). To find the neighbours
of a sample, we use distance metrics like the Euclidean distance 1.

1In mathematics, the Euclidean distance or Euclidean metric is the "ordinary" straight-line
distance between two points in Euclidean space.

69

3 DP DATA GENERATION WITH PRIVBAYES

3.6.3 Experimental Evaluation

Examples of generated Bayesian Networks

We have executed our code for 767 different combinations of the aforementioned
parameters and we have received the prediction accuracy of each classifier when used
to classify the respective synthetic data. First, we present some examples of generated
Bayesian Networks (using the NetworkX and Matplotlib libraries):

(a) Dataset 1, k = 1

(b) Dataset 1, k = 2

70

3 DP DATA GENERATION WITH PRIVBAYES

Figure 10: Dataset 2, k = 1

Figure 11: Dataset 2, k = 2

71

3 DP DATA GENERATION WITH PRIVBAYES

Figure 12: Dataset 3, k = 1

Figure 13: Dataset 3, k = 2

72

3 DP DATA GENERATION WITH PRIVBAYES

Finding the best classifier

Secondly, we seek to find the best classifier for each dataset. To accomplish that
we examine for each dataset (dataset_choice) and each Structure Learning method
(str_choice), the cases which yield the highest average accuracy. These are (check next
3 pages):

73

ε XGB CART KNN
Linear
SVC

SVC
Random
Forest

MLP AdaBoost
Gradient
Boosting

GNB LDA QDA

Average
Accuracy
(Synthetic
Data)

Best
classifier

10 68,97 55,17 48,28 62,07 62,1 65,52 62,1 62,07 65,52 65,52 68,97 65,52 62,64 XGB LDA

1 68,97 51,72 55,17 62,07 65,5 51,72 72,4 62,07 62,07 68,97 68,97 62,07 62,64 MLP

10 68,97 51,72 55,17 51,72 58,6 68,97 69 65,52 58,62 65,52 65,52 65,52 62,07 XGB
Random
Forest

10 65,52 48,28 51,72 68,97 62,1 72,41 58,6 62,07 62,07 62,07 62,07 65,52 61,78
Random
Forest

5 62,07 44,83 55,17 62,07 62,1 58,62 65,5 62,07 65,52 55,17 68,97 65,52 60,63 LDA

10 65,52 62,07 65,52 37,93 62,1 58,62 62,1 62,07 62,07 51,72 58,62 75,86 60,34 QDA

10 65,52 58,62 48,28 72,41 65,5 62,07 72,4 65,52 72,41 65,52 65,52 58,62 64,36
Linear
SVC

MLP
Gradient
Boosting

20 62,07 58,62 58,62 65,52 62,1 58,62 65,5 51,72 68,97 65,52 65,52 51,72 61,2
Gradient
Boosting

10 62,07 55,17 62,07 62,07 62,1 65,52 55,2 48,28 62,07 65,52 72,41 58,62 60,92 LDA

10 62,07 55,17 51,72 62,07 62,1 62,07 62,1 44,83 68,97 62,07 62,07 65,52 60,05
Gradient
Boosting

1 68,97 65,52 37,93 62,07 62,1 62,07 65,5 58,62 62,07 62,07 62,07 48,28 59,77 XGB

20 58,62 51,72 58,62 55,17 65,5 58,62 62,1 55,17 55,17 65,52 62,07 55,17 58,62 SVC

20 62,07 58,62 48,28 68,97 62,1 65,52 65,5 48,28 58,62 65,52 65,52 58,62 60,63
Linear
SVC

20 58,62 58,62 58,62 55,17 62,1 65,52 58,6 58,62 58,62 65,52 62,07 62,07 60,34
Random
Forest

GNB

20 65,52 51,72 62,07 41,38 62,1 51,72 58,6 41,38 65,52 62,07 62,07 62,07 57,18 XGB
Gradient
Boosting

20 62,07 51,72 51,72 10,34 62,1 65,52 58,6 37,93 55,17 65,52 65,52 58,62 53,73
Random
Forest

LDA GNB

20 48,28 44,83 62,07 51,72 62,1 62,07 48,3 51,72 44,83 55,17 55,17 48,28 52,87 KNN SVC
Random
Forest

10 55,17 37,93 37,93 3,45 62,1 58,62 62,1 51,72 44,83 65,52 62,07 62,07 50,28 GNB

Table 7: Best accuracy results for every structure learning method (Dataset 1)

3
D

P
D

A
TA

G
E

N
E

R
A

T
IO

N
W

IT
H

P
R

IV
B

A
Y

E
S

ε XGB CART KNN
Linear
SVC

SVC
Random
Forest

MLP AdaBoost
Gradient
Boosting

GNB LDA QDA

Average
Accuracy
(Synthetic
Data)

Best
classifier

10 54,96 45,16 49,16 49,4 51,7 50,96 59,2 45,92 55,8 49,4 49,36 53,56 51,21 MLP

5 54,88 43,2 48,08 49,4 52,1 49,92 58,8 49,28 56,44 49,4 49,4 52,52 51,12 MLP

10 55,36 43,92 50,24 48,96 51,8 49,96 55,8 47,68 55,56 49,44 49,8 51,64 50,84 MLP

10 55,44 45,04 49,52 49,4 53 49,72 56,4 43,76 55,04 49,4 49,4 52,2 50,69 MLP

1 53,72 42,72 48,96 49,4 50 49,92 57,5 49,04 54,48 49,12 49,28 53,44 50,63 MLP

5 54,56 40,04 49,04 49,48 51,8 49,6 56,8 49,28 54,8 49,08 49,24 52,24 50,50 MLP

10 52,04 37,76 47,4 49,4 47,1 47,92 50 49,4 51,4 49,36 49,4 50,76 48,49 XGB

20 51 39,36 47,28 49,4 48,8 48,04 50,9 49,08 49,8 49,4 49,4 48,2 48,38 XGB

10 50,52 40,44 47,12 49,32 47,8 46,88 50,4 49,32 50,36 49,4 49,4 49,52 48,38 XGB

2 50,68 42,12 46,44 49,68 48,2 47,12 48 49,24 49,6 49,4 49,4 50 48,33 XGB

20 49,92 41,32 49,52 44,16 49,4 46,76 49,6 48,36 49,12 49,68 49,6 49,16 48,05 XGB

20 49,8 39,72 46,8 47,84 46,9 47,76 50,1 49,28 49,76 49,4 49,4 48,4 47,93 MLP

20 54,28 43,88 48,28 49,08 51,1 49,44 55,3 48,88 54,12 49,48 49,36 51,24 50,37 MLP

20 52,84 42,28 48,88 49,52 51,4 51 53,3 48,68 53,68 49,32 49,24 52,48 50,22
Gradient
Boosting

10 52,96 43,64 49,92 48,88 50 50,48 53,7 48,6 53,04 48,64 48,92 51,6 50,03 MLP

10 50,52 35,4 49,8 43,16 52,2 48,48 50,3 49,48 51,92 49,4 49,4 51,2 48,44 SVC

20 50,12 41,72 46,64 49,2 48,3 46,84 49,4 49,48 49,72 49,4 49,4 49,48 48,31 XGB

20 51,76 33,44 46,68 49,48 49,1 48,04 48 48,6 51,6 49,4 49,4 51,4 48,07 XGB

Table 8: Best accuracy results for every structure learning method (Dataset 2)

75

3
D

P
D

A
TA

G
E

N
E

R
A

T
IO

N
W

IT
H

P
R

IV
B

A
Y

E
S

ε XGB CART KNN
Linear
SVC

SVC
Random
Forest

MLP AdaBoost
Gradient
Boosting

GNB LDA QDA

Average
Accuracy
(Synthetic
Data)

Best
classifier

10 82,37 75,26 78,4 76,32 76,4 78,9 76,4 82,26 82,22 77,1 81,97 81,57 79,096667 XGB

0,05 81,25 77,85 79,61 79,65 76,4 81,17 77,4 80,09 81,33 76,89 76,72 76,85 78,761667
Gradient
Boosting

1 80,15 73,51 77,51 80,08 76,4 77,03 78,8 80,11 80,09 79,79 79 79,87 78,525833 XGB

10 80,11 73,02 77,43 79,97 76,4 76,64 79,1 80,11 80,1 79,52 79,03 79,54 78,415833 XGB

5 80,18 73,53 77,39 80,03 76,4 76,66 78,7 80,2 80,14 79,39 78,76 79,43 78,398333 AdaBoost

10 80,12 73,61 77,59 76,86 76,4 77,2 78,7 80,14 80,11 79,47 78,71 79,45 78,198333 AdaBoost

10 83,96 76,89 80,02 79,31 76,4 80,51 78,1 83,55 83,96 77,14 80,68 80,48 80,079167 XGB
Gradient
Boosting

20 82,36 74,85 77,3 75,04 76,4 78,26 78,4 82,24 82,27 76,9 80,33 80,28 78,714167 XGB

2 83,48 72,76 78,06 77,64 76,4 79,05 77,6 82,52 83,58 76,89 76,99 77,24 78,518333
Gradient
Boosting

20 82,31 74,76 77,25 75,29 76,4 78,64 75,2 82,21 82,24 76,75 80,22 79,87 78,428333 XGB

20 80,19 73,15 77,43 78,26 76,4 77,23 77,5 80,22 80,15 79,34 78,91 79,39 78,181667 AdaBoost

1 82,36 73,53 78,36 76,63 76,4 78,75 76,2 80,01 82,22 76,9 76,59 76,94 77,9025 XGB

20 84,87 79,27 81,1 80,35 76,4 81,65 79,3 84,64 84,85 79,34 82,19 81,74 81,31 XGB

10 84,58 79,55 81,14 76,59 76,4 82,36 78,9 84,36 84,59 78,26 81,55 80,36 80,718333
Gradient
Boosting

20 83,77 77 80,74 77,61 76,4 80,35 78,6 83,48 83,77 77,12 82,21 82,29 80,279167 XGB

20 83,95 77,23 79,99 80,3 76,4 80,52 79,3 83,94 83,95 77,14 80,5 80,12 80,278333 XGB
Gradient
Boosting

20 83,9 74,71 79,94 79,52 76,4 79,93 76,7 83,76 83,81 77,05 79,24 80,02 79,58 XGB

20 82,89 79,66 79,73 77,2 76,4 81,64 76,5 82,46 82,94 76,4 78,23 77,5 79,296667
Gradient
Boosting

Table 9: Best accuracy results for every structure learning method (Dataset 3)

76

3 DP DATA GENERATION WITH PRIVBAYES

Based on these results, we make the following observations and remarks:

• Dataset 3 yields much better accuracy for both real and synthetic data compared

to the other two. We attribute this fact to the statistical properties of the dataset

as well as to its usage of only two classes. As a result, the worst accuracy we can

expect from this dataset is 50 %. It is also worth noting that we cannot expect

high accuracy from the first dataset, since it has high dimensionality (a great

number of attributes), a small number of samples and uses five classes. This will

be made more obvious in our next experiment.

• As we anticipated, most of the cases that yield great accuracy correspond to high

values of ε. However, these values will not serve our purposes, since almost no

privacy is guaranteed.

• The best classifiers (by majority voting) are:

– Dataset 1: 1.XGBoost, Random Forest

– Dataset 2: 1.MLP Classifier, 2.XGBoost

– Dataset 3: 1.XGBoost, 2.Gradient Boost

– All Datasets: 1.XGBoost, 2.MLP Classifier, Gradient Boost

It worth noting that the most of the best classifiers are also ensemble 2 classifiers.

Finding an appropriate value of ε

For our next experiment, we aim to find an acceptable ε value for each of our

datasets. Since we require privacy, we will examine ε ≤ 1 values. To judge whether

a case has acceptable accuracy, we will calculate the difference between the average

accuracy of the real and synthetic data. The closer this result is to 0, the closer the

performance of the synthetic data is to that of the real data. A value equal to 0 means

that the synthetic data performs just as well as the real data does. In rare cases, where

the synthetic data performs even better that the real one, the value will be negative.

We will consider as acceptable differences the ones which have values ≤ 10%. The

first ε that corresponds to such a difference will be our choice. The results that we

will examine are those with the smallest difference of accuracy for each dataset and

Structure Learning method and with ε ≤ 1. These are:

2Ensemble learning is a way of generating various base classifiers from which a new classifier
is derived which performs better than any constituent classifier.

77

3 DP DATA GENERATION WITH PRIVBAYES

Structure
Learning

k ε
Average Accuracy
(Real Data) (%)

Average Accuracy
(Synthetic Data) (%)

Accuracy
(Real Data)
- Accuracy
(Synthetic Data) (%)

1 1 0,01 59,19583333 43,39083 15,805

1 1 0,01 59,19583333 42,24083 16,955

1 1 0,01 59,19583333 37,3575 21,83833

1 2 0,01 59,19583333 25,28667 33,90917

1 1 0,01 59,19583333 24,99917 34,19667

1 2 0,01 59,19583333 21,26333 37,9325

3 2 0,02 59,19583333 40,80417 18,39167

1 1 0,02 59,19583333 33,33167 25,86417

1 1 0,02 59,19583333 33,33167 25,86417

2 1 0,02 59,19583333 33,045 26,15083

2 2 0,02 59,19583333 30,4575 28,73833

1 2 0,02 59,19583333 29,02333 30,1725

1 2 0,05 59,19583333 45,4025 13,79333

1 1 0,05 59,19583333 37,07 22,12583

1 1 0,05 59,19583333 29,59667 29,59917

1 1 0,05 59,19583333 27,8725 31,32333

1 2 0,05 59,19583333 24,71167 34,48417

1 1 0,05 59,19583333 18,10333 41,0925

2 1 0,1 59,19583333 50,575 8,620833

1 1 0,1 59,19583333 49,13833 10,0575

1 2 0,1 59,19583333 46,83833 12,3575

1 1 0,1 59,19583333 43,39083 15,805

3 2 0,1 59,19583333 43,1025 16,09333

3 2 0,1 59,19583333 42,52833 16,6675

2 1 0,2 59,19583333 54,5975 4,598333

1 1 0,2 59,19583333 54,30917 4,886667

1 1 0,2 59,19583333 54,30917 4,886667

1 1 0,2 59,19583333 52,2975 6,898333

1 1 0,2 59,19583333 52,2975 6,898333

2 2 0,2 59,19583333 41,37833 17,8175

1 1 0,5 59,19583333 56,61 2,585833

1 2 0,5 59,19583333 54,02333 5,1725

1 2 0,5 59,19583333 52,87333 6,3225

1 1 0,5 59,19583333 52,01083 7,185

1 1 0,5 59,19583333 50,28667 8,909167

1 1 0,5 59,19583333 48,85 10,34583

78

3 DP DATA GENERATION WITH PRIVBAYES

1 2 1 59,19583333 62,64417 -3,44833

2 1 1 59,19583333 59,77167 -0,57583

1 2 1 59,19583333 55,46083 3,735

1 1 1 59,19583333 54,88417 4,311667

2 1 1 59,19583333 54,59667 4,599167

1 1 1 59,19583333 54,31167 4,884167

Table 10: Best accuracy results for ε ≤ 1 (Dataset 1)

Split
Method

Str Learning
Method

k ε
Average Accuracy
(Real Data) (%)

Average Accuracy
(Synthetic Data) (%)

Accuracy
(Real Data) -
Accuracy
(Synthetic Data)

2 1 1 0,01 53,85333333 42,45333 11,4

4 1 1 0,01 53,85333333 42,18667 11,66667

3 1 2 0,01 53,85333333 31,00667 22,84667

1 1 1 0,01 53,85333333 26,92333 26,93

3 1 1 0,01 53,85333333 23,21667 30,63667

4 1 2 0,01 53,85333333 21,50667 32,34667

1 1 1 0,02 53,85333333 44,91 8,943333

1 1 1 0,02 53,85333333 44,91 8,943333

4 1 1 0,02 53,85333333 44,06333 9,79

4 1 1 0,02 53,85333333 44,06333 9,79

2 1 1 0,02 53,85333333 41,55 12,30333

2 1 1 0,02 53,85333333 41,55 12,30333

4 1 1 0,05 53,85333333 47,19 6,663333

2 1 1 0,05 53,85333333 46,28 7,573333

1 1 2 0,05 53,85333333 45,14667 8,706667

1 1 1 0,05 53,85333333 43,92667 9,926667

3 1 1 0,05 53,85333333 42,02 11,83333

4 1 2 0,05 53,85333333 41,17333 12,68

2 1 2 0,1 53,85333333 48,09 5,763333

2 1 1 0,1 53,85333333 47,26 6,593333

4 1 2 0,1 53,85333333 47,09667 6,756667

4 2 1 0,1 53,85333333 46,46 7,393333

4 1 1 0,1 53,85333333 46,24667 7,606667

1 1 1 0,1 53,85333333 46,22333 7,63

2 2 1 0,2 53,85333333 47,58667 6,266667

1 1 1 0,2 53,85333333 47,53 6,323333

1 1 1 0,2 53,85333333 47,53 6,323333

79

3 DP DATA GENERATION WITH PRIVBAYES

1 2 1 0,2 53,85333333 46,99667 6,856667

3 2 1 0,2 53,85333333 46,97667 6,876667

4 1 2 0,2 53,85333333 46,58 7,273333

4 1 2 0,5 53,85333333 50,42333 3,43

2 1 2 0,5 53,85333333 49,78667 4,066667

1 1 2 0,5 53,85333333 48,31 5,543333

2 1 1 0,5 53,85333333 47,54 6,313333

3 1 2 0,5 53,85333333 47,42667 6,426667

3 1 1 0,5 53,85333333 47,26667 6,586667

1 1 2 1 53,85333333 50,63333 3,22

2 1 2 1 53,85333333 50,31 3,543333

4 1 2 1 53,85333333 50,20333 3,65

3 1 2 1 53,85333333 49,19 4,663333

1 1 1 1 53,85333333 48,30333 5,55

2 1 1 1 53,85333333 47,80667 6,046667

Table 11: Best accuracy results for ε ≤ 1 (Dataset 2)

Split
Method

Str Learning
Method

k ε
Average Accuracy
(Real Data) (%)

Average Accuracy
(Synthetic Data) (%)

Accuracy
(Real Data)
- Accuracy
(Synthetic Data)

4 1 1 0,01 81,84666667 76,67917 5,1675

4 1 2 0,01 81,84666667 76,5425 5,304167

2 1 1 0,01 81,84666667 73,92417 7,9225

1 1 1 0,01 81,84666667 73,51 8,336667

2 1 2 0,01 81,84666667 72,3225 9,524167

3 1 1 0,01 81,84666667 71,12583 10,72083

2 1 2 0,02 81,84666667 77,1925 4,654167

2 1 2 0,02 81,84666667 77,1925 4,654167

1 1 2 0,02 81,84666667 76,46167 5,385

1 1 2 0,02 81,84666667 76,46167 5,385

1 2 1 0,02 81,84666667 74,8125 7,034167

2 2 1 0,02 81,84666667 74,13083 7,715833

2 1 2 0,05 81,84666667 78,76167 3,085

4 1 2 0,05 81,84666667 74,28333 7,563333

1 1 1 0,05 81,84666667 74,14333 7,703333

3 1 1 0,05 81,84666667 73,96083 7,885833

4 1 1 0,05 81,84666667 73,52083 8,325833

1 1 2 0,05 81,84666667 71,1975 10,64917

80

3 DP DATA GENERATION WITH PRIVBAYES

2 1 2 0,1 81,84666667 77,88167 3,965

1 2 1 0,1 81,84666667 77,09083 4,755833

1 1 2 0,1 81,84666667 76,9275 4,919167

2 2 1 0,1 81,84666667 75,41833 6,428333

3 1 2 0,1 81,84666667 75,035 6,811667

4 1 2 0,1 81,84666667 74,81 7,036667

2 1 2 0,2 81,84666667 78,8525 2,994167

2 1 2 0,2 81,84666667 78,8525 2,994167

2 2 2 0,2 81,84666667 76,0025 5,844167

1 1 2 0,2 81,84666667 75,02833 6,818333

1 1 2 0,2 81,84666667 75,02833 6,818333

3 1 1 0,2 81,84666667 75,00667 6,84

3 1 1 0,5 81,84666667 78,0075 3,839167

1 2 1 0,5 81,84666667 76,40083 5,445833

1 2 1 0,5 81,84666667 76,40083 5,445833

2 1 2 0,5 81,84666667 75,115 6,731667

4 1 1 0,5 81,84666667 74,965 6,881667

3 2 1 0,5 81,84666667 74,93667 6,91

1 1 1 1 81,84666667 78,52583 3,320833

3 1 1 1 81,84666667 78,09917 3,7475

2 2 2 1 81,84666667 77,9025 3,944167

3 3 1 1 81,84666667 76,90167 4,945

1 2 2 1 81,84666667 76,54 5,306667

4 3 1 1 81,84666667 75,785 6,061667

Table 12: Best accuracy results for ε ≤ 1 (Dataset 3)

The connection between accuracy and the ε parameter is made clearer by observing

the following plots where split_choice = 2 (random-sized datasets), since this value

frequently corresponds to real-life conditions.

81

3 DP DATA GENERATION WITH PRIVBAYES

Figure 14: Dataset 1, k = 1

Figure 15: Dataset 2, k = 1

Figure 16: Dataset 3, k = 1

82

3 DP DATA GENERATION WITH PRIVBAYES

Figure 17: Dataset 1, k = 2

Figure 18: Dataset 2, k = 2

Figure 19: Dataset 3, k = 2

83

3 DP DATA GENERATION WITH PRIVBAYES

According to these plots, we make the following observations with regards to the

Structure Learning algorithms:

• Accuracy difference decreases while ε increases, due to the fact that less amount

of noise is added to the probability distributions.

• In dataset 1, for both k values, Structure Learning 1 clearly outperforms the

other two and Structure Learning 2 outperforms Structure Learning 3. So the

best method is Structure Learning 1.

• In dataset 2, for k = 1 , Structure Learning 1 and Structure Learning 2 have the

same accuracy and outperform Structure Learning 3. However, it is worth noting

that Structure Learning 3 has almost the same performance as the other methods

for ε ≥ 1.7. So the best methods are Structure Learning 1 and 2.

• In dataset 2, for k = 2, the methods perform as they do for dataset 1 and k = 1,

but the difference in their performance is much smaller and tends to become zero

for ε ≥ 8. So the best method is Structure Learning 1.

• In dataset 3, for k = 1, Structure Learning 2 has the best performance for ε ∈
[0.01, 0.2) and the worst for ε ∈ [0.2, 2]. Also Structure Learning 3 performs

better than Structure Learning 1 for ε ∈ [1, 8] and worse for ε ∈ [0.01, 1). For

ε ∈ [0.01, 1), the difference in the performance is negligible, since the difference

in accuracy is below 10%. Since we are mostly interested in small values of ε, the

best methods are Structure Learning 1 and 2.

• In dataset 3, for k = 2, Structure Learning 1 has the best performance for ε ∈
[0.01, 0.6) and Structure Learning 2 has the best performance for ε ∈ [0.6, 6.5).

So the best methods are Structure Learning 1 and 2.

Based on these observations, the results we presented in the tables before and by

using the aforementioned criterion for the accuracy difference, we find that the best ε

value for each dataset is:

• Dataset 1: ε ' 0.5

• Dataset 2: ε ' 0.1

• Dataset 3: ε ' 0.02

Once again, we notice that the third dataset performs the best, since it achieves

high accuracy (low accuracy difference) using a small value of ε.

84

3 DP DATA GENERATION WITH PRIVBAYES

Finding the best Structure Learning method

Using these values for ε, we will attempt to find the optimal Structure Learning

method using the samples of each dataset with the smallest accuracy difference. These

are:

split_choice str_choice k ε

Average
Accuracy
(Real Data)

Average
Accuracy
(Synthetic Data)

Average
Accuracy
(Difference)

3 1 1 0,5 59,19583 56,61 2,585833

1 1 2 0,5 59,19583 54,02333 5,1725

3 1 2 0,5 59,19583 52,87333 6,3225

1 1 1 0,5 59,19583 52,01083 7,185

2 1 1 0,5 59,19583 50,28667 8,909167

4 1 1 0,5 59,19583 48,85 10,34583

Table 13: Best accuracy dfference samples of dataset 1 with ε = 0.5

split_choice str_choice k ε

Average
Accuracy
(Real Data)

Average
Accuracy
(Synthetic Data)

Average
Accuracy
(Difference)

2 1 2 0,1 53,85333 48,09 5,763333

2 1 1 0,1 53,85333 47,26 6,593333

4 1 2 0,1 53,85333 47,09667 6,756667

4 2 1 0,1 53,85333 46,46 7,393333

4 1 1 0,1 53,85333 46,24667 7,606667

1 1 1 0,1 53,85333 46,22333 7,63

Table 14: Best accuracy dfference samples of dataset 2 with ε = 0.1

split_choice str_choice k ε

Average
Accuracy
(Real Data)

Average
Accuracy
(Synthetic Data)

Average
Accuracy
(Difference)

2 1 2 0,02 81,84667 77,1925 4,654167

2 1 2 0,02 81,84667 77,1925 4,654167

1 1 2 0,02 81,84667 76,46167 5,385

1 1 2 0,02 81,84667 76,46167 5,385

1 2 1 0,02 81,84667 74,8125 7,034167

2 2 1 0,02 81,84667 74,13083 7,715833

Table 15: Best accuracy dfference samples of dataset 3 with ε = 0.02

85

3 DP DATA GENERATION WITH PRIVBAYES

However, the results are still inconclusive. The optimal value for str_choice seems

to be 1 in most cases, followed by Structure Learning 2. However, as we mentioned

before, Algorithm 4 does indeed perform quite well, but only in low noise conditions.

Even though the ε parameter guarantees a certain amount of privacy, our experiments

so far use low values of k. For greater values of k, the noise used in Algorithm 4 may

increase dramatically, thus ruining its performance. Thus, we cannot yet say for certain

which method is the optimal one.

In an another attempt to determine which of the methods performs the best, we

will use the Kullback–Leibler divergence metric. Kullback–Leibler divergence is defined

as:

DKL(P ||Q) =
∑
x∈X

P (x) ∗ log
(
P (x)

Q(x)

)
The KL-divergence is a measure of how one probability distribution P is different

from a second, reference probability distribution Q. In our case, P is the probability

distribution of the real data and Q is the probability distribution of the synthetic data.

Q was created after we added Laplacian noise to the frequency distribution C or to the

probability distribution P of the real data. A Kullback-Leibler divergence of 0 indicates

that the two distributions in question are identical. In other words, the smaller the

divergence, the more alike are the two distributions and their respective datasets. As a

result, we desire small values of KL-divergence. By observing the following plots:

Figure 20: Dataset 1, k = 1

86

3 DP DATA GENERATION WITH PRIVBAYES

Figure 21: Dataset 1, k = 2

Figure 22: Dataset 2, k = 1

87

3 DP DATA GENERATION WITH PRIVBAYES

Figure 23: Dataset 2, k = 2

Figure 24: Dataset 3, k = 1

88

3 DP DATA GENERATION WITH PRIVBAYES

Figure 25: Dataset 3, k = 2

we can make certain remarks:

• Using KL-divergence, the performance superiority of Structure Learning 1 is clear

in all cases, since it always yields a smaller KL-divergence between the original

and noisy probability distributions.

• It is also worth noting that the KL-divergence of both methods for ε = 0.01

(starting point) is always far greater for k=2 than it is for k=1, due to having

larger probability distributions.

• KL-divergence decreases as ε increase, due to the less amount of noise required.

This was to be expected.

• Our earlier choice for the values of the ε parameter is justified further, if we

observe Structure Learning 1 for k = 1 for each dataset. If we do so, we will

see that KL-divergence drops below 10 approximately when ε takes the value we

chose before.

• Even though inferior to Structure Learning 1, Structure Learning 2 also yields

very good results in datasets 2 and 3 for k = 1.

Comparison of distributed and centralized splitting methods

Until now, we used either the value 2 for split_choice or any of the distributed

dataset values (1,2,3,4) for our experiments. Using both accuracy and KL-divergence,

89

3 DP DATA GENERATION WITH PRIVBAYES

we will determine whether split_choice = 2 is truly the optimal value and how well the

distributed model performs compared to a centralized one (split_choice = 0). First,

we will compare the accuracy difference for every dataset, structure learning method, k

value and splitting method. Dataset 1 does not yield helpful results, so it is excluded

from this part of the experiment.

Figure 26: Dataset 2, k = 1 , Structure Learning 1

Figure 27: Dataset 2, k = 1 , Structure Learning 2

90

3 DP DATA GENERATION WITH PRIVBAYES

Figure 28: Dataset 2, k = 1 , Structure Learning 3

Figure 29: Dataset 2, k = 2 , Structure Learning 1

Figure 30: Dataset 2, k = 2 , Structure Learning 2

91

3 DP DATA GENERATION WITH PRIVBAYES

Figure 31: Dataset 2, k = 2 , Structure Learning 3

Figure 32: Dataset 3, k = 1 , Structure Learning 1

Figure 33: Dataset 3, k = 1 , Structure Learning 2

92

3 DP DATA GENERATION WITH PRIVBAYES

Figure 34: Dataset 3, k = 1 , Structure Learning 3

Figure 35: Dataset 3, k = 2 , Structure Learning 1

Figure 36: Dataset 3, k = 2 , Structure Learning 2

93

3 DP DATA GENERATION WITH PRIVBAYES

Figure 37: Dataset 3, k = 2 , Structure Learning 3

Remarks:

• In most of the examined cases, all splitting methods yield an accuracy difference

that decreases when epsilon increases (With small fluctuations around ε = 1).

• In most of the examined cases, the difference in the performance of the splitting

methods is quite small.

• Usually, it is the centralized version that performs best. An exception is for

Dataset = 2, k = 2 and Structure Learning 3 (Figure 31).

The centralized version seems to be the best of the splitting methods. However, since

we are interested in the distributed model and the difference in performance between

the methods is small (≤ 10%), we will continue to consider 2 (Random-sized) to be the

optimal value. We will now perform the same comparison using KL-divergence (dataset

1 included):

94

3 DP DATA GENERATION WITH PRIVBAYES

Figure 38: Dataset 1, k = 1 , Structure Learning 1

Figure 39: Dataset 1, k = 1 , Structure Learning 2

95

3 DP DATA GENERATION WITH PRIVBAYES

Figure 40: Dataset 1, k = 2 , Structure Learning 1

Figure 41: Dataset 1, k = 2 , Structure Learning 2

96

3 DP DATA GENERATION WITH PRIVBAYES

Figure 42: Dataset 2, k = 1 , Structure Learning 1

Figure 43: Dataset 2, k = 1 , Structure Learning 2

97

3 DP DATA GENERATION WITH PRIVBAYES

Figure 44: Dataset 2, k = 2 , Structure Learning 1

Figure 45: Dataset 2, k = 2 , Structure Learning 2

98

3 DP DATA GENERATION WITH PRIVBAYES

Figure 46: Dataset 3, k = 1 , Structure Learning 1

Figure 47: Dataset 3, k = 1 , Structure Learning 2

99

3 DP DATA GENERATION WITH PRIVBAYES

Figure 48: Dataset 3, k = 2 , Structure Learning 1

Figure 49: Dataset 3, k = 2 , Structure Learning 2

100

3 DP DATA GENERATION WITH PRIVBAYES

Remarks:

• As we noticed the last time we used KL-divergence:

– As ε increases, KL-divergence decreases due to the smaller amount of noise

– KL-divergence values (especially for small ε values) are greater for k=2 that

they are for k=1

• The centralized version seems to be superior once again for all cases. One excep-

tion is for Dataset 1, k = 2 , Structure Learning 2 (Figure 41) and ε ≤ 0.5

• The distributed splitting methods once again seem to perform the approximately

the same. Since we cannot claim which of them is the best, we will keep consid-

ering 2 (Random-sized) as the optimal value of the split_choice parameter.

3.7 Conclusions & Future Work

In this chapter, we introduced Bayesian Networks and discussed various methods on

how to utilize them to generate differentially private synthetic data from real data on

the distributed model. Next after implementing these methods in code, we performed

a detailed experimental evaluation in an attempt to grade our model using classifier

accuracy and the KL-divergence metric. Another goal we accomplished is to choose

optimal, or at the very least, appropriate values for the hyperparameters of our model.

With regards to the Structure Learning methods, Algorithm 4 seems to perform the

best (at least for small values of k), followed closely by Algorithm 5. We also per-

formed a comparison of the centralized and distributed model and found out that the

centralized model outperforms the distributed ones, but the difference is in most cases

inconsequential.

However, there are still improvements and additions that could be done. Those that

we would suggest are:

1. To grade our model, we experimented with different k values, but we did not

choose an optimal one. In section 4.6 of the PrivBayes paper (21, 1), there is an

idea about using the definition of θ-usefulness to choose an optimal value for k.

2. Instead of using mutual information I as a scoring function for the generated

Bayesian Networks, there is an improved solution suggested in section 4.3 and 4.4

of the PrivBayes paper, a F function that apparently yields better results than I

as showed by Figure 2 of the same paper.

3. One could improve the performance of the algorithms we used and suggest alter-

native ones.

101

4 NEURAL NETWORKS

4 Neural networks

4.1 Introduction

Our imagination has long been captivated by visions of machines that can learn and

imitate human intelligence. Nowadays, software programs that can acquire new knowl-

edge and skills through experience are becoming increasingly common. We use such

machine learning programs to discover new music that we enjoy, and to quickly find the

exact shoes we want to purchase online. Machine learning programs allow us to dictate

commands to our smartphones and allow our thermostats to set their own temperatures.

Machine learning programs can decipher sloppily-written mailing addresses better than

humans and guard credit cards from fraud more vigilantly. From investigating new

medicines to estimating the page views for versions of a headline, machine learning

software is becoming central to many industries. Machine learning has even encroached

on activities that have long been considered uniquely human, such as writing columns

in a newspaper.

When most people hear “Machine Learning,” they picture some kind of highly-

advanced robot. But Machine Learning is not just a futuristic fantasy, it’s already

here. In fact, it has been around for decades in some specialized applications, such as

Optical Character Recognition (OCR). But the first ML application that really became

mainstream, improving the lives of hundreds of millions of people, took over the world

back in the 1990s: it was the spam filter. By observing thousands of emails that

have been previously labeled as either spam or ham, spam filters learn to classify new

messages. It was followed by hundreds of ML applications that now quietly power

hundreds of products and features that you use regularly, from better recommendations

to voice search. Machine learning is the design and study of software artifacts that

use past experience to make future decisions; it is the study of programs that learn

from data. The fundamental goal of machine learning is to generalize, or to induce an

unknown rule from examples of the rule’s application.

4.2 Machine Learning Tasks

Machine learning tasks can be split into two major categories, supervised and unsuper-

vised learning.

The majority of practical machine learning uses supervised learning. Supervised

learning is where you have input variables (x) and an output variable (Y) and you

use an algorithm to learn the mapping function from the input to the output (Y =

f(x)). The goal is to approximate the mapping function so well that when you have

102

4 NEURAL NETWORKS

new input data (x) that you can predict the output variables (Y) for that data. It

is called supervised learning because the process of an algorithm learning from the

training dataset can be thought of as a teacher supervising the learning process. We

know the correct answers, the algorithm iteratively makes predictions on the training

data and is corrected by the teacher. Learning stops when the algorithm achieves an

acceptable level of performance. In Supervised learning, you train the machine using

data which is well "labeled." It means some data is already tagged with the correct

answer. A supervised learning algorithm learns from labeled training data, helps you to

predict outcomes for unforeseen data. Supervised learning can be split into two main

subcategories:

• Classification: A classification problem is when the output variable is a category,

such as “red” or “blue” or “disease” and “no disease”.

• Regression: A regression problem is when the output variable is a real value, such

as “dollars” or “weight”.

Unsupervised learning is where you only have input data (X) and no corresponding

output variables. The goal for unsupervised learning is to model the underlying struc-

ture or distribution in the data in order to learn more about the data. These are called

unsupervised learning because unlike supervised learning there are no correct answers

and there is no teacher. Algorithms are left to their own devices to discover and present

the underlying structure in the data. Unsupervised learning can be split into two main

subcategories:

• Clustering: It mainly deals with finding a structure or pattern in a collection of

uncategorized data. Clustering algorithms will process your data and find natural

clusters(groups) if they exist in the data. You can also modify how many clusters

your algorithms should identify. It allows you to adjust the granularity of these

groups.

• Association: This unsupervised technique is about discovering interesting rela-

tionships between variables in large databases. For example, people that buy a

new home most likely to buy new furniture.

For this study, we are interested in classification problems.

4.3 Training data and test data

The observations in the training set comprise the experience that the algorithm uses

to learn. In supervised learning problems, each observation consists of an observed re-

sponse variable and one or more observed explanatory variables.

103

4 NEURAL NETWORKS

The test set is a similar collection of observations that is used to evaluate the perfor-

mance of the model using some performance metric. It is important that no observations

from the training set are included in the test set. If the test set does contain examples

from the training set, it will be difficult to assess whether the algorithm has learned to

generalize from the training set or has simply memorized it. A program that generalizes

well will be able to effectively perform a task with new data. In contrast, a program

that memorizes the training data by learning an overly complex model could predict

the values of the response variable for the training set accurately, but will fail to predict

the value of the response variable for new examples.

Memorizing the training set is called overfitting. A program that memorizes its ob-

servations may not perform its task well, as it could memorize relations and structures

that are noise or coincidence. Balancing memorization and generalization, or over-fitting

and under-fitting, is a problem common to many machine learning algorithms.

In addition to the training and test data, a third set of observations, called a valida-

tion or hold-out set, is sometimes required. The validation set is used to tune variables

called hyperparameters (learning rate, batch size e.t.c.), which control how the model

is learned. The program is still evaluated on the test set to provide an estimate of its

performance in the real world; its performance on the validation set should not be used

as an estimate of the model’s real-world performance since the program has been tuned

specifically to the validation data. It is common to partition a single set of supervised

observations into training, validation, and test sets. There are no requirements for the

sizes of the partitions, and they may vary according to the amount of data available. It

is common to allocate 50% or more of the data to the training set, 25% to the test set,

and the remainder to the validation set.

4.4 Introduction to Neural Networks

The most successful model in the context of pattern recognition is the feed-forward neu-

ral network. The term ‘neural network’ has its origins in attempts to find mathematical

representations of information processing in biological systems (McCulloch and Pitts,

1943; Widrow and Hoff, 1960; Rosenblatt, 1962; Rumelhart et al., 1986). Indeed, it has

been used very broadly to cover a wide range of different models, many of which have

been the subject of exaggerated claims regarding their biological plausibility. From the

perspective of practical applications of pattern recognition, however, biological realism

would impose entirely unnecessary constraints.

Birds inspired us to fly, burdock plants inspired velcro, and nature has inspired

104

4 NEURAL NETWORKS

many other inventions. It seems only logical, then, to look at the brain’s architecture

for inspiration on how to build an intelligent machine. This is the key idea that in-

spired artificial neural networks (ANNs). However, although planes were inspired by

birds, they don’t have to flap their wings. Similarly, ANNs have gradually become quite

different from their biological counterparts. Some researchers even argue that we should

drop the biological analogy altogether (e.g., by saying “units” rather than “neurons”),

lest we restrict our creativity to biologically plausible systems

ANNs are at the very core of Deep Learning. They are versatile, powerful and scal-

able, making them ideal to tackle large and highly complex Machine Learning tasks,

such as classifying billions of images (e.g. Google Images), powering speech recognition

services (e.g. Apple’s Siri) or recommending the best videos to watch to hundreds of

millions of users every day (e.g. YouTube).

The artificial neural networks, that will concern us, are powerful non linear models

for classification and regression that use a different strategy to overcome the percep-

tron’s limitations. Artificial neural networks are described by three components. The

first is the model’s architecture, or topology, which describes the layers of neurons and

structure of the connections between them. The second component is the activation

function used by the artificial neurons. The third component is the learning algorithm

that finds the optimal values of the weights.

There are two main types of artificial neural networks:

• Feed-forward neural networks are the most common type of neural net, and

are defined by their directed acyclic graphs. Signals only travel in one direc-

tion—towards the output layer—in feed-forward neural networks. Feed-forward

neural networks are commonly used to learn a function to map an input to an

output.

• Feed-back neural networks, or recurrent neural networks, do contain cycles. The

feed-back cycles can represent an internal state for the network that can cause the

network’s behavior to change over time based on its input. The temporal behavior

of feed-back neural networks makes them suitable for processing sequences of

inputs.

The multilayer perceptron (MLP) is the one of the most commonly used artificial

neural networks. The name is a slight misnomer; a multilayer perceptron is not a single

perceptron with multiple layers, but rather multiple layers of artificial neurons that can

be perceptrons. The layers of the MLP form a directed, acyclic graph. Generally, each

layer is fully connected to the subsequent layer; the output of each artificial neuron

105

4 NEURAL NETWORKS

in a layer is an input to every artificial neuron in the next layer towards the output.

MLPs have three or more layers of artificial neurons.The input layer consists of simple

input neurons. The input neurons are connected to at least one hidden layer of artificial

neurons. The hidden layer represents latent variables; the input and output of this layer

cannot be observed in the training data. Finally, the last hidden layer is connected to

an output layer.

Figure 50: A simple neural network with two inputs, two outputs and one hidden
layer with three neurons

The artificial neurons, or units, in the hidden layer commonly use non linear activa-

tion functions such as the hyperbolic tangent function and the logistic function, which

are given by the following equations respectively:

106

4 NEURAL NETWORKS

Figure 51: The most common activation functions

As with other supervised models, our goal is to find the values of the weights that

minimize the value of a cost function. The mean squared error cost function is commonly

used with multilayer perceptrons. It is given by the following equation, where m is the

number of training instances:

Figure 52: The most common loss function

Obviously, there are many other activation and loss functions, each suited to spe-

cific applications. The reason we wish to minimize the aforementioned loss function is

because we want the difference between the label yi (or target) of the sample and the

response f(xi) of the network (or prediction) about the sample to be a small as possible.

In other words, we want for yi to be equal to f(xi), so that the network classifies the

samples correctly at (almost) all times. In the next section, we will discuss the process

with which we accomplish this.

4.4.1 Deep Learning

Deep neural networks, which are remarkably effective for many machine learning tasks,

define parameterized functions from inputs to outputs as compositions of many layers

of basic building blocks, such as affine transformations and simple non linear functions.

Commonly used examples of the latter are sigmoids and rectified linear units (ReLUs).

By varying parameters of these blocks, we can "train" such a parameterized function

with the goal of fitting any given finite set of input/output examples.

Deep learning aims to extract complex features from high-dimensional data and

use them to build a model that relates inputs to outputs (e.g., classes). Deep learning

architectures are usually constructed as multi-layer networks so that more abstract fea-

tures are computed as non linear functions of lower-level features. We mainly focus on

supervised learning, where the training inputs are labeled with correct classes, but in

principle our approach can also be used for unsupervised, privacy-preserving learning,

107

4 NEURAL NETWORKS

too. Multi-layer neural networks (2 hidden layers or more) are the most common form

of deep learning architectures.

In general, the values computed in higher layers represent more abstract features

of the data. The first layer is composed of the raw features extracted from the data,

e.g., the intensity of colors in each pixel in an image or the frequency of each word in a

document. The outputs of the last layer correspond to the abstract answers produced

by the model. If the neural network is used for classification, these abstract features

also represent the relation between input and output. The non linear function f and

the weight matrices determine the features that are extracted at each layer. The main

challenge in deep learning is to automatically learn from training data the values of the

parameters (weight matrices) that maximize the objective of the neural network (e.g.,

classification accuracy).

4.5 Learning Process - Minimizing the cost function

Learning the parameters of a neural network is a non linear optimization problem. In

supervised learning, the objective function is the output of the neural network. The

algorithms that are used to solve this problem are typically variants of gradient descent.

Simply put, gradient descent starts at a random point (set of parameters for the neural

network), then, at each step, computes the gradient of the non linear function being

optimized and updates the parameters so as to decrease the gradient. This process

continues until the algorithm converges to a local optimum.

In a neural network, the gradient of each weight parameter is computed through

feed-forward and back-propagation procedures. Feed-forward sequentially computes

the output of the network given the input data and then calculates the error, i.e., the

difference between this output and the true value of the function. Back-propagation

propagates this error back through the network and computes the contribution of each

neuron to the total error. The gradients of individual parameters are computed from

the neurons’ activation values and their contribution to the error.

4.5.1 Forward propagation

During the forward propagation stage, the features are input to the network and fed

through the subsequent layers to produce the output activations. First, we compute

the activation for the unit Hidden1. We find the weighted sum of input to Hidden1,

and then process the sum with the activation function. Note that Hidden1 receives a

constant input from a bias unit that is not depicted in the diagram in addition to the

inputs from the input units. In the following diagram, g(x) is the activation function:

108

4 NEURAL NETWORKS

Next, we compute the activation for the second hidden unit. Like the first hidden

unit, it receives weighted inputs from both of the input units and a constant input from

a bias unit. We then process the weighted sum of the inputs, or preactivation, with the

activation function as shown in the following figure:

109

4 NEURAL NETWORKS

We then compute the activation for Hidden3 in the same manner:

Having computed the activations of all of the hidden units in the first layer, we

proceed to the second hidden layer. In this network, the first hidden layer is fully

connected to the second hidden layer. Similar to the units in the first hidden layer, the

units in the second hidden layer receive a constant input from bias units that are not

depicted in the diagram. We proceed to compute the activation of Hidden4:

We next compute the activations of Hidden5 and Hidden6. Having computed the

activations of all of the hidden units in the second hidden layer, we proceed to the

output layer in the following figure. The activation of Output1 is the weighted sum of

the second hidden layer’s activations processed through an activation function. Similar

to the hidden units, the output units both receive a constant input from a bias unit:

110

4 NEURAL NETWORKS

We calculate the activation of Output2 in the same manner:

We computed the activations of all of the units in the network, and we have now

completed forward propagation. The network is not likely to approximate the true

function well using the initial random values of the weights. We must now update the

values of the weights so that the network can better approximate our function. We will

do so using the algorithm of backpropagation.

4.5.2 Gradient Descent

In this section, we will discuss a method to efficiently estimate the optimal values of

the model’s parameters called gradient descent. Note that our definition of a good fit

has not changed; we will still use gradient descent to estimate the values of the model’s

parameters that minimize the value of the cost function.

111

4 NEURAL NETWORKS

Gradient descent is sometimes described by the analogy of a blindfolded man who

is trying to find his way from somewhere on a mountainside to the lowest point of the

valley. He cannot see the topography, so he takes a step in the direction with the steep-

est decline. He then takes another step, again in the direction with the steepest decline.

The sizes of his steps are proportional to the steepness of the terrain at his current

position. He takes big steps when the terrain is steep, as he is confident that he is still

near the peak and that he will not overshoot the valley’s lowest point. The man takes

smaller steps as the terrain becomes less steep. If he were to continue taking large steps,

he may accidentally step over the valley’s lowest point. He would then need to change

direction and step toward the lowest point of the valley again. By taking decreasingly

large steps, he can avoid stepping back and forth over the valley’s lowest point. The

blindfolded man continues to walk until he cannot take a step that will decrease his

altitude; at this point, he has found the bottom of the valley.

Formally, gradient descent is an optimization algorithm that can be used to estimate

the local minimum of a function. We can use gradient descent to find the values of the

model’s parameters that minimize the value of the cost function. Gradient descent itera-

tively updates the values of the model’s parameters by calculating the partial derivative

of the cost function at each step. It is important to note that gradient descent estimates

the local minimum of a function. A three-dimensional plot of the values of a convex

cost function for all possible values of the parameters looks like a bowl. The bottom

of the bowl is the sole local minimum. Non-convex cost functions can have many local

minima, that is, the plots of the values of their cost functions can have many peaks and

valleys. Gradient descent is only guaranteed to find the local minimum; it will find a

valley, but will not necessarily find the lowest valley. Fortunately, the residual sum of

the squares cost function is convex.

An important hyperparameter of gradient descent is the learning rate, which con-

trols the size of the blindfolded man’s steps. If the learning rate is small enough, the

cost function will decrease with each iteration until gradient descent has converged on

the optimal parameters. As the learning rate decreases, however, the time required for

gradient descent to converge increases; the blindfolded man will take longer to reach

the valley if he takes small steps than if he takes large steps. If the learning rate is

too large, the man may repeatedly overstep the bottom of the valley, that is, gradient

descent could oscillate around the optimal values of the parameters.

There are two varieties of gradient descent that are distinguished by the number

of training instances that are used to update the model parameters in each training

iteration. The gradients of the parameters can be averaged over all available data. This

112

4 NEURAL NETWORKS

Figure 53: Finding the local optimum of an one-dimensional convex function
using GD

algorithm, known as batch gradient descent, is not efficient, especially if learning on a

large dataset. Stochastic gradient descent (SGD) is a drastic simplification which com-

putes the gradient over an extremely small subset (mini-batch) of the whole dataset. In

the simplest case, corresponding to maximum stochasticity, one data sample is selected

at random in each optimization step.

Let w be the attened vector of all parameters in a neural network, composed of Wk

for every k. Let E be the error function, i.e., the difference between the true value of

the objective function and the computed output of the network. The back-propagation

algorithm computes the partial derivative of E with respect to each parameter in w

and updates the parameter so as to reduce its gradient. The update rule of stochastic

gradient descent for a parameter wj is:

where α is the learning rate and Ei is computed over the mini-batch i. We refer to

one full iteration over all available input data as an epoch. Note that each parameter

in vector w is updated independently from other parameters. Some techniques set the

learning rate adaptively, but still preserve this independence.

4.5.3 Backpropagation

The backpropagation algorithm is commonly used in conjunction with an optimization

algorithm such as gradient descent to minimize the value of the cost function. The

algorithm takes its name from a portmanteau of backward propagation, and refers to

113

4 NEURAL NETWORKS

the direction in which errors flow through the layers of the network. Backpropagation

can theoretically be used to train a feed-forward network with any number of hidden

units arranged in any number of layers, though computational power constrains this

capability.

Backpropagation is similar to gradient descent in that it uses the gradient of the

cost function to update the values of the model parameters. Unlike the linear models

we have previously seen, neural nets contain hidden units that represent latent vari-

ables; we can’t tell what the hidden units should do from the training data. If we do

not know what the hidden units should do, we cannot calculate their errors and we

cannot calculate the gradient of cost function with respect to their weights. A naive

solution to overcome this is to randomly perturb the weights for the hidden units. If a

random change to one of the weights decreases the value of the cost function, we save

the change and randomly change the value of another weight. An obvious problem with

this solution is its prohibitive computational cost. Backpropagation provides a more

efficient solution.

We can calculate the error of the network only at the output units. The hidden

units represent latent variables; we cannot observe their true values in the training data

and thus, we have nothing to compute their error against. In order to update their

weights, we must propagate the network’s errors backwards through its layers. We will

begin with Output1. Its error is equal to the difference between the true and predicted

outputs, multiplied by the partial derivative of the unit’s activation:

We then calculate the error of the second output unit:

114

4 NEURAL NETWORKS

We computed the errors of the output layer. We can now propagate these errors

backwards to the second hidden layer. First, we will compute the error of hidden unit

Hidden4. We multiply the error of Output1 by the value of the weight connecting

Hidden4 and Output1. We similarly weigh the error of Output2. We then add these

errors and calculate the product of their sum and the partial derivative of Hidden4:

We similarly compute the errors of Hidden5:

115

4 NEURAL NETWORKS

We then compute the Hidden6 error in the following figure:

We calculated the error of the second hidden layer with respect to the output layer.

Next, we will continue to propagate the errors backwards towards the input layer. The

error of the hidden unit Hidden1 is the product of its partial derivative and the weighted

sums of the errors in the second hidden layer:

116

4 NEURAL NETWORKS

We similarly compute the error for hidden unit Hidden2:

We similarly compute the error for Hidden3:

117

4 NEURAL NETWORKS

We computed the errors of the first hidden layer. We can now use these errors to

update the values of the weights. We will first update the weights for the edges con-

necting the input units to Hidden1 as well as the weight for the edge connecting the

bias unit to Hidden1. We will increment the value of the weight connecting Input1 and

Hidden1 by the product of the learning rate, error of Hidden1, and the value of Input1.

We will similarly increment the value of Weight2 by the product of the learning rate,

error of Hidden1, and the value of Input2. Finally, we will increment the value of the

weight connecting the bias unit to Hidden1 by the product of the learning rate, error

of Hidden1, and one.

We will then update the values of the weights connecting hidden unit Hidden2 to

the input units and the bias unit using the same method:

118

4 NEURAL NETWORKS

Next, we will update the values of the weights connecting the input layer to Hidden3:

Since the values of the weights connecting the input layer to the first hidden layer is

updated, we can continue to the weights connecting the first hidden layer to the second

hidden layer. We will increment the value of Weight7 by the product of the learning

rate, error of Hidden4, and the output of Hidden1. We continue to similarly update the

values of weights Weight8 to Weight15:

119

4 NEURAL NETWORKS

The weights for Hidden5 and Hidden6 are updated in the same way. We updated

the values of the weights connecting the two hidden layers. We can now update the

values of the weights connecting the second hidden layer and the output layer. We

increment the values of weights W16 through W21 using the same method that we used

for the weights in the previous layers:

120

4 NEURAL NETWORKS

After incrementing the value of Weight21 by the product of the learning rate, error

of Output2, and the activation of Hidden6, we have finished updating the values of the

weights for the network. We can now perform another forward pass using the new values

of the weights; the value of the cost function produced using the updated weights should

be smaller. We will repeat this process until the model converges or another stopping

criterion is satisfied. Unlike the linear models we have discussed, backpropagation does

not optimize a convex function. It is possible that backpropagation will converge on

parameter values that specify a local, rather than global, minimum. In practice, local

optima are frequently adequate for many applications.

4.6 Generative Adversarial Networks

4.6.1 Introduction

In recent years, more and more data in different application domains are becoming

readily available for the rapid development of both computer hardware and software

technologies. Many data mining methodologies have been developed for analyzing those

big data sets. One representative example is deep learning, which typically needs a huge

amount of training samples to achieve promising performance. However, there exists

domains where it is impossible to get as much data as we want. Medicine and Health

Informatics are such fields. On individual patient level analysis, each patient is treated

as a sample in model training process. However, considering the complexity of many

diseases, the number of all patients from the whole world is still very small and far from

enough. Moreover, we can never get the medical data from all patients for privacy and

sensitivity reasons. Further, the expensive and time-consuming data collection process

also limits the amount of data. Thus, the problem of building high-quality medical

121

4 NEURAL NETWORKS

analytics models remains very challenging at present.

Generative models have provided us a promising direction to alleviate the data

scarcity issue. By sketching the data distribution from a small set of training data,

we are able to sample from the distribution and generate much more samples for our

study. By combining the complexity of deep neural networks and game theory, the

Generative Adversarial Network (GAN) and its variants have demonstrated impressive

performance in modeling the underlying data distribution, generating high quality “fake"

samples that are hard to be differentiated from real ones. Ideally, with the high quality

generative distribution in hand, we can protect the privacy of raw data by releasing

only the distribution instead of the raw data to the public or constrained individuals,

and can even sample datasets to fit our needs and conduct further analysis.

Generative Adversarial Networks (GANs) have the potential to build next-generation

models, as they can mimic any distribution of data. Major research and development

work is being undertaken in this field because it is one of the most rapidly growing areas

of machine learning (ML).

4.6.2 Definition

GANs are a type of generative model in which two neural networks, commonly known

as the Generator (Gy) and Discriminator (Dw), are trained against each other in a zero-

sum game 1. These neural networks are parameterized by their edge weights —y and

w for Gy and Dw, respectively—which specify the function computed by each network.

The Generator takes as input a random vector drawn from a known distribution,

and produces a new data point that (hopefully) has a similar distribution to the true

data distribution. If we are given a finite-size database, then the true data distribution

can be interpreted as the empirical distribution that would arise from sampling entries

of the database with replacement. The Discriminator then tries to detect whether this

new data point is from the Generator or from the true data distribution. If the Dis-

criminator is too successful in distinguishing between the Generator’s outputs and the

true data, then this feedback is used to improve the Generator’s data generation process.

We want to train Dw to maximize the probability of assigning right labels, whereas

1In game theory and economic theory, a zero-sum game is a mathematical representation of
a situation in which each participant’s gain or loss of utility is exactly balanced by the losses
or gains of the utility of the other participants. If the total gains of the participants are added
up and the total losses are subtracted, they will sum to zero. Thus, cutting a cake, where
taking a larger piece reduces the amount of cake available for others, is a zero-sum game if all
participants value each unit of cake equally.

122

4 NEURAL NETWORKS

Figure 54: A block diagram of a GAN

Gy should minimize the difference between its output distribution and true data distri-

bution. The value of this two player zero-sum game between Gy and Dw can be written

as following min-max optimization problem:

where pdata is true data distribution and pz is a known noise distribution. In the

min-max form of the game, Dw chooses w to maximize O(y,w) and Gy chooses y to min-

imize O(y,w). Their equilibrium strategies will achieve objective value min maxymaxw
O(y,w). However, since O (y,w) is a non-convex non-concave objective, these opti-

mal strategies are typically not efficiently computable. Instead, we use gradient de-

scent/ascent schemes to allow Dw and Gy to iteratively learn their optimal strategies.

We estimate the function and its gradients by sampling random elements from pdata

and pz. Let [z1, ..., zm] and [x1, ..., xm] be random samples from pz and from pdata

respectively. We write Oi(y,w) := log(Dw(xi)) + log(1 - Dw(Gy(zi))) as i-th sampled

function, and take the average value over the m samples to get estimate of O:

Next we take the gradient with respect y and w: gy := OyOsample(y, w) and gw :=

OwOsample(y, w). Since the input data were randomly sampled, these are stochastic

gradients. Finally, we do the gradient update step, with gradient ascent for D, w ←
w+ nw ∗ gw and gradient descent for G, y ← y + ny ∗ gy for step sizes nw and ny. This

update process repeats either until the parameters converge or until a pre-specified

number of update steps have occurred.

123

4 NEURAL NETWORKS

4.6.3 Nash Equilibrium

The Nash equilibrium describes a particular state in game theory. This state can be

achieved in a non-cooperative game in which each player tries to pick the best possible

strategy to gain the best possible outcome for themselves, based on what they expect

the other players to do. Eventually, all the players reach a point at which they have

all picked the best possible strategy for themselves based on the decisions made by the

other players. At this point in the game, they would gain no benefit from changing

their strategy. This state is the Nash equilibrium.

A famous example of how the Nash equilibrium can be reached is with the Prisoner’s

Dilemma. In this example, two criminals (A and B) have been arrested for committing

a crime. Both have been placed in separate cells with no way of communicating with

each other. The prosecutor only has enough evidence to convict them for a smaller

offense and not the principal crime, which would see them go to jail for a long time. To

get a conviction, the prosecutor gives them an offer:

• If A and B both implicate each other in the principal crime, they both serve 2

years in jail.

• If A implicates B but B remains silent, A will be set free and B will serve 3 years

in jail (and vice versa).

• If A and B both keep quiet, they both serve only 1 year in jail on the lesser charge.

From these three scenarios, it is obvious that the best possible outcome for A and

B is to keep quiet and serve 1 year in jail. However, the risk of keeping quiet is 3 years

as neither A nor B have any way of knowing that the other will also keep quiet. Thus,

they would reach a state where their actual optimum strategy would be to confess as it

is the choice that provides the highest reward and lowest penalty. When this state has

been reached, neither criminal would gain any advantage by changing their strategy;

thus, they would have reached a Nash equilibrium.

4.6.4 Practical Applications

GANs have some fairly useful practical applications, which include the following:

• Image generation: Generative networks can be used to generate realistic images

after being trained on sample images. For example, if we want to generate new

images of dogs, we can train a GAN on thousands of samples of images of dogs.

Once the training has finished, the generator network will be able to generate new

124

4 NEURAL NETWORKS

images that are different from the images in the training set. Image generation is

used in marketing, logo generation, entertainment, social media, and so on.

• Text-to-image synthesis: Generating images from text descriptions is an in-

teresting use case of GANs. This can be helpful in the film industry, as a GAN

is capable of generating new data based on some text that you have made up. In

the comic industry, it is possible to automatically generate sequences of a story.

• Face aging: This can be very useful for both the entertainment and surveillance

industries. It is particularly useful for face verification because it means that

a company doesn’t need to change their security systems as people get older. An

age-cGAN network can generate images at different ages, which can then be used

to train a robust model for face verification.

• Image-to-image translation: Image-to-image translation can be used to con-

vert images taken in the day to images taken at night, to convert sketches to

paintings, to style images to look like Picasso or Van Gogh paintings, to convert

aerial images to satellite images automatically, and to convert images of horses

to images of zebras. These use cases are ground-breaking because they can save

us time.

• Video synthesis: GANs can also be used to generate videos. They can generate

content in less time than if we were to create content manually. They can enhance

the productivity of movie creators and also empower hobbyists who want to make

creative videos in their free time.

• High-resolution image generation: If you have pictures taken from a low-

resolution camera, GANs can help you generate high-resolution images without

losing any essential details. This can be useful on websites.

• Completing missing parts of images: If you have an image that has some

missing parts, GANs can help you to recover these sections.

4.6.5 Challenges of GAN models

• Setting up failure and bad initialization: the generator and discriminator

reach a state where they cannot improve any further given the other is kept

unchanged. Now the setup of gradient descent is to take a step in a direction

that reduces the loss measure defined on the problem—but we are by no means

enforcing the networks to reach Nash equilibrium in GAN, which have non-convex

objective with continuous high dimensional parameters. The networks try to take

successive steps to minimize a non-convex objective and end up in an oscillating

125

4 NEURAL NETWORKS

Figure 55: Face generation using generative modeling has improved significantly
in the last four years (15, 5).

process rather than decreasing the underlying true objective. In most cases, when

your discriminator attains a loss very close to zero, then right away you can figure

out something is wrong with your model. But the biggest difficulty is figuring

out what is wrong. Another practical thing done during the training of GAN is

to purposefully make one of the networks stall or learn slower, so that the other

network can catch up. And in most scenarios, it’s the generator that lags behind

so we usually let the discriminator wait. This might be fine to some extent, but

remember that for the generator to get better, it requires a good discriminator

and vice versa. Ideally the system would want both the networks to learn at a rate

where both get better over time. The ideal minimum loss for the discriminator is

close to 0.5— this is where the generated images are indistinguishable from the

real images from the perspective of the discriminator (16, 6).

• Mode collapse: One of the main failure modes with training a generative adver-

sarial network is called mode collapse or sometimes the helvetica scenario. The

basic idea is that the generator can accidentally start to produce several copies

of exactly the same image, so the reason is related to the game theory setup.

We can think of the way that we train generative adversarial networks as first

maximizing with respect to the discriminator and then minimizing with respect

to the generator. If we fully maximize with respect to the discriminator before

we start to minimize with respect to the generator, everything works out just

fine. But if we go the other way around and we minimize with respect to the

generator and then maximize with respect to the discriminator, everything will

actually break and the reason is that if we hold the discriminator constant, it will

describe a single region in space as being the point that is most likely to be real

rather than fake and then the generator will choose to map all noise input values

to that same most likely to be real point.

• Problems with counting: GANs can sometimes be far-sighted and fail to dif-

ferentiate the number of particular objects that should occur at a location.

126

4 NEURAL NETWORKS

• Problems with perspective: GANs sometimes are not capable of differenti-

ating between front and back view and hence fail to adapt well with 3D objects

while generating 2D representations from it.

• Problems with global structures: GANs do not understand holistic struc-

tures, similar to problems with perspective. For example, in the bottom left

image, it generates an image of a quadruple cow, that is, a cow standing on its

hind legs and simultaneously on all four legs. That is definitely unrealistic and

not possible in real life!

127

5 IMPLEMENTING DP WITH GANS

5 Implementing DP with GANs

5.1 Introduction

While the utility of deep learning is undeniable, the same training data that has made it

so successful also presents serious privacy issues. building on large amounts of contextu-

ally rich information. Centralized collection of photos, speech, and video from millions

of individuals is filled with privacy risks. The most important and commonplace are:

1. Users’ data kept by companies is subject to subpoenas and warrants, as well as

spying by national-security and intelligence outfits. Furthermore, the Internet

giants’ monopoly on “big data” collected from millions of users leads to their

monopoly on the AI models learned from this data.

2. Images and voice recordings often contain accidentally captured sensitive items,

license plates, computer screens, the sound of other people speaking and ambient

noise , etc.

3. Companies gathering this data keep it forever ; users from whom the data was

collected can neither delete it, nor control how it will be used, nor influence what

will be learned from it.

4. Users may benefit from new services, such as powerful image search, voice-activated

personal assistants, and machine translation of websites in foreign languages, but

the underlying models constructed from their collective data remain proprietary

to the companies that created them.

5. In many domains, most notably those related to medicine, the sharing of data

about individuals is not permitted by law or regulation. Consequently, biomed-

ical and clinical researchers can only perform deep learning on the datasets be-

longing to their own institutions. It is well-known that neural-network models

become better as the training datasets grow bigger and more diverse. Due to not

being able to use the data from other institutions when training their models,

researchers may end up with worse models.

The GANs were introduced as a solution to these problems. However, even the GAN

itself can implicitly disclose privacy information of the training samples. The adversarial

training procedure and the high model complexity of deep neural networks, jointly

encourage a distribution that is concentrated around training samples. By repeated

sampling from the distribution, there is a considerable chance of recovering the training

samples. Due to possible privacy violations of the individuals whose data is used to

train these models, publishing or sharing generative models is not always viable.

128

5 IMPLEMENTING DP WITH GANS

5.2 Differentially Private Synthetic Data Generation via

GANs

For the remainder of this study, we will explain two algorithms that are utilized in

order to solve the privacy problems of the GAN and we will perform some experiments.

Unlike our experiments with the Bayesian Networks, the algorithms that we will utilize

in this chapter employ the centralized model.

The first algorithm suggested by Liyang Xie et al. (4,) implements a Differentially

Private Generative Adversarial Network (DPGAN), which provides proven privacy con-

trol for the training data using the concept of Differential Privacy. The difference from

the traditional GAN is that the proposed model applies a combination of carefully

designed noise and gradient clipping and uses the Wasserstein distance (31, 1) as an

approximation of the distance between probability distributions.

The second algorithm suggested by (32, 2) generates differentially private data by

adding a layer that adds appropriate Gaussian Noise to the outputs of one of the con-

volutional layers of the Discriminator.

5.3 Experimental Evaluation

To implement the aforementioned algorithms, we used the Tensorflow (Python) pack-

age to build a DCGAN (Deep Convolutional Generative Adversarial Network). The

DCGAN that we utilized has the following structure:

• Discriminator:

1. A 2D Convolutional layer with a kernel of size 5 x 5, strides 2 x 2 and

64 filters. This layer creates a convolution kernel that is convolved with

the layer input over a single spatial (or temporal) dimension to produce a

tensor of outputs. The reason we use a Convolutional Neural Network is

because it is able to successfully capture the spatial and temporal dependen-

cies in an image through the application of relevant filters. The architecture

performs a better fitting to the image dataset due to the reduction in the

number of parameters involved and reusability of weights. Another role of

the Convolutional Neural Network is to reduce the images into a form which

is easier to process, without losing features which are critical for getting a

good prediction.

2. A leaky ReLU layer. This layer performs a threshold operation, where any

input value less than zero is multiplied by a fixed scalar. Values greater

than zero are unaffected.

129

5 IMPLEMENTING DP WITH GANS

3. A Dropout layer with rate = 0.3. Dropout randomly sets a fraction rate

of input units to 0 at each update during training time, which helps pre-

vent overfitting. All Dropout layers are disabled when we use the second

algorithm.

4. A 2D Convolutional layer with a kernel of size 5 x 5, strides 2 x 2 and 128

filters.

5. A leaky ReLU layer.

6. A Gaussian noise layer that simply adds noise to its inputs, the outputs of

the previous layer. This layer is disable when we use the first algorithm.

7. A Dropout layer with rate = 0.3.

8. A Flatten layer. This layer converts the 2-dimensional image into an one-

dimensional vector. This process is known as vectorization.

9. A Dense layer with 1 unit. A Dense layer is regular densely-connected NN

layer.

• Generator:

1. A Dense layer with 12544 units.

2. A BatchNormalization layer. This layer normalizes the activations of the

previous layer at each batch, i.e. applies a transformation that maintains

the mean activation close to 0 and the activation standard deviation close

to 1. It is a technique for improving the speed, performance and stability of

artificial neural networks.

3. A leaky ReLU layer.

4. A Reshape layer. It reshapes an output to a certain shape.

5. A Conv2DTranspose layer with a kernel of size 5 x 5, strides 1 x 1 and 128 fil-

ters. A transposed convolutional layer carries out a regular convolution but

reverts its spatial transformation. It is followed by a BatchNormalization

and a leaky ReLU layer.

6. A Conv2DTranspose layer with a kernel of size 5 x 5, strides 2 x 2 and 64

filters. It is followed by a BatchNormalization and a leaky ReLU layer.

7. A Conv2DTranspose layer with a kernel of size 5 x 5, strides 2 x 2 and 1

filter.

For the first algorithm, we added Gaussian noise to the discriminator loss. For the

second algorithm, we placed a Gaussian noise layer after the second convolutional layer.

Then we tested the two algorithms for various values of ε on the MNIST database. The

130

5 IMPLEMENTING DP WITH GANS

MNIST database (Modified National Institute of Standards and Technology database)

is a large database of handwritten digits that is commonly used for training various

image processing systems. The MNIST database contains 60000 training images. Our

purpose is that the GAN learns to generate its own handwritten digits after training

with the original dataset. Then we will observe how the ε value that we choose affects

the quality of the generated images. Since a smaller ε means a greater amount of noise,

we expect the images to get more blurred as we decrease the ε value.

For the first algorithm, we have:

Figure 56: Generated digits with
ε = 0.5

Figure 57: Generated digits with
ε = 1

Figure 58: Generated digits with
ε = 5

Figure 59: Generated digits with
ε = 10

Figure 60: Generated digits with
ε = 20

Figure 61: The generated digits
without any noise

131

5 IMPLEMENTING DP WITH GANS

For the second algorithm, we have:

Figure 62: Generated digits with
ε = 0.5

Figure 63: Generated digits with
ε = 1

Figure 64: Generated digits with
ε = 5

Figure 65: Generated digits with
ε = 10

Figure 66: Generated digits with
ε = 20

Figure 67: The generated digits
without any noise

We notice that with both algorithms, the image quality deteriorates as we decrease

the ε value and some of the generated digits are unrecognizable even to the human eye.

Next, we will attempt to judge the utility of the generated images using the clas-

sification accuracy as a metric. We have generated 60000 images for each algorithm

and ε value. Now we will use a separate convolutional neural network to label them.

This network is known as a student in the Machine Learning literature. Real data will

132

5 IMPLEMENTING DP WITH GANS

be used as the training set and the generated data will be used as the testing set. Af-

terwards, we will train the same network using both real and generated data. In both

cases, we will use a testing set from the MNIST database. Finally we will compare

the classification accuracy that is produced when we train the network using real data,

with the accuracy produced when we use generated data. The student network that we

utilized has the following structure:

1. A 2D Convolutional layer with a kernel of size 3 x 3.

2. A 2D Max Pooling layer with a pool of size 2 x 2. Similar to the Convolutional

Layer, the Pooling layer is responsible for reducing the spatial size of the convolved

feature. This is to decrease the computational power required to process the

data through dimensionality reduction. Furthermore, it is useful for extracting

dominant features which are rotational and positional invariant, thus maintaining

the process of effectively training of the model. Max Pooling returns the maximum

value from the portion of the image covered by the Kernel.

3. A Flatten layer.

4. A Dense layer with 128 units and ReLU as an activation function.

5. A Dropout layer with rate = 0.2.

6. A Dense layer with 10 units (since the MNIST database has 10 classes) and

SoftMax as an activation function.

We have trained and tested the network for each algorithm and ε value and received

the classification accuracy. Both algorithms perform excellently, since the classification

accuracy is quite high even for small ε values. The first algorithm seems to perform

slightly better. The results are presented in the following table:

Algorithm ε Classification Accuracy

Real Data - 98.58 %

Generated Data - 96.67 %

First Algorithm 20 96.32 %

First Algorithm 10 95.71 %

First Algorithm 1 90.35 %

First Algorithm 0.5 86.85 %

Second Algorithm 20 96.61 %

Second Algorithm 10 94.89 %

Second Algorithm 1 91.67 %

Second Algorithm 0.5 84.81 %

133

5 IMPLEMENTING DP WITH GANS

5.4 Conclusion & Future Work

In this and the previous chapter, we introduced Neural Networks and more specifically

the Generative Adversarial Networks. We also discussed some methods on how to uti-

lize them to generate differentially private synthetic data from real data. In contrast

to when we used Bayesian Networks, we now used image data due to the fact that

most of the literature concerning GANs does so. We implemented two of the suggested

algorithms and executed some experiments.

Using GANs to generate differentially private synthetic data is a very new idea and

it is still at its infancy. However the studies and the results that are published so far are

quite promising. It is quite possible that, in the near future, GANs will be the state-of-

the-art method to generate synthetic data and as such they are worthy of further study.

To someone that is truly interested, we would suggest:

1. One could test the algorithms with many different datasets, especially datasets

that are comprised of non-binary images.

2. The performance of the neural networks heavily depends on the choice of their

hyperparameters such as learning rate, batch size, epochs e.t.c. We chose values

based on the papers we studied, but it is quite possible that another set of values

can be perform better. One could also experiment with the number and type of

layers included in the neural networks.

3. Besides the two papers that we referenced, there are many others that show

promise. One that is quite interesting is published by Digvijay Boob et al (13,

3). In this study, an algorithm is suggested that uses GANs on non-image data

such as categorical and continuous data. However, the author has not provided

an implementation or an evaluation for the algorithm, which makes it interesting

for researching purposes.

4. It would be interesting to implement and experiment with algorithms that utilize

GANs, but operate on distributed data, like we did in Chapter 3 using Bayesian

Networks.

134

REFERENCES

References

[1] The Algorithmic Foundations of Differential Privacy by Cynthia Dwork Microsoft

Research, USA and Aaron Roth, University of Pennsylvania, USA

[2] Context-Aware Generative Adversarial Privacy by Chong Huang, Peter Kairouz,

Lalitha Sankar and Ram Rajagopal

[3] On the Protection of Private Information in Machine Learning Systems: Two Recent

Approaches Martın Abadi, Ulfar Erlingsson, Ian Goodfellow, H. Brendan McMahan,Ilya

Mironov, Nicolas Papernot, Kunal Talwar, and Li Zhang – Google

[4] Differentially Private Generative Adversarial Network Liyang Xie, Kaixiang Lin, Shu

Wang, Fei Wang, Jiayu Zhou - Computer Science and Engineering, Michigan State Uni-

versity, Department of Computer Science, Rutgers University Department of Healthcare

Policy and Research, Weill Cornell Medical School

[5] Privacy-Preserving Deep Learning - Reza Shokri,Vitaly Shmatikov - The University

of Texas at Austin, Cornell Tech

[6] Differential Privacy: An Economic Method for Choosing Epsilon - Justin Hsu, Marco

Gaboardi, Andreas Haeberlen, Sanjeev Khanna, Arjun Narayan, Benjamin C. Pierce,

Aaron Roth

[7] Explaining Differential Privacy in 3 Levels of Difficulty by Nicolas Sartor -

https://aircloak.com/explaining-differential-privacy/

[8] Wolfram Mathworld - http://mathworld.wolfram.com/

[9] GameTheory.net - http://www.gametheory.net/dictionary/Utility.html

[10] Pattern Recognition and Machine Learning - Chapter 5 - C.M.Bishop

[11] Mastering Machine Learning With Scikit-Learn - Chapter 1 and 10 - Gavin Hack-

eling

[12] Deep Learning with Differential Privacy - Martín Abadi, Andy Chu, Ian Goodfellow.

H. Brendan McMahan, Ilya Mironov, Kunal Talwar, Li Zhang

[13] Differentially Private Synthetic Data Generation via GANs - Digvijay Boob, Rachel

Cummings, Dhamma Kimpara, Uthaipon (Tao) Tantipongpipat, Chris Waites, Kyle

Zimmerman,

[14] Generative Adversarial Networks Projects - Kailash Ahirwar

[15] Generative Deep Learning - David Foster

[16] Learning Generative Adversarial Networks - Kuntal Ganguly

135

REFERENCES

[17] Introduction to Probability - Dimitri P. Bertsekas, John N. Tsitsiklis

[18] Learning Bayesian Networks - Richard E. Neapolitan

[19] "What can we learn privately?" - Shiva Prasad Kasiviswanathan, Homin K. Lee,

Kobbi Nissim, Sofya Raskhodnikova, Adam Smith

[20] Probabilistic Inference and Differential Privacy - Oliver Williams (Microsoft Re-

search), Frank McSherry (Microsoft Research)

[21] PrivBayes: private data release via bayesian networks - Jun Zhang, Graham Cor-

mode, Cecilia M. Procopiuc, Divesh Srivastava, Xiaokui Xiao

[22] Robust and private Bayesian inference - Christos Dimitrakakis, Blaine Nelson, Aika-

terini Mitrokotsa, Benjamin I. P. Rubinstein

[23] Approximating Discrete Probability Distributions with Dependence Trees - C.K.

Chow, Senior Member of IEEE and C. N. Liu ,Member of IEEE

[24] Introduction to Algorithms - Thomas H. Cormen

[25] The Algorithm Design Manual - Steven S Skiena - Chapter 15.2

[26] Uberveillance and the social implications of microchip implants : emerging tech-

nologies. Michael, M. G., Michael, Katina, 1976-. Hershey, PA. ISBN 978-1466645820.

OCLC 843857020

[27] S. L. Warner. Randomized response: A survey technique for eliminating evasive

answer bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

[28] A. V. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining

of association rules. In ACM SIGKDD, pages 217–228, 2002.

[29] Data Analytics with Differential Privacy - Diploma Thesis - Technical University

of Crete - Vassilis V. Digalakis, Jr.

[30] DataSynthesizer: Privacy-Preserving Synthetic Datasets, Haoyue Ping - Drexel

University, USA, Julia Stoyanovich - Drexel University, USA, Bill Howe - University of

Washington, USA

[31] Wasserstein GAN by Martin Arjovsky, Soumith Chintala and Léon Bottou

[32] Generating Differentially Private Datasets using GANs by Anonymous Authors

136

	Introduction
	Data and their privacy
	Shortcomings of Privacy-Preserving Data Analysis
	What is Differential Privacy?
	What Differential Privacy does not promise
	Implementing Differential Privacy with Machine Learning
	Bayesian Networks
	Neural Networks

	Thesis Organization & Contributions

	Differential Privacy
	The model of computation
	Centralized model
	Local model

	Randomized Response
	Basic Terms
	Defining Differential Privacy
	Parameter
	Parameter
	Privacy Loss

	Useful probabilistic tools
	Laplace Mechanism
	Exponential Mechanism
	Composition Theorems

	DP Data Generation with PrivBayes
	Privacy-preserving data analysis with DP in the distributed model
	Bayes' Theorem
	Bayesian Networks
	Introduction
	Definition

	Distributed Bayesian Network Learning with Differential Privacy
	Introduction
	Learning Bayesian Networks from data

	PrivBayes
	Introduction
	First Phase: Structure Learning
	Second Phase: Parameter Learning
	Third Phase: Synthetic Data Generation

	Experimental Evaluation
	Datasets
	Hyperparameters and classifiers
	Experimental Evaluation

	Conclusions & Future Work

	Neural networks
	Introduction
	Machine Learning Tasks
	Training data and test data
	Introduction to Neural Networks
	Deep Learning

	Learning Process - Minimizing the cost function
	Forward propagation
	Gradient Descent
	Backpropagation

	Generative Adversarial Networks
	Introduction
	Definition
	Nash Equilibrium
	Practical Applications
	Challenges of GAN models

	Implementing DP with GANs
	Introduction
	Differentially Private Synthetic Data Generation via GANs
	Experimental Evaluation
	Conclusion & Future Work

	References

