
TECHNICAL UNIVERSITY OF CRETE

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

DIPLOMA THESIS

Adversarial Learning
in Statistical Dialogue Systems

Author: Commitee:
Dialektakis George Associate Professor Michael G. Lagoudakis

Associate Professor Georgios Chalkiadakis
Dr. Vassilios Diakoloukas

A thesis submitted in partial fulfillment of the requirements for the
Diploma degree in Electrical and Computer Engineering

July 2020

Adversarial Learning in Statistical Dialogue Systems

by George Dialektakis

Abstract

In the past few years, the machine learning community has shifted its attention in
Generative Adversarial Networks (GANs) and has shown their enormous potential
in image, video and audio generation. Nevertheless, they haven’t been used widely
in the field of Spoken Dialogue Systems (SDS). In this work, we investigate a novel
use of GANs in the field of SDS. Drawing intuition from recent related work, we
investigate the use of a form of GANs, the Adversarial Autoencoder (AAE), as we
want to explore efficient Belief State (BS) space representations through generative
adversarial modeling. We review the difficulties that arise when training a GAN and
we propose techniques to improve the training process. In particular, we propose
the use of the Wasserstein Adversarial Autoencoder (WAAE), which is based on
the Wasserstein loss, and we investigate its effectiveness compared to the baseline
AAEs. We also examine the efficiency of the Denoising Adversarial Autoencoder
(DAAE) in noisy environments. To evaluate our models, we implemented our algo-
rithms in the PyDial toolkit and we performed several experiments employing two
Reinforcement Learning (RL) algorithms, GP-SARSA and LSPI. These two algo-
rithms receive the BS representation from the AAE and optimize the dialogue policy.
Our experiments confirm the ability of the generative adversarial modeling to ro-
bustly represent the BS space, since the proposed method exhibits state-of-the-art
performance, particularly in environments with high levels of noise.

Ανταγωνιστική Μάθηση

σε Στατιστικά Συστήματα Διαλόγου

Διαλεκτάκης Γεώργιος

Περίληψη

Τα τελευταία χρόνια, έχει ενταθεί το ενδιαφέρον της ερευνητικής κοινότητας για τα
Γενετικά Ανταγωνιστικά Δίκτυα (GANs). Το ενδιαφέρον αυτό βασίζεται στις μεγάλες
δυνατότητες που έχουν επιδείξει στη σύνθεση τεχνητών εικόνων, βίντεο και ήχου.
Ωστόσο, δεν έχουν χρησιμοποιηθεί ευρέως στον τομέα των Συστημάτων Διαλόγου.
Σε αυτή τη διατριβή, ερευνάμε μία καινοτόμα χρήση των GANs στον τομέα των
Συστημάτων Διαλόγου. Παρακινούμενοι από μία πρόσφατη σχετική εργασία, προ-
τείνουμε μια νέα χρήση μιας μορφής Γενετικών Ανταγωνιστικών Δικτύων, του Ανταγ-
ωνιστικού Aυτόματου Kωδικοποιητή (Adversarial Autoencoder), καθώς θέλουμε να
διερευνήσουμε αποδοτικές απεικονίσεις του χώρου των πεποιθήσεων μέσω του μον-

τέλου ανταγωνιστικής μάθησης. Εξετάζουμε τις δυσκολίες που εμφανίζονται κατά την
εκπαίδευση ενός γενετικού ανταγωνιστικού δικτύου (GAN) και προτείνουμε κάποιες
τεχνικές για την αντιμετώπισή τους. Συγκεκριμένα, προτείνουμε τη χρήση τουWasser-
stein Ανταγωνιστικού Aυτόματου Kωδικοποιητή (Autoencoder), ο οποίος βασίζεται
στη συνάρτηση απώλειας του Wasserstein, και διερευνάμε την αποτελεσματικότητά
του κατά την εκπαίδευση Ανταγωνιστικών Aυτόματων Kωδικοποιητών. Εξετάζουμε
επίσης την αποδοτικότητα του Denoising Ανταγωνιστικού Aυτόματου Kωδικοποιητή
σε περιβάλλοντα όπου υπάρχει υψηλός θόρυβος. Για να μελετήσουμε την απόδοση των
μοντέλων μας, υλοποιήσαμε τους αλγορίθμους μας και εκτελέσαμε διάφορα πειράματα
στο εργαλείο PyDial, όπου χρησιμοποιούμε δύο αλγορίθμους Ενισχυτικής Μάθησης,
τον GP-SARSA και τον LSPI. Αυτοί οι δύο αλγόριθμοι λαμβάνουν την αναπαράστα-
ση του χώρου των πεποιθήσεων από τον Ανταγωνιστικό Αποκωδικοποιητή και

βελτιστοποιούν την πολιτική διαλόγου. Επιβεβαιώνουμε την ικανότητα του ανταγωνι-
στικού μοντέλου στην ισχυρή αναπαράσταση του χώρου των πεποιθήσεων και δείχνου-
με ότι η μέθοδός μας παρουσιάζει παρόμοια και μερικές φορές καλύτερη απόδοση

από την τελευταία λέξη της τεχνολογίας, ιδιαίτερα σε περιβάλλοντα με υψηλά επίπεδα
θορύβου.

Acknowledgments

I would like to take this opportunity to express appreciation to all the people that
stood next to me and supported me throughout the past six years of studying at the
Technical University of Crete in the School of Electrical and Computer Engineering.
Firstly, I would like to thank Dr.Vasileios Diakoloukas, who guided me throughout
this work and was always available, whenever I had questions about my research.
Furthermore, I would like to thank my supervisor Dr. Michail G. Lagoudakis, and
Prof. Georgios Chalkiadakis, for their useful comments and their time to evaluate
this work. Also, I would like to pay particular regards to my uncle, George Em.
Karniadakis, who helped me get through some difficulties during my research. Last,
but not least, I would like to express my deep gratitude to my family and to Dimitra
for providing me with support and constant encouragement during my studies from
the first moment to the last one. Thank you.

Contents

1 Introduction . 9
1.1 Thesis Contribution . 10
1.2 Thesis Synopsis . 10

2 Background . 12
2.1 Generative Adversarial Neural Networks 12

2.1.1 Vanilla Generative Adversarial Networks 12
2.1.2 Difficulties when training GANs 14
2.1.3 Wasserstein Generative Adversarial Networks 15

2.2 Dialogue Management . 18
2.2.1 MDPs and POMDPs in dialogue 18

2.3 Reinforcement Learning . 20
2.3.1 GP-SARSA . 21
2.3.2 Least-Squares Policy Iteration 22

3 Belief State Space Representation . 25
3.1 Full Belief State Space . 25
3.2 Summary Space . 25
3.3 Related Work . 27
3.4 Problem Statement . 28

4 Belief State Representation with Adversarial Autoencoders 29
4.1 Vanilla Adversarial Autoencoder . 29

4.1.1 Variational Autoencoder and its relationship to AAE 31
4.2 Wasserstein Adversarial Autoencoder 33
4.3 Denoising Adversarial Autoencoder 33
4.4 Concurrent Training Procedure . 35

5 Experimental Evaluation . 36
5.1 Setup - Framework . 36
5.2 Experimental Results . 37

5.2.1 Adversarial Autoencoders with various priors 37
5.2.2 Vanilla vs Wasserstein Adversarial Autoencoder 43
5.2.3 Denoising Adversarial Autoencoders 46

6 Conclusion & Future Work . 51

References . 52

8

Chapter 1

Introduction

Over the past few years, Spoken Dialogue Systems (SDS) [26, 45, 56] have become
essential for many industries, such as chatbots[25], tourist information [5], naviga-
tion [27], banks [36], and service centers [18], in order to improve their performance
and offer better services. There has also been a growing interest in real-world ap-
plications, such as Google Assistant, Apple Siri, and Microsoft Cortana, which use
voice commands to interact with the user and perform numerous tasks within smart
devices. The main component of a Dialogue System is the Dialogue Manager (DM),
whose role is to supervise the state of the dialogue and estimate the next action
using a Policy Manager (PM). Until now, DMs based on rules have exhibited their
effectiveness in several fields. However, they are quite challenging to develop, ex-
pensive to scale to real-world problems, sensitive to linguistic faults, and able to
perform only in specific domains. This has guided the research to establish Statis-
tical Dialogue Managers who have the benefit of generalization and are capable of
operating in continuous space. Statistical Dialogue Managers offer three types of
Policy Managers. These are the non-parametric [14], the linear parametric [29, 31],
and the non-linear parametric [12, 38, 48] Reinforcement Learning algorithms.

In a benchmark study made by Casanueva et al. in 2017 [6], the non-parametric
GP-SARSA came out to exhibit the best performance among all other approaches
that were based on Neural Networks. In their analysis, the PMs were optimized by
utilizing the summary Belief State (sumBS), which comes from the master Belief
State space [55, 54]. Nonetheless, the sumBS vectors are not capable of generalizing
and adjusting to different domains as they depend on the domain structure. In addi-
tion, they include unnecessary sparse information, which comes in large dimensions.

To overcome the difficulties mentioned above, Lygerakis et al. [34] proposed an
innovative technique based on Autoencoders (AEs) in order to generate more ro-
bust, efficient and lower-dimensional BS representations that resulted in substantial
performance gains, particularly in complex environments. To model the actual dis-
tribution that constitutes the sumBS space, they successfully proposed the use of
the Variational Autoencoder (VAE). Finally, they considered a noise-robust varia-
tion of the autoencoders, the Denoising AE (DAE) and the Denoising Variational
Autoencoder (VDAE), respectively, to produce BS vectors that are noise-tolerant
especially in environments with high Semantic Error Rate (SER).

9

10

1.1 Thesis Contribution

In this work, we examine the effectiveness of Generative Adversarial Networks
(GANs) [16] in the context of a dialogue system, as described earlier. Over the
last decade, GANs have shown their great potential in the Image Synthesis do-
main [44, 1, 24, 4]. Recently, there has been a rising interest in applying GANs in
the Natural Language Processing (NLP) domain, especially for dialogue generation
[30, 43]. However, such techniques have only managed to produce short discrete
sequences with small vocabularies that resemble human ones and are considerably
far from forming an entire dialogue system. Therefore, we introduce an innovative
use of the Adversarial Autoencoder (AAE), [35], which follows the philosophy of
generative adversarial modeling, in an effort to explore more efficient BS space rep-
resentations. Furthermore, we introduce the Wasserstein Adversarial Autoencoder
(WAAE), which is an AAE that uses the Wasserstein distance to optimize its pa-
rameters [17], as we would like to investigate if it is as effective as in GANs. Finally,
we utilize a denoising technique, as proposed in [7], as we consider a noise robust
variation of the AAE, the Denoising Adversarial Autoencoder (DAAE) to overcome
the challenges introduced by the presence of noise in SDS.

We optimize dialogue policies with two modern RL algorithms, GP-SARSA [14]
and Least Squares Policy Iteration (LSPI) [29], both using the representations ob-
tained from the Adversarial Autoencoders. We confirm the efficiency of our proposed
technique by conducting several experiments in both common and complex domains,
with different noise levels, using the PyDial dialog simulation toolkit [49].

1.2 Thesis Synopsis

In the following section, we summarize the structure of this diploma thesis.

In Chapter 2, we present the background of Generative Adversarial Networks
and we focus on the training difficulties they introduce. We then discuss the Wasser-
stein Generative Adversarial Networks (WGANs), which utilize a different cost func-
tion based on the Wasserstein distance, providing solutions to the previous problems
and leading to more stable training [2]. We also provide background on the field
of Spoken Dialogue Systems. We give definitions for the underlying architecture of
a SDS and we present two modern Reinforcement Learning algorithms, namely the
GP-SARSA and LSPI, which are then applied for our experimental analysis.

In Chapter 3, we describe the original Belief State space representation, and
we refer to non-linear BS representations based on VDAE [34], which are closely
related to our work. We also present the contribution of this thesis.

In Chapter 4, we propose a novel use of the Adversarial Autoencoder in BS
representation and we study the relationship to Variational Autoencoders. We then
present the Wasserstein Adversarial Autoencoder, which uses the Wasserstein loss
function as in WGANs in order to examine its effectiveness when training AAEs.
Later, we propose a noise-tolerant technique for our Adversarial Autoencoders, the
Denoising AAE (DAAE). Finally, we present a concurrent training procedure that
optimizes both the parameters of the AAEs and the policies.

11

In Chapter 5, we present our experimental analysis and compare the results of
our work with those in Lygerakis’ work [33].

In Chapter 6, we come to conlusion about this work and we suggest some ideas
for further research in the future.

Chapter 2

Background

2.1 Generative Adversarial Neural Networks

2.1.1 Vanilla Generative Adversarial Networks

Generative Adversarial Networks (GANs) have recently attracted the interest among
the researchers, especially in the field of image generation. GANs form a class of
machine learning schemes in the scope of generative modeling [16]. A GAN composes
of two neural networks, the Generator (G) and the Discriminator (D), which battle
opposing one another in a game composed of two players (in the sense of Game
Theory), while trying to maximize their objective function. The goal of a GAN is
to create new artificial data that look like the real data of the training dataset. This
could also be useful for dialogue managers, since Generative Networks could be used
to generate new BS vectors based on a prior distribution in a procedure that will be
described in the next chapter.

To achieve the aforementioned functionality, the generator samples some noise z
from a Gaussian or uniform distribution and produces new synthetic data x = G(z).
Noise z represents the hidden characteristics of the produced data, so the generator
attempts to learn a function that maps from z to x (hopefully, the real data dis-
tribution). For this reason, we use a second neural network, a discriminator, which
will provide the generator with feedback and direction on what data to generate by
learning what features make data real. The discriminator looks at the real training
samples as well as the artificially generated ones separately and learns to classify its
input as real or fake, i.e., whether the data derive from the training dataset or the
generator, respectively. The discriminator’s output D(x) indicates the probability
of input x being real, P (input = real data). For this reason, we use a sigmoid
activation function in the output layer of the discriminator which produces values
between 0 and 1. The model’s architecture is presented in Figure 2.1 [19]. If the
input to the D comes from the dataset, we want D(x) = 1. If it derives from the
generator, it has to be zero. Throughout this procedure, D is trained to recognize
real data characteristics. The generator, on the other hand, is trained to produce
data with D(x) = 1. We can optimize the discriminator by backpropagating this
goal value back to G, i.e., we optimize G to produce new unseen data towards what
the discriminator considers as real. D and G play a two-player minimax game with
value function V (D,G), where G wants to minimize V , while D wants to maximize

12

13

Figure 2.1: Generative Adversarial Network Model [19]

it, as shown in equation 2.1:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.1)

where x ∼ pdata denotes that sample x is drawn from the distribution pdata of the
training dataset, while z ∼ pz(z) denotes the samples generated from a prior normal
or uniform distribution pz and serve as the generator’s input. The above equation
can be simplified as:

V (D,G) =

∫
x

pdata(x)log(D(x)) dx+

∫
z

pz(z)log(1−D(G(z))) dz (2.2)

Minimizing the objective function (2.1) is identical to reducing the Jensen-
Shannon (JS) divergence [16]. The JS-divergence constitutes a technique of cal-
culating the resemblance between two probability distributions, and is formed using
the Kullback–Leibler (KL) divergence, as illustrated below.

DJS(p‖q) =
1

2
DKL(p‖p+ q

2
) +

1

2
DKL(q‖p+ q

2
) (2.3)

where p is the actual data distribution, q is the distribution approximated by the
generator and DKL is the KL-divergence.

In practice, the above equation is optimized using the cross − entropy cost
function. Once the objective function is defined, G and D are trained mutually
using the alternating gradient descent algorithm [40] in the following steps.

• Initialize the parameters of G and D.

• Execute one iteration of gradient descent on D, using both real and artificial
data.

• Next, train G for one iteration using back-propagation.

• Repeat from step 2 for as many iterations required to converge.

14

Eventually, after a number of iterations, they are both optimized. The D recognizes
the minor discrepancy between generated and real data, while, the G learns to
generate synthetic data that D is unable to distinguish from real ones. Finally, the
GAN model should achieve convergence and deliver artificial data very similar to
the real ones in the dataset. However, this is not always the case, as GANs depend
on the complexity of the training dataset and the specific application, presenting
several difficulties as we explain in subsection 2.1.2.

2.1.2 Difficulties when training GANs

Recent applications of Generative Adversarial Networks have proved that they can
produce excellent artificial samples [11, 42]. However, the training process of GANs
is complex, and there are several difficulties to overcome. Among the ones are the
1) mode collapse, 2) non-convergence, and 3) vanishing gradients:

1. Mode collapse describes the failure of the generator to produce data that
have adequate diversity and instead it produces data identical to each other.
This undesirable behavior can arise when we train a GAN with data with
multimodal or very complex distribution. For example, in the MNIST dataset,
there are ten distinct classes, from digit ‘0’ to digit ‘9’. Two different GANs
generated the samples shown in Figure 2.2 [37]. The top row shows samples
from a well trained GAN that produces all ten classes. The second row is a
GAN that creates data from a single class only (the digit ‘6’), which means
that it suffers from mode collapse.

Figure 2.2: Mode collapse in MNIST [37]

2. Non-Convergence: As already stated, a GAN consists of two neural net-
works, a generator G and a discriminator D, where the one tries to challenge
the other in order to reach an optimal state. In Game Theory, this optimal
state is often called Nash equilibrium, where the best result of a game is when
no player has motivation to change his selected strategy after seeing the op-
ponent’s decision. The training of GANs aims at reaching a Nash equilibrium

15

where the generator and the discriminator want to minimize their own cost
function J (G) and J (D), respectively. However, a GAN has non-convex cost
functions and contains continuous, high-dimensional parameters. To the best
of our knowledge there are no feasible algorithms to find Nash equilibria for
such cases. For this reason, in order to optimize a GAN, we apply gradient
descent methods that seek for the minimum value of both the generator’s and
the discriminator’s loss function simultaneously. Unfortunately, a change to
the generator parameters that reduces J (G) can increase J (D), and a change
to the discriminator parameters that reduce J (D) can increase J (G). Thus,
gradient descent algorithms may fail to reach convergence [15, 47].

3. Vanishing gradients happen when Neural Networks are trained through
gradient-based methods and backpropagation. Throughout training, the gra-
dient is back-propagated from the last layer of the network to the first one
getting progressively lesser. Occasionally, the gradient is so tiny that the first
layers of the network learn at a very slow rate or they even cease learning
entirely. In the case of GANs, vanishing gradients appear in the generator
network when the discriminator is close to optimality. That is because the
loss function of an optimal discriminator is very close to 0, generating almost
zero gradients, which gives insufficient feedback to the generator. This results
in slowing or even stopping the learning of the generator. In fact, as the dis-
criminator improves at distinguishing between artificially generated and real
data, it produces progressively smaller gradients resulting in even worse up-
dates to the generator, which makes the GAN model impossible to deliver any
training improvement.

2.1.3 Wasserstein Generative Adversarial Networks

As already mentioned, training a Generative Adversarial Network can be quite chal-
lenging and may lead to many pitfalls. Even though several methods have been
proposed to overcome those problems, such as feature matching, minibatch discrim-
ination, historical averaging, and one-sided label smoothing [47], research has made
a lot of effort in introducing new GAN models by adjusting the cost function in
order to improve the training procedure. Some examples of such models are the:
LSGAN [22], DCGAN [42], BEGAN [21], RSGAN [23]. We will study in detail a
cost function which is based on the Wasserstein distance [41].

As already stated, vanilla GANs are trained by minimizing the JS divergence
(equation 2.2). In this process, the generator is more difficult to optimize than the
discriminator, as the discriminator is a standard classifier, trained to distinguish be-
tween just two classes, while the generator needs to learn the underlying distribution
of the training data in order to produce artificial ones. If the generator produces
high loss at early stages meaning that it is yet unable to produce high-quality syn-
thetic data, then its gradient decreases up to the point where it becomes unable to
learn anything, or the whole model becomes unstable as stated by Arjovsky et al
[2].

Wasserstein Generative Adversarial Network (WGAN) introduces a new loss
function based on Wasserstein distance, which offers a usable gradient on all

16

parts of the space as it is differentiable almost everywhere and helps the model
to learn regardless of the performance of the generator, as explained in [2]. The
Wasserstein metric, also called Earth-Mover (EM) distance, is the least possible
cost of transfering mass in reforming the distribution Pg to the distribution Pr and
is defined as the cost of the cheapest transport plan:

W (Pr, Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ[‖x− y‖] (2.4)

where Pr and Pg is the real data and the generated data distribution respectively,
Π(Pr, Pg) denotes the set of all joint distributions γ(x, y) whose marginals are Pr
and Pg correspondingly, and inf is the infimum. However, as the above equation
is highly intractable, it is possible to simplify the computation by utilizing the
Kantorovich-Rubinstein duality [10] as shown below:

W (Pr, Pg) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pg [f(x)] (2.5)

where sup is the least upper bound and f is a 1-Lipschitz continuous function
following the constraint:

|f(x1)− f(x2)| ≤ |x1 − x2|, ∀ x1, x2 ∈ R (2.6)

The 1-Lipschitz continuity is important as it limits how fast function f can
change. If f(x1) and f(x2) are connected to each other with a line, its slope has an
absolute value always smaller than 1. Therefore, in Deep learning, Lipschitz conti-
nuity restricts the gradients and helps diminish exploding or vanishing gradients.

To compute the Wasserstein distance, it is essential to acquire an 1-Lipschitz
function. This can be achieved by deploying a deep neural network. In fact, this
network is very analogous to the GAN’s discriminator. The difference is that it out-
puts a scalar score in (−∞,∞) rather than a probability, which can be viewed as a
measurement of the realness of the input data. To do this, a linear activation func-
tion is used instead of the sigmoid in the output layer. Finally, the discriminator’s
name is changed to critic to express its new functionality.

The significant difference between vanilla GANs and WGANs arises only on the
cost function which transforms from Equation 2.1 to:

min
G

max
D∈L

Ex∼Pr [D(x)]− Ex̃∼Pg [D(x̃)] (2.7)

where L denotes the set of 1-Lipschitz functions and Pr is the real data distribution
and Pg is the generated data distribution defined by x̃ = G(z), z ∼ p(z). Under
these circumstances, if the critic is optimal, minimizing the value function towards
the parameters of the generator diminishes W (Pr, Pg) and the generator output
becomes closer to the real data distribution.

Finally, f needs to be a 1-Lipschitz function. To impose this restriction, WGAN
uses a simplistic clipping method to limit the maximum value of the weights
in f , i.e., the critic weights are constrained in a range of values defined by the
hyperparameters c in the method clip shown below. Moreover, instead of the

17

Adam, the RMSprop optimizer is used to update the weights of the discriminator.

w ←− w + α ·RMSProp(w, gw)

w ←− clip(w,−c, c)

In algorithm 1 [2], we show the complete training procedure of WGANs, where w0

and θ0 are the randomly initialized weights of the critic and generator, respectively.

18

2.2 Dialogue Management

A Spoken Dialogue System (SDS) [57] is composed of a Spoken Language Under-
standing component (SLU), a Dialogue Manager (DM), which includes the Belief
State Tracker and the Policy Manager (PM), and a Natural Language Generation
component (NLG) as shown in figure 2.3.

Figure 2.3: Spoken Dialogue System Architecture [33]

Consecutive interactions between the user and the system form a dialogue which
terminates when the user’s goal is fulfilled. In every turn, the SDS receives voice
input from the user. Initially, the user’s speech is converted to text by a speech rec-
ognizer inside the SLU module. It is then translated into a semantic representation,
which has the scheme of a user dialogue action au, by the natural language under-
standing component. The belief state tracker in the DM utilizes au to determine the
ongoing dialogue’s belief state and supplies the PM with a BS vector, which is then
used to decide the next action of the system via a decision rule as = π(bs), where π
is the current policy. Finally, the responsibility of the NLG component is to convert
the system action back to a spoken response in two steps. First, written language is
obtained from the system act as and then the system replies to the user in spoken
language with the help of a text-to-speech module.

2.2.1 MDPs and POMDPs in dialogue

Markov Decision Processes (MDPs) [3] can help us model how a dialogue evolves.
MDPs adopt the Markov property, where the next state does not depend on any
of the previous states and actions, but depends only on the current state and the
decision maker’s action. More specifically, an MDP is defined as a 4− tuple:

(S,A, Ta, Ra) (2.8)

19

where S is a finite set of states, A is a finite set of actions, Ta(s, s
′) = Pr(st+1 =

s′|st = s, at = a) is the probability that action a in state s at time step t will
lead to state s′ at time t + 1 and Ra(s, s

′) is the immediate reward received after
transitioning from state s to state s′, due to action a.

However, in real-life SDS, the state st is partially observable due to the uncer-
tainty in the interpretation of user utterances. This uncertainty is caused by the
speech recognition errors, the ambiguity of the user’s actual intention, and the er-
rors at the semantic extraction. Therefore, we can model the dialogue manager as
a Partially Observable Markov Decision Process (POMDP) [57, 14].

A discrete-time POMDP represents the interaction of an agent with its environ-
ment. In the case of an SDS, the agent refers to the Dialogue Manager. Usually,
the following 7− tuple is able to model a POMDP [26]:

(S,A, T,R,Ω, O, γ) (2.9)

where S is a set of states, A is a set of actions, T is a set of conditional transition
probabilities between states, R : S × A → R is the reward function, Ω is a set of
observations, O is a set of conditional observation probabilities, and γ ∈ [0, 1] is the
discount factor. In a POMDP (Figure 2.4 [57]), at each time-step, the dialogue is in
some partially-observable state st. The agent uses the derived policy π to perform
an action at ∈ A and transition to a new state st+1 with probability T (st+1 | st, at).
Finally, a reward rt, equal to R(st, at), is received by the agent while taking an
observation ot+1 ∈ Ω which relies on the dialogue’s new state, st+1 with probability
O(ot+1 | st+1). Then the process repeats.

However, as the ongoing state of the dialogue, st, is not known precisely, we keep
a distribution over all probable states, named belief state b ∈ B : R|S|. By keeping a
belief state vector, the DM is able to efficiently seek after all feasible dialogue paths
concurrently, choosing the next action depending on the probability distribution
across all states, rather than the most probable one. The probability of the ongoing
most probable state decreases, whenever the user indicates a problem, and the focus
shifts to a different state. This permits robust dialogue policies to be incorporated
in a straightforward homogeneous mapping from belief state to action.

Figure 2.4: POMDP. Clear circles indicate hidden states; shaded circles are obser-
vations; squares are system actions; diamonds are real-valued rewards; and arrows
show causality. [57]

20

At each time step t, the goal of the Policy Manager is to acquire a policy π
of actions a, at = π(bt), in order to maximize the discounted expected reward
beginning from the primary belief b0:

V π(b0) =
∞∑
t=0

γtE[R(bt, at)|b0, π] (2.10)

Then, we receive the optimal policy π∗ from:

π∗ = arg max
π

V π(b0) (2.11)

We can acquire π∗ for every belief state b by receiving the value function V ∗ of
an optimal policy π∗ for each b. By solving the Bellman equation, we are able to
acquire V*:

V ∗(b) = max
a∈A

[
r(b, a) + γ

∑
o∈O

Pr(o|b, a)V ∗(T (b, a, o))

]
(2.12)

where T is the transition function of the belief state.
At this moment, we could use Reinforcement Learning algorithms to estimate

optimal policies by associating the belief state vector and the equivalent action
acquired from the policy component with the environment reward.

Unfortunately, in a real-world dialogue system, the number of states, actions
and observations can easily be more than 1010. This complexity introduces barriers
in finding solutions to the above equations. Moreover, the process to acquire the
transition function T forms an intractable problem and as a result we are unable
to utilize value or policy iteration or dynamic programming to estimate an optimal
policy. In the following section, we describe how we can overcome these difficulties
by utilizing modern RL algorithms.

2.3 Reinforcement Learning

To address the problem of computing the transition function T , as defined in 2.9,
we need to take advantage of model-free Reinforcement Learning algorithms which
estimate an optimal policy without using or considering the dynamics (transition
and reward functions) of the environment in contrast to model-based RL algorithms
which use the transition function T in order to do so. Q-learning [52] belongs to this
family of RL algorithms, which calculates the Q-function, Q : B × A → R, instead
of the value function V : B → R and updates Q at each time step t in the following
way:

Qnew(bt, at)← Q(bt, at) + a

(
rt + γmax

at+1

Q(bt+1, at+1)−Q(bt, at)

)
(2.13)

where Q(bt, at) denotes the previous value, Q(bt+1, at+1) is the expected optimal
future reward, a is the learning rate, rt is the reward received by the agent and γ is
the discount factor. The Q-function models the quality of an action that is taken to

21

move to a state rather than determining the possible value of the state being moved
to and only depends on the 4− tuple:

(b, a, r, b′) (2.14)

where (b′, b) ∈ B indicate the current and previous belief states correspondingly, a
comes from the set of actions A and r is a real number.

Q-learning belongs to the family of off-policy algorithms, determining the next
action greedily, i.e., the action that yields the maximum reward, rather than pur-
suing a specific policy π. Thus, Q-learning performs optimization on-line during its
direct interaction with the user.

State-Action-Reward-State-Action (SARSA) is another RL model-free algo-
rithm [46]. SARSA is similar to the aforementioned Q-Learning algorithm; however,
it is an on-policy algorithm using the action executed by the ongoing policy π to
determine the Q-value, as shown in the following equation.

Qnew(bt, at)← Q(bt, at) + a (rt + γQ(bt+1, at+1)−Q(bt, at)) (2.15)

Nonetheless, Q-learning and SARSA are not suitable for real-world problems, as
they utilize matrices to save the value function data. Therefore, they are not able to
handle massive BS and action spaces. In order to surmount this barrier, we utilize
function approximation methods to estimate the Q-function. Some of the most dis-
tinguished function approximators that have been examined for Dialogue Managers
until now, are Gaussian Processes (GP) [14], Least-Squares Policy Iteration (LSPI)
[29], and Deep Neural Networks (DNNs) [38].

2.3.1 GP-SARSA

A Gaussian Process (GP) consists of a group of random variables indexed by time or
space whose every finite linear combination is defined by a normal distribution, i.e.,
they are represented by a multivariate Gaussian distribution. A GP is described by
the joint distribution of all those infinite random variables, thereby, it is a distribu-
tion over functions with a continuous domain. Therefore, a GP involves an infinite
number of parameters, making it a non-parametric function approximator. In this
procedure, we begin from the prior knowledge we possess, and we utilize the Bayes’
rule in order to update the distribution of function by observing training data [14].

A Gaussian Process is defined by a mean and a kernel function, which represents
relationships that exist between various segments of the BS space and is essential for
obtaining reasonable estimations with just a few observations. The GP-Sarsa algo-
rithm uses Gaussian Processes to define a policy for dialogue systems by modeling
the Q-function as a GP with zero mean [57]:

Q(b, a) ∼ GP (0, k((b, a), (b, a))). (2.16)

where k((b, a), (b, a)) is a kernel, as mentioned earlier, that describes the relation-
ships in belief-action space (b, a). It has been shown that GP-Sarsa can optimize
dialogue policies sooner than a regular RL algorithm [14], by training a dialogue
policy in immediate communication with human users successfully while handling
arbitrary high dimensional states [13]. Finally, the GP-Sarsa algorithm is obtained
by replacing the Q-function correction in the right-hand side of Eq 2.13 with the
update of the Q-function approximation based on GP.

22

2.3.2 Least-Squares Policy Iteration

The Least Squares Policy Iteration algorithm [29] resides in the group of approximate
policy iteration Reinforcement Learning algorithms, able to learn decision policies
either from a corpus generated with some other dialog manager, or learn while it
is controlling the dialog. LSPI is sample-efficient, making maximal use of data.
Moreover, compared to other popular learning methods that support off-policy and
on-policy learning, such as Q-Learning, LSPI learns better policies with less data.
The algorithm initiates by approximating the Q-function with unrestricted weights
w:

Q̃π(b, a;w) =
k∑
i=1

φi(b, a)wi (2.17)

The magnitude of a weight wi indicates the contribution of its feature φi(b, a) to
the Q-function. The basis functions φi are non-linear functions of b and a, whose size
is determined by the specific application. Next, the algorithm advances to policy
optimization, selecting greedily the action that maximizes Qπm at each iteration
m (Eq. 2.18) and policy assessment (Algorithm 1), where we utilize the Least-
Squares Temporal Difference Q-function (LSTDQ) algorithm in order to estimate
the Q-function.

πm+1(b) = arg max
a∈A

Q̃πm(b, a) (2.18)

In Algorithm 2 [29], we make use of the symbol s to denote the dialogue state
i.e. the BS, rather than the symbol b. This is done so there is no complication of
the notation between the BS vector and the bias. However, in reality, the LSTDQ
algorithm uses samples of the form (b, a, r, b′).

However, the LSTDQ algorithm requires the calculation of the matrix Ã
−1

, which
depends on the number of basis functions k with a complexity of (O(k3)), leading
to poor system behavior, particularly when the frequent update of equation (2.17)
is needed. An optimized vesion of LSTDQ, namely LSTDQ-OPT, is able to directly
update the A matrix, which we denote as B in Algorithm 3 [29]. By making such a
modification, we are able to update our linear system in a quick and cost-effective
way, having a dependence on the number of basis functions k with a complexity
of only (O(k2)). Eventually, to determine an optimal policy, we utilize the LSPI
algorithm as summarized in Algorithm 4 [29].

23

24

In this thesis, we are using the block-basis functions, which is among the most
straightforward state-action encodings. Considering a dialog domain of n distinct
dialog actions A = (a1, a2, ..., an), we can formulate the block-basis feature as a
sequence of n block vectors, each having the dimensions of the Belief State vector.
In this context, we obtain the state-action representation by the activation of an
individual feature-vector block that corresponds to the chosen action, while the rest
of the blocks in the feature-vector take the value of zero. Particularly, if we represent
the BS with a d-dimensional vector s = (s1, s2, ..., sd), the block-basis feature for
the state s and a corresponding active action a is formed as follows:

φ(s, a) = [c1s, c2s, ..., cns]T (2.19)

where ci, i = 1, ..., n is a binary constant determined as:

ci =

{
1, if ai = a.

0, otherwise.
(2.20)

Even though the above process can be a simple, yet efficient representation in
the context of a dialog system, since it accurately specifies the contribution of each
action, it also has several drawbacks. For example, even an average in size action
space can lead to sparse and high dimensional block-basis features for a common
BS vector. This results in high computational loads throughout the policy training
procedure, making the usage of real-world action spaces impractical.

Chapter 3

Belief State Space Representation

3.1 Full Belief State Space

In this diploma thesis, we consider “slot-filling” dialogs. The states of such a dialog,
consist of M slots, where slot j receives one out of Mj values. The dialog is initiated
by the user’s intention, and in this context, every slot name is expected to take a
specific value. The system then aims to fulfill the user’s goal correctly. For instance,
the following are two slot name-value examples which represent the user input on a
dialogue state of the Cambridge Restaurants (CR) and Laptops11 (LAP11) domains
respectively. Specifically, in the first example, the next action of the system is to
inform the user that the price of the restaurant is expensive, the food is chinese, the
restaurant is located at the center of the town and its name is “dojo noodle bar”. In
the second example, the system informs the user that the processor of the laptop is
the “inte core i7”, its price is moderate, its system memory is 8 gb and its warranty
is 3 years.

• inform(pricerange=“expensive”, food=“chinese”, area=“centre”,...,
name=“dojo noodle bar”) (0.18)

• inform(processorclass=“intel core i7”, pricerange=“moderate”, sysmemory=
“8 gb”,..., warranty=“3 year international”)(0.05)

• ...

The parenthesis on the right side defines the probability of being in that state,
indicating a distribution among all potential states is maintained, as discussed earlier
in subsection 2.2.1. Based on the above examples, we can easily deduce that the
total amount of possible dialogue states depends exponentially on the total number
of the distinct values that each feature can take. As an example, we can think of a
dialogue with 5 features in the ontology of the domain, and each feature can take
one of N = 10 values. In such a situation, the DM is operating on a set of N5 = 105

states, preventing RL algorithms from obtaining good policies in a reasonable time.

3.2 Summary Space

In [55, 54], Williams and Young proposed a mechanism, namely the summary space
that permitted the full BS space (master space) to be described in a reduced di-

25

26

mension and was able to make policy optimization tractable. The summary space
constitutes a summarization of the full BS space, and allows the Policy Manager to
act exclusively on this BS subset, since most reasonable system responses will focus
on just the most likely states, and the entire set of states is never visited.

The formation of the summary space is made by dividing the fullBS space into
two sets, Swu , which is the user’s intention state space, and Swd , which is the dialogue’s
history space [58]. Both sets are decomposed into W slots, and w denotes each slot
in the set of W slots. Swu indicates the set of values for slot w, and Swd indicates
the set of possible dialog histories for slot w. The outcome is the formation of two
summary space groups Ŝwu = {best, rest} and Ŝwd = Swd . To project the fullBS

space to the summary one, we make each belief element b̂(ŝwu = best) equal to the
probability mass of the most probable user intention in slot w, b̂(ŝwu = rest) equal
to the remaining probability mass of all the rest of the user intentions in slot w,
and the dialog history in summary space b̂(ŝwd) equal to the dialog history in fullBS

space b̂(ŝwd).
Consequently, the summary BS vector, inside PyDial, is designed as a dictionary

which consists of three sub-dictionaries as shown in the following example:

• domain-dependent userActs:

– inform(price =“moderate”, utility=“dontcare”)

– affirm(warranty = “3 year international”)

• beliefs:

– domain-independent: “method”, “discourseAct”

– domain-dependent:

∗ “warranty”, “processorclass”, “sysmemory” ... (Laptops 11 domain)

∗ “food”, “area”, ... (Cambridge Restaurants domain)

• domain-independent features

– “offerHappened”

– “informinfo”

– “lastInformedVenue”

– “informedVenueSinceNone”

– “lastActionInformNone”

The domain’s ontology determines the values that each of the above slots can
receive. In Pydial, the Focus Tracker [20] is responsible for updating the summary
BS vector by assigning a probability in each slot. This probability depends on the
assumption of the SLU module. Eventually, the above dictionary is compressed
into a vector of probabilities, whose length depends on the domain, as shown in the
following Tables:

27

1 2 3 ... 636

discourseAct:
”hello”

area:
”centre”

offerHappened:
”false”

...
inform

(food=”italian”,
name=”dojo noodle bar”)

0.035 0.962 0.000 ... 1.000

Table 2.1: Example of summary BS vector in San Francisco Restaurants domain.

1 2 3 ... 257

discourseAct:
”ack”

utility:
”touchscreen”

offerHappened:
”false”

...
inform

(warranty=”3 year european”,
platform=”windows 8”)

1.000 0.996 0.085 ... 1.000

Table 2.2: Example of summary BS vector in Laptops11 domain.

However, even the received summary BS vector depends on the domain, comes in
high dimensions, is sparse, and contains unnecessary information. Those features of
the summary BS space refrain most Policy Managers from achieving optimal policies
in a reasonable time. Therefore, an efficient and compressed representation of the
summary BS space becomes essential.

3.3 Related Work

To alleviate the problems mentioned above, alternative techniques for BS repre-
sentation have been developed. Such an alternative is the Domain-Independent
Parameterization (DIP) [51], which generates BS vectors using domain-independent
features of the dialogue. In their work, they maintain a fixed-size dimensional space,
which can be more compressed than the summary BS one, so all the domains can
be mapped onto a common belief space. However, their method is based on hand-
crafted features that do not include useful domain-specific information, resulting in
representations that are still sensitive to noise and redundant.

Another alternative is the BinLin/BinAux BS [28], which uses little information
from the summary space to obtain very low-dimensional BS representations. Never-
theless, their proposed method highly depends on the specific domain and presents
significant performance instabilities. In [31], an automatic technique for feature se-
lection is proposed to obtain compact BS representations. The main drawback here
is that their method cannot be generalized to different policy algorithms, as it is
highly associated with specific Reinforcement Learning algorithms, such as Least-
Squares Policy Iteration.

Current state-of-the-art [34, 8] includes a non-linear BS representation technique
that is based on deep Autoencoders. Specifically, they introduced a novel use of a
feed forward Autoencoder (AE), the Denoising Autoencoder (DAE), and the Vari-
ational Denoising Autoencoder (VDAE) to receive more compact and noise-robust
BS representations that were utilized by two RL policy algorithms, GP-SARSA and

28

Least-Squares Policy Iteration to achieve top performance, even in noisy environ-
ments.

3.4 Problem Statement

In this thesis, taking advantage of the excellent ability of the VAE/VDAE to pro-
duce noise-robust, compact meaningful BS representations, we propose a novel use
of the Adversarial Autoencoder (AAE) to obtain robust BS space representations
in a similar technique to Variational Autoencoders. However, while VAE uses the
Kullback–Leibler divergence to enforce a prior distribution on the latent code of the
autoencoder, the AAE follows an adversarial training process, as in GANs, in order
to match the posterior distribution of the autoencoder’s hidden representation to a
prior distribution of our desire. We also propose the Wasserstein Adversarial Au-
toencoder (WAAE), which utilizes the Wasserstein loss, to investigate the efficiency
of such a technique when training AAEs.

Chapter 4

Belief State Representation with
Adversarial Autoencoders

4.1 Vanilla Adversarial Autoencoder

Adversarial Autoencoders (AAE), proposed by Makhzani et al. [35], were initially
designed for semi-supervised classification, unsupervised clustering and disentan-
gling style in the image domain. In this thesis, we use AAEs for dimensionality
reduction. Our aim is to extract meaningful features of the sumBS vector which
will serve as input to the policy manager.

Figure 4.1: Adversarial Autoencoder architecture [39]

AAE is a generative autoencoder based on the framework of GANs, as discussed
in Section 2.1.1. AAEs perform variational inference by matching the posterior
distribution of the autoencoder’s latent code to a desirable prior distribution, which
guarantees that generating from any part of prior space leads to meaningful samples.
Therefore, the AAE’s decoder learns a deep generative model that connects the
prior to the data distribution. An adversarial network, which we refer to as the
discriminator (D), is added on top of the autoencoder’s latent code vector, which
will guide the encoder’s output to meet the prior distribution. The architecture of
the AAE is illustrated in figure 4.1 [39], where q(z|x) denotes the output of the

29

30

encoder for an input x, z is the latent encoding drawn from q(z|x), z′ is the real
input of the discriminator with the prior distribution, p(x|z) is the decoder output
given z, and x is the reconstructed input. In this work, x ∈ IRdx×1 is the summary
BS vector as discussed in Chapter 2 whose size dx relies on the selected domain,
z is a fixed-size, lower-dimensional projection of the sumBS vector and x is the
reconstructed sumBS vector. The encoder, the decoder and the discriminator are
all defined as feed-forward dense Neural Networks composed of several layers.

We will use the encoder (q(z|x)) as our generator to ensure that the aggregated
posterior distribution can trick the discriminator to believe that the latent code
q(z) arises from the real prior distribution p(z). Then the discriminator indicates
whether the samples come from the real distribution (p(z)) or the encoder (z), and
the decoder (p(x|z)) to get back the original sumBS vector.

The training of an AAE is performed in two steps, the reconstruction, and the
regularization.

• The reconstruction is similar to the training of a vanilla autoencoder. Both
the encoder and the decoder are trained so as to decrease the reconstruction
loss, defined as the mean squared error between the encoder’s input x and the
decoder’s output x as shown in the following equation:

J(x, x) = E[‖x− x ‖2] (4.1)

While the discriminator is not taking part in this phase, we pass the sumBS
vector as input to the encoder, which will give us latent encodings, which we
will provide to the decoder to get back the original sumBS vector. The back-
propagation is performed through both the encoder and the decoder weights
so that the reconstruction loss will be reduced.

• The regularization is when the discriminator and the encoder (generator)
are optimized, similarly to the training of a GAN. First, the discriminator is
trained to classify the encoder’s output (z) and samples z′ that come from
the prior distribution pz. The discriminator should give an output close to
1, if its input comes from the prior distribution p(z), while it should give an
output close to 0, if its input is the latent encodings produced by the encoder.
Intuitively, both the encoder output and the vector with the prior distribution
should be of the same shape and size. The next step is to force the encoder
to output encodings following a predefined distribution. To accomplish this,
we attach the discriminator to the output of the encoder. Next, we fix the
discriminator weights, making them untrainable, and set its output to have
the value of 1. We feed the encoder with sumBS vectors and identify the
output of the discriminator, which is applied to determine the loss using the
cross-entropy cost function (Equation 4.2). At this point, the backpropagation
is only performed through the encoder weights, which causes the encoder to
learn the required distribution by looking at the discriminator weights.

C = − 1

n

∑
x

[y ln a+ (1− y) ln(1− a)] (4.2)

where n is the batch size, the sum is over all training inputs, x, y is the

31

corresponding desired output of the discriminator and a is the prediction of
the discriminator.

An important decision to make when considering an AAE is the choice of the
encoder q(z|x) to be used. Specifically, the encoder can be deterministic, where
q(z|x) is considered to be a deterministic function of x. Therefore, the encoder
network is identical to the one of a regular AE, where the stochasticity in q(z)
comes only from the data distribution, pd(x). Alternatively a Gaussian posterior
can be used as the encoder of the network. In this case, the input of the en-
coder is mapped to a Normal distribution, whose mean and variance is estimated
by the encoder: zi ∼ N(µi(x), σi(x)), similar to the Variational Autoencoder. Thus,
both the randomness of the normal distribution at the encoder’s output and the
data-distribution contribute to the stochasticity of the encoder. Then, we can ap-
ply the same re-parameterization trick proposed by Kingma and Welling, [9], as
in Variational Autoencoders, to back-propagate through the encoder. Specifically,
the encoder’s output z is a stochastic node, and backpropagation does not work
on random nodes. For this reason, in order to be able to apply backpropagation
through the encoder, we can approximate the encoder’s output z with an auxil-
iary normally distributed parameter ε that allows the node to be deterministic and
permits backpropagation through the network [9].

Based on the selection of the encoder, different types of AAEs will emerge each
one having unique training dynamics [35]. When using a deterministic encoder, the
network matches the posterior q(z) to the prior p(z) by only utilizing the stochas-
ticity of the data distribution. However, as the data distribution is defined by the
training set, this deterministic procedure may create a q(z) that is not very smooth.
On the other hand, using a Gaussian posterior could help the AAE in the adver-
sarial regularization phase, as it provides the encoder with additional sources of
stochasticity which results in smoother q(z).

In this work, we use the Gaussian posterior for our encoders, as it provides more
stable training and helps in matching the desirable prior distribution better than
the deterministic encoder. We also maintain the log values of σ, rather than just
σ, which offers consistency throughout the training process and makes calculations
simpler.

4.1.1 Variational Autoencoder and its relationship to AAE

Variational Autoencoder (VAE) forms a generative model composed of an encoder
and a decoder trained to minimize the reconstruction error between the output of
the decoder and the input of the encoder. However, it differs from standard autoen-
coders, as it performs a regularization technique in the latent encoding. Specifically,
every input of the VAE is encoded as a distribution over the latent space rather
than a single point. Next, a point from the latent space is sampled from that dis-
tribution, which is then fed to the decoder to compute the reconstruction error and
backpropagate it through the network. The architecture of the VAE is illustrated
in Figure 4.2 [53].

32

Figure 4.2: Variational Autoencoder architecture
[53]

The encoded distributions are chosen to be normal, described by a vector of
means µ and a vector of standard deviations σ. The vector of means controls the
center around which an input is encoded, and the standard deviation controls the
space, how far from the mean the encoding can be. VAE ideally wants to produce
encodings that are as close as possible to each other while still remaining separated.
In this way, it allows smooth interference and enables the generation of new samples.
To achieve the regularization functionality, VAEs incorporate the Kullback–Leibler
[9] divergence into their loss function. The KL divergence is applied between the
distribution produced by the encoder and a standard Gaussian, in order to force the
encoder to create encodings that follow a normal distribution. The complete cost
function of VAEs is shown below:

Ex∼pd(x)[−log p(x)] < Ex[Eq(z|x)[−log(p(x|z)]] + Ex[KL(q(z|x)||p(z))]

= Ex[Eq(z|x)[−log(p(x|z)]]− Ex[H(q(z|x))] + Eq(z)[−log p(z)]

= Ex[Eq(z|x)[−log(p(x|z)]]− Ex[
∑
i

logσi(x)] + Eq(z)[−log p(z)] + const.

= Reconstruction− Entropy + CrossEntropy(q(z), p(z))

(4.3)

where the aggregated posterior q(z) is sampled from the output of the encoder
q(z|x), and p(z) is usually a standard Gaussian distribution.

The Adversarial Autoencoders share common features with the VAEs. They both
use the reconstruction loss to compute the difference between the input sumBS vec-
tors and the decoded ones. In our work, AAEs use a probabilistic encoder similar to
VAEs, to produce encodings that follow a normal distribution. However, the major
difference is the method used to enforce this distribution on the latent encoding.
In AAEs, the KL divergence is replaced by an adversarial training procedure by
exploiting the use of a discriminator network that guides the encoder to produce
latent encodings that follow a desirable prior distribution, in our case, a Gaussian.

33

4.2 Wasserstein Adversarial Autoencoder

As addressed in Section 2.1.3, WGANs use a method of weight clipping to impose
the Lipschitz restriction in the critic network. However, this technique leads to
a problematic optimization process due to the way the weight constraint and the
loss function interact with each other, resulting in either disappearing or collapsing
gradients without cautious adjustment of the clipping parameters c. In this work,
we utilize an alternative method to enforce the Lipschitz restriction to our Adver-
sarial Autoencoders, named Gradient penalty, as introduced by Gulrajani et al. in
2017 [17]. We introduce a new family of autoencoders, the Wasserstein Adversarial
Autoencoders (WAAE).

A differentiable function is 1-Lipschtiz, if the norm of its gradients is upper
bounded to 1. Thus, the gradient norm of the critic’s output can be restricted by
penalizing the network, when the gradient norm exceeds the target norm value of 1,
rather than applying weight clipping. The objective function now becomes:

L = Ex̃∼Pg [D(x̃)]− Ex∼Pr [D(x)] + λ Ex̂∼Px̂
[(||∇x̂D(x̂)||2 − 1)2] (4.4)

where the first two terms refer to the initial critic loss, whereas the final term refers
to the gradient penalty; λ is set to 10 similar to [17], x̂ is sampled from x̃ and x
with t uniformly sampled between 0 and 1 in the following way:

x̂ = t · x̃+ (1− t) · x, with 0 ≤ t ≤ 1 (4.5)

To compute the gradient norm, we utilize x̂, which is any point sampled between Pg
and Pr, which is the distribution of the encoder’s output and the prior distribution
respectively.

In this work, WAAEs are formed similarly to the AAEs, with a few variations:

• the cost function during the regularization phase is the Wasserstein loss func-
tion, instead of the cross-entropy.

• A linear activation function is used in the critic’s final layer to predict the
score of realness for a given sample instead of predicting the likelihood of a
given sample being real, which is what the sigmoid activation function does
in the AAE.

• The training of the critic network is performed for five iterations per each
iteration of the encoder.

4.3 Denoising Adversarial Autoencoder

In a Statistical Dialogue System, noise may be present as a result of the recognition
and semantic errors, which can be caused by unfinished sentences, acoustic confus-
ability or the uncertainty of natural language, along with the ambiguity of user’s
intention, resulting in poor performance. To alleviate this problem, we propose the
use of the Denoising Adversarial Autoencoder (DAAE).

34

Initially, the Denoising Autoencoder [7] was used to reduce the risk of overfitting
in the autoencoder [32] and remove the noise from depraved images [50]. In such
situation, the input of the autoencoder was lower-dimensional than its bottleneck
layer. Nevertheless, here, we maintain the model’s symmetry as described in Section
4.1, where the latent encoding is of a lower dimension than the input, as our objective
is to acquire a compressed representation. We construct the DAAE, which is a dense
AAE, as explained in Section 4.1, designed to represent the noisy sumBS vectors, and
provide robustness. More specifically, the input of a DAAE is a noisy representation
x̃ of the noise-free summary BS vector x:

x̃ = x+ n (4.6)

where n stands for the noise vector, generated by an unknown distribution and
consists of the same dimensions as the noise-free summary BS and x is the target in
the AAE’s output. We can add synthetic noise to x by utilizing the SER percentage
as probability PSER. Specifically, we obtain the vector x̃ by maintaining the correct
semantic knowledge for a slot with probability 1 − PSER, while choosing randomly
from all possible values in the ontology, with probability PSER. It is important to
mention that this synthetic degradation procedure can be applied to both real and
simulated dialogues.

Collecting a sufficiently broad set of [x, x̃] samples, we can optimize the DAAE
to estimate the noise distribution and compensate with it by minimizing the average
reconstruction loss specified by the mean squared error:

J(x, y) = E[‖x− y‖2] (4.7)

where x is the initial non-corrupted summary BS vector and y is the prediction of
the autoencoder received from the decoder’s output, when we feed the model with
noisy summary BS vectors x̃.

35

4.4 Concurrent Training Procedure

Similarly to [33], we concurrently train the policy manager and the Adversarial
Autoencoders with batches composed of dialogue events. More specifically, we feed
the AAE models with sumBS vectors to generate a representation. Then, we use
this latent representation that is drawn from the output layer of the encoder and
give it to the policy manager, so that it can be further optimized. This process
is repeated for a fixed number of dialogue batches, which are collected while the
dialogue simulation runs in PyDial, as can be seen in Algorithm 5.

Algorithm 5 Training Procedure

1: for iteration in (1, NumOfDialogueBatches) do
2: for dialogue in Dialogue batch do
3: Dialogue Simulation.Begin()
4: while !(Dialogue Simulation.Finished()) = True do
5: policy.save Batch(Episode)
6: AAE.save Batch(Episode)
7: if AAE.Batch Full() = True then
8: AAE.train()

9: policy.train()
10: policy.evaluate()

Chapter 5

Experimental Evaluation

5.1 Setup - Framework

To evaluate the performance of our generative adversarial models, we made a series
of experiments using the GP-SARSA policy algorithm [14] and the incremental
variant of LSPI (Algorithm 2) [29] in the Pydial toolkit [49]. We decided to use
GP-SARSA as it has been widely used in Dialogue Managers [6], while LSPI was
selected considering its learning characteristics and its encouraging potential in SDS.

During our experiments, we train the policy algorithms off-line on samples, but
they can be further optimized online in real-user environments. We evaluated the
methods considered by performing experiments for four different levels of SER (0%,
15%, 30%, and 45%) in the subsequent three domains:

• Cambridge Restaurants (CR), which is the most familiar domain in the re-
search of SDS with a 268-dimensional summary BS vector.

• Laptops11 (LAP11), which is one of the most challenging domains, particu-
larly in noisy environments, with a 257-dimensional summary BS vector.

• San Francisco Restaurants (SFR), which composes a 636-dimensional sum-
mary BS vector.

We considered a different domain-specific AAE, WAAE, and DAAE model for
each domain. The size of the network’s input and output layer depends on the
dimension of the sumBS vector to be represented, which is different across the
three domains. The size of the input and output is the only major difference of the
network, since we used the same hyper-parameters, characteristics, and optimization
techniques for the Adversarial Autoencoders across all domains. More specifically,
we applied the Adam optimizer and we used tanh as the activation function for the
encoder and the decoder layers and the relu for the discriminator network. We then
utilized the dropout method for the encoder with a ratio of 0.6 to avoid overfitting.
The learning rate was configured as time-based, exponential decreasing, with an
initial value of (1e−02) and drop rate of (1e−01). Finally, the batch size was set to
900 samples and the training was held for 50 epochs for every batch. We executed
every experiment five separate times using five distinct initialization seeds, and we
computed the mean value of the corresponding dialogue success results.

36

37

For the architectures of our networks, we constructed the models for AAE,
WAAE, DAAE with 5 hidden layers for the encoder-decoder part as follows:

• Encoder-Decoder: input, h1: 200, h2: 100, h3 : 50, h4: 100, h5: 200,
output

where the input and output depends on the domain as already mentioned and h3 is
the bottleneck layer. While the architecture of the discriminator network is:

• Discriminator: input: 50, h1: 100, h2: 100, output: 1

5.2 Experimental Results

5.2.1 Adversarial Autoencoders with various priors

During our experiments, we were interested in exploring the effect of the prior distri-
bution we impose on our Adversarial Autoencoders on the performance of the Policy
Manager. For this reason, we conducted several experiments using the AAE and
WAAE, which follow two different Gaussian distributions. The first one has zero
mean and unit variance, N(0, 1), and the second one has zero mean and variance of
five, N(0, 5). We will denote the model following N(0, 5) as AAE5 and WAAE5.

In Table 5.1, we summarize the average dialogue success in three separate do-
mains (CR, LAP11, SFR) and for four distinct levels of noise as achieved by the
AAE and AAE5 combined with GP-SARSA and LSPI policy algorithm. The results
of each of the experiments were received after running for 10 batches of 300 dialogues
each, i.e. 3000 dialogues in total. We notice that the AAE combined with the LSPI
policy delivers the best results in the two challenging domains, LAP11 and SFR,
with the most significant improvement of dialogue success occurring when the noise
is greater than 15%. However, in the CR domain, which is the least demanding and
complex domain, all the representations achieve success rates above 90%, even in
the presence of high SER.

It is remarkable to mention that the AAE with distribution N(0, 1) outperforms
the AAE5 with a distribution of N(0, 5), independently of the selection we make for
the Policy Manager. This is mainly due to the type of information of the sumBS vec-
tor, containing values in the range of (0,1), which is closer to the normal distribution
of unit variance than the one with a variance of five. The above corollary confirms
the reason behind the high performance of the Variational Autoencoder used in [33],
which produces latent encodings that follow a normal distribution of zero mean and
unit variance. Nevertheless, we observe that, even when we use AAE5, we maintain
a great performance above 80% in the two difficult domains.

38

Domains
SER BS CR LAP11 SFR
0% AAE-GP 97.2%(±2.2) 94.2%(±2.6) 96.0%(±2.2)

AAE5-GP 95.2%(±2.4) 94.6%(±2.6) 94.8%(±2.4)
AAE-LSPI 96.5%(±1.8) 98.2%(±1.5) 97.4%(±1.7)
AAE5-LSPI 97.4%(±1.3) 93.1%(±2.7) 96.5%(±1.8)

15% AAE-GP 96.4%(±2.1) 92.1% (±3.0) 93.7%(±2.7)
AAE5-GP 92.1%(±3.0) 91.5%(±3.1) 92.0%(±3.0)
AAE-LSPI 92.6%(±2.8) 97.7%(±1.5) 97.2%(±1.8)
AAE5-LSPI 96.2%(±2.0) 90.3%(±3.3) 90.2%(±3.2)

30% AAE-GP 96.2%(±1.8) 89.4%(±3.4) 89.8%(±3.4)
AAE5-GP 91.2%(±3.1) 88.8%(±3.7) 88.0%(±3.6)
AAE-LSPI 92.0%(±2.9) 96.8%(±1.5) 94.9%(±2.4)
AAE5-LSPI 93.7%(±2.4) 89.2%(±3.4) 82.2%(±4.3)

45% AAE-GP 94.5%(±2.0) 87.7%(±3.8) 88.1%(±3.6)
AAE5-GP 91.3%(±3.1) 86.7%(±3.9) 83.1%(±4.2)
AAE-LSPI 91.1%(±3.0) 93.4%(±1.9) 91.9%(±2.8)
AAE5-LSPI 92.8%(±2.5) 84.0%(±4.0) 76.3%(±4.8)

Table 5.1: Mean dialogue success while applying AAE and AAE5 which follow
N(0, 1) and N(0, 5) distibutions respectively. Best result in bold. The parenthesis
depicts the standard deviation.

The diagrams in Figures 5.1, 5.2 and 5.3, show the progression of the average
dialogue success during optimization in the three domains for four distinct levels
of noise. We notice that LSPI, in combination with our models, demands more
training samples in order to converge compared to GP-SARSA. This phenomenon
is more intense in the case of AAE5, where more than 2000 dialogue samples are
needed, while all other combinations of the PM with AAE require roughly 1500
samples. In addition, the optimization of LSPI initiates with much lower success
rates compared to GP-SARSA, especially when AAE5 is in use in LAP11 and SFR
domains. Even though LSPI eventually achieves the highest dialogue success rates,
GP-SARSA provides a more stable training procedure and a quicker convergence.

39

(a) CR 0% (b) CR 15%

(c) CR 30% (d) CR 45%

Figure 5.1: Average Success in CR domain for different noise levels and state rep-
resentations with GP-SARSA and LSPI.

(a) LAP11 0% (b) LAP11 15%

(c) LAP11 30% (d) LAP11 45%

Figure 5.2: Average Success in LAP11 domain for different noise levels and state
representations with GP-SARSA and LSPI.

40

(a) SFR 0% (b) SFR 15%

(c) SFR 30% (d) SFR 45%

Figure 5.3: Average Success in SFR domain for different noise levels applying and
state representations with GP-SARSA and LSPI.

In Table 5.2, we illustrate the average dialogue success as achieved by the WAAE
and WAAE5 combined with GP-SARSA and LSPI policy algorithms. The degrada-
tion of the performance is again confirmed, when we impose a normal distribution
with a variance of 5 to our Adversarial Autoencoders and, more specifically, to the
WAAE. We observe that the WAAE5 representations deliver lower dialogue success
rates than WAAE, independently of the Policy Manager we select. To be more
precise, we discern a dialogue success reduction of nearly up to 30% in the LAP11
domain and 15% in the SFR domain. It is worth noting that when we apply WAAE,
GP-SARSA presents the best performance across all domains and noise levels. Fi-
nally, if we compare Tables 5.1 and 5.2, it becomes evident that the AAE outperforms
the WAAE in all domains and environments with a significant difference appearing
when SER is greater than 15%.

41

Domains
SER BS CR LAP11 SFR
0% WAAE-GP 96.0%(±2.1) 90.5%(±3.2) 90.1%(±3.5)

WAAE5-GP 94.5%(±2.5) 66.9%(±5.3) 79.3%(±4.4)
WAAE-LSPI 94.3%(±2.6) 80.1%(±4.8) 91.2%(±2.8)
WAAE5-LSPI 95.8%(±2.0) 51.0%(±5.6) 74.4%(±4.8)

15% WAAE-GP 93.7%(±2.7) 81.8%(±4.2) 76.3%(±4.6)
WAAE5-GP 89.9%(±3.2) 58.0%(±5.5) 72.4%(±5.0)
WAAE-LSPI 90.3%(±3.3) 58.7%(±5.4) 67.6%(±5.5)
WAAE5-LSPI 82.7%(±4.0) 43.8%(±5.2) 61.6%(±5.4)

30% WAAE-GP 93.5%(±2.7) 76.2%(±4.7) 75.2%(±4.7)
WAAE5-GP 86.6%(±3.8) 57.4%(±5.7) 69.2%(±5.2)
WAAE-LSPI 88.4%(±3.5) 40.8%(±5.0) 63.1%(±5.3)
WAAE5-LSPI 80.2%(±4.3) 41.7%(±5.5) 57.6%(±5.5)

45% WAAE-GP 87.1%(±3.7) 58.4%(±5.5) 73.0%(±5.0)
WAAE5-GP 84.7%(±4.0) 53.0%(±5.7) 67.2%(±5.3)
WAAE-LSPI 86.4%(±3.8) 38.8%(±5.1) 53.2%(±5.5)
WAAE5-LSPI 76.8%(±4.6) 36.3%(±5.4) 51.2%(±5.6)

Table 5.2: Mean dialogue success while applying WAAE and WAAE5 which follow
N(0, 1) and N(0, 5) distibutions respectively. Best result in bold. The parenthesis
depicts the standard deviation.

In Figures 5.4, 5.5 and 5.6, we display the progression of the average dialogue
success during the training of the WAAE and WAAE5 in combination with GP-
SARSA and LSPI in the three domains for four distinct levels of noise. We notice
that all curves present significant and frequent fluctuations throughout the opti-
mization process, especially in the two most challenging domains (LAP11 and SFR).
Moreover, we discern a drop in the system’s performance after 1500 dialogue sam-
ples, which leads to unstable training and weakness to converge. This behavior is
mainly due to the low discriminator loss and high generator loss as noticed during
optimization, meaning that the discriminator does a good job at distinguishing the
real prior distribution from the generated samples, making it harder for the encoder
to match the desirable prior distribution and leading to poor performance of the
Autoencoder. This does not support our initial hypothesis that the WAAE would
provide more stable training and better matching of the desirable prior distribution
and eventually deliver better performance than the AAE.

42

(a) CR 0% (b) CR 15%

(c) CR 30% (d) CR 45%

Figure 5.4: Average Success in CR domain for different noise levels and state rep-
resentations with GP-SARSA and LSPI.

(a) LAP11 0% (b) LAP11 15%

(c) LAP11 30% (d) LAP11 45%

Figure 5.5: Average Success in LAP11 domain for different noise levels and state
representations with GP-SARSA and LSPI.

43

(a) SFR 0% (b) SFR 15%

(c) SFR 30% (d) SFR 45%

Figure 5.6: Average Success in SFR domain for different noise levels and state
representations with GP-SARSA and LSPI.

5.2.2 Vanilla vs Wasserstein Adversarial Autoencoder

In Table 5.3, we show the average success of the dialogue in three separate domains
(CR, LAP11, SFR) and for four distinct levels of noise, when we utilize the repre-
sentations received from the AAE and WAAE that follow the normal distribution
N(0, 1) with only the GP-SARSA policy algorithm. We compare them to the success
rates using the sumBS vector and the AE representations [33].

We show that the AAE representation obtains the best performance among all
the domains and environments compared to the other models except for the CR
domain with 0% and 15% of noise, where the sumBS and the AE seem to produce
slightly better scores. Even though performance degradation exists, especially in
the two most challenging domains (LAP11 and SFR), we observe that as the noise
level increases, the AAE achieves considerably higher dialogue success rates than
the sumBS and AE representations. More specifically, when we apply AAE, GP-
SARSA is able to obtain success rates close to 90% in LAP11 and SFR domains with
30% and 45% of SER, compared to 50% and 70% in the LAP11 and SFR domains,
respectively when AE or sumBS are used.

Moreover, we notice that when we utilize WAAE, GP-SARSA cannot reach the
performance achieved when applying AAE. The significant difference in dialogue suc-
cess rates appears in LAP11 and SFR domains with high SER, where AAE clearly
outperforms WAAE. This reveals that the modified version of AAE does not benefit

44

Domains
SER BS CR LAP11 SFR
0% sumBS 98.4%(±1.1) 86.8%(±3.8) 95.2%(±1.3)

AE 99.3%(±0.5) 92.6%(±1.9) 95.3%(±0.8)
AAE 97.2%(±2.2) 94.2%(±2.6) 96.0%(±2.2)

WAAE 96.0%(±2.1) 90.5%(±3.2) 90.1%(±3.5)
15% sumBS 96.4%(±2.2) 66.5%(±2.3) 81.6%(±1.6)

AE 96.5%(±1.0) 68.9%(±10.1) 89.3%(±1.8)
AAE 96.4%(±2.1) 92.1%(±3.0) 93.7%(±2.7)

WAAE 93.7%(±2.7) 81.8%(±4.2) 76.3%(±4.6)
30% sumBS 88.5%(±4.2) 51.4%(±9.3) 66.3%(±5.3)

AE 92.2%(±1.1) 50.1%(±10.4) 69.4%(±2.3)
AAE 96.2%(±1.8) 89.4%(±3.4) 89.8%(±3.4)

WAAE 93.5%(±2.7) 76.2%(±4.7) 75.2%(±4.7)
45% sumBS 78.0%(±3.4) 24.1%(±5.5) 53.9%(±6.8)

AE 78.1%(±3.3) 38.7%(±5.4) 36.9%(±7.9)
AAE 94.5%(±2.0) 87.7%(±3.8) 88.1%(±3.6)

WAAE 87.1%(±3.7) 58.4%(±5.5) 73.0%(±5.0)

Table 5.3: Mean dialogue success with GP-SARSA for different state representa-
tions. Best result in bold. The parenthesis depicts the standard deviation.

the PM to obtain better results. This is mainly due to the low discriminator loss and
high generator loss, as noticed during optimization, meaning that the discriminator
does a good job at distinguishing the real prior distribution from the generated sam-
ples, making it harder for the encoder to match the desirable prior distribution and
leading to poor performance of the Autoencoder. However, GP-SARSA combined
with WAAE exhibits better performance than the AE and SumBS representations
when the noise is 30% or greater, which once again confirms the efficiency of our
adversarial models.

In Figures 5.7, 5.8, and 5.9, we demonstrate the progress of the average dialogue
success achieved by the representations mentioned above in the three domains for
four distinct levels of noise. We observe that GP-SARSA requires approximately
1500 dialogues to reach convergence when AAE is applied, while in the case of sumBS
and AE it takes roughly 2000 dialogues. Furthermore, we notice that WAAE does
not help the PM to converge and achieve similar performance to AAE, but it presents
several fluctuations throughout its training, especially in the two difficult domains
(LAP11 and SFR).

45

(a) CR 0% (b) CR 15%

(c) CR 30% (d) CR 45%

Figure 5.7: Average Success in CR domain for different noise levels and state rep-
resentations with GP-SARSA.

(a) LAP11 0% (b) LAP11 15%

(c) LAP11 30% (d) LAP11 45%

Figure 5.8: Average Success in LAP11 domain for different noise and state repre-
sentations with GP-SARSA.

46

(a) SFR 0% (b) SFR 15%

(c) SFR 30% (d) SFR 45%

Figure 5.9: Average Success in SFR domain for different noise levels and state
representations with GP-SARSA.

5.2.3 Denoising Adversarial Autoencoders

In the final part of our experiments, we compare the performance of our Adversar-
ial Autoencoders with the performance of the Variational Denoising Autoencoder
(VDAE), which delivered the best results in [33]. So far, the AAE has proved to
achieve quite better performance than the WAAE. Thus, in the following exper-
iments, we utilize only the AAE which follows a Gaussian distribution with unit
variance as it proved to deliver better results that the one with variance of five. As
we want to have a fair comparison, we also use the denoising mechanism for the
AAE as described in Chapter 4, and we call it DAAE.

In Table 5.4, we present the average dialogue success achieved by the AAE
and DAAE representations combined with both policy algorithms, GP-SARSA, and
LSPI in the three environments where noise is present. We notice that the DAAE
offers a slight improvement in the CR domain and a bigger one in the LAP11 and
SFR domains with 45% SER. Nevertheless, the AAE exhibits very high performance,
quite close to that of the DAAE, even in the two challenging domains with increased
noise. Finally, we discern that LSPI combined with the AAE or DAAE provide
better results than GP-SARSA in most environments.

47

Domains
SER BS CR LAP11 SFR
15% AAE-GP 96.4%(±2.1) 92.1% (±3.0) 93.7%(±2.7)

AAE-LSPI 92.6%(±2.8) 97.7%(±1.5) 97.2%(±1.8)
DAAE-GP 96.6%(±2.1) 92.6%(±2.9) 93.0%(±2.8)

DAAE-LSPI 97.1%(±1.6) 97.4%(±1.7) 97.4%(±1.8)
30% AAE-GP 96.2%(±1.8) 89.4%(±3.4) 89.8%(±3.4)

AAE-LSPI 92.0%(±2.9) 96.8%(±1.5) 94.9%(±2.4)
DAAE-GP 96.0%(±2.3) 91.3%(±3.2) 91.2%(±3.1)

DAAE-LSPI 93.6%(±1.8) 97.1%(±1.7) 95.9%(±2.2)
45% AAE-GP 94.5%(±2.0) 87.7%(±3.8) 88.1%(±3.6)

AAE-LSPI 91.1%(±3.0) 93.4%(±1.9) 91.9%(±2.8)
DAAE-GP 94.9%(±2.4) 89.1%(±3.5) 89.3%(±3.5)

DAAE-LSPI 92.6%(±2.8) 96.2%(±2.0) 94.8%(±2.4)

Table 5.4: Mean dialogue success while applying AAE and DAAE. Best result in
bold. The parenthesis depicts the standard deviation.

In Table 5.5, we compare the dialogue success rates produced by the DAAE
and the ones provided by the VDAE, which exhibited the best performance among
all other AE-based representations in [33]. When the SER is 0%, the DAAE is
identical to AAE, and VDAE is equal to VAE; thus, we only include the AAE and
VAE success rates. We observe that the DAAE combined with GP-SARSA out-
performs the combination of VDAE with GP-SARSA in almost every environment
and domain. However, DAAE combined with LSPI exhibits lower performance than
VDAE combined with LSPI, especially in the CR domain. In the LAP11 domain,
the performance of the DAAE-LSPI combination is very close to that of VDAE-
LSPI, where there is a difference of less than 1% of dialogue success rate. Finally,
the DAAE outperforms VDAE in the SFR domain regardless of the selection of the
Policy Manager. Despite the high performance of the DAAE, which is very close to
that of the VDAE, the DAAE produces higher standard deviation, especially in the
two difficult domains of LAP11 and SFR.

48

Domains
SER BS CR LAP11 SFR
0% AAE-GP 97.2%(±2.2) 94.2%(±2.6) 96.0%(±2.2)

AAE-LSPI 96.5%(±1.8) 98.2%(±1.5) 97.4%(±1.7)
VAE-GP 96.5%(±2.7) 94.7%(±1.7) 93.7%(±2.1)

VAE-LSPI 99.7%(±0.4) 98.5%(±1.1) 98.4%(±1.1)
15% DAAE-GP 96.6%(±2.1) 92.6%(±2.9) 93.0%(±2.8)

DAAE-LSPI 97.1%(±1.6) 97.4%(±1.7) 97.4%(±1.8)
VDAE-GP 95.5%(±0.8) 91.7%(±0.5) 93.6%(±1.0)

VDAE-LSPI 99.0%(±0.8) 97.9%(±0.6) 97.0%(±0.7)
30% DAAE-GP 96.0%(±2.3) 91.3%(±3.2) 91.2%(±3.1)

DAAE-LSPI 93.6%(±1.8) 97.1%(±1.7) 95.9%(±2.2)
VDAE-GP 92.9%(±1.3) 90.2%(±1.9) 89.9%(±2.7)

VDAE-LSPI 98.1%(±1.2) 97.7%(±0.9) 95.3%(±1.6)
45% DAAE-GP 94.9%(±2.4) 89.1%(±3.5) 89.3%(±3.5)

DAAE-LSPI 92.6%(±2.8) 96.2%(±2.0) 94.8%(±2.4)
VDAE-GP 92.3%(±3.3) 87.9%(±2.7) 88.6%(±2.9)

VDAE-LSPI 93.6%(±2.7) 96.7%(±0.9) 94.6%(±1.5)

Table 5.5: Mean dialogue success while applying DAAE versus VDAE. Best result
in bold. The parenthesis depicts the standard deviation.

In Figures 5.10, 5.11, and 5.12, we present the progression of the average dialogue
success accomplished by the DAAE and VDAE representations in the three domains
and for four distinct levels of noise. We observe that the LSPI policy algorithm re-
quires approximately 1200 dialogue samples to converge regardless of the selection
of the Autoencoder, while GP-SARSA needs somewhere between 300 and 600 dia-
logue samples. In the CR domain, the DAAE combined with LSPI requires by far
the most training samples to reach convergence, especially in the 45% noise envi-
ronment, where it takes more than 2000 samples. Moreover, the DAAE initiates the
optimization process from lower dialogue success rates than the VDAE independent
of the Policy Manager we utilize. This is mainly due to the Adversarial Autoen-
coders’ hard training procedure, where it takes more time for the encoder to learn
and produce the desirable distribution compared to the Variational Autoencoder.
However, the DAAE is finally able to reach the performance of the VDAE.

49

(a) CR 0% (b) CR 15%

(c) CR 30% (d) CR 45%

Figure 5.10: Average Success in CR domain for different noise levels and state
representations with GP-SARSA and LSPI.

(a) LAP11 0% (b) LAP11 15%

(c) LAP11 30% (d) LAP11 45%

Figure 5.11: Average Success in LAP11 domain for different noise levels and state
representations with GP-SARSA and LSPI.

50

(a) SFR 0% (b) SFR 15%

(c) SFR 30% (d) SFR 45%

Figure 5.12: Average Success in SFR domain for different noise levels and state
representations with GP-SARSA and LSPI.

Chapter 6

Conclusion & Future Work

In this work, we investigate the effectiveness of Generative Adversarial Networks
(GANs) within the framework of a Spoken Dialogue System. More specifically, we
introduce an innovative use of the Adversarial Autoencoder, which is trained like a
GAN, in our effort to explore more efficient Belief State-Space representations that
could help the Policy Manager achieve high performance.

First, we present the background of GANs and describe their architecture and
their adversarial training procedure. Then, we review some of the most significant
difficulties that arise when a GAN is trained, to state that this process is not as
straightforward as training a standard Neural Network. Next, we discuss a technique
that provides GANs with more stable training and helps overcome most of the
difficulties that arise during training. More specifically, this method uses a new loss
function based on the Wasserstein distance to optimize the network’s parameters,
forming a new family of GANs, called Wasserstein Generative Adversarial Networks
(WGANs).

Next, we describe our proposed method to represent the Belief State (BS), which
is based on the AAE, and we compare it with the Variational Autoencoder, which
was used in [33]. We then introduce the Wasserstein Adversarial Autoencoder, which
has many features in common with WGANs, as we want to explore the efficiency
of such a technique in Adversarial Autoencoders. We conclude the chapter of our
implementation with the Denoising Adversarial Autoencoder, which is trained to
provide meaningful BS representations in environments with high noise levels and
our concurrent training procedure, which is quite similar to the one used in [33] and
allows the Adversarial models to be optimized in parallel with the Policy Manager.

Our experiments were conducted in the Pydial toolkit, where we utilized two
RL policy algorithms, the GP-SARSA and the LSPI. We tested our models in three
domains (CR, LAP11, and SFR) for four distinct levels of noise (0%, 15%, 30%,
45%), and we compared the performance of our models with the current state-of-
the-art [34, 8]. We first experimented on the impact of the prior distribution on the
performance of the Adversarial Autoencoders and, as a result, in the performance of
the Policy Manager. We tested our models by imposing two Gaussian distributions,
both having zero mean, the one with unit variance, and the other with a variance
of five. The results revealed that the normal prior distribution with unit variance
helps both the AAE and the WAAE achieve higher dialogue success rates than those
with a variance of five, regardless of the selection we make for the PM. Next, we

51

52

compared the performance of the AAE and the WAAE to the baseline sumBS vector
and the vanilla AE. The results showed that the AAE and the WAAE achieve better
performance than the baseline sumBS vector and the vanilla AE, especially in the
noisiest environments. However, the AAE outperformed the WAAE in all cases
and presented smoother optimization, which proved our initial hypothesis, that the
Wasserstein loss function would improve the performance of the AAE, wrong.

In the final section of our experiments, we examined the efficiency of the DAAE
in noisy environments. It proved to provide a slight improvement in the performance
compared to the AAE, which states that the AAE is able to provide noise-robust
BS representations even in the most challenging domains with high SER. Finally, it
was essential to compare the performance of the DAAE to that of the VDAE, which
exhibited the best success rates in [33]. We showed that the DAAE outperforms
the VDAE, when we utilize GP-SARSA as our PM, and we can obtain very high
dialogue success rates close to that produced by the VDAE even when LSPI is used.
Nevertheless, both models present similar behavior during the training procedure,
with the DAAE starting the optimization from lower success rates, but eventually
reaching the performance of the VDAE.

Consequently, in this diploma thesis, we propose an innovative use of the Ad-
versarial Autoencoder as a method to represent the summary BS space in a more
compact and lower-dimensional vector. We also introduced the Wasserstein Adver-
sarial Autoencoder, which eventually fell behind our initial expectations. Besides,
we experimented on two different prior distributions and showed the impact they
have on the performance of the Policy Manager. Finally, we utilized a denoising
mechanism for the AAE, which proved to provide only a slight improvement in
the performance, showing the ability of the AAE to produce high-quality sumBS
representations even in very noisy environments.

Future work concerns further experimentation on different prior distributions
apart from the Gaussian. Also, the representations obtained by the AAE could be
used by non-linear Policy Managers, which is another family of RL algorithms that
were not discussed in this thesis, but offer great potential. Finally, the research could
focus on developing a policy algorithm based on Generative Adversarial Networks
in order to explore another aspect of this popular and highly potential category of
Neural Networks.

References

[1] Grigory Antipov, Moez Baccouche, and Jean-Luc Dugelay. “Face aging with
conditional generative adversarial networks”. In: 2017 IEEE international con-
ference on image processing (ICIP). IEEE. 2017, pp. 2089–2093.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein GAN”.
In: arXiv preprint arXiv:1701.07875 (2017).

[3] Richard Bellman. “A Markovian decision process”. In: Journal of mathematics
and mechanics (1957), pp. 679–684.

[4] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. “Neu-
ral photo editing with introspective adversarial networks”. In: arXiv preprint
arXiv:1609.07093 (2016).

[5] Pawe l Budzianowski, Stefan Ultes, Pei-Hao Su, Nikola Mrkšić, Tsung-Hsien
Wen, Inigo Casanueva, Lina Rojas-Barahona, and Milica Gašić. “Sub-domain
modelling for dialogue management with hierarchical reinforcement learning”.
In: arXiv preprint arXiv:1706.06210 (2017).

[6] Iñigo Casanueva, Pawe l Budzianowski, Pei-Hao Su, Nikola Mrkšić, Tsung-
Hsien Wen, Stefan Ultes, Lina Rojas-Barahona, Steve Young, and Milica
Gašić. “A benchmarking environment for reinforcement learning based task
oriented dialogue management”. In: arXiv preprint arXiv:1711.11023 (2017).

[7] Antonia Creswell and Anil Anthony Bharath. “Denoising adversarial autoen-
coders”. In: IEEE transactions on neural networks and learning systems 30.4
(2018), pp. 968–984.

[8] Vassilios Diakoloukas, Fotios Lygerakis, Michail G Lagoudakis, and Margarita
Kotti. “Variational Denoising Autoencoders and Least-Squares Policy Itera-
tion for Statistical Dialogue Managers”. In: IEEE Signal Processing Letters
(2020).

[9] P Kingma Diederik and Max Welling. “Auto-encoding variational bayes”.
In: Proceedings of the International Conference on Learning Representations
(ICLR). Vol. 1. 2014.

[10] David A Edwards. “On the Kantorovich–Rubinstein theorem”. In: Exposi-
tiones Mathematicae 29.4 (2011), pp. 387–398.

[11] Arthur Szlam Emily L. Denton Soumith Chintala and Rob Fergus. “Deep
generative image models using a laplacian pyramid of adversarial networks”.
In: Advances in neural information processing systems. 2015, pp. 1486–1494.

53

54

[12] Mehdi Fatemi, Layla El Asri, Hannes Schulz, Jing He, and Kaheer Suleman.
“Policy networks with two-stage training for dialogue systems”. In: arXiv
preprint arXiv:1606.03152 (2016).

[13] Milica Gašić, Filip Jurčıček, Blaise Thomson, Kai Yu, and Steve Young. “On-
line policy optimisation of spoken dialogue systems via live interaction with
human subjects”. In: 2011 IEEE Workshop on Automatic Speech Recognition
& Understanding. IEEE. 2011, pp. 312–317.

[14] Milica Gašić and Steve Young. “Gaussian processes for pomdp-based dialogue
manager optimization”. In: IEEE/ACM Transactions on Audio, Speech, and
Language Processing 22.1 (2013), pp. 28–40.

[15] Ian J Goodfellow. “On distinguishability criteria for estimating generative
models”. In: arXiv preprint arXiv:1412.6515 (2014).

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative ad-
versarial nets”. In: Advances in neural information processing systems. 2014,
pp. 2672–2680.

[17] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. “Improved training of Wasserstein GANs”. In: Advances
in neural information processing systems. 2017, pp. 5767–5777.

[18] Hilda Hardy, Tomek Strzalkowski, and Min Wu. Dialogue management for an
automated multilingual call center. Tech. rep. Institute for Informatics, Logics
and Security Studies, University at Albany, NY., 2003.

[19] Hunter Heidenreich. What is a Generative Adversarial Network? url: https:
//towardsdatascience.com/what-is-a-generative-adversarial-netwo

rk-76898dd7ea65.

[20] Matthew Henderson, Blaise Thomson, and Jason D Williams. “The second
dialog state tracking challenge”. In: Proceedings of the 15th annual meeting of
the special interest group on discourse and dialogue (SIGDIAL). 2014, pp. 263–
272.

[21] Jonathan Hui. GAN — Energy based GAN (EBGAN) Boundary Equilibrium
GAN (BEGAN). url: https://medium.com/@jonathan_hui/gan-energy-
based-gan-ebgan-boundary-equilibrium-gan-began-4662cceb7824.

[22] Jonathan Hui. GAN — LSGAN (How to be a good helper?) url: https:

//medium.com/@jonathan_hui/gan-lsgan-how-to-be-a-good-helper-

62ff52dd3578.

[23] Jonathan Hui. GAN — RSGAN RaGAN (A new generation of cost function.)
url: https://medium.com/@jonathan_hui/gan-rsgan-ragan-a-new-
generation-of-cost-function-84c5374d3c6e.

[24] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. “Image-
to-image translation with conditional adversarial networks”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 1125–1134.

https://towardsdatascience.com/what-is-a-generative-adversarial-network-76898dd7ea65
https://towardsdatascience.com/what-is-a-generative-adversarial-network-76898dd7ea65
https://towardsdatascience.com/what-is-a-generative-adversarial-network-76898dd7ea65
https://medium.com/@jonathan_hui/gan-energy-based-gan-ebgan-boundary-equilibrium-gan-began-4662cceb7824
https://medium.com/@jonathan_hui/gan-energy-based-gan-ebgan-boundary-equilibrium-gan-began-4662cceb7824
https://medium.com/@jonathan_hui/gan-lsgan-how-to-be-a-good-helper-62ff52dd3578
https://medium.com/@jonathan_hui/gan-lsgan-how-to-be-a-good-helper-62ff52dd3578
https://medium.com/@jonathan_hui/gan-lsgan-how-to-be-a-good-helper-62ff52dd3578
https://medium.com/@jonathan_hui/gan-rsgan-ragan-a-new-generation-of-cost-function-84c5374d3c6e
https://medium.com/@jonathan_hui/gan-rsgan-ragan-a-new-generation-of-cost-function-84c5374d3c6e

55

[25] Ridong Jiang, Yeow Kee Tan, Dilip Kumar Limbu, Tran Anh Dung, and
Haizhou Li. “Component pluggable dialogue framework and its application
to social robots”. In: Natural Interaction with Robots, Knowbots and Smart-
phones. Springer, 2014, pp. 225–237.

[26] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. “Plan-
ning and acting in partially observable stochastic domains”. In: Artificial in-
telligence 101.1-2 (1998), pp. 99–134.

[27] Kyungduk Kim, Cheongjae Lee, Sangkeun Jung, and Gary Geunbae Lee. “A
frame-based probabilistic framework for spoken dialog management using dia-
log examples”. In: Proceedings of the 9th SIGdial Workshop on Discourse and
Dialogue. 2008, pp. 120–127.

[28] Margarita Kotti, Vassilios Diakoloukas, Alexandros Papangelis, Michail
Lagoudakis, and Yannis Stylianou. “A Case Study on the Importance of Belief
State Representation for Dialogue Policy Management.” In: INTERSPEECH.
Vol. 986. 2018.

[29] Michail G Lagoudakis and Ronald Parr. “Least-squares policy iteration”. In:
Journal of machine learning research 4.Dec (2003), pp. 1107–1149.

[30] Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, and Dan
Jurafsky. “Adversarial learning for neural dialogue generation”. In: arXiv
preprint arXiv:1701.06547 (2017).

[31] Lihong Li, Jason D Williams, and Suhrid Balakrishnan. “Reinforcement learn-
ing for dialog management using least-squares policy iteration and fast feature
selection”. In: Tenth Annual Conference of the International Speech Commu-
nication Association. 2009.

[32] J. Liang and R. Liu. “Stacked denoising autoencoder and dropout together
to prevent overfitting in deep neural network”. In: 2015 8th International
Congress on Image and Signal Processing (CISP). 2015, pp. 697–701.

[33] Fotios Lygerakis. Belief state space representation for statistical dialogue man-
agers using deep autoencoders. Diploma Thesis. School of Electrical and Com-
puter Engineering, Technical University of Crete, Chania, Greece, 2019.

[34] Fotios Lygerakis, Vassilios Diakoloulas, Michail Lagoudakis, and Margarita
Kotti. “Robust Belief State Space Representation for Statistical Dialogue Man-
agers Using Deep Autoencoders”. In: 2019 IEEE Automatic Speech Recogni-
tion and Understanding Workshop (ASRU). IEEE. 2019, pp. 1055–1061.

[35] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow,
and Brendan Frey. “Adversarial autoencoders”. In: arXiv preprint
arXiv:1511.05644 (2015).

[36] H̊akan Melin, Anna Sandell, and Magnus Ihse. “CTT-bank: A speech con-
trolled telephone banking system-an initial evaluation”. In: 1 (2001), pp. 1–
27.

[37] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. “Unrolled gen-
erative adversarial networks”. In: arXiv preprint arXiv:1611.02163 (2016).

56

[38] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. “Playing atari with deep
reinforcement learning”. In: arXiv preprint arXiv:1312.5602 (2013).

[39] Naresh Nagabushan. A wizard’s guide to Adversarial Autoencoders: Part 2,
Exploring latent space with Adversarial Autoencoders. url: https://towar
dsdatascience.com/a-wizards-guide-to-adversarial-autoencoders-

part-2-exploring-latent-space-with-adversarial-2d53a6f8a4f9.

[40] Parul Pandey. Understanding the Mathematics behind Gradient Descent. url:
https://towardsdatascience.com/understanding- the- mathematics-

behind-gradient-descent-dde5dc9be06e.

[41] Benedetto Piccoli and Francesco Rossi. “Generalized Wasserstein distance and
its application to transport equations with source”. In: Archive for Rational
Mechanics and Analysis 211.1 (2014), pp. 335–358.

[42] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised representa-
tion learning with deep convolutional generative adversarial networks”. In:
arXiv preprint arXiv:1511.06434 (2015).

[43] Sai Rajeswar, Sandeep Subramanian, Francis Dutil, Christopher Pal, and
Aaron Courville. “Adversarial generation of natural language”. In: arXiv
preprint arXiv:1705.10929 (2017).

[44] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt
Schiele, and Honglak Lee. “Generative adversarial text to image synthesis”.
In: arXiv preprint arXiv:1605.05396 (2016).

[45] Nicholas Roy, Joelle Pineau, and Sebastian Thrun. “Spoken dialogue man-
agement using probabilistic reasoning”. In: Proceedings of the 38th Annual
Meeting on Association for Computational Linguistics. Association for Com-
putational Linguistics. 2000, pp. 93–100.

[46] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connec-
tionist systems. Vol. 37. University of Cambridge, Department of Engineering
Cambridge, UK, 1994.

[47] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-
ford, and Xi Chen. “Improved techniques for training gans”. In: Advances in
neural information processing systems. 2016, pp. 2234–2242.

[48] Pei-Hao Su, Pawel Budzianowski, Stefan Ultes, Milica Gasic, and Steve Young.
“Sample-efficient actor-critic reinforcement learning with supervised data for
dialogue management”. In: arXiv preprint arXiv:1707.00130 (2017).

[49] Stefan Ultes, Lina M Rojas Barahona, Pei-Hao Su, David Vandyke, Dongho
Kim, Inigo Casanueva, Pawe l Budzianowski, Nikola Mrkšić, Tsung-Hsien Wen,
and Milica Gasic. “Pydial: A multi-domain statistical dialogue system toolkit”.
In: Proceedings of ACL 2017, System Demonstrations. 2017, pp. 73–78.

[50] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. “Stacked denoising autoencoders: Learning useful repre-
sentations in a deep network with a local denoising criterion”. In: Journal of
machine learning research 11.Dec (2010), pp. 3371–3408.

https://towardsdatascience.com/a-wizards-guide-to-adversarial-autoencoders-part-2-exploring-latent-space-with-adversarial-2d53a6f8a4f9
https://towardsdatascience.com/a-wizards-guide-to-adversarial-autoencoders-part-2-exploring-latent-space-with-adversarial-2d53a6f8a4f9
https://towardsdatascience.com/a-wizards-guide-to-adversarial-autoencoders-part-2-exploring-latent-space-with-adversarial-2d53a6f8a4f9
https://towardsdatascience.com/understanding-the-mathematics-behind-gradient-descent-dde5dc9be06e
https://towardsdatascience.com/understanding-the-mathematics-behind-gradient-descent-dde5dc9be06e

57

[51] Zhuoran Wang, Tsung-Hsien Wen, Pei-Hao Su, and Yannis Stylianou. “Learn-
ing domain-independent dialogue policies via ontology parameterisation”. In:
Proceedings of the 16th Annual Meeting of the Special Interest Group on Dis-
course and Dialogue. 2015, pp. 412–416.

[52] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine learn-
ing 8.3-4 (1992), pp. 279–292.

[53] Lilian Weng. From Autoencoder to Beta-VAE. url: https://lilianweng.
github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html.

[54] Jason D Williams and Steve Young. “Scaling POMDPs for spoken dialog man-
agement”. In: IEEE Transactions on Audio, Speech, and Language Processing
15.7 (2007), pp. 2116–2129.

[55] Jason D Williams and Steve Young. “Scaling up POMDPs for Dialog Manage-
ment: The“Summary POMDP”Method”. In: IEEE Workshop on Automatic
Speech Recognition and Understanding, 2005. IEEE. 2005, pp. 177–182.

[56] Steve Young. “Talking to machines (statistically speaking)”. In: Seventh In-
ternational Conference on Spoken Language Processing. 2002.

[57] Steve Young, Milica Gašić, Blaise Thomson, and Jason D Williams. “Pomdp-
based statistical spoken dialog systems: A review”. In: Proceedings of the IEEE
101.5 (2013), pp. 1160–1179.

[58] Steve Young, Jost Schatzmann, Karl Weilhammer, and Hui Ye. “The hid-
den information state approach to dialog management”. In: 2007 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing-ICASSP’07.
Vol. 4. IEEE. 2007, pp. IV–149.

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

	Introduction
	Thesis Contribution
	Thesis Synopsis

	Background
	Generative Adversarial Neural Networks
	Vanilla Generative Adversarial Networks
	Difficulties when training GANs
	Wasserstein Generative Adversarial Networks

	Dialogue Management
	MDPs and POMDPs in dialogue

	Reinforcement Learning
	GP-SARSA
	Least-Squares Policy Iteration

	Belief State Space Representation
	Full Belief State Space
	Summary Space
	Related Work
	Problem Statement

	Belief State Representation with Adversarial Autoencoders
	Vanilla Adversarial Autoencoder
	Variational Autoencoder and its relationship to AAE

	Wasserstein Adversarial Autoencoder
	Denoising Adversarial Autoencoder
	Concurrent Training Procedure

	Experimental Evaluation
	Setup - Framework
	Experimental Results
	Adversarial Autoencoders with various priors
	Vanilla vs Wasserstein Adversarial Autoencoder
	Denoising Adversarial Autoencoders

	Conclusion & Future Work
	References

