
TECHNICAL UNIVERSITY OF CRETE
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT

TELECOMMUNICATIONS DIVISION

Design and Implementation of a Solar

Powered Wireless Sensor Network for

Autonomous Inference

by

Athanasios Nichoritis

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DIPLOMA OF

ELECTRICAL AND COMPUTER ENGINEERING

July 2021

THESIS COMMITTEE

Professor Aggelos Bletsas, Thesis Supervisor
Professor Kostas Kalaitzakis

Professor Antonios Deligiannakis

Abstract

This work studies implementation of an ambiently-powered, distributed wire-

less sensor network (WSN) capable for in-network inference, using low-cost,

low-power embedded nodes. It is found that for 10.8 dBm transmission

power, at least 280 meters point-to-point communication link is possible, with

packet error rate (PER) less than 2%. Furthermore, a 16-node distributed

message passing network is presented and compared to a Zigbee centralized

network. It is found that the distributed network provides more flexibil-

ity and larger communication range, while the centralized network provides

faster execution time at the expense of shorter communication range and

coverage. Last but not least, Gaussian Belief Propagation and Average Con-

sensus are implemented in the distributed message passing, solar-powered

WSN, demonstrating why asynchrony in message passing is the key.

Thesis Supervisor: Professor Aggelos Bletsas

Acknowledgements

First of all I would like to thank my supervisor Prof. Aggelos Bletsas for his

guidance and support throughout this work and beyond that.

My friends and colleagues, P.Vasilakopoulos, V.Papageorgiou for all the

help they provided during my work on the laboratory.

My family, my close friends and especially Lampros, nothing would be

the same without them.

4

Contents

Table of Contents . 4

List of Figures . 6

1 Introduction . 8

1.1 Internet of Things and Wireless Sensor Networks 8

1.2 Ambiently Powered Distributed network 9

2 Embedded Hardware . 11

2.1 Specification . 11

2.2 Point-to-Point communication 15

2.2.1 Radio Configuration 17

2.2.2 Outdoor communication link 18

3 Embedded Networking . 21

3.1 Distributed message passing platform 21

3.1.1 Implementation . 22

3.1.2 Packet Layer Configuration 23

3.1.3 Sleep Mode . 24

3.1.4 Test setup . 25

3.2 Centralized Zigbee Network 28

3.2.1 What does Centralized Network mean? 28

3.2.2 Implementation . 30

3.3 Energy Harvester . 33

3.3.1 Implementation [1] . 35

Contents 5

4 WSN as Inference Platform 38

4.1 Description . 38

4.2 Algorithm 1: Gaussian Belief Propagation 41

4.3 Algorithm 2: Average Consensus 43

5 Experimental results . 45

5.1 Implementation of Gaussian Belief Propagation (GBP) . . . 45

5.2 Implementation of Average Consensus Algorithm 49

6 Conclusions . 53

6.1 Conclusion . 53

6.2 Future Work . 53

Bibliography . 55

6

List of Figures

2.1 Thunderboard sense 2 Hardware Layout [2] 13

2.2 Thunderboard sense 2 [2] . 14

2.3 Thunderboard setup outdoor. 19

3.1 An example distributed network of 16 nodes, where each agent

communicates with a set of nodes in its neighborhood 22

3.2 Message payload . 24

3.3 Experimental setup. 26

3.4 Experimental Topology. 27

3.5 Centralized Network. 28

3.6 Zigbee Architecture [3]. 29

3.7 Coordinator’s console. 32

3.8 The multi hop network. 33

3.9 A terminal of the WSN testbed; it consists of a custom solar

energy harvester and a Thunderboard Sense 2 module. 35

3.10 Probability of power outage as a function of number of hours

during which the solar irradiance constraint is satisfied [1]. . . 36

3.11 The solar harvester designed and implemented for powering

the WSN terminals [1]. 37

4.1 Factor graph assignment into a WSN with 3 nodes. 39

5.1 Real WSN with 3 terminals/nodes. 45

5.2 Edges representation in factor graph. 46

5.3 Convergence of the 3 node experimental GBP. 49

5.4 Convergence of the 3 node experimental consensus. 50

List of Figures 7

5.5 Experimental behaviour of the Consensus algorithm when an

outage event occurs at node 3. 52

6.1 Sleep mode consumption. 54

6.2 Active mode consumption. 54

Chapter 1

Introduction

1.1 Internet of Things and Wireless Sensor

Networks

Wireless sensor networks (WSN) have recently attracted immense research

interest with a broad spectrum of possible applications. With the advent of

the so-called Internet of Things (IoT), this interest has skyrocketed as by

nature WSNs and IoT are closely related. To achieve a large network, each

device must communicate with the outside world using low cost and ideally,

ultra low-power technology.

Recent advances have enabled the development of low-cost and low-power

wireless sensors. Sensors can monitor air quality and track environmental

pollutants, wildfires, or other natural or man-made disasters. An important

application of sensor networks is in security monitoring and surveillance for

buildings, or other critical infrastructure. Microphone or orientation sensors

can be very useful in identifying and tracking moving entities, although they

require higher-bandwidth communication links. Last but not least, wide

area monitoring is possible using environmental sensors such as humidity or

temperature sensors. These networks can help farmers have the control of

their crops at any time, they can reduce the cost and at the same time that

leads to water conservation by irrigating only when and where it is necessary.

In fact, environmental monitoring is one of the earliest applications of

sensor networks. An important consideration is the durability of sensors in

an unattended environment over an extended period of time.

A WSN is a self-organized wireless network composed of a large number

of sensors [4]. WSN nodes typically use an independent power supply, which

means they can be easily deployed in large-scale, complex environments.

1.2. Ambiently Powered Distributed network 9

However, this also means that WSN nodes have very limited energy, mem-

ory, and computing resources. So converting the WSN nodes to ambiently

powered nodes is a great challenge.

1.2 Ambiently Powered Distributed network

Recent advances on scatter radio sensor networks, have demonstrated feasi-

bility of µWatt power and low-cost, joint sensing and wireless networking;

all is needed at the transmitter side is a radio frequency (RF) transistor, a

reliable antenna and a low-cost micro controller unit (MCU).

As packet switching set the basic principles of computer networking archi-

tecture decades ago, ambient micro-energy harvesting defines new principles

for battery-less computing and in-network inference.

Ambient energy, from sun, motion, temperature or even from living ani-

mals such as insects or plants has fixed density per cm2. Consequently, WSNs

over an extended area could in principle harvest a large amount of energy

(Table 1.1).

Instead of having a central device (like a personal computer or cloud) ,

which can lead to an increase of cost and complexity, the key is the distributed

way. By balancing the WSN computation and communication load of the

(distributed) message passing/inference task across various (distributed in

space) nodes and by exploiting ultra-low power wireless communication and

sensing principles (e.g., scatter radio), autonomous, in-network decisions

could be achieved using solely ambient energy.

In-network decisions can be useful for plenty applications. Recent ad-

vances on powerful message passing algorithms (e.g., sum-product, max-

product), also known as belief propagation, have offered concrete examples

on how decision making and inference can be facilitated through communi-

cation at carefully crafted graphs.

The vision for this work is the implementation of an ambiently powered,

batteryless WSN over an agricultural field which can decides itself where and

when to irrigate, without any cloud/edge computing support.

1.2. Ambiently Powered Distributed network 10

Table 1.1: Ambient Energy Availability & Harvesting Capacity

Energy
source

Ambient Energy
Availability

Current-Technology
Offered Electric Power

(after conversion,
incorporating efficiency)

Light/
Solar

35mWatt/cm2

135mWatt
(Polycrystalline Blue Solar

Cell 5.4cm x 4.3cm
efficiency 16.5%)

Chemical/
Biologic

Voltage from
an Avocado plant

(Persea Americana)
60cm tall

1.15µ Watt
@ 21°C, 12.00 pm

1.05µWatt
@ 19.5°C, 16.00 pm

RF
0.1µWatt/cm2

(GSM band)

0.88µWatt
(efficiency 6%

dipole antenna)

RF
-40dBm/FM station

(FM band)

0.018µWatt
(efficiency 3%

harvesting from six
FM stations)

RF
-40dBm/FM station

(FM band)

0.003µWatt
(efficiency 3%

harvesting from one
FM station)

In this work conventional, low-cost development kits are used, capable of

forming a WSN (Ch. 2). Moreover, a centralized and a distributed network

are compared and the advantages of each network are presented (Ch. 3). An

energy harvester is designed and implemented, which can exploit the solar

energy (Ch. 3). A proof of concept is also provided, for a WSN which can

harvest energy from the environment and process the collected information

in a distributed manner, by converting the (network) inference task to a

probabilistic, message passing problem (Chap. 5). Work is concluded in

Chap. 6 in which future plans for extending this work are presented.

Chapter 2

Embedded Hardware

It is nowadays feasible to build a low-power and low-cost WSN [5] by exploit-

ing new technology and techniques. All is needed is a reliable tool to build

that system, taking into consideration all the aforementioned parameters.

A sensor node, also known as a mote (mainly in North America), is a node

in a sensor network that is capable of performing some processing, gathering

sensory information and communicating with other connected nodes in the

network.

Wireless sensor nodes communicate via their radio modules. Two nodes

are directly connected if they can transmit/receive data to/from each other.

A sensor communication model is a mathematical model that quantifies the

direct connectivity between sensor nodes.

A commonly assumed communication model is the disk connectivity model

according to which, a sensor node can communicate with other nodes located

within a disk itself centered within the radius of its communication range.

All the above lead to the conclusion that portables, low-cost, low-power

sensor nodes are needed, which must also have large communication range.

Silicon labs’ Thunderboard sense 2 [6] meets the aforementioned criteria.

This work studies whether reliable communication and in-network infer-

ence are possible, when using the aforementioned low-cost and low-consumption

kits as network’s nodes.

2.1 Specification

Thunderboard Sense 2 is a compact, feature-packed development platform

[6]. The development platform combines a broad range of sensors with the

powerful EFR32 radio. Thunderboard Sense 2 also has an on-board J-Link

2.1. Specification 12

debugger and is fully supported in Simplicity Studio.

The core of the Thunderboard Sense 2 is the EFR32MG12 Mighty Gecko

Wireless SoC. The board also contains a variety of sensors, including vari-

ous environmental sensors and a motion sensor, all connected to its MCU

(EFR32MG12). The user interface components include three push buttons,

a two colour LED, and four high brightness RGB LEDs.

Wireless Gecko EFR32™ provides :

• Wireless SoC with multi-protocol radio

• ARM Cortex® M4 core with 256kB RAM and 1024kB Flash

• Low Energy Consumption

• Flexible MCU preipheral interfaces

The Kit Features are the following:

• 2.4 GHz radio configuration with on-board antenna

• Segger J-Link Integrated Debugger

• USB CDC virtual serial port

• 8Mbit SPI ultra low power NOR flash for local storage

It is obvious from the above, that sensor nodes are vital component in

order to build a reliable and large-scale WSN. Thunderboard’s embedded

sensors provide plenty of options for a lot of real life applications.

In particular Thunderboard Sense 2 provides [2] :

• Relative Humidity and Temperature Sensor Si7021

• UV and Ambient Light Sensor Si1133

• Pressure Sensor BMP280

• Indoor Air Quality and Gas Sensor CCS811

• 6-axis Inertial Sensor ICM-20648

2.1. Specification 13

• Digital Microphone ICS-43434

• High brightness LEDs

• Hall-effect Sensor Si7210

The layout of the Thunderboard Sense 2 is shown below.

Figure 2.1: Thunderboard sense 2 Hardware Layout [2]

In normal operation, power can be applied using either a USB cable

connected to a power source, or a battery connected to one of the battery

connectors. The 5V power from the USB bus is regulated down to 3.3V using

a low-dropout regulator. Batteries can be connected to the Thunderboard

Sense 2 using either the CR2032 coin cell holder or the external battery

connector.

Silicon laboratories provides a software tool called Simplicity Studio for

configuring Thunderboard. The tool performs automatic code generation

depending on the desired radio configuration.

Programming the Thunderboard Sense 2 is easily done using a USB

Micro-B cable. A USB virtual COM port provides a serial connection to

the target application. Included on the board is a 8Mbit serial flash non-

volatile memory.

2.1. Specification 14

Connecting external hardware to the Thunderboard Sense 2 can be eas-

ily done using the 20 breakout pads, which present peripherals from the

EFR32MG12 Mighty Gecko such as SPI, UART, I2C and GPIOs.

Silicon Labs provides also a free mobile application for both Android and

IOS, using Bluetooth, in order to test the board features, such as sensors’

values in real time.

Figure 2.2: Thunderboard sense 2 [2]

The board has plenty of advantageous characteristics which makes it a

useful tool to build a large-scale and reliable WSN.

First and foremost, Thunderboard Sense 2 is significantly low-cost given

all the aforementioned capabilites. It costs 19.99 $.

Thunderboard’s operation at 2.4 GHz and the 32-bit MCU are two big

advantages compared to other low-cost and low-power boards. One of the

primary advantages of a 32-bit microcontroller over an 8-bit microcontroller

is its superior processing speed. A typical 8-bit microcontroller usually runs

at 8 Mhz while a 32-bit microcontroller, such as Thunderboard Sense 2, can

2.2. Point-to-Point communication 15

be clocked up to hundreds of Mhz. A 32-bit microcontroller could be used

in more complicated calculations, while, a 8-bit microcontroller is basically

used to execute simple logical operations such as addition, subtraction, mul-

tiplication, division, etc.. Comparing to 32-bit microcontroller, 8-bit is way

smaller in storage space and its calculating capability is weaker.

This is a multi-protocol capable kit for developing connected IoT devices,

supporting proprietary stacks and standard protocols such as Zigbee, Thread,

and Bluetooth Low Energy (BLE).

Lots of mini software examples are provided in Simplicity Studio, with

minor differences depending on the kit used (different MCU, antenna etc).

Also, these examples cover a wide variety of different applications, where

Silicon Lab’s kit can be useful. From a simple transmit-receive example, to

more complicated ones, such as the basic Zigbee network. That means it is

easier for a new developer to get started with programming hardware kits.

This work takes advantage of RAIL proprietary SDK, but also uses Zigbee

protocol. In Chap. 3.2 the centralized network is presented using Zigbee

protocol. In Chap. 3.1, the distributed network is presented which takes

advantage of the proprietary SDK.

2.2 Point-to-Point communication

The first step implemented was the point-to-point communication between

two nodes (terminals). To achieve this communication, Radio Abstraction

Interface Layer (RAIL) proprietary SDK was used [7]. The procedure resem-

bles to ping pong. Each terminal sends a message and waits for a response,

while the other terminal follows the reverse procedure.

Frequency domain implementation was selected for the communication

(similarly to the distributed network in Chap. 3.1). That means, each termi-

nal listens at its own channel (a specific frequency) and transmits messages

to a different channel, the one that the target terminal listens to.

The frequency band provided by Silicon Labs is flexible enough in or-

der to build a multi-node WSN. The center frequency the system operates

2.2. Point-to-Point communication 16

is 2.450MHz. Channel spacing was set manually at 500kHz. Using lower

channel spacing value, Cross Frequency Coupling was observed. Given the

aforementioned value, the band allows 128 channels. In frequency domain,

that means that a 128-node WSN can be implemented, in which, each ter-

minal listens at a different channel. A drawback noticed with the method

above, was that some frequencies interfere with some others when the phys-

ical distance between the nodes is small. So, some nodes must be at least

two-three meters apart (e.g channel 7 with channel 13).

RAIL SDK provides a user friendly interface for the radio configuration.

The parameters and their values for the point to point communication (which

will be generalized to a large WSN in Chap. 3.1) are shown in Table 2.1.

Table 2.1: Radio Configuration

Parameter Value

Modulation 2-FSK

Data Rate 2.4 kbps

Center Frequency 2.450 MHz

Frequency Deviation ±10.8 kHz

RX Bandwidth 160 kHz

TX Power 10.8 dBm

The simple transmit-receive (trx) software example provided by Silicon

Labs was taken into consideration, in order to achieve point to point com-

munication between two nodes. In such a communication, one node starts

the transmission (tx) of a message, then goes to receive (rx) mode and waits

for the response. The other node starts in receive mode, and as soon as it re-

ceives a packet, it sends its answer back. The embedded LEDs were enabled

(toggle) on each node when receiving a packet, for confirmation.

After indoor communication has been succeeded, the next goal was the

implementation of an outdoor and reliable communication link.

In order to achieve that communication, Frequency Shift Keying (FSK)

modulation was used. In binary FSK modulation, bit rate equals to data

rate. A wide and reliable wireless communication system, especially for area

2.2. Point-to-Point communication 17

monitoring, requires wide communication range. So, a very crucial attribute

for this board, was whether long range communication could be achieved.

2.2.1 Radio Configuration

Fundamentally, the range is dictated by the communication data rate. So, a

low bit rate of 2.4kbps has been chosen for the proposed link.

In real cases, the noise floor grows due to other contributors such as:

Environmental noise, PCB generated noise. Environmental noise and PCB

generated noise also degrade the performance of the receiver by increasing

the noise level. This kind of noise is dependent on the environment, the

frequency band and the PCB and it is more subtle to characterize. PCB

generated noise, is a parameter that needs to be investigated in order to

achieve the optimal radio receiver performance.

Additionally, having a narrow filter at the receiver effectively lowers the

noise floor. The spectral density of noise is given by,

N0 = k · T watt/Hz, (2.1)

where k = 1.38 · 10−23 Joule/K the Boltzman’s constant, and T the tem-

perature in Kelvin. For a temperature of 27◦C (300 K), the above equation

results:

10 logN0 = −174 dbm/Hz. (2.2)

The above value represents the power density of noise, measured in dBm

per unit of bandwidth, at room temperature (27◦C). If that value is multiplied

by the bandwidth at which the receiver operates, the result is the noise

floor. This noise floor is further increased by a factor called Noise Figure

(NF). Noise Figure is a measure of how much noise does the operation of the

system itself, add to the the weak received signal. So the noise floor seen by

the receiver is:

Pnoise = N0 ·BW ·NF. (2.3)

2.2. Point-to-Point communication 18

Anything above Pnoise level will be picked up by the receiver as useful

signal. However, some systems request higher input signal to achieve a certain

“quality” (in digital communication the quality may be quantified with the

Bit Error Rate) in the recovered signal. The amount of how much higher

above the noise floor the signal must be, is defined as minimum Signal to

Noise Ratio (SNRmin).

The quantity that indicates the minimum power a signal may have, so

that the receiver may work with it, is called Receiver Sensitivity and it will

be referred to as Pmin,

Pmin = Pnoise · SNRmin, (2.4)

where :

Pmin(dBm) = 10 log(N0)︸ ︷︷ ︸
−174 dbm/Hz @ 27◦C

+10 log(BW)(Hz)+10 log(NF)+SNRmin,dB.

(2.5)

expressed in a log scale using dB.

Having mentioned the above, it is obvious now that the less bandwidth a

receiver is working on, the less power a signal induced in its antenna may have

to be acceptable and so greater communication ranges could be achieved.

The minimum value for receiver’s bandwidth in which the largest point

to point communication was observed is 160kHz. During the experiments,

smaller values of bandwidth were set, but the range achieved was not the

largest possible.

2.2.2 Outdoor communication link

Thunderboard’s 2.4 GHz ceramic on-chip antenna was used for the com-

munication between the nodes. After setting the parameters (Table 2.1)

that maximize the communication range, point to point communication was

tested outdoor, and the antenna had to be checked whether it was sufficient

enough to build a WSN, or an external antenna was needed.

2.2. Point-to-Point communication 19

The nodes have been placed in small boxes, and relied on 1.40m tall

timbers, in order to maximize the communication range and minimize the

noise (Fig.2.3). Minor changes in communication range were observed when

the kit’s antennas were in line, compared to random orientation.

When using the maximum transmission power (10.8dBm), the range mea-

sured between two Thunderboard Sense 2 nodes which exchange messages,

was 280m. No packet error was observed up to 280m. After that point, some

packet errors were observed and the packet success drops to about 50% at

290m. Hence, it is clear the performance of on-chip antennas at 2.4 GHz

turned out to be sufficient to satisfy the communication link requirements,

and there is no need for an external antenna.

Figure 2.3: Thunderboard setup outdoor.

2.2. Point-to-Point communication 20

The model assumes that between the transmitter and receiver an unob-

structed path(line-of-sight path) exists. In a real-world environment, a single

direct path between the transmitter and receiver is unlikely and the most

common case is when obstacles between the transmitter and receiver modify

the propagation of the radio signal.

Chapter 3

Embedded Networking

The comparison of the centralized and the distributed network has been a

topic of debate for many years. This work attempts to implement both

networks, in order to solve the aforementioned dilemma.

Nowadays, every parameter of a network is taken into account. A wireless

sensor network must be low-cost, low-power, low-complexity, user friendly,

and at the same time it has to be effective and solve the challenges of the

current period.

This work is occupied with the design and implementation of both types

of networks in order to form a message passing network. The advantages

and drawbacks of both methods are presented, taking into consideration the

parameters above.

3.1 Distributed message passing platform

Recent advances, show the importance of a distributed WSN. A distributed

network is capable for in network inference, where the whole system can

decide itself and solve a problem, without using a central device (such as a

personal computer, or cloud).

Distributed processing in WSNs can help reduce energy consumption,

make efficient use of network bandwidth, and improve system response time.

That leads to less complexity and cost reduction.

In this chapter, this work attempts to design and implement a multi-node

message passing distributed network , capable for in-network inference, using

Thunderboard’s embedded environmental sensors.

3.1. Distributed message passing platform 22

3.1.1 Implementation

In a large distributed system, no node can have a global view of the entire

system at any time. Instead, every node has a local view of the system

only, and has to base its decisions on this local information. Many tasks can

be solved completely locally, for instance, a node can figure out the lowest

measured humidity in its neighbourhood by simply communicating with its

neighbours (Fig. 3.1).

Figure 3.1: An example distributed network of 16 nodes, where each agent
communicates with a set of nodes in its neighborhood

A vital characteristic of a distributed WSN is the ability of each node

to find its neighbor nodes in the network. In a distributed network, a node

only communicates with its neighbors, so being able to detect the presence

of other nodes is vital. The neighborhood of a terminal in a WSN is defined

as the area of its communication range.

The distributed network to be analyzed, is an extension of the point-to-

3.1. Distributed message passing platform 23

point communication presented in detail in Ch. 2.2. As a consequence, the

network operates in frequency domain, and the radio configuration is also

the same (Table 2.1).

Firstly, the number of nodes in the network is defined. Each node has a

unique node id which is its identifier. The node id is the same number as the

channel a node listens on. For example node id = 5 also listens on channel

5.

Beginning from node id = 1, the sending node sends sequentially the

same message for neighbor discovery, to all the other nodes in network. If a

node receives that message , which means it does not sleep (further informa-

tion in Chap. 3.1.3) and is located within the communication range of the

sending node, then it sends back a message to inform that is its neighbor

(acknowledgment). The obvious drawback of this procedure is that it takes

more time than a time domain implementation.

After sending to all nodes in network, the sending node knows exactly

which nodes are located inside its neighborhood. Then, it sends the in-

formation message (for example the humidity measurement) to these nodes

sequentially. Then the procedure continues with node id = 2 etc..

3.1.2 Packet Layer Configuration

The message length was adjusted to problem’s requirements. A 13-byte pay-

load message is sent each time, using also 4 bytes synchronization word to

maximize packet success.

Fixed payload length must be used during the whole procedure. There

are three types of messages in the network. The one that the sending node

sends to the other nodes, in order to find the ones in its neighborhood, the

one that the nodes send in response to this message and the information

message that the node send to its neighbors.

During neighbor discovery, the messages only contain the message iden-

tifier and the sending node’s id. The rest of the message is covered with

zeros.

The payload of the information message is presented in Fig 3.2. Using the

3.1. Distributed message passing platform 24

Figure 3.2: Message payload

aforementioned payload length, the network is capable of sending two float

numbers which can be the mean or the variance values of a probabilistic

model, or the measurements from the embedded sensors.

This work ensures that each node in the WSN is also capable of detecting

which node is the closest neighbor. So, the implementation can be easily

modified to a network in which each terminal communicates only with the

closest neighbor.

During neighbor discovery, after each response from the neighbor nodes,

the sending node (using the function GetRssi() provided by RAIL SDK),

estimates the Received Signal Strength Indicator (RSSI). These values are

stored into a buffer and at the end of the procedure, the sending node sorts

this buffer and can easily detects the closest neighbor. The precision of

the rssi values is pretty high, as the node is capable of detecting which

node is closer even when the physical distance between them is less than

50cm. However, this feature does not meet network’s requirements so it is

not included in network’s capabilities.

Very simple mini software examples for the initialization and the measure-

ment of each sensor are provided by Silicon Labs. Thus, it is very easy for the

developer to make use of the embedded (in the kit) sensors. A challenge this

work faced, is the measurement of multiple sensors simultaneously. Thunder-

board Sense 2 provides 8 different sensors but only some of them share the

same driver. It is noticed though, that sensors from different driver cannot

be enabled simultaneously.

3.1.3 Sleep Mode

After the implementation of the message passing network, the work attempts

to achieve an ambiently powered WSN (more in Sec. 3.3). A necessary pre-

3.1. Distributed message passing platform 25

requisite for a ambiently powered node is the sleep mode. During sleep

mode, the power consumption of the kits is significantly low, so that helps

the system charge the energy harvester storage unit.

Proprietary SDK provides RAIL libraries which help the developer to

program Thunderboards to sleep for a specific time. Four energy modes are

provided from Silicon Labs [8]. The requirements of the network implemented

(for example the system must keep the sequence number), lead us to select

the energy mode 2.

In Energy Mode 2 (EM2), the EFM32 microcontrollers offer a high degree

of autonomous operation, while keeping energy consumption low. The high

frequency oscillator is turned off in EM2; however, a 32 kHz oscillator and

the real time clock are available for the low energy peripherals.The MCU per-

forms advanced operations in sleep mode. The peripherals run autonomously

due to intelligent interconnection of the modules and memory, the wake-up

time to EM0 is only 2µs and low-leakage RAM ensures full data retention.

Silicon Labs provides enough documentation to guide the developer im-

plement the sleep mode. Each project generated in Simplicity Studio includes

a quiet friendly interface for enabling/disabling/changing the software com-

ponents such as sleep libraries. Also, a sleep timer is provided which is the

only process that works during sleep mode. It is enabled when the kit enters

sleep mode, and when the timer expires, an interrupt is occurred, and the

kit wakes up.

The purpose of sleep mode is energy saving, so the energy consumption

must be measured to make sure it is significantly low. The consumption for

a supply voltage of 3V was measured at 8µA, which is a very satisfactory

value.

3.1.4 Test setup

After taking into consideration all the necessary parameters for a reliable

network, a 16 node wireless sensor network was implemented and tested

outdoor. The experiment took place in a wide area full of trees inside TUC’s

campus, where line-of-sight path between nodes did not always exist.

3.1. Distributed message passing platform 26

Figure 3.3: Experimental setup.

It was observed that the coin cell batteries did not cover kits’ needs for

power. More specifically, the 3V lithium 2032 coin cells, could not provide

the necessary power during the current spikes occurred during transmission.

Thus, power banks were used instead, to power the kits.

Despite the fact that the communication range achieved was 280m, the

nodes were placed about 50 meters apart so each node has plenty of neighbors

(Fig. 3.3). In comparison to a network where each terminal communicates

only with one node, more interaction between the nodes (when each node

communicates with more neighbors), leads to faster convergence.

According to Google Maps, the area covered (shown at Fig. 3.4) is 300m

x160m. This is a total of 48000m2.

The time needed for all the 16 nodes to find their neighbors and send

their information (one iteration) is 48 seconds including sleep mode. The

procedure is repeated periodically until the network reaches convergence.

Given the pretty low bit rate (2.4 kbps) and the large payload length this is

3.1. Distributed message passing platform 27

Figure 3.4: Experimental Topology.

a significantly fast procedure.

A major challenge this work faced, was to find the exact time slot during

the period of time (T) where the nodes must sleep, without losing crucial

messages that may effect the functionality of the network. The decision was,

to put each node to sleep for a duration of 10 seconds, 20 seconds after

sending its information message.

A duty cycle or power cycle is the fraction of one period in which a signal

or system is active. In this work, 10secs
48secs

∗100% = 20.3% of the time, the

nodes sleep. So duty cycle of the implementation is 79.7%. That’s a high

duty cycle but the value can be modified depending on the network’s needs.

The packet error rate observed given the above setup was less than 2%. In

conclusion, this work offers a proof of concept of a distributed WSN using

low-power, low-cost kits and exploiting the embedded environmental sensors.

This message passing network can be used for in network inference, either

the area monitoring using the embedded environmental sensors, or to convert

the inference task to a probabilistic, message passing problem for in-network

inference. Two applications of this WSN for in network inference will be

analytically presented in Ch. 5.

3.2 Centralized Zigbee Network

3.2.1 What does Centralized Network mean?

Centralized formation techniques are suitable for networks in which the pro-

cessing power capacity relies mostly on a unique device (personal computer,

cloud etc). In such cases, this device is responsible for the processing, coordi-

nation, and management of the sensed information activities. It also forwards

this data to a sink node. A centralized network is scalable and hence can

accommodate any new nodes or devices at any time; it is also flexible and

hence open to physical partitions.

Figure 3.5: Centralized Network.

This work uses Zigbee 3.0 for the implementation of the centralized net-

work. Silicon Labs EmberZNet PRO Zigbee networking protocol stack is

a Zigbee protocol software package containing all the elements required for

mesh networking applications on Silicon Labs’ Ember platforms. However,

3.2. Centralized Zigbee Network 29

the provided SDK is not open source. The serial number of a Silicon Lab’s

kit is needed to access it. That means that the support is quiet deficient,

and the sources are limited to the documentation files and the Zigbee forum.

A key component of the Zigbee protocol is the ability to support mesh

networking. In a mesh network, nodes are interconnected with other nodes

so that multiple pathways connect each node. Connections between nodes

are dynamically updated and optimized through built-in mesh routing table.

Mesh networks are decentralized in nature; each node is capable of self-

discovery on the network. Also, as nodes leave the network, the mesh topol-

ogy allows the nodes to reconfigure routing paths based on the new network

structure. The characteristics of mesh topology and ad-hoc routing provide

greater stability in changing conditions or failure at single nodes.

Figure 3.6: Zigbee Architecture [3].

Zigbee provides a very important part of the centralized network to the

developer as a black box (Fig. 3.6). Zigbee networks [3] are based on the

IEEE 802.15.4 MAC and physical layer. The 802.15.4 standard operates at

250 kbps in the 2.4 GHz band. The 802.15.4 MAC layer is used for basic

message handling and congestion control. This MAC layer includes mech-

anisms for forming and joining a network, a carrier sense multiple access

(CSMA) mechanism for devices to listen for a clear channel, as well as a link

3.2. Centralized Zigbee Network 30

layer to handle retries and acknowledgment of messages for reliable commu-

nications between adjacent devices. The Zigbee network layer builds on these

underlying mechanisms to provide reliable end-to-end communications in the

network.

3.2.2 Implementation

Zigbee’s centralized network is composed of three roles. The coordinator (C)

of the network, the routers (R) and the end device (ED).

The centralized network provided by Zigbee is a multi - hop network.

The topology looks like a tree (Fig. 3.5). The coordinator is the master of

the network and communicates with the external device (such as personal

computer or cloud). Coordinator does not have a parent node, and only

has children. The leaves of the tree are the end devices which just send

their messages (sensor value) to the closer node. These nodes do not have

children. The nodes between coordinator and end device(s) are the routers

of the system. These nodes have two roles: to forward the messages received

from their children (range extender) and to send their own message with the

sensor value to their parent (router or coordinator).

The radio configuration is standard by Zigbee, and the communication

bit rate is set to 250kbps. It also operates at 2.4GHz. The radio settings

cannot be changed by the user.

The implementation is the following: Each node attempts to send a mes-

sage to coordinator, using the hops, unless node and coordinator are within

the communication range. In this case, the node will send a direct message

to coordinator, without using the routers. If a node is not inside the range of

the coordinator, it tries to find the fastest path, using the neighbors routers

as hops, so the message finally reaches coordinator with multi-hop procedure.

To form a centralized network Zigbee requires the following serial com-

mands:

A) plugin network-creator form 1 (for centralized), panId, radioTxPower, channel

3.2. Centralized Zigbee Network 31

which searches for an unused Channel and Pan Id (personal area network).

Each network is defined by a unique PAN identifier (PAN ID), which is

common among all devices of the same network. The below command (only

used by the coordinator) automatically forms a network on the best unused

Channel and Pan Id it finds. Furthermore, the transmission power is set

using this command.

After the network is formed, the coordinator of the network can open

access to the WSN nodes. The time window for a node to join the network

is restricted to 256 seconds due to safety reasons. After that period of time,

the user can execute the command again. The command is the following:

B) plugin network-creator-security open-network,

When the network is formed and there is an open access for the rest of

the WSN nodes, the routers and the end devices can join the network by

executing the below command.

C) plugin network-steering start 1,

Using the above simple serial commands in Simplicity Studio’s terminal,

a basic centralized network is formed. At that point, the network has no

functionality.

Given the very high data rate that the network operates, very high trans-

mission power is needed in order to achieve the largest communication range

possible. 10.8 dBm transmission power is selected , same as the distributed

network’s, so that the comparison is fair.

At first, a 3 node setup was implemented using one coordinator, one router

and one end device.

The end devices and the routers in the network, were set to send every 5

seconds, periodically, a message to coordinator. The payload of the message

contains the cluster ID, and the node id of the sending node, for recognition.

The messages received by the coordinator are shown in 3.7.

3.2. Centralized Zigbee Network 32

Figure 3.7: Coordinator’s console.

The range of the communication link is a crucial factor for a centralized

network.

Zigbee’s standard radio configuration leaves no space for developer’s changes.

Using the maximum transmission power provided, the range achieved out-

doors between two devices was 30m. Thus, it is clear that the centralized

network provided by Zigbee is ideal for smart homes and buildings applica-

tions. However, it is not suggested for an outdoor WSN which requires wide

communication range e.g. for area monitoring, like the distributed network

analyzed above.

In Fig. 3.8, where the end device is located outside coordinator’s com-

munication range, the router is used as a hop (range extender) to help the

message reaches coordinator. That is clear if we observe the network source

and destination compared to MAC source and destination in the figure.

Zigbee provides sleep mode only for the end devices. The sleepy end device

implemented, wakes up the end device only for the communication. However

3.3. Energy Harvester 33

Figure 3.8: The multi hop network.

the majority of the time, the end device sleeps, for energy saving. The routers

or the coordinator cannot sleep in a Zigbee network. If a router exits the

network for any reason, the communication may corrupt, because all the end

devices relied on that router, will not be able to communicate with the rest

of the network and thus with the coordinator; a crucial part will leave the

network.

That leads to the conclusion that another very important mode, which is

crucial for an ambiently powered WSN as described above, cannot be imple-

mented using Zigbee’s protocol. That means, Zigbee’s centralized network is

useful for other types of applications such as home monitoring, although it

is not a perfect solution for a wide wireless sensor network, where the nodes

must be ambiently powered and their batteries must last for long periods.

3.3 Energy Harvester

Wireless sensor networks (WSNs) research has pre-dominantly assumed the

use of a portable and limited energy source, like batteries, to power sen-

sors [9]. Without energy, a sensor is essentially useless and cannot contribute

3.3. Energy Harvester 34

to the utility of the network as a whole. Consequently, there are emerging

WSN applications where sensors are required to operate for much longer du-

rations (like years or even decades) after they are deployed. Examples include

environmental monitoring where batteries are hard or even impossible to re-

place. Lately, an alternative to powering WSNs is being actively studied,

which is to convert the ambient energy from the environment into electric-

ity to power the sensor nodes. Sensor nodes need to exploit the sporadic

availability of energy to quickly sense and transmit the data.

Although that energy harvested is small and in the order of µWatt, it

can provide enough power for wireless sensors and other low-power applica-

tions [10]. In the environment there is a lot of pure energy (especially solar

energy) provided for free, and can be converted into electricity to power

the various circuits and represents a potentially low-cost source of power.

This technology applied in a wireless sensor network (WSN) and devices on

the IoT, will eliminate the need for network-based energy and conventional

batteries, will minimize maintenance costs, eliminate cables and batteries

and is ecological. Energy harvesting will promote environmentally friendly

technologies that will save energy, will reduce CO2 emissions, which makes

this technology indispensable for achieving next-generation smart cities and

sustainable society.

This work presents an energy harvester customized for Thunderboard

Sense 2, which exploits the solar energy.

3.3. Energy Harvester 35

Figure 3.9: A terminal of the WSN testbed; it consists of a custom solar
energy harvester and a Thunderboard Sense 2 module.

3.3.1 Implementation [1]

Each WSN node/terminal consists of a Silabs Thunderboard Sense 2 em-

bedded module and a custom solar energy harvester [1], using rechargeable

NiMH cells, as storage elements (Fig. 3.9).

The initial vision was to implement 16 energy harvester circuits to power

all the nodes. Due to time constraints, 3 energy harvesters were implemented.

So, the following analysis refers to a 3 node network. Average Consensus

Algorithm implementation (Sec. 5.2) was powered by this energy harvester.

In order to design the energy harvester, the WSN terminals (Fig. 3.9) were

first characterised with respect to their power consumption. For a supply

voltage of 3 V, the current consumption was measured under four different

modes of operation. It is noted that during the current measurements, the

humidity sensor was enabled. In both idle and receive modes, each terminal

consumed 13 mA, while in sleep mode Isl = 8 µA. The transmit mode was

the most power demanding and presented current spikes in the order of 50

mA (and thus the average current in active mode is IA = 14.54 mA). EM3

and EM4 provide lower energy consumption during the sleep mode, although

the order of µA consumption that EM2 provides, makes it the perfect choice

and at the same time meets the requirements the network sets.

A single iteration of the algorithm (in Sec. 5.2) requires 24 seconds of

3.3. Energy Harvester 36

operation; each WSN terminal spends 14 seconds in its active operation

mode and 10 seconds in sleep/ultra-low-power mode, offering a duty cycle of

D = 58.3% and an average current consumption of 8.48 mA.

The harvester design consists of a 26.42 cm2 solar-cell connected to a

custom circuit designed using the TI BQ25504 IC. Two 1.2 V, Cs = 100

mAh NiMH cells connected in series, were utilized as the storage element

at the output of the harvesting circuit. This design features an efficiency of

91% and can store energy up to 864 J (240 mWh). A detailed schematic of

the system is shown in Fig. 3.11.

The probability for an outage event was defined as the percentage of time

that a WSN terminal fails to operate, due to insufficient energy. The afore-

mentioned percentage was calculated based on the availability of solar power

during a day.

0 1 2 3 4 5 6 7 8 9

Hours of the day with the necessary amount of solar radiation

0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

 o
f

p
o

w
e

r-
o

u
ta

g
e

 (
%

)

Percentage of power-outage during the day (Cold-start)

D = 10%

D = 20%

D = 30%

D = 40%

D = 58.3%

D = 65%

Figure 3.10: Probability of power outage as a function of number of hours
during which the solar irradiance constraint is satisfied [1].

During sleep mode, the current drawn by each terminal (Isl = 8 µA) can

be considered negligible (compared to the charging current provided to the

storage cell pack from the harvester). Thus, it can be assumed that for a

time portion of D, the terminal operates while drawing current (mainly) from

3.3. Energy Harvester 37

the cells; for a time portion 1 − D the current provided by the harvester is

(mainly) used for charging the cells.

The pair of NiMH cells was depleted of charge (combined voltage 1.37

V) and the time required for reaching a state of full charge was measured

at 4 hours (for D = 0, i.e., no load connected). Under the aforementioned

assumptions it can be directly shown that the time required for fully charging

the storage cells, when the load operates with a duty cycle D, is given by

4/ (1−D) hours.

In order for the harvester to both charge the cells and provide power to

the terminal, the available solar radiation must be greater than 368 W/m2.

In a different case, the terminal will be solely powered by the storage cells.

It is noted that the batteries must be at a state of at least 5% of their full

capacity, in order for the aforementioned analysis to be valid.

For a typical summer day in Chania Crete, it was concluded that 11

hours of exposure, would satisfy the constraints described above and allow

the correct operation of the node. The probability of outage as a function

of the hours with solar irradiation greater than 368 W/m2 is presented in

Fig. 3.10. For a duty cycle ratio of D = 58.3%, the probability of outage

within a day (24 hours) is about 5%. The probability of outage can be

decreased if smaller duty cycle ratios are adopted, at expense of increased

overall processing delays (more sleep time).

Figure 3.11: The solar harvester designed and implemented for powering the
WSN terminals [1].

The aforementioned design can be easily used in the network presented in

Ch. 3.1 changing only the average current in active mode due to the larger

network.

38

Chapter 4

WSN as Inference Platform

4.1 Description

Let real vectors x(0),b ∈ RK and real square matrix A ∈ RK×K . A large

class of inference algorithms, including Gaussian belief propagation (GBP)

and consensus, as well as matrix inversion (Jacobi and Gauss-Seidel) are

formulated according to the following recursion:

x(l) = Ax(l−1) + b, (4.1)

with l = 1, 2 The solution of this problem, i.e., the fixed point, is denoted

by x∗
4
= liml→∞ x(l−1) = liml→∞ x(l), provided that such fixed point exists.

The k-th elements of x(l) and b(l) are denoted by x
(l)
k ≡ x

(l)
k and b

(l)
k ≡ b

(l)
k

respectively, while aij = Aij denotes the element of A at the i-th row and

j-th column. From Eq. (4.1),

x
(l)
k =

K∑
j=1

akj x
(l−1)
j + bk, k ∈ {1, 2, . . . K}, (4.2)

which requires all variables {x(l−1)
j } (with respective akj 6= 0) from previous

iteration (l − 1) to be readily available at iteration (l), in order to update

the value of xk. This constraint results to synchronous operation, since

no output update is possible for any element of the vector x at a specific

iteration, before all necessary input is available for all variables.

As far as asynchronous operation is concerned, i.e., possibility for a vari-

able x
(l)
k , to update its value or keep the same value for the following iteration,

without waiting for all variables k ∈ {1, 2, . . . , K} to collect input informa-

tion before update, the following random variable and notation is adopted,

4.1. Description 39

Figure 4.1: Factor graph assignment into a WSN with 3 nodes.

from seminal work in [11]:

ψ
(l)
k =

{
1, if xk is updated at iteration l,

0, otherwise
. (4.3)

Let ψψψ(l) ∈ BK the binary vector obtained if all {ψ(l)
k }, k ∈ {1, 2, . . . K}

are stacked and Ψ(l) = {ψψψ(l)} the respective diagonal matrix, with ψψψ(l) at its

diagonal. In that case, the update of Eq. (4.1) becomes as follows:

x(l) = Ψ(l)
(
Ax(l−1) + b

)
+
(
I−Ψ(l)

)
x(l−1)

=
(
Ψ(l)A + I−Ψ(l)

)
x(l−1) + Ψ(l)b.

(4.4)

Notice that if ψ
(l)
k = 1,∀k (or equivalently Ψ(l) ≡ IK), the above equa-

tion is simplified to the synchronous case of Eq. (4.1). In sharp contrast

to [11], where {ψ(l)
k } are assumed independent and identically distributed

(i.i.d.) across k and l, this work assumes a more general model and allows

these variables to be correlated and non-identically distributed. In other

words, in this work E
[
Ψ(l)

]
= P 6= p IK , in the general case.

Fig. 4.1, depicts a factor graph, allocated to 3 WSN terminals [12]. The

4.1. Description 40

factor graph encodes a probability density function (pdf), involving 8 random

variables (denoted by circles) and 8 factor nodes (denoted by rectangles) and

has the expressive power to describe a variety of message passing (inference)

algorithms.

For example, GBP-based message passing in this factor graph results to a

exchange of pairs of real numbers from factor to variable nodes {µgi→j, vgi→j}.
There are 19 factor-to-variable links in the depicted factor graph and GBP-

based message passing results to K = 19 variables in Eqs.(4.1), (4.4), where

x stacks the 19 (real) values of {µgi→j} and A depends on the connectivity

of the factor graph, as well as the fixed point values of {vgi→j} (and thus,

matrix A is constant).

In Fig. 4.1, there are messages µg5→1, µg7→4, µg3→4, µg2→3 (which assume

real scalar values); these messages correspond to scheduling variables {ψ},
with expected value p2,3, p2,3, p1,2, p1,3, respectively. Thus, for the depicted

mapping of the graph/inference algorithm to the actual WSN network in

Fig. 4.1, diagonal matrix Ψ(l) consists of ones in the main diagonal, apart

from the indices corresponding to the aforementioned {ψ}, with expected

values the probabilities given above. In other words, E
[
Ψ(l)

]
= P of Fig. 4.1

is a diagonal matrix, with all ones in the main diagonal, apart from two

places which assume the value of p2,3, one place that assumes the value of

p1,2 and another with p1,3. It is noted that scheduling variables corresponding

to µg5→1, µg7→4 are fully correlated (with the same expected value) [11].

If p1 is the probability of terminal 1 being in energy outage, the probability

of successful communication between 1 and 2 is given by p1,2 = (1−p1)(1−p2).

Similar methodology holds for p2,3, p1,3 and p1,4. In Sec. 3.3, a method to

calculate energy outage probability pi per terminal i was given, assuming

solar (ambient) energy harvesting circuitry.

For completeness, two inference algorithms tested in the numerical results,

are briefly presented; these algorithms serve as the distributed inference en-

gine, running at the ambiently-powered WSN.

4.2. Algorithm 1: Gaussian Belief Propagation 41

4.2 Algorithm 1: Gaussian Belief

Propagation

Consider the joint Gaussian pdf

p(x) ∝ exp

{
−1

2
xTJx + hTx

}
, (4.5)

where J � 0 and h the information matrix and potential vector, respectively.

This pdf can be written as

p(x) ∝
n∏
i=1

fi(xi)
m∏
j=1

gj(Xj). (4.6)

where Xj ⊆ {x1, x2, . . . , xn}. If at least one of gj(Xj) contains more than

two variables, the above is a high-order factorization of the joint pdf.

In [11] a general factorization of the aforementioned matrix and vector is

considered, where J = Λ + ΞTΣΞ and h = Λξ + ΞTΣu. It is assumed that

Λ , (η1, η2, . . . , ηn), Σ , (ζ1, ζ2, . . . , ζm), where ηi ≥ 0 ∀i and ζj > 0 ∀j
So, it is

p(x) ∝ exp

{
−1

2
xT (Λ + ΞTΣΞ)x + (Λξ + ΞTΣu)Tx

}
∝ exp

{
−1

2
(x− ξ)T + Λ(x− ξ)

}
× exp

{
−1

2
(Ξx− u)TΣ(Ξx− u)

}
∝

n∏
i=1

exp

{
−1

2
(ηi − xiξi)2

}
×

n∏
i=1

exp

{
−1

2
(ζjΞjx− uj)2

}
.

(4.7)

Using Eqs. (4.7), (4.6), it is concluded that

fi(xi) ∝ exp

{
−1

2
ηi(xiΞi)

2

}
. (4.8)

4.2. Algorithm 1: Gaussian Belief Propagation 42

gj(Xj) ∝ exp

−1

2
ζj(
∑
kεVj

Ξjkxk − uj)2

 . (4.9)

As shown in [11], the message means of Gaussian Belief Propagation under

high-order factorization and asynchronous scheduling with i.i.d. scheduling

variables are updated as follows:

µ(l)
gj→xi =


ΞΞΞ−1
ji uj−

∑
k∈Vj\i

Ξ−1
ji Ξjk(ηkξk+Σk′∈Gk\i

v
(l−1)
gk→xk

µ
(l−1)
gk→xk

ηk+Σk′∈Gk\i
v
(l−1)
gk→xk

, if ηk + Σk′εGk\iv
(l−1)
gk > 0,∀k ∈ Vj \ i

0, otherwise

(4.10)

v(l)
gj→xi =

Ξ2
ji

ζ−1
j + Σk∈Vj\iΞ

2
jk(ηk + Σk′∈Gk\iv

(l−1)
gk)−1

. (4.11)

Eq. (4.10) can be also expressed as

µµµ(l) = Ψ(l)
(
Aµµµ(l−1) + c

)
+
(
I−Ψ(l)

)
µµµ(l−1)

=
(
Ψ(l)A + I−Ψ(l)

)
µµµ(l−1) + Ψ(l)c.

(4.12)

where analytical expression of µµµ as well as construction of A and c can be

found in Eq. (13) and (19) of [11].

Assume that the WSN goal is to solve the following linear equation:

Mx = s, (4.13)

where M ∈ RC×D(C ≥ D) is a full rank matrix and s ∈ RC ; the solution of

the aforementioned system is offered by:

x =
(
MTM

)−1
MT s. (4.14)

4.3. Algorithm 2: Average Consensus 43

Setting Λ = 0n×n, Ξ = M, Σ = I, ξξξ = 0 and u = s, Gaussian Belief

Propagation can be utilized for the following distribution:

p(x) = N
(
x;
(
MTM

)−1
MT s,

(
MTM

)−1
)
, (4.15)

whose inference of mean value will yield the desired solution of the problem.

Notice that the same factorization of J can be exploited in GBP-based

inference of minimum mean squared error (MMSE) estimation [13].

4.3 Algorithm 2: Average Consensus

Decentralized consensus algorithms involve a large number of agents that

exchange messages in a distributed manner [12]. One of the algorithms is

the so called average consensus, where all agents converge to the same value,

which is the average of all sensor measurements. In particular, under certain

conditions, it can be proved that the following iteration,

x(l) = Wx(l−1), (4.16)

where W is a weight matrix that encapsulates both the connectivity and the

weights of the network, reaches a fixed point x∗ where x∗i = 1
N

∑N
j=1 xj, ∀i =

1, 2, . . . , N .

This work considers an asynchronous variant of update Eq. (4.16), given

as follows:

x(l) =
(
Ψ(l)W + I−Ψ(l)

)
x(l−1). (4.17)

If G = (V , E) is the graph that stems from the topology of the WSN,

where V its vertices and E its edges, then the matrices that contain the

max-degree weights of G, as follows,

4.3. Algorithm 2: Average Consensus 44

Wij =


1

d+ 1
, i 6= j, {i, j} ∈ E ,

1− di
d+ 1

, i = j,

0, i 6= j, {i, j} /∈ E

(4.18)

where d is the degree of G and di the degree of vertex i, is a family of matrices

that guarantee convergence [14]. Other choices of W are possible.

45

Chapter 5

Experimental results

5.1 Implementation of Gaussian Belief

Propagation (GBP)

The Gaussian Belief Propagation algorithm was implemented in a 3 node

WSN, depicted in Fig. 5.1. The network topology refers to the factor graph

depicted in Fig. 4.1.

1

2

3

Figure 5.1: Real WSN with 3 terminals/nodes.

Consider an ambiently powered wireless sensor network with N (physical)

terminals [12]. Assume that at each iteration, WSN terminal i is responsi-

ble for updating a unique subset of the elements {x(l)
k } of x(l−1), denoted

by x
(l)
Ii , where ∩Ni=1Ii = Ø and ∪Ni=1Ii = {1, . . . , K}. In other words, each

WSN terminal is responsible for updating a subset of the variables, all vari-

5.1. Implementation of Gaussian Belief Propagation (GBP) 46

9

Figure 5.2: Edges representation in factor graph.

ables are allocated to specific WSN terminals and no variable is allocated to

more than one WSN terminal. Given that the input for each variable update

(according to Eq. (4.2)) might require variables that are allocated to other

WSN terminals, communication between the WSNs is required; such message

passing may fail, simply because the WSN terminal does not have sufficient

energy; thus, the necessary message passing is interrupted probabilistically,

with respective probabilities that depend on ambient energy harvesting (and

consumption) at each WSN terminal. For simplicity, we assume that mes-

sages between WSN terminals fail to be communicated only due to energy

outage at either the transmitter or the receiver.

In the actual WSN, the factor graph was divided in three sub factor

graphs (Fig.5.2). Each sub factor graph represents a WSN node. Each

node computes the necessary factor-to-random variable messages (the mean

and the variance), for subsequently calculating the belief of each random

variable. However, as shown above Eqs. (4.10), (4.11), the computations

implemented by each node, may depend on messages located in different

nodes. For example, message 11 depends on message 9. Although, node 3

does not possess information about the value (mean and variance) of that

message. So, node 1 must send the mean and the variance of message 9 to

5.1. Implementation of Gaussian Belief Propagation (GBP) 47

node 3.

Therefore, the communication between the nodes in the actual WSN in-

volves the exchange of the values (mean and variance) necessary, for the edges

values computations. More specifically, using the aforementioned equations,

for the specific vector M (Eq. (5.1)), it is concluded that node 1 sends the

values (mean and variance) of the edges 7, 8, 9 to node 3 and the values of

the message no.9 to node 2. Node 2 sends the values of the message no.10

to node 1 and the values of the messages no.1, 10 to node 3. Node 3 send

the values of the messages no.6, 11 to node 1 and the values of the messages

no.0, 2, 11 to node 2.

The procedure is composed of two rounds, one for information transmis-

sion and another one for performing the necessary computations. During

the information transmission, the number of messages each node sends can

vary from node to node, depending on how many edges a node needs. Also,

unicast communication takes place, as the nodes send different values to

different nodes.

In all experiments, the following values are used [11]:

M =
3.63 −6.12 0 0 0 −2.61 0 0

0 −10.65 7.59 0 0 0 0 0
0 0 −1.92 7.05 0 0 −10.46 0
0 0 0 0.18 3.27 0 0 0

−2.01 0 0 0 −0.97 0 0 0
0 0 0 0 0 0 8.01 0.37

5.18 −1.86 0 4.63 0 0 0 0
0 0 0.91 0 0 0 0 0.13

 (5.1)

and

s =
[
1 1 1 1 1 1 1 1

]T
(5.2)

resulting in the factor graph with 8 random variables and 8 factors that can

be seen in Fig. 4.1. GBP is executed with two different schedules: 1) a

synchronous scheduling, where no communication failures occur and 2) a

asynchronous scheduling, where the messages between terminals are possi-

bly lost with a predefined probability due to communication error.

5.1. Implementation of Gaussian Belief Propagation (GBP) 48

Fig. 5.3 depicts the expected value E[||e(l)||2] , E[||ε(l)−ε∗||2] as a function

of iteration number l, where ε(l) and ε∗ are the belief means of distribution

Eq. (4.15) at iteration l and after reaching the fixed point µµµ∗, respectively.1

It is assumed that all communication links for the asynchronous scheduling

have probability of successful message exchange p = 0.4317, which was set

randomly.

In the actual WSN, the outage event is implemented by ”flipping a coin”.

Before each information transmission, each node creates a number from 0

to 1 randomly. If the value is bigger than the probability of the message

success (in this case p = 0.4317), then we assume there is an outage event in

that node, and the node sends the message sent during the previous message

passing iteration, without updating the new values. This is the asynchronous

operation presented in Eq.(4.4). Otherwise, the updated values are sent to

the target nodes.

In case of a message failure, the sending node repeats the message trans-

mission, to make sure the message finally reaches the target node, as it does

not possess information about the state of the that node. That can minimize

the packet error rate.

Although the synchronous Gaussian belief propagation diverges, it is ex-

perimentally shown that when there is a packet error due to an outage event,

with the aforementioned probability, GBP leads to convergence after 120

iterations, as the residual of belief from the actual mean value is of order

10−2. However, a drawback of the implementation is the overall delay ob-

served, because each iteration requires 20 seconds, and only the information

transmission iterations are presented in Fig. 5.3.

1The detailed expression of the elements of the belief means stem from the standard
equations of sum-product and and can be seen in Eq. (20) of [11].

5.2. Implementation of Average Consensus Algorithm 49

iter

0 20 40 60 80 100 120

||
ǫ
(i
)

-
x

0
||

2

10-2

10-1

100

101

102
Residual of belief from actual mean value

synchronous

asynch.

Figure 5.3: Convergence of the 3 node experimental GBP.

5.2 Implementation of Average Consensus

Algorithm

The consensus algorithm was also implemented in a chain WSN, depicted in

Fig. 5.1; connectivity among the terminals is also depicted.

Given the chain communication between the three nodes, the following

W of Eq. (4.16) and (4.17) is chosen:

W =

2/3 1/3 0

1/3 1/3 1/3

0 1/3 2/3

 . (5.3)

The message passing WSN analyzed above (Ch. 3.1) was used for the

implementation. At first, all terminals perform a measurement of environ-

mental humidity. Then, the network aims to estimate the average value of

the humidity in the area of the nodes. The procedure is composed again of

two rounds, one for information transmission and another one for performing

5.2. Implementation of Average Consensus Algorithm 50

number of iterations

2 4 6 8 10 12 14

h
u

m
id

it
y
 (

%
)

5

10

15

20

25

30

35
Synchronous consensus with no error

node 1

node 2

node 3

average value

Figure 5.4: Convergence of the 3 node experimental consensus.

the necessary computations. The number of iterations shown in the tables

refers only to the rounds necessary for information transmission.

Table 5.1: Results with fixed, known “sensor values”. Specifically, node 1
“humidity” was set to 10%, node 2 to 25% and node 3 to 30%.

Type Iterations True value Est. value

no message
failure

15 21.67 21.67

node 1 off for 20 secs 17 21.67 22.89
node 2 off for 20 secs 17 21.67 22.78
node 3 off for 20 secs 17 21.67 18.77

Table 5.1 offers the results of an experiment performed with fixed, known

values (instead of using actual humidity measurements). When the network

operates without an outage event, the average consensus converges to the

true average value (Fig. 5.4). The figure shows how the algorithm converges,

utilizing the synchronous update of Eq. (4.16) and x(0) =
[
10 25 30

]T
. As

expected, after 15 iterations, all terminals reach agreement and converge to

the arithmetic mean (10 + 25 + 30)/3 = 21.667
4
= x̄(0). However, there is

5.2. Implementation of Average Consensus Algorithm 51

Table 5.2: Results using actual humidity sensor measurements.
Values Type Iterations True value Est. value

node 1: 42.96%
node 2: 36.28%
node 3: 36.11%

no message
failure

12 38.44 38.44

node 1: 61.31%
node 2: 57.77%
node 3: 60.53%

node 1 off
for 20 secs

15 59.87 61.11

node 1: 26.58%
node 2: 24.72%
node 3: 26.45%

node 2 off
for 20 secs

6 25.91 30.89

node 1: 61.83%
node 2: 58.64%
node 3: 61.14%

node 3 off
for 20 secs

13 60.53 61.34

an overall delay, as it is noticed that the convergence was reached after 9

minutes.

At the case of an outage event, it is shown that when the node (at which

the outage event took place) “rejoins” the network, the network will converge

close to the true average value, at the expense of a slightly increased delay.

Instead of fixed, known values, the nodes were subsequently programmed

to utilize the actual measurements taken by an embedded (in the node)

humidity sensor (Si7021 Relative Humidity sensor) and the experiment of

the previous paragraph was repeated. The results are offered in Table 5.2

and Fig. 5.5. The nodes are placed two meters apart which leads to limited

deviation of the humidity measurements and thus, the convergence rate is

increased (compared to the case of using fixed values). Increased divergence

for the case of an outage event in node 2, is attributed to the change in

the environmental conditions during said event. It is emphasised that the

reported values stem from a single run (and not as the arithmetic mean of

several consensus experiments).

If multiple experiments take place, the mean of the convergence values

will be very close to the actual mean value, despite the outage event [12].

However, that will leads to an overall delay.

5.2. Implementation of Average Consensus Algorithm 52

Time (number of iterations)

1 2 3 4 5 6 7 8 9 10 11 12

h
u
m

id
it
y
 (

%
)

50

52

54

56

58

60

62

64

66

68

70
node 3 outage - consensus with humidity values from sensor

node 1

node 2

node 3

average value

Figure 5.5: Experimental behaviour of the Consensus algorithm when an
outage event occurs at node 3.

It is clear now, that, instead of an outage event in a node, or a commu-

nication error between the nodes, the asynchronous way can lead to faster

convergence in GBP, and a result close to the actual value in Consensus.

Thus, it is proven that an actual WSN, using Thunderboards Sense 2, can

provide reliable in-network decisions, for both the Gaussian Belief Propaga-

tion algorithm and the Average Consensus Algorithm.

Chapter 6

Conclusions

6.1 Conclusion

This work offered a proof-of-concept of how commercial low-cost, low-power

nodes, can be exploited to create a wireless sensor network capable for in net-

work inference, with large communication ranges, at 10.8 dBm transmission

power. Also, it was presented how a energy harvester can exploit the so-

lar energy and power the Thunderboards with low outage probability. Also,

Zigbee’s centralized network was presented and it was justified why it is not

the ideal solution for a wireless sensor network. Furthermore, it is proven

that in network inference in a distrbuted manner is possible using the afore-

mentioned nodes, and it was explained why the asynchronous way provides

better results.

6.2 Future Work

The main focus of this work was to implement a distributed network that

will exchange humidity values for autonomous decision. Also, a centralized

network for humidity monitoring may be implemented.

Security applications can be possible using the implemented message pass-

ing WSN, by exploiting Thunderboard’s embedded orientation sensors.

Also, the implementation of 16 energy harvesters is possible. Due to time

constraints, only 3 energy harvesters were implemented, and so the 16 node

message passing network in Sec. 3.1 was limited to a 3 node network in Ch. 5.

Finally, the future work should focus on reducing the overall delay es-

pecially of the distributed network, as time is a vital factor in a network

operation.

Appendix 54

Appendix

Figure 6.1: Sleep mode consumption.

Figure 6.2: Active mode consumption.

55

Bibliography

[1] P. Vasilakopoulos, “Design and implementation of a low-cost bidirec-

tional embedded backscatter link,” Jul. 2021, undergraduate Thesis at

Technical University of Crete, Supervisor A. Bletsas.

[2] “Ug309: Thunderboard sense 2 user’s guide.” [Online].

Available: https://www.silabs.com/documents/public/user-guides/

ug309-sltb004a-user-guide.pdf

[3] “Ug103.2: Zigbee fundamentals.” [Online]. Avail-

able: https://www.silabs.com/documents/public/user-guides/

ug103-02-fundamentals-zigbee.pdf

[4] H. Xiaoci, J. Yi, S. Chen, and X. Zhu, “A wireless sensor network-

based approach with decision support for monitoring lake water quality,”

Sensors, vol. 15, pp. 29 273–29 296, 11 2015.

[5] S. S. Sonavane, V. Kumar, and B. P. Patil, “Designing wireless sensor

network with low cost and low power,” in 2008 16th IEEE International

Conference on Networks, 2008, pp. 1–5.

[6] “Thunderboard sense 2 sensor-to-cloud advanced iot kit.” [Online].

Available: https://www.silabs.com/development-tools/thunderboard/

thunderboard-sense-two-kit

[7] “Radio abstraction interface layer (rail) sdk.”

[Online]. Available: https://www.silabs.com/developers/

flex-sdk-radio-abstraction-interface-layer

[8] “Efm32 32-bit mcu ultra efficient energy modes.” [Online]. Available:

https://www.silabs.com/mcu/32-bit/efm32-energy-modes

https://www.silabs.com/documents/public/user-guides/ug309-sltb004a-user-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug309-sltb004a-user-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug103-02-fundamentals-zigbee.pdf
https://www.silabs.com/documents/public/user-guides/ug103-02-fundamentals-zigbee.pdf
https://www.silabs.com/development-tools/thunderboard/thunderboard-sense-two-kit
https://www.silabs.com/development-tools/thunderboard/thunderboard-sense-two-kit
https://www.silabs.com/developers/flex-sdk-radio-abstraction-interface-layer
https://www.silabs.com/developers/flex-sdk-radio-abstraction-interface-layer
https://www.silabs.com/mcu/32-bit/efm32-energy-modes

Bibliography 56

[9] W. K. Seah, Z. A. Eu, and H.-P. Tan, “Wireless sensor networks powered

by ambient energy harvesting (wsn-heap) - survey and challenges,” in

2009 1st International Conference on Wireless Communication, Vehic-

ular Technology, Information Theory and Aerospace Electronic Systems

Technology, 2009, pp. 1–5.

[10] A. Pop-Vadean, P. P. Pop, T. Latinovic, C. Barz, and C. Lung, “Harvest-

ing energy an sustainable power source, replace batteries for powering

WSN and devices on the IoT,” in Materials Science and Engineering

Conference Series, ser. Materials Science and Engineering Conference

Series, vol. 200, May 2017, p. 012043.

[11] B. Li and Y.-C. Wu, “Convergence analysis of gaussian belief propaga-

tion under high-order factorization and asynchronous scheduling,” IEEE

Trans. Signal Process., vol. 67, no. 11, pp. 2884–2897, Jun. 2019.

[12] V. Papageorgiou, A. Nichoritis, P. Vasilakopoulos, G. Vougioukas, and

A. Bletsas, “Towards Ambiently Powered Inference on Wireless Sensor

Networks: Asynchrony is the Key!” in 5th IEEE International Work-

shop on Wireless Communications and Networking in Extreme Environ-

ments, July 2021.

[13] D. Jian, S. Ma, Y.-C. Wu, S. Kar, and J. Moura, “Convergence analysis

of distributed inference with vector-valued gaussian belief propagation,”

Journal of Machine Learning Research, vol. 18, 11 2016.

[14] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus

with least-mean-square deviation,” Journal of Parallel and Distributed

Computing, vol. 67, no. 1, pp. 33–46, 2007. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0743731506001808

https://www.sciencedirect.com/science/article/pii/S0743731506001808

	Table of Contents
	List of Figures
	Introduction
	Internet of Things and Wireless Sensor Networks
	Ambiently Powered Distributed network

	Embedded Hardware
	Specification
	Point-to-Point communication
	Radio Configuration
	Outdoor communication link

	Embedded Networking
	Distributed message passing platform
	Implementation
	Packet Layer Configuration
	Sleep Mode
	Test setup

	Centralized Zigbee Network
	What does Centralized Network mean?
	Implementation

	Energy Harvester
	Implementation Vasilako:21

	WSN as Inference Platform
	Description
	Algorithm 1: Gaussian Belief Propagation
	Algorithm 2: Average Consensus

	Experimental results
	Implementation of Gaussian Belief Propagation (GBP)
	Implementation of Average Consensus Algorithm

	Conclusions
	Conclusion
	Future Work

	Bibliography

