
TECHNICALUNIVERSITY OF CRETE
Department of Electrical and Computer Engineering

ANovel Meta-heuristic Search
Algorithm for Global Continuous

Optimization
Vasileios Lymperakis

Diploma Thesis

Thesis Committee
Georgios Chalkiadakis (Supervisor)

Athanasios Aris Panagopoulos (Co-Supervisor)
Vasileios Samoladas

Chania, September of 2021

Abstract

Artificial intelligence research in optimization and search is concerned with reaching
the maxima or minima of an objective function, while potentially searching among a
vast range of value choices for the function’s variables. Global continuous optimiza-
tion methods, in particular, seek to reach the optima of complex continuous mathe-
matical functions. Meta-heuristics are commonly used in order to solve such problems.
Typically, however, meta-heuristics originally designed for solving discrete optimiza-
tionproblems are later adapted to continuous tasks, which consumes considerable time.
Also, there is a chance that they will get stuck to local optima as the complexity of con-
figuration spaces increases. Furthermore, generally meta-heuristics accept worse solu-
tions, in order to achieve a broader exploration of the configuration space. This results
in algorithms that do not improve in an anytimemanner, and an arbitrary interruption
of the algorithm’s flow, can lead to a waste of computation time as the current solution
might be worse than a solution discovered earlier on.
In this work, a novel single-point meta-heuristic is proposed, which is specifically de-
signed to tackle continuous optimization problems. Our algorithm, Buggy Pinball, is
an anytime algorithm inspired by the well-known pinball game: It employs a trajectory-
based search, and each proposed solution ensures the improvement of the configura-
tion space. In order to evaluate our algorithm, we used a number of standard testbed
functions, which can also be applied onmultiple dimensions. We compared our results
to the performance of some of the most widely used meta-heuristics, namely simulated
annealing, threshold accepting, and particle swarmoptimization. Our systematic evalu-
ation shows that our algorithm is very efficient in global continuous optimization tasks,
with performance that is particularly successful in complex configuration spaces.

Ένας εκ τωνπαραδοσιακώνπυλώνων τηςΤεχνητήςΝοημοσύνης είναι αυτός που ασχολείται
με τεχνικές αναζήτησης και βελτιστοποίησης, που επιχειρούν την εύρεση της βέλτιστης
λύσης εντός ενόςμεγάλουφάσματος επιλογών. Ηκαθολικήσυνεχήςβελτιστοποίησηασχολείται
με την επίλυση προβλημάτων βελτιστοποίησης πολύπλοκων συνεχών συναρτήσεων. Οι
μετα-ευρετικοί αλγόριθμοι χρησιμοποιούνται ευρέως για την επίλυση τέτοιωνπροβλημάτων.
Οιπερισσότεροι όμωςμετα-ευρετικοί αλγόριθμοι, έχουν σχεδιαστεί για την επίλυση διακριτών
προβλημάτωνκαι αργότερα αναπροσαρμόστηκαν για τη χρήση τους σε συνεχήπροβλήματα.
Αυτό αυξάνει το χρονικό κόστος εξεύρεσης λύσης. Επίσης, η πιθανότητα να καταλήξουν σε
τοπικάβέλτιστα αυξάνεται με τηνπολυπλοκότητα του χώρου. Ακόμη, τείνουν να αποδέχονται
χειρότερες λύσεις, για να επιτύχουνπιο ευρεία εξερεύνηση του χώρου. Αυτό έχει σαν αποτέλεσμα
να αποτελούν συνήθως μεθόδους αναζήτησης, οι οποίες δεν βελτιώνονται συνεχώς με την
πάροδο του χρόνου. Ως εκ τούτου, μια πιθανή πρόωρη διακοπή της ροής του αλγορίθμου,
μπορεί να καταστήσει μεγάλομέρος τηςπρότερης υπολογιστικής διαδικασίας κενό νοήματος,
αφού οι τελευταίες λύσεις μπορεί να είναι χειρότερες από την καλύτερη που έχει βρεθεί ως
εκείνη τη στιγμή.
Στηνπαρούσα διπλωματική εργασίαπροτείνεται ένας νέοςμετα-ευρετικός αλγόριθμοςμονής-
λύσης που είναι σχεδιασμένος για να λύνει συνεχή προβλήματα και που μπορεί να διακοπεί
ανά πάσα στιγμή με την εγγύηση ότι η τελευταία λύση θα είναι πάντα καλύτερη από τις
προηγούμενες. Οαλγόριθμόςμας, επονομαζόμενος ”ελαττωματικόφλιπεράκι”, είναι εμπνευσμένος
από το διαδεδομένοπαιχνίδι φλίπερ, όπου εφαρμόζεται ένας τρόπος εύρεσηςμε τη δημιουργία
τροχιάς και κάθε καινούρια λύσηβελτιώνει την ήδη υπάρχουσα. Αξιολογήσαμε τον αλγόριθμό
μας σεπλείστες κλασσικές συναρτήσεις συνεχούς βελτιστοποίησης, και συγκρίναμε τις επιδόσεις
τουμε αυτές κάποιων από τουςπιο διαδεδομένουςμετα-ευρετικούς αλγορίθμους αναζήτησης:
τηνπροσομοιωμένηανόπτηση, την αποδοχή ορίου, και τηνβελτιστοποίησησμήνους σωματιδίων.
Ησυστηματική διαδικασία αξιολόγησηςπου εφαρμόσαμε, αποδεικνύει την αποτελεσματικότητα
του αλγορίθμου μας σε καθολικά συνεχή προβλήματα, και ιδιαίτερα την σημαντική υπεροχή
του έναντι των ανταγωνιστών του ειδικά σε πολύπλοκους χώρους αναζήτησης.

Acknowledgments

I would like to first thank my professor, Athanasios Aris Panagopoulos, whose motiva-
tion and guidance from the firstmoments of our cooperation,made this thesis possible.
His patience throughout our long overnight calls is also much appreciated.
Iwould like also to expressmygratitude tomy supervisor,GeorgiosChalkiadakis, whose
recommendations and expertise were vital from the very beginning of this project.
Last but not least, I would like to thank my family and friends who were supporting
me throughout all my academic years. I would also like to specifically thank Anna
Christopoulou for her consistent support, because without it, I would have never got-
ten this far.

Contents

Abstract

1 Introduction 1
1.1 Continuous Optimization . 1
1.2 Meta-heuristics . 3
1.3 Our Approach . 3
1.4 Thesis Outline . 4

2 Background and RelatedWork 5
2.1 Simulated Annealing . 5
2.2 Threshold Accepting . 11
2.3 Particle SwarmOptimization . 12
2.4 The pinball game . 16

3 The Buggy Pinball (BP) Algorithm 17
3.1 Why Buggy? . 17
3.2 Overview of BP . 19
3.3 The BP in Detail . 19

4 Experimental Evaluation 26
4.1 Experimental Setup . 26
4.2 Results . 27

5 Conclusions 49
5.1 Future work . 49

Appendix A Tested Versions and Parameters 51

Appendix B Statistical Significance Tables 56

References 73

i

List of figures

1.1 Optimization Tree . 2

2.1 Meta-heuristic approaches Tree . 6
2.2 Simulated annealing flowchart . 8
2.3 Threshold Accepting Flowchart . 13
2.4 Particle SwarmOptimization Flowchart 15
2.5 Digital version of pinball . 16

3.1 Description of trajectory movement . 18
3.2 Example on a 2D implementation of Buggy Pinball on Rastrigin Function 20
3.3 Buggy pinball flowchart . 22

4.1 Objective functions’ graphs . 28
4.2 Dropwave function analysis . 32
4.3 Eggholder function analysis . 33
4.4 Holdertable function analysis . 35
4.5 Langermann function analysis . 36
4.6 Shubert function analysis . 37
4.7 Easom function analysis . 38
4.8 Ackley function 3D analysis . 40
4.9 Ackley function multi-dimensional analysis 41
4.10 Rastrigin function 3D analysis . 42
4.11 Rastrigin function multi-dimensional analysis 43
4.12 Schwefel function 3D analysis . 45
4.13 Schwefel function multi-dimensional analysis 46
4.14 Sphere function 3D analysis . 47
4.15 Sphere function multi-dimensional analysis 48

ii

List of Algorithms

1 Simulated Annealing Algorithm . 8
2 Neighbour Function . 11
3 Threshold Accepting Algorithm . 12
4 Particle SwarmOptimization Algorithm 14
5 BP algorithm . 24
6 Crossing detected function . 24
7 Recursive refining function . 25

iii

1
Introduction

Nowadays, we face various issues in many fields of our lives, that are usually hard or
even impossible for humans to manually optimize. Over the years, we have managed
to developmethods, that can approximate optimal solutions. Such techniques, namely
Optimization, work towards finding the best choice among various solutions in a prob-
lem. Such problems can vary from finding the best route in order to travel in a set of
cities, like theTraveling SalesmanProblem[22], tominimize highly complexmathemat-
ical problems with a number of variables. In computer science, various methods have
been developed, with the goal to tackle such problems. The approach of these tech-
niques is to evaluate the objective function that translates into such a problem, and to
explore the variables that define the function in various ways. A distinction between
optimization problems is focused on the form of its variables, whether it is a countable
or a non-countable set, which usually determines the optimization technique that will
be used.

1.1 Continuous Optimization

Continuous optimization problems rely on optimization variables that draw their val-
ues fromanon-countable set—typically a range of real numbers [29]. This is in contrast
to discrete (combinatorial) optimization where the optimization variables draw values
from a countable set. Many problems in various domains can be formulated and tack-
led as continuous optimization tasks. These range from image processing [6, 53] and
chemical engineering [51, 49] to finance [41, 43, 47] and biology [48, 9]. Addition-
ally, machine learning techniques heavily rely on continuous optimization to optimize
internal parameters in order to, typically, minimize an error function [36]. As such,
continuous optimization has drawn considerable attention over the years[20].
Continuous optimizationmethods canbewidely classified to either local or global ones.

1

Figure 1.1: Optimization Tree

Local methods, such as naive Gradient Descent and Continuous Hill Climbing, move
locally over the optimization space and aim toprecisely locate the local optimal solution.
As such, they tend to be quite fast and have been widely used in numerous applications
(e.g., [19, 5, 40]). However, despite the aforementioned advantages such methods con-
verge to local optimawhenoperating onnon-convex configuration spaces. On the other
hand, global methods aim to find the global solution, typically by moving in a less re-
stricted manner over the optimization space. Such approaches range from modified
local search, such as gradient descent using momentum[33] and Adaptive subgradient
methods such as Adagrad [12], to population-based meta-heuristics. In the absence
of analytical solutions, such methods approximate the global optimal—instead of pre-
cisely locating a local one as local methods do. Given that the objective space is usu-
ally non convex and that one is interested in an approximation of the optimal solution,
global optimization methods are of great interest and are widely used in practice [2].
Global optimization methods, as discussed, specialize in approximating the global op-
timum in multimodal functions, i.e. in functions where local optima exist. Such tech-
niques can be classified, as [42] noted, based on their approach on the search that they
utilize:

• Blind Search. When the future states are chosen completely random. In such
a case, they are distinguished from a simple random search by their strategy in
accepting these states.

• Local search. In local search, each future state belongs into a predefined neighbor-

2

hood of the current state. Such algorithms are simulated annealing and threshold
accepting that will analytically be explained below.

• Non-local search. In this search approach, belong techniques that are not con-
strained within a neighborhood, and they intend to jump from a local optimum
into the global or to a better choice of the existing. Particle swarm optimization
and our novel buggy pinball algorithm fall within this category.

1.2 Meta-heuristics

Meta-heuristics have long been used for global continuous optimization (e.g.,[45, 10,
39]). They can avoid convergence to local optima and can scale to multidimensional
problems. In addition, many meta-heuristic approaches do not require any derivative
of any order for the objective function in contrast to what is a restrictive requirement of
many continuous optimization approaches (such as gradient descent based optimiza-
tion). However, many meta-heuristics—such as simulated annealing (SA) [24] and
threshold accepting (TA) [13]—have been developed for combinatorial optimization
problems, and their deployment in continuous optimization problems requires con-
siderable tuning, which is not always straightforward; while their performance in terms
of precision can be limited. Furthermore, even those best tailored for continuous opti-
mization (Particle SwarmOptimization (PSO) [23]) typically accept worse solutions in
order to escape local optima and ensure exploration, rather than consistently improve
the state of the problem. Due to this reason meta-heuristics can be slow and inefficient
when employed to optimize highly complex continuous configuration spaces.

1.3 Our Approach

Against this background, we propose a new single-point meta-heuristic algorithm, de-
signed specifically for global continuous optimization. Our algorithm is inspired by
the movement of a ball’s collision and descent in the well-known pinball arcade game.
Importantly, ours is an anytime algorithm that always improves over the solution, and
which can return a valid solution even if it is arbitrarily interrupted. We evaluate our
approach against SA, TA, and PSO on a number of commonly employed optimization
testbed functions and on a number of dimensions. We show that our approach is able
to find the global optima with high accuracy and precision and in shorter time than
the benchmark approaches, especially when more complex functions are considered.
We believe that the superiority of our approach, namely buggy pinball (BP) and the
fact that a solution is guaranteed to improve over time makes it a better choice for con-
tinuous optimization tasks of high complexity and dimensions. We sum up our main
contributions are as follows:

• We propose a novel single point meta-heuristic tailored for continuous optimiza-
tion

3

• We experimentally show that ensuring exploration is possible even without hav-
ing to accept worse solutions—which is a common assumption of meta-heuristic
search

• We evaluate our approach against SA, TA, and PSO on a number of testbed func-
tions and on a number of dimensions to demonstrate its efficiency and superior
performance in terms of both accuracy and precision, especially in the more com-
plex configuration spaces.

1.4 Thesis Outline

The rest of the paper is structured as follows. We first discuss background material and
related work. Then we discuss our approach in detail along with core motivational as-
pects (that also justify the term ”buggy” in the name of the algorithm). Subsequently,
we conduct a systematic evaluation of our approach; discuss the evaluation results; and
finally we conclude and present directions for future work.*

*This work has been submitted for publication to AAAI 2022

4

2
Background and

RelatedWork

Meta-heuristics canbe classified into twobroad categories. Single-point andpopulation-
based. Single-point approaches focus onmodifying and improving a single point while
population-based maintain a collection of points and improve them based on popu-
lation characteristics. Simulated annealing is perhaps the most famous single-point
meta-heuristic. Numerous simulated annealing variants have been proposed in the lit-
erature [38]. Awell-known one is threshold accepting. Amilestone in population-based
approaches, is particle swarm optimization. Belowwe discuss these algorithms in detail.

2.1 Simulated Annealing

Simulated annealing (SA) [24] is a global search meta-heuristic algorithm capable of
solving discrete and continuous optimization problems, and is widely used in AI [34].
It is especially useful for escaping from local optima. It is inspired bymetallurgy, where
the process of annealing is widely used, to achieve the altering of the physical proper-
ties of a solid. This process relies on the cooling of the preheated solid, which if it is
slow enough, the desired structural integrity can be achieved. SA imitates this behavior,
avoiding local optimal solutions when searching an objective function’s configuration
space, by accepting worse solutions with a probability. This probability is calculated us-
ing a predetermined ”temperature” value, which is being reduced over time via a ”cool-
ing” schedule, and the energy difference of the last two states (i.e. the current and the
candidate solution state of the problem). This probability is expressed by e−ΔE/T: as the
temperature decreases over time, the probability of accepting worse solutions will also
decrease. SA has shown great success in continuous optimization tasks and as such is
considered a benchmark in our work. For instance, [3] used SA to optimize the ma-

5

Figure 2.1: Meta-heuristic approaches Tree

chining parameters for continuous profile machining, while [26] used SA to optimize
the conditions of the continuous casting process, based on an undesirability function.

2.1.1 Description of Simulated Annealing
The idea of applying this annealing technique into optimization problems drove into
the creation of the Simulated Annealing algorithm. The key parameter of this imple-
mentation is the so-called temperature value. This parameter is supposed to have the
same impact as the temperature of the actual process. A sufficient number of different
states must be simulated in order to approach the global optimal value, something that
can be achieved by decreasing the temperature slowly.[11]
For each temperature value, there is an energy E that exists with a probability given
by the Boltzmann factor e−ΔE/T, where k represents the Boltzmann constant. All the
possible energy states constitute the Boltzmann distribution.[11]
In 1953,Metropolis et al.[28] created an algorithm thatwas simulating the collection of
atoms achieving a thermodynamic balance at a given temperature. The procedure oc-
curs by choosing one atom at a time, changing its state, and then calculating the energy
difference (ΔE = Ecurrent−Enew) between the previous and the current state. In case thatΔΕ
is positive or equal to 0, the new state is accepted, and it is replacing the current. When
ΔE is negative, the new state is accepted with a probability P(ΔE) = e−ΔE/T. A random
number within the range (0, 1) is chosen every time to be compared with P(ΔE) and to
determinewhether the new state will be accepted. When the randomnumber is smaller
than this probability, the state is accepted, otherwise the procedure continues with the
same state. Applying this process repeatedly, sums up the procedure of moving atoms
when heated at a given temperature. The list of all states used in the algorithm creates
the Boltzmann distribution.

6

The algorithm simulates this process of annealing leading to the temperature that brings
thermodynamicbalance to the solidbyusing the aforementionedMetropolis algorithm.
On every step of the process, a modification of the current state takes place and it is be-
ing evaluated. This evaluation occurs by calculating ΔΕ between the current and the
possible future state of the system. When the value of ΔE is negative (i.e. the energy of
the future state is smaller than the current) the new state is established; otherwise, it is
accepted with a probability e−ΔE/T. This procedure occurs by choosing a random value
between 0 and 1, and the new state is accepted when that value is lower than the prob-
ability mentioned above. This implementation generates a discrete-timeMarkov chain
constituted by the collection of the algorithm’s states, where each state is depended only
to its predecessor. What can be concluded is that if theMarkov chain is sufficiently long,
the system approaches the thermodynamic equilibrium on the final temperature value.
[11]
Thus, the temperature parameter is the key to the whole process. At first, when its
value is relatively high, the Boltzmann factor is close to 1, and consequently almost ev-
ery future state will be accepted. On the other hand, as the temperature gets lower, the
probability of accepting a worse state approaches 0. What it is achieved is that on an
early stage, the configuration space is sufficiently explored, and during the whole pro-
cess, getting stuck into local optima can be avoided. When the algorithm is about to
be terminated, worse states are very unlikely to be accepted, therefore an optimal value
has been approximated, when enough iterations have taken place. Each temperature
value might also have a number of iterations taking place before decreasing, in order to
further expand the algorithm or explore for more time at a given temperature.[11]
The flowchart in Figure 2.2, given by [52], summarizes the process of Simulated An-
nealing.
As described by [4], the elements of simulated annealing are:

• Finite space S

• Cost function Jwith limits on Swhere the global optima of J are contained.

• For every element i ∈ S, there is a subset S(i) ⊂ Swhich is called the set of neighbors
of i.

• Temperature function T(t) ∶ t ∈ (0,∞) described as the cooling schedule. Variable
t represents time as the algorithm progresses and T(t) is the temperature for every
value of t.

• The initial state x(0) ∈ S.

The SimulatedAnnealing algorithm creates a discrete-timeMarkov chain x(t), using the
aforementioned elements. On each current state x(t), a neighbor j is chosen randomly.
Neighbor j replaces x(t), if J(j) is better than J(x(t)) or replaces it with a probability if it
is worse.
The simulated annealing algorithms is shown in pseudo-code in Algorithm 1.

7

Figure 2.2: Simulated annealing flowchart

Algorithm 1 Simulated Annealing Algorithm
1: s = s0
2: T = Tmax
3: initialize neighbour distance nd
4: for k = 0 until terminal condition is met do
5: T ← cooling(T, k)
6: snew ← neighbour(s)
7: if f(s) ⩾ f(snew) then
8: s ← snew
9: else if random(0, 1) < e

f(s)−f(snew)
T then

10: s ← snew
11: return s

8

2.1.2 Cooling Schedule
The cooling schedule that will be used to Simulated Annealing is a crucial factor for the
effectiveness of the algorithm. The acceptance probability equation e−ΔE/T shows the
importance of the temperature parameter. When the cooling (i.e. the decrease of the
temperature value) occurs in a fast pace, the algorithmwill probably get stuck to a local
optimal value, whereas on a slow cooling pace, it becomes ineffective. The goal when
searching for the best cooling schedule is to find the fastest possible version while the
convergence to one of the global optima of the given space is certain. Since the cooling
scheme is bound to have a finite time schedule, the convergence of the algorithm cannot
be considered certain.[38]
The SA’s cooling schedule is consisted of the initial temperature, a function that de-
termines the decreasing rate of the algorithm, the amount of iterations on each tem-
perature value, and the conditions that terminate the procedure, which may be a final
temperature value or a number of total iterations or a combination of those.[38]
Over the years, a lot of research has been conducted, regarding the optimal cooling
schedule. Some of the most notable publications are mentioned below.
The temperature parameter could terminate the process when reaching zero, therefore
this is not compulsory. In [27],was proposed a value for thefinal temperature calculated
by:

Tf ≤
ε

ln ∣y∣−1
P

(2.1)

where Tf is the final temperature, ε is a very small number (≤ 10
−3), y is the objective

function, and P the probability of acceptance of worse solutions.
A cooling schedule can be either static or adaptive. A static schedule is determined at the
beginning of the procedure, while an adaptive schedule changes the rate that it decreases
the temperature based on the progress of the algorithm. An effective cooling schedule
manages to combine a moderate execution time with SA’s dependence on asymptotic
behavior.[30]
Various cooling schedules have been implemented throughout the years, and sometimes
their efficiency varies on the problem they are applied. One of the first cooling schedules
is proposed by [24], which was a linear decrease of the temperature value described as:

Ti = T0 − ni (2.2)
where T0 represents the initial temperature of the process, i is the iteration number and
n is a factor that determines how fast the temperature will decrease. They also suggested
a similar calculation of the temperature by:

Ti+1 = αΤi − 1 (2.3)
Where α is given on the range (0, 1), and determined empirically. This value is later
proposed in [32] to be calculated using the initial temperature T0, the final temperature
Tf and the total number of iterations F:

a = (Tf

T0
) 1

F−1 (2.4)

9

Another linear cooling scheme is proposed in [15], which depended mainly on the ini-
tial temperature:

Ti =
T0 − i
cT0

(2.5)

With c being a constant. Also, [21] proposed a logarithmic equation:

Ti =
c

1 + log(i) (2.6)

In [44], a formula is created that made the logarithmic decrease faster by adding to the
equation the standard deviation of the cost values of the states generated (σ):

Ti+1 =
Ti

1 + Ti
ln(1+c)

3σi

(2.7)

In [27], a nonlinear schedule is created, aiming to a much slower one:

Ti+1 =
Ti

1 + βΤi
(2.8)

Setting β>0. This was followed by [8], where it is proposed for β to be set:

β =
Τ0 − Τf

fT0TF
(2.9)

In [35], a cooling schedule is also created that follows slow cooling at the beginning of
the algorithm and continues with a faster pace:

Ti = { T0

1+i , i ≤ Ilim
0.95Ti−1, i > Ilim

(2.10)

The Ilim parameter is set such that the algorithmwill not take too long to terminate, and
it is determined empirically.

2.1.3 Neighbourhood
NeighborhoodN(x) of any point x in a cost function J(x) are considered all the possible
states that can succeed x. Determining the neighborhood in Simulated Annealing is a
very important aspect to take into consideration, as it directly affects the efficiency of
the algorithm.
There is a lot of research that has been dedicated into finding the optimal neighborhood
structure. In [16], it is noted that in small neighborhood structures, relatively to the
cost function, prevent theMarkov chain to move around fast enough, and it might not
find the global optima, while in a large neighborhood transforms the algorithm into
random sampling. In [7], it is reported that a small neighborhood performs better in
some discrete problems like the Traveling Salesman Problem (TSP) and the Quadratic

10

Algorithm 2Neighbour Function
1: function neighbour(s)
2: for each variable xi of s do
3: neighbours[i] = random(xi − nd, xi + nd)

return f(neighbours)
4: end function

Assignment Problem (QAP)[25]. In contrast, [50] shows that larger neighborhoods are
more effective into finding global optima. Generally, we can conclude that the efficiency
of the neighborhood is depended on the formulation of the problem.
In [46], an algorithm is introduced, calledOpposition-basedSimulatedAnnealing (OSA).
This algorithm follows the same procedure as SA, but for every neighbor generation, it
also generates an opposite neighbor. Given a configuration space S, two possible states
s1, s2 ∈ S are considered opposite, when they have the same distance from a given ref-
erence point r, and they are in opposite sides. On this implementation the opposite
pairs of values are considered unique. The procedure continues by comparing the two
neighbors and keeping the best one to compare it with the current state. By compar-
ing OSA to classic SA and Random Simulated Annealing (RSA) on some continuous
optimization problems, is proved that OSA performs better. RSA is using two random
neighbors instead of two opposite neighbors like OSA.
Another neighborhood structure is givenby [1], using the concept of the variable neigh-
borhood search (VNS) algorithm. This method defines a set of neighborhood struc-
tures Nk, k = 1, 2, ..., by separating the configuration space and for each neighborhood
Nk starting froman initial randompoint, performs the SAprocedure to locate a local op-
timum. Then, this local optimum is compared to the previous neighborhood’s optimal
value, and the best of them is chosen. This procedure occurs on every neighborhood
defined. The performance of this hybrid VNS-SA algorithm compared to classic SA is
tested on the Weibull distribution, and it shows that on the same accuracy levels, this
hybrid algorithm requires less CPU time.

2.2 Threshold Accepting

A similar meta-heuristic proposed as a simpler version of SA is threshold accepting
(TA)[13]. TA replaces SA’s probability of acceptance with a threshold value. This
value is set initially at the beginning of the algorithm. Then, the proposed solution
is deducted from that of the current, and the new solution is accepted only when the
difference is lower than the threshold. Similarly, to the temperature in simulated an-
nealing, the threshold follows a cooling schedule, and it is being reduced over time, so
only better solutions will be more likely to be accepted over time. They also claim that,
since it is computationally simpler, similar results to SA are achieved in less computa-
tional time. A flowchart of threshold accepting procedure is shown in Figure 2.3
Threshold accepting was originally implemented and tested in TSP, so just like simu-
lated annealing, it has been tailored for discrete optimization tasks. TA has also been

11

Algorithm 3 Threshold Accepting Algorithm
1: s = s0
2: T = Tmax
3: initialize neighbour distance nd
4: for k = 0 until terminal condition is met do
5: T ← cooling(T, k)
6: snew ← neighbour(s)
7: if f(s) − f(snew) > T then
8: s ← snew
9: return s

modified for continuous optimization tasks, i.e. [10], where TA is extended for mul-
tiple objective continuous optimization problems. As such it is also considered in our
approach. The pseudo-code of threshold accepting is depicted in Algorithm 3.

2.3 Particle SwarmOptimization

Perhaps particle swarm optimization [23] is the most famous population-based meta-
heuristic approach used typically for continuous optimization. Particle swarm opti-
mization (PSO) is an evolutionary algorithm that is inspired by the social behaviour of
animals. The intention is to imitate the movement of birds and fish in a bird flock and
a fish school respectively.
PSO brings this into computer science by initializing various points, i.e. the particles,
located all over the configuration space of the examining objective function. These par-
ticles move with respect to a d-dimensional velocity parameter. The velocity of each
particle is determined in each round and for each variable of the objective function by
three factors:

• the velocity of the previous round

• the best position that has been found by this particle

• the best position found by all particles

Each of these factors is controlled by a hyper-parameter, that needs to be determined
beforehand and tuned for every problem that is used. The number of the particles is
also a parameter that needs to be determined at the beginning of the algorithm. PSO
has very high performance among continuous optimization algorithms, and has been
used in various fields. For instance, PSO was used by [14] to analyze human tremor by
training a neural network, which was able to detect it. Also, [18] used PSO to predict
the optimal value of the energy consumption for a smart home in a given weather. In
consideration of the above PSO is also considered in this work. The pseudo-code of
Particle Swarm Optimization is shown in Algorithm 4. The procedure of PSO can be
observed through a flowchart in Figure 2.4.

12

Figure 2.3: Threshold Accepting Flowchart

13

Algorithm 4 Particle SwarmOptimization Algorithm
1: initialize particles population, weights
2: for each particle do
3: initialize starting point xi, personal best position pb, velocity v
4: if f(xi) < f(global best gb) then
5: gb ← xi
6: for i in rounds do
7: for each particle do
8: for each variable d do
9: vd ← ωvd + c1random(0, 1)(pbd − xi,d) + c2random(0, 1)(gbd − xi,d)
10: xi ← xi + v
11: if f(xi) < f(pb) then
12: pb ← xi
13: if f(xi) < f(gb) then
14: gb ← xi

return gb

2.3.1 Particles
Particle SwarmOptimizationheavily relies on its population-based characteristics. Each
particle is usually incapable of solving an objective function on its own. The particles
are in need of communicating, in order to solve a problem, thus it is often considered
that they are creating a social network. Particles are exchanging information, which
significantly affects their updating velocity of each round. The population size of the
particles is perhaps the most important parameter that is determined beforehand. It is
supposed to be set empirically, considering the number of dimensions and the difficulty
of the problem that will be optimized. [31]

2.3.2 InertiaWeight
Inertia weight is the parameter that defines the percentage of the previous velocity value
that will be added to the current value. This weight did not exist in the original work
and it was later added by [37]. It was added with the purpose to expand the potential
search space that particles cover. The optimal value is considered equal or close to 0.9
in most cases, since high values appear to perform adequately. However, values larger
than 1 appear to destabilize the algorithm. Various schedules have been proposed over
time, in order to regulate the inertia weight, and reach its maximum capabilities.
We use ω as a constant, typically set to large values ≈ 0.9.

2.3.3 Velocity Parameters
The parameters c1 and c2 (shown in line 9 of Algorithm 4) determine the weight, along
with a random value between 0 and 1, that will be applied into the personal and global
best respectively. These weights affect how much of the applied velocity of the particle

14

Figure 2.4: Particle SwarmOptimization Flowchart

15

Figure 2.5: Digital version of pinball

will be stirred towards one of the two aforementioned positions. The velocity param-
eters play a crucial role in the behaviour of the algorithm. If we explain the movement
of the particles using Newton’s second law, the half values of the parameters would be
the mean stiffness of some springs that are pulling the particles. The original work sug-
gested that c1 and c2 should be controlled in such a way, that would keep the velocity
within some range. These caused a few problems regarding the efficiency of the algo-
rithm. The optimal limits were problem specific, with no rule of thumb in place. Also,
initially, the values c1 = c2 = 2 were considered as optimal in that case, but it was later
abandoned.[31]
The range of the velocity is not used in ourwork andparameters c1 and c2were initialized
empirically in each function.

2.4 The pinball game

Pinball is a well-known arcade game, whichwas also later adapted in a digital form. The
game’s origins are very old. It is believed that it originates from Europe.
The game’s goal is to maintain the ball within the play field. The ball is thrown from
the top of the field and as it bounces around, the player collects points. The player
is using some paddles, known as flippers, which are located at the lowest point of the
field, they canmanipulate the course of the ball as it sends it upwards, in order to collect
more points. The points are collected when the ball collides on various obstacles. The
formation of the obstacles and the way that the points are collected vary, depending on
the edition of pinball. The game is terminated when the player fails to send the ball
upwards, and it lands underneath the flippers. An image of perhaps the most famous
digital pinball version is depicted in Figure 2.5.

16

3
The Buggy Pinball (BP)

Algorithm

Our work is motivated by the movement of the ball in the pinball game. In this game, a
ball is thrown to the highest point, and by moving inside a glass-covered cabinet, heads
towards the lowest point. The player uses paddles to avoid the ball from falling in the
lowest point and collects points by hitting various targets. The main challenge of the
game originates by the multiple collisions of the ball, which will eventually lead the ball
to the lowest point. We imitated this movement by creating a trajectory-based search
method, where the “ball” is moving until a collision with the objective function takes
place, which occurs at the common point between the objective function and the tra-
jectory segment—see e.g. Figure 3.2. The trajectory segments start almost horizontally
and become steeper with time. A trajectory segment corresponds to one round of our
search algorithm. The intuition behind this movement is that when the ball is mov-
ing almost horizontally, the probability of getting into a local optimum is very small,
as shown in Figure 3.1a, while steeper trajectories help to speed up convergence to an
optimum as time progresses. Anytime algorithms are algorithms that increase the qual-
ity of the output as time progresses [17]. In our algorithm, the trajectory segments that
are progressively created, direct the search towards values that can only better optimize
the cost axis. So, every new point that is detected, is guaranteed that is better than the
current. Thus, Buggy Pinball is anytime, in the sense that every new segment can only
provide a better solution.

3.1 Why Buggy?

Even though there is a small chance of getting into a local optimum solution, it is not
equal to zero. To significantly decrease the possibility of converging to a local opti-

17

(a) Intuition of Trajectory Movement

(b) Example of entering a local minimum

(c) Avoiding a local minimum

Figure 3.1: Description of trajectory movement

18

mum, we identified the need for the pinball game to be “buggy”. Instead of bouncing
away, as in the real pinball, the “ball” in our algorithm is capable of also continuing the
search underneath the configuration space. This way, not only local optima are effec-
tively escaped, but also there is no need of accepting worse solutions in order to ensure
exploration, unlike most meta-heuristic approaches. This makes BP an any-time algo-
rithm. An illustration of being trapped into a local minimum is shown in Figure 3.1b.
In Figure 3.1c, we can also see how Buggy Pinball creates trajectories underneath the
configuration space, and avoids convergence to a local minimum. This behavior allows
BP to significantly reduce the probability of getting stuck into local optima. The BP
effectiveness in avoiding local optima is empirically verified by its increased accuracy,
demonstrated in our results.

3.2 Overview of BP

As discussed, Buggy Pinball searches the space by creating trajectories. These are pro-
gressing via steps in a continuous simulationmanner until a collision between the func-
tion and the ball occurs. Once we find that a collision occurs between two steps, a rou-
tine to precisely locate the point of collision begins. When the exact point is identified,
we create a new trajectory segment starting from that point, and repeat the procedure.
The trajectories are created with a random direction, in order to ensure that all of the
configuration space is searched. The elevation angle though (i.e., the angle of descend
or ascend of the segment depending on whether we minimize or maximize a function)
follows a predefined schedule: it starts at an almost horizontal level in order to avoid
local optima, and becomes more steep over time to achieve faster convergence rates. By
contrast, the step size is reduced over time, to achieve higher precision. As we get to
bigger configuration spaces, we choose higher starting step values and smaller elevation
angles. As mentioned, the trajectories are even able to advance the ball underneath the
configuration space of the function. An example of a BP search on the 3D version of
the Rastrigin function (Fig. 4.1h) can be seen in Fig. 3.2. Each blue line represents one
trajectory segment, while each red point is the commonpoint between the function and
the segment.

3.3 The BP in Detail

BP (Algorithm 5), is composed by five main parts: (1) initialization, (2) trajectory seg-
ment creation, (3) stepping forward, (4) recursive refining, and (5) cooling schedules.
These parts are detailed below. We note that each round corresponds to one trajectory
segment, which progresses in steps. Also, an objective function is characterized by its
cost, i.e., its y values, and its xi variables, which are the parameters to be optimized. Every
xi is an axis in the configuration space (see Fig. 3.2 for an example with two xi variables).

19

(a) Example on Rastrigin Function from the side

(b) Example on Rastrigin Function from above

Figure 3.2: Example on a 2D implementation of Buggy Pinball on Rastrigin Function
*The blue line indicates the search direction of the ball in a single round, while red

dots show a collision with the function

20

3.3.1 Initialization
The first part (i.e., Algorithm 5, lines 1-3) is that of initializing our hyper-parameters.
First we set the original step and elevation angle, a. The original step size should be
set in such a way that we do not make too large steps in the configuration space at the
beginning of the process. We have empirically found that a choice of an original step
size at ∼ 10% of the average variable range performs well (in general the step size should
be bigger as the configuration space becomes bigger). We note here that the sign of the
step (variable stepSize in Alg. 5) should be negative for minimization tasks and positive
for maximization.
The elevation angle is defined with respect to the plane perpendicular to the y axis. For
the elevation angle we always begin with a value close to 0 (e.g., 0.1) in order to perform
a near-horizontal movement.* Wehave also identified that its value should be smaller in
large spaces (in contrast to that for step) since a more horizontal movement is required
in order to effectively avoid local optima. The same “smaller values” rule applies as the
number of dimensions increases.
In line 2, we also set the number of rounds, which corresponds to the number of trajec-
tory segments to be created and followed, as well as the number of steps to be executed
in each segment. The number of rounds should be set as high as possible considering
the optimization time constraints. With respect to the number of steps, we have found
that a reasonable choice is one such as the product of the number of steps and the step
size is three to five times bigger than the average variable range. Finally, the initialization
of a random starting point is taking place in line 3, and the procedure of the algorithm
begins from line 4. AsBP is able to escape local optima the algorithm is not very sensitive
on the initial points selectedwith respect to convergence to a global solution. Neverthe-
less a good initial solution can considerably speed up the algorithm, as further discussed
in Results.

3.3.2 Trajectory Creation
Each round corresponds to the creation and execution of a trajectory segment starting
from the current point and ending when the maximum number of steps is reached or
a collision is detected. At the beginning of each round, the segment’s direction is set
randomly,† in order to ensure the best exploration of the configuration space with only
the elevation angle being fixed and following a predetermined schedule. Thus, the step
component for each variable is set randomly to a value in [-1, 1]. The corresponding
step-towards-optimumcomponent for the y axis that respects the elevation angle is then

*The sign of the elevation angle is irrelevant as the square of its sin value is considered.
†Weexperimentedwith trajectories alternating fromonedirection to another; howeverwe empirically

found this took a toll in exploration. Thus, the algorithmdoes not behave like a pinball, however the final
trajectories do resemble a pinball movement.

21

Figure 3.3: Buggy pinball flowchart

22

computed:

ystep =

√√√√√√⎷ sin2 a∑d
j=1−x

2
step,j

sin2 a − 1
(3.1)

where d is the number of variables—i.e., the problem’s dimensions. It is easy to derive
this equationwith the followingprocedure. Weknowfor the elevation angle that: sin a =∣nu∣∣n∣∣u∣ , where n is the vector perpendicular to the fundamental plane, i.e. parallel to the
y axis (0, 0, ...0, 1). Vector u is the trajectory’s segment vector (x0, x1, ..., xd−1, y). Values
x0, x1, ..., xd−1 and the elevation angle are known. Solving for y gives us Equation 3.1.
Equation 3.1 solved for y.

y = ±

√
−(x20 + x21... + x2n) sin2 a

sin2 a − 1
(3.2)

With the above procedure we have set the direction of the segment. What remains is to
readjust the dimension-wise step components to respect the predetermined overall step
size. In order to achieve this, we multiply all step components with a common factor,
z, calculated as:

z =
stepSize√

x20 + x21... + x2d−1 + y2step
(3.3)

(used in lines 7, 8 of Alg. 5). Once we have completed this procedure, our step for the
current round is ready. We then apply it for the number of steps stated or until a crossing
of the objective function is detected.‡

3.3.3 Stepping Forward
In this part (i.e. Algorithm 5, line 10 and Algorithm 6), we start our trajectory segment
search by applying the step’s values on each axis, and we continue until one of the two
conditions of stopping is met. As the segment proceeds in the configuration space, it
moves downwards with respect to the y axis, as the segment value of y decreases in every
step. This results into accepting only better values, i.e. closer to the global optimum,
of the current position. The crossing of the objective function by the segment is deter-
mined by checking the last two steps taken. As shown in the crossing detected function
(Algorithm 6), if the difference between the y value and the function evaluation is of
different sign between these steps, we know that a point on the objective function is
“internal” to the last trajectory segment drawn—and “recursive refining” is triggered.

‡Crossing of the objective function means that a common point of the objective function and the
current trajectory segment has been detected, which is closer to the global optimum.

23

Algorithm 5 BP algorithm
1: stepSize, a = stepmax, amin
2: set#rounds,#steps
3: x, y ← initialize randomly
4: while i in#rounds do :
5: xstep = random(-1,1)

6: ystep =
√

sin2(a)∑d
j=1 −x

2
step,j

sin2(a)−1
7: xstep = z ∗ xstep
8: ystep = z ∗ ystep
9: while j in#steps do
10: if crossing_detected(x, y,xstep, ystep,j) then
11: x, y = recursive_refining(x, y,xstep, ystep, j)
12: break
13: a =elevation_cooling(amin, i,#rounds)
14: stepSize =stepSize_cooling(stepmax, i,#rounds)
15: return x, y

Algorithm 6 Crossing detected function
1: function crossingDetected(x, y,xstep, ystep,j)
2: A = y + (j − 1)ystep − f(x + (j − 1)xstep)
3: B = y + jystep − f(x + jxstep)
4: return A > 0 ∧ B < 0 ∨ A < 0 ∧ B > 0
5: end function

3.3.4 Recursive Refining
This is a process of iterative refinement, shown also in pseudo-code in Algorithm 7,
used to locate the exact point where a trajectory segment crosses the objective function.
It is activated only when a crossing of the configuration space is detected, otherwise
that part is skipped. In that case, a loop begins, where the point in the middle between
the last two steps is examined in order to determine whether this is the common point
between the segment and the function (or a very good approximation). If it is not, then
we choosewhether we continue the loop on the upper or the lower half of the examined
part, depending onwhere the crossing is identified, according to the signs of the points.
We continue by examining the point in the middle of that part as before, and the same
process is repeated until the exact location of the common point is found. Oncewe find
this point, we stop the iteration of the current round, as we have reached the closest
point to the global optimum so far.

24

Algorithm 7 Recursive refining function
1: function recursiveRefining(x, y,xstep, ystep,j)
2: x = x + xstepj
3: y = y + ystepj
4: if y − f(x) ≈ 0 then
5: return x, f(x)
6: else
7: xstep =

xstep
2

8: ystep =
ystep
2

9: x = x − xstep
10: y = y − ystep
11: if crossing_detected(x, y,xstep, ystep,0) then
12: return recursive_refining(x, y,xstep, ystep, 0)
13: else
14: return recursive_refining(x, y,xstep, ystep, 1)
15: end function

3.3.5 Cooling Schedules
The last part takes place at the end of each round (i.e. Algorithm 5, line 13-14). It de-
termines the values of the desired step size and the angle for the upcoming round. It
simply applies the cooling schedule function determined for each of the parameters. In
our experiencewe used a simple linear cooling schedule, where the final values are a frac-
tion of 1 for the step size, so we have increased precision no matter the structure of the
problem, and from 0.1 degree for highly complex many-local-optima functions up to
89 degrees for simple slope no-local-optima functions. This seems towork satisfactorily
for each problem tested so far, but further research on the topic is desirable futurework.

25

4
Experimental Evaluation

4.1 Experimental Setup

In order to evaluate our approach, BP, SA, TA and PSO have been tested into themini-
mization of ten (10) benchmark optimization functions. These functions are classified
as unimodal or multimodal, depending on whether there are local optimal points on
their configuration space or not. The two unimodal functions are the Sphere and Ea-
som functions. Themultimodal functions are: Rastrigin, Ackley, Eggholder, Schwefel,
Shubert, Holdertable, Langermann and Dropwave functions. More multimodal func-
tions were chosen because our focus is on global optimization, therefore, optimizing
as many complex and diverse multimodal functions as possible was our primary goal.
All functions are shown in Table 4.1, and their configuration spaces in Figure 4.1. All
functions are considered in our evaluation experiments with two variables, in order to
be easy to visualize in 3D. Sphere, Rastrigin, Ackley, and Schwefel can also be defined
with different numbers of variables in a straightforwardmanner—and, as such, are also
considered in 2D, 4D, 5D, and 6D.
For each function and dimensions considered, we allowed all algorithms to run for 100
trials for a predefined amount of time. Taking into consideration the dimensional com-
plexity, the predefined time allowance is 1 sec, 5 sec, 1 min, 5 min, and 20 min for 2D,
3D, 4D, 5D, and 6D respectively. For each function-dimensions combination we eval-
uated the mean accuracy and precision of the algorithms. We calculated the accuracy
percentage as the ratio of the trials where the algorithm converged to an approximation
of the globalminimumover the total number of trials. We consider an algorithm tohave
converged to an approximation of the globalminimum, if the solution discovered is bet-
ter than the second-best (local) minimum. To evaluate the precision of the algorithms,
for those solutions that have converged to an approximation of the global optimum, we
calculated the difference between that approximation and the global optimum itself. In

26

Table 4.1: Test-bed Functions

Function Equation
Dropwave −1+cos (12√x21+x

2
2)

0.5(x21+x22)+2
Eggholder −(x2+47) sin (√∣x2 + x1

2
+ 47∣)−x1 sin (√∣x1 − x2 − 47∣)

Holdertable −∣ sin (x1) cos (x2)e∣1−√
x21+x

2
2

π ∣∣
Langermann* ∑5

i=1 cie
− 1

π ∑d
j=1(xj−Aij)2 cos (π∑d

j=1(xj − Aij)2)
Shubert (∑5

i=1 i cos ((i + 1)x1 + i))(∑5

i=1 i cos ((i + 1)x2 + i))
Easom − cos (x1) cos (x2)e−(x1−π)2−(x2−π)2
Ackley −20e−0.2

√
1
d ∑d

i=1 x
2
i − e

√
1
d ∑d

i=1 cos (2πxi) + 20 + e1

Rastrigin 10d +∑d
i=1(x2i − 10 cos (2πxi))

Schwefel 418.9829d −∑d
i=1 xi sin (√∣xi∣)

Sphere ∑d
i=1 x

2
i

*Parameters c and A represent matrices, where they are c = (1, 2, 5, 2, 3) and A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
3 5
5 2
2 1
1 4
7 9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
more detail, we calculated the Mean Absolute Error (MAE) as:

MAE =
∑n

i=1 ∣yi − xi∣
n (4.1)

where n is the number of trials, y the global minimum, and xi the proposed solution on
a given trial. Algorithm parameters were optimized for each function-dimension com-
bination via a manual grid search; the experiments ran on a 40-CPU Intel(R) Xeon(R)
CPU E5-2680 v2 @ 2.80GHz processor, with 64GB RAM.

4.2 Results

Our results are shown inTable 4.2 for each function, algorithm, anddimensions consid-
ered, with the best results in each occasion noted in bold. A higher accuracy percentage
indicates better performance (the algorithm discovers and approximates the global op-
timummore often compared to the rest of the algorithms evaluated), while lowerMAE
indicates better precision. AMAE of ∼ 0 is practically zero. The statistical significance
of all results was tested using ANOVA (analysis of variance) and follow up Tukey tests.
A p-value threshold of 0.05 is used for significance.
As seen inTable 4.2, BP shows higher or equal accuracy rates compared to all other algo-
rithms in all settings. The starting point for each trial and for all algorithms is random.
BP has no trouble approximating the global minimum from any possible starting po-

27

(a)Dropwave function (b) Eggholder function (c)Holdertable function

(d) Langermann function (e) Shubert function (f) Easom function

(g) Ackley function (h) Rastrigin function (i) Schwefel function

(j) Sphere function

Figure 4.1: Objective functions’ graphs

28

sition. Notably, it is the only algorithm to achieve a 100% accuracy ratio in almost all
settings.
There were some cases however where all algorithms achieved almost 100% accuracy.
This occurs for the “less complex” functions Ackley, Easom, Rastrigin, Schwefel (2D),
Sphere, Holdertable, Shubert, andDropwave, where all or almost all algorithms exhibit
almost 100% accuracy (we elaborate below). Themore “complex” functions (as can also
be verified visually in Fig. 4.1), are Schwefel (3D, 4D, 5D, 6D), Eggholder, Langermann.
In all those cases, BP outperforms others, many times reaching 100% accuracy, and these
results are statistically significant, as can be verified in the supplementary material; ex-
cept results against TA for the Schwefel 3D, 4D, and 6D cases, and the Langermann
case (the latter is only marginally not significant).
Now, regarding precision, we clarify it is calculated only for the points that have con-
verged to an approximation of the global minimum. Thus, a high precision demon-
strates howwell the global optimum is approximated, if the algorithm did not get stuck
to a local optimum in the first place. As such, a high precision-low accuracy performance
is not suitable for global optimization—since, although precise, the algorithm is not
discovering the global optima often enough. That said, an adequate performance with
respect to precision is definitely required for global optimization algorithms. As can
be seen, BP’s precision is high; and it is higher than that of the other two single-point
algorithms considered (SA, TA) in most cases. Follow-up tests (see supplementary ma-
terial) confirm statistically significant better BP precision against SA and TA in all cases
but: Rastrigin 2D against TA; Schwefel 2D, 3D, and 4D against SA; Ackley 4D against
SA and TA and 6D against SA; Holdertable 3D against TA; and Dropwave 3D against
TA (marginally). Furthermore, although the precision of BP seems to be marginally
lower than that of PSO (which is also developed for continuous optimization tasks),
follow-up tests indicate that this difference is not statistically significant in most cases
(i.e., Rastrigin, Ackley, Shubert, Schwefel, Dropwave and Langermann for all respec-
tive dimensions considered). Notably, PSO frequently has the worst accuracy among
all algorithms, and thus is a poor choice for global optimization in these cases.
As noted already, the advantage ofBP compared to all other algorithms seems tobecome
greater when the more complex functions are considered, i.e., Eggholder, Schwefel and
Langermann, and when we move to higher dimensions. These functions have many
and deep local minima, but only a single global one. The Eggholder and Langermann
are also non-symmetric. These factsmake themharder to optimize in a global optimiza-
tion manner, while not getting stuck in a local minimum. The higher dimensionality
introduces further challenges for global optimization. That said, BPmanages to achieve
a 100% accuracy in all occasions except Schwefel for 6D (where an 89% is achieved) and
Langermann, 3D (where 73% is achieved). The accuracy results are also always better
compared to the rest of the algorithms considered and the improvement ranges to up to
13.6 times better (i.e., compared to SA for Langermann 3D). When simpler functions
and lower dimensions are considered the differences between the algorithms become
less prominent. For instance, the Dropwave, Ackley, and Rastrigin have few local min-
ima that are relatively shallow, while Shubert andHoldertable havemany global optima.
As such,most algorithms reach 100% accuracy except SA inDropwave 3D, PSO inRas-
trigin 4D, 5D and 6D, and PSO in Holdertable 3D and Shubert 3D. Finally, when the

29

Table 4.2: Evaluation Results

Function Accuracy (%) Precision (MAE)
BP SA TA PSO BP SA TA PSO

Dropwave 3D 100% 84% 100% 100% 1e-4 0.008 0.002 1e-17
Eggholder 3D 100% 73% 77% 48% 0.872 0.454 4.634 1e-5
Holdertable 3D 100% 100% 100% 56% 0.006 0.01 0.008 1e-6
Langermann 3D 73% 5% 59% 56% 7e-5 0.001 0.007 2e-15
Shubert 3D 100% 100% 100% 88% 0.032 0.021 0.274 8e-6
Easom 3D 100% 100% 100% 99% 0.002 0.001 7e-4 5e-17

Ackley

2D 100% 100% 100% 100% 2e-4 0.009 0.002 4e-16
3D 100% 100% 100% 100% 7e-5 0.017 0.013 4e-16
4D 100% 100% 100% 100% 8e-5 0.03 0.026 0.021
5D 100% 100% 100% 100% 9e-5 0.044 0.07 2e-15
6D 100% 100% 100% 100% 3e-4 0.062 0.115 0.063

Rastrigin

2D 100% 100% 100% 100% 7e-7 0.005 5e-4 ∼0
3D 100% 100% 100% 100% 8e-7 0.01 0.01 ∼0
4D 100% 100% 100% 99% 6e-7 0.035 0.044 ∼0
5D 100% 100% 100% 82% 7e-7 0.116 0.139 ∼0
6D 100% 100% 100% 46% 7e-7 0.331 0.36 ∼0

Schwefel

2D 100% 95% 100% 95% 2e-4 6e-3 0.11 1e-5
3D 100% 90% 93% 91% 3e-4 0.02 0.9 2e-5
4D 100% 81% 91% 84% 3e-4 0.142 3.634 3e-5
5D 100% 72% 86% 62% 4e-4 0.875 8.69 3e-5
6D 89% 71% 77% 60% 4e-4 2.68 16.72 4e-5

Sphere

2D 100% 100% 100% 100% 0.036 5e-6 2e-12 1e-117
3D 100% 100% 100% 100% 0.003 1e-6 2e-7 4e-16
4D 100% 100% 100% 100% 8e-4 2e-5 9e-6 ∼0
5D 100% 100% 100% 100% 7e-4 1e-4 6e-5 ∼0
6D 100% 100% 100% 100% 7e-4 3e-4 2e-4 ∼0

unimodal functions, Sphere and Easom are considered, not surprisingly all algorithms
achieve a 100% accuracy.

4.2.1 Detailed function evaluation
In order to further evaluate the performance of BP at various time allowance windows,
we conducted additional experiments only for 3D, but for all functions, where a range
of time allowances were considered. In particular, we evaluated all functions for 100
trials considering 0.05, 0.1, 0.2, 0.5, 1, 2, and 5 seconds. The parameters of the algo-
rithms are optimized manually for the time allowance considered. The results further
confirmed that BP is very fast in optimizing complex functions compared to the bench-
mark. Below we explain analytically the results of the multiple time allowances on each
function. We also conduct a detailed analysis on the results of our multidimensional

30

functions, along with their 3D results.

4.2.2 Dropwave
Dropwave is a relatively not complex multimodal function. It is implemented only in
3D space. Results of this function are depicted in Figure 4.2.
Due to its low complexity, all algorithms were able to achieve high accuracy results (Fig-
ure 4.1a). PSO in particular had 100% convergence, with BP following with the same
results, except the first two measurements where it stopped at 99%. TA had a slightly
worse performancewith the 0.05 secondsmeasurement being at 90%. SAwas the excep-
tion in that case, where it failed to reach the 100% rate at any point. Precision followed
the same pattern as that of accuracy. There was a small superiority of PSO against BP,
and with higher differences followed TA and SA. Overall statistical significance results,
as can be seen in Tables B.1 and B.2, showed that only SA is significantly worse than all
the other algorithms in accuracy, while the BP-PSO comparison was the only insignifi-
cant precision difference.

4.2.3 Eggholder
Eggholder is the most complex function in our experiments. It is a relatively large space
(range [-512, 512]), consisted of a big amount of local minima which are deep and un-
evenly distributed, as can be observed in Figure 4.1b. Because of this formation, many
algorithms often fail to approach the global solution. As it has already been mentioned
in Section 1.3, we have developed BP to successfully tackle problems with that level of
complexity.
We can observe in the results, also shown in Figure 4.3, BP succeeds in our goal, since
it shows a constantly better accuracy. In precision though we observe a relatively low
performance, compared to SA and PSO, but still better than TA. Statistical significance
results (Tables B.3 and B.4) confirmed the importance of the accuracy differences, not
only against BP, but also among the other algorithms. Precision differences also seem
significant, with the exception of the BP-SA comparison, where the p-value exceeds the
significance limit.

4.2.4 Holdertable
Holdertable is a relatively simple functionwithmany globalminima, depicted in Figure
4.1c. This means that more than one points are accepted as optimal solutions. This
structure allows algorithms to easily reach towards a global minimum from multiple
starting points.
As can be observed by the results in Figure 4.4, all single-point algorithms achieve 100%
accuracy even in small time allowances, while PSO is constrained around 60% in ev-
ery occasion. Precision results show that PSO is far better than the other algorithms,
followed by BP, which has slight differences with SA, and the least precise being TA.
Statistical significance analysis (Tables B.5 and B.6) showed that accuracy differences

31

(a) accuracy

(b) precision

Figure 4.2: Dropwave function analysis

32

(a) accuracy

(b) precision

Figure 4.3: Eggholder function analysis

33

are statistically significant, while in precision, the difference of BP and SA is not impor-
tant.

4.2.5 Langermann
TheLangermann function is a unique case of anoptimization function. That is because
of its unevenly distributed configuration space, as well as the fact that some of its local
minima are located very close to the global minimum (local minimum ≈ −4.127577 and
globalminimum ≈ −4.15580929184779). The function’s configuration space is shown in
Figure 4.1d.
Due to that, no algorithmmanaged to achieve 100% accuracy at any given time, as shown
in Figure 4.5. PSO had the best results at an early stage, but BP showed to be constantly
improving, achieving 73% at 5 seconds. TA also showed some improvement over time,
but at lower values than BP. SA failed to approximate the global minimum adequately,
since results did not exceed 10%. Precision was slightly better in PSO than BP, followed
by SA and then TA, where as more trials succeeded in approximation, the overall MAE
seemed to be getting worse. Statistical significance results showed that all differences
between BP and PSO are insignificant (Tables B.7 and B.8).

4.2.6 Shubert
Shubert function is another many-global minima function (Figure 4.1e). Results, sim-
ilarly to the Holdertable function, show that all algorithms except PSO achieve 100%
accuracy.
Accuracy differences are smaller due to the fact that shubert hasmany globalminima, as
observed in Figure 4.6. Statistic tests showed that even though smaller, the differences
are significant, as can be seen in Table B.9. PSO remains superior compared to all other
algorithms, and BP being only second-best, with their difference being not significant,
according to the statistical tests (Table B.10).

4.2.7 Easom
Easom is a unimodal function, where thewhole space is flat, and it is possessing only one
deep globalminimum (Figure 4.1f). Since it is a relatively easy function to approximate,
BP does not appear to perform that well as the other algorithms, as depicted in Figure
4.7.
In accuracy, all algorithms reach 100%, with a few exceptions in BP and PSO, where the
accuracy is 99%. In precision, BP has the poorest performance, and PSO the best. Ac-
cording to statistical significance results, the differences of SA and TA against PSO are
the only significant ones, while all precision results are considered noteworthy (Tables
B.11 and B.12).

4.2.8 Ackley
Ackley is a multimodal and multidimensional function. It has a relatively simple struc-
ture, withmany but not very deep local minima, as can be seen in Figure 4.1g. Similarly

34

(a) accuracy

(b) precision

Figure 4.4: Holdertable function analysis

35

(a) accuracy

(b) precision

Figure 4.5: Langermann function analysis

36

(a) accuracy

(b) precision

Figure 4.6: Shubert function analysis

37

(a) accuracy

(b) precision

Figure 4.7: Easom function analysis

38

to the aforementioned functions,multiple time allowanceswere chosen in the 3D space,
while for the rest, only one time value is examined.
In 3D space, all algorithms reach 100% convergence, with few exceptions of PSO (Figure
4.8), which are deemed as insignificant, according to the statistical tests (Table B.15).
Precision however, is much better in BP and PSO than that of SA and the other three
algorithms thanTA. Statistical tests confirmed that the only insignificant differences are
that of BP and PSO.
In more dimensions, depicted in Figure 4.9, algorithms are still able to achieve 100% ac-
curacy. In precision, we observe that as dimensions increase, SA and TA are becoming
less precise, and in a few cases, PSO too. BP on the other hand, preserves the same level
of precision, throughout all dimensions. Precision differences of BP are statistically sig-
nificant in 2D and 5D against SA, all but 4D against TA and none against PSO (Tables
B.13-B.22).

4.2.9 Rastrigin
Rastrigin function is very similar to Ackley. We consider it to be slightly more difficult
due to deeper local minima. Therefore, there is some similarity to the results of the
previous function.
Weobserved that in 3D space, results in Figure 4.10, algorithms hadno trouble to detect
the global minimum, with few exceptions of PSO, which were statistically significant,
according to Table B.25. In precision, PSO remained the best algorithm, but with in-
significant differences against BP. As can be seen in Table B.26, only the differences of
these two algorithms against SA and TA were notable.
The single-point algorithms of our experiments, showed the same performance in ac-
curacy, as dimensions were increasing (Figure 4.11), in contrast to PSO, where its per-
formance was deteriorating significantly with the increase of dimensions. In precision
though, SA and TAwere the ones that its solutions were less precise with that increase.
Statistical significant appeared the accuracy differences against PSO in 5D and 6D, and
the precision differences of all algorithms against PSO in 2D, and all but the BP-PSO
comparison in the rest (Tables B.23-B.32).

4.2.10 Schwefel
Schwefel is one of the highly complex functions of our experiments. It has a similar
range to Eggholder ([-500, 500]) for its variables, and deep local minima as well. Their
main difference is that Schwefel is symmetric. Schwefel is depicted in Figure 4.1i. Many
algorithms appear to be failing in approximating the global minimum in many occa-
sions, when tested in Schwefel, unlike BP.
In our 3D analysis, which we show in Figure 4.12, only BP managed to reach 100% of
accuracy, even on an early stage. This is a major difference to the other algorithms,
which are much less accurate, especially on smaller time allowances. All accuracy dif-
ferences appear significant, according to statistical tests (Table B.35). Precision did not
have many differences among algorithms, with the exception of TA being much worse
than the others, having the only statistical significant differences (Table B.36).

39

(a) accuracy

(b) precision

Figure 4.8: Ackley function 3D analysis

40

(a) accuracy

(b) precision

Figure 4.9: Ackley function multi-dimensional analysis

41

(a) accuracy

(b) precision

Figure 4.10: Rastrigin function 3D analysis

42

(a) accuracy

(b) precision

Figure 4.11: Rastrigin function multi-dimensional analysis

43

Whenwe increased the dimensions, results remained similar. BP reached 100% accuracy
in every number of dimensions, but the 6D, and was always the highest. TA was the
only algorithm that was comparable to BP, as the statistical tests showed. In precision,
SA andTAhadworse results than BP and PSO, and they kept worsening as dimensions
increased. For SA, differences were statistically significant from 4D and above. (Tables
B.33-B.42)

4.2.11 Sphere
Sphere is the simplest function out of all implemented it this research. It is a simple
unimodal valley-shaped function. It is shown in Figure 4.1j. Due to this formation, all
solutions proposed are considered accurate.
All results show that BP has the worst performance (Figures 4.14 and 4.15). The sim-
plicity of the function makes the algorithms that are able to perform more rounds to
look superior. BP has the most complex structure compared to all other algorithms,
therefore, its rounds requiringmore time. As dimensionswere increasing, and the func-
tion’s complexity was increasing as well, the difference of BP and the other algorithms
was decreasing, but it remained statistically significant as Tables B.44, B.46, B.48, B.50,
and B.52 showed.

44

(a) accuracy

(b) precision

Figure 4.12: Schwefel function 3D analysis

45

(a) accuracy

(b) precision

Figure 4.13: Schwefel function multi-dimensional analysis

46

(a) accuracy

(b) precision

Figure 4.14: Sphere function 3D analysis

47

(a) accuracy

(b) precision

Figure 4.15: Sphere function multi-dimensional analysis

48

5
Conclusions

In this work, we have proposed a novel single-point meta-heuristic tailored for global
continuous optimization problems. The algorithm, namely buggy pinball, is inspired
by the pinball arcade game and is able to discover the global optimum in an any-time
optimization manner. Through the trajectory-based search, the algorithm avoids local
optima efficiently, even when tested on complex optimization problems. We evaluated
our algorithm against a number of popular meta-heuristics, namely simulated anneal-
ing, threshold accepting and particle swarm optimization, in standard test-bed functions.
We showed that our algorithmhas better overall performance. We achieved significantly
better levels of accuracy in most occasions, while on precision, our performance was
comparable to the others. Especially with problems of high complexity, the superiority
of our algorithm was vast in terms of accuracy, since we achieved nearly perfect results
even in very small time allowances.

5.1 Future work

We believe this thesis opens many possibilities for future work. To begin, the perfor-
mance of our algorithm in unimodal functions showed that due to its high complexity,
other algorithmsmight performbetter in terms of precision. A simpler versionof buggy
pinball could potentially be created in the future, where it would make BP more com-
petitive in such problems.
A factor that is perhaps consumingmore time than necessary on each round is the num-
ber ofmaximum steps for each trajectory. If a schedule was applied into that parameter,
in order to decrease or increase it according to the needs of the problem, it would lead
to an algorithm, where every round would make only essential steps. Another way to
minimize the number of unnecessary steps, is to use the limits of the variables, when
these are known.

49

The parameters of step length and elevation angle are already following a cooling sched-
ule. Similarly to the temperature parameter of simulated annealing, further research
could be conducted, in order to find the optimal schedule for each parameters, which
it would possibly lead to further increase both the accuracy and the precision of the
algorithm.
The precision of buggy pinball might also have room for improvement in possible fu-
ture work. On the other hand, particle swarm optimization seems to perform ade-
quately on that field, while it significantly loses on accuracy. A potential unification
of these algorithms would allow us to benefit from the perks of each one. A hybrid
particle swarm optimization - buggy pinball algorithm could be created, where the par-
ticles of PSO would perform a trajectory-based search in combination with following
the global best.
Last but not least, buggy pinball currently cannot be adapted to discrete optimization
problems. Another extension that would translate the trajectory-based exploration into
combinatorial problems, would expand significantly the possible uses of the algorithm.

50

A
Tested Versions and Parameters

During the development of Buggy Pinball we met various obstacles. These obstacles
caused various updates on the initial plan of the algorithm, which lead to the develop-
ment of BP. In this appendix we will explain some of the decisions that we took, so it
becomes clear to the reader why some of these choices were made.
The first decision that we made regarding the implementation of the trajectory based
search was the way that we would get each point. The progression of the trajectory
couldbe implemented in twoways. Oneoptionwas touse the derivative of the objective
function, in order to locate the exact crossing point with each trajectory segment. This
choicewould give us the crossing point very fast, since the usage of the recursive refining
function would no longer be necessary. The disadvantage of this method though, is
that it limits the objective functions that can be searched, only to those that we can
calculate their derivative. That is why we chose to use the steps approach, where using
the direction of a random vector, we examine points on the objective function, until a
crossing point is detected.
The random direction of the vector that wemove on each round, is also something that
we examined thoroughly. In a pinball game, a ball does not move completely random,
but it changes its direction successively. This approach would only be effective in the
2D versions (1 variable, 1 cost axis) of the objective functions that we experimented, as
more variables increase the complexity exponentially. After numerous trials of trying
to control the direction of the vector, we noticed that setting the direction of the vector
(in the variables axes) completely random is the most effective approach.
Moving completely random gives us the best exploration of space, but it also does not
allow us to control the rate of increase or decrease in the cost axis (whether weminimize
ormaximize). That is why it is important to determine the angle that our search vectors
move on y. So, using the random variables and the angle on each round, we calculate
the y value of the vector regarding these values. At the end, we scale them all, in order
to achieve both the step and the angle that we desire on any given round.

51

The number of steps was also added to overcome another barrier. In most cases, if we
do not find a crossing point, and we terminate the round once a variable is off limits,
makes our search very accurate. Therefore, there are configuration spaces, where either
we do not know their variables’ size or they are too large to be set as limits. In order
to make our algorithm capable of working on any given problem, we determined that
setting the number of steps thatwouldbemade atmaximumwithin every round, allows
us to search under any circumstances. If the number of steps is reached, the round
is terminated without providing a new solution. Then, a new round with the same
starting point and a different direction will begin.
Lastly, we will show in Tables A.1, A.2, A.3, and A.4 the parameters that were used in
our experiments for each algorithm. These parameters were empirically chosen, with
respect to each experiment, so they might not be optimal in every case.

Table A.1: Experiments’ Buggy Pinball Parameters

Function Rounds Steps Step Size Angle
Dropwave 3D 61000 40 [−0.2, 10−4] [1, 10]
Eggholder 3D 90000 100 [−60, 10−4] [0.1, 1]
Holdertable 3D 168000 20 [−0.5, 10−4] [1, 45]
Langermann 3D 34000 100 [−0.8, 10−4] [1, 10]
Shubert 3D 72000 100 [−2, 10−4] [45, 89]
Easom 3D 125000 100 [−1, 10−4] [1, 10]
Ackley

2D 12500 40 [−0.5, 10−4] [10, 60]
3D 55000 40 [−0.5, 10−4] [10, 60]
4D 340000 40 [−0.5, 10−4] [10, 60]
5D 1360000 40 [−0.5, 10−4] [10, 60]
6D 5350000 40 [−0.5, 10−4] [10, 60]

Rastrigin

2D 23000 30 [−0.5, 10−4] [30, 60]
3D 77000 30 [−0.5, 10−4] [10, 60]
4D 512000 30 [−0.5, 10−4] [1, 10]
5D 2090000 30 [−0.5, 10−4] [1, 10]
6D 7200000 30 [−0.5, 10−4] [0.5, 1]

Schwefel

2D 21000 100 [−50, 10−4] [0.1, 1]
3D 79000 100 [−50, 10−4] [0.1, 1]
4D 470000 100 [−87, 10−4] [0.1, 1]
5D 2470000 100 [−100, 10−4] [0.1, 1]
6D 9312000 100 [−125, 10−4] [0.05, 0.1]

Sphere

2D 54000 10 [−0.4, 10−4] [1, 89]
3D 274000 10 [−0.1, 10−4] [1, 89]
4D 1332000 10 [−0.05, 10−4] [1, 89]
5D 5400000 10 [−0.05, 10−4] [1, 89]
6D 21340000 10 [−0.05, 10−4] [1, 89]

52

Table A.2: Experiments’ Simulated Annealing Parameters

Function Cooling Factor Neighbor Distance Temperature
Dropwave 3D 0.9999979 0.5 [0.1, 0.01]
Eggholder 3D 0.9999917 300 [100, 0.01]
Holdertable 3D 0.9999979 4 [0.1, 0.01]
Langermann 3D 0.9999906 4 [1, 0.1]
Shubert 3D 0.999983 1 [100, 0.01]
Easom 3D 0.999998 3 [0.01, 10−3]
Ackley

2D 0.999968 0.5 [10, 0.01]
3D 0.9999919 0.5 [10, 0.01]
4D 0.99999887 0.5 [10, 0.01]
5D 0.99999971 0.5 [10, 0.01]
6D 0.9999999163 0.5 [10, 0.01]

Rastrigin

2D 0.999979 1 [10, 0.01]
3D 0.9999942 1 [10, 0.01]
4D 0.999983 1 [100, 0.01]
5D 0.9999997 1 [100, 0.01]
6D 0.999999925 1 [100, 0.01]

Schwefel

2D 0.99998 200 [100, 0.01]
3D 0.9999928 200 [100, 0.01]
4D 0.9999977 200 [100, 0.01]
5D 0.999999535 200 [10000, 0.01]
6D 0.99999986 200 [10000, 0.01]

Sphere

2D 0.999995 0.5 [10−4, 10−6]
3D 0.9999986 0.5 [10−4, 10−6]
4D 0.99999978 0.5 [10−4, 10−6]
5D 0.999999535 0.5 [10−4, 10−6]
6D 0.9999999828 0.5 [10−4, 10−6]

53

Table A.3: Experiments’ Threshold Accepting Parameters

Function Rounds Neighbor Distance Threshold
Dropwave 3D 1070000 0.5 [0.5, 0]
Eggholder 3D 1090000 400 [500, 0]
Holdertable 3D 1150000 2 [5, 0]
Langermann 3D 255000 4 [1, 0]
Shubert 3D 560000 0.5 [100, 0]
Easom 3D 1250000 3 [0.1, 0]
Ackley

2D 240000 0.5 [1, 0]
3D 900000 0.5 [1, 0]
4D 6200000 0.5 [1, 0]
5D 24300000 0.5 [1, 0]
6D 78400000 0.5 [1, 0]

Rastrigin

2D 400000 1 [1, 0]
3D 1240000 1 [1, 0]
4D 8000000 1 [1, 0]
5D 30000000 1 [1, 0]
6D 98500000 1 [1, 0]

Schwefel

2D 500000 300 [800, 0]
3D 1300000 300 [800, 0]
4D 7500000 300 [800, 0]
5D 45000000 300 [800, 0]
6D 98000000 300 [800, 0]

Sphere

2D 528000 0.5 [0, 0]
3D 1800000 0.5 [0, 0]
4D 11000000 0.5 [0, 0]
5D 45000000 0.5 [0, 0]
6D 137000000 0.5 [0, 0]

54

Table A.4: Experiments’Particle SwarmOptimization Parameters

Function Rounds w c1 c2 Number of Particles
Dropwave 3D 12000 0.9 0.1 0.5 100
Eggholder 3D 2500 0.9 5 10 500
Holdertable 3D 12400 0.9 0.5 1 100
Langermann 3D 4300 0.9 0.5 1 100
Shubert 3D 42000 0.9 0.5 1 20
Easom 3D 62000 0.9 0.05 0.5 20

Ackley

2D 15300 0.9 0.01 0.1 20
3D 56000 0.9 0.01 0.1 20
4D 134100 0.9 0.01 0.1 50
5D 268000 0.9 0.01 0.1 100
6D 914000 0.9 0.01 0.1 100

Rastrigin

2D 3800 0.9 0.05 0.5 100
3D 13000 0.9 0.05 0.5 100
4D 16650 0.9 0.05 0.5 500
5D 31600 0.9 0.05 0.5 1000
6D 52100 0.9 0.05 0.5 2000

Schwefel

2D 2800 0.9 1 2 200
3D 6500 0.9 1 2 200
4D 8500 0.9 1 2 200
5D 64200 0.9 1 2 500
6D 56000 0.9 1 2 2000

Sphere

2D 4100 0.9 0.5 1 100
3D 10700 0.9 0.5 1 100
4D 86000 0.9 0.5 1 100
5D 337500 0.9 0.5 1 100
6D 1080000 0.9 0.5 1 100

55

B
Statistical Significance Tables

Here we present the statistical significance tables that were used to interpret the results
of our experiments.
As mentioned in the paper, the statistical significance of all results was tested using
ANOVA (analysis of variance) and follow up Tukey tests. We consider results to be
statistically significant using a 0.05 p-value threshold.
BP outperforms others in terms of accuracy, many times reaching 100% accuracy, and
these results are statistically significant, except results against TA for the Schwefel 3D,
4D, and 6D cases, and the Langermann case (the latter is only marginally not signifi-
cant).
BP’s precision is higher than that of the other two single-point algorithms considered
(SA,TA) in most cases. Our tests confirm statistically significant better BP precision
against SA and TA in all cases but: Rastrigin 2D against TA; Schwefel 2D, 3D, and 4D
against SA; Ackley 4D against SA and TA and 6D against SA; Holdertable 3D against
TA; and Dropwave 3D against TA (marginally). Furthermore, although the precision
of BP seems to be marginally lower than that of PSO (which is also developed for con-
tinuous optimization tasks), our tests indicate that this difference is not statistically sig-
nificant inmost cases (i.e., Rastrigin, Ackley, Shubert, Schwefel, Dropwave and Langer-
mann for all respective dimensions considered). As noted in the main paper, PSO fre-
quently has theworst accuracy among all algorithms, and thus is a poor choice for global
optimization in these cases.

56

Table B.1: Dropwave 3D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.200000 0.170830 0.229170 24.925005 0.001000
1 BP TA 0.012857 -0.016313 0.042027 1.602322 0.649250
2 BP PSO 0.002857 -0.026313 0.032027 0.356071 0.900000
3 SA TA 0.187143 0.157973 0.216313 23.322683 0.001000
4 SA PSO 0.202857 0.173687 0.232027 25.281076 0.001000
5 TA PSO 0.015714 -0.013456 0.044885 1.958393 0.507947

Table B.2: Dropwave 3D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.009515 0.008617 0.010414 38.501871 0.001000
1 BP TA 0.005734 0.004884 0.006583 24.533287 0.001000
2 BP PSO 0.000588 -0.000258 0.001434 2.526069 0.280341
3 SA TA 0.003781 0.002880 0.004682 15.256670 0.001000
4 SA PSO 0.010103 0.009205 0.011001 40.907267 0.001000
5 TA PSO 0.006322 0.005473 0.007171 27.068564 0.001000

Table B.3: Eggholder 3D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.361429 0.300022 0.422835 21.396893 0.001
1 BP TA 0.257143 0.195736 0.318550 15.223086 0.001
2 BP PSO 0.470000 0.408593 0.531407 27.824418 0.001
3 SA TA 0.104286 0.042879 0.165693 6.173807 0.001
4 SA PSO 0.108571 0.047165 0.169978 6.427525 0.001
5 TA PSO 0.212857 0.151450 0.274264 12.601332 0.001

Table B.4: Eggholder 3D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.844217 -0.233499 1.921933 2.848672 0.182977
1 BP TA 11.077680 10.054642 12.100719 39.377614 0.001000
2 BP PSO 3.323224 2.166354 4.480095 10.446422 0.001000
3 SA TA 11.921898 10.767456 13.076339 37.554855 0.001000
4 SA PSO 2.479007 1.204458 3.753556 7.073164 0.001000
5 TA PSO 14.400904 13.172242 15.629567 42.623558 0.001000

57

Table B.5: Holdertable 3D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.000000 -0.034023 0.034023 0.000000 0.900
1 BP TA 0.000000 -0.034023 0.034023 0.000000 0.900
2 BP PSO 0.428571 0.394549 0.462594 45.793013 0.001
3 SA TA 0.000000 -0.034023 0.034023 0.000000 0.900
4 SA PSO 0.428571 0.394549 0.462594 45.793013 0.001
5 TA PSO 0.428571 0.394549 0.462594 45.793013 0.001

Table B.6: Holdertable 3D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.004032 0.001033 0.007031 4.887421 0.003128
1 BP TA 0.023008 0.020009 0.026008 27.890252 0.001000
2 BP PSO 0.008118 0.004601 0.011635 8.391827 0.001000
3 SA TA 0.018977 0.015977 0.021976 23.002831 0.001000
4 SA PSO 0.012150 0.008633 0.015667 12.559834 0.001000
5 TA PSO 0.031126 0.027609 0.034643 32.176714 0.001000

Table B.7: Langermann 3D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.482857 0.425446 0.540269 30.574831 0.001000
1 BP TA 0.344286 0.286874 0.401697 21.800397 0.001000
2 BP PSO 0.030000 -0.027412 0.087412 1.899620 0.531273
3 SA TA 0.138571 0.081160 0.195983 8.774434 0.001000
4 SA PSO 0.452857 0.395446 0.510269 28.675211 0.001000
5 TA PSO 0.314286 0.256874 0.371697 19.900778 0.001000

Table B.8: Langermann 3D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.011091 0.008745 0.013437 17.209450 0.001000
1 BP TA 0.011713 0.010382 0.013043 32.050335 0.001000
2 BP PSO 0.000602 -0.000372 0.001576 2.248737 0.385846
3 SA TA 0.000622 -0.001898 0.003142 0.898129 0.900000
4 SA PSO 0.011693 0.009341 0.014045 18.098133 0.001000
5 TA PSO 0.012315 0.010974 0.013655 33.437878 0.001000

58

Table B.9: Shubert 3D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.000000 -0.025474 0.025474 0.000000 0.900
1 BP TA 0.000000 -0.025474 0.025474 0.000000 0.900
2 BP PSO 0.164286 0.138811 0.189760 23.444424 0.001
3 SA TA 0.000000 -0.025474 0.025474 0.000000 0.900
4 SA PSO 0.164286 0.138811 0.189760 23.444424 0.001
5 TA PSO 0.164286 0.138811 0.189760 23.444424 0.001

Table B.10: Shubert 3D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.122499 0.017744 0.227254 4.251238 0.014207
1 BP TA 1.075749 0.970994 1.180504 37.333075 0.001000
2 BP PSO 0.036840 -0.072942 0.146623 1.219970 0.800981
3 SA TA 0.953250 0.848495 1.058005 33.081837 0.001000
4 SA PSO 0.159339 0.049557 0.269122 5.276519 0.001117
5 TA PSO 1.112590 1.002807 1.222372 36.843350 0.001000

Table B.11: Easom 3D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.001429 -0.004917 0.007774 0.818450 0.900000
1 BP TA 0.001429 -0.004917 0.007774 0.818450 0.900000
2 BP PSO 0.005714 -0.000631 0.012060 3.273802 0.094786
3 SA TA 0.000000 -0.006345 0.006345 0.000000 0.900000
4 SA PSO 0.007143 0.000798 0.013488 4.092252 0.020050
5 TA PSO 0.007143 0.000798 0.013488 4.092252 0.020050

Table B.12: Easom 3D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.000548 0.000262 0.000835 6.953154 0.001
1 BP TA 0.001181 0.000894 0.001468 14.974374 0.001
2 BP PSO 0.001889 0.001602 0.002176 23.910785 0.001
3 SA TA 0.001729 0.001443 0.002016 21.935370 0.001
4 SA PSO 0.001341 0.001054 0.001628 16.976140 0.001
5 TA PSO 0.003070 0.002783 0.003357 38.872164 0.001

59

Table B.13: Ackley 2D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
1 BP TA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
2 BP PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
3 SA TA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
4 SA PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
5 TA PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9

Table B.14: Ackley 2D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.008684 0.007075 0.010294 19.689190 0.001000
1 BP TA 0.002000 0.000391 0.003609 4.534711 0.007892
2 BP PSO 0.000171 -0.001438 0.001781 0.388799 0.900000
3 SA TA 0.006684 0.005075 0.008294 15.154480 0.001000
4 SA PSO 0.008856 0.007246 0.010465 20.077989 0.001000
5 TA PSO 0.002172 0.000562 0.003781 4.923510 0.003101

Table B.15: Ackley 3D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.000000 -0.004491 0.004491 0.000000 0.900000
1 BP TA 0.000000 -0.004491 0.004491 0.000000 0.900000
2 BP PSO 0.004286 -0.000205 0.008777 3.469068 0.067841
3 SA TA 0.000000 -0.004491 0.004491 0.000000 0.900000
4 SA PSO 0.004286 -0.000205 0.008777 3.469068 0.067841
5 TA PSO 0.004286 -0.000205 0.008777 3.469068 0.067841

Table B.16: Ackley 3D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.025463 0.023217 0.027710 41.209638 0.001
1 BP TA 0.032040 0.029794 0.034287 51.853678 0.001
2 BP PSO 0.000174 -0.002075 0.002423 0.281147 0.900
3 SA TA 0.006577 0.004331 0.008823 10.644040 0.001
4 SA PSO 0.025637 0.023389 0.027886 41.446514 0.001
5 TA PSO 0.032214 0.029966 0.034463 52.079119 0.001

60

Table B.17: Ackley 4D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
1 BP TA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
2 BP PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
3 SA TA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
4 SA PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
5 TA PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9

Table B.18: Ackley 4D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.030220 -0.008642 0.069081 2.837325 0.187343
1 BP TA 0.025889 -0.012973 0.064751 2.430716 0.315367
2 BP PSO 0.021121 -0.017740 0.059983 1.983092 0.498605
3 SA TA 0.004331 -0.034531 0.043192 0.406610 0.900000
4 SA PSO 0.009098 -0.029764 0.047960 0.854233 0.900000
5 TA PSO 0.004768 -0.034094 0.043629 0.447624 0.900000

Table B.19: Ackley 5D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
1 BP TA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
2 BP PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
3 SA TA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
4 SA PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
5 TA PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9

Table B.20: Ackley 5D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.043992 0.036743 0.051240 22.144300 0.001
1 BP TA 0.069916 0.062667 0.077164 35.194038 0.001
2 BP PSO 0.000091 -0.007157 0.007340 0.045936 0.900
3 SA TA 0.025924 0.018676 0.033173 13.049739 0.001
4 SA PSO 0.044083 0.036834 0.051331 22.190236 0.001
5 TA PSO 0.070007 0.062759 0.077256 35.239974 0.001

61

Table B.21: Ackley 6D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
1 BP TA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
2 BP PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
3 SA TA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
4 SA PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
5 TA PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9

Table B.22: Ackley 6D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.062052 -0.004846 0.128951 3.384423 0.080176
1 BP TA 0.115042 0.048143 0.181940 6.274553 0.001000
2 BP PSO 0.062465 -0.004433 0.129364 3.406948 0.077143
3 SA TA 0.052990 -0.013909 0.119888 2.890130 0.174063
4 SA PSO 0.000413 -0.066485 0.067311 0.022525 0.900000
5 TA PSO 0.052577 -0.014322 0.119475 2.867605 0.179503

Table B.23: Rastrigin 2D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
1 BP TA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
2 BP PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
3 SA TA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
4 SA PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
5 TA PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9

Table B.24: Rastrigin 2D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 4.768148e-03 0.003466 0.006070 13.359526 0.001000
1 BP TA 4.781578e-04 -0.000824 0.001780 1.339715 0.753715
2 BP PSO 7.332082e-07 -0.001302 0.001303 0.002054 0.900000
3 SA TA 4.289991e-03 0.002988 0.005592 12.019811 0.001000
4 SA PSO 4.768882e-03 0.003467 0.006071 13.361581 0.001000
5 TA PSO 4.788910e-04 -0.000823 0.001781 1.341770 0.752899

62

Table B.25: Rastrigin 3D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.000000 -0.006338 0.006338 0.000000 0.900000
1 BP TA 0.000000 -0.006338 0.006338 0.000000 0.900000
2 BP PSO 0.008571 0.002234 0.014909 4.916595 0.002899
3 SA TA 0.000000 -0.006338 0.006338 0.000000 0.900000
4 SA PSO 0.008571 0.002234 0.014909 4.916595 0.002899
5 TA PSO 0.008571 0.002234 0.014909 4.916595 0.002899

Table B.26: Rastrigin 3D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.021672 0.018049 0.025296 21.741986 0.001
1 BP TA 0.038716 0.035092 0.042340 38.840617 0.001
2 BP PSO 0.000418 -0.003214 0.004049 0.418187 0.900
3 SA TA 0.017044 0.013420 0.020667 17.098632 0.001
4 SA PSO 0.022090 0.018458 0.025721 22.113331 0.001
5 TA PSO 0.039134 0.035502 0.042765 39.175126 0.001

Table B.27: Rastrigin 4D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.00 -0.018244 0.018244 0.0 0.900000
1 BP TA 0.00 -0.018244 0.018244 0.0 0.900000
2 BP PSO 0.01 -0.008244 0.028244 2.0 0.491457
3 SA TA 0.00 -0.018244 0.018244 0.0 0.900000
4 SA PSO 0.01 -0.008244 0.028244 2.0 0.491457
5 TA PSO 0.01 -0.008244 0.028244 2.0 0.491457

Table B.28: Rastrigin 4D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 3.546609e-02 0.028149 0.042783 17.685494 0.001000
1 BP TA 4.448206e-02 0.037165 0.051799 22.181389 0.001000
2 BP PSO 6.492275e-07 -0.007335 0.007336 0.000323 0.900000
3 SA TA 9.015966e-03 0.001699 0.016333 4.495895 0.008632
4 SA PSO 3.546674e-02 0.028131 0.042802 17.641325 0.001000
5 TA PSO 4.448270e-02 0.037147 0.051818 22.125910 0.001000

63

Table B.29: Rastrigin 5D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.00 -0.070443 0.070443 0.000000 0.900
1 BP TA 0.00 -0.070443 0.070443 0.000000 0.900
2 BP PSO 0.18 0.109557 0.250443 9.323456 0.001
3 SA TA 0.00 -0.070443 0.070443 0.000000 0.900
4 SA PSO 0.18 0.109557 0.250443 9.323456 0.001
5 TA PSO 0.18 0.109557 0.250443 9.323456 0.001

Table B.30: Rastrigin 5D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 1.156989e-01 0.098643 0.132755 24.756064 0.00100
1 BP TA 1.386910e-01 0.121635 0.155747 29.675672 0.00100
2 BP PSO 6.810272e-07 -0.017967 0.017968 0.000138 0.90000
3 SA TA 2.299207e-02 0.005936 0.040048 4.919607 0.00315
4 SA PSO 1.156996e-01 0.097732 0.133667 23.500137 0.00100
5 TA PSO 1.386917e-01 0.120724 0.156659 28.170135 0.00100

Table B.31: Rastrigin 6D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.00 -0.091384 0.091384 0.000000 0.900
1 BP TA 0.00 -0.091384 0.091384 0.000000 0.900
2 BP PSO 0.54 0.448616 0.631384 21.560834 0.001
3 SA TA 0.00 -0.091384 0.091384 0.000000 0.900
4 SA PSO 0.54 0.448616 0.631384 21.560834 0.001
5 TA PSO 0.54 0.448616 0.631384 21.560834 0.001

Table B.32: Rastrigin 6D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 3.308128e-01 0.287498 0.374127 27.885891 0.001000
1 BP TA 3.603789e-01 0.317064 0.403693 30.378169 0.001000
2 BP PSO 6.807842e-07 -0.054565 0.054566 0.000046 0.900000
3 SA TA 2.956611e-02 -0.013748 0.072881 2.492278 0.293632
4 SA PSO 3.308135e-01 0.276248 0.385379 22.136192 0.001000
5 TA PSO 3.603796e-01 0.305814 0.414945 24.114591 0.001000

64

Table B.33: Schwefel 2D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.05 -0.006514 0.106514 3.228166 0.103828
1 BP TA 0.00 -0.056514 0.056514 0.000000 0.900000
2 BP PSO 0.05 -0.006514 0.106514 3.228166 0.103828
3 SA TA 0.05 -0.006514 0.106514 3.228166 0.103828
4 SA PSO 0.00 -0.056514 0.056514 0.000000 0.900000
5 TA PSO 0.05 -0.006514 0.106514 3.228166 0.103828

Table B.34: Schwefel 2D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.005724 -0.023612 0.035060 0.712001 0.900
1 BP TA 0.104921 0.075964 0.133878 13.221992 0.001
2 BP PSO 0.000191 -0.029145 0.029527 0.023742 0.900
3 SA TA 0.099197 0.069862 0.128533 12.339378 0.001
4 SA PSO 0.005915 -0.023795 0.035624 0.726488 0.900
5 TA PSO 0.105112 0.075776 0.134448 13.075121 0.001

Table B.35: Schwefel 3D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.257143 0.203971 0.310315 17.580669 0.001
1 BP TA 0.175714 0.122542 0.228886 12.013457 0.001
2 BP PSO 0.440000 0.386828 0.493172 30.082478 0.001
3 SA TA 0.081429 0.028256 0.134601 5.567212 0.001
4 SA PSO 0.182857 0.129685 0.236029 12.501809 0.001
5 TA PSO 0.264286 0.211114 0.317458 18.069021 0.001

Table B.36: Schwefel 3D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.094264 -0.379072 0.567600 0.724101 0.900
1 BP TA 4.843520 4.383930 5.303110 38.318878 0.001
2 BP PSO 0.010816 -0.505527 0.527159 0.076167 0.900
3 SA TA 4.749256 4.254734 5.243778 34.919017 0.001
4 SA PSO 0.083448 -0.464220 0.631115 0.554013 0.900
5 TA PSO 4.832704 4.296872 5.368535 32.793210 0.001

65

Table B.37: Schwefel 4D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.19 0.078439 0.301561 6.214168 0.001000
1 BP TA 0.09 -0.021561 0.201561 2.943553 0.161086
2 BP PSO 0.16 0.048439 0.271561 5.232984 0.001401
3 SA TA 0.10 -0.011561 0.211561 3.270615 0.096804
4 SA PSO 0.03 -0.081561 0.141561 0.981184 0.895828
5 TA PSO 0.07 -0.041561 0.181561 2.289430 0.369920

Table B.38: Schwefel 4D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.174557 -0.314800 0.663913 1.302226 0.768607
1 BP TA 3.993026 3.518757 4.467294 30.736395 0.001000
2 BP PSO 0.000310 -0.484194 0.484814 0.002335 0.900000
3 SA TA 3.818469 3.318401 4.318538 27.876296 0.001000
4 SA PSO 0.174867 -0.334920 0.684653 1.252258 0.788408
5 TA PSO 3.993336 3.498014 4.488657 29.432282 0.001000

Table B.39: Schwefel 5D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.28 0.143083 0.416917 7.461811 0.001000
1 BP TA 0.14 0.003083 0.276917 3.730905 0.042876
2 BP PSO 0.38 0.243083 0.516917 10.126743 0.001000
3 SA TA 0.14 0.003083 0.276917 3.730905 0.042876
4 SA PSO 0.10 -0.036917 0.236917 2.664932 0.236512
5 TA PSO 0.24 0.103083 0.376917 6.395838 0.001000

Table B.40: Schwefel 5D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 1.214328 0.004306 2.424349 3.665695 0.048815
1 BP TA 10.103092 8.951755 11.254429 32.052767 0.001000
2 BP PSO 0.000307 -1.265177 1.265791 0.000886 0.900000
3 SA TA 8.888765 7.638194 10.139335 25.962517 0.001000
4 SA PSO 1.214635 -0.141758 2.571027 3.270949 0.097199
5 TA PSO 10.103399 8.799089 11.407710 28.294380 0.001000

66

Table B.41: Schwefel 6D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.18 0.02432 0.33568 4.218738 0.015965
1 BP TA 0.12 -0.03568 0.27568 2.812492 0.193958
2 BP PSO 0.29 0.13432 0.44568 6.796856 0.001000
3 SA TA 0.06 -0.09568 0.21568 1.406246 0.727340
4 SA PSO 0.11 -0.04568 0.26568 2.578118 0.264119
5 TA PSO 0.17 0.01432 0.32568 3.984364 0.026057

Table B.42: Schwefel 6D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 3.781060 1.464498 6.097622 5.964393 0.001
1 BP TA 21.717131 19.451330 23.982932 35.024933 0.001
2 BP PSO 0.000002 -2.431813 2.431817 0.000003 0.900
3 SA TA 17.936071 15.540747 20.331396 27.362737 0.001
4 SA PSO 3.781058 1.228128 6.333988 5.412165 0.001
5 TA PSO 21.717129 19.210170 24.224089 31.655681 0.001

Table B.43: Sphere 2D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
1 BP TA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
2 BP PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
3 SA TA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
4 SA PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
5 TA PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9

Table B.44: Sphere 2D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 3.595145e-02 0.034106 0.037797 7.107533e+01 0.001
1 BP TA 3.595685e-02 0.034111 0.037802 7.108599e+01 0.001
2 BP PSO 3.595685e-02 0.034111 0.037802 7.108599e+01 0.001
3 SA TA 5.395104e-06 -0.001840 0.001851 1.066601e-02 0.900
4 SA PSO 5.395106e-06 -0.001840 0.001851 1.066602e-02 0.900
5 TA PSO 1.910873e-12 -0.001846 0.001846 3.777759e-09 0.900

67

Table B.45: Sphere 3D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.0 -6.684743e-16 6.684743e-16 0.0 0.9
1 BP TA 0.0 -6.684743e-16 6.684743e-16 0.0 0.9
2 BP PSO 0.0 -6.684743e-16 6.684743e-16 0.0 0.9
3 SA TA 0.0 -6.684743e-16 6.684743e-16 0.0 0.9
4 SA PSO 0.0 -6.684743e-16 6.684743e-16 0.0 0.9
5 TA PSO 0.0 -6.684743e-16 6.684743e-16 0.0 0.9

Table B.46: Sphere 3D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.013151 -0.001467 0.027768 3.270561 0.095304
1 BP TA 0.013152 -0.001465 0.027769 3.270880 0.095253
2 BP PSO 0.012779 -0.001839 0.027396 3.178036 0.111083
3 SA TA 0.000001 -0.014616 0.014619 0.000318 0.900000
4 SA PSO 0.000372 -0.014245 0.014989 0.092525 0.900000
5 TA PSO 0.000373 -0.014244 0.014991 0.092844 0.900000

Table B.47: Sphere 4D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
1 BP TA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
2 BP PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
3 SA TA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
4 SA PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
5 TA PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9

Table B.48: Sphere 4D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.000737 0.000660 0.000814 34.952150 0.001000
1 BP TA 0.000751 0.000674 0.000828 35.608279 0.001000
2 BP PSO 0.000760 0.000683 0.000836 36.016033 0.001000
3 SA TA 0.000014 -0.000063 0.000091 0.656129 0.900000
4 SA PSO 0.000022 -0.000055 0.000099 1.063884 0.863049
5 TA PSO 0.000009 -0.000068 0.000086 0.407754 0.900000

68

Table B.49: Sphere 5D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
1 BP TA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
2 BP PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
3 SA TA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
4 SA PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
5 TA PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9

Table B.50: Sphere 5D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.000606 0.000551 0.000662 39.981321 0.001000
1 BP TA 0.000644 0.000589 0.000700 42.465009 0.001000
2 BP PSO 0.000706 0.000651 0.000761 46.550744 0.001000
3 SA TA 0.000038 -0.000018 0.000093 2.483687 0.296413
4 SA PSO 0.000100 0.000044 0.000155 6.569423 0.001000
5 TA PSO 0.000062 0.000007 0.000117 4.085736 0.021155

Table B.51: Sphere 6D Statistical Significance Accuracy Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
1 BP TA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
2 BP PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
3 SA TA 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
4 SA PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9
5 TA PSO 0.0 -4.695276e-16 4.695276e-16 0.0 0.9

Table B.52: Sphere 6D Statistical Significance Precision Results

group1 group2 Diff Lower Upper q-value p-value
0 BP SA 0.000440 0.000382 0.000499 27.448808 0.001
1 BP TA 0.000455 0.000396 0.000513 28.348265 0.001
2 BP PSO 0.000704 0.000645 0.000762 43.868313 0.001
3 SA TA 0.000014 -0.000044 0.000073 0.899457 0.900
4 SA PSO 0.000263 0.000205 0.000322 16.419505 0.001
5 TA PSO 0.000249 0.000190 0.000307 15.520048 0.001

69

References

[1] Abbasi, B., Niaki, S. T. A., Khalife, M. A., & Faize, Y. (2011). A hybrid variable
neighborhood search and simulated annealing algorithm to estimate the three
parameters of the weibull distribution. Expert Systems with Applications, 38(1),
700–708.

[2] Ali, M. M., Khompatraporn, C., & Zabinsky, Z. B. (2005). A numerical evalua-
tion of several stochastic algorithms on selected continuous global optimization
test problems. Journal of global optimization, 31(4), 635–672.

[3] Asokan, P., Saravanan, R., &Vijayakumar, K. (2003). Machining parameters op-
timisation for turning cylindrical stock into a continuous finished profile using
genetic algorithm (ga) and simulated annealing (sa). The International Journal
of AdvancedManufacturing Technology, 21(1), 1–9.

[4] Bertsimas, D., Tsitsiklis, J., et al. (1993). Simulated annealing. Statistical science,
8(1), 10–15.

[5] Biehl, M. & Schwarze, H. (1995). Learning by on-line gradient descent. Journal
of Physics A:Mathematical and general, 28(3), 643.

[6] Chambolle, A. & Pock, T. (2016). An introduction to continuous optimization
for imaging. Acta Numerica, 25, 161–319.

[7] Cheh, K. M., Goldberg, J. B., & Askin, R. G. (1991). A note on the effect of
neighborhood structure in simulated annealing. Computers & Operations Re-
search, 18(6), 537–547.

[8] Connolly, D. T. (1990). An improved annealing scheme for the qap. European
Journal of Operational Research, 46(1), 93–100.

[9] Deng, Z. & Tian, T. (2014). A continuous optimization approach for inferring
parameters in mathematical models of regulatory networks. BMC bioinformat-
ics, 15(1), 1–12.

[10] Dhouib, S., Kharrat, A., & Chabchoub, H. (2010). A multi-start threshold ac-
cepting algorithm formultiple objective continuous optimization problems. In-
ternational journal for numerical methods in engineering, 83(11), 1498–1517.

70

[11] Dréo, J., Pétrowski, A., Siarry, P., & Taillard, E. (2006). Metaheuristics for hard
optimization: methods and case studies. Springer Science & Business Media.

[12] Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for on-
line learning and stochastic optimization. Journal of machine learning research,
12(7).

[13] Dueck, G. & Scheuer, T. (1990). Threshold accepting: A general purpose opti-
mization algorithm appearing superior to simulated annealing. Journal of com-
putational physics, 90(1), 161–175.

[14] Eberhart, R. C. &Hu, X. (1999). Human tremor analysis using particle swarm
optimization. In Proceedings of the 1999 congress on evolutionary computation-
CEC99 (Cat. No. 99TH8406), volume 3 (pp. 1927–1930).: IEEE.

[15] Golden, B. L. & Skiscim, C. C. (1986). Using simulated annealing to solve rout-
ing and location problems. Naval Research Logistics Quarterly, 33(2), 261–279.

[16] Goldstein, L. &Waterman, M. (1988). Neighborhood size in the simulated an-
nealing algorithm. American Journal of Mathematical and Management Sci-
ences, 8(3-4), 409–423.

[17] Grass, J. & Zilberstein, S. (1996). Anytime algorithm development tools. ACM
SIGART Bulletin, 7(2), 20–27.

[18] Gupta, D., Tilwalia, R., & Jain, A. (2020). Optimization of electricity consump-
tion using evolutionary algorithms. Available at SSRN 3565796.

[19] Hochreiter, S., Younger, A. S., & Conwell, P. R. (2001). Learning to learn using
gradient descent. In International Conference on ArtificialNeuralNetworks (pp.
87–94).: Springer.

[20] Jeyakumar, V. & Rubinov, A. M. (2006). Continuous Optimization: Current
Trends andModern Applications, volume 99. Springer Science & Business Me-
dia.

[21] Johnson, D. S., Aragon, C. R., McGeoch, L. A., & Schevon, C. (1989). Opti-
mization by simulated annealing: An experimental evaluation; part i, graph par-
titioning. Operations research, 37(6), 865–892.

[22] Jünger, M., Reinelt, G., & Rinaldi, G. (1995). The traveling salesman problem.
Handbooks in operations research and management science, 7, 225–330.

[23] Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. In Proceedings
of ICNN’95-international conference on neural networks, volume 4 (pp. 1942–
1948).: IEEE.

[24] Kirkpatrick, S., Gelatt, C.D.,&Vecchi,M. P. (1983). Optimizationby simulated
annealing. science, 220(4598), 671–680.

71

[25] Koopmans, T. C. & Beckmann, M. (1957). Assignment problems and the lo-
cation of economic activities. Econometrica: journal of the Econometric Society,
(pp. 53–76).

[26] Kulkarni,M.&Babu, A. S. (2005). Managing quality in continuous casting pro-
cess using product quality model and simulated annealing. Journal ofMaterials
Processing Technology, 166(2), 294–306.

[27] Lundy, M. &Mees, A. (1986). Convergence of an annealing algorithm. Mathe-
matical programming, 34(1), 111–124.

[28] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller,
E. (1953). Equation of state calculations by fast computing machines. The jour-
nal of chemical physics, 21(6), 1087–1092.

[29] Munoz, M. A., Kirley, M., &Halgamuge, S. K. (2013). The algorithm selection
problemon the continuous optimization domain. InComputational intelligence
in intelligent data analysis (pp. 75–89). Springer.

[30] Nikolaev, A. G. & Jacobson, S. H. (2010). Simulated annealing. InHandbook of
metaheuristics (pp. 1–39). Springer.

[31] Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization.
Swarm intelligence, 1(1), 33–57.

[32] Potts, C. &VanWassenhove, L. N. (1991). Single machine tardiness sequencing
heuristics. IIE transactions, 23(4), 346–354.

[33] Qian, N. (1999). On the momentum term in gradient descent learning algo-
rithms. Neural networks, 12(1), 145–151.

[34] Russell, S. J., Norvig, P., Canny, J., Malik, J., & Edwards, D. (1995). Iterative
improvement algorithms. Artificial Intelligence: AModernApproach, (pp. 111–
114).

[35] Sekihara, K.,Haneishi,H.,&Ohyama,N. (1992). Details of simulated annealing
algorithm to estimate parameters of multiple current dipoles using biomagnetic
data. IEEE transactions on medical imaging, 11(2), 293–299.

[36] Shalev-Shwartz, S. & Ben-David, S. (2014). Understanding machine learning:
From theory to algorithms. Cambridge university press.

[37] Shi, Y. & Eberhart, R. (1998). A modified particle swarm optimizer. In 1998
IEEE international conference on evolutionary computation proceedings. IEEE
world congress on computational intelligence (Cat. No. 98TH8360) (pp. 69–73).:
IEEE.

[38] Siddique, N. &Adeli, H. (2016). Simulated annealing, its variants and engineer-
ing applications. International Journal on Artificial Intelligence Tools, 25(06),
1630001.

72

[39] Socha, K. & Dorigo, M. (2008). Ant colony optimization for continuous do-
mains. European journal of operational research, 185(3), 1155–1173.

[40] Soltanolkotabi, M. (2017). Learning relus via gradient descent. arXiv preprint
arXiv:1705.04591.

[41] Taylan, P., Weber, G.-W., & Yerlikaya, F. (2008). Continuous optimization
applied in mars for modern applications in finance, science and technology.
In ISI Proceedings of 20th mini-EURO conference continuous optimization and
knowledge-based technologies (pp. 317–322).: Citeseer.

[42] Törn, A. & Zilinskas, A. (1989). Global optimization. Springer.

[43] Tütüncü, R. H. (2003). Optimization in finance. Citeseer.

[44] Van Laarhoven, P. J., Aarts, E. H., & Lenstra, J. K. (1992). Job shop scheduling
by simulated annealing. Operations research, 40(1), 113–125.

[45] Vanderbilt, D. & Louie, S. G. (1984). A monte carlo simulated annealing ap-
proach to optimization over continuous variables. Journal of computational
physics, 56(2), 259–271.

[46] Ventresca, M. & Tizhoosh, H. R. (2007). Simulated annealing with opposite
neighbors. In 2007 IEEE Symposium on Foundations of Computational Intelli-
gence (pp. 186–192).: IEEE.

[47] Weber, G.-W. (2009). Continuous optimization in finance.

[48] Weber, G.-W., Özöğür-Akyüz, S., & Kropat, E. (2009). A review on data min-
ing and continuous optimization applications in computational biology and
medicine. Birth Defects Research Part C: Embryo Today: Reviews, 87(2), 165–
181.

[49] Xiong, Q. & Jutan, A. (2003). Continuous optimization using a dynamic sim-
plex method. Chemical Engineering Science, 58(16), 3817–3828.

[50] Yao, X. (1991). Simulated annealing with extended neighbourhood. Interna-
tional journal of computer mathematics, 40(3-4), 169–189.

[51] Zamora, J. M. & Grossmann, I. E. (1998). Continuous global optimization of
structured process systems models. Computers & chemical engineering, 22(12),
1749–1770.

[52] Zhou, A.-H., Zhu, L.-P., Hu, B., Deng, S., Song, Y., Qiu, H., & Pan, S. (2019).
Traveling-salesman-problem algorithm based on simulated annealing and gene-
expression programming. Information, 10(1), 7.

[53] Zibulevsky, M. & Elad, M. (2010). L1-l2 optimization in signal and image pro-
cessing. IEEE Signal ProcessingMagazine, 27(3), 76–88.

73

	Introduction
	Continuous Optimization
	Meta-heuristics
	Our Approach
	Thesis Outline

	Background and Related Work
	Simulated Annealing
	Threshold Accepting
	Particle Swarm Optimization
	The pinball game

	The Buggy Pinball (BP) Algorithm
	Why Buggy?
	Overview of BP
	The BP in Detail

	Experimental Evaluation
	Experimental Setup
	Results

	Conclusions
	Future work

	Appendix Tested Versions and Parameters
	Appendix Statistical Significance Tables
	References

