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Abstract

In this work, we employ Serious Games and Augmented Reality as tools for manufacturing
training inside a machine shop. First, we analyze the progress of modern manufacturing
processes leading up to the 4th industrial revolution, commonly known as Industry 4.0. We
tackle shortcomings in relation to the use of simulations and Serious Games as training tools
as well as the use of Augmented Reality in manufacturing. Finally, we analyze Glanceable
Augmented Reality and its technical challenges.

In the first part of this work, we propose a gamified approach to visualising manufacturing
missions for the implementation of a Serious Game focused on G-code programming for milling
and turning missions for undergraduate students as a standalone training system without the
need of a supervisor. Our gamified manufacturing mission design was also translated for use
through AR inside the real world machine shop.

Glanceable User Interfaces for Augmented Reality (AR) reveal virtual content ”at a glance”
to provide rapid information retrieval, often based on gaze interaction. They are ideal when
the augmented content covers a small proportion of the view space, but when the size of virtual
content grows, the potential to occlude the real-world increases provoking safety concerns.

In this work, we present Holo-Box, a novel interaction system for AR combining Glanceable
interfaces and world-based 3D interfaces across three Levels-Of-Detail, including progressively
more information and visuals. Holo-box uses a combination of eye-gaze and hand interactions,
focusing on user safety. A 2D Glanceable interface facilitates rapid information retrieval at a
glance, while extended 3D interfaces provide interaction with denser content and 3D objects.
Holo-Box couples blink-based and gaze-based interactions to minimize errors arising from the
Midas Touch Problem. While applicable across domains, the Holo-Box interface is designed
and optimized for performing manufacturing tasks in the real world. We evaluated the Holo-
Box interface using an object selection task of a manufacturing process. Participants completed
subsequent tasks faster using Holo-Box, employing incrementally smaller LOD interfaces over
time. The perceived accuracy of Holo-Box gaze-based inputs was high, even when the device’s
eye tracker accuracy was coarse.
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1 Introduction

Training new personnel for manufacturing is often a tedious operation. Practice under real-world
machinery is expensive, consuming vital system’s resources and, in some cases, dangerous for the
trainee [4]. G-code programs guide the machining process, written in a computer or machine
controller and loaded to a machine. A safer alternative for training uses simulated factories or
training environments. The concept of a digital factory can be defined as an interactive 3D en-
vironment supporting modeling, communications and operation of manufacturing [5]. Previous
studies indicate that virtual training is effective as the trainee is guided through complex product
manufacturing [6], [7]. While there are plenty of gamified virtual simulations that aid in manufac-
turing training and mainly focus on safety tasks [8] or manual operation [9], the task of creating
a serious game focused on writing G-code is technically challenging. Potential trainees often have
no previous programming knowledge. It is significant that they learn how to write efficient G-code
programs, not just correct ones.

Augmented Reality (AR) provides an enhanced vision of the world by seamlessly integrat-
ing virtual computer-generated elements with real-world environments [10]. AR applications are
prominent in complex, innovative workplaces. The manufacturing floors of modern machine shops
are increasingly employing AR technology as the evolution of the industry moves towards the in-
dustry 4.0 model [11]. A limiting factor of AR Head-Mounted Displays (HMDs) stems from the
narrow Field of View (FoV) available in current hardware. This narrow FoV restricts the amount
of virtual content that can be viewed at one time which, in turn, occludes real-world elements,
critical to the task at hand or the user’s safety.

Workers employ AR to safely retrieve virtual information at any point eliminating the dis-
traction and spatial limitations of traditional 2D screens[12]. AR applications need compelling,
intuitive interfaces that do not impede or endanger the user to be effective in this space [13]. One
approach is to use Glanceable User Interfaces that can retrieve information ”at a glance” based on
gaze detection when using an AR HMD with integrated eye-tracking [14]. Glanceable interfaces
prove helpful in cases when the user is focused on a real-world task that directly requires keen at-
tention, providing appropriate guidance without obstruction [15]. Glanceable interfaces are quick
and convenient, but they suffer from three main drawbacks: (1) Limited Scalability: As the amount
of AR content increases, Glanceable interfaces lose effectiveness due to the volume of data to be
displayed and the potential to block real-world content [14][16]. (2) Viewing Angle: Problems can
arise when viewing augmented content at an angle [17]. (3) Unintentional selection/interactions
using gaze: This is the Midas Touch Problem (MTP) [18].

A Glanceable interface should be compact, enabling minimal information at a glance to avoid
clutter, occlusion, and distraction [3]. When a large amount of data is necessary to guide the user
through the task, AR elements occupy a large portion of the available visible space. Interactions
with virtual content become less accurate and in workplaces such as machine shops, obstruction of
the visual field is dangerous. Voice and gesture commands have been offered as an alternative to
visual instruction. In a machine shop, however, AR interaction based on speech is not well-suited
due to the high levels of noise, while mid-air hand gestures and wide controller motions can pose
safety concerns [19].

In the first part of our work, we present an innovative desktop-based CNC machining training
procedure, created as a serious game for CNC manufacturing training. The proposed serious game
prepares the trainee in writing G-code and setting up virtual machines for completing milling and
turning tasks. The serious game works as a standalone training system without the need for a
supervisor or trainer to be present. The serious fame is focused on G-code training and basic ma-
chine setup as communicated by an engaging 3D environment and a streamlined training process.
The serious game was developed in collaboration with the Micromachining and Manufacturing
Modeling Lab (M3 lab) of the School of Production Engineering an Management of the Technical
University of Crete. Technical development of the Serious game was accomplished by Grigorios
Daskalogrigorakis and Salva Kirakosian. The M3 lab provided the 3D object models, 2D documen-
tation in addition to theoretical guidance regarding manufacturing processes and manufacturing
education. Salva Kirakosian was responsible for 2D and 3D design for the 3D virtual machine
shop, while Grigorios Daskalogrigorakis was the gameplay designer and developer regarding the
Gamification of the manufacturing process.

In the second part, we present Holo-box, a novel AR interface that combines Glanceable AR
and world-based 3D interfaces employing a combination of eye-gaze and hand interactions. We
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evaluate this in a machine shop taking workplace safety considerations into account, boosting
productivity and accuracy in a manufacturing process. Holo-box utilizes a 3-Level-of-Detail (3-
LOD) architecture providing varying levels of information to the user while performing tasks in the
machine shop. Levels can be expanded at will, through glance, to reveal additional information
(see Fig. 1). The Glanceable interfaces enable rapid information retrieval with minimal real-
world occlusion. Incorporating an AR 3D interface enabled with hand-tracking allows for complex,
accurate interactions in a controlled environment. Holo-box uses custom eye interaction logic to
automate accurate and natural direct eye interaction through blinking. The interface is deliberately
designed to accurately decode gaze, even when the accuracy of the eye tracker is low.

Figure 1: The proposed 3-LOD AR interface system.

Our work has the following contributions:

• We present Holo-Box, a novel 3-LOD interface system for AR combining both Glanceable
and 3D interfaces [3]. Two initial LOD interfaces are controlled through glance (Glanceable
interfaces), while the deepest level of LOD is a 3D world-based interface. The interface
enables the user to view simple guidance information through the Glanceable interfaces or
select to view the 3D interface to examine more detailed information.

• Holo-Box utilises a novel interaction system that utilizes a combination of eye-gaze blinking
with a delay (dubbed blink-delay) for interacting with Glanceable interfaces to minimize
unintended interactions. Objects remain selected and interactable even if the eye cursor exits
their activation trigger unless another interactable object is selected. Glanceable interfaces
are also visually adjusted to minimize errors in interaction, deliberately placing buttons on
opposite sides of the interface. The 3D interfaces also allow hand tracking interactions with a
delay (dubbed hand-delay). Users can engage interchangeably between hand-delay and blink-
delay interactions; thus, interactable objects can be placed on any layout without restrictions
[1].

• In the Machine shop Serious Game, we present a streamlined gamified presentation for man-
ufacturing missions for milling and turning tasks [2]. The Serious Game was used for G-code
education and received positive feedback from students. In addition, our proposed gamified
presentation was adapted to AR for use in Holo-box to provide feedback on the real world [3].
The content shown in each LOD is adjusted so that each interface can be used to guide users
with different levels of knowledge on its own. In the most compact Glanceable interface,
we show only textual information, including the name and material of a given task. The
second LOD level of the Glanceable interface offers additional text and 2D images. The sub-
sequent 3D interface includes 3D objects and multiple interactable buttons. The Glanceable
interfaces provide adequate guidance for experienced users, while the 3D interface provides
additional information for inexperienced users, using 3D models relevant, in our case, to
manufacturing tasks.

• We evaluated our work in Holo-box two times. In our first evaluation we found the issues of
Holo-box and the limitations of our hardware and tracking, which were corrected for our final
implementation [3]. In our second evaluation, we evaluate Holo-box by employing an object
selection task in a pilot manufacturing scenario. The content displayed on all interfaces is
used in presenting milling and turning manufacturing tasks in the form of gamified missions.
Experiment results show that users complete missions faster and use more compact interfaces
as they gain more experience. Our proposed interaction system compensates for the eye
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tracker’s inaccuracies resulting in higher perceived accuracy on blink-delay inputs than hand-
delay.

Chapter 2 includes a low level analysis of Augmented reality including theoretical knowledge,
analysis of the most well known AR Head-Mounted Displays (HMDs) and the various ways to
develop AR applications. In addition, chapter 2 also includes a brief analysis of real world Ma-
chine shop manufacturing, the new Industry 4.0 model and the necessity in including AR into the
manufacturing workspace.

Chapter 3 provides an analysis of previous work including the use of gamified environments
in education and/or training and the use of virtual environments and AR in workspace educa-
tion. Chapter 3 also covers related work regarding AR interface types used in multiple scenarios,
including adaptive and Glanceable interfaces.

Chapter 4 covers the implementation of a Serious Game for manufacturing education in which
we designed a gamified environment for machine shop education, which served as the core of our
AR application. The Serious Game was developed for remote G-code education, without the need
for a supervisor. In this game, we designed a gamified manufacturing mission presentation, which
was also adapted for use in the real world using AR.

Chapter 5 covers the first part of our AR implementation which includes our proposed 3-LOD
interface system. In this chapter, we discovered the issues and limitations of our first attempt, and
we analyze the way to overcome them.

Chapter 6 covers the full implementation of our work, which extends the previous chapter and
solves the issues present in the prototype with Chapter 7 analysing our work in a low level inside
the Unity Engine. Chapter 8 covers the user study used to evaluate our work.
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2 Augmented Reality and the Industry 4.0 model

2.1 What is Augmented Reality

Augmented Reality is the act of superimposing digital artifacts on real environments [20]. In
the Reality-Virtuality (RV) continuum, AR is a part of the broader Mixed Reality spectrum. In
contrast to Virtual Reality (VR) where the user is immersed in a synthetic environment, AR aims
to supplement reality with virtual objects.

Figure 2: The Reality-Virtuality continuum [20]

While early research limited AR in a way that required the use of Head-Mounted Displays
(HMDs), later studies [21] differentiated the definition from the required technologies and instead
defined any system that:

• Combines virtual and real

• Registers (aligns) virtual and real objects with each other

• Runs interactively in three dimensions and in real time.

2.2 Technologies of AR

AR technologies can be separated in three broad categories including:

• Video See-Through (VST) AR (Fig. 3a)

• Optical See-Through (OST) AR (Fig. 3b)

• Diminished Reality (DR) (Fig. 4)

(a) (b)

Figure 3: AR Display types. (a) Video See-through. (b) Optical See-through.

Video See-Through AR includes all types of AR that project the augmented world on a
virtual screen (see Fig. 3a). The real world is captured on video through a camera, often residing
on the opposite side of the screen. The video feed is then augmented with virtual objects and is
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shown on a screen to the user. VST is most commonly used on mobile-based AR or when using
VR HMDs with front-facing cameras.

VST AR often uses Machine Vision (MV) to extract information regarding the real world and
the user’s movement inside it. In simple cases, only MV information is adequate for simple AR
tasks allowing for cheap and rapid AR with minimal hardware requirements. In more demanding
applications, MV is combined with readings from other sensors to provide more accurate locali-
sation. Smartphone-based AR often combines ML with the built-in Inertia Measurement Units
(IMUs) built into modern smartphones including gyroscopes, accelerometers, compasses and GPS
for precise localisation, while the smartphone’s touch screen is used for inputs when interacting
with virtual objects. Other VST systems such as VR masks may also use external sensors for
positional tracking, while most VR HMDs are paired with their own controllers for user inputs.

Optical See-through AR uses transparent prismatic displays to project holograms in front
of the users (see Fig. 3b). Such displays are often mounted on a skeleton and worn like glasses
and as such they are also known as ”smart glasses” or AR HMDs.

OST AR allow the user to view the real world as is while only superimposing virtual objects.
The HMDs are often equipped with a plethora of sensors specifically tailored to the needs of AR,
most commonly for Simultaneous Localisation And Mapping (SLAM) or user interactions. There
are multiple available AR HMDs available each with their own hardware and Software Development
kits (SDKs) available which are tailored towards commercial or academic use (see Chapter 2.3).
Interactions in OST AR HMDs often use a combination of interaction types which may include
controllers, hand tracking, speech recognition as well as eye tracking among others based on the
hardware used.

Figure 4: Diminished Reality as seen in [22]

Diminishing Reality is an alternative approach to traditional AR technologies. Both VST
and OST AR are considered ”additive AR” in the sense that they take the real world’s geometry
as input and then ”add” virtual objects to create the augmented environment. DR takes the real
world as input and then attempts to recreate a new real world view after removing certain real
world objects [22].

Unlike VST and OST which focus on adding virtual objects and then adjust their positions
and visuals to make them blend into the real world, DR focuses more on world reconstruction
techniques to recreate parts of the real world that were obstructed by the removed objects. This
is often accomplished through the use of Machine Learning, external sensors that detect the real
world through other viewpoints or pre-scanned world reconstruction information.

DR is the least developed AR technology of the three with practical studies only showing
after the recent increase in ML technologies in the last decade. Currently there is no mainstream
hardware or software for DR applications outside of prototype ML reconstruction libraries.

In this work, we focus our efforts in OST techniques using AR HMDs. Our goal is to design a
Glanceable interface system that can be used while performing real world tasks, while our primary
concern is to preserve the real world view for safety reasons. Smartphone-based AR requires
occupying the user’s hands which is not ideal for performing real world tasks while VST HMDs
increase the risk of injury or simulation sickness present in the delay between moving and the video
feed on the display catching up to the real world. Some techniques of DR would be useful such
as viewing obscured real world objects for providing additional safety but since there is minimal
documentation on how to achieve this and our primary goal is guidance and not spatial awareness
this is left as an extension for future work.
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2.3 Augmented Reality Head-Mounted Displays (HMDs)

Following is the hardware analysis of the AR HMDs we considered for our application and a
comparison between them.

2.3.1 Microsoft Hololens

Figure 5: Microsoft Hololens

Released in 2016 for a price of approximately 5.000,00 dollars (for developers the price was reduced
to 3.000,00 dollars), the Hololens’s announcement in 2015 sparked many companies to hasten their
development in the field of AR HMDs, like Sony (unnamed AR HMD prototype), Magic Leap
(Magic Leap One) and DAQRI (DAQRI AR HMD) as well as smartphone-based AR like Google
(ARCore) and Apple (ARKIt), sparking a large release of AR-based hardware and software in 2016
and 2017.

With the release of Windows phones, the Xbox One and Windows 10, Microsoft had also
announced the Universal Windows system, and with the announcement of the Hololens, Microsoft
included it in the Universal Windows system, promising all applications developed for this new
system to work in desktop, smartphone and AR environments.

The Hololens is a lightweight head worn mask with the bulk of the sensors on the front side
of the mask and the processing units positioned around the head to counterbalance the weight.
The Hololens included an Intel Atom 4 core 32-bit CPU and 2GB RAM as well as a custom-made
Holographic Processing Unit (HPU) which is a CPU specifically made for spatial awareness and
location processing to reduce the load in the main CPU. It also included two AR displays with 34
degrees diagonal FoV with a resolution of 1280x720 pixels at 60Hz refresh rate. The low specs of
the Hololens compared to contestants were especially to preserve the battery life, which lasts up
to 3 hours of use.

The Hololens uses a single Inertial Measurement Unit (IMU) for positional tracking, four en-
vironmental understanding cameras and one depth camera for world mapping, one camera for
video recording and streaming to any Windows 10 or Universal Windows device as well as four
microphones for speech detection.

The Hololens supports three types of inputs. The first is a ”clicker”, a controller with a single
button that can be used for interactions. The clicker does not contain any form of tracking or
precise inputs other than the single button. The second is speech recognition. By incorporating
Microsoft’s Cortana allowed for speech recognition and use of simple voice commands like ”select”
”launch” or ”shut down”. As an alternative, users could use natural gestures like a ”tap” or
”bloom” motion to interact with objects, although the Hololens only detected the gestures without
tracking the hand positions at all and the HMD did not distinguish between the hands, offering a
single-hand interaction system.

The Hololens uses a gaze-based interaction system. The user focuses the center of their view-
point on the desired object, which is considered selected and then presses the clicker, performs
a gesture or speaks the voice command to interact with the virtual object. After user feedback
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and comparison to other system it was later proven this interaction method was exhausting for
long-term usage.

2.3.2 Microsoft Hololens 2

Figure 6: Microsoft Hololens 2

Announced to be released in Summer 2020 for a price of 3.500,00 dollars, the Hololens 2 is a bulkier
system that improves on everything the first one lacked. The resolution increased to 2048x1080
pixels per eye and the FoV increased to 52 degrees diagonal, resulting in the same pixel density as
the first one. The CPU changed to a Qualcomm Snapdragon 850 octa-core one and the HPU was
enhanced to the HPU version 2, although Microsoft has not given details of how it was enhanced.
The RAM was also increased to 8GB making the specifications of the Hololens v2 comparable to
high-end smartphones. Although the battery capacity increased so did the power consumption,
and the Hololens 2 has the same battery life as the first one (approx. 3 hours).

The Hololens 2 also includes eye tracking, eye position-based depth adjustment and iris scanning
for user profiling. The microphones also changed to a five-microphone array for surround-based
audio detection. The depth sensor is also replaced with a Kinect Azure sensor, with all the new
software and hardware capabilities developed for this new system.

The OS is also changed from the Universal Windows system to the new Windows Holographic
OS which is based on the Windows 10 OS but has additional functionality required for AR systems,
such as an improved interaction system using gestures and hand tracing. The gesture detection
system was changed to a two hand tracking system with precise hand position tracking and even
more gestures, allowing for touch-based interactions instead of gaze-based ones.
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2.3.3 Magic Leap One

Figure 7: Magic Leap One

Magic Leap One is the first AR HMD of the Magic Leap company. It is a standalone AR HMD
for complete optical see-through experiences without the need for a PC. The HMD consists of the
HMD, the Magic Leap Lightpack and the Magic Leap Control. The Magic Leap was released as a
prototype for non-commercial use in August 2018 for a price of 3.000,00 dollars.

The Magic Leap contains two wide FoV, for AR standards, see-through lenses that allow for up
to 50 degrees diagonal FoV with a resolution of 1280x960 pixels at 120Hz for each eye. The HMD
also contains two infrared depth sensors (center of the HMD), two cameras for key point detection
(lower cameras on the sides of the HMD) as well as two additional cameras for video recording and
video streaming to a PC (upper cameras on the sides of the HMD). The optical lens also contains
three infrared sensors used for eye tracking and a Bluetooth sensor (”box” at the bottom left of
the HMD) that connects to the Magic Leap Control.

Figure 8: Magic Leap Lightpack and Magic Leap Control

The Lightpack is a pouch worn on the belt or pocket that contains all of the processing power
and batteries of the device, which is wired to the HMD at all times. This makes the HMD itself
significantly lighter than others, like the Hololens, and also allows for a larger battery, allowing for
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over 4 hours of autonomous usage. The Lightpack contains a custom CPU that includes 2 Denver
2.0 cores and 4 ARM Cortex A57 cores (1 Denver and 2 ARM cores available to applications) as
well as an NVIDIA Pascal GPU with 356 CUDA cores as well as 8GB of RAM (4GB are available to
applications). The Lightpack uses an Android-based OS named LuminOS, which is custom-made
and adapted for AR.

The Magic Leap control is a controller with 6-DOF (position and orientation) tracking capa-
bilities, two buttons, one trigger and a circular touchpad. The Magic Leap Control is connected
to the HMD through a dedicated sensor and actual tracking calculations are done inside the HMD
allowing for larger battery life of the controller (approx. 8 hours) and cross-referencing of internal
tracking with the visual tracking of the HMD.

The Magic Leap SDK allows programmers to use various data extracted from the sensors in
a high-level interface. Through the use of a Simultaneous Localisation And Mapping (SLAM)
system, the Magic leap constantly scans the real world and tracks the HMD’s position inside the
scanned space. The device re-creates an untextured mesh of the user’s room. Programmers can
use this virtual mesh to make augmented content spatially aware, for example attaching interfaces
to walls or allowing virtual characters to walk on flat horizontal surfaces. With the update released
in May 2020, these mesh rooms can also be uploaded to the cloud, shared between different HMDs
and multiple HMDs can be used for collaborative scanning.

In addition to world scanning, the HMD also tracks the user’s hands when they are within
vision of the cameras. The SDK generates 15 points tracked for each hand in 3D coordinates (2-3
points per finger, palm and wrist) even when some points are partially obscured. The HMD also
provides eye tracking data in two forms: the rotation of each eye as well as the 3D point in the
world where the user gazes at.

Finally, the Magic Leap HMD automatically detects some predefined gestures for each hand sep-
arately. These gestures can be used as an alternative interaction method to traditional controllers.
Since the gestures are tracked along the world scanning, the automated gesture detection works at
120Hz for seemingly instantaneous detection. In addition, Magic leap supports voice recognition,
speech detection and text-to-speech, but these functionalities are left up to the developers to use
as needed, the Magic Leap itself does not use or post process this data.

2.3.4 AR HMD comparison

For the purposes of our application we compared the three aforementioned HMDs to determine the
best one for our application. The Microsoft Hololens was the most compact of the three and also
the most comfortable for long sequences of use but the limitation of interacting with the center of
the user’s gaze and a clicker as well as the smaller FoV made for a less than ideal experience.

The Microsoft Hololens 2 and the Magic Leap One are similar in terms of theoretical interaction
methods and FoV. In practice, the Hololens 2 proved to recognise speech commands significantly
faster and with higher accuracy, while the Magic Leap One proved more accurate in hand tracking
and recognised gestures with minimal latency while both HMDs provided similar eye tracking
performance (approx. 5cm offset on a blank wall 1m away with ideal lighting conditions) with high
flickering that often resulted in misinteractions. In addition, both HMDs were prone to heating
at uncomfortable temperatures on the user’s forehead above the prisms after the first hour of use.
Excluding the heating, the Magic Leap One HMD proved to be better for long usage periods due
to the Magic Leap Lightpack being worn on the hip and not the head and thus having less weight
and more stability on the user’s head.

Ultimately, the major drawback of the Hololens 2 was the documentation. The Magic Leap One
has extended documentation and tutorials with backwards compatibility for all available libraries
and SDK versions. The Hololens 2 on the other hand uses the same websites for documentation
and forums as the first Hololens while the two HMDs have different SDKs and thus resulting in
many pages having wrong or no documentation while searching the forums often results in outdated
answers that are no longer supported.

2.4 Application development in Augmented Reality

With the release of Hololens back in 2016 and onward, AR HMD application development has been
streamlined across most commercial AR HMDs. App development can be done through the use of
each of the following tools:
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• Native development through Application Programming Interfaces (APIs)

• Cross-platform development through external tools

• Third party Game Engine Packages

In the following chapters we will analyze the use of these tools specifically for developing apps
for the Magic Leap One which we use in this work, with similar tools being available for other
HMDs such as the Hololens and Hololens 2.

2.4.1 Native platform Development

All AR HMDs similar to other hardware systems support native build using their own libraries
which is usually comprised of low level code with direct access to the system’s features through
OS calls. Such systems are ideal for prototyping but they require a high degree of specialisation
in coding for a specific platform and is not ideal for non-programmers or amateurs.

Magic Leap One supports two forms of native development: a C API and the Lumin Runtime
Framework.

C API. The Magic Leap One’s OS, LuminOS is a Linux-based OS written in C. The developer
API consists of libraries that allow other code to connect with the core OS. The development API
is available for both C and C++ coding language native programming.

Lumin Runtime Framework. This framework provides a predefined code structure for
designing apps of two available types including Landscape and Immersive. Landscape apps can
run and render simultaneously with other landscape apps and are contained withing a volume
called a Prism that is placed onto the real world. Immersive apps suspend other apps during
runtime and utilise the entire available space.

Figure 9: The Lumin Runtime Editor using the UI kit

The Lumin Runtime Framework works on a server/client architecture where each application
sends server calls to the OS allowing for multiple applications to run at once as well as application
sharing between multiple users. The Runtime Framework includes APIs that allow for interacting
with the following:

• The scene graph - a spatial and hierarchical structure representing the scene

• Transforms that manipulate the spatial properties of scene graph nodes and tween animations

• 3D models with material and skeletal 3D model animations

• 2D sprite animation
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• High fidelity spatialized text rendering for spatial computing

• 2D and Soundfield Audio

• 2D and stereoscopic video

• Rigid Body collision physics

• Real time particle FX

• Input events and haptics control

• Hand gestures

• Speech to text

• Real time spatial computing technology for rendering objects, lighting and shadows, and real
world occlusion

The Lumin Runtime environment is available for use through Visual Studio, Visual Studio
Code and the Lumin Runtime Editor (Fig. 9). In addition, Magic Leap provides the Magic Leap
UI kit for quickly designing ready to use apps with premade UI elements with consistent colors,
shapes, sounds and animations that include:

• Labels

• Buttons

• Toggles

• Sliders

• Images

• Text Boxes

• List Boxes

• Drop-Down Lists

• Default Hover states

• Rect, Linear and Grid Layouts

• Scroll Views

• An Event system (hover, click, focus etc.)

• Cursor interaction with the Magic Leap Control or Mobile App.

2.4.2 Cross-platform development

Most applications nowadays are developed for a variety of platforms. As such developers tend to
use higher level libraries that allow for developing the application once and then building them
seamlessly to a variety of platforms. Magic Leap includes two web-based approaches to app de-
velopment that allow for cross-building with other systems. These include MagicScript and Web
Platform development

MagicScript is a framework for developing native, mixed-reality apps with JavaScript to run
on Lumin OS and Magic Leap devices. Apps for Magic Leap written in MagicScript can be spatial
computing Landscape or Immersive apps.

A React Native extension for MagicScript, called MagicScript Components, is available to
create spatialized front-ends with React.js, declarative elements, and Javascript. MagicScript
Components allows the same source code to be built and run on Lumin OS, iOS, and Android.
The initial Get Started in MagicScript section introduces MagicScript Component apps, using the
simplicity of the framework.
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Figure 10: MagicScript cross-platform architecture for Magic Leap and Mobile development

MagicScript uses NPM (Node Package Manager) to assemble apps from multiple components
(NPM packages). This supports the use of external NPM packages and frameworks in MagicScript
apps. MagicScript apps can be extended with open source JavaScript libraries such as Matrix.js
for transform math, Lodash for vector operations, and Xeogl and Three.js for 3D rendering.

MagicScript enables support for WebGL for rendering Quad nodes using Planar resources in
Landscape and Immersive applications. MagicScript supports the most common APIs of WebGL
1.0 and a subset of functions from WebGL 2.0.

Web Platform development allows programmers to develop Magic Leap applications in
JavaScript, HTML or CSS. Web developers working with Magic Leap web platforms can create
interactive sites and apps that take advantage of the full spectrum of spatial computing.

Web-based development allows developers to create a vast array of AR experiences from simply
extending a website in AR to creating full fledged AR experiences with only a few lines of code.
Magic Leap is embracing the W3C’s immersive WebXR standards as we transform how humans
interact with data and content.

Figure 11: Magic Leap Web based Apps

Magic Leap apps can be created in one of two modes: Landscape and Immersive. Landscape
apps work similar to a desktop experience with multiple apps that appear inside three-dimensional
prisms like windows on a desktop environment. Landscape apps can open other apps using deep
links, Web View, and OAuth calls. Immersive apps on the other hand take over the user’s experi-
ence by utilising the whole viewing area, comparable to a phone app or a console game.

The Helio Web Platform is a web browser available for the Magic Leap One that extends
any 2D browsing experience to spatial computing. An easy to use HTML-declarative library
allows programmers to code interactive spatial computing content with only a few lines of code.
Programmers can define the size and source of a 3D model to appear in Helio with a single line of
code and from there programmers can animate, transform content, allow for user input and control
content behavior as they would with any other web-based system.

Landscape applications can be developed in one of three available modes including Detached
CSS, Prismatic or Progressive web apps while Immersive apps are designed using the WebXR API.

Detached CSS works similar to responsive web pages, which adjust to scale in order to optimize
the viewing experience on any device from phones to wide screen monitors. It allows programmers
to modularize the web experience by adding CSS attributes to any element in a page to detach that
element and moving it elsewhere taking all its CSS properties with it. For example, a museum
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experience with interactive animated objects can be designed by pulling multiple feeds from a
website and placing them on walls, tables and desktops.

Prismatic is an open source declarative JavaScript library that lets programmers add 3D models
and define a 3D space viewable on Helio and non-Helio browsers. By using simple HTML tags
with inline attributes and CSS styling, 3D content that pops of the page can be rendered. Users
can grab and place the prismatic app anywhere on their environment. Prismatic lets programmers
animate, transform, and program interactions with web content.

Progressive Web Apps allow designing a web page and then wrapping it as an app. Web app
APIs let things run in the background once they’re downloaded. This allows programmers to open
something that looks more like an app and less like a web page, but gives the Native experience.
Progressive web apps lets programmers publish web content to Magic Leap devices, streamlining
distribution and monetization. Enterprises that want to restrict internal apps can distribute web
apps to devices without publishing them on the internet.

WebXR is a web-based device API that lets programmers develop immersive, WebGL-based
apps that users launch from Helio that then encompass the user’s entire viewing space. WebXR
is an evolving standard driven by the World Wide Web Consortium (W3C) that aims to bring
augmented and virtual reality to a common set of guidelines. An example of such an app would
allow users to scroll through a catalog of 3D models, then select a model to enter an immersive app
for a closer view of the model. When they close the immersive view they return to the web page
experience. Video & multimedia opportunities include communication experiences with avatars in
an immersive world or gaming experiences with interactive components.

WebGL development is currently complex, but Three.js simplifies JavaScript WebGL, making
it easier to create elements, import shaders, and otherwise develop complex experiences. On top
of Three.js, Babylon.js and Aframe are available to make Three.js declarative.

2.4.3 Game Engines

A game engine is a software-development environment designed for people to build video games.
Developers use game engines to construct games for consoles, mobile devices, and personal com-
puters. The core functionality typically provided by a game engine includes a rendering engine
(”renderer”) for 2D or 3D graphics, a physics engine or collision detection (and collision response),
sound, scripting, animation, artificial intelligence, networking, streaming, memory management,
threading, localization support, scene graph, and may include video support for cinematics. Imple-
menters often economize on the process of game development by reusing/adapting, in large part,
the same game engine to produce different games or to aid in porting games to multiple platforms.

In many cases game engines provide a suite of visual development tools in addition to reusable
software components. These tools are generally provided in an integrated development environ-
ment to enable simplified, rapid development of games in a data-driven manner. Game engine
developers attempt to ”pre-invent the wheel” by developing robust software suites which include
many elements a game developer may need to build a game. Most game engine suites provide facil-
ities that ease development, such as graphics, sound, physics and AI functions. These game engines
are sometimes called ”middleware” because, as with the business sense of the term, they provide a
flexible and reusable software platform which provides all the core functionality needed, right out
of the box, to develop a game application while reducing costs, complexities, and time-to-market
— all critical factors in the highly competitive video game industry.

Like other types of middleware, game engines usually provide platform abstraction, allowing
the same game to be run on various platforms including game consoles and personal computers
with few, if any, changes made to the game source code. Often, game engines are designed with
a component-based architecture that allows specific systems in the engine to be replaced or ex-
tended with more specialized (and often more expensive) game middleware components. Some
game engines are designed as a series of loosely connected game middleware components that
can be selectively combined to create a custom engine, instead of the more common approach of
extending or customizing a flexible integrated product. However extensibility is achieved, it re-
mains a high priority for game engines due to the wide variety of uses for which they are applied.
Despite the specificity of the name, game engines are often used for other kinds of interactive
applications with real-time graphical needs such as marketing demos, architectural visualizations,
training simulations, and modeling environments.

With the rapid improvements in technologies for cross-platform builds in the gaming industry,
the use of high level middleware called ”Game Engines” has become the norm. A game engine
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is used to automate linking all the subsystems included in a game and provide a Graphical rep-
resentation of the game. The most widely used game engines for AR development are the Unity
Engine [23] developed by Unity Technologies and Unreal Engine [24] developed by Epic Games.
Both Unity and Unreal are free to use for noncommercial and academic use.

Unreal Engine - The Unreal Engine is a game engine developed by Epic Games, first show-
cased in the 1998 first-person shooter game Unreal. Although initially developed for first-person
shooters, it has been successfully used in a variety of other genres, including stealth, fighting
games, MMORPGs, and other RPGs. With its code written in C++, the Unreal Engine features
a high degree of portability and is a tool used by many game developers today, with it being
source-available.

Unreal engine is developed in C++ which is a lower level language than Unity’s C#, allowing for
better performance in high-end games. Unreal engine favors more flexibility for the programmers
and allows for more direct connection with external libraries and hardware optimisation in favor
of less intuitive cross-platform development compared to Unity.

(a) Unity (b) Unreal Engine

Figure 12: Widely known Game Engines

Unity - Unity is a cross-platform game engine developed by Unity Technologies, first an-
nounced and released in June 2005 at Apple Inc.’s Worldwide Developers Conference as a Mac
OS X-exclusive game engine. As of 2018, the engine had been extended to support more than 25
platforms. The engine can be used to create three-dimensional, two-dimensional, virtual reality,
and augmented reality games, as well as simulations and other experiences. The engine has been
adopted by industries outside video gaming, such as film, automotive, architecture, engineering
and construction.

Unity gives users the ability to create games and experiences in both 2D and 3D, and the engine
offers a primary scripting API in C#, for both the Unity editor in the form of plugins, and games
themselves, as well as drag and drop functionality. Prior to C# being the primary programming
language used for the engine, it previously supported Boo, which was removed in the Unity 5
release, and a version of JavaScript called UnityScript, which was deprecated in August 2017 after
the release of Unity 2017.1 in favor of C#.

The engine has support for the following graphics APIs: Direct3D on Windows and Xbox One;
OpenGL on Linux, macOS, and Windows; OpenGL ES on Android and iOS; WebGL on the web;
and proprietary APIs on the video game consoles. Additionally, Unity supports the low-level APIs
Metal on iOS and macOS and Vulkan on Android, Linux, and Windows, as well as Direct3D 12
on Windows and Xbox One.

Within 2D games, Unity allows importation of sprites and an advanced 2D world renderer.
For 3D games, Unity allows specification of texture compression, mipmaps, and resolution settings
for each platform that the game engine supports, and provides support for bump mapping, reflec-
tion mapping, parallax mapping, screen space ambient occlusion (SSAO), dynamic shadows using
shadow maps, render-to-texture and full-screen post-processing effects.
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Figure 13: Unity Editor and Unreal Editor

The Magic Leap Unity and Unreal Packages allows for designing Magic Leap applications
through the Unity or the Unreal editor. Applications are designed similar to any other desktop,
mobile or console game through the engine’s tools while the packages allow for connection with
the hardware’s resources, external tools and automate the building process into native code. By
using a game engine programmers can build Magic Leap apps while utilizing a vast library of tools
readily available inside the game engines inside a streamlined graphical environment, allowing for
the development of applications of significantly higher quality with a low amount of effort compared
to native building them.

Now-days that new consoles and devices are being made, Unity seems to be supporting almost
every new product. This is a huge advantage since using Unity allows developers to release on
platforms that other engines don’t support. Unity’s C# is a high-level programming language that
significantly simplifies the coding process by automating multiple background processes, such as
garbage collection, rendering calls and hardware callbacks, through the engine’s libraries.

Unreal Engine seems to be a better option for games needing graphically intensive performance
and for companies that have very experienced development teams. However, for small companies
looking to target multiple platforms and monetize effectively, as a result more companies prefer
using Unity.

In this work we will exclusively work through the Unity editor using the Magic Leap Unity
Package which is available on the Magic Leap Developer Github https://github.com/magicleap/

MagicLeapUnityExamples. Unity supports stable framerates for a wide range of devices with
varying hardware capabilities. The ease of development using C# is also preferred over optimising
low level operations in C++ resulting in faster development times. Unity’s more streamlined
coding has also resulted in a larger community of developers offering assistance in Unity’s official
forums, allowing for rapid feedback and well designed documentation.

2.5 Machine shop manufacturing

The manufacturing industry is a wide umbrella that encompasses many production facilities. Ma-
chine shops usually refers to small factories where machining, or subtractive manufacturing is
done.

Subtractive manufacturing is defined as the process of taking a stock object, usually metal,
plastic, glass or wood, and ”subtracting” material from the object to produce small mechanical
parts such as gears, car replacement parts or even customized mechanical components for any use.
Conversely, ”additive manufacturing” defines procedures that build objects by adding and shaping
stock material,such as in 3D printing. Both subtractive and additive manufacturing operate using
the same tools with different logic, in additive manufacturing we aim to build the desired object
in layers from bottom to top while in subtractive to remove unwanted material from a predefined
stock from top to bottom.
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(a) Turning Machine (b) Milling Machine

Figure 14: Examples of Manufacturing machines

Two of the most widely used machines used in Machine shops, and the two machines we target
in this work include turning and milling machines.

Turning Machines (see Fig. 14a) consist of a cylindrical stock material which is spun rapidly
while using a cutting tool that cuts the material evenly around its periphery while moving with
two Degrees Of Freedom (2-DOF) either parallel or perpendicular to the material’s central rotation
axis.

Milling Machines (see Fig. 14b) on the other hand consist of a rectangular stock material
attached to the machine’s base with a rotating cutting tool that cuts the material from above.
Milling machines can have up to 6-DOF movement including three-dimensional movement for the
cutting tool inside the cutting chamber as well as three dimensional rotation for the material base.

Operating milling and turning machinery is commonly done through three common ways. The
simplest way to operate a machine is through an attached Numerical Control (NC) unit (see Fig.
15a). Using an NC unit allows the operator to manually input commands to the machine one at
a time and is ideal for simple commands or performing initial preparation before other complex
processes.

(a) Numerical Control (NC) unit (b) Example G-code program

Figure 15: Manufacturing operation types

Complex operations on the other hand often require pre-programming the cutting procedure
and loading it onto the machine at once. Manufacturing commands are written in G-code (see
Fig. 70) which is a low level programming language that translates a single line of code into an
appropriate motion of the cutting tool on its axis (e.g. G00 X20 Y20 Z10 translates to move on a
straight line to the position X=20mm, Y=20mm, Z=10mm without cutting. The same command
starting with G01 would translate to perform the motion while cutting meaning with a higher
rotation speed and slower translation speed in order to perform the cut without breaking the tool).
Finally, alternatively to writing the G-code of an operation a designer can opt to create a 3D
model of the finished product in a designing program such as AutoCAD. Interpreters can be used
to translate the 3D geometry into G-code commands for the manufacturing process. Although this
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is seemingly the simplest way of operating machines the use of G-code is preferred in most cases
as it is simpler to learn for users without designing or programming knowledge.

2.6 The Industry 4.0 model

With the rapid advancement of new technologies, manufacturing is slowly aiming for the next
stage in industrial revolution. The first and most widely known industrial revolution was achieved
with the use of steam engines, followed by the second with the introduction of electricity and
production lines for mass production and the third industrial revolution with the addition of
computer interfaces inside the workspace.

The proposed Industry 4.0 extends on the computer-oriented approach of current manufacturing
machine shops and introduces three new technologies for further automation of the manufacturing
process [12]. In the proposed Industry 4.0, Artificial Intelligence (AI) is used for decision making
regarding the operation of machinery, optimising the production lines or even monitoring and or-
dering human workers inside the factories. By utilising sensors inside the factory through Internet
of Things (IoT) and cloud-based computing the manufacturing process can be automatically mon-
itored and the AI can take more accurate decisions such as adjusting the working parameters of
various machinery or even turning certain machinery off for reduced costs. The AI can also detect
abnormalities and malfunctions on various machines and request technical assistance to repair or
replace malfunctioning parts.

Although this new Industry standard significantly improves the manufacturing process, factories
under this standard need significant redesigns in their structures to operate so transitioning to the
Industry 4.0 model is still theoretical. Some major challenges to the transition to the Industry 4.0
model include [11]:

• Lack of finding qualified personnel. Current manufacturing personnel are not qualified to
work using the new technologies.

• Lack of advanced education systems for training personnel. General education in most coun-
tries does not include the new technologies in the education curriculum.

• Lack of readiness for innovation. Supervising entities are not mentally prepared to risk
investing in this new technology.

• Lack of Information Technology infrastructures. Current IT technologies are inadequate for
efficient Human-Computer interactions in the new standard.

With this increase in automation the use of physical screens to monitor and operate each
machine individually is no longer necessary. Instead, human operators can use AR as a machine
interface, allowing an operator to monitor the whole factory from a single interface from anywhere
inside the factory. An operator can use AR to not only operate a single machine but they can
also view the manufacturing process in detail through the IoT sensors readings and by connecting
directly to the operating AI to understand any malfunctions in the operating process.

In our work, we aim to introduce AR to the manufacturing machine shop by adding an intuitive
interface system for rapid information retrieval. Our interface system can be used for improved
guidance for inexperienced users, serving as a stepping stone into introducing new technologies
into manufacturing. In addition, using guided AR allows trainers to educate new trainees on the
real world instead of theoretical studies allowing for more hands-on experience during the training
process.
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3 Related Work

In this chapter we analyze various academic works related to our application. We start by explain-
ing what Gamification is and then we present examples of gamified systems and what they offer
versus their traditional non-gamified counterparts. Next, we showcase examples of virtual training
environments used for industrial education developed for desktop systems or virtual reality and
then we move to similar examples using augmented reality. We then compare VR and AR as
technologies to clarify the perks to using each system in order to identify the strengths of using
AR over other systems. Finally, we present examples of using AR in workplace guidance while we
then focus on Glanceable AR which is the main focus of our work.

3.1 Gamification in training

3.1.1 System Gamification

Most games are designed to bring relaxation, focus shift, the sense of competition, yet, serious
games are intended for a somewhat different purpose: to learn something or master a certain
skill using a game’s format. Often, serious games are built as simulators designed to practice a
skill – flying an aircraft, administering first aid, driving a car, planning a city – all in a game’s
environment. In fact, serious games are not recent. Microsoft Flight Simulator was released as far
back as in 1982. Of course, in 2019 its gameplay and design look a bit childish and naive, but
the concept is the same. Today, however, we wrap this concept in such powerful technologies as
augmented reality and virtual reality to create truly immersive serious games.

Serious games and Gamification are often confused, as they both mean using game techniques
to achieve a non-entertainment purpose. At the same time, there is a difference. Gamification
means using certain elements of a game in an otherwise ordinary process.

Figure 16: Duolingo language learning app [25]

As an example, introducing points, stars or badges as incentives in a learning process is Gami-
fication. The learning process is not structured as a game, but you can get a trophy or a crown by
reaching a certain level. A good example of the Gamification technique is Duolingo[25] (shown in
figure 16), a language learning app. The learning process is not different from what you get at a
language school or with a teacher – you memorize words, translate sentences, choose correct word
forms. However, the app encourages you to earn crowns, compete with other users, win crystals
to use towards in-game purchases. That’s Gamification.

Now, in a Serious Game, the learning process itself is a game. The skills and knowledge are
mastered by completing the game tasks. The game objectives may be different – from getting a
physical skill, such as driving a car or operating a piece of machinery, to specific knowledge, for
example, first aid techniques or management.

23



Rordrigues et al.’s study [26] examined the relationship between perceived socialness, perceived
ease-of-use, perceived usefulness, perceived enjoyment and intention towards using an e-banking
mutual funds Gamified application (see figure 17). Results show that customers that use the
Gamified application perceived that the ease-of-use has a large positive influence on the intention to
use the application and also highlights the importance that the perceived ease-of-use as on perceived
usefulness. The perceived ease-of-use has a positive influence in the perception of enjoyment,
showing that the easier it is to use, the more the application is enjoyable.

(a) Example of a traditional mutual funds purchase
web page

(b) Example of FuteBank’s mutual funds portfolio

Figure 17: Gamified e-Banking Application

As positive as the results were, limitations were also present. The game was only available for
existing customers and represented a real investment with a minimum of six investment funds on
their portfolio, the results cannot be generalized to all customers of e-banking, or future customers
with or without the type of financial product used in this game. While the theoretical basis for the
various perceptions analyzed in this game is supported in this empirical study, the implementation
of various types of ’social’ technologies in different contexts of e-banking requires further study.

3.1.2 Workplace Gamification

Workplace Gamification can be considered a certain case of Gamification. Workplace Gamification
integrates Gaming in the workplace to create a more interesting work environment. In our case for
G4M, Workplace Guidance can be linked to Serious games, as the same guidance used in a Serious
Game can also be used in Workplace Guidance, assisting workers while training and after training
in a similar manner.

In [27] Funk et al. considered that giving workers guided assistance when working may not
always be positive. When we are trying to assist someone who knows what he is doing, our
guidance may not only be unnecessary but at some points even annoying or disorienting. As a
result, guidance and workspace assistance should be adapted to the expertise of each user.

In their thesis, Funk et al. proposed calculating a user’s expertise simply by calculating a
percentage of how many of the user’s moves were incorrect. As long as the user has a low error
ratio, the system does not provide guidance, or provides minimal guidance. When the ratio exceeds
some thresholds, the system provides extended guidance in three levels, expert, advanced, and
beginner. As the proposed approach is very simple, the authors state it is crucial to design a more
complex user model and adapt the provided guidance further in a more realistic environment.

Schulz et al. [28] performed an experiment testing if Branded Gamification improved produc-
tivity in a workspace. Branded Gamification is when asking workers to do a boring and repetitive
task we present additional audiovisual information to brand the given task as a game.
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(a) Participant soldering a grid of copper
wire [28] (b) An example of the workbench used in [28] study

Figure 18: Experiment Testing in a workspace.

Participants were asked to perform a soldering task, with the goal of producing two rectangles,
in a square grid (see Figure 18b , bottom right section). This task was split into two distinct parts.
First, participants were asked to cut copper wire into sections of similar length. This was followed
by the soldering of the copper wire, to forming two rectangles, in a square grid. These tasks were
deliberately set to be repetitive in nature. Prior to performing the task, the participants’ person-
alities were measured through questionnaires, while during the exam the participants’ emotions
were continuously measured using Emotient FACET. The task was conducted on a worktable.
During this process, an interactive system projected instructions and feedback into participants’
workspace.

Overall, Schulz et al. found a dual nature of branded Gamification: While instigating posi-
tive emotions, aversion and reactance also arise. Besides, users experienced stronger fluctuations
within the branded Gamification. A higher coefficient of variation was found in terms of the neg-
ative feelings, compared to the variation in generic conditions. Additionally, Schulz et al. found
negative feedback caused spikes in negative emotions. Participants’anger time increased shortly
after receiving an error message, or message indicating a task had taken longer than a minute to
be performed.

3.1.3 Adaptive Training Environments

A virtual training environment has become mandatory for Machine shop training nowadays [6].
The main problem is there are multiple solutions, but their training success varies for every person
trained. Loch et al. [6] also proposed an adaptive training system which adapts depending on how
it evaluates its user, giving each trainee the optimal training for him/ her.

25



Figure 19: Adaptive system Architecture proposed by [6]

In order to adapt the training, a set of user characteristics is kept. These characteristics are
divided into Constitutional (e.g. gender) which cannot be changed, Dispositional (e.g. personality)
which change in a lifetime, Qualifications (e.g. knowledge) which is influenced by the individual’s
performance and Adaptation (e.g. fatigue) which depend on the situation.

In the proposed approach there are two steps to adapt the training process (Figure 19), an
initial adaptation of the system and a realtime iterative adaptation. The first initialization is done
by using or estimating the aforementioned user characteristics before the simulation is executed for
the first time. Iterative adaptation is based on three types of measurements: perception, cognition
and action.

Figure 20: Measurement analysis system

Depending on the measurements taken during Iterative adaptation, the lessons may change
in three aspects (Figure 20): interactivity, presentation and content. Interaction describes how
the user communicates with the training system. Modifying this aspect allows providing the user
with an input modality that fits her or his capabilities, for example, users with declines in motor
capabilities can use a speech-based interface, while Simple interaction modalities (e.g., keyboard)
can address users with low computer literacy. Presentation describes how the training system
communicates with the user. The font size or the color scheme can be adapted to support users
with decreased vision. Similar adaptations could be done for verbal presentation, for instance by
changing the playback volume of spoken information output. Content describes which information
the training system provides about a work step. Instructions can be combined to functional groups
with increasing levels of abstraction. Information, for instance the necessary tools, can be removed
from the instructions if the user is already aware of them.

This approach was based on their previous work [29] where Loch et al. developed a Virtual
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Training System which was tailored specifically to training aging employees for machine training.
Taking into consideration specific characteristics and weaknesses aging employees have, Loch et al.
adapted a standard serious game specifically to the needs of aging employees. As they stated in
their work, the average age of the active workforce in Machine Operation is rapidly increasing so
training systems must adapt to the needs of training aging employees.

Because this training system is focused on aging employees, this training system also takes
into account some specific requirements. When compared to younger trainees, aging trainees have
more difficulty in performing complex tasks which require fast or accurate movements, short term
memory or spatial perception in a complex or noisy environment. On the other hand, aging
employees can use their long term memory and experience to perform tasks in a simpler manner
without needing to take on-the fly decisions.

The proposed virtual system provides shorter lessons, which do not require much short- term
memory, with textual and graphical descriptions of the work that needs to be done. Trainees see
the virtual environment in a wall-mounted display or projector, while they use a tablet as a control
panel for the machines. Graphics are simple without many colors or many buttons (Figure 21),
so they are less prone to distract employees with lower attention span. The training process has
three forms, step-through execution, slideshow and interactive simulation and trainees can view
the same simulation using their preferred method.

Figure 21: The adapted representations of an instruction on the display (top) and the control panel
(bottom).

3.1.4 Realtime prediction and guidance

Comprehensive mobile information provisioning plays a key role to facilitate flexibility and effi-
ciency of operations in the smart factory [30]. Workers and production supervisors have to monitor
the process state and its performance in real-time to react on incidents and communicate solutions
immediately. For instance, if an input material in combination with a certain machine set-up in a
manufacturing step usually leads to performance problems in subsequent steps, real-time prediction
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capabilities should warn workers during process execution and provide precise action recommen-
dations on how to avoid the problem. This requires information about the current state of the
entire process and its performance regarding metrics such as duration or quality. Additionally,
information about work instructions and improvement suggestions, that is, process knowledge, as
well as process communication has to be available. Besides, all this information has to be provided
in a situation-aware manner to make adequate use of it anytime and anywhere on the factory shop
floor.

Figure 22: Architecture of the Mobile Manufacturing Dashboard [31]

In their paper Gröger et al. [31] present the Mobile Manufacturing Dashboard (MMD), a
situation-aware manufacturing dashboard for mobile devices. The MMD provides advanced ana-
lytics and addresses the full range of process-oriented information needs of both shop floor workers
and production supervisors. Thereby, the MMD is based on our Advanced Manufacturing Analyt-
ics framework and can be seen as an application of context-aware computing to manufacturing in
order to provide situation-aware information on the factory shop floor.

Gröger et al. present the MMD as well as its underlying architecture. It comprises three
integrated layers and makes use of their Advanced Manufacturing Analytics framework.

• Data Integration Layer comprises the Manufacturing Knowledge Repository

• Process Analytics Layer

• User Access Layer

Finally, they described two representative real-world scenarios for a demonstration of the MMD,
one focusing on a worker and the other focusing on a production supervisor.

3.2 Virtual Training Environments

Virtual environments refer to fully virtual games that attempt to recreate the real world. Their
goal is to educate the users about the way real objects operate without bringing them in contact
with the real objects at all. This is useful in cases where equipment is expensive and misuse while
training may cause serious injuries or costly damages. It is also useful for educating a large number
of trainees without using multiple real machines and large training spaces. The most common
examples of fully Virtual Serious Games are Desktop Applications (using a screen, keyboard and
mouse) or Virtual Reality Applications (using a VR Head-Mounted Display, optionally paired with
controllers).

3.2.1 Virtual Machine Shops

Machine shop training is an expensive and dangerous process. Untrained users may damage or
break expensive machines resulting in large costs or even serious injuries. This is why it has
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become mandatory to use virtual environments to train new users [6]. Because in G4M we will be
developing a Virtual Machine shop ourselves we will first analyze previous work in the same topic.

(a) The VM Shop by Chryssolouris et al. [4] (b) NC Code programming interface

Figure 23: Virtual Machine Shop (VM)

The concept of a digital factory can be defined as an interactive 3D environment supporting
modeling, communications and operation of manufacturing [5]. Chryssolouris et al. [4] designed a
virtual machine shop in order to train new users in the usage of three different machines present
in a machine shop. In this paper they clarify the reason for making their simulation is that a
virtual simulation is considered mandatory for training new users as mishandling machinery result
in damaging high cost equipment.

As a result, Chryssolouris et al. decided to design a virtual Machine Shop in a Virtual Reality
environment to further immerse new users in the simulation. In the Virtual machine shop players
could manually operate machines through virtual interfaces, identical to the real machines, or even
write NC code which could also be imported directly to real world machines. Users could see their
code being executed in the virtual environment by realistic simulation of the machine’s movement.

A 3D object was deformed to show the object deformation realistically using quadtree-based
partitioning and then comparing the produced 3D object with the optimal model. The engraving/
milling tools also checked if they were used appropriately or if the real world’s tool would break
from misuse, in which case the user was warned and the process was terminated. To further improve
the simulation, time and cost values were also taken into account to give a better estimation of
how optimal the users actions were.

Currently, to learn how to operate a machine tool – either because it is a new technology or
machine or because someone is undergoing vocational training – is a mix of theoretical lessons and
hands-on training at the real machine. For the hands-on training a real machine with the right
setup has to be available. And even if that is realizable, it is not (or only with great effort) possible
to show every detail of the process or of the machine and to let every student practice as long as
he or she needs.

(a) Hierarchy of the model of the DMP45 V linear
3-axis milling machine [9]

(b) Real NC control unit controlling a virtual model
of a milling machine

Figure 24: Hierarchy - Real NC control Example
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In Purzel et al.s’ [9] study proposed a combination of a real NC control unit and a virtual
machine model (NC-VR coupling) for the main part of the training. A solution for this problem
was the integration of the real NC control unit within the simulation environment. The coupling
between a real control unit with a simulation environment is called Hardware-in-the-Loop (HiL)
[32].

Figure 25: Virtual milling simulation at the 3-axis milling machine

Similar studies like Xiang Yang et al. [33] presented an approach to support analysis and design
of manufacturing systems at different levels. The combination of various tools and the integrated
use of them enable the study of a holistic application scenario. Changes to a manufacturing system
can be applied virtually in order to minimize impacts on the real manufacturing system. This can
improve the planning quality, accelerate the planning velocity and avoid production shutdowns.
This paper consists of 4 sections as follows.

• The PVR framework.

• Three virtual factory tools

• Sound simulation and the planning of engineering changes (ECs).

• Two applications are visualized in a cave automatic virtual environment (CAVE).

PVR framework for manufacturing system design.: In this section, a Projected Virtual
Reality (PVR) process framework is introduced which is divided into three main phases: modelling,
application and adaption (see Figure26).
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Figure 26: Workflow of PVR framework

Virtual factory tools.:

• Modeling - In the modelling phase, a data basis is prepared regarding the purpose of use.
Usually it starts with geometric and mathematical modelling (Figure27a).

• Application - In the application phase, two main components should be included: simulation
and visualization. Simulation is the basis of the whole work flow. Based on the modelled
virtual world, the simulation rebuilds the manufacturing processes and provides essential
information for visualization and PVR.

• Adaptation - Using the results from the application phase, the manufacturing system is
adapted. A PVR-supported Continuous Improvement Process (CIP) workshop is used to
implement such adaptations (Figure27b).

(a) Geometric Modeling (b) Procedures of PVR-based CIP workshop

Figure 27: Virtual Factory Tools - Modeling and Adaptation

Sound Simulation investigates the noise issue in industry and uses a simulation and a PVR-
supported method. The visualisation of simulation results and enhanced analysis capabilities in
PVR provide a new point of view to understand the noise issue. Furthermore, this application can
meet the requirements of noise control/reduction during factory planning.
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(a) Structure of the sound simulation tool (b) Evaluation of sound levels

Figure 28: Sound Simulation

Application in a cave automatic virtual environment(CAVE): Figure 29a shows a user
exploring the virtual factory in CAVE and simulating the sound to analyse the workstation or
layout planning. Users are able to investigate the virtual environment much easier using a fly stick
than using a mouse and keyboard in front of a desktop display. The virtual employees are scaled
according to a real person, so that the users have a more realistic perception.

Figure 29b shows an animation of cutting process is visualized in the CAVE. One of the advan-
tages of immersive animation is the free choice of viewpoints. Users can navigate to any relevant
investigation point. Different aspects can be analysed regarding specific problems. Another ad-
vantage is that the full immersive environment with user tracking system improves the result of
the virtual operation training.

(a) Structure of the sound simulation tool (b) Evaluation of sound levels

Figure 29: Application in a cave automatic virtual environment(CAVE)

The purpose of Nerstor Ordaz et al. study [34] was to determine the impact of gaming ex-
perience on the learning process of a manufacturing operation using the VIrtual Simulation and
TRAining (VISTRA) system with architecture that shown in Figure 30a, a serious game that sim-
ulates manufacturing environments in order to train operators to perform manual tasks. The simu-
lated operations take place at a welding workstation for truck chassis parts, where automation and
manual tasks are combined. The case study aims then to evaluate the impact of gaming-experience
and the general usability of the VISTRA system. Each operator that participated, completed five
different training scenes on three difficulty levels each using appropriate hardware setup (Figure
30b). Completion time and mistake count were computed by the VISTRA system after completing
each training scene. This information was analyzed and compared. Results showed that: (1) users
without gaming experience took considerably more time to complete the sequences than users with
gaming experience, (2) the same amount of mistakes were made by gamers and by non-gamers,
and (3) 50% of the mistakes were made during a particular scene. The study thus found that
gaming experience influences positively on training completion time using the VISTRA system.
The particularities on the mistake count demonstrated that gaming experience does not influence
the understanding of the manufacturing operation.
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(a) VISTRA High-Level Architecture (b) VISTRA Hardware Set-up

Figure 30: VIrtual Simulation and TRAining (VISTRA)

3.2.2 Virtual Assembly Simulations

With the recent advances in computer graphics, virtual reality (VR) is becoming a popular technol-
ogy in many industrial applications that require a realistic computer–human interface. Tradition-
ally, the graphic rendering of computer aided design (CAD) software focuses on mathematically
accurate simulations. This accuracy takes priority over the rendering speed in CAD. In contrast,
VR applications focus on a more intuitive and immediate understanding of simulated objects. For
VR applications, real-time rendering, interactive and immersive visualization are more crucial, since
VR attempts to replace the user’s perception of the surrounding world by a computer-generated
environment, which is often called a 3D virtual environment. Users can visualize and interact with
the environment and can directly manipulate objects in this virtual world. To some extent, VR
techniques have been successfully applied to scientific visualization, flight simulation, telepresence,
training, education, medicine, entertainment and, most recently, to manufacturing.

Figure 31: A vehicle suspension system with 119 assembly occurrences with related constraint-
based manipulations in VR environments for disassembly process.

In their paper, Wang et al. [35] present another type of VR and CAD integration for virtual
assembly, named a CAD-linked virtual assembly environment. It implements a virtual assembly
application by external integration with a CAD system. More specifically, the VR application
runs in a separate process but keeps linking and communicating with another process on the
same computer, which runs the CAD application. In most cases, the CAD application runs in an
invisible model. The data integration between VR application and CAD system is supported by a
novel hybrid virtual assembly model maintained in the VR application. The hybrid model works
to combine precisely a represented design dataset in CAD system and a hierarchically structured
virtual environment dataset of low resolution in the virtual environment.

Towards the real application of the proposed virtual assembly environment in production,
further investigations are also needed on how to support advanced assembly constraint types in
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this VR environment. Beside commonly used assembly constraint types in CAD systems, the
advanced assembly constraint types referred to Wang et al. study [35] can be motion constraints
or transitional constraints etc., which are getting supported by modern CAD systems.

Vosniakos et al. [36] propose an Application of immersive Virtual Reality that is advocated for
assessing human-based assembly of large mechanical parts, including assembly jigs and fixtures as
well as tools used and procedures followed. The primary aim of this Application is to enable sub-
jective/customized assessment of the assembly system by the participating human. The secondary
aim is to allow recording of the human’s main movements in order to analyze them with standard
ergonomics tools. Proof-of-concept was sought by a case study, i.e. aircraft wing assembly by
riveting, involving a real human worker holding a real tool, whilst all the rest, i.e. avatar, wing,
fixtures and factory were virtual. Health risk from assembly tasks was subjectively assessed via
a questionnaire. Assembly equipment and procedure were preliminarily assessed by interpreting
and applying RULA and REBA protocols. The potential to automate such a tedious task was
demonstrated by automatic calculation of body postures from avatar’s kinematics using special
setup figure (33).

Figure 32: Riveting in the immersive virtual environment (a) human operator (b) corresponding
avatar

Concluding, in assembly of large parts, such as aircraft wings, it became possible to try out
the methods and tools prescribed in a low cost Virtual Environment. Although basic motions
and interaction were successfully modelled, there is still room for future refinements for attaining
higher fidelity in motion by further exploiting the game engine’s functionality. The VR equipment
is deemed adequate regarding accuracy, with some reservation concerning stability of viewing
through the HMD and freedom of movement due to the sensor ranges and cable connection.

The avatar (mannequin) employed has enough joints to model basic but not subtle movements.
Capabilities for finger tracking through wearable IMUs are currently being considered to rectify
this discrepancy. All assessments performed so far concern reach and posture ergonomics as based
on kinematics in 3D space. Haptic feedback of the equipment is an obvious future extension.
Subjective assessment of the assembly setting by the participating human is advocated as equally
important to objective assessment based on ergonomics protocols. Currently human operator
motion is recorded on video and this is studied manually to detect patterns of undesired postures
according to established rules in RULA and REBA protocols.
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Figure 33: (a) Virtual Assembly Process Assessment for Large Parts; (b) Sensors employed

Another example is shown in Shcenk et al. [37]. The approach described in this article com-
bines two approaches, i.e. assembly simulation and virtual reality, to create fully-interactive and
immersive 3D visualisations of assembly lines and factories. In such virtual environments users can
experience and interact with the virtual representation of their factory. Usage scenarios include
the design phase of the factory as well as the operation phase. Targeted end users include classical
factory planners, decision makers and even the individual assembly worker, who can train assembly
tasks in a virtual environment (see figure 34).

(a) Easy model creation by using predefined library
components (b) Visualization of a cylinder head production

Figure 34: Automotive assembly technologies

The overall objective of the projects described in this article is to provide a virtual-interactive
environment which supports the entire life cycle of a factory. This includes the usage of VR as
a command and control tool for factory design and factory operation. The virtual world can act
as the integration platform for different simulation models. In the design phase of the factory the
processes of the planned factory can be tested and optimized within the VR world. This very
world can be enhanced by didactic knowledge to qualify workers for assembly procedures.

In Michalos et al.’s study [38] shows that the automotive assembly systems are subject to many
technological transformations because of their need to adjust to a continuously changing market.
Manufacturers, in their effort to remain competitive, seek new technologies and equipment, which
will allow their companies to increase their responsiveness to demand fluctuations and variability.
Agile, modular and autonomous assembly systems are considered as the most suitable solutions.
Every process in the assembly plant has to become more flexible in order for the overall system’s
flexibility to be increased. Therefore, new technologies are introduced to almost every section
of the assembly plant. New applications have shown the potential benefits of these technologies
as well as the specifications that future assembly plants will have to fulfill in order to respond
successfully and cost effectively to shifting market demands. These specifications include:

• Flexibility and adaptability assessment capabilities in order to account for them in the deci-
sion making process and further improve the plant’s responsiveness.
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• Flexible equipment, in most areas of the assembly facilities, including body build, paint shop
and final assembly.

• Synergy-collaboration between humans and robots in order for the benefits deriving from
the human workers (decision making and intuition) to be combined with those from robots
(speed, strength and accuracy).

• Fully digital planning and validation of assembly processes prior to any physical installations.

• Flexible and adaptable assembly technology and strategy, i.e. robotic fixtureless assembly,
self-re-configurable assembly systems, increased modularity in the assembly process.

• Implementation of advanced joining technologies offering improved quality, productivity and
safety

• Absolute customization should be the focus of all plants, following a pull/customer driven
model instead of a push/ OEM driven model.

• Virtual manufacturing tools considering line balancing, but in a static way. There is a need
for intelligent simulation tools to dynamically propose optimized mix and work distribution.

Figure 35: Consequences of poor product and process premises seen from an ergonomic viewpoint
Falck et al. [39].

There is also an Impact of Poor Assembly Ergonomics on Product 35. Falck et al. [39] con-
firms in her study a clear relationship between poor fulfillment of ergonomics requirements and
quality errors in the quality assurance systems. A relationship between poor ergonomics assembly
concepts and quality risk concepts was found in the manufacturing engineering phase of product
and production development just before plant launch. In the assembly process and for factory-
complete cars, it was found that there was a much higher amount of quality errors related to high
and medium load level assembly items than to low load level items. The general conclusion is that
there are huge savings and increased profit margins to make and great opportunities to increase
the overall productivity and lower the selling prices of the final products by eliminating ergonomics
risk solutions at early conceptual stages of the product development process.

3.3 Augmented Reality in workplace guidance

Augmented Reality is a unique approach when it comes to designing the virtual experience. Instead
of creating a Virtual environment to cutoff users from the real world, AR is used to augment the
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users’ experience in the real world. As such, it cannot be used similar to Virtual Serious Games.
Instead, AR-based Serious Games enhance traditional learning experiences, such as reading books
or being inside a real assembly factory, while providing virtual guidance as if the user would be
guided inside a virtual environment.

3.4 Augmented Books

Ivanova et al. [40] used AR in conjunction with a machining guidebook to provide some 3D
visualisation of what is presented in the guidebook.

(a) AR view Using a Tablet (b) Superimposed AR Gear cutter

Figure 36: Augmented Reality in [40]

The guidebook used black and white square markers on the pages which were identified using
a tablet and depending on each marker the correct visual content was presented to the reader in
AR. Because machining objects are usually complex, it is difficult to present it in 2D drawings on
a book, thus using AR the readers could see the 3D objects while reading about them in the book.
Some of these AR objects were also animated to show how a machine works. Other objects were
also interactable. By touching a complex machine for example it would disassemble into smaller
parts and then reassemble to show how it is built. Finally, another use of AR content was to show
live video tutorials of what is described on the opposite page (Figure 37) so users could see a live
demonstration of the described tools.
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Figure 37: Video tutorial next to written guidance

On another case, Bazzaza et al. developed iARBook [41], which was created to add immersion to
already existing AR content. The basic system used Vuforia to track specific pages in a magazine
and Unity to present AR content when Vuforia detected specific pages through a smartphone’s
camera. Bazzaza et al. then tested various methods of interacting with the presented AR content.
The demo applications presented in their work consisted of: 1) A superimposed video over an
article about a speech (Figure 38a), 2) a 3D model starts spinning and playing sounds with a
touch on the touchscreen (Figure 38b), 3) ”touching” a superimposed virtual tower to topple it
(Figure 38c), 4) ”pressing” a hyperlink on an article by hiding a text or button with the user’s
finger(Figure 38d, 38f) and 5) Using speech recognition to make a virtual robot speak (Figure 38e)
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(a) Superimposed Video (b) Rotating DNA Helix

(c) Pushable tower of Piza (d) Superimposed flag

(e) Talking robot (f) AR Hyperlinks

Figure 38: Augmented Reality demos in [41]

At the end of the paper, Bazzaza et al. also presented an alternative that uses an immersive
desk that scans the iARBook through a top-down camera instead of having to hold a smartphone.
Using an immersive desk provides better quality in the IAR content presented and eliminates
having to hold a smartphone while reading, but is a more expensive and non-portable solution.

Another approach in Serious Gaming in previous works showed that using Augmented Reality
positively affected the educational and development processes by engaging young trainees while
integrating the latest display technology with traditional forms of learning, training and manu-
facturing [42]. Studies related to Augmented Chemical Reactions that is a chemistry teaching
application which facilitates the understanding of molecules behaviour and structure using a 3D
user interface offering direct manipulation [43]. Students are able to get acquainted with different
elements and learn about chemical reactions. Anther one study was AR platform for electromag-
netic education is developed, offering motivation and engagement for learning. AR training was
deemed essential for smooth lecture flow [44]. AR educational apps often focus on 3D visualiza-
tion of complex objects. For instance, a mobile AR application was developed for undergraduate
anatomical education [45]. The application can track plastic heart models located in the classroom,
without the use of observable markers. After recognition of the real object, text labels are depicted
above specific anatomical parts of the organ. Using virtual representations of hearts, students are
able to self-learn outside the classroom. A similar approach [46] teaches anatomy education by
augmenting 3D models of organs on the users own body. Since AR’s beginning, combining hard
copy material with AR showcased AR’s positive effect in education [47]. AR applications combine
superimposed AR models with touch, speech and audiovisual content. Overall feedback suggests
that a book is much more likely to be read when combined with an AR application [48]. AR tech-
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nology has also been employed in the education and training of mechanical engineers. A recent AR
approach superimposed 3D models of cutting, measuring tools and special equipment on a text
book [49].

In summary, previous research focused on superimposing AR elements onto hard copy text
books, offering, though, limited interaction and off-line availability of complex 3D models for
training. This work goes beyond plain visualization of AR content, putting forward a mobile
graphical user interface facilitating the importing of projected 3D models for further geometrical
transformations.

Figure 39: Volume (Left) and weight (Right) calculation. The result steadily increases until the
whole model is scanned.

In this study Marinakis et al. [50] propose a mobile Augmented Reality (AR) application
employed to facilitate and enhance the learning processes and textbook material of the Mechanical
Drawing course for undergraduate and postgraduate university students undertaking an engineering
degree. The presented AR app is used along with a brand new Mechanical Drawing textbook
authored for the respective course (Figure 40a).

(a) Selection of a 3D model through Augmented Reality
based on CAD model drawings printed on text book hard
copy.

(b) Group of students studying mechanical draw-
ing gathered around a CNC Milling Machine.

Figure 40: Mobile Augmented Reality (AR)application

3.5 Holographic AR Guidance

The use of Augmented Reality technologies, in support of the human operator, is becoming relevant
to manufacturing. The evolution of the AR technology has proven to be an efficient key for
problems, related to simulation, assistance and guidance for manufacturing processes [51]. AR is a
novel human–computer interactions tool that overlays computer-generated information in the real
world environment.
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Figure 41: Augmented Reality for Human-based Assembly: Using Product and Process Semantics
[52]

Rentzos et al. [52] present a semantic-based approach to building instructions for human-based
assembly tasks to be used by Augmented Reality systems. This study has shown the way that
Augmented Reality (AR) can be used as a final assembly guidance medium in assistance of the
shop-floor operators, through the use of virtual assembly instructions. The techniques developed
are provided as tools in support of the complex tasks, related to the assembly and are tested in a
realistic test-case. The test case highlights the potential of the techniques and the usability and
flexibility they provide to an engineer.

3.6 Human-Computer Interaction in AR

Although presenting AR content to users is a challenging task, it is also important for AR objects
to be interactable. Most Mobile applications utilize the touchscreen for interactions as a simpler
solution. There are also other more immersive solutions using Machine Vision or Voice recognition.

(a) Gesture recognition (b) Gesture dataset

Figure 42: The Gesture recognition proposed in [53]

Park et al. [53] propose a new method of hand-tracking for gesture detection. Tracking is
done from a first-person view of a head-mounted camera (Figure 42a), which attempts to track
the user’s hand and recognise pre-defined gestures while the hand is in motion without the use of
any markers. The gestures they aim to track are the letters of the American Sign Language (ASL)
(Figure 42b).The ASL is composed of 26 different hand poses which alternate in quick succession,
so a system that accurately tracks the ASL can be effectively used in multiple complex scenarios.

The solution proposed by Park et al. combines two tracking methods, a Convonutional Neural
Network (CNN) and model-based tracking, as shown in Figure 43. Before sending any data to these
methods the input image is preprocessed to segment the hand from the background, while a blue
wristband was used to cutout the hand from the wrist. From the segmented image, a bounding
box was created around the hand, which is sent to the CNN for classification. The Model-based
tracker uses data from a depth camera at the same position of the bounding box. The output of
the CNN is used as a second input to the Model-based tracker which selects the best matching
option based on 26 hand features for each of its inputs.
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The evaluation of the proposed method showed good results, even in fast moving hand gestures,
except movements where the hand rotated around itself, where the position of the fingers and the
depth of the hand remained unchanged.

Figure 43: Park et al.’s system architecture

Other work such as [54] combine marker-based tracking and markerless tracking. The proposed
system scans the environment using markers, while tracking the user’s movements and gestures
using a markerless Machine Vision based approach.

The proposed system provides both written instructions in AR and 3D guidance and the user
is free to use any of these two types of guidance at will. The user also interacts with AR content
using simple mid-air intuitive gestures. Results showed mixed results between written AR or full
3D guidance, but the proposed system outperforms standard digital documentation in a non-AR
environment.

Figure 44: Wang et al.’s system architecture
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Figure 45: Gesture recognition used in [54] for 2D elements (Left) and 3D elements (Right)

Results show that the proposed system outperforms previous work on the same tasks, while both
AR guidance systems vastly outperform standard digital documentation in a non-AR environment.

(a) Main Menu (b) Cursor in FS-Mode

Figure 46: AR interface used in Holo-Board [55]

Holo-Board [55] presents a distributed system architecture (Figure 47) for use in AR Applica-
tions. This architecture aims to separate Machine Vision Applications from graphics applications
and link them through a common channel. In the demo application of Holo-Board ARToolkit is
utilised to track a 2D square marker which is placed on a ring worn by the user (Figure 46b).
By tracking this marker the user can move a cursor and interact with superimposed AR elements
(Figure 46a) in a similar manner to a computer.

Figure 47: Holo-Board’s system Architecture [55]
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Holo-Board also states that a big problem mobile AR applications have is the lack of ways to
interact with the user. Cardboard AR apps are a useful cheaper solution compared to AR HMDs,
which cost thousands of dollars and are still in prototyping stages. By using the proposed architec-
ture a Machine Vision programmer can create a generic tracking program which streams tracking
info in a predefined format. Graphics developers can then use any Machine Vision algorithm with
minimal to no changes in their code.

3.7 Interactions in AR versus VR

As both VR and AR are widely used in education and hands-on training for various cases, it is
important to compare the usability of the two technologies. Kirakosian et al. [1] compared the use
of VR and Ar in a dance training exercise for Salsa.

The VR application used a virtual avatar who could both show the user the correct steps of
the dance but also dance alongside the user. The virtual avatar can both dance on his own as well
as respond to the user’s movements as a follower dancer by responding to the motions of the user’s
virtual hands and blending the pre-built dance motions with Inverse Kinematics (IKs) to make a
realistic visual of the virtual avatar holding the user’s hands while dancing.

The virtual avatar was modeled after a real-world Salsa dancer named Alberto Rodrigues who
was scanned using an Artec Eva White scanner device. A Microsoft Kinect was used for
Motion capturing of a real dancer’s movements while dancing. The motion of the real dancer was
imported into Motion Builder, where the captured motions were optimized and rigged to a virtual
skeleton and extracted as avatar animations.

The Dance training app was designed as a VR and a separate AR application made in Unity
Game Engine. The use of the Unity Game engine allowed the easier integration of the Oculus Rift
SDK and Magic Leap SDK into the project while re-using the same assets and execution code with
minor changes to the input handling.

In VR, the user could see their own hands inside the virtual scene with the use of a Leap
Motion tracking device mounted on the HMD itself (Fig. 48a). The Leap motion was used
instead of a traditional controller in order to give the user a stronger sense of immersion and
freedom by leaving the user’s hands-free. In order to make the two technologies more comparable
a real-world environment was pre-selected and then the virtual scene was designed in the VR
application to resemble the room of the real world (a room with white walls and wooden floor).

The AR Application used Magic Leap’s SDK for hand tracking of the user’s palm as well as
Magic Leap’s gesture recognition database to recreate Leap Motion’s interactions, for example, the
”pinch motion” is the transition between two distinct gestures: the ”C” hand pose and ”Pinch”
hand pose. The hand position switched from the hand positions given by Leap Motion to one of
the 15 distinct hand positions tracked by Magic leap, specifically the ”palm center” position of
each hand. The virtual scene and artificial lighting of the virtual scene were completely removed
and were replaced by an invisible mesh geometry extracted from Magic Leap’s spatial scanning.
In AR, no virtual environment was designed, instead the scanned mesh of the environment was
captured through the Magic Leap One SDK to detect the floor and walls and the virtual avatar
was placed inside the real environment (Fig. 48b). The virtual avatar was able to interact with
the environment through collisions with the scanned world geometry while being able to follow the
user through Unity’s Navigation Mesh AI system to walk realistically on any surface.

(a) VR setup (b) AR setup

Figure 48: Experiment setups in VR and AR [1]
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The training process for the user consisted of three steps. Initially, the user was shown the
basic controls of the virtual environment, where the user could use various gestures to interact with
virtual interfaces, such as ”pinching” a button would initiate a ”click”, or that the volume slider
could be adjusted by touching and moving the indicator on the slider. Next, the user was shown
the Basic steps of the dance where the virtual dancer showed the dance moves one by one and the
user was prompted to follow along. Finally, when the user felt confident they were prompted to
dance with the virtual dancer. The user was then prompted to ”grab” the virtual avatar’s hands
and start dancing. The virtual avatar followed depending on how the user dances by following
the user’s ”leading” through the user’s hand positions. The virtual avatar kept holding onto the
user’s hands while performing the dance animations through blending of Forward Kinematics (FK),
which are the pre-made dance animations along with an Inverse Kinematic (IK) animation that
keeps the dancer’s hands attached to the user’s hands without making the avatar’s moves look
unnatural.

Figure 49: Comparison between the Oculus rift and Magic Leap One FoV [1]

The results of the experiments showed four key remarks:

• (1) In terms of task load index, users felt they trained more successfully and with less effort
in VR. Through verbal feedback this is believed to be due to the limited AR FoV (Fig. 49).

• (2) In terms of usability ratings, users expressed that the VR dance training system was more
accurate and responsive as well as more fun. Potentially, the complete immersion of the VR
training system, excluding real-world distractions played a role in evoking higher ratings of
perceived fun that in AR.

• (3) Efficient navigation in VR was problematic. Although users were aware of the wireframe
that indicated the edges of the safe play area, users were still hesitant in navigating the play
area due to fear of falling or being tangled by the Oculus Rift’s wires.

• (4) High variance of responses for the AR dance training system was present but not for VR.
This was mostly a result of personal preference. Certain users were more hesitant to use the
VR display and thus were really welcoming to the less restricting AR HMD while others,
especially those proficient in VR, found the graphical quality and limited FoV of the AR
display extremely limiting for long term use.

In summary, while theoretically AR setup allows for more freedom of movement with faster and
more accurate gesture recognition, interacting with large objects near the user, such as a human-
sized avatar is less than ideal. Thus, AR objects should be scaled accordingly to accommodate for
the limited FoV when using AR. In order for an interface to be clearly visible without covering a
large part of the available FoV a general heuristic rule is approximately the size of the palm of a
hand in 1m distance away from the user.

3.8 AR interface types

AR at its core has various forms. Mobile AR uses the smartphone as a handheld device the user
carries with him, while HMDs, like Microsoft HoloLens, use a full first person perspective around
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the user. Other more dedicated systems present AR content on screens or projections on top of
the real world, requiring a more dedicated setup, while not requiring the user to wear or carry any
devices.

There have been many studies that have compared using HUDs to HDDs, for example in driving
tasks. Doshi et al. [56] conducted a study with the windshield as a display and using AR elements
to convey an alert when the driver drove above the speed limit. They found that user’s had a
faster reaction time using the HUD than when using a HDD. Similarly Liu and Wen [57] found
that truck drivers were able to control their speed better when shown speed information in a HUD
rather than a HDD, with a 1.0 second saving in reaction time. Medenica et al. [58] used a driving
simulator to measure performance with an AR HUD compared to two types of HDD navigation
aids. Using eye-tracking technology they found that with the AR HUD drivers were able to keep
their eyes on the road significantly longer than with a HDD and experienced significantly less
workload. Other experiments include the work of Charissis et al. [59] that found an AR HUD
produced significantly less collisions in low visibility conditions than a HDD, and Kim and Dey [60]
showing fewer navigation and driving errors with a novel AR HUD compared to standard HDD.

Some research has also been conducted on comparing AR to non-AR interfaces for the same dis-
play type. For example, Park et al. [61] compared driver performance when using world-registered
arrows to screen-registered 2D icons on the HUD. They found that drivers had a significantly faster
response time to lane changing information when shown with the world-registered cues. Similarly,
Sawano and Okado [62] conducted a study comparing an AR HDD to a more traditional HDD with
non-AR map interface. Users found the AR HDD interface to be more understandable, although
there was no significant difference in driver performance.

A newer study by Jose et al. [63] (see Fig. 50) compared three types of AR displays Heads-Up
Displays (HUD), Heads-Down Displays (HDD) and Head-Mounted Displays (HMD)

(a) HDD (b) HUD (c) HMD

Figure 50: The three Simulated AR views compared in [63]

The goal of this paper was to compare the three types of AR displays inside a driving simulation.
Specifically, Jose et al. presented information such as driving directions, vehicle speed and if the
driver exceeded the speed limit. Using a simulation they asked users to drive through specific routes
while giving them all necessary route information through each of these displays. The simulation
would measure their performance with factors such as errors made while driving, time spent over
the speed limit as well as reaction time to sudden changes.

Overall, the results indicate HUD as the best in most area, yet each display having their own
strength and weak points. In terms of navigational errors, participants performed better while using
HUD compared to the other two displays. It is also interesting to note that there was a statistically
significant reduction in the number of errors when using the HDD over the HMD, despite the HDD
requiring the user to look down and away from the road. Despite being statistically better than the
HMD at avoiding navigational errors, the HDD falls short in both the number of times it exceeded
the speed limit and the time spent above the speed limit. In order to test how much the display
forces the user to take his or her eyes off the road, virtual characters were added at places along
the map. The HUD clearly wins over the HDD in this case, since with the HDD the user is busy
with his or her eyes off the road and does not notice the models in the surroundings.

It is also worth noting for the HMD, the navigational instructions were not provided based on
relative position of the head orientation, making it slightly more difficult to understand them. The
size of the display areas for each AR Display condition was controlled to be the same, which could
impact the results for the HUD and HMD.

When considering everyday interactions that use computer-aided systems it is important to
define the purpose of each use and model them into categories based on their intent [15]. One
such classification separates computer-aided technologies based on the intent of the user during
the interaction.
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Figure 51: The basic communication model for computer-aided technologies [15]

In the proposed model (see Fig. 51), the interactions are separated into interactions based on
the ”ground” of the interaction as well as the expected target.

The ”ground” of the interaction is defined as whether the interaction is dine on the ”foreground”
of the human consciousness or the ”background”. Foreground tasks are defined as those where
the user’s attention is focused on the target and makes direct effort to communicate with them.
Background tasks on the other hand are those which the user is aware are happening, but the user
did not make a direct effort to notice, e.g. being aware someone is talking on the phone on the
next room or being aware an automatic light was turned on when entering a room but making no
direct interaction to light it using a switch (which would be a foreground act).

The target of the communication is either another human or an automated computer system.
Human-Human interactions are tasks where the user communicates with another human through
a computer system such as a video call or an email while Human-Computer interactions are those
where the user communicates with a computer system such as running a program through a
Graphical User Interface (GUI).

Buxton states that the importance of the proposed model lies not in simply classifying inter-
actions into one of the four quadrants, but enabling seamless transitions between them based on
the context of the user’s actions. For example, if the user wants to start a telecommunication
with another human but they are not directly available, they should be able to ”setup a call when
available” which would run on the background and transition to the foreground when the call is
accepted by the other side. Similarly, a computer application may monitor the environment and
update it’s own state while running on the background without directly catching the attention of
the user if it is on the background of their awareness.

3.9 Context-aware and adaptive AR

Nowadays, the increase in virtual interfaces on multiple devices has become the norm and has
allowed us to monitor multiple systems through virtual User Interfaces (UIs) and increase produc-
tivity. But, this increase has also led to the realisation that different UIs compete for the user’s
attention, ultimately leading to distracting them constantly [64]. Vertegall proposed the imple-
mentation of Attentive User Interfaces (AUIs) which aim to focus the user on their task instead of
distracting them (see Fig. 52).
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Figure 52: Attentive UI interface design [64].

AUI gathers inputs passively to determine the user’s attention and then ranks virtual commu-
nications based on importance according to the active task and then presents the most appropriate
information using a turn-taking system by showing information progressively when they capture
the user’s attention. AUI does not need to fully predict the user’s intentions to achieve this,
instead the user can be prompted by a simple signal on their periphery and only when they re-
spond to the given signal the virtual information is presented. Such interfaces are also known as
”Attention-based” or ”Awareness-based” systems.

In addition, AUI can also use the user’s capacity for attention to further optimise the interfaces.
Analogous to the cocktail party effect, where the user can focus on one active speaker amongst
a noisy environment, AUI can enhance the information presented based on the user’s attention.
Perceptual UIs are one form of AUIs that aim to optimise human-computer interactions through
verbal and nonverbal communications. Similarly, Context-aware UIs optimise interactions through
providing the most relevant information to the users. The problem with these interfaces lies mostly
in trying to model and understand the user’s intentions based on their actions and their context
as well as finding an optimal way to present such information.

One solution to retrieve context is the use of eye tracking. McNamara et al. [65] utilise eye
tracking to introduce spatial and temporal context to augmented information, allowing the system
to show only the most relevant augmented interfaces (Fig. 53).
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(a) (b)

Figure 53: Information placement with (a) and without (b) spatial context [65]

The results when comparing context-based and context-less showed users made fewer errors
in information retrieval when using context-based visualisation compared to context-less. Further
studies [66] showed that in more noisy environments (e.g. a supermarket aisles) context-less pre-
sentation proved to be more accurate in information retrieval with faster response times and higher
accuracy rates, but the experiment was performed in a VR simulation where the limited FOV and
performing a real world task are omitted.

Davari et al. [67] adapted virtual interfaces by repositioning or adjusting the transparency
of virtual interfaces to allow the user to focus on two independent tasks simultaneously, one on
the real world and one on the virtual objects (Fig. 54). During the user study, participants
intuitively tended to focus primarily on the real world task and leaving viewing virtual information
as secondary, even when asked to do the opposite. Out of the two interface adjustment techniques
proposed, participants preferred adjusting the transparency of virtual interfaces rather than moving
them, likely due to increased task load to relocate interfaces when they were moved and increase
in head movements to view virtual interfaces.

Figure 54: Adaptive virtual interfaces for use while performing real world tasks [67].

Context-aware interfaces have also shown promise in manufacturing guidance when compared
to training in VR or traditional paper-based guidance [68]. Zhu et al. designed a system that
could adapt the presentation, including color and transparency, as well as content depending on
the active task during a maintenance task.
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(a) (b) (c)

Figure 55: Context-aware AR maintenance system [68].

Although the system was proven efficient when it was published, compared to newer systems
it has some major drawbacks. The context of the application is based on pre-scanned geometry
around a black and white marker and each new context requires rebuilding the whole application
from scratch including scanning the 3D environment and redesigning the virtual interfaces every
time. In addition, the color and transparency were hand picked by the user instead of dynamically
adapting based on context. Above all, the interfaces were designed around performing a single
task at a time and as such they were placed in a way that occludes multiple real world objects,
making it a potential safety hazard.

3.10 Glanceable AR and eye tracking

Glanceable AR is defined as ”an interactable paradigm for accessing information in AR, where
information resides at the periphery to remain unobtrusive, and it can be accessed at a glance
when needed.” [14]. Lu et al. proposed two types of Glanceable interfaces, one where virtual
information is always visible and can be accessed with a simple eye or head movement and another
where virtual objects were ”summoned” through user interaction using eye tracking. In both cases,
users were able to view the virtual interfaces while following a virtual avatar around the room,
proving Glanceable interfaces are able to provide information without distracting the user.

(a) (b)

Figure 56: Glanceable AR. (a) Peripheral interfaces. (b) Gaze-summoned interfaces

Further studies proved the effectiveness of Glanceable interfaces which can be anchored on the
real world for stationary tasks and also follow the user when needed for mobile tasks [69]. The
combination of Glanceable interfaces with context-awareness showed faster information retrieval in
social contexts, such as when conversing with another person that requests some information that
can be obtained from the virtual interfaces e.g. the weather [70]. Glanceable AR also tends to be
more socially acceptable than other approaches such as using a smartphone during a conversation,
due to the interactions being done either indirectly or through eye motions.

Lindbauer et al. went one step further by combining the concepts of Glanceable and context-
aware interfaces. The combination of Glanceable and context-aware interfaces can lead to adaptive
interfaces that adjust both their visuals and their content based on the user’s cognitive load [17].
By detecting the activity the user is performing, the adaptable system adjust the quality of virtual
interfaces present, showing more virtual interfaces as the cognitive load is lower (Fig. 57). When
the cognitive load increases, the system selects the most relevant interfaces and hides irrelevant
information to reduce potential distractions.
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Figure 57: Adaptive interfaces based on cognitive load [17].

By utilising spatial data, the system can reposition interfaces in a way that minimises real world
occlusion and places relevant information closer to the user’s center of attention. Furthermore, by
designing interfaces in multiple Levels of Detail (LODs) (Fig. 58), the system can expand relevant
interfaces, showing additional information when necessary.

Figure 58: An Email interface designed in 5 Levels of Detail (LODs) [17].

Through their experiments, Lindbauer et al. noticed that users often memorised the positions
of the interfaces and instinctively looked towards their last known position, thus repositioning the
interfaces actually increased cognitive load. In addition, while using multiple LODs was favorable,
users preferred when the LODs were selected based on their input, either directly by interacting
with them or indirectly when their gaze was directed towards the interface, rather than when the
LOD was automatically selected based on context.

Pfeufer et al. validated the effectiveness of Glanceable, gaze-adaptive interfaces in three distinct
scenarios [71]. First, augmented User Interfaces (UIs) were overlayed during a conversation around
the speaker’s head providing additional context to the conversation (Fig. 59a). The virtual UIs
expanded when the user looked towards them and shrank when the user’s gaze returned to the
speaker. Second, a virtual tree of life was presented dynamically and the user could expand its
branches as they pleased using eye tracking interactions (Fig. 59b). Third, a virtual shopping shelf
was shown in front of the users who had to identify and select the correct products according to
their shopping list using eye tracking interactions (Fig. 59c).

(a) Conversational UI (b) Tree of Life (c) Shopping Shelf

Figure 59: ARTention, Gaze-adaptive Glanceable interfaces in three scenarios [71].

These three scenarios were specifically chosen as the use cases of each differed significantly. On
the conversational UI the goal is to keep the focus of the user on the real world, on the tree of life on
the virtual content, while the shopping shelf was a mixture of both. In addition, the conversational
UI and the tree of life focused more on viewing virtual information while the shopping shelf required
both viewing information and interacting correctly with virtual objects.
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Results showed positive feedback when viewing information from the virtual objects, but par-
ticipants faced difficulties when interacting with virtual objects. All interactions followed the
gaze-dwell principle, where the user looks at a specific object for a few seconds in order to interact
with it. On the tree of life, which consisted of multiple small interactable objects multiple nodes
were often in close proximity with each other and the system could not correctly determine the
correct focal point causing misinteractions. On the shopping shelf, participants were required to
look at each product’s labels to identify the correct ones, but due to the nature of the gaze-dwell
interactions they often interacted with the same objects after a small delay. The latter issue is
commonly known as the ”Midas Touch” problem, where an eye tracking system cannot differen-
tiate between ”viewing” and ”interacting” with virtual objects. Furthermore, when tested with
different gaze-dwell delay times to find the optimal time for interactions, the results showed that
there is no globally acceptable value and it is purely personal preference.

Based on the aforementioned results, we can surmise that the effectiveness of a Glanceable AR
system significantly depends on the accuracy of the underlying eye tracking system. While one
solution is to simply wait until eye trackers improve over time on a hardware level, it is equally
important to optimise virtual content in order to minimise the necessary accuracy required for a
system to be usable without significant issues.

With the combination of marker-based detection with the Magic Leap’s integrated eye tracking
Jing et al. [72] showed that in a collaborative scenario even when the users had a negative view of
the eye tracker’s accuracy when viewing their eye tracking cursors (with an offset around 3-5 cm,
which was similar to the distance between the markers of the experiment), they were still able to
collaborate more efficiently when they both saw each others’ cursors (Bi-directional collaboration)
when they used eye tracking than when they used hand tracking to move their cursors.

Figure 60: Different eye tracking interactions for AR [73]

Lu et al. [73] on the other hand explored the effectiveness of different interaction types in
Glanceable AR that primarily rely on eye tracking (Fig. 60). In their work, they evaluated five
different interaction techniques on two tasks: one walking task and one sitting. The five interaction
techniques include:

• Fixation glance (FG) (Fig. 60 b) - Converge binocular gaze at the depth of the interface.

• Head-depth (HD) (Fig. 60 c) - Focus at an interface and lean backwards 3mm to interact.

• Hand-Overlay (HO) (Fig. 60 d) - Place hand slightly behind the virtual object.

• Blink (BL) (Fig. 60 e) - Blink twice to interact.

• Gaze-Dwell (DW) (Fig. 60 f) - Position gaze on a virtual object for 1 second to interact.

Results showed no clear superior choice among the five with different interactions being viable
based on the scenario. When ranking each interaction based on preference, HD was chosen as
the most preferred interaction followed by DW and BL on the walking task, while FG was the
most preferred interaction followed by BL and DW on the sitting task with HD being the most
disliked. In terms of false activation rates, DW has by far the highest false activations with rates
of over 70% in both scenarios, followed by FG. HO and HG had the lowest false activation rates
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at approximately 10% while BL was slightly higher in both scenarios. Finally, in terms of social
acceptance BL was the preferred interaction type in all social scenarios followed by DW with the
other three having significantly lower social acceptance.

In summary, Gaze-Dwell and Blink-based interactions seem to be the most widely accepted
interactions across different scenarios and social acceptance. While other interactions still have
merits, such as a lower false activation rate or are preferred in different scenarios, Gaze-Dwell and
Blink-based interactions are widely accepted in both walking and sitting tasks in addition to being
more socially acceptable.
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4 Machine shop training

In this chapter we will analyze our first work in designing a machine shop education environment
using a serious game [2]. The serious game was developed with guidance from the Microma-
chining and Manufacturing Modeling Lab (M3 lab) of the School of Production Engineering an
Management of the Technical University of Crete, supervised by Prof. Aristomenis Antoniadis. De-
velopment of the Serious game was accomplished by Grigorios Daskalogrigorakis, Salva Kirakosian
and Prof. Katerina Mania of Team Surreal of the school of Electrical and Computer Engineering
of the Technical University of Crete.

The M3 lab provided the 3D object models, 2D documentation in addition to theoretical guid-
ance regarding manufacturing processes and manufacturing education. Salva kirakosian was re-
sponsible for 2D and 3D design for the 3D virtual machine shop, while Grigorios Daskalogrigorakis
was the gameplay designer and developer regarding the Gamification of the manufacturing process.

The serious game was used as an educational tool for teaching G-code programming remotely on
a 5th year course of the school of Production engineering and Management for over 150 students
during the pandemic in the year 2021.The serious game served as a first step in streamlining
manufacturing tasks in a streamlined format as gamified missions. These gamified missions were
later optimised for use in AR guidance using Holo box.

4.1 Motivation

Training new personnel for Computer Numerical Control (CNC) manufacturing is often a tedious
operation. Practice under real-world machinery is expensive, consuming vital system’s resources
and, in some cases, dangerous for the trainee. G-code programs guide the machining process,
written in a computer or machine controller and loaded to a machine. A safer alternative for
training uses simulated factories or training environments.

The concept of a digital factory can be defined as an interactive 3D environment supporting
modeling, communications and operation of manufacturing. Previous studies indicate that virtual
training is effective as the trainee is guided through complex product manufacturing. While there
are plenty of gamified virtual simulations that aid in manufacturing training and mainly focus on
safety tasks or manual operation, the task of creating a serious game focused on writing G-code is
technically challenging. Potential trainees often have no previous programming knowledge. It is
significant that they learn how to write efficient G-code programs, not just correct ones.

This works presents an innovative desktop-based CNC machining training procedure, created as
a serious game for CNC manufacturing training. The proposed serious game prepares the trainee
in writing G-code and setting up virtual machines for completing milling and turning tasks. The
serious game environment offers a complete training procedure, based on the flow of a modern game.
The trainee is offered tutorials and step by step guidance and is then asked to complete further
manufacturing tasks using the knowledge acquired. Based on the target audience, the trainee
can learn either milling or turning procedures independently. Our training procedure works as a
standalone training system without the need for a supervisor or trainer to be present.

The trainee is assigned to write the correct G-code while undertaking turning or milling mis-
sions known as tasks. The trainee reads the provided documentation and the mission specifications
and then sets up the milling or turning machinery with the appropriate cutting tools and manufac-
turing materials for each mission. The game presented is an introductory step towards innovative
CNC manufacturing training for trainees with minimal or no prior knowledge, such as bachelor
engineering students without an engineering degree. They are going to evolve into a new generation
of technically proficient manufacturing workers.

4.2 The manufacturing process

Controlling a real-world CNC machine is possible through three methods. The simplest one is
the use of a Numerical Control (NC) unit, which allows for manual control through the use of
an interface of buttons and controls. The second method is the use of commands written in
a predefined format named ”G-code”. G-code programs are written on a computer or machine
controller and loaded to a machine. The final method is the use of Computer-Aided Design (CAD)
and Computer-Aided Manufacturing (CAM) software that convert a virtual 3D design into G-code.
Among these three methods, using an NC unit is optimal for simple tasks, while CAM programs
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are used by 3D designers and not average users. G-code is a simple and usable low-level command
set for the creation of both simple and complex objects.

By using G-code, an operator instructs a machine how to manufacture a desired object. This
involves instructing the machine in relation to which motors to move, where to move and what
path to follow. The most common use cases include cutting jobs, such as milling or cutting where
a tool or cutting material is moved through a tool path cutting away unwanted material while
leaving the desired work piece. Similarly, instead of cutting tools the G-code can also be used in
additive manufacturing machines, such as in 3D printers that photo-plot objects instead of cutting.

Milling and turning are two of the most widely used machinery in manufacturing. Turning
machines use a non-rotary cutting tool that moves more or less linearly along 1 to 3 axes of motion
while cutting a rotating stock material. Cutting can be performed on the outside or the inside
of the material to produce tubular components of various geometries. Milling on the other hand
advances a rotary cutting tool into a stock material in varying directions on several axes and with
varying feed rate.

4.3 Traditional manufacturing education

In order to design an innovative game for efficient machining training, an extensive interview ob-
taining feedback concerning machining educational processes was conducted involving university
faculty in the M3 lab, where undergraduate and postgraduate students are educated in the field
of Mechanical Engineering. During this interview, information regarding standard teaching meth-
ods was obtained involving theory and documentation and the limitations of education through
software-based CAD-CAM simulation were discussed.

Figure 61: Milling mechanical blueprint

Researchers in the lab described the traditional hands-on procedure of training undergraduates
using G-code and CNC machines, where each student performs a hands-on operation to manufac-
ture a requested piece on a milling or turning machine. The manufacturing task is performed by
following a mechanical blueprint (see Fig. 61) to produce a finished product with guidance from a
supervisor.

As the number of students entering university education in machining exceeds 150 every year
and the number of milling and turning machinery available is limited, real-world training in man-
ufacturing is limited. In addition, the risk of a workplace accident from an inexperienced student
is high, thus every student requires constant supervision. In most cases, during the course of a
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machining lesson, the students use simulators to write G-code. Simulators, though, lack the sense
of an actual machine shop and students are often overwhelmed when performing a task on actual
machinery. In addition, we obtained hands-on experience inside an actual machine shop in the
manufacturing floor of the M3 lab.

Figure 62: The training procedure

After the interview, a brainstorming session was held where we streamlined the steps of the
manufacturing process in a gamified scenario (see Fig. 62). Overall, we can simplify the process of
manufacturing in three distinct steps: Receiving a manufacturing request from a client or professor
with the appropriate data, writing the G-code that produces the requested object and finally adding
the appropriate cutting tool and cutting material to the machine. While there are other steps such
as performing simple maintenance to a malfunctioning machine or cleaning the machine after each
use, we decided to omit such side steps for the sake of simplicity and focus on the educational
processes involving these three distinct steps.

Figure 63: Cutting path diagram

When a client or professor in a machining laboratory requests an object, they provide the em-
ployee or trainee with the shape of the requested object, the material and the relevant quantity.
The shape of the object is described in a 2D mechanical drawing (see Fig. 61) depicting a rep-
resentation of the object through views and providing the required dimensions. The material of
the object is extracted from the constraints imposed by the object’s usage, e.g. tension, elasticity,
heat resistance etc, but the appropriate material and quantity is often chosen by the client. Based
on the requested material and blueprint details, the employee or trainee must determine the initial
parameters of the cutting procedure such as the maximum allowed spindle speed or maximum feed
rate, which are provided by the tool manufacturers for all given tools and materials. Next, the me-
chanical drawing is translated by the employee into G-code, which consists of simple motions, such
as a sequence of straight line commands or circular commands (see Fig. 63). For more complex
objects a CAM software is required.
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Figure 64: G-code documentation

After the cutting path is determined, the G-code programming step is the translation of each
step of the execution process to the appropriate G-code commands. Since each G-code command
requires different parameters and is a low level programming language, the process is a tedious
step by step lookup through a manual (see Fig. 69) so that the correct syntax for each command is
determined, becoming easier through practice and memorisation. The evaluation of the G-code is
accomplished through CAM software such as Siemens NX, which simulates the cutting procedure
to check its correctness and then translates the code into native cutting motions based on the
manufacturing machine’s specific model.

Finally, the process is completed by physically adding the appropriate tool and material to
the machine and executing the program. The employee then monitors the cutting process making
necessary adjustments, such as adding new cutting materials after each cut or adding new cutting
tools after they are worn out.

4.4 3D CNC Machine shop

Figure 65: The virtual machine shop

The 3D CNC Machine Shop is the core environment (see Fig. 65). The design of the space was
inspired by a real-world machine shop layout and adjusted in scale and look to be more visually
appealing to the users. An alternative 3D machine shops was also presented using realistic scale

57



and visuals, but the assistants from the M3 lab preferred the stylised environment that offered
stronger visual satisfaction. They expected that visual satisfaction would offer incentive for more
’play time’ and, thus, training time without exhausting the trainee.

Figure 66: The virtual storage and shop

The virtual machine shop comprises of three key areas required for gameplay. The first is an
office inside which the trainee can get machining training missions and write G-code on a virtual
computer. The second area is the main manufacturing floor where the milling and turning machines
reside. The third area is the storage, inside which the trainee can go and retrieve cutting tools
and materials (see Fig. 66). Additional areas were filled with secondary objects such as a lounging
area or storage cabinets that are not essential to the manufacturing process but result in a highly
compelling and realistic gaming experience.

During the course of the training process, the trainee roams around the machine shop and inter-
acts with specific User Interfaces (UIs) allowing reading documentation, obtaining new missions,
writing the G-code, buying new tools and materials as well as slotting tools and materials inside
machines.

4.5 The training procedure

Figure 67: An overview of the training procedure proposed. The player accepts a mission (a),
writes the correct G-code (b), loads cutting tools and materials on the machine (c) and finally cuts
the requested object. The result of the final object is then shown inside the milling or turning
machine (d).

The training starts from either turning or milling processes. The trainee selects to start with
either a turning machine or a milling machine at the start of the game. They can unlock more
machines of the other type during the course of the game if they desire. Initially, the trainees are
given instructions on how to play the game and interact with virtual objects. The first time the
trainees enter the training environment, they are greeted by a tutorial that introduces the basic
mechanics of the game. An animated tour of the virtual machine shop is presented including a short
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explanation of each key component of the factory as an engaging virtual tour of the factory. The
main machining tutorials follow including the first two G-code commands required to complete the
first missions. After completing the tutorial, the trainee accepts new training missions instructing
to manufacture various objects utilizing the G-code commands learnt.

After each mission is completed, the trainee is awarded with virtual ”Experience” and ”Gold”.
The trainee carries on completing missions of increasing difficulty based on their ”Experience”.
They can choose to unlock more machines of a different type, for example a new milling machine
or a new turning machine in order to continue their training by using ”Gold”. Each mission
is comprised of four distinct steps (see Fig. 62). The trainee initially accepts a new mission
which contains the request to manufacture a specific object. The trainee then proceeds to read
any appropriate documentation and write the correct G-code that produces the requested object.
When the written code is correct the trainee proceeds to the storage in order to purchase the
appropriate cutting tools and materials and then load them to the milling or turning machine on
the manufacturing floor.

Figure 68: The Mission Board interface.

Get mission. The trainee accepts a new mission through the mission board interface (see Fig.
68) by reading the mission description accompanied by the cutting path blueprint (see Fig. 67 a).
The mission description is also accompanied by the mechanical drawing (see Fig. 61) which can
be viewed by the respective button on the same interface. Through the same interface, the trainee
can also view the documentation interface through a second button.
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Figure 69: The documentation interface.

Read documentation The documentation interface contains pages from a G-code textbook
as authored by faculty of the university machining laboratory, used as a reference material for
undergraduate students (fig. 69). The documentation contains a selection of tabs, each providing
documentation regarding the general operation of the machines, a specific G-code command syntax
or a full example of a specific G-code command. The pages shown in the documentation tab
are filtered, showing only the pages including related information for a requested mission while
also highlighting any unread material, therefore, helping the students focus and understand the
necessary documentation without having to search for it in an effort to reduce frustration.

Figure 70: The G-code interface. Programming interface including the G-code input field on the
left and mission info on the right.
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Write G-code. The G-code programming interface includes a code input interface along the
mission description interface (see Fig. 70). During prototyping, user feedback communicated that
following an optimal tool path shouldn’t be optional. It was significant that the trainees learn how
to efficiently write G-code, not simply correctly. As is, the initialization and ending of the G-code
is pre-written and the trainees are asked to write the central portion of the main cutting process
by following a given path blueprint. The only code that is, therefore, checked for correctness is the
core code of the main cutting process.

Figure 71: The G-code interface feedback after the ”Check” button is pressed.

The trainee can check the correctness of the code they have written and receive feedback in
relation to potential mistakes (see Fig. 71). The correct cutting path and useful information about
each mission are always visible to allow the trainee to view them while writing the G-code. The
trainees can try as many times as they need in order to complete the mission without any time
limitations or penalty or machine failure as in the real-world.

Figure 72: The tool shop interface. On the left panel various tools are shown, on the central panel
there is a visual representation of the selected tool along with a description. On the bottom side
there is a buy button with a selection related to the dimensions of the tool.
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Machine setup After the trainees have written and corrected their code, the final step is to
setup the physical machine for the process. The trainee is asked to add the appropriate cutting
tool and stock material on the machine, as stated in the mission description.

Figure 73: The material shop interface. On the left panel various materials are shown, on the
central panel there is a visual representation of the selected material along with a description. On
the bottom side there is a buy button with a selection related to the dimensions of the material
along a quantity slider for buying multiple at once.

The trainee can walk around heading for the storage in order to buy the appropriate cutting
tools (see Fig. 72) and materials (see Fig. 74). The trainees, then, interact with the actual CNC
machine and ”slot” the tools and materials on the machine before executing the code (fig. 67
c). Allowing for the trainee to walk around the machine shop and interact with machinery is not
necessary for G-code training but it provides trainees with a higher sense of immersion. Interacting
with machinery and receiving minimal feedback while executing a program allows the trainees to
feel a higher sense of accomplishment as opposed to displaying a simple congratulatory message.

Figure 74: The player and machine inventories. On the left and central column are the player’s
tool and material inventories. On the right is the machine’s inventory. Each tool and material has
a button to load it to the machine or unload it from the machine.
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4.6 Evaluation and results

The serious game was evaluated on a short-term pilot test. Participants were selected to include
6 experienced users in manufacturing from the M3 lab as well as a class of approximately 150
undergraduate students with minimal to no previous knowledge. The participants were asked
to play at their leisure in the span of 2 months and complete at least 13 out of 43 available
manufacturing missions. Participants then filled an online questionnaire regarding their experience
along with sending their save files for evaluation.

Undergraduate students were also given printed versions of 10 missions and were asked to
solve the same missions in AutoCAD and submit their solutions. In addition, they were asked to
compare the mental and temporal demand as well as the enjoyment of these two methods.

Participants showed they preferred the virtual environment for multiple reasons. Firstly, par-
ticipants liked it when they had step-by-step guidance in every step when completing a mission
as well as the direct feedback when writing G-code in the serious game compared to running the
AutoCAD’s simulation and manually comparing the requested blueprint with the extracted 3D
model. Secondly, participants favored the streamlined approach given in the serious game’s mis-
sion compared to the free-form text tasks written by hand. After completing a few missions, the
streamlined gamified format of the descriptions made it easier to read and notice subtle differences
between missions. Finally, participants were more eager to complete more missions inside the se-
rious game with a vast majority of students competing all 43 available missions. Comparatively,
participants mentioned they took 2 to three times as long to solve and check their solutions using
an AutoCAD simulation, and even then some students sent incorrect solutions with most students
sending fewer than half the solutions.
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5 Holo-Box: Level-of-Detail Glanceable Interfaces for Aug-
mented Reality

In this chapter we analyze the initial implementation of our work. The main motivation for this
work was to combine the gamified mission format presented in G-code Machina [2] with Glanceable
AR interfaces [14] in order to provide realtime guidance inside the manufacturing workspace using
AR in a streamlined gamified manner.

Although this work had positive feedback when published [3] its usability was limited by issues
regarding the Magic Leap’s eye tracking accuracy. These issues were identified and corrected during
the course of this work for the final implementation.

5.1 3-LOD architecture

Holo-box employs a three Level of Detail (LOD) interface combination, with each LOD revealing
varying levels of information with varying levels of real world occlusion. Two of the three LODs
are 2D display-fixed interfaces which are always visible at a fixed position of the user’s visual field
and use eye tracking for interactions with virtual objects. The third interface is a 3D world-based
interface which receives hand-based inputs instead.

Figure 75: Holo-Box’s 3 Levels of Detail interfaces shown in the context of a machine shop. (left)
Simple Glanceable. (middle) Detailed Glanceable. (right) Holo-Box.

Initially, the user is presented with the first LOD interface and the usability of the 3-LOD
system is as follows:

Level 1: Simple Glanceable interfaces (SG) (Fig.75 left), are visible by default while the
user is focused on the real world, are compact and semi-transparent. Their purpose is to alert users
to changes of the virtual content. Interaction is initiated by gaze-activated virtual buttons, using a
small gaze-dwell delay. This short gaze-dwell initiates a transition to a Detailed Glanceable (DG)
interface.

Level 2: Detailed Glanceable interfaces (DG) (Fig.75 center), provide more complex in-
formation compared to SG UIs such as lines of text or images. DG UIs are less transparent than
SG. DG elements do not cover the entire FoV allowing for real-world spatial awareness. Using
gaze-dwell as input, the user can revert back to the SG interface or progress to the more detailed
Holo-box mode.

Level 3: Holo-boxes (HB) (Fig.75 right), are 3D interfaces summoned at will or established
at predetermined locations. The HB is an isolated space where the user can freely interact with
virtual content using direct input without environmental occlusion or safety hazards. HB interfaces
include both 2D and 3D content scaled to the size of the HB itself and to the user’s available space.

5.2 Machine Shop context

Holo-box is applied in the context of a machine shop. Users wear a Magic Leap while operating
milling or turning machinery accessing virtual content through the Holo-box’s UI. Augmented
content may vary from notifications to visualizing complex 3D objects for manufacturing. Virtual
interfaces use the presented three-tier non-intrusive LOD architecture while the user’s focus is on
the real world. Milling and turning tasks are presented gamified as ”missions” consisting of a 3D
or 2D object representation to manufacture as well as a textual description of the manufacturing
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process [2]. By using Holo-box’s architecture, missions are presented in a gamified manner as
follows:

Figure 76: Simple Glanceable prototype

Level 1: SG (see Fig. 76) Notification that a new mission is available which may pop up at
any time while the user is working. The ”eye” button transitions to the DG interface.

Figure 77: Detailed Glanceable prototype

Level 2: DG (see Fig. 77) Simple textual description of the mission, which is shown after
pressing a button on the SG interface. The placeholder text will be replaced by a textual description
of the given task. The ”eye” button transitions to the HB interface. The ”X” button reverts to
the SG interface.
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Figure 78: Holo-Box prototype

Level 3: HB (see Fig. 78) Detailed textual description of the request and an interactable 3D
model of the requested object to manufacture, shown on demand after pressing a button on the
DG interface at a Holo-box placed on the 3D space. The placeholder text is the same as the DG
interface. By interacting with the 3D object by hovering their index finger over the 3D model the
user can view additional information including measurements of the finished product as seen in
the mechanical blueprint of the object (see Fig. 61).

5.3 Issues and limitations

During the implementation of this prototype we found certain issues or limitations in our proposed
interface system, which we aimed to resolve during the course of our final implementation. These
issues included the following:

Inaccurate eye tracking. For our implementation we utilised the Magic Leap One’s on
board eye tracker. The eye tracker calculates an estimated fixation point in 3D space, based on
triangulating both eyes according to the Magic Leap’s initial calibration data, in addition to a
confidence value that grades the accuracy of the readings. In Unity, the fixation point is shown
as a 3D point in space which changes values only when a new fixation point is calculated with a
high confidence value, otherwise the fixation point remains stationary on its previous value. We
translated this 3D point into a 2D cursor which only moved horizontally and vertically towards the
fixation point and interacted with objects behind it regardless of depth. In addition, the cursor’s
movement was smoothed to follow the fixation point at a fixed speed in order to avoid sudden
jumps and rapid flickering (as seen in Fig. 76 where the blue circle represents the fixation point
and the green cross the cursor moving towards it).

In practice, the eye tracker was often unable to track the user’s eye effectively resulting in either
the cursor freezing in place making the user unable to interact with interfaces or the eye tracker
detected false eye movements and moved onto interactable objects resulting in false interactions.

In order to solve this, we used the Magic Leap Control for two functions. First, the user could
use the onboard trackpad to introduce a small offset from their fixation point by manually moving
the target when the tracking failed. Second, we changed our passive gaze-delay interactions, where
if the cursor remained on top of an interactable object for 1 second it would invoke an interaction,
with an active interaction by pressing a controller button.

Through this change we understood that the eye tracking cursor should have some secondary
form of movement to enhance its accuracy, and gaze-based interactions should be done through a
form of direct interaction instead of happening passively under specific conditions.

For the final implementation, the Glanceable interfaces were unlocked from the user’s field of
view and instead were fixed to the user’s surrounds at a set angle and a set distance. This way
the user can use a combination of eye tracking and head movement to move the gaze-based cursor
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in relation to the Glanceable interfaces. In addition, the Magic Leap’s eye tracker also detects
whether the user is blinking or not with one value for each eye. Thus, we replaced the clicking of a
button on the controller with the blinking of one eye, which resulted in a direct form of interaction
which only uses the user’s eyes.

Confusing interaction switch between interfaces. As mentioned before, users were shown
how to use gaze-based interactions with a delay for gaze-based interfaces, while the Holo-box used
instantaneous hand-based interactions, which proved to be disorienting.

In order to solve this, for the final implementation both interaction types were combined into
a universal system. Both forms of interaction used separate cursors, one for the eye-gaze and two
for each index finger and an interaction occurred when the user either started blinking with the
eye-gaze cursor on top of an object or when a hand cursor entered an object’s trigger zone. Both
actions performed an interaction with a small delay to minimise misinteractions and hand-based
interactions took priority over gaze-based interactions if both occurred simultaneously to minimise
conflicting cases. As a safety measure, hand-based interactions only work inside the Holo-box
interfaces and not on Glanceable.

SG LOD is underused. The initial concept for the SG interface was to show a generic message
notifying there was a change inside the AR interfaces, which provided no useful information without
opening at least one additional interface.

For the finished implementation this was changed to show an informative message that was
limited to a few words. The message informed the user of a new manufacturing task and included
the name of the product to manufacture and the material to use (e.g. ”12mm cog, copper”).
Additional information on the given task are received through subsequent interfaces, but this
amount of information could be enough to inform an experienced user that has manufactured the
same object before and memorised it.

Additional machine shop information was needed. Even with the proposed 3-LOD
interface system, the information given to the user was only relevant to the dynamic data of the
given task. In the previous work of G-code Machina [2] the users first received a manufacturing
task and then read the relevant documentation to gain additional knowledge required to complete
a mission.

In our work, users did not need to read documentation regarding the G-code, but they had
to find additional objects to complete their given task, such as manufacturing tools. Thus, the
Holo-box was extended to have additional content than included a visualised documentation in
addition to the given mission’s description. This documentation could also include 3D objects
which could be directly compared to their real world equivalents.
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6 Holo-Box: Multi-LOD Glanceable Interfaces for Machine
Shop Guidance using Blink and Hand Interaction

In this chapter we analyze the final design of our proposed Glanceable interface system Holo box
developed using Unity 2020 and the Magic Leap One AR Head-mounted Display (HMD).

The contribution of this work is threefold:

• Holo-box is a novel, gaze-activated 3-LOD system that initially launches with a compact
interface and progressively expands to reveal more information with each LOD. Two initial
LOD interfaces are controlled through glance (Glanceable interfaces), while the deepest level
of LOD is a 3D world-based interface. The interface enables the user to view simple guidance
information through the Glanceable interfaces or select to view the 3D interface to examine
more detailed information.

• Holo-box utilises a new interaction system that utilizes a combination of eye-gaze blinking
with a delay (dubbed blink-delay) for interacting with Glanceable interfaces to minimize
unintended interactions. Objects remain selected and interactable even if the eye cursor exits
their activation trigger unless another interactable object is selected. Glanceable interfaces
are also visually adjusted to minimize errors in interaction, deliberately placing buttons
on opposite sides of the interface. The 3D interfaces also allow hand tracking interactions
with a delay (dubbed hand-delay). Users can engage interchangeably between hand-delay
and blink-delay interactions; thus, interactable objects can be placed on any layout without
restrictions.

• The content shown in each LOD is adjusted so that each interface can be used to guide users
with different levels of knowledge on its own. In the most compact Glanceable interface, we
show only textual information, including the name and material of a given task. The second
LOD level of the Glanceable interface offers additional text and 2D images. The subsequent
3D interface includes 3D objects and multiple interactable buttons. The Glanceable interfaces
provide adequate guidance for experienced users, while the 3D interface provides additional
information for inexperienced users, using 3D models relevant, in our case, to manufacturing
tasks.

We evaluate Holo-box by employing an object selection task in a pilot manufacturing scenario.
The content displayed on all interfaces is used in presenting milling and turning manufacturing
tasks in the form of gamified missions. Experiment results show that users complete missions faster
and use more compact interfaces as they gain more experience. Our proposed interaction system
compensates for the eye tracker’s inaccuracies resulting in higher perceived accuracy on blink-delay
inputs than hand-delay.

The implementation can be separated into three chapters: (1) The interface design, (2) User
interactions, and finally, (3) Adapting the content of the interfaces to take full advantage of the
designed interface system.

Our proposed design aims to achieve three primary design goals (DG) that include:

• (DG1) The system must be usable while working on a real world task while minimizing
potential safety risks, improving on information retrieval and safety practices of previous
work in AR guidance in the manufacturing workspace [68].

• (DG2) The interface must be able to show varying amounts of information in different LODs
based on whether the user’s focus is on the real world or the virtual content. The user’s focus
is governed by direct interactions with virtual objects instead of automatically [17], reducing
potential distractions from shifting interfaces while the user’s focus is on a real-world task.

• (DG3) The interfaces should achieve accurate interactions and the Midas Touch problem
should be minimized when using gaze interaction. To mitigate the impact of the Midas touch
problem, a direct form of interaction, such as blinking, is preferred[73]. In dense interfaces
where interactable objects are prone to overlap [71], a different interaction paradigm should
be used such as hand-tracking. Speech control is not appropriate due to the noisy nature of
the manufacturing workspace.
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6.1 Interface design

Figure 79: Holo box. 3-LOD interface design. Level 1: Simple Glanceable - SG (Left), Level 2:
Detailed Glanceable - DG (Middle), Level 3: Holo-Box - HB (Right)

Holo-box employs the same 3-LODs (e.g. Simple Glanceable (SG), Detailed Glanceable (DG) and
Holo-Box (HB). See Fig. 79) mentioned in the prototype design, but the usability of each interface
has changed to adapt to the issues and limitations mentioned in the previous chapter as well as
the Design Goals mentioned in this chapter.

SG and DG are 2D display-fixed Glanceable interfaces that follow the user’s head orientation
and are always visible. HB is a 3D interactive interface which remains fixed at a predefined anchor
location in the real world chosen by the user. The usability of each interface is as follows:

Simple Glanceable (SG): (Figure 79 left) The SG interface is a compact 2D interface that
shows minimal information limited to a few words. SG minimizes real-world occlusion and is the
first interface encountered to notify the user new data is present in the virtual interfaces. The SG
interfaces include an interactable button that transitions to the DG interface.

Detailed Glanceable (DG): (Figure 79 middle) The DG interface provides more detailed
information to the user, including a few lines of text as well as 2D media such as images. DG is
larger than the SG interface, but it is still relatively small compared to the Magic Leap’s FoV to
not impede a large area of the available FOV. DG includes two interactable buttons, one to return
to the SG and another that transitions to the HB. Locating the two buttons far from each other
minimizes potential unintentional interactions.

Holo-Box (HB): (Figure 79 right) The HB interface is a 3D interface that appears in the
real world. During the application setup process, the user manually places the HB on the real
world, designated as a semi-transparent bounding box. Its position persists during the execution
of the application or until the user manually repositions it. Upon HB activation through the DG
interface, the content appears inside the predetermined position regardless of the user’s position
during the activation. The content of the HB includes complex 2D interfaces, 3D objects and any
number of interactable objects. HB also allows for both blink-delay and hand-delay interactions;
these can activate interchangeably.

The two Glanceable interfaces allow for rapid information retrieval ”at a glance” with two levels
of information. SG is compact, allowing for easier focus on the real world providing guidance, while
DG triggers after the user interacts with the SG interface. Thus, we can assume the user wants to
focus on the virtual content when the DG interface appears. SG and DG interfaces follow the user
at a set distance and viewing angle as they move around the real world. On the other hand, HB
is anchored on a specific real-world position and does not move. HB content is presented only on
the inside of its bounding box. We assume that the user has placed it appropriately at a position
where they can use hand tracking without risk of injury. This design fulfills DG1 and DG2.
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6.2 User Interactions

(a) (b)

Figure 80: Eye tracking interaction. When one eye is closed the cursor turns blue and initiates the
click.

Holo Box allows for two types of interaction, one that uses eye tracking (see Fig. 80) and one
that uses hand tracking (see Fig. 81). Both interaction types are designed around using delay-
based inputs, where the user targets an object using a cursor and remains on the target for a
set amount of time before the interaction happens. To reduce gaze mis-interactions, the user
must place the eye-tracking cursor and then blink with one eye to interact, thus, using ”Blink-
Delay” interactions.Hand tracking interactions on the other hand use different cursors which are
placed on the users’ index fingers on both hands.The user interacts with objects by positioning
their fingers in a trigger zone which extends a few centimeters around the interactable object and
remain inside the trigger for the same delay period for a ”Hand-Delay” input. To avoid conflicting
simultaneous interactions, hand tracking is prioritized over eye-tracking interaction. If both hands
engage simultaneously, then the left-hand cursor is prioritized.

Figure 81: Right hand cursor (purple circle). The user’s hand appears to the right of the cursor
due to the Magic Leap camera’s recording perspective.

Interactable objects in Holo-box operate using a universal state machine. An interactable object
can be at one of three states: Idle, Highlighted or Clicked (see Fig. 82). Initially, all objects are
in an idle state, showing their basic visuals. When a cursor enters the object’s trigger zone, that
object becomes highlighted, enabling an additional visual effect to show the transition. After a
click is initiated by blinking on a Blink-Delayed input or immediately when highlighted on Hand-
Delay inputs, a progressively filling visual effect is presented, showing the progress towards the
interaction completion. After the delay period has passed, the click effect is triggered and the
object returns to an idle state.
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Figure 82: Button States

In Holo-box, to fulfill DG3, only one object can be at the highlighted and clicked states at all
times shared across all interaction types. The highlighted object is deselected only after a click,
or another object becomes highlighted and not when the user exits the trigger zone. When using
Hand-Delay, the object changes from clicked to highlighted on exit. This way the user can select
an object and even if their cursor moves outside the trigger zone due to tracking errors, the delayed
click can still be performed by blinking if the cursor does not select a different object.

To fulfill design goal DG1, Hand-Delay interactions are disabled on the SG and DG interfaces,
as these interfaces move and may be placed in a dangerous location for hand motions. Based on
the design,the SG and DG interfaces are designed to minimize misinteractions. SG only comprises
a single interactable button. DG includes two buttons placed on the top and bottom edges of the
interface to reduce misinteractions when using Blink-Delay inputs. HB allows for both Hand-Delay
and Blink-Delay inputs. As such, there are no restrictions on the amount of interactable objects
as long as they are placed so that their trigger zones are not overlapping.

6.3 Machine shop Content Adaptation

A set of Glanceable interfaces were designed for this work, including information guiding the user
to perform the experimental procedure. In the experiment, the users are given a set of instructions
and they are tasked with selecting the correct object corresponding to a manufacturing task,
including a cutting tool, a cutting material and a manufactured product.

For the Glanceable interfaces, each manufacturing task is presented in the form of a gamified
”mission” [2]. A mission consists of a set of information required to perform a manufacturing task
setup. This consists of which tool and material to use, a 2D blueprint of the finished product
and numerical cutting parameters such as the cutting speed. Each mission has a predefined tool,
finished product and manufacturing parameters, but the material can vary.

Figure 83: The Holo-box interface mission description.

The presentation of the missions is adapted to allow efficient guidance with any of the three
interfaces according to the user’s expertise. The HB interface contains the information required
to complete any mission. This includes mission information (see Fig. 83) as well as tool (see Fig.
84a) and material (see Fig. 84b) look-up tables with added 3D objects for better visualisation.
The 3D models of the tools and materials use a modified version of the interaction logic that shows
the object’s name above the model when highlighted.
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(a) (b)

Figure 84: Holo-Box interfaces. (a) Tools database, (b) Materials Database

The DG interface includes mission-specific information in a 2D interface (see Fig. 85b). The
SG interface only contains the name of the mission as well as the correct material (see Fig. 85a).
The SG interface is adequate for experienced users who have already completed a given mission
and memorized it. To make the SG interface more efficient, each mission was given a different
name, e.g., the ”A plaque” corresponds to cutting the letter ”A” on a square block.

(a) (b)

Figure 85: Simple Glanceable and Detailed Glanceable interfaces

6.4 Evaluation interface

The Evaluation Interface (EI) used in the evaluation is a modified version of the HB with the same
functionality. This interface includes 2D interfaces with buttons used to operate the evaluation
procedure, e.g., starting the evaluation or moving to the next mission providing feedback to the
user (Figure 86). In addition, the interface includes 3D models of all available machining tools,
materials and finished products which the user can select by interacting with them to complete a
given training mission.
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Figure 86: Evaluation Interface
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7 Low level Unity Implementation

In this chapter we will analyze the implementation of our work at a low level. Our implementation
was done exclusively through Unity, which was linked with Magic Leap’s ”The Lab” application
for zero iteration debugging and a single click build and install.

7.1 Scene Hierarchy

Figure 87: The implementation’s scene hierarchy

Our implementation was done in a single virtual scene, dubbed Glanceable (see Fig. 87) as an
internal name. The game objects inside our scene can be categorised in four categories:

• Magic Leap Template objects. These are standard pre-made object prefabs included in the
Magic Leap Unity Template, which link our project with the Magic Leap One hardware
appropriately.

• Unity standard objects. These are standard Unity objects present in any scene.

• The Game master. This game object holds the core logic of our work including global
parameters and calls from and to other scripts.

• Holo-Box’s game objects. These objects and their logic were fully implemented during this
work and represent actual virtual objects inside the scene.
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7.1.1 Magic Leap Template objects

Figure 88: The Main Camera Object’s inspector

Main Camera (see Fig. 88). The Main camera represents the user’s eyes into the virtual scene.
Through the Magic Leap Camera, MLSceneOptimizerBehavior and Tracked Pose Driver compo-
nents the game object tracks the physical hardware and adapts virtual content as the user moves
around the virtual scene to keep the real and virtual worlds aligned at all times.
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Figure 89: The ML Spatial Mapper Object’s inspector

ML Spatial Mapper (see Fig. 89). This object is responsible for scanning the mesh of the
real world and then creates a collection of polygonal meshes inside the virtual scene. These meshes
allow us to visualise the scanned real world’s shape and add occlusion and collision to these objects
if necessary. The visuals and behavior of the scanned mesh objects are based on the Mesh Prefab
field which specifies the game object to use as a template.
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Figure 90: The ML Spatial Mapper’s Mesh Template Object’s inspector

The Mesh template object is provided by default along the Spatial mapper (see Fig. 90). By
default, the mesh’s objects are visualised as a multi-colored mesh visible to the users. In our
case, we switched the default Wireframe material with the HandMeshOcclusion one, which has no
visuals on its own, but occludes other objects behind it. This way, if a virtual interface intersects
with a real object it will be partially occluded.

The object’s mesh collider also allows our objects to be included in physics calculations, which
in our case is necessary for the eye tracking, as the eye tracker calculates the user’s fixation point
by raycasting from the user’s eyes towards the virtual world until it collides with a virtual object.
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Figure 91: The Controller Object’s inspector

Controller (see Fig. 91). The Controller is responsible for both tracking and visualising the
Magic Leap Control. The Controller Visualiser script is responsible for visualising the controller as
a virtual object inside the scene. The Controller Transform, Controller Status and MLController-
ConnectionHandlerBehavior are responsible for tracking the controller’s position. The Controller
Holobox script allows us to read and use controller inputs in our application.
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Figure 92: The Controller Holobox script

The Controller Holobox script contains two key functions. The Check Trigger function is called
on every frame and checks how far the trigger is pressed (0 = not pressed, 1 = fully pressed).
If more than half the trigger is pressed, we rotate the Capsule Canvas which holds the Glance-
able interfaces to match the user’s forward angle. This way, if the user presses the trigger and
then rotates their head they can reposition the Glanceable interfaces to their desired angle. The
button and trigger values are received through the MLController.Controller class included in the
UnityEngine.XR.MagicLeap package.

The On Button Down function is a callback method which is automatically executed by Unity
every time a button press is detected from any input (including keyboard, mouse and all types of
controllers when available). In our case, we only detect if the Magic Leap Control’s bumper was
pressed. The only times when we want to use this button are when we want to spawn the Evaluation
Interface and the Holo-box, indicated by the SpawnHolobox and SpawnTabletop booleans.

In both cases, we Instantiate a new Game Object either of type HoloBoxPrefab or Tabletop-
Prefab, both of which are initialized inside the GlanceableLogic script, which is a class of type
GlanceableUILogic stored onto our GlanceableCanvas Game Object. The object is instantiated
with the same position and rotation as the Magic Leap Control. Finally, the Glanceable logic’s
reference to the newly spawned object is updated, deleting a previous instance of the same interface
if it existed previously and keeping the last one.
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7.1.2 Unity Standard objects

Figure 93: The Directional Light Object’s inspector

Directional Light (see Fig. 93). The Directional light object provides a universal ambient
lighting to all objects in the scene. This light simulates natural sunlight that lights every object in
the scene from a set angle (identified by its rotation). In a standard 3D scene, this light would cast
shadows after it collides with 3D objects and indirect light bounces would light up occluded areas
with smaller intensity like the real world. In AR however, this process does not work as intended,
as Magic Leap denotes lower intensity as object transparency, resulting in objects appearing fully
visible on one side and transparent on the other side. To solve this, we added two Directional
lights with different angles of rotation (X rot = 0o for the first and X rot = 180o for the second)
and different intensity values (2 for the first and 1 for the second).
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Figure 94: The Event System Object’s inspector

Event System (see Fig. 94). Unity’s event system is responsible for reading inputs and calling
the appropriate functions in all available scripts such as the OnButtonDown function inside the
Controller Holobox script as well as calling the OnClick functions on every Game Object with the
Button component, which is used by all interactable objects inside Holo-box.

7.1.3 Game Master

Figure 95: The Game Master Object’s inspector

The Game master is an empty Game Object with no visual or functional components (see Fig. 95)
that holds the Game Master script.
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Figure 96: The Game Master script

The Game master script holds a static reference to itself, making sure On Awake that this
script’s instance is unique. Any other script can access its public parameters through this instance
using the GameMaster.instance.parameter or GameMaster.instance.function() format.

The Game master serves two functions. First, it holds public references to other objects and
scripts which need to be accessed by other scripts easily as well as globally available values (Eye-
FixationPoint). Second, it manages the object selection logic, making sure only one object is
selected at any given moment, stored in the SelectedButton parameter, and if the selected object
was selected through the hand or eye cursor, stored in the isHandTriggered boolean parameter.
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7.1.4 Holo-Box Game Objects

The Game objects we designed for Holo-box outside the Game Master fall into one of three cate-
gories:

• Cursors and their movement managers

• Interfaces with their Interface Logic

• Interface components

In the following chapters we will analyze the most important objects and scripts used by these
objects.

Figure 97: The Fixed Canvas Object’s inspector

Fixed Canvas (see Fig. 97). The fixed canvas is a 2D panel that follows the user’s viewpoint
at a fixed distance using the MLHeadposeCanvasBehavior script provided by Magic leap. This
script provides a smooth movement and the canvas’s distance from the user can be adjusted using
the Canvas Distance Forward parameter. As the Magic leap has a minimum draw distance of 0.37
meters in front of the user, we set this canvas’s distance at a distance of 0.5 meters.

In the prototype implementation, this canvas held the Glanceable interfaces in addition to the
eye tracking cursors, but in the final implementation it only holds the eye tracking cursors, which
should always be visible in front of the user.

The fixed canvas has two children Game Objects (see Fig. 87) including the Cursor and the
ChaseCursor in addition to the WorldCursor which is used for the same logic. The Cursor game
object is a visual indicator that shows the realtime positon of the user’s eye tracking position
onto the Fixed Canvas. The ChaseCursor is a green cross cursor that follows the Cursor in a
smooth motion along the Fixed Canvas. The WorldCursor is an invisible cursor that goes behind
the ChaseCursor and collides with 3D objects behind it, activating the triggers of interactable
objects selecting them. The Cursor and ChaseCursor objects are purely visual indicators while
the WorldCursor has a Spherical collider with a radius of 1 millimeter.
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Figure 98: The Eye Tracking Manager script

Eye tracking interactions are achieved through the Eye Tracking Manager script (see Fig.
98) which is placed on the Cursor Object. The eye tracker’s fixation point is defined through the
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MLEyes class included in the UnityEngine.XR.MagicLeap package using the MLEyes.FixationPoint
parameter (line 40).

The script executes a process on every frame inside the Update function. First, we position an
ExtraCursor object on the MainCamera’s position (line 34) and rotate the ExtraCursor to look
towards the eye tracker’s fixation point (line 42). Then we perform a raycast from the ExtraCursor ’s
forward vector which collides only with objects in the ”UI” layer (line 36,38) which only includes
the Fixed Canvas object and then reposition the Cursor object on the position the ray hit the
Fixed Canvas.

Next, we perform a second raycast and this time the ExtraCursor is looking towards the
ChaseCursor which collides with objects inside the ”World UI” layer which includes the Glanceable,
Tutorial, Holo-box and Evaluation Interfaces and positions the World cursor on the hit position
(lines 50-60).

Finally, at the end of the frame, we check the MLEyes.Left.Eye.IsBlinking and the MLEyes.RightEye.IsBlinking
parameters and if the user is blinking with one of their eyes and the user has not selected an ob-
ject with their hands then a DelayedClick is executed. Similarly, if the user was performing a
DelayedClick using their eyes and they stop blinking the click is topped with the DelayedClickStop
function (lines 62-89).

Figure 99: The Chase Cursor Manager script

The ChaseCursor handles its own movement through a simple generic script (see Fig. 99)
which sets a speed value and a target and then moves towards the target at every frame.
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Figure 100: The Hand Cursor Manager script

Hand Cursor Manager (see Fig. 100). The Hand cursors consist of two Game Objects
visualised as two small purple spheres (see Fig. 81) which follow the user’s index fingers. The
spherers have a radius of 0.5 millimeters, which is approximately the same size as the index finger’s
nail.

The Hand Cursor Manager script uses the MLHandTracking class from the UnityEngine.XR.MagicLeap
package to receive tracking data from the Magic Leap’s hand tracker. On every frame through the
Update function the script checks if either hand is visible through the MLHandTracking.Left.IsVisible
and MLHandTracking.Right.IsVisible parameters and if either hand is visible its cursor is en-
abled and positioned on the position where the index finger is tracked through the MLHand-
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Tracking.Left.KeyPoints[2].Position and MLHandTracking.Right.KeyPoints[2].Position parame-
ters. Magic leap Tracks 15 key points for every hand and KeyPoints[2] indicates the key point at
the edge of the index finger. As an alternative, we also used KeyPoints[0] which is on the center
of the palm which was easier to track but interactions with this point felt unnatural.

Figure 101: The Capsule Canvas in the Scene (left), Hierarchy (middle) and Inspector (right)

Capsule Canvas (see Fig. 101). The capsule canvas is a combination of two Game objects
including the parent CapsuleCanvas which is a cylinder centered around the Main Camera and a
2D Glanceable canvas which rotates around the capsule’s center along it’s surface.
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Figure 102: The Capsule Canvas Movement script

The Capsule Canvas Movement script (see Fig. 102) contains functions that set the orientation
and position of Glanceable interfaces. On every frame through the Update function, the capsule is
set to follow the position of its CapsuleCenter parameter, which is set to be the position of the Main
Camera (see Fig. 101). The SetGraphicsAngle function is called from the Controller Holobox script
to adjust the rotation of the capsule canvas during runtime. Similarly, the SetGraphicsDistance
function can be used to adjust the radius of the capsule canvas, moving the Glanceable canvas
closer or further from the user.
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Figure 103: The Glanceable Canvas Object’s inspector

The Glanceable Canvas contains all 2D Glanceable interfaces including the Glanceable (Simple
Glanceable interface), Details (Detailed Glanceable interface) and four Tutorial interfaces (see Fig.
101) In addition, the Glanceable Canvas has two scripts, the Glanceable UI Logic for managing
the Glanceable interfaces and the Tutorial UI Logic script for managing the Tutorial interfaces.
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Figure 104: The Tutorial UI Logic script. Initial tutorial execution

The Tutorial UI Logic is executed when the application starts through the Start function (see
Fig. 104). On start, the logic shows the first tutorial interface which shows the first Tutorial
interface. Each Tutorial interface includes a button with a script that is responsible for increasing
the TutorialIndex and calling ShowTutorial again.
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Figure 105: The Tutorial UI Logic script. Reposition interfaces

The third and fourth Tutorial Interfaces are responsible for spawning the Evaluation Inter-
face and Holo-Box interface objects. Thus, when their buttons are pressed, they call the Disa-
bleSpawnTabletop and DisableSpawnHolobox functions accordingly (see Fig. 105). These functions
check if the appropriate interface was spawned and then proceed to the next tutorial step. The
TutorialIndex is also used as an indicator on the Controller Holobox script to determine which
interface to spawn when the Magic Leap Control bumper is clicker. Additionally, the Glanceable,
evaluation and Holo-box interfaces are disabled as long as the TutorialIndex is not zero.

These interfaces may also be activated again through the Evaluation Interface after the tutorial
is completed in order to reposition the Evaluaiton Interface or Holo-Box interface. In this case,
the tutorials will not be executed sequentially and instead after one tutorial step the TutorialIndex
will be reset to zero indicating no Tutorial interface is enabled.
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Figure 106: The Glanceable UI Logic script

The Glanceable UI Logic script handles all logic regarding enabling and disabling the Glanceable
and Holo-box interfaces. At the start of the application’s execution through the Start function, all
three interfaces are disabled.

When the Magic Leap’s Control’s bumper is pressed through the Controller Holobox script the
appropriate interface is instantiated and then the SetHoloBox or SetTabletop functions are called,
destroying the previous instance of the object, if any, and then setting the HoloBox or Tabletop
parameters to the new object.

The EnableSimpleGlanceable, EnableDetailedGlanceable and EnableHoloBox functions enable
the appropriate interface while disabling the other two. These functions also set the objects and
values that appear in each interface according to the selected mission’s parameters including setting
texts, the 2D image of the Detailed Glanceable interface and the 3D model of the Holo-box’s finished
product.

These three functions are called at the following times:

• EnableSimpleGlanceable: When a new mission is activated through the Evaluation Box Logic.
When the Holo-box interface is closed using the ”X” button.

• EnableDetailedGlanceable When the ”eye” button on the Simple Glanceable interface is
pressed.

• EnableHoloBox When the ”eye” button on the Detailed Glanceable interface is pressed.
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Figure 107: The Holo-Box Interface in the Scene (left) and Inspector (right)

Holo-Box Interface (see Fig. 107). The Holo-box holds multiple 2D and 3D objects which
includes the following:

• Floor panel. This is indicated by a wireframe pattern at the bottom of the Holo-box

• Transparent box. This is the blue box which indicates the perimeter inside which virtual
content will appear. The box is always visible at 95% transparency making it visible without
occluding its contents.

• Back Panel. The back panel consists of two parts. On the top of the panel are four inter-
actable buttons. The first three cycle between the three ”tabs” of the Holo-Box interface
including the Mission Tab (see Fig. 83), Tool Tab (see Fig. 84a) and Materials Tab (see
Fig. 84a) with the fourth button closing the Holo-Box interface and returning to the Simple
Glanceable. Below the buttons is a description whose content changes based on which tab is
enabled.

• 3D tools. Five tools are placed inside the Holo-box, which are shown when the Tool Tab is
enabled. Each tool includes a 3D text with its name which is placed above the 3D model
and is shown when the tool is selected using eye or hand cursors.

• 3D Materials. Four Rectangular blocks indicated four different materials are placed inside
the Holo-box, which are shown when the Material Tab is enabled. Each material includes a
3D text with its name which is placed above the 3D model and is shown when the material
is selected using eye or hand cursors.

• 3D Finished Mission Product. Unlike the Tools and materials, which were manually placed
so that their colliders don’t overlap, Holo-box includes an array of references to all finished
products inside the MissionObjects list. When the Mission Tab is shown, the appropriate
finished product is instantiated during runtime.
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Figure 108: The Holobox UI Logic script

Initially, the Holo-box is enabled when it is spawned during the Tutorial. During that time,
all the objects except the Floor panel and Transparent box are disabled. When the ”eye” button
of the Detailed Glanceable interface is pressed the content of the Holo-box is enabled, showing
the Mission Tab (see Fig. 108) on the OnEnable function. The buttons that change the active
tab execute the SwitchTab function with the appropriate parameter. If the Holo-box’s ”X” button
is pressed, all tabs are disabled and the CloseHoloBox function is called, enabling the Simple
Glanceable interface. When a new mission is given to the user, the Init function is called setting
the content of the Mission Tab accordingly.

Figure 109: The Evaluation Interface in the Scene (left) and Inspector (right)
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Evaluation Interface (see Fig. 109). The evaluation interface holds all the logic used for the
execution of the user study outside the core logic of our proposed interface system.

The prefab of the Evaluation Interface includes the following Game Objects:

• Floor panel. This is indicated by a wireframe pattern at the bottom of the interface.

• Transparent box. This is the blue box which indicates the perimeter inside which virtual
content will appear. The box is always visible at 95% transparency making it visible without
occluding its contents.

• Left Back Panel. The Left back panel includes four buttons. The first two buttons include
the Reposition Tabletop and Reposition Holobox buttons, which execute the appropriate logic
from the Tutorial UI Logic and reposition one of the 3D interfaces. The last two buttons
include the Demo Mission and Full Experiment buttons. The Demo Mission button gener-
ates a single mission, which can be abandoned at any time and if it is solved or abandoned it
returns the Evaluation interface it its default state. The Full experiment on the other hand
generates 10 missions, which are given to the user back to back and cannot be abandoned
and when all 10 missions are completed the Evaluation interface returns to its default state.

• Right Back panel. The second back panel handles the per-mission execution. By default it
includes a text stating that ”No mission is active”. If the user receives a Demo Mission,
two buttons are added to the interface, one to Solve Mission and one to Abandon mission.
Similarly, if the Full Experiment is pressed, only the Solve mission button is shown. When
the Solve mission button is pressed, the Evaluation interface checks whether the use has
selected the appropriate 3D objects and completes the mission if successful or provides textual
feedback above the buttons if the user made an error.

• 3D tools. Five tools are placed inside the interface, which are shown when a mission is active.
Each tool includes an interaction collider and two visual indicators above it, one circularly
loading indicator showing that a Delayed Click is being executed to select the object and a
green arrow to indicate which tool is selected, if any.

• 3D Materials. Four Rectangular or cylindrical objects that indicate four different materials
are placed inside the interface, which are shown when a mission is active. The rectangular
materials are shown for milling missions that use a rectangular stock material and the cylin-
drical models are used for turning missions. Each of the four materials is identified by its
color and the same four colors are used in both cases. Each material includes an interaction
collider and two visual indicators above it, one circularly loading indicator showing that a
Delayed Click is being executed to select the object and a green arrow to indicate which
material is selected, if any.

• 3D Finished product. Four Rectangular or cylindrical objects that indicate eight different
Finished products are placed inside the interface, which are shown when a mission is active.
The rectangular Finished products are shown for milling missions that use a rectangular stock
material and the cylindrical models are used for turning missions. Each Finished product
includes an interaction collider and two visual indicators above it, one circularly loading
indicator showing that a Delayed Click is being executed to select the object and a green
arrow to indicate which Finished product is selected, if any.

The Evaluation interface includes the EvaluationBoxLogic script that holds multiple variables
separated into the following categories (see Fig. 109):

• Interface Groups. This includes references to all the objects ore sets of objects included in
the interface.

• Scriptable Data. This includes two arrays of Scriptable Data objects, with each one holding
all of the necessary information for each available mission. These are separated into Demo
Missions and Evaluation Missions with three demo and four evaluation missions available.

• Variable Data. These include parameters which are used during runtime. These include the
Active mission which is currently being executed and the Tabletop State enumeration which
defines what objects are enabled inside the Evaluation interface at any moment.

95



• Check solution parameters. These define the text fields which are used to provide feedback
after the Check Solution button is pressed.

• Player Metrics. These parameters include all the metrics that are written in a .CSV file in
sequential format regarding a user’s performance during the Full Experiment.

The EvaluationBoxLogic also includes multiple functions that are used during the execution of
the application as follows:

Figure 110: The Evaluation UI states functions

The TabletopStates enumeration defines the four distinct states the Evaluation interface is in
at any moment. As long as any tutorial interface is active, the Evaluation Interface is in Inactive
state. If no tutorial interfaces are active and there is no active mission, the Evaluation Interface is
in NoMission state. The Evaluation Interface is in the SingleMission state if the Active mission
is a Demo mission or in the Evaluation state otherwise.

The RepositionTabletop and RepositionHolobox functions are called when the same buttons are
pressed on the Left Back Panel. The ResetTabletop is triggered when the Tabletop State changes
to NoMission.

Figure 111: The Evaluation UI mission generator functions
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The GenerateDemoMission and GenerateEvalMission functions are called when the the
same buttons are pressed on the Left Back Panel. Both of these functions select one Mission
Data Scriptable Object from either the DemoMissionsScriptableData or EvalMissionsScriptable-
Data lists and call the CreateActiveMission function with the correct parameters. Similarly, for
a Full experiment after the first mission is solved, for every subsequent mission the NextEvalStep
function is called which selects the appropriate Mission Data Scriptable Object from the EvalMis-
sionsScriptableData list and calls the CreateActiveMission function with the correct parameters.
The NextEvalStep function also writes the Player Metrics to a .CSV file and returns the state to
NoMission if the final mission of the evaluation is completed.

Figure 112: The Evaluation UI item selection functions

The SetTool, SetMaterial and SetProduct functions toggle the selection of the appropriate tool,
material or finished product, deselecting the previous one if any and then enabling it’s visual
indicator that it is selected. Similarly, the DeselectTool, DeselectMaterial and DeselectProduct
functions disable the visual indicator that an object is selected and setting the appropriate value
to null. The Deselect functions are called when another object is set or when a mission is solved.

Figure 113: The Evaluation UI mission solution functions

The CheckSolution and AbandonMission functions are called when the the same buttons are
pressed on the Right Back Panel. The Check solution function checks which 3D objects are selected
in the evaluation interface and then writes feedback on the Right Back Panel if the user made an
error, otherwise it records the appropriate data for the mission completion in the Player metrics
and then returns the state to NoMission for a Demo mission or calls the NextEvalStep for a Full
experiment. The Abandon mission on the other hand sets the Active Mission to null and sets the
state to NoMission.
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Figure 114: The Evaluation UI player metrics tracker functions

The AddError, LogMissionTimer and AddInterfaceSwitch functions are called from the Check-
Solution function to record the three parameters which are recorded separately for every mission.

Figure 115: The Evaluation UI file manager functions

The LoadResults decrypts the results file from the .CSV format into a list of strings for every
line, while the SaveResults takes a list of strings and encrypts it as a .CSV file. These functions
are called on the NextEvalStep function after all the missions of a Full Experiment are completed.
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Figure 116: The Gamified Manufacturing Mission Scriptable Data Script and Inspector

Gamified Manufacturing Mission Scriptable Data (see Fig. 116). The Scriptable Data
class is a special Data holder class type used by Unity. A Scriptable Data class defines a set of
variables, an instance of which can be saved on the project’s files on the disk as a preset set of
values.

Our MissionData class includes all of the required information for any given mission. The
MissionType, BaseMissionIndex, ToolIndex and the Material Indexes are defines as enumerations,
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allowing for specific values, which can be selected through Unity’s inspector as dropdown menus.
Even though the MaterialIndexes are defined as an enumeration with four values, each mission
does not have a predefined material, and the requested material is randomly selected out of the
available four every time the GenerateMission function is called.

The tool, material, finished product and mission type enumerations are also used as identifiers of
their 3D models in the Holo-box and Evaluation Interfaces to identify the correct objects to spawn
during their initialization and to check if the correct objects are selected during the CheckSolution
function.

The MissionData class also includes two converters that convert the tool and material enu-
merations into their text, which is then integrated into the 3-LOD interfaces. The RequiredTools
are stored as an array if for an extension of this work a mission with multiple required tools is
presented.

Outside the enumerations, a set of strings are also present including the MissionTitle, ObjectSize
and CarvingDepth which are used on the interfaces as-is. Finally, the scriptable data also includes
a sprite value which holds the 2D image shown in the Detailed Glanceable UI.
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8 User study

A study evaluated the efficiency and effectiveness of our Holo-box interface system in a real-world
machine shop. Our first goal is to check the efficiency of our proposed interfaces and interactions
under real conditions. Our second goal is to determine the effectiveness of the content of our
Glanceable interfaces is adequate when guiding more experienced users without using the most
complex HB interface.

8.1 Apparatus

The study used a Magic Leap One AR HMD [74]. The Magic Leap has a 1280x960 resolution and
a 50-degree diagonal field of view per eye. The interactions used the built-in hand and eye trackers
and the blinking detection provided by the HMD without any perceived latency. The Magic Leap
Control controller allowed for the initial setup and the placement of the interfaces, including the
rotation of the Glanceable interfaces and the position of the Holo-Box and EI (see Fig. 117).

(a) (b)

Figure 117: Placing interfaces using the Magic Leap Control

The HMD is connected to an external processing and battery unit which was connected to
a laptop via cable in order to provide video streaming of the participant’s view to a supervisor
through the Magic Leap Device Streaming application. Participants performed the experiment
while sitting on a rotating chair in front of an empty desk for safety. Participants interacted with
substituted virtual objects of their real-world equivalent.

The demo application was developed in Unity 2020.1.17f1 [23] using the Magic Leap Unity tem-
plate for that version provided on the official Magic Leap site, which includes the Magic Leap SDK.
Sprites used inside the interfaces are part of Magic Leap’s SDK or purchased sprite packs. The
M3 lab provided material for manufacturing 3D objects, including tools, manufacturing products,
cutting blueprints and mission descriptions.

8.2 Participants

Thirteen participants (two female) between the ages of 22 and 30 years old participated in the
study. Six participants had nearsightedness, one astigmatism and one hyperopia. Participants
were asked not to wear any contacts or glasses as they hampered the eye tracker’s accuracy. We
positioned the Glanceable interfaces closer to participants with nearsightedness until they stated
they were clearly visible. Six participants had no previous experience in using AR. Two participants
had bright eye colors, including cyan and green. Each participant was evaluated individually in
order to comply with pandemic restrictions.

8.3 Procedure

The evaluation procedure consists of an object selection task presented in the form of manufacturing
missions. Participants are given guidance using Holo box’s 3-LOD system while they select the
requested objects from the evaluation interface. Each mission requires selecting the correct tool,
material and finished product from the evaluation interface and pressing a button to check their
solution.
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Initially, participants were asked to perform visual calibration for the Magic leap’s eye tracker
through the built-in calibration system in the device settings. Next, participants started the demo
application through the device’s main menu where they followed an initial tutorial which consists
of four steps: (1) Interact with a Glanceable button via blinking, (2) Adjust the angle where
Glanceable interfaces are visible at, (3) Place the evaluation interface and (4) Place the Holo-box
interface. Placing the interfaces was achieved by placing the controller at the desired position and
rotation and pressing a button. After the initial tutorial was completed, participants let go of the
controller unless they wanted to re-position the interfaces at a later time.

8.4 Demos and Evaluation missions

After the initialization process, participants completed at least one demo training mission for
machining. Participants could find the name of the mission and the correct tool, material and
finished product through the 3-LOD interface. The task was to select the correct manufacturing
tool, material and finished product from the EI. During demo missions, participants were free to
take as much time and missions as necessary and make as many mistakes as they wanted; we did
not record any metrics.

The main experiment consisted of four distinct missions, repeated in three epochs in randomized
order. The first and second epochs consisted of all four missions, and the third epoch consisted of
two of the four missions for ten total for the whole experiment. Participants’ task was to complete
all ten missions by making as few mistakes as possible. We instructed participants to memorize
each mission’s content as much as possible and complete each mission by using only Glanceable
interfaces if possible. After completing the main experiment, quantitative metrics captured were
saved under a unique ID. Participants completed a survey that included qualitative and quantitative
questions regarding their experience using the same unique ID for future comparison.

8.5 Metrics

There were four different categories for metrics. Quantitative data were captured automatically
on the Magic Leap One device during the experiment. In addition, participants filled out a survey
that included the System Usability Scale (SUS) [75], the NASA Task Load Index (NASA TLX)
[76] as well as user preference questions, which were associated with the quantitative data.

Quantitative data: For each participant, Magic Leap logged the following: (1) the number of
tutorial missions completed, (2) blink-delay interaction events, (3) hand interactions events, (4)
time to complete each mission, (5) the number of errors made for each mission and (6) the number
of Holo-Box LODs used for each mission (3= all LODs, 2= only Glanceable, 1= only SG).

System Usability Scale (SUS): The SUS consists of a set of questions regarding the usability
of our proposed system during the experiment. Answers are reported on a 7-point Likert scale
(1= very low, 7= very high). The questions include grading (1) Learnability, (2) Efficiency, (3)
Memorability, (4) Accuracy, (5) Satisfaction, (6) Intuitiveness, (7) Naturalness and (8) Fun of our
proposed system.

NASA Task Load Index (NASA TLX): The NASA TLX covers topics regarding the user ex-
perience during the experiment’s procedure. Like the the SUS all questions are answered in a
7-point Likert scale. The questions included (1) Mental Demand (How mentally demanding was
the experiment?), (2) Physical Demand (How physically demanding was the experiment?), (3)
Temporal Demand (How hurried or rushed was the pace of the experiment?), (4) Performance
(How successful were you in completing your given task?), (5) Effort (How hard did you try to
accomplish your level of performance?) and (6) Frustration (How insecure, discouraged, irritated,
stressed and/or annoyed were you?).

User Preferences: General questions regarding the two interaction types were administered.
Participants were asked to select their preferred interaction method between blink-delay and hand-
delay and then grade on a 7-point Likert scale (1) The accuracy of blink-delay interactions specif-
ically on the two Glanceable interfaces SG and DG, (2) the precision of the eye-tracking cursor in
regards to where they were looking and (3) the accuracy of the hand cursor in relation to their
hand movements.

8.6 Hypotheses

These hypotheses guided our experiment:
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• (H1) Participants will complete missions faster over time, with fewer errors.

• (H2) Participants will be able to complete subsequent missions while using only Glanceable
interfaces.

• (H3) Our proposed blink-delay interactions can hide the Magic Leap’s eye trackers’ inaccu-
racies and users will not detect eye tracking failure, e.g., when the cursor freezes and does
not follow the eye.

• (H4) Participants will prefer hand-delay interactions over blink-delay due to their higher
accuracy.

8.7 Results

(a) (b)

Figure 118: (a) System Usability Scale (SUS) results (b) NASA Task Load Index (TLX) results

Mission completion metrics: When comparing the time completion for two participants on one
mission, the times vary greatly based on individual skill. Instead, we calculated the average time
improvement between epochs for each participant separately. We compare the average time on
the first epoch with those of the following two. This way, we can understand if the participants
improve over time regardless of their skills. For comparison, error rates and interface switches were
similarly averaged per participant per epoch.

In the second epoch, participants completed missions with an average 24,16% (var: 9,6%) time
improvement, while in the third epoch, participants showed a 39,04% (var: 13,38%) improvement
over the first. Two participants showed no significant improvement (negative or below 10%) on all
three epochs. In contrast, three more showed no significant improvement during the second epoch
but showed significant improvement (35% and above) in the third.

When it comes to error rates, no significant improvement over time was shown with an average
0,46 (var: 0,45) errors per mission for the first epoch, 0,5 (var: 0,46) errors for the second and 0,46
(var: 0,82) errors for the third.

Regarding interface switches, participants used an average of 2,54 (var: 0,3) interfaces during
the first epoch, 1,94 (var: 0,46) during the second and 1,77 (var: 0,53) during the third. The
number of participants that used only Glanceable interfaces was one during the first epoch, four
during the second and nine during the third. Six participants used all three interfaces on more than
two out of four missions during the first epoch, two during the second epoch, while no participants
used all interfaces on both missions of the third epoch.

In summary, H1 was partially supported as participants could complete missions faster over
time, but the error rate showed no significant changes. H2 was supported as participants used
fewer interfaces over subsequent missions and most missions during the second and third epochs
were completed using only Glanceable interfaces.

Interaction preferences: When looking at the quantitative data, six participants preferred to use
blink-delay interactions (over 60%), four hand-delay, and three participants used both interactions
on an equal measure (both below 60%). Of the six participants who preferred blink-delay, five
used blink-delay interactions (fewer than two hand-delay interactions) exclusively after the demo
missions.
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On the survey, eight participants stated they preferred blink-delay while five participants pre-
ferred hand-delay. When comparing the survey answers with the quantitative metrics of the same
participant, only six participants preferred the same interaction type they mostly used during the
experiment. Two out of five participants that used exclusively blink-delay stated they preferred
hand-delay. Concerning the question ”How accurate were the blink-delay interactions in relation
to the Glanceable interfaces” the answers were positive, with an average of 5.46 (var: 3,17) on
the 7-point Likert scale. Only two participants had significant difficulties performing blink-delay
interactions due to a combination of eye tracking errors of the built-in tracker of the device as well
as user-specific eye attributes. The participants used hand-delay instead.

Certain participants noted that while they preferred hand-delay inputs, they still used blink-
delay inputs during the experiment. They found the novelty of eye-based inputs interesting for a
short experiment without translating this to a preference for long-term usage. Two participants
showed physical difficulties in keeping one eye closed while looking directly forward with the other
to aim correctly, forcing them to keep their eyelids closed with their fingers to interact, eliminating
the purpose of using blink-delay interactions. When grading the eye-tracking cursor’s accuracy,
the score was positive, with an average score of 4,54 (var: 1,17) and no scores below 3. Most
participants stated that the blink-delay cursor was accurate and they did not notice inaccuracies in
the cursor’s position. Based on the supervisor’s observations of the video feed and the participants’
head movements, we noticed that in certain instances when the eye tracker could not detect the
user’s eyes and the cursor remained stationary, they instinctively rotated their neck to aim and
interact correctly, resulting in higher perceived accuracy by the users. Conversely, when grading
the hand tracking cursor, the average score was similar at 4.39 but with a significantly higher
variance of 5.09. Most scores were above six or below 2, as the hand cursor’s flickering was more
apparent when the users’ hands were stationary. All participants mentioned they noticed flickering
on the hand cursor, with four participants not able to use hand-delay inputs.

In summary, even though the cursor in certain instances froze and moved away from inter-
actable objects due to detection failure of the device, the overall perceived accuracy of blink-delay
interactions was high. The only issue participants noticed was certain inaccuracies in detecting
blinking. Thus, H3 was supported. On the other hand, we can neither confirm nor deny H4 with
our results. With the combination of different preferences in interaction in the long and short term,
interaction issues in relation to both interaction types for certain participants and the inability
of two participants to physically use our blink-delay input, further research is required as well as
improvement of gaze detection offered as part of current AR devices.

SUS: Our results on the SUS questionnaire are as follows (see Figure 118a): (1) Learnability
avg = 6.23, var = 0.33 (2) Efficiency avg = 5.53, var = 1.78 (3) Memorability avg = 5.92, var =
0.99 (4) Accuracy avg = 5, var = 2 (5) Satisfaction avg = 6, var = 0.76 (6) Intuitiveness avg =
5.69, var = 0.82 (7) Naturalness avg = 5.53, var = 1.17 and (8) Fun avg = 6.3, var = 0.7. Based
on these results we can see that Holo-box has positive scores in all fields, with (4) Accuracy having
a lower score and higher variance than other values, further confirming the uncertainty in relation
to H4 due to inaccuracies in both interaction systems.

NASA TLX: Similarly, our results from the NASA TLX questionnaire are as follows (see Figure
118b): (1) Mental Demand avg = 3.15, var = 1.82 (2) Physical Demand avg = 3, var = 2.30 (3)
Temporal demand avg = 2.76, var = 1.71 (4) Performance avg = 5, var 2.46 (5) Effort avg =
2.92, var = 3.45 and (6) Frustration avg = 2.69, var 2.67. All results are one point off average,
with performance being slightly positive. At the same time, demand, effort and frustration scores
were slightly lower than average, showing that participants overall performed well with a low task
load. The high variance in effort shows that certain users struggled significantly more than others
while using Holo-box. This was confirmed through the discussion with the participants due to the
occasional interaction inaccuracies of the device.

8.8 Conclusion

In this work we introduced Holo-Box, a novel interface system for information retrieval through
Glanceable and 3D interfaces. Holo-Box uses a 3-LOD interface design that shows guidance infor-
mation in progressing levels of detail as necessary. Interaction with virtual objects use blink-delay
input for all interfaces, while 3D interfaces also use hand-delay input. These interaction types
allow for precise interaction with virtual objects while limiting mid-air hand movements inside
the bounding boxes of 3D interfaces for safety constraints. Interface content is adapted appropri-
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ately so that experienced users can complete assigned tasks using more compact interfaces, while
inexperienced users can activate a denser LOD for additional guidance.

Evaluation of Holo-box occurred in a safe environment; users completed a selection task of
required items in a manufacturing machine shop. Results showed that our system is easy to learn
and users could complete tasks faster by using more compact interfaces over time. Both hand-delay
and blink-delay interactions performed comparably well, with tracking issues of the device present
in both. The blink-delay cursor was perceived to be accurate. Users could adjust their position
using eye and head movements and they instinctively combined both activities when selecting
objects. Our results show that our Holo-box AR interface is promising. The major drawback of
our interface system were due to eye and hand tracking errors of the device. However, our choice
of blink-delay interaction compensated for these errors to a degree.

8.9 Future work

Future work should compare our proposed interactions with other variations, such as hand-based
interactions with better accuracy than Magic Leap One’s stock tracking. Our proposed system
could also be evaluated on the Magic Leap 2 AR HMD which will be released after the summer of
2022 and was not available during the course of our implementation. Similarly, Holo-box could be
ported to other AR HMDs such as the Hololens 2.

Our 3-LOD interface system can also be used in other scenarios than manufacturing. Future
work could check the viability of our interface system in different scenarios. Glanceable interfaces
have been used in a plethora of scenarios including manufacturing tasks, collaboration tasks, social
scenarios, virtual tours or augmenting everyday tasks such as cooking or drawing. Holo-box could
be adapted to work under all of these conditions. Especially interesting are scenarios where the
user could use more than one set of 3-LOD interfaces simultaneously for performing multiple tasks
at once.

Another improvement could involve using custom hand or eye trackers with improved accuracy.
In our work we focused on designing the 3-LOD interface system and we used the standard trackers
integrated in the Magic Leap One, which proved to have coarse tracking. A more accurate tracking
system would solve most of the issues reported during our evaluation.

One thing we omitted during our user study was measuring the effect of external parameters
on the participants’ performance. On our results, we stated that we expected our error rate to
decrease while it remained static across the study. One possible explanation was that another
factor, such as user fatigue, counteracts the positives of the learning experience.

Finally, future work could research different variations of our 3-LOD interface system. An
example would involve using a different amount of interfaces other than 3. Another example could
involve a more optimal presentation of the virtual interfaces to make them more immersive or
visually appealing.
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[31] C. Gröger and C. Stach. The mobile manufacturing dashboard. In 2014 IEEE International
Conference on Pervasive Computing and Communication Workshops (PERCOM WORK-
SHOPS), pages 138–140, March 2014.
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