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Abstract— Lane-free vehicle driving has been recently pro-

posed for connected automated vehicles. Lane-free traffic 

implies that incremental changes of the road width lead to 

corresponding incremental changes of the traffic flow capacity. 

Internal boundary control (IBC) was introduced to flexibly 

share the total road width and capacity among the two traffic 

directions of a highway in real-time, so as to maximize the 

cross-road infrastructure utilization. Centralized solutions, 

requiring information from the whole highway stretch under 

consideration, have already been proposed, which, however, 

may be problematic for long highways with respect to the 

required communications and physical system architecture in 

real-time operation. This paper introduces an overlapping 

decentralized control scheme for IBC of lane-free automated 

vehicle traffic, based on a contractible controller, which is 

designed in a decomposed way (per subsystem) for an extended 

system. Simulation investigations, involving a realistic highway 

stretch and demand scenario, demonstrate that the proposed 

decentralized regulator is similarly efficient as the centralized 

solutions. 

I. INTRODUCTION 

Recurrent traffic congestion is a serious problem for most 

big cities around the globe, causing extensive delays, in-

creased fuel consumption, excessive environmental pollu-

tion, and reduced traffic safety. Conventional traffic control 

measures are valuable [1], [2] and, in some cases, able to 

delay or even circumvent the onset of congestion. However, 

they are not always sufficient to tackle heavily congested 

traffic conditions. Gradually emerging and future ground-

breaking vehicle automation and communication systems 

should be exploited to develop innovative solutions that can 

be applied to smart road infrastructures. Recently, there has 

been a massive effort by the industry and by several research 

institutions to develop and deploy a variety of vehicle 

automation and communication systems that are transform-

ing the vehicle capabilities [3]. 

A novel paradigm for vehicular traffic, which is appro-

priate for high penetration rates of vehicles equipped with 

high levels of vehicle automation and communication 

systems, was recently launched by the TrafficFluid concept 

[4]. The TrafficFluid concept suggests: (1) lane-free traffic, 

whereby vehicles are not bound to fixed traffic lanes, as in 

conventional traffic; (2) vehicle nudging, whereby vehicles 
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may exert a "nudging" effect on, i.e. influence the movement 

of vehicles in front of them. In this context, the internal 

boundary control (IBC) concept offers a promising and 

innovative control measure aiming to achieve an unprece-

dented exploitation of the available road infrastructure [5]. 

IBC relies on the fact that, in lane-free traffic, the road 

capacity may exhibit incremental changes in response to 

corresponding incremental changes of the road width. This is 

in contrast to lane-based traffic, where capacity changes may 

only occur if the road width is changed by a discrete number 

of lanes. 

Consider a road with two opposite traffic directions serv-

ing connected automated vehicles (CAVs). The total cross-

road capacity (for both directions) may be shared between 

the two directions in a flexible way, according to the prevail-

ing demand per direction. Flexible capacity sharing may be 

achieved by virtually moving the internal boundary that 

separates the two traffic directions and communicating this 

decision to CAVs, so that they respect the road boundary. 

This way, the total capacity share assigned per direction can 

be changed in space and time according to an appropriate 

real-time control strategy (IBC), as illustrated in Fig. 1, in 

order to maximize the traffic efficiency of the overall system. 

Sharing the total cross-road capacity among the two traf-

fic directions is a control measure, known as tidal flow (or 

reversible lanes), that has been occasionally employed for 

conventional lane-based traffic, typically with manual 

interventions [6]. In order to deal with this problem, optimal 

control or feedback control algorithms of various types were 

proposed [7], [8]. 

Reversible lanes have also been considered for lane-

based CAV traffic. The system-optimal dynamic traffic 

assignment models formulated in [9], using the Cell Trans-

mission Model (CTM) [10] are utilized in [11]. Lanes are 

introduced as integer variables, and the problem is formulat-

ed as a mixed-integer linear programming problem that has 

exponential complexity. 

The use of tidal flow control systems in lane-based traffic 

is not widespread for a number of reasons, including the 

harsh resolution of infrastructure sharing (only by lane 

quanta) among the two traffic directions; the serious counter-
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Figure 1.  Space-time flexible internal road boundary in lane-free traffic. 
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problems due to frequent merging or diverging traffic at 

lane-drop or lane-gain areas; and the safety-induced time-

delays after each lane switch. These serious difficulties entail 

very limited capacity sharing flexibility in space and time 

and hinder reversible lane control from being a major traffic 

management measure. In contrast, in a lane-free CAV traffic 

environment, the mentioned difficulties are largely mitigated. 

More specifically, the resolution of road-width sharing 

among the two directions can be high; the smooth CAV 

driving on a lane-free road surface allows for the internal 

boundary to be a smooth space-function, as illustrated in Fig. 

1; while assuming moderate changes of the internal bounda-

ry over time and space, the aforementioned safety-induced 

time-delay may be very small. 

Thanks to these characteristics, real-time IBC for lane-

free CAV traffic may be broadly applicable to the high 

number of arterial or highway infrastructures that feature 

unbalanced demands during the day in the two traffic direc-

tions, so as to strongly mitigate or even utterly avoid conges-

tion. Even for infrastructures experiencing strong demand in 

both directions quasi-simultaneously, real-time IBC may 

intensify the road utilization and lead to sensible improve-

ments. 

The IBC problem is analyzed in [5], where its high im-

provement potential is demonstrated by formulating and 

solving an open-loop optimal control problem, in the form of 

a convex Quadratic Programming (QP) problem. That 

approach may be used within a Model Predictive Control 

(MPC) frame, with online demand prediction, for real-time 

application. However, simpler real-time approaches with 

similar efficiency, but without the need for online demand 

prediction, are preferable. This is why feedback-based 

Linear-Quadratic Regulators (LQR) were developed [12] for 

IBC and were demonstrated to be robust and similarly 

efficient as the open-loop optimal control solution, while 

avoiding the need for accurate modelling and external 

demand prediction. However, the centralized LQR may have 

to be designed with hundreds of state variables; also, it 

requires real-time information from the whole highway 

stretch under consideration, which may be problematic for 

very long highways with respect to the required communica-

tions and physical system architecture in real-time operation. 

Several schemes have been suggested to realize decen-

tralized control of interconnected systems [13], [14]. This 

paper develops a decentralized control scheme for IBC, 

based on a contractible controller developed for an extended 

model that exploits the overlapping structure of the system. 

The approach allows for a decomposed design of the control-

ler, separately for each subsystem, which enhances scalabil-

ity and expandability of the system. This approach was first 

introduced by Ikeda et al. [15] and was extended by İftar and 

Özgüner [16] to consider input inclusion, additionally to 

state inclusion. Simulation investigations, involving a realis-

tic highway stretch and demand scenario, demonstrate that 

the proposed regulator is similarly efficient as the centralized 

LQR and the open-loop QP solution. 

The well-known CTM is used, after linearization, for 

controller design; and, in its full nonlinear form, for simula-

tion testing. The performance of the overlapping decentral-

ized control scheme is compared to the no-control case. 

Section II presents some background issues and the appro-

priately adjusted CTM equations, while Section III presents 

the design of the decentralized regulator. Simulation investi-

gations are discussed in Section IV, while conclusions are 

given in Section V. 

II. BACKGROUND 

Lane-free traffic is not expected to give rise to structural 

changes of existing macroscopic traffic flow models. As also 

supported by results in [4], notions and concepts like the 

conservation equation, the Fundamental Diagram (FD), as 

well as moving traffic waves will continue to characterize 

macroscopic traffic flow modelling in the case of lane-free 

automated vehicle traffic. Some IBC modelling background 

information, necessary for understanding the controller 

design and application, is repeated here for completeness. An 

extended version of CTM, a first-order dynamic traffic flow 

model with a triangular FD, will be considered.  

Let us call the two opposite traffic directions, presented 

in Fig. 1, directions a  (from left to right) and b  (from right 

to left). The stretch is subdivided into n  sections, with 

lengths ,iL  1,2, , .i n  The total road width (both direc-

tions) ,w  which is assumed constant over all sections for 

simplicity, can be flexibly shared between the two directions 

of each section in real-time. As a result, each direction is 

assigned a corresponding road width a

i iw w   and 

(1 ) ,b

i iw w    where 0 1i   is the sharing factor per 

section 1,2, , ,i n  to be specified in real time as a control 

input by the internal boundary controller. The total section 

capacity ,capq  as well as the total critical density 
cr  and the 

total jam density 
max ,  are shared between the two traffic 

directions a  and .b  Based on the derivation presented in [5], 

these are given by 
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For the IBC problem, we would like to disallow the 

complete closure of either direction; hence, the assigned road 

width in either direction should never be less than the widest 

vehicles driving on the road. This requirement gives rise to 

stricter constraints for the sharing factors as follows 

 ,min ,max0 1i i i       (2) 

where ,mini w  and ,max(1 )i w  are the minimum admissible 

widths to be assigned to directions a  and ,b  respectively. 

Another restriction to be applied to the sharing factors 

concerns the time-delay needed to evacuate traffic on the 

direction that receives a restricted width, compared to the 

previous control time-step. This time-delay is small in lane-

free CAV traffic without physical barrier among the two 

traffic directions and with moderate changes of the sharing 



  

factors applied to short sections, but needs nevertheless to be 

considered. Clearly, the time-delay should apply only to the 

traffic direction that is being widened, compared to the 

previous control interval; while the direction that is restricted 

should promptly apply the smaller width, so that CAVs 

therein move out of the reduced-width zone. Assume that the 

required time-delay is smaller than or equal to the control 

time interval ;cT  then, the time-delay requirement is auto-

matically fulfilled for each section ,i  if the sharing factors 

that are actually applied to the two directions, i.e. a

i  and 

,b

i  respectively, are calculated as follows 
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where 0,1,ck   is the discrete control time index. It is 

noted that the notation ( )a

i ck  and ( )b

i ck  indicates that the 

sharing factors are applied for the duration of the control 

time interval [ ,( 1) ).c c c ck T k T    The above equations may 

be readily extended if the required time-delay is a multiple of 

the control time interval .cT  

Traffic flows from section 1 to section n  in direction ;a  

and from section n  to section 1 in direction b  (see Fig. 2 as 

an example). We denote ,a

i  1,2, , ,i n  the traffic 

density of section ,i  direction ;a  and ,b

i  1,2, , ,i n  the 

traffic density of section ,i  direction .b  Similarly, we denote 
a

iq  and ,b

iq  1,2, , ,i n  the mainstream exit flows of 

section i  for directions a  and ,b  respectively. Thus, 
0

aq  is 

the feeding upstream mainstream inflow for direction ;a  and 

1

b

nq 
 is the feeding upstream mainstream inflow for direction 

.b  Every section may have an on-ramp or an off-ramp at its 

upstream boundary. The on-ramp flows (if any) at section i  

are denoted a

ir  for direction ,a  and b

ir  for direction .b  The 

off-ramp flow (if any) of section ,i  direction ,a  is calculat-

ed based on known exit rates a

i  multiplied with the up-

stream-section flow, i.e. 
1;

a a

i iq 
 and the off-ramp flow (if 

any) of section ,i  direction ,b  is calculated based on known 

exit rates b

i  multiplied with the upstream-section flow, i.e. 

1.
b b

i iq 
 The conservation equation for the section i  of 

direction a  is: 

1( 1) ( ) ((1 ) ( ) ( ) ( ))a a a a a a

i i i i i i

i

T
k k q k q k r k

L
          (4) 

where T  is the model time-step, typically set equal to 5–10 s 

for section lengths of some 500 m, and 0,1,k   is the 

corresponding discrete-time index of the model.  

According to CTM, traffic flow is obtained as the mini-

mum of demand and supply functions, except for the last 

section, where only the demand function is considered, 

assuming that the downstream traffic conditions are uncon-

gested. Considering the impact of the respective sharing 

factors on the FDs, we have 
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 ( ) ( ( ), ( ))a a

n D n nq k Q k k  . (5) 

The demand and supply functions are given by the fol-

lowing respective equations 
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where 
fv  is the free speed (which is assumed equal for all 

sections for simplicity) and 
sw  is the back-wave speed.  

The equations for section i  of direction b  are analogous 

to those of direction ,a  with few necessary index modifica-

tions. Section numbers in direction b  are descending, hence 

we have 

1( 1) ( ) ((1 ) ( ) ( ) ( ))b b b b b b

i i i i i i

i

T
k k q k q k r k

L
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and the flows are given by 
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In conventional traffic management, traffic densities 

characterize clearly the state of traffic, depending on their 

value versus the critical density: free traffic (when density is 

lower than critical density), critical traffic (when density is 

around critical density) or congested traffic (when density is 

higher than critical density). However, in the proposed 

scheme, the critical density for each direction and section is 

not constant, but a function of the sharing factor (see (1)), 

and is changing according to the applied control action. 

Therefore, the density value by itself is not sufficient, in the 

IBC context, to characterize the traffic situation in a section. 

To address this issue, the following relations define the 

relative densities (dimensionless) per section and per direc-

tion. The relative density of section i  and direction a  or b  

is obtained by dividing the corresponding traffic density with 

the corresponding critical density, which, on its turn, de-

pends (via (1)) on the sharing factor prevailing during the 

last time-step. Thus we have 
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The relative densities reflect clearly the state of the traffic 

in the IBC context. Specifically, if the relative density of a 

section and direction is less than 1, it reflects under-critical 

(free-flow) traffic conditions; if it is around 1, it reflects 

capacity flow; and if it is greater than 1, it reflects over-

critical (congested) traffic conditions. 

Linearization of the above system of dynamic equations 

around a nominal point was presented analytically in [12]. 

To achieve this, the one-step retarded control input has to be 

defined as a new state variable according to 



  

( 1) ( ),i ik k    1,2, , .i n  Following the same lineari-

zation procedure as in [12], the linearized state-space model is 

 ˆ ˆ( 1) ( ) ( )k k k  x Ax Bu  (10) 

where 
1 1 1( ) [ ,...,a b a b

n nk k k k k k                x  

]T

n k    is the state vector and ( ) ( )k ku Δε  is the control 

vector, whereby 
1( ) [ ( ), , ( )] .T

nk k k   Δε  Also, 

(.)( ) (.)( ) (.) ,Nk k    the superscript N  denoting the 

nominal values, while it has been assumed that (.)( ) 0k   

for all disturbances (upstream mainstream demands, as well 

as the on-ramp flows of each direction). 3 3ˆ n nA  and 
3ˆ n nB  are the time-invariant state and input matrices, 

respectively, while 3nx  and nu . 

If the control time-step is defined as a multiple of the 

model time-step, i.e. ,cT MT  where M  is an integer, then 

the discrete control time index is .c c
k kT T     Thus, the 

linear state-space equation may be changed as follows, in 

order to be based on the control time-step ,cT  

 : ( 1) ( ) ( )c c ck k k   x Ax Bu  (11) 

where ˆ ,MA A  and 1 2ˆ ˆ ˆ( .... ) .M M    B A A I B  

When employing the LQR methodology as in [12], the 

control goal is the minimization of the quadratic criterion 
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where 
3 3n nQ  and n nR  are symmetric positive 

definite matrices. The first term penalizes deviations of the 

elements of the state variable from zero, i.e. deviations of 

( ),a

i ck  ( ),b

i ck  ( ),i ck  1,2, , ,i n  from their respective 

desired nominal values. The second term penalizes devia-

tions of the control inputs from the nominal values. 

The nominal value of relative densities is set equal to 1, 

so that the controller is motivated to operate the system near 

capacity, which is good for traffic efficiency. In addition, if 

capacity flow is not feasible (due to lack of demand or due to 

excessive demand), then minimizing a sum of squares has 

the tendency to balance deviations from the nominal values, 

something that is conform with the secondary operational 

sub-objective of balancing the margin to capacity across 

sections. On the other hand, we set to 0.5 the nominal value 

for the sharing factors, because minimization of the second 

term in (12) will mitigate deviations of the sharing factors 

from 0.5 and will balance these deviations in space and time, 

which are also secondary operational sub-objectives. 

The optimal controller minimizing the criterion (11) sub-

ject to the model (10) is given by a linear feedback control 

law of the form ( ) ( )c ck ku = Kx , where 
3n nK  is a 

constant gain matrix given by  

 1( )T T K R B PB B PA  (13) 

and P  is a unique positive semidefinite solution of the 

discrete-time algebraic Riccati equation.  

III. OVERLAPPING CONTROL SCHEME WITH STATE AND 

INPUT INCLUSION 

Summarizing from above, each highway section has 

three state variables and one control input, which is the 

corresponding sharing factor. For very long highways, the 

centralized LQR, proposed in [12] and outlined above, calls 

for the solution of an accordingly large-scale Riccati equa-

tion. More importantly, the centralized LQR requires real-

time information for all the states of the system to compute 

each control input. This requirement may be problematic for 

long highways due to the need to transfer data from the 

whole highway in order to compute each sharing factor. In 

addition, traffic conditions on a long highway are usually 

inhomogeneous, i.e. they may be simultaneously free-

flowing or critical or congested at different highway parts. In 

such circumstances, the mentioned balancing of relative 

density and sharing factor deviations from their respective 

nominal values may not be fully appropriate when applied to 

all sections of the long highway, due to strong differences in 

the prevailing traffic conditions. 

For the above reasons, there is an interest in developing a 

decentralized control scheme, which may: reduce the LQR 

design complexity; enhance the extendibility to new parts of 

a highway, without the need for re-designing the whole 

approach; reduce the burden of real-time data transferring; 

and handle locally the balancing of variable deviations from 

their nominal values. Due to strong dependencies between 

consecutive sections in IBC, developing a fully decentralized 

control scheme may reduce the control efficiency compared 

to the centralized case, as was indeed confirmed in prelimi-

nary investigations.  

Therefore, in this study, an overlapping control strategy 

is proposed. The approach relies on the separation of the 

highway into a number of subsequent subsystems (highway 

stretches) which are overlapping, i.e. adjacent subsystems 

have some sections in common; hence, adjacent subsystems 

share some states and some control inputs. This approach 

delivers overlapping decentralized controllers, where, thanks 

to the overlapping structure, subsystems remain aware about 

the inter-relations with adjacent subsystems.  

The control inputs of the non-overlapping sections use 

only local subsystem information; while control inputs in the 

overlapping sections use information from both adjacent 

subsystems. In order to develop this control scheme, some 

transformations must be applied to the original system to 

create an expanded system. This procedure is presented next. 

Consider the following linear time-invariant system  

 : ( 1) ( ) ( )c c ck k k   x Ax Bu  (14) 

where nx  and .mu  In the following, the system   

in (11) is referred to as the original system, and   is referred 

to as the expanded system. It is assumed that 3n n  and 

m n , as the expanded system   has typically more states 

and more inputs than the original system   due to the 

expansion. More specifically, the goal of the expansion is to 



  

create overlapping areas that belong to both corresponding 

adjacent subsystems, and this leads to higher state and 

control dimensions for the expanded system.  

The state and the input of the original system are parti-

tioned as 
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where 3P   is the odd number of partitions (subsequent 

highway stretches). Here it is assumed that, for all even 

indexes ,i  
ix  and 

iu  correspond to the overlapping parts of 

the state and input vectors, respectively, while for all odd 

indexes ,i  
ix  and 

iu  correspond to the non-overlapping 

parts of the state and input spaces. 

Now consider that the matrices A and B  for the system 

  are also partitioned compatibly, as follows: 

 

11 12 1 11 12 1

21 22 2 21 22 2

1 2 1 2

, .

P P

P P

P P PP P P PP

   
   
   
   
   
   

A A A B B B

A A A B B B

A A A B B B

 (16) 

Note that an expanded system   can be obtained from the 

original system   if it satisfies certain conditions presented 

in [16]; and such an extension can be leveraged in order to 

design the controller for the original system based on the 

design of a controller for the extended system. For the case 

of overlapping areas belonging to exactly two corresponding 

adjacent subsystems, as in the IBC application, the extended 

system matrices A  and B  can be easily obtained from the 

original matrices A  and B  by simply doubling the state 

equations of the overlapping partitions. This expansion may 

be readily shown to satisfy the conditions required in [16] for 

an extension of the original system. 

As an example, the system considered in the following 

investigations (see Fig. 2) may be separated in two subsys-

tems with a single overlapping area of two sections, i.e. 

based on three partitions ( 3P  ) of the original system. As 

can be seen in Fig. 2, we consider two subsystems with six 

sections each; while sections 5 and 6 are taken into account 

as an overlapping area. The two subsystems are strongly 

connected through the overlapping area. The matrices for the 

extended system with 3P   are obtained by doubling the 

state equations of the overlapping sections: 
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Note that in the specific IBC application, the non-zero 

coupling matrices 
12 ,A  

21,A 12B  and 
21B  have most of their 

elements equal to zero. 

For the general case, consider ( 1) / 2Dn P   decoupled 

subsystems: 

 : ( 1) ( ) ( ) 1,D

i i c i i c i i c Dk k k i n  x = A x +B u ,  (19) 

where 
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and 
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We can now calculate the gains for the feedback law for 

each decoupled subsystem ( ) ( )i

i c i ck ku = K x using the LQR 

method for objectives similar to (12). If the resulting subsys-

tem gains i
K  are partitioned as follows: 

 

11 12

21 22

11 12 13

21 22 23

31 32 33

, 1,

, 2, , 1

i i

i

Di i

i i i

i i i i

D

i i i

i n

i n

 
  
 

 
 

   
 
 

K K
K

K K

K K K

K K K K

K K K

 (22) 

then the overall gain for the feedback control law of the 

extended system ( ) ( )c ck ku = Kx is given by 

 
1blockdiag( , , ).Dn

K K K  (23) 

Based on [16], if   is an extension of ,  then the gain 

value K  for the equivalent feedback control law of the 

original system, i.e. ( ) ( )c ck ku = Kx , can be constructed 

using the gain value K  from the feedback law of the ex-

 
Figure 2.  The considered highway stretch. 



  

 
Figure 4.  Relative density for the two directions in the no-control case. 

 

 
Figure 3.  Demand flows per direction and on-ramp. 

 

tended system ( ) ( )c ck ku = Kx . For the case of the overlap-

ping systems considered here, the gain is as follows: 
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and for the specific case of  two subsystems: 
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It is evident that the decoupled systems cannot capture 

fully the dynamics of the extended system due to ignoring of 

the weak interconnections among subsystems. Therefore, the 

proposed decentralized overlapping controller will be sub-

optimal compared to the centralized LQR control approach. 

In summary, the proposed design procedure for the pre-

sent IBC application comprises: 

- design of decoupled LQR controllers for each subsystem; 

- computation of the control inputs of overlapping sections 

by the summation of the control inputs calculated by the 

distributed controllers for the two adjacent overlapping 

subsystems. 

IV. SIMULATION INVESTIGATION 

A. Simulation set-up 

The considered highway stretch of Fig. 2 has a length of 

5 km and is subdivided in 10 sections of 0.5 km each. The 

modelling time-step, ,T  is set to 10 s, and the considered 

time horizon is 1 h. While a linearization of CTM was used 

for LQR controller design, the full nonlinear CTM is used to 

represent the emulated ground truth in this section. The 

model parameters used in the simulation are 100km/hfv   

and 12km/h;sw   while the total cross-road capacity to be 

shared among the two directions is 12,000veh/h.capq   The 

exit rates for the four off-ramps are all set equal to 0.1. The 

mainstream and on-ramp demand flows per direction are 

presented in Fig. 3. It may be seen that the two directions 

feature respective peaks in their mainstream demands that 

are slightly overlapping. 

The simulation results of the no-control case are present-

ed first, followed by the results obtained when using the 

overlapping decentralized control scheme. 

B. No-control case 

When no IBC is applied, the total width of the highway 

stretch is equally shared by the two directions, i.e. the shar-

ing factors 
i  are constant and equal to 0.5 for all sections. 

Using the demand profiles presented in Fig. 3 in the nonline-

ar CTM model with 0.5,i   we get the simulation results 

for the no-control case. Figure 4 displays the corresponding 

spatio-temporal evolution of the relative density defined in 

(9). According to the definition, relative density values lower 

than 1 refer to uncongested traffic; while values higher than 

1 refer to congested traffic; when the relative density equals 

1, and the downstream section is uncongested, we have 

capacity flow at the corresponding section.  

Figure 4 shows that congestion is created in sections 5 

and 8 for direction a  due to the increased mainstream 

demand, in combination with the ramp inflows, at around 

70.k   The congestion dissolves at around 160,k   due to 

the rapid decrease of the mainstream demand for this direc-

tion. In direction ,b  we have also congestion being triggered 

in sections 3 and 6 for similar reasons, at around 240.k   

The congestion dissolves at around 340.k   The Total Time 

Spent by all vehicles in the highway stretch (TTS) is equal to 

314.6 veh∙h. 

C. Control case 

In order to apply the overlapping feedback regulators, as 

explained in Section III, we need to calculate offline the 

static gain matrices ,i
K  1,2.i   A nominal point of opera-

tion is first selected for the calculation of the matrices Â  

and B̂  used in the linear model (11). The nominal values are 

0 11 5000 veh/h,a b

NN
q q 

5 8 3 6 1000a a b b

N N N N
r r r r   

veh/h,  1a b

i iN N
    and 0.5,i N

   1,2, ,10.i   The 

control time-step, ,cT  is set to 60 s, hence 6.M    

The regulators are operated in a closed-loop mode, re-

ceiving in emulated real time the respective section density 

values per direction from the CTM model equations; and 

responding with the sharing factors calculated. The sharing 

factors applied for the sections of the overlapping area are 



  

given from the summation of the values calculated by the 

two separate regulators. The upper and lower bounds for the 

sharing factors, used to avoid utter blocking of any of the 

two directions, are equal for all sections 1,2, ,10i   and 

are given the values 
,min 0.16i   and ,max 0.84.i   This is 

repeated every 60s.cT   

The resulting traffic conditions are under-critical every-

where as shown in the spatio-temporal evolution of the 

relative densities depicted in Fig. 5. More detailed infor-

mation is presented in Figs. 6-10. Each figure has two 

columns reflecting the results of two respective sections; for 

each section (column), we provide three diagrams (rows): 

- The first diagram shows the two traffic densities (in 

veh/km), for directions a  and ,b  and the corresponding 

critical densities, which are changing according to the 

sharing factor in the section. 

- The second diagram shows the two traffic flows, for 

directions a   and ,b  and the corresponding capacities, 

which are changing according to the sharing factor in the 

section. In addition, the sum of both flows is also displayed. 

- The third diagram shows the value of the control input, i.e. 

the sharing factor applied, as well as the constant bounds 

(black curves), which may lead to possible truncation of 

the control input. 

The displayed results confirm that densities (flows) are 

always lower than the respective critical densities (capaci-

ties) in all sections and in both directions; hence traffic 

conditions are always under-critical for the whole stretch. In 

fact, the total-flow curve (for both directions) does not reach 

the total road capacity (of 12,000 veh/h) at any time any-

where. In short, congestion is utterly avoided and any occur-

ring delays in the no-control case do not exist anymore.  

The sharing factor trajectories for each section show that 

this excellent outcome is enabled via a smooth swapping of 

assigned capacity to the two directions, whereby more 

capacity is assigned to direction a  during the first half of the 

time horizon and vice-versa for the second half, in response 

to the traffic (density) changes caused by the changing 

respective demands and their peaks. It is interesting to notice 

that the value of the control input is never saturated. 

The achieved TTS value is 288.9 veh∙h, indicating an 

improvement of 8.2% over the no-control case. The TTS 

value obtained using the overlapping decentralized control 

scheme is, in fact, equal to the value that is achieved when 

applying the optimal control resulting from the QP problem 

formulation or the LQR formulation presented by the authors 

in [5] and [12], respectively. Thus, despite the use of a 

decentralized control scheme, where no demand predictions 

are necessary and the need for data communication is re-

duced, the proposed approach achieves the highest possible 

efficiency for the investigated scenario. 

V. CONCLUSION 

The concept of internal boundary control, introduced in 

[5], has been revisited in this study by use of a different 

feedback control approach with overlapping structure. The 

well-known CTM, appropriately adjusted to introduce the 

effect of the sharing factors, has been utilized for the devel-

opment of the overlapping decentralized regulator for the 

IBC problem. An overlapping decentralized control design 

method [16] was adopted, which is based on a contractible 

controller developed for an extended system. 

According to the IBC concept, the total road width and 

capacity are shared in each section in real-time among the 

two directions of the road in response to the prevailing traffic 

conditions. The overlapping regulator is easy to design, 

featuring lower complexity compared to the full-scale 

regulator; while its implementation reduces the communica-

tion requirements, which is beneficial in case of long high-

ways.  

Simulation investigations demonstrate that the overlap-

ping decentralized control scheme is as efficient as an open-

loop optimal control solution (with perfect model knowledge 

and demand prediction) developed for the same problem in 

[5] using a convex QP problem formulation; and as efficient 

as the centralized LQR formulation presented in [12]. 

Ongoing work considers application of the method on 

longer highway stretches as well as microscopic simulation 

studies with vehicles moving in a lane-free mode, based on 

appropriate CAV movement strategies that have been devel-

oped in the frame of the Trafficfluid project [4], [18]. 

 
Figure 5.  Relative density for the two directions in the control case. 

 
Figure 6.  Density, flow and control trajectories in the control case (sections 

1 and 2) 
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Figure 7.  Density, flow and control trajectories in the control case (sections 

3 and 4). 

 
Figure 8.  Density, flow and control trajectories in the control case (sections 

5 and 6). 

 

 
Figure 9.  Density, flow and control trajectories in the control case (sections 

7 and 8). 

 
Figure 10.  Density, flow and control trajectories in the control case 

(sections 9 and 10). 

 


