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E

To mpdPAnpa ¢ acvupetpiog e TAnpoeopiag (information asymmetry) €yt peretn0ei
EKTEVMDG OTMG KOL Ol GUVEMELEG TOV GTO YPMUATOTICTOTIKO Y®dpo. 'Etol 1 avtailoyn
TANPOPOPLOV KOl SEGOUEVMV OIKOVOUIKNG GSVUTEPLPOPAS, HECH UNYXOVICU®OV OTWS To
ypagpeia miotng (Credit bureaus) Agttovpynod wg avtifapo oTNV AGLUUETPIO OLTH KoL MG
VTOGTNPIKTIKO EPYOAEIO OTIG MOTOJOTIKEG ambpdcels. Ao To Tal TEAN ToL 190V VA TOL
Aertovpynoe 10 TpdTo Ypoeio wiotng Dun & Bradstreet, avomtoydnikov pebodoroyieg yio
TNV VTOGTHPIEN TNG TOTOANTTIKNG a&loAdyndng vroyneiov daveltoAnmtov. H acikotepn
fowg pebodoroyia twv ypapeimv mictnAbStefistng sivor 1 motoAnmTik) Pabuordynon
KOl GLVIGTATAL GTN XPNOT CTATICTIKOV Kol OAYOPOHUKGY HeBdd®mV TOV OMOGKOTOUY GTO
LETACYNUOTIGUO TWV OEOOUEVOV  GE OaplOUNTIKEG UETPNOELS Ol OMOieg WITOpovV v
ypnowomombovy vy Vv avtopatomomuEvn  "kotdption  mpoeid"  vmoymeiov
davetomtov. MebBodoroyikd M motoAnmTikn Pabpordynon apyikd otmpiloviav oe
OULYDG OTATIOTIKES TPOGEYYIGELS (.. AOYIOTIKY) TOAMVIPOUNGT, SEVIPO OMOPACEWDY KAT),
®oTOC0 1M OYeTKd mpdspatn "ékpnén" tov pebdowv unyovikng pabnong (machine
odnNynoe oe oavtiotoyn oviantuén TV oXeTIKOV HEBGOMV Kol VTOOEYHAT®V OV
YPNOUOTOOVVTOL GTNV TGTOTIKY fadpoidynon.

[Tapodra avtd N €@approyn avtdv TV HeBOd®V cuvavtd BempNTIKE 0ALL KOl TPOKTIKA
mpofAuota, to Pactkdtepo TV omoimv givon m mAnBuouoky| petatomon (population
motonmTiknig  Pabuordynong avrtyetomilovv t0  WPOPANUE TG  TANBLGOKNG
petotomiong (population drift), étav o1 6TOTIOTIKEG KATAVOUES TOV VIO LOVTEAOTOINGT

TANBvo oL, avoardeevkTa, LETARAAAOVTOL GTO ¥POVO. AVTO TO TPOPANIA avTILETOTILETOL
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pe 1t Jwpkn moapakorovOnon (Monitoring) TV EMOOGE®V TGOV  LTOOEYUATOV
Aoppdavoviag vdyn 1o yeyovog 0Tt Yoo TV ovamTuén TETolmv HovTEA®V ypetdlovtal
dedopéva Kat' A IoTO 2 £TOV Kot TPOHETOVTOG KOt TOV OmaTOOUEVO ¥POVO VAOTOINGNG
Kot Béong o€ TOPAY®YIKN AEITOVPYiD, GE TPAKTIKO EMIMESO EVIEIVETOL AKOLA TEPIGCOTEPO

10 TPOPANHO TNG TANOBVOUIAKNG HETATOTIONG.

21V Topovca SaTpiPn TPOTEIVETOL 1) AVTIHETMMIOT TOL TPOPANUATOS TNG TANOVGLILOKTG
LETATOMIONG L€ OLTOUOTN Kol SOUVOULKY] TPOGUPLOYN TV VIOSEYUAT®OV Bodpoldynong
pue ypnomn tomkdv pebodwv ta&vounmonc (local classification). Zvykekpiuéva To
TPOTEWVOUEVO CYNUO GLVIGTATOL GTOV LIOAOYIGUO TNG TIOTOANTTIKNG Pabuordynong
ypnoonotwvtag pedddovg Lazy learning yio k4Oe éva eicepydpevo aitnua score (onueio
€16000V N query instance), YPNOLOTOIOVTAG UOVO EKEIVO TO VTOGVUVOAO T®MV OUOEWODV
eYYPapaV Tpog 1o e1oepyouevo onpeio (Instance selection, local region of competence). H
évvol. ™G opototntog (similarity) kaBopileton omd tnv amdotaon (distance) pe
OLYKEKPIULEVN HETPIKN (7). EVKAEIOIO ATOCTACT]) HETOED TNG EICEPYOUEVNG EYYPAPNS KO
TOV N-014.GTOTOV YDPOV TOV GLVOAOL TV £yypaeaV (feature space), 6mov eivar To TAN00g
TOV OPOPETIKAOV petafAntov (attributes 1 characteristics), 6mov n givon to TA00¢ TV
nediov Kabe eyypoaens. To vTOGHVOAO T®V OHOEW®OV €YYPOPOV KAOE €16EPYOUEVOL
onueiov mpoodopileton pe ™ pEBodo v mAnciEctepwv yertovov (KNN) . ‘Etor kabe
YETOVIAL YPNOHOTOLEITOL G CVUVOAO ekmaidevong (training set) &vdg LTOJEIYHOTOG

TOTOTIKNG PaBRoAdYNONG ATOKAEIGTIKA Y10 TO GUYKEKPIUEVO CIUEID E1GOJO0V.
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Yvykpivovrol peBodoroyieg GTATIOTIKES Kot UNYOVIKNG LaBnong (AoyloTikn maAvopounon
nov AopPdaveton kot og onueio avapopds, Random Forests kot Gradient Boosting Trees),
YPNOLOTOIDVTAG TPAYUATIKA dedopéva ypapeiov miog yio éva Babog 11 etdv (2009-
2019) ava tpipunvo pe cvvolkd 3,520,000 eyypapég kat 125 dwapopetikéc petafintés. o
TOV VTTOAOYIGUO TV PHETPV emidoon (performance measures) ypnoyoromdnkav ta AUC
Measure e KaTdAANAES GTATIOTIKEG HEBOSOAOYIEC GVYKPIONG SLOUPOPETIKMY TASIVOUNTOV

Friedman’s aligned ranks o cuvdvacud pe to post-hoc Nemenyi test

Ewdwotepa diepevviOnkay ot NG OTOTIOTIKES VTOOEGELG:

H

"Exovv kodvtepec emiddoelc ot tomikég pébodot (local classification methods) og oyéon pe
Hg kaBolkég (global);

Ymhpyet onUovTIKE GTATIOTIKN Olapopomoinotn petabd towv pnedddwv pdbnong kot g
Koyietikng maAvdpounong?

Hryppelsmp gty esepertonodioe g aqrodaneidtim Gk orbeddo papebovy
KATO TEPIMTOGOT KAAVTEPO ATOTEAEGLLATO GE GYECN UE TIC KOOOMKES, WGTOGO 1 O10POPES
elval OTOTIOTIKO ONUOVTIKEG HOVO OTNV TEPIMTMOON NG AOYIGTIKNG TOAVOPOUNGNC.
[Switepa evorapépov mapovotdlel T0 yeyovog OTL, 0€ GUUE®VIOL LLE TO. ELPNUOTO TNG
BipAoypapiag, ot péBodor unyovikng pabnong mov epapuoctnkay givor mtepimov 6%-7%
kaAvtepeg (pe petpikn AUC) oe oxéon pe v kaBoAkn AOYIGTIKY TOAVOPOUN G, ®GTOGO
N TOTIKY] AOYIGTIKY TOAVOpOUNoN PBpiokeTon mePimov 6To 1010 EMIMESO EMOOGE®V UE TIG

puefodovg unyovikng nddnonc. TEAOC 1 emAoyn yeltovmv pe BAcn TV OLOLOTNTA MG TPOG
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T0 oNUEIO E16000V ATOJEIKVIETOL OTL PEPEL ONUAVTIKN PEATIOON TNV €MidOGT, O GYEoN

LE TNV EMA0YN TUYoi®V onueiwv yopig va Aappdvetol vdyn 1 yerrvioon.
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Abstract

Despite the advances in machine learning methods which are also applied in credit scoring
with overall positive results, there are still very important unresolved issues, pertaining not
only to academia but to practitioners and the industry as well, such as model drift as an
inevitable consequence of population drift and the strict regulatory obligations for
transparency and interpretability of the automated profiling methods. We present a novel
adaptive behavioral credit scoring scheme which uses online training for each incoming
inquiry (a borrower) by identifying a specific region of competence to train a local model.
We compare different classification algorithms i.e. logistic regression with state of the art
machine learning methods (random forests and gradient boosting trees) that have shown
promising results in the literature machine learning). Our data sample has been derived
from a proprietary credit bureau database and spans a period of 11 consequent years with
quarterly sampling frequency consisting of more than 3,520,000 record-month
observations. Rigorous performance measures used in credit scoring literature and practice
(such as AUROC and H-Measure) indicate that our approach deals effectively with
population drift and that local models outperform their corresponding global ones in all
cases. Furthermore, when using simple local classifiers such as logistic regression we can
achieve comparable results with the global machine learning ones which are considered
“black box” methods.

Keywords:  concept/population drift; adaptive learning; local classification;

behavioral credit scoring; lazy learning; region of competence
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1 Information Asymmetry, Credit Bureaus and

Credit Scoring

In economic theory information asymmetry has far reaching and well-studied
consequences in the operation of financial markets. According to (Akerlof, 1978), whose
work on information asymmetry is among the oldest and best known, when only the
average quality of the good can be assumed in markets with a good of indeterminate quality,
over time goods of above-average quality will be driven out and will threaten the viability
of the market for the good. In lending, the problem of asymmetric information stems from
the fact that a lender’s knowledge of a borrower’s likelihood to repay (their "risk profile")
is imprecise and must be inferred based upon available information. Thus in the case of
consumer credit markets, the riskiness of a borrower can be thought of as the “good” that
the lender “purchases”. The assessment of risk is crucial as loans involve an agreement to
pay in the future. In their seminal work, (Stiglitz & Weiss, 1981) suggested that even in a
competitive equilibrium, credit markets can witness rationing (i.e. given two individuals
with identical risk profiles and preferences, one will receive a loan and another will not)
owing to insufficient information. Given information asymmetries, lenders rely on a
combination of pricing (interest rates) and rationing to maximize returns. However, higher
interest rates, while covering the risk of borrower default, are also likely to result in adverse
selection. That is, higher interest rates attract borrowers seeking to make risky investments
with the potential for high rates of return. (Stiglitz & Weiss, 1981) further argue that the
price mechanism alone might not clear loan markets because as interest rates increase to

compensate for rising risk, riskier applicants are attracted. Moreover, some borrowers will
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have an incentive to make riskier investments to cover the price of credit. Faced with this
“moral hazard” (the relative lack of penalty for non-payment) and with the problem of
adverse selection that stems from asymmetric information, lenders will ration credit.

This all suggests that with more information about the borrowers being available,
the pool of borrowers should improve, the risks of defaults should be reduced, and in some
circumstances, the volume of lending should increase. The study by (Padilla & Pagano,
1997) confirms these notions: when information sharing takes place among lenders default
rates are lower when information sharing takes place, interest rates are predicted to
decrease and the total volume of lending to increase. In line with that, (Bennardo et al.,
2015) also show in their theoretical work that information sharing reduces default and
interest rates. The model of (McIntosh & Wydick, 2009) decomposes the overall effect of
credit information sharing into three: a screening effect, an incentive effect with lower
borrower default rates, and a credit expansion effect which increases default rates from
larger loans (even though the former seem to overwhelm the latter in an overall view). In
another model, (Padilla & Pagano, 2000) show that the disciplinary effect on borrowers
from sharing information between lending institutions reduces default and interest rates.
However, they show that this depends also on the type of information that is shared.

Thus, credit reporting systems have emerged (as early as the late 19" century where
the a newly founded company Dun & Bradstreet solicited information in order to systemize
a borrower's "character and assets"?) as the means of credit information sharing to reduce

information asymmetry and support the efficiency of credit institutions in their lending

! (Kaufman, 2018), The History of the FICO® Score, https:/tinyurl.com/yc4y2aye
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making processes, and in tasks such as credit limit management, debt collection, cross-

selling, risk based pricing, prevention of fraud, etc (J. Breeden et al., 2007; Hand & Henley,

1997; Thomas & Malik, 2010). These credit reporting systems are comprised by the actors,

rules, procedures, standards, and technology that facilitate the flow of information relevant

to credit agreement decision making. Those actors refer to specific entities: individuals,

Credit Reporting Service Providers (CRSPs), data providers, authorities, regulators, and

supervisors. In particular, CRSPs can be further categorized? as follows (World Bank

Group, 2019):

Credit bureaus that collect and provide credit information on individuals
and SMEs. More often than not these entities are private corporations or
owned by the lenders. The compiled information is made available on
request to customers of the credit bureau for purposes of credit risk
assessment, credit scoring, or other similar purposes; consumer bureau
customers include banks and other financial institutions that evaluate
individuals for credit.

Credit registries which generally are considered public entities and their
role is to support the state and competent authorities in their supervisory
and policy making responsibilities.

Commercial credit reporting companies which collect information on
businesses, including sole proprietorships, partnerships, and corporations.

The compiled information is made available on request to customers of the

2 |t shall be noted here that this distinction is indicative and is not a strict taxonomy
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commercial reporting company for the purposes of credit risk assessment,
credit scoring, or other similar purposes, such as the extension of trade
credit. Commercial credit reporting company customers include banks and
other financial institutions that evaluate businesses for trade credit or

insurance for business purposes

For the purpose of this thesis we shall collectively refer to all CRSPs as “credit

bureaus”. One of the principal tools of credit bureaus is credit scoring. Credit scoring can

be defined as|:

"[credit scoring is] the term used to describe formal statistical methods used
for classifying applicants for credit into ‘good’ and ‘bad’ risk classes. (Hand
& Henley, 1997)

"the use of statistical models to transform relevant data into numerical
measures that guide credit decisions" (R. Anderson, 2007).

"the set of predictive models and their underlying techniques that aid
financial institutions in the granting of credits. These techniques decide who
will get credit, how much credit they should get, and what further strategies
will enhance the profitability of the borrowers to the lenders. Credit scoring
techniques assess the risk in lending to a particular client. They do not
identify “good” or “bad” (negative behaviour is expected, e.g. default)
applications on an individual basis, but they forecast probability, that an
applicant with any given score will be “good” or “bad”." (Rezac & Rezac,

2011)
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e "Acredit score is a model-based estimate of the probability that a borrower
will show some undesirable behavior in the future... for example, lenders
employ predictive models, called scorecards, to estimate how likely an
applicant is to default (probability of default)" (Lessmann et al., 2015)

The scientific background to modern credit scoring was laid down by the
pioneering work of Ronald. A. Fisher (Fisher, 1936) and it was (Durand, 1941) a little later
who recognized that the same approach could be used to distinguish between good and bad
loans. Nevertheless, the automated and thus widespread application of credit scoring did
not take place until the 1980’s, when computing power to perform sophisticated
calculations became affordable and FICO developed its first scorecard using statistical
methods®. For the next decades despite some methodological advances in the academic
research, such as usage of artificial neural networks, SVMs, self-organizing maps, MARS
(multivariate adaptive regression splines) (see indicatively, (Boyacioglu et al., 2009; F.-L.
Chen & Li, 2010; Ping & Yongheng, 2011; Sarlija et al., 2006; C. F. Tsai & Wu, 2008; West,
2000; P. Yao, 2009) etc.) the field (and the practice of credit scoring) remained largely
unchanged; credit scoring has relied on linear statistical methods (mainly logistic
regression) and a limited number of fixed variables to calculate a borrower’s credit score.
This changed after 2010 where the proliferation of “big data” combined with the successful
application of more sophisticated Machine Learning (ML) methods such as “deep learning”

(referring to multi-layered neural networks) (Hinton & Salakhutdinov, 2006), Deep Neural

% (Kaufman, 2018), The History of the FICO® Score, https:/tinyurl.com/yc4y2aye
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Networks (LeCun et al., 2015) and similar advancements revolutionized the field of credit

scoring (among others).

Despite all the radical advances, credit scoring still faces many methodological and

practical challenges such as:

Lack of adequate, real-world and large-scale credit related data. Small datasets have
been noted in the literature that may introduce unwanted artifacts and the models
built upon them do not scale up when put into practice (Jamain & Hand, 2009;
Perlich et al., 2003).

All predictive models suffer from population (or concept) drift, i.e. changes in the
socio-economic environment cause the underlying distribution of the modeled
population to change over time; credit scoring is no exclusion (Adams et al., 2010;
Bifet et al., 2011; Gama et al., 2004, 2014; Klinkenberg, 2004; Zliobaite, 2009;
Zliobaité et al., 2016). To tackle this problem in practical terms, credit bureaus
implement continuous monitoring cycles and periodic re-calibration or re-
development of their models (R. Anderson, 2007; Jung et al., 2015; Siddiqi, 2005).
Development of behavioral credit scoring models require historical data of at least
1-2 years. Without counting the monetary cost incurred by such operations, adding
the time to implement and put into production a new generation of models,
sometimes results in a difference of three or more years between actual data that
reflect the current population dynamics and the data used to build the models. This
lag between data at model development time and actual time to be put into
production has become more obvious as data are generated in an ever-increasing

pace and this acceleration puts an equally pressing pace in operations. relationships
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(especially on untransformed data) and increase the performance of generalized
linear models (R. Anderson, 2019), which are even today the "golden standard" in
the credit scoring industry (although to a far lesser extent than in past decades, due
to the above mentioned proliferation of ML methods).

e This proliferation, on the other hand, besides (expected) performance
improvements (Alonso & Carbo6, 2020) introduced issues such as transparency, bias
and fairness (Bussmann et al., 2020; Gilpin et al., 2018; Guidotti et al., 2018; Hardt
et al., 2016a; Suresh & Guttag, 2019; Zafar et al., 2017) which in the context of
credit scoring have received special attention (N. Aggarwal, 2021; Hurlin et al.,
2021; Kozodoi et al., 2022) especially in light of the statutory and regulatory
constraints (cf. GDPR, EU Al Act: COM/2021/206 final).

e From a purely methodological standpoint, besides the advances in developing
credit scoring models with novel methods, there are also advancements that
received little attention in the literature such as a) use of novel performance
measures and b) statistical comparison between classifiers (Lessmann et al., 2015).

o Specifically, regarding point (a), most studies rely on a single performance
measure or measures such such as the Area Under the ROC (AUC), the
GINI index and the Kolmogorov-Smirnov distance or the F-measure.
However, in the literature there has been a skepticism over their
appropriateness and especially of the widely used AUC measure (Hand &
Anagnostopoulos, 2013). A coherent alternative namely the H-measure
(Hand, 2009; Hand & Anagnostopoulos, 2013, 2021) has been proposed,

which to the author’s knowledge is not frequently used.



Adaptive Credit Scoring using Local Classification Methods 22

o Regarding point (b) statistical hypothesis testing is often neglected or
employed inappropriately. Common mistakes include using parametric tests
(e.g., the t-test) or performing multiple comparisons without controlling the
family-wise error level. The approaches are inappropriate because the
assumptions of parametric tests are violated in classifier comparisons
(Demsar, 2006). Similarly, pairwise comparisons without p-value
adjustment increase the actual probability of Type-I errors beyond the stated

level of a (e.g., Garcia et al., 2010).
1.1 Significance of the study

In this work, we investigate the use of local classification models for dynamic
adaptation in consumer credit risk assessment aiming to handle the population drift and
avoid the time-consuming endeavor of continuous monitoring and re-calibration/re-
development procedures. The proposed adaptive scheme, searches the feature space for
each candidate borrower ("query instance") to construct a "micro-segment" or local region
of competence, using the K nearest neighbors algorithm (kNN). Thus, a region of
competence is exploited as a localized training set to feed a classification model for the
specified individual. Such a specialized local model serves as an instrument to achieve the
desired adaptation for the classification process. We compare various classifiers (logistic
regression as well as ML methods such as Random Forests and Gradient Boosting Trees).
All the explored algorithms are fed to training features extracted from a credit bureau
proprietary database and evaluated in an out-of-sample/out-of-time validation setting in

terms of performance measures including AUC and H-Measure (Hand, 2009) and
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comparing classifiers using use the Friedman’s aligned ranks with post-hoc Nemenyi test

(Demsar, 2006).

We thus explore the following hypotheses:

HI: Do local methods outperform their corresponding global ones?

H?2: Do results using ML methods differ significantly from logistic regression in the

global as well as in the local setup?

H3: Does the choice of kNN-based local neighborhoods affects model

performance?

The results demonstrate the competitiveness of the proposed approach as opposed
to the established methods. Thus, our contributions can be summarized as follows:

e Our analysis is using a real-world, pooled cross-sectional data set spanning a period
of 11 years, including an economic recession, and containing in total more than
3,520,000 records and 125 variables.

e Using local classification methods there is no need for continuous calibration of the
models; adaptation to concept drift is part of the dynamic and automated model
building process.

e Predictive models are always trained on the latest available data. The predictors
used in the models are not fixed but they are always picked up to fit the changing
conditions, thus bypassing the problem of omitted variables.

e For each query, a specialized micro-segment or region of competence is created

dynamically, thus reaping the benefits of segmentation.
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We focus on the performance aspect and we compare statistical classification
models versus well-advertised machine learning methods using appropriate

performance measures and statistical comparison testing.

The structure of this thesis is as follows:

e Section 2 provides the related theoretical background and reviews the
corresponding research literature emphasizing in the areas of concept drift,
advancements and challenges in credit scoring, adaptive and local
classification.

e Section 3 describes the overall experimental setup and formulates the
problem.

e Section 4 provides the empirical results and

e section 5 concludes with discussion of these results and possible directions

of future work.
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2 Background and Related Theoretical

Framework

2.1 Credit Scoring

We can roughly summarize the different kinds of credit scoring as follows* based
on the objective of the modeling and the data availability/usage by the predictive model
(Bijak & Thomas, 2012; Paleologo et al., 2010; Phua et al., 2010):

e Application scoring: it refers to the assessment of the credit worthiness for
new applicants. It quantifies the risks, associated with credit requests, by
evaluating the social, demographic, financial, and other data collected at the
time of the application. Application scoring models quantify the probability
of default, by taking characteristics found in loan applications e.g.
demographic attributes (such as age and family status), salary etc. This is
historically the first type of credit scoring developed and by far the most
researched and widely applied.

e Behavioral scoring: it involves principles that are similar to application
scoring, with the difference that it refers to existing customers. As a

consequence, the analyst already has evidence of the borrower’s behavior

4 We shall note here that there is an ever expanding body of research in credit scoring —and
especially behavioral scoring- to support decisions in areas such as marketing, through the use of propensity
scores (Bijak, 2011; Thomas, 2003; Thomas et al., 2005); there are response models (will the consumer
respond to marketing offers), usage models (will the consumer use a credit line) and attrition models (will a
customer continue with the lender). A recent trend is also profit scoring, that is the use of scorecards to
maximize profit (Andreeva et al., 2007; J. N. Crook et al., 2007; Finlay, 2010).
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with the lender. Behavioral scoring models analyze the consumer’s
behavioral patterns to support dynamic portfolio management processes.
The extra information in behavioral models is data based on the credit lines'
repayment performance. We shall note here that the distinction between
behavioral and application scoring is not clear-cut in the sense that if an
existing customer applies for a new credit line all available information
(behavior and application data) will be used.

e Collection scoring: collection scoring is used to divide customers with
different levels of insolvency into groups, separating those who require
more decisive actions from those who don’t need to be attended to
immediately. These models are distinguished according to the degree of
delinquency (e.g. early, middle, late recovery) and allow a better
management of delinquent customers, from the first signs of delinquency
(30—-60 days) to subsequent phases and debt write-off

e Fraud detection: fraud scoring ranks the applicants according to the
relative likelihood that a credit application may be fraudulent.

In terms of dependent variable there are credit scoring models that estimate
probability of default (PD), the exposure at default (EAD), and the loss given default
(LGD) in accordance with Basel I Capital Accord requires financial institutions to estimate,
respectively. Although PD models are especially well researched and continue to attract
much interest, EAD and LGD models have become as well a popular research topic (e.g.,

(Bag & Jacobs, 2012; Bellotti & Crook, 2012; Calabrese, 2014; Giirtler et al., 2018;
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Kaposty et al., 2017; K. Li et al., 2021; Loterman et al., 2012; Tobback et al., 2014; E. N.
Tong et al., 2016, 2016; Yang & Tkachenko, 2012; X. Yao et al., 2015).

The techniques utilized in building credit scoring models rely mostly on
classification methods and can be roughly categorized into groups such as (Abdou &

Pointon, 2011; Lessmann et al., 2015; L. Yu, Wang, & Lai, 2008):

1. Statistical models: Logistic, probit or linear regression, linear discriminant analysis

(LDA), classification trees, k-nearest neighbor etc.

2. Survival analysis: The latter facilitates estimating not only whether but also when a
customer defaults (E. N. C. Tong et al., 2012). In addition, a special type of survival
model called mixture cure model facilitates predicting multiple events of interest; for

example default and early repayment (Dirick et al., 2015; F. Liu et al., 2015).
3. Mathematical programming methods: linear programming, integer programming, etc.

4. Artificial intelligence approaches (also referred as machine learning or data mining or
soft computing techniques®): These include classic techniques like artificial neural
networks, and support vector machines, as well as expert-based ones like genetic
algorithms, fuzzy logic, rough sets, etc. However, recently more sophisticated ML
methodologies such as Deep Neural Networks (DNN), Gradient Boosting Machines
(GBM) and Random Forests (RF) came into play significantly impacting credit scoring
research as well as practice (Bhatore et al., 2020; Dastile et al., 2020). We will address

these developments specifically in the next section.

® For the rest of the thesis we will refer collectively to these methods as “Machine Learning” or ML.
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5. Hybrid and Ensemble methods: These methods include hybrid approaches (a
hybridization approach is based on combining two or more different machine learning
techniques, but only one single predictor is applied (Verikas et al., 2010)). For example,
a hybrid classification model can be composed of one unsupervised learner (clustering
method) to pre-process the training data and one supervised learner (classifier) to learn
the clustering result or vice versa (C.-F. Tsai & Chen, 2010). Similar to hybrid
approaches, an ensemble of classifiers uses more than one predictors but (unlike hybrid
methods) the final prediction aggregates in some way the outputs of them.

Conventionally, the most widely applied method in the credit scoring industry was
logistic regression (Thomas et al., 2005) followed by other linear methods, such as LDA.

This preference is not without a good reason since linear models provide in practice a very

good compromise between classification accuracy (compared with soft computing

methods) and simplicity and interpretability (L. Yu, Wang, Lai, et al., 2008). Especially
financial institutions are more reluctant to adopt less intuitive, "black box" approaches

(Sousa et al., 2013) since their legislative and operational framework imposes constraints®

on data availability, transparency, verifiability and interpretability of their risk evaluation

methods and processes.

€ Just to name a few: the European Consumer Credit Directive 2008/48/EC stipulates among other that an
applicant has the right to be comprehensively informed about the reasons of a rejection; The Basel Accords
(http://www.bis.org/publ/bcbsca.htm) imposes specific requirements for risk evaluation that have to be
accredited. See also GDPR and recent EU Al act (COM/2021/206 final)
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2.1.1 Credit Scoring Formalization

Credit scoring models in general classify customers into dichotomous “good” or
“bad” (non-default / default) risk classes’ which indicate the probability of a credit line to
be repaid or not respectively. Assuming a classification train set {(x1,y1), - , X, Yn)}, X €
R", y € {0, 1}, where x; denotes the feature or attribute vector for each one of the i=1...n,
prospective borrowers and y;the corresponding class label. Thus, according to Bayesian
Decision Theory (Duda et al., 2000) credit scoring refers to calculating the probability of

an applicant being “good” given its feature vector x:

p(x|G)p(G)

p(Glx) = (1)

Where:

p(x|G) and p(x|B) refer to the conditional probabilities of the risk classes (the distributions
of the classes)

p(Glx) refers to the posterior probabilities of classes.

p(G) and p(B) denote the proportion of applicants who are good or bad correspondingly
(prior probabilities).

2.1.2 Recent Advances

As mentioned, credit scoring prior to 2010 mainly has relied on linear statistical
methods and a limited number of fixed variables to calculate a borrower’s credit score.
This approach reflects both demonstrated statistical correlation between a borrower’s credit
history and their likely credit risk, as well as traditional limits on lenders’ access to non-
financial, non-credit-related data about borrowers or credit data from new non-traditional

or alternative lenders (e.g. “payday lenders”, “buy now pay later” schemes, peer-to-peer

" Multi-class credit risk classification has not being extensively studied or applied in practice (see (Y.
Chen, 2012; Hsieh et al., 2010; Tang & Qiu, 2012) for an example of multi-class SVM for credit scoring).



Adaptive Credit Scoring using Local Classification Methods 30

lending etc who do not participate in the formal credit reporting system). The massive
growth in the volume of available data, and advances in ML methods starting in the mid-
2000s, combined with the contraction in bank lending following the 2008 global financial
crisis, gave rise to “algorithmic credit scoring” (N. Aggarwal, 2021). Algorithmic credit
scoring® builds on traditional credit scoring in two principal ways:
Q) by leveraging a much larger volume and variety of data (so-called
“alternative data” or “big data”)® for credit scoring; and

(i) by using more sophisticated ML techniques to analyze these data.

Alternative data have been studied in the context of credit scoring, ranging from
call-detail records (Oskarsdéttir et al., 2019), social network and media data (Giil et al.,
2018; Wei et al., 2015), utility and rent data (Michael Turner et al., 2015; Turner et al.,
2012; Turner & Agarwal, 2008), to psychometric data (Djeundje et al., 2021) and digital
footprints (Tobias Berg et al., 2018). The usefulness of alternative data especially for “thin-
file” or “no-file”10 prospective borrowers has been firmly established so that European

credit bureaus are trying to widen their databases with such data (

8 Here the terms “algorithmic” is not used as a connotation to a computerized execution of the credit scoring
models; in that sense conventional forms of statistical credit scoring are also ‘algorithmic’.

% There is no consensus on a single definition of “alternative data™; it usually refers to data that is generated
by the increasing use of digital tools and information systems (ICCR, 2018). Two categories of alternative
data can be identified with respect to credit scoring: (i) structured data, for example, rental, utility and mobile
phone payment data, transactional data, data on transactions from P2P lending platforms, invoices, accounts
payables etc and (ii) unstructured data such as e.g. digital footprints from social media and internet usage,
emails, GPS data, mobile usage, psychometric data etc.

As far “big data” is concerned they are characterized typically in terms of 5 Vs: Volume, Variety, Velocity,
Veracity and Value. Strictly speaking they are not identical to alternative data; however both definitions are
vague enough and we use these terms interchangeably in this thesis.

10 customers with very few or non-existent traditional financial data, which are considered also “credit
invisibles” since they do not meet the mainstream criteria for getting credit.
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Table 1).

Table 1: Data coverage width of European Credit Registries (CRAS)
(Source: ACCIS (2020), ACCIS Membership Survey 2020”, numbers above countries indicate numbers of bureaus per
country)

IConsumer Loans
ICredit and store card
ICredit line on a current
laccount

Education loans

Mortgage

lOpen Banking data

Point of sale credit/instalment

Banking products

Health insurance

Insurance
products

|Other insurances

Leasing

Payday loans/SMS loans

Other financial
products

Peer-to-peer lending data

Energy

Internet service provider
Satellite/cable TV
[Telecoms - fixed line
[Telecoms - mobile
|Water

Mail order

Utilities

Home rental payment
information

Other (e.g. remittances or e-
lcommerce data)

Others

Other
products

Share of CRAs in country collecting data
0% 33% 50% 67% 100%
[ |

Appendix A provides an example of traditional and alternative data used for credit

scoring. A special mention shall be given to transactional datall where their application in
credit score (since they are closely related to payments) has been well studied (Hibbeln et

al.,, 2019; Tobback & Martens, 2019; Torrent et al., 2020). Table 2 highlights some

11 The Revised Payments Services Directive (PSD2) Directive (EU) 2015/2366 PSD 2 requires banks to
provide access to their customers’ payment account data to third-party providers of payment services, subject
to customer consent, to enable them to offer new, differentiated services based on the use of these data. PSD2
proliferated the usage of transactional data in a multitude of applications and catalyzed open banking
(Stiefmueller, 2020) and the digitization of services both in traditional banking institutions as well as it
spawned an entire new “breed” of financial service providers (neo-banks, digital banks, challenger banks etc
fintech companies)
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indicative products from credit bureaus and fintech companies that utilize alternative data
in credit scoring:

Table 2: Alternative credit scoring products
(Source: (Hurley & Adebayo, 2016) and author’s analysis)

Company & Product Example Data Inputs

LexisNexis - RiskView Residential stability, asset ownership, life-stage analysis,
property deeds and RiskView mortgages, tax records, criminal
history, employment and address history, liens and judgments,
ID verification, and professional licensure

FICO — Expansion score ~ Purchase payment plans, checking accounts, property data,
public records, demand deposit account records, cell and landline
utility  bill information, bankruptcy, liens, judgments,
membership club records, debit data, and property asset
information.

Experian — Alternative Rental payment data, public record data, transactional data
Data

Equifax — Decision 360 Telco utility payments, verified employment, modeled income,
verified income, spending capacity, property/asset information,
scheduled monthly payments, current debt payments, debt-to-
income ratio, bankruptcy scores.

TransUnion - Address history, balances on trade lines, credit limit, amounts
CreditVision past due, actual payment amount.
ZestAl Major bureau credit reports and other variables including

financial information, technology usage, and how quickly a user
scrolls through terms of service

Kreditech Location data (e.g., GPS), social graphing (likes, friends,
locations, posts), behavioral analytics (movement and duration
on a webpage), e-commerce shopping behavior, device data
(apps installed, operating systems)

Experian Boost Transactional data PSD2 used to pay bills and verify positive
payment history

Lenddo/EFL Leverages social media data (big data) and combines it with other
pieces of information, including credit bureau data if available,
to develop credit scores for potential borrowers

Earnerst Current job, salary, education history, balances in savings or
retirement accounts, online profile data (e.g., LinkedIn), and
credit card information
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Combined with alternative data, advanced ML methods created a paradigm shift
for the credit scoring (Addo et al., 2018; Albanesi & Vamossy, 2019; Alonso & Carbo,
2020; Barddal et al., 2020; Bequé & Lessmann, 2017; Chang et al., 2018; Dumitrescu et
al., 2022; Gunnarsson et al., 2021; Hamori et al., 2018; Kvamme et al., 2018; Luo et al.,
2017; Marceau et al., 2019; Petropoulos et al., 2019; Sigrist & Hirnschall, 2019; Siham et
al., 2021; Sirignano et al., 2016; Sirignano & Cont, 2018; Stelzer, 2019; Tomczak & Zig¢ba,
2015; Tripathi et al., 2021; Xia et al., 2017). Surveys conducted by supervising authorities
(Bank of England, 2019; Institute of International Finance, 2019) show that credit
institutions are gradually adopting more ML techniques in different areas of credit risk
management, such as regulatory capital, provisions, credit scoring and monitoring.
According to (Institute of International Finance, 2019) the most common use of ML in the
financial industry is in the field of credit scoring. In this regard, credit institutions seem to
have shifted their preferred use from regulatory purposes, such as capital calculation, stress
testing and even provisions, to business-related solutions such as decisions on granting new
credit, monitoring outstanding loans and refinancing non-performing exposures, and early-
warning systems. In fact, the survey of (Institute of International Finance, 2019) reveals
that 37% of the 60 international institutions consulted have fully operational ML models
dedicated to automating credit scoring processes.

ML techniques can unleash the power of big data by parsing large, unstructured and
high-dimensional datasets, to find features and patterns that are relevant to predicting a
borrower’s creditworthiness. Importantly, ML can more accurately capture nonlinear
relationships in data, as well as reflect changes in the population and environment in order

to more accurately estimate a borrower’s creditworthiness—for example, by offsetting
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evidence of historic payment default with more recent evidence of prompt payment, or
factoring in expected payments from flexible working arrangements that are increasingly
common in the ‘gig’ economy. The use of a much larger number of data points on the
consumer can also reduce the risk that errors in the data will be determinative — for
example, where living consumers are recorded as deceased (so-called ‘credit zombies’), or
discharged debts remain on a consumer’s credit record (Hurley & Adebayo, 2016).

The following Figure 1 depicts the performance gain of a wide range of ML
methods when compared to a logit model, by a comprehensive literature review conducted
by (Alonso & Carbo, 2020). On the horizontal axis the reviewed papers are ranked by the
authors based on their perceived algorithmic complexity. On the vertical axis the gain in
predictive power (AUC) relative to the discriminatory power obtained using a Logit model
on the same sample. While the sample sizes and the nature of the underlying model designs
differ between studies, they all highlight that the more advanced ML techniques (e.g.
random forest and deep neural networks) predict better than traditional statistical models.
The predictive gains are very heterogeneous, reaching up to 20% and not behaving
monotonically as we advance towards more algorithmically complex models. However, we
empirically observe that with the exception of a few studies (Petropoulos et al., 2019;
Sigrist & Hirnschall, 2019; Sirignano & Cont, 2019) which are on the upper spectrum of
performance gains or (Guégan & Hassani, 2018; Turiel & Aste, 2019) on the opposite (and
can be considered as “outliers™), the performance gain reported from the rest of the papers

lies within the range of 2% - 8%.
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Figure 1: Performance gain of ML methods versus Logit
(Source: (Alonso & Carbd, 2020)

Despite their revolutionary potential, ML methods combined with alternative data

pose some important challenges in terms of fairness, bias etc and which we will address in

the following section.

2.1.3 Challenges and Issues

2.1.3.1 Challenges

Credit scoring modeling and related methodologies face theoretical issues as well

as practical ones (as operated in practice by all credit bureaus):

Lack of adequate, real-world and large-scale credit related data. Small

datasets have been noted in the literature that may introduce unwanted

artifacts and the models built upon them do not scale up when put into

practice (Jamain & Hand, 2009; Perlich et al., 2003).

As is the case with all predictive models, credit scoring suffers from

population (or concept) drift, 1.e.

changes in the socio-economic
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environment cause the underlying distribution of the modeled population to
change over time. (Adams et al., 2010; Bifet et al., 2011; Gama et al., 2004,
2014; Klinkenberg, 2004; Zliobaite, 2009; Zliobaité et al., 2016). To tackle
this problem in practical terms, credit bureaus implement continuous
monitoring cycles and periodic re-calibration or re-development of their
models (R. Anderson, 2007; Jung et al., 2015; Siddiqi, 2005). We will
examine concept drift in detail in the following section.

e Development of credit scoring models require historical data of at least 1-2
years. Without counting the monetary cost incurred by such operations,
adding the time to implement and put into production a new generation of
models, sometimes results in a difference of three or more years between
actual data that reflect the current population dynamics and the data used to
build the models. This lag between data at model development time and
actual time to be put into production has become more obvious as data are
generated in an ever-increasing pace and this acceleration puts an equally
pressing pace in operations.

e Moreover, as credit scoring models depend on pre-defined sets of predictor
(input) variables when their weights are updated from time to time, they
may lose their relevance and end up with a weight zero or close to zero.
These predictors are called omitted variables and it has been shown that the
omission of variables related to local economic conditions seriously bias

and weaken scoring models (Avery et al., 2000).
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e Credit bureaus do not use a single scoring model (sometimes referred to as
"scorecard”) for a specific purpose (such as estimation of the probability of
default) but rather split the population into various segments using either
demographic criteria, or risk-based ones. This happens for various reasons
such as data availability (e.g., new accounts versus existing customers),
policy issues (e.g., different credit policies for mortgages), inherently
different risk-groups, etc., in order to: a) capture significant interactions
between variables among the sub-population that are not statistically
important within the entire population (Thomas, 2007) or cause the
relevance of predictors to change between groups (R. Anderson, 2019), b)
capture non-linear relationships (especially on untransformed data) and
increase the performance of generalized linear models (R. Anderson, 2019),
which are even today the "golden standard" in the credit scoring industry
(although to a far lesser extent than in past decades) and c) improve the
prediction efficiency by treating the heterogeneous borrowers separately
(Lim & Sohn, 2007). Despite the fact that there is not enough academic
consensus about the effects of segmentation in scorecards' performance
(Byjak & Thomas, 2012; Thomas, 2007), segmentation is a de facto
approach throughout the credit scoring industry for another reason:
robustness.

e From a purely methodological standpoint, besides the advances in
developing credit scoring models with ML methods, there are also

advancements that received little attention in the literature such as a) use of
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novel performance measures and b) statistical comparison between
classifiers (Lessmann et al., 2015).

o Specifically, regarding point (a), most studies rely on a single
performance measure or measures such such as the Area Under the
ROC (AUC), the GINT index and the Kolmogorov-Smirnov distance
or the F-measure. However, in the literature there has been a
skepticism over their appropriateness and especially of the widely
used AUC measure (Hand & Anagnostopoulos, 2013). A coherent
alternative namely the H-measure (Hand, 2009; Hand &
Anagnostopoulos, 2013, 2021) has been proposed, which to the
author’s knowledge is not frequently used.

o Regarding point (b) statistical hypothesis testing is often neglected
or employed inappropriately. Common mistakes include using
parametric tests (e.g., the t-test) or performing multiple comparisons
without controlling the family-wise error level. The approaches are
inappropriate because the assumptions of parametric tests are
violated in classifier comparisons (Demsar, 2006). Similarly,
pairwise comparisons without p-value adjustment increase the
actual probability of Type-I errors beyond the stated level of a (e.g.,
Garcia et al., 2010).

e Asmentioned, the proliferation in usage of alternative data and ML methods
raise serious issues of transparency, bias and fairness (Bussmann et al.,

2020; Gilpin et al., 2019; Guidotti et al., 2018; Hardt et al., 2016b; Suresh
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& Guttag, 2019; Zafar et al., 2017). This issues have received special
attention in the context of credit scoring (N. Aggarwal, 2021; Hurlin et al.,
2021; Kozodoi et al., 2022) enhanced by the to the statutory and regulatory
constraints (cf. GDPR, EU Al Act: COM/2021/206 final). Specifically
(EBA, 2020) highlights the following challenges or “elements of trust” for
ML as they are referred:

o Ethics: in line with the Ethics guidelines for trustworthy Al from
the European Commission’s High-Level Expert Group on AI'2, the
development, deployment and use of any Al solution should adhere
to some fundamental ethical principles, which can be embedded
from the start in any Al project, in a sort of ‘ethical by design’
approach.

o Explainability and interpretability: A model is explainable when
its internal behavior can be directly understood by humans
(interpretability) or when explanations (justifications) can be
provided for the main factors that led to its output. The significance
of explainability is greater whenever decisions have a direct impact
on customers/humans and depends on the particular context and the
level of automation involved. Explainability is just one element of

transparency. Transparency consists in making data, features,

12 hitps://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
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algorithms and training methods available for external inspection
and constitutes a basis for building trustworthy models.

o Fairness and avoidance of bias: Fairness requires that the model
ensure the protection of groups against (direct or indirect)
discrimination. Discrimination can be a consequence of bias in the
data, when the data are not representative of the population in
question.

o Traceability and auditability: the use of traceable solutions assists
in tracking all the steps, criteria and choices throughout the process,
which enables the repetition of the processes resulting in the
decisions made by the model and helps to ensure the auditability of
the system.

o Data and consumer protection: consumer rights should be
respected and protected in compliance with pertaining legislation
(e.g. GDPR)

o Security: new technology trends also bring new attack techniques

exploiting security vulnerabilities that need to be addressed

2.1.3.2 Criticisms about credit scoring

Despite these challenges credit scoring has been vital in the “...phenomenal growth
in the consumer credit over the last five decades. Without [credit scoring techniques, as]
an accurate and automatically operated risk assessment tool, lenders of consumer credit

could not have expanded their loan (effectively)” (Thomas et al., 2002). This doesn’t mean
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thought that the application of credit scoring in practice is without its criticisms, some of

which are summarized below:

Credit scores use any characteristic with a strong correlation with the
dependent variable (i.e. PD in our case) in spite of whether a clear link with
a likely repayment can be justified (i.e. they rely on association and not
causality cf. (Fahner, 2012; G. Xu et al., 2020)).

As with any predictive model, misclassification is always an issue and with
it comes the possibility of indirect discrimination. As mentioned in (Abdou
& Pointon, 2011) (citing (Chandler & Coffman, 1979) a credit scoring
system can “reject a creditworthy applicant because he/she changes address
or job”.

“Credit invisibles” (Turner et al., 2006, 2009) (individuals or companies
with not adequately credit history and data depth from which a credit score
to be calculated) pose a serious problem for expanding financial inclusion.
As mentioned in section 2.1.1 use of alternative data can widen the
separable population (Michael Turner et al., 2015) and subsequently access
to credit, especially to low income individuals (Turner et al., 2012; Turner

& Agarwal, 2008).

2.2 Concept Drift and Adaptive Learning

Concept drift refers to changes in the socio-economic environment that cause the

underlying distribution of the modeled population to change over time (Adams et al., 2010;
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Bifet et al., 2011; Daumé III & Marcu, 2006; Gama et al., 2004, 2014; Klinkenberg, 2004;
Tsymbal, 2004; Zliobaité, 2009; Zliobaité et al., 2016).

In general, adaptive learning refers to updating predictive models online during
their operation to react to concept drifts. There can be distinguished two learning modes
(Gama et al., 2014): offline learning and online learning. In offline learning, the whole
training data must be available at the time of model training. Only when training is
completed can the model be used for predicting. In contrast, online algorithms process data
sequentially. They produce a model and put it in operation without having the complete
training dataset available at the beginning. The model is continuously updated during
operation as more training data arrives. Less restrictive than online algorithms are
incremental algorithms that process input examples one by one (or batch by batch) and
update the decision model after receiving each example. Typically, in incremental
algorithms, for any new presentation of data, the update operation of the model is based on
the previous one. Streaming algorithms are online algorithms for processing high-speed
continuous flows of data.

(Gama et al., 2014) provided a taxonomy of adaptive learning based on four key
components:

(1) Memory i.e. which data are used for learning and which (old) data are
discarded (forgetting mechanism). Sliding windows of either fixed or
variable size, which store the most recent observations, are an example of
memory mechanism.

(if) Change detection i.e. the techniques and mechanisms for explicit drift and

change detection. It characterizes and quantifies concept drift by
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(iii)

(iv)

identifying change points or small time intervals during which changes
occur. However, an adaptive learner can also work without detecting drift
e.g. online learning systems, without any explicit change detection
mechanism, can adapt to evolving data.

Learning component refers to the techniques and mechanisms for
generalizing from examples and updating the predictive models from
evolving data. For example retraining learning mode discards the current
model and builds a new model from scratch using buffered data, whereas
incremental adaptation updates the model.

Finally, loss estimation is an estimation mechanism based on
environment feedback. E.g. (Klinkenberg & Joachims, 2000) recognize
and handle concept changes using the properties of support vector

machines.

The evolution of data distributions over time in a dynamic, non-stationary

environment (Tsymbal, 2004; Widmer & Kubat, 1996; Zliobaite, 2009) naturally affects

also credit scoring. Specifically, when the population distributions change over time then

we refer to population drift, a very common phenomenon in economy. Formally speaking,

population drift can occur in three ways (Kelly et al., 1999; Pavlidis et al., 2012):

()
(i)
(iii)

change of risk classes prior probabilities p(G) and p(B),
change in the class conditional probabilities p(x|G), p(x|B) and

change in the posterior probabilities p(G|x), p(B|x).

It’s worth mentioning that changes in class priors and/or class conditional

probabilities do not necessarily lead to change in posterior probabilities, in which case the
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predictive decision will remain unaffected (Gama et al., 2014; Kelly et al., 1999). However,
in reality we could only observe the changes in the joint probabilities: p(x,G) =
p(G|x)p(x) or p(x, B) = p(B|x)p(x) making it hard to distinguish whether actually p(x)

or p({G,B}|x) has changed (Gao et al., 2007).

In order to handle population drift credit bureaus implement continuous monitoring
cycles thus retraining (or calibrating) continuously their models (R. Anderson, 2007; Jung
et al., 2015; Siddiqi, 2005). The calibration of credit scoring models or actually the lack
thereof, has been mentioned in the literature as one reason (among others) for the subprime
mortgage crisis of 2008 (Rona-Tas & Hiss, 2008). Specifically, FICO scores have been
shown to having become a worse predictor of default between 2003 to 2006 (Ashcraft &
Schuermann, 2008; Demyanyk & Van Hemert, 2008) that despite the rapid and severe
deterioration of subprime portfolio quality, corresponding scores remained fairly stable (J.
Breeden, 2014). Thus static credit scoring models based on historical data may fail to
accommodate the inherent cyclicality of banking business (in accordance with the
economic cycles of recession and expansion) and the shift this entails to the entire loss

distribution (Allen & Saunders, 2002; Niklis et al., 2014).

2.3 Adaptive credit scoring

Tightly intertwined within population drift, is the degradation of the scoring models
over the business cycles and the more general impact this degradation has over risk
modeling (J. L. Breeden et al., 2012; J. L. Breeden & Thomas, 2008; J. N. Crook et al.,

1992; Takada & Sumita, 2011). Specifically, Basel II capital accord stipulates that a rating
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system that remains relatively constant through different business conditions is a “through-
the-cycle” (TTC) rating system whilst a rating system that changes period by period is a
“point-in-time” (PIT) rating system. Borrowers in the same risk category of a PIT rating
system would share similar unstressed PDs, and borrowers in a risk category of a TTC
rating system would share similar stressed PDs. Thus, the characteristics of PDs associated
with each risk category are determined by the underlying rating system and the type of
information used. The information needed to forecast the defaults can be aggregate
information, which typically includes macroeconomic variables such as GDP growth rates,
exchange rates and interest rates, and specific borrower information that includes
characteristics of and relevant financial information on borrowers. A TTC score should take
into consideration specific borrower characteristics plus macroeconomic conditions, (e.g.,
(Bonfim, 2009)), but a PIT score would be based mainly on current information on

borrowers.

Thus adaptive learning in the context of credit scoring and risk modeling, has been

approached mainly in two ways:

(i) One approach (focusing on the learning component as specified by (Gama
et al., 2014)) tries to incorporate macroeconomic variables in the modeling
process (Bellotti & Crook, 2014; J. Breeden et al., 2007; J. Crook & Bellotti,
2010; Saha & Siddiqi, 2011; Tony Bellotti & Jonathan Crook, 2013),
sometimes using two-stage models: PIT risk is captured usually through
standard scorecards and then an adaptation (e.g., in the form of linear
regression) captures the system risk (Papouskova & Hajek, 2019; Sousa et

al., 2013, 2014). Survival analysis was often used as a methodology for
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including macroeconomic variables (Bellotti & Crook, 2008), by
incorporating random effects into survival models (Djeundje & Crook,
2018; Figlewski et al., 2012; Leow & Crook, 2014) or by including a time-
dependency mechanism for capturing temporal phenomena in proportional
hazards survival model (Im et al., 2012). Also Markov chain transition
matrixes have been used to capture the dynamics of transition the PD from
time #-/ to t (Grimshaw & Alexander, 2011; Malik & Thomas, 2012).

(if) Another generic approach is by using various forms of online learning.
(Whittaker et al., 2006) proposed the application of Kalman filter to
adaptively estimate parameters f as new information (i.e. from new
applicants) becomes available, so that current observations are given higher
weight than previous observations, which are increasingly discounted.
(Anagnostopoulos et al., 2009, 2012; Pavlidis et al., 2011, 2012) propose a
way of estimating logistic regression online in a temporally adaptive
manner using forgetting factors, that provide a smooth means of putting less
weight on older data. This approach can be regarded as a continuous
analogue to sliding window methods and may be employed in conjunction
with incremental updating. (Danenas & Garsva, 2012) proposed a hybrid
method based on linear Support Vector Machines classification and Particle
Swarm Optimization in combination with sliding windows, in order to
identify general trends.(Elliott & Filinkov, 2008) use Hidden Markov
Models to create a self-tuning, risk estimation model. (S. Guo et al., 2019)

use a multi-stage self-adaptive classifier ensemble model. (Lim & Sohn,
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2007) propose a cluster-based dynamic scoring model which predicts the
borrowers’ credibility by clustering the data set and setting separate
classifiers for each cluster at various time points. (Sousa et al., 2016)
propose a dynamic modeling framework that considers that data is
processed batch-by-batch. Sequentially, at each monthly window, a new
model is learned from a previous selected window, including the most
recent month. (J. Sun & Li, 2011) use instance selection to develop a
dynamic financial distress prediction model, by using sliding windows of

different sizes.

2.4 Local Classification

Usually, the classification process is a two-phase approach that is separated

between processing training and test instances:
e Training Phase: a model is constructed from the training instances.
e Testing Phase: the model is used to assign a label to an unlabeled test instance.

In global or eager learning, the first phase creates pre-compiled abstractions or
models for learning tasks which describe the relationship between the input variables and
the output over the whole input domain (C. Aggarwal, 2014). In instance-based learning
(also called lazy or local learning) the specific test instance (query instance), which needs
to be classified, is used to create a model that is local to that instance. Thus, the classifier
does not fit the whole dataset but performs the prediction of the output for a specific query

(Aha et al., 1991; Bontempi et al., 2001, 2002; Bottou & Vapnik, 1992).
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The most obvious local model is a k-nearest neighbor classifier (kNN). However,
there are other possible methods of lazy learning, such as locally-weighted regression,
decision trees, rule-based methods, and SVM classifiers (Atkeson et al., 1997; Domeniconi
et al., 2001, 2002; Zhang et al., 2006). Instance-based learning is related to but not quite
the same as case-based reasoning (Aamodt & Plaza, 1994; Jo et al., 1997; Vukovic et al.,
2012; R. Xu et al., 2016), in which previous examples may be used in order to make
predictions about specific test instances. Such systems can modify cases or use parts of
cases in order to make predictions. Instance-based methods can be viewed as a particular
kind of case-based approach, which uses specific kinds of algorithms for instance-based
classification.

Inherent to the local learning methods is the problem of prototype or instance
selection where it can be defined as the search for the minimal set S in the same vector
space as the original set of instances T, subject to accuracy(S) > accuracy(T), where the
constraint means that the accuracy of any classifier trained with S must be at least as good
as that of the same classifier trained with (Garcia et al., 2012; Leyva et al., 2015; Olvera-
Lopez et al., 2010). Instance selection methods can be distinguished based on their
properties such as the direction of search for defining S (e.g. incremental search, where
search begins with an empty S) and wrapper vs filter methods, where the selection criterion
is based on the accuracy obtained by a classifier such as kNN, vs not relying on a classifier
to determine the instances to be classified (Garcia et al., 2012).

However, we shall distinguish instance selection from instance sampling (de Haro-
Garcia et al., 2019), where the purpose is to formulate a suitable sampling methodology

for constructing the training and test datasets from the entire available population. Instance
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sampling deals in particular with issues such as sample size and sample distribution
(balancing) (Al et al., 2015; Bischl et al., 2016; Kuncheva et al., 2019; More, 2016) and
has been displayed to be of significant importance for credit scoring due to the inherent
imbalance in the credit scoring data domain (Crone & Finlay, 2012).

There are three primary components in all local classifiers (C. Aggarwal, 2014; Aha
etal., 1991):

1. Similarity or Distance Function: This computes the similarities between the
training instances, or between the test instance and the training instances. This is
used to identify a locality around the test instance.

2. Classification Function: This yields a classification for a particular test instance
with the use of the locality identified with the use of the distance function. In the
earliest descriptions of instance-based learning, a nearest neighbor classifier was
assumed, though this was later expanded to the use of any kind of locally optimized
model.

3. Concept Description Updater: This typically tracks the classification performance,
and makes decisions on the choice of instances to include in the concept description.
A specific mention shall also be made to the concept of local weighted regression

(Atkeson et al., 1997; Cleveland et al., 1988; Loader, 1999; Schaal & Atkeson, 1998) where
the core idea lies on local fitting by smoothing: the dependent variable is smoothed as a
function of the independent variables in a moving fashion analogous to a moving average.
In similar manner kernel regression uses a kernel as a weighting function to estimate the
parameters of the regression i.e. the Nadaraya-Watson estimator (Nadaraya, 1964; Watson,

1964).
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Local classification methods have not been studied extensively specifically in the
context of credit scoring. Simple models such as basic kNNs expectedly do not yield
satisfying results (Lessmann et al., 2015) and thus reasonably have not drawn much of the
interest of the academic community nor the practitioner’s for that matter. Some effort using
advanced and/or hybrid methodologies such as self-organizing maps for clustering
(Schwarz & Arminger, 2005), combining kNN with LDA and decision trees (F.-C. Li,
2009), clustered support vector machines (Harris, 2015), fuzzy-rough instance selection (Z.
Liu & Pan, 2018), instance-based credit assessment using kernel weights (Y. Guo et al.,
2016) displayed somewhat promising results, albeit bearing into consideration the issues

airing from the datasets used (size, relevance, real-world applicability).

2.5 Local Regions of Competence

Ensemble methods also known as Multiple Classifier Systems (MCS) combine
several base classifiers through a conceptual three phase process (Britto et al., 2014;
Dietterich, 2000; Kuncheva, 2004, 2008):

1. Pool generation, where diverse pool of classifiers is generated,

2. Selection, where one or a subset of these classifiers is selected and

3. Integration, where a final prediction is made based on fusing the results of the
selected classifiers.

The selection phase can be static or dynamic. Static selection consists of selecting
base models once and use the resulting ensemble to predict all test samples whereas in
dynamic selection specific classifiers are selected for each test instance through evaluation

of their competence in the neighborhood or otherwise on a local region of the feature space
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where the test instance is located. Thus, the neighbors of the test instance define a local
region which is used to evaluate the competence of each base classifier of the ensemble.

The definition of the local region has been shown to be of importance to the final
performance of the dynamic selection methods (Cruz et al., 2011, 2017, 2018) and there
are papers that point out that this performance can be improved by better defining these
regions and selecting relevant instances (Cruz et al., 2017; V. Garcia et al., 2012; V. Garcia,
Sanchez, et al., 2019). One of the most common methodologies for defining local regions
is kNNs (including its variations such as extended kNNs especially for imbalanced data,
which as mentioned is of particular importance to credit scoring), but methods such as
clustering (e.g. K-Means) (Kuncheva, 2000; Soares et al., 2006) can also be found in the
literature.

Dynamic selection techniques in the context of credit scoring have received the
attention in the literature (Abellan & Castellano, 2017; Ala’raj & Abbod, 2016a, 2016b;
Feng et al., 2018; He et al., 2018; Lessmann et al., 2015). E.g. in a recent paper (Melo
Junior et al., 2020) have proposed a modification to the kNN called Reduced Minority
kNNs (RMkNN) which aim to balance the set of neighbors used to measure the competence
of the base classifiers. The main idea is to reduce the distance of the minority samples from
the predicted instance. As mentioned, imbalancing of the distribution of the classes is an
important factor when considering sampling for credit scoring (Bischl et al., 2016; Crone
& Finlay, 2012; V. Garcia, Marqués, et al., 2019; He et al., 2018; Marqués et al., 2012;
Zhang & Liu, 2019) which becomes even more important when dynamic selection

techniques are applied.
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A related approach is the Mixture of Experts which is composed of many separate
neural networks, each of which learns to handle a subset of the complete set of training
cases (Lasota et al., 2014; Masoudnia & Ebrahimpour, 2014; Titsias & Likas, 2002; L. Xu
& Amari, 2009). This method is established based on a divide-and-conquer principle
(Jacobs et al., 1991) where the feature space is partitioned stochastically into a number of
subspaces through special employed error function and “experts” become specialized on
each subspace. However, the main problem is that as base classifier is used only multilayer
perceptron neural networks (Britto et al., 2014; Cruz et al., 2018). Mixture of Experts has
not been extensively applied in the context of credit scoring and there are but a few studies

on the subject (Liang et al., 2021; West, 2000; J.-M. Yu, 2018).

2.6 Imbalanced Classification

Imbalanced datasets occur as the number of observations in one class (referred to
as a minority class) in a dataset is usually much lower than the number of observations in
the other class (referred to as a majority class). There are quite a few studies and approaches
in literature analyzing the impact of imbalancing in classification in general (Al et al.,
2015; Branco et al., 2016; Ganganwar, 2012; Kaur et al., 2019; Rahman & Davis, 2013;
Sarmanova & Albayrak, 2013; Y. Sun et al., 2009; Q. Wang et al., 2017; S. Wang et al.,
2018) and within the context of credit scoring in particular (Bischl et al., 2016; Brown &
Mues, 2012; Crone & Finlay, 2012; V. Garcia et al., 2012; He et al., 2018; Marqués et al.,
2012).

For example, (Brown & Mues, 2012) showed that the random forest and gradient

boosting classifiers perform very well in a credit scoring context and are able to cope
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comparatively well with pronounced class imbalances in the datasets. On the other hand,
when faced with a large class imbalance, the C4.5 decision tree algorithm, quadratic
discriminant analysis and k-nearest neighbors perform significantly worse than the best
performing classifiers. (Douzas et al., 2021; Douzas & Bacao, 2017, 2018) tackle the
problem of imbalanced datasets by using a novel oversampling method, Self-Organizing
Map-based Oversampling (SOMO). There are a number of over-sampling (applied on
minority class) or under-sampling techniques (applied on majority class) that can be found
in literature. For example, (Chawla et al., 2002) proposed Synthetic Minority Over-
sampling Technique (SMOTE). The SMOTE over-samples the minority class by taking
each minority class sample and creating synthetic examples (along the line segments
joining any/all of the k minority class nearest neighbors). Thereafter, neighbors from the k
nearest neighbors are randomly chosen, depending on the amount of over-sampling
required. For instance, if the amount of over-sampling needed is 300%, only three
neighbors are chosen and one sample is generated in the direction of each. Synthetic
samples are generated by taking the difference between the feature vector (sample) under
consideration and its nearest neighbor. Thereafter this difference is multiplied by a random
number between 0 and 1, and is added to the feature vector under consideration to form a
synthetic feature vector. There were many applications and/or modifications of SMOTE
proposed thereafter (Han et al., 2005; Qazi & Raza, 2012; Q. Wang et al., 2017). Most
recently (Camacho et al., 2022; Douzas et al., 2021) proposed a modification called G-
SMOTE which allows the generation of synthetic instances in a geometric region around
the selected instances rather than in the line segment that joins the two selected instances.

There are other techniques that neither do over-sampling nor under-sampling to deal with
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class imbalance, such as wavelet data transformation and linear dependence approach. For
example (Saia et al., 2018) proposed a discrete wavelet transformation to deal with
imbalanced data in credit scoring. Wavelets are small waves and wavelet transform
captures both the time and frequency domains. (Saia et al., 2018) approach outperformed

the random forest model regardless of data distributions.

2.7 Methodological issues in classifiers’ performance measures and

comparisons

2.7.1 Performance measures

There is a keen interest of the scientific research community regarding the
appropriateness of the established performance measures used to evaluate classification
models and especially those which are used in credit scoring applications, considering also
the inherent imbalance of the credit scoring datasets (Japkowicz & Shah, 2011; Luque et
al., 2019; Parker, 2011). (Japkowicz & Shah, 2011) defined an ontology of performance
measures (Figure 2) where they categorize classifiers as follows:

e Deterministic algorithms output a fixed class label for each instance and
hence can be better measured in terms of the zero—one loss. That is, the loss
of misclassifying an example (assigning a wrong class label to the instance)
is one; and zero otherwise.

e Probabilistic classifiers, on the other hand, issue a probability estimate on
the class membership of the example for various classes. To obtain
deterministic class assignments from probabilistic classifiers, typically

either a maximum a posteriori (MAP) or a Bayesian estimate is considered



Adaptive Credit Scoring using Local Classification Methods 55

o Scoring classifiers are thresholded so as to obtain deterministic labels for
test examples. In a binary classification scenario, a classifier that outputs
scores on each test instance in a fixed interval [a, b] can be thresholded at
some point st € [a, b] such that all the examples with a score greater than st
are classified as positive whereas the examples scoring less than st are

labeled as negative.
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Figure 2: An ontology of performance metrics
(Source: (Japkowicz & Shah, 2011)13)

Specifically the credit scoring setup gives rise to methodological problems such as
the accuracy paradox (Uddin, 2019; Valverde-Albacete & Pelaez-Moreno, 2014) and the
different misclassification cost between Type I and Type II errors (Hand, 2009). As a result,

the most commonly used approach avoids accuracy as a scorecard performance metric and

13 KL=Kullback-Leibler, BIR=Bayesian information reward, K&B IR= Kononenko and Bratko
information reward
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has adopted measures such as the Area Under the ROC (AUC), the GINI index and the
Kolmogorov-Smirnov distance or the F-measure. However, in the literature there has been
a skepticism over their appropriateness and especially of the widely used AUC measure
(Hand & Anagnostopoulos, 2013). A coherent alternative namely the H-measure
(Anagnostopoulos et al., 2019; Hand, 2009; Hand & Anagnostopoulos, 2013, 2021) has
been proposed in the literature which handles different misclassification costs and is
indicated to be a better suited performance metric for the credit scoring context (Parker,
2011). Thus in this work, we use both AUC and H-measure in accordance with above

findings.

2.7.2 Comparison of Classifiers
Comparisons among classification algorithms on different datasets arise in machine
learning when a new proposed algorithm is compared with the existing state of the art.
(Japkowicz & Shah, 2011) identified the following cases that shall be considered upon
deciding which is the appropriate approach to statistical comparison:
e The comparison of two algorithms on a single domain,
e The comparison of multiple algorithms on a single domain,
e The comparison of multiple algorithms on multiple domains.
Figure 3 depicts these possible combinations of classifiers and datasets and
proposes the suitable procedure for each case. There are some points worth noting:
e In the case of two algorithms compared on multiple domains, there are

proposed only non-parametric tests.
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e Both ANOVA and Friedman’s test, in the case of multiple algorithms
compared on multiple domains, should be followed (when the null
hypothesis is rejected) by a post hoc test, in order to establish where the

difference was located.
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2 Algorithms
Multiple Domains

Multiple Algorithms
Multiple Domains

Repeated Measure Friedman’s
One-way ANOVA Test

McNemar's 5 Tukey Post hoc Bonferroni-Dunn Nemenyi
Test S Test Post hoc Test Test

Parametric and
Parametric Test [ ——— Nonparametric

Figure 3: Statistical tests for comparing multiple classifiers
(Source: (Japkowicz & Shah, 2011)14)

2 Algorithms
1 Domain

Two-Matched- Wilcoxon’s Signed-Rank
Samples ¢ Test Test for Matched Pairs

Thus, from a statistical point of view, the correct way to deal with multiple
hypothesis testing is by, firstly, comparing all the classification algorithms together by
means of an omnibus test to decide whether all the algorithms have the same performance.
Then, if the null hypothesis is rejected, we can compare the classification algorithms by
pairs using post-hoc tests. In these kinds of comparisons, common parametric statistical
tests such as ANOVA are generally not adequate as the omnibus test. The arguments are
similar to those against the use of the t-test: The scores are not commensurable among

different application domains and the assumptions of the parametric tests (normality and

14 KL=Kullback-Leibler, BIR=Bayesian information reward, K&B IR= Kononenko and Bratko
information reward
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homoscedasticity in the case of ANOVA) are hardly fulfilled (Demsar, 2006; S. Garcia et
al., 2010; Garcia & Herrera, 2008; Santafe et al., 2015). We use Friedman’s aligned rank
test as our omnibus test to obtain the p-values on the performance differences, testing for

null-hypothesis, (i.e. that all models perform equally well, is rejected if p < 0.05). The

k(k—1)
2

chosen test is applied to the pairwise comparisons, where k is the number of

models. Due to the multiple application of the test, some p-value correction method has to
be used in order to control the familywise error rate. This problem was tackled by (Schaffer,

1993), where there were proposed two procedures to correct the p-values:

(i) In the first one (sometimes called Shaffer static) the particular ordering of
the null hypothesis is not taken into account and only the maximum number
of simultaneous hypotheses is considered.

(ii) The second one further limits the number of possible hypotheses by
considering which particular hypotheses have been rejected. This increases
the power of the method, but it is computationally very expensive. Instead
of this procedure, in (Garcia & Herrera, 2008), the authors propose to use

Bergmann and Hommel’s method (Bergmann & Hommel, 1988)

Thus, in this work we use Friedman’s Aligned Rank Test adjusted with Bergmann

and Hommel’s method.

Once the null-hypothesis is rejected, the Nemenyi test is performed as a post-hoc
test. The Nemenyi test is used to compare classifiers pairwise, where the best performing

classifier per measure is tested against all other models (Demsar, 2006).
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3 Experimental Setup and Methodology

3.1 Problem Formulation

Assuming a classification train set {(X1,V1), - » X, Yn)}, X E R", y € {0,1}, M is a
global model trained on all {(x;, y;)}{L,, the local region of competence for a given test
instance x (assuming its k-Nearest Neighbors) is denoted by Ny = {X4, X5, ..., Xx} and the
learning set for the local classifier My is {(xj, yi) }x,en, -

Specifically, for the credit scoring binary classification problem {x;},i =1, ...,n, is
considered the feature or variable space, denoting the characteristics of each borrower i
and y; is the corresponding objective or target variable denoting the class label (non-default
or default sometimes referred also as “Good” or “Bad”). Each feature vector x; is observed
at a point in time Ty, called observation point, whereas the corresponding response y; is
recorded at a subsequent performance point T, = Ty + T, where T = 1 is usually defined
in months. The collected input data span an observation time window (or observation
window) covering the period from [T, — t/, To] to (T’ = 1 denoting months), whereas the
outcome window refers to the period (Ty, T;] where the class label of y; is defined (see
Figure 4). For the context of behavioral credit scoring the feature space contains variables
related the financial performance and behavior of borrowers such as credit amounts,

delinquency status etc.

Observation Performance
Point Point
(TO

NN

Observation Window

Figure 4: Observation and Outcome windows
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The credit scoring literature has not provided definitive answers to defining optimally
these parameters (default definition, observation window, outcome window. The
recommendations in the literature vary the length of observation and outcome windows
from 6 to 24 months (Mays, 2005; Thomas et al., 2002; Thomas & Malik, 2010).

Regarding the definition of default, Anderson (2007) designated that financial
institutions choose between: (a) a current status definition that classifies an account as good
or bad based on its status at the end of the outcome window, and (b) a worst status approach
that uses a time-period during the outcome window. Regulatory requirements are also of
paramount importance and must be taken into consideration, such as a 90 days past due
worst status approach that is commonly used in practice in behavioral scorecards and
complies with the Basel II Capital Accord and used also in the new definition of default by
the European Banking Authority (EBA). (Kennedy et al., 2013) have made a comparative
study of various values for these parameters. Their results indicated that behavioral credit
scoring models using:

e default definitions based on a worst status approach outperformed those
with current status.

e a 12-month observation window outperformed the ones with 6- and 18-
month windows in combination with shorter (12 months or less) outcome
windows.

e 6-months outcome window and a current status default definition
outperformed longer outcome windows; for the worst status approach the

degradation occurs when outcome window extends beyond 12 months.



Adaptive Credit Scoring using Local Classification Methods 61

3.2 Data and Variables

Our data set (pooled cross-sectional data) has been derived from a proprietary credit
bureau database in Greece and spans a period of 11 years (2009q1 to 2019g4), resulting in
total 44 snapshots (11 years by 4 quarters). At each snapshot, a random sample of 80,000
borrowers was retrieved with all their credit lines, including paid off and defaulted,

resulting in 3,520,000 record-months observations.

In total, 125 proprietary credit bureau behavioral variables were calculated at the
borrower level which fall within the following dimensions:
e Type of credit (consumer loans, mortgages, revolving credit such as
overdrafts, credit cards, restructuring loans, etc.).
e Delinquencies (months in arrears, delinquent amount, etc.).
e Amounts (Outstanding balance, disbursement amount, credit limit, etc.).
e Time (months since approval, time from delinquencies, etc.).
e Inquiries made to the credit bureau database.
e Derogatory events, such as write-offs or events from public sources such as

courts.

Besides “elementary” variables such as the ones described above, other
derivative/combinatory variables along various dimensions were calculated, such as
various ratios (ratio of delinquent balance over current balance for the last X months for a
specific type of credit line), utilizations and their rate of their increase or decrease over a
specific time-window (e.g., consecutive increase over last X months), giving the total of

125 variables.
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Appendix B: List of Variables provides a detailed list of variables as well as some

basic descriptive statistics.

3.3 Scoring Parameters

Our scoring parameters are defined as follows:

Observation window: Time windows of 12 months prior to each observation
point Ty. Our initial observation point has been at 2009ql and every
subsequent quarter thereafter up to 2018q4.

Scorable population: At each observation point Ty, all following cases are
excluded from the analysis: a) borrowers already having delinquency of 90
days past due (dpd) or more at T, b) cases lacking sufficient historical data
i.e., less than 6 months of credit history, credit cards which are inactive
balance within the observation window. The remaining observations
constitute the scorable population for the specific T,,. The last T, is taken at
2018q4.

Outcome window: a 12-month window after the observation point. For each
observation point Ty, the period T; = Ty + 12 is used as the outcome
window. Thus, the last T; is taken at 2019g4.

Default definition: The labeling of the scorable population for each T, either
as GOOD=0 (majority class), BAD=1 (minority or “default” class),
depending on the information available during T;, takes place using a worst
delinquency approach for each outcome window, resulting in the

corresponding classes: (a) y =1 is assigned to cases with worst
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delinquency > 90 dpd or a derogatory event during the outcome period, (b)

y = 0 is assigned to all other cases

3.4 Methodology

Our approach is based on training local and global classifiers on the same sample and
comparing their performance. Local classifiers are trained for each instance x of the test
data set of each snapshot using the feature space defined by its neighborhood or region of
competence within the training data set. A local model M, is then used to predict the
probability and the class label of the specific instance for which it was trained.
Correspondingly, global classification models are trained on the entire train set and then
used to predict the class probabilities of each instance on the test data set. For better
simulating a real-world scenario, we retrain global classifiers every two years. The
classifiers used both in the global as well as in the local scheme are logistic regression,
random forests (RF), and extreme gradient boosting machines (XGB). The choice of the
specific ML models was made based on recent credit scoring literature findings where they
seem to be on par or outperform other machine learning and deep learning methods.
Specifically, Gunnarsson et al. (2021) found that XGBoost and RF outperformed Deep
Belief Networks (DBN), Hamori et al. (2018) found XGB to be superior to Deep Neural
Networks (DNN) an RF. Marceau et al. (2019) found that XGB performed better than DNN,

and Addo et al. (2018) concluded that both XGB and RF outperform DNN.

During the training phase, the input data have been pre-processed using an expert-based

process flow to:
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e handle missing values, by excluding variables with greater than 70%
missing values and filling the remaining blanks with a constant (since the
variables are missing at random (MAR), in this work we use -1 as constant
value),

e retain only the useful variables, by removing those with zero variance or
near zero variance,

e isolating non-correlated variables using an exclusion threshold of 0.7, and

e select the most discriminative among the remaining variables using the
Information Value (IV) criterion for the Logistic Regression (LR). The
exclusion thresholds were selected to match a practitioner’s rule mentioned
in the literature (Siddiqi, 2005), where a variable is removed in case of
having an IV lower than 0.3 and greater than 2.5. For the ML methods we
let the default (implicit) algorithm parameters on the entire feature space.
However, for testing purposes we also try the same variables selected for

LR (I'V-based).

Finally, as it has been noted in section 3, credit scoring data are inherently imbalanced.
In our case, the imbalancing is also observed in the regions of competence, which are used
to build the local classification models. Such a fact, inevitably yields in some cases to non-
convergence errors, when local logistic regression is used as a classification algorithm and
the local region of competence contains very few minority class (default) cases for the

algorithm to converge. In our experiments we found this non-convergence error to be on
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average 1.9% over all executions'®. To address the non-convergence issue, in this work, we
use a simple heuristic rule: anytime logistic regression algorithm fails to predict a class
label for a test instance, the algorithm assigns the majority class from test instance’s region

of competence.

3.4.1 Local Classification

As detailed below, for each snapshot, the k Nearest Neighbors (k-NN) algorithm is used
to define its local region of competence N, for each test instance x. A local model M, is
trained on this specific region N,, which serves as an instrument to achieve the desired
adaptation for the classification process. Figure 5 shows the overall flow for the proposed

scheme:

15 1n total we executed 120 runs for local LR models (one run over all 40 snapshots for each k, where
k={2000,4000,6000} the size of KNNs.
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Training Set #1 Local Models
(TR_1): {Mx}
Snapshot #1 [TR_1 = 40,000 Train {M,} local models
X, il
(SN_1) SetUp N Where KMx} = [TS_1], L I
|SN_1|=80,000 XxeTS 1 =
Test Set #1:
(TS_1):
TS_1| = 40,000
Training Set #2 Local Models
(TR 2): {Mx}
Snapshot #2 [TR_2| = 40,000 Train {My} local models,
X. 1’
(SN_2) Set Up N where [{Mx} = [TS_2), SRR
|SN_2|=80,000 X eTS 2 =
Test Set #2:
(TS_2):
|TS_2| = 40,000

Training Set #40 Local Models
(TR_40): {Mx}

Snapshot #40 I =EE Train {M,} local model
rain {M} local models,
s /- e
|SN_40]|=80,000 x € TS_40 -
Test Set #40:
(TS_40):
[TS_40| = 40,000

Figure 5: High-level flow for the proposed local classification scheme (|S| denotes the cardinality
of a set S)

The set-up procedure is as follows: for each snapshot, the scorable population is defined
as a random set (of 80,000 instances), sampled without replacement from the total
population and the resulting data set is separated through a 50-50 split into training and test
sets, to form the training and test sub-spaces of the original feature space. The distance
metric used to define the local region of competence for each test instance, is determined
using the Euclidean or the Mahalanobis distance. Such a region of competence serves as a
borrower-specific localized training set that will be used to build a local classification

model for that borrower.
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Regarding the size of the k parameter required by the Nearest Neighbors algorithm, it
is worth to note a common rule of thumb that defines the selection of 1500 to 2000
examples per class, dating from the very beginning of credit scoring model development
(Lewis, 1992) and mentioned in many works thereafter (R. A. Anderson, 2022; Finlay,
2010; Siddiqi, 2005). Although the subject is not extensively researched, recent academic
studies pointed to the direction that larger samples can improve the performance of linear
models (Crone & Finlay, 2012; Finlay, 2010) but there seems to be a plateau after 6000
goods/bads and almost no further benefit above 10000. As a result, aiming to evaluate both
claims, in this work we selected a k parameter that ranges from 2000 to 6000 examples
(k €{2000, 4000, 6000}). The resulting region of competence is used to train a local
classification model, M,., which is specialized for the corresponding test instance/borrower.
In this study, local classification models are built using the classification algorithms
considered in the analysis (i.e., logistic regression, Random Forests, Gradient Boosting
Trees). Figure 6 depicts the training phase for the proposed scheme (pre-processing refers

to the flow described in section 3.4).

Region
o - of Competence Ny,
Find kNN in TR_L

(train set #L)

Region
. . of Competence Ny,
Test Set#L: Test Instance X, Find kNN in TR_L g Pre-process Train model

Test Instance x; g Pre-process Train model

{xi},
L={L,..40},
i {L.[TS. L[}

Region

Figure 6: Training phase for the proposed local classification scheme (|S| denotes the cardinality
of a set S)

Local Model
My,

Local Model
My,

of Competence Ny;
Test Instance X; Find kNN in TR_L g Pre-process Train model Loca'l\/lModeI
Xi
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To assess the performance of each local classification model M, , which had been built
for each test instance x; on its specific region of competence Ny, i={1,.../TS_L[} (where i

is the number of the data points in the test set #L) is used to predict the probability of
default (PD) for the considered test instance/candidate borrower and assign a GOOD or

BAD class label. This is compared to the actual labels available for the test instances.
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3.4.2 Global Classification

As a baseline to benchmark our proposed local classifiers we implement and evaluate
a standard credit scoring classification scheme commonly used both by the scientific
community and practitioners alike. In the global classification approach, the adaptation to
population drift is achieved by retraining the models using new data from the contextual

snapshot. Figure 7 shows the overall flow for the global scheme.

Training Set #1
(TR_1): Global Model #1
Snapshot #1 ML= ST
(SN_1) 8 Train Global Model > EVa\',l;a% feiults
|SN_1|=80,000 L
Test Set #1:

(TS_1):
[TS_1] = 40,000

Training Set #2
(TR_2):

E——— [TR_2| = 40,000
napsho

(SN_2) 8 Train Global Model > Eva\',l;a% rezults
|SN_2|=80,000 L

Test Set #2:
(TS_2):
|TS_2| = 40,000

Global Model #2

Training Set #40
(TRg 20) Global Model #40
[TR_40| = 40,000
Snapshot #40 Evaluate results
(SN_40) > Train Global Model > Vs TR 40
|SN_40|=80,000 =
Test Set #40:

(TS_40):
|TS_40] = 40,000

Figure 7: Global classification scheme (|S| denotes the cardinality of a set S)

It should be noted that in order to have a real-word and realistic comparison of model

performance we re-train our global models every two years (as retraining/re-calibration/-



Adaptive Credit Scoring using Local Classification Methods 70

redevelopment is a process applied in practice by all commercial credit scoring models).
The performance of global models over all snapshots degrades significantly in case of

training only once for the initial snapshot data (see section 4.1).
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4 Empirical Results

In the empirical results we use the following notation:

LR = Logistic Regression

XGB = xgboost

RF = Random Forest

G = Global Model

L = Local model

2k, 4k, 6k = 2000, 4000, 6000, count of k for kKNN5s

euc = Euclidian distance

mah = Mabhalanobis distance

v = feature selection based on Information Value (IV) process
FS = implicit feature selection for ML models

n = no retraining (training takes place only at 2099q1)

4.1 Global classifiers and Population drift

We first examined the impact of population drift by training the global models at
the beginning of our data period (2009ql) and compared their performance when we
retrained them every 2 years (i.e. 2009ql, 2013ql, 2015ql, 2017ql), as mentioned in
section 3.4.2. Table 3 summarizes the results over all snapshots. Detailed results are
provided in Appendix D: Detailed Results in Table A-9 (AUC) and Table A-10 (H-

Measure).

Table 3: Performance measures of global classifiers (no retrain=shaded rows) over all snapshots
with different feature selection mechanisms
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(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, I\V=feature selection based on 1V,
FS=implicit feature selection, n=no retrain)

Model Mean Standard Deviation Mean Standard Deviation

AUC AUC H-Measure H-Measure
LR G_n_IV 0.821 0.036 0.464 0.015
LR _G_1IV 0.873 0.016 0.499 0.034
XGB_G_n_FS 0.899 0.013 0.577 0.014
XGB_G_FS 0.931 0.014 0.643 0.012
XGB_G_IV 0.928 0.012 0.635 0.012
RF_G_n_FS 0.918 0.011 0.623 0.014
RF_G_FS 0.933 0.012 0.659 0.012
RF_G_IV 0.930 0.012 0.648 0.012

Figure 8 and Figure 9 visualize the detailed performance over all snapshots for all

model above results in violin plots®®.

| @@$$$®

0.8-

0.7-
LRGn IV LRG IV XGBnFS XGB GFS XGBGIV RFGnFS RFGFS RFGIV

Figure 8: AUC of global classifiers (y-axis not starting from zero)
(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, I\V=feature selection based on IV,
FS=implicit feature selection, n=no retrain,)

16 The violin plots in this thesis display the kernel density plot, along with the mean value of the distribution
(a blue dot) and one standard deviation above and below the mean, as a blue line.
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Figure 9: H-Measure of global classifiers (y-axis not starting from zero)

(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, I\V=feature selection based on IV,
FS=implicit feature selection, n=no retrain,)

From a first analysis our initial conclusions confirm the corresponding findings in
literature:

e Population drift affects model performance; this is solidly confirmed
across all models. Retraining (expectedly) benefits model performance in
all cases. All models with retraining perform better than the corresponding
ones without retraining.

¢ XGB and RF outperform LG. Specifically referring only to the retrained
models, in terms of AUC the performance difference is 6.6% and 6.9% for
XGB and RF over LG correspondingly (which is within the average range
observed in other studies; see section 2.1.2) and for H-Measure the
corresponding differences are 29.0% and 32.1%. We will elaborate further

upon this finding when examining also local classification.
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e In ML models embedded feature selection seem to outperform I'V-based
feature selection: For ML models (XGB and RF) allowing them the
freedom to “work” with all feature space, gives them an apparent edge over
constraining them to the same set of variables (through the IV criterion) that

were chosen for the LR global models.

As discussed in section 2.7.2 to test for statistical significance of these differences
(i.e. comparing of multiple methods on multiple data sets as noted in Demsar (2006)) we
use Friedman’s Aligned Rank Test (Garcia et al., 2010) to obtain the p-values on the
performance differences and correcting them using Bergmann and Hommel procedure
(Garcia & Herrera, 2008). Figure 10 and Figure 11 visualize the corrected p-value matrices

(a=0.05) for AUC and H-Measure based performances correspondingly.

LR G n_IV-
LR G_ IV~

XGE_n_FS-

p-value

1.00
RF_G_n_FS-
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0.50

XGE_G_IV-
0.25
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RF_G_IV-

XGE_G_FS-

RF_G_FS-

RF G FS XGB G FS RF G IV XGBE G IV RFGnFS XGBnFS LRG I LRGn_IV

Figure 10: AUC based statistical differences of global classifiers (p-value matrix)

(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, I\V=feature selection based on IV,
FS=implicit feature selection, n=no retrain,)
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LR G_n_IV-
LR G_IV-

XGB_n_FS-

p-value
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Figure 11: H-measure statistical differences of global classifiers (p-value matrix)
(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, I\V/=feature selection based on IV,
FS=implicit feature selection, n=no retrain,)

It becomes evident that RF and XGB global models with retraining are statistically
similar and the differences in feature selection methods (embedded FS vs IV) for these
models are not statistically significant, although FS ranks better than IV. To better depict
the results we draw a ranking graph (Figure 12) where the models we compare are the
nodes and two nodes are linked if the null hypothesis of being equal cannot be
rejected. Within each node the average rank of the model is printed. The green node

indicates the model with the highest relative rank. As it is evidenced:

e RF and XGB outperform LR in all cases.
e Retraining always outranks models trained once at the beginning of the

examined period
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e Feature selection method (FS vs IV) ranks always better intra-model (i.e.
RF G _FS is better ranked than RF G IV and XGB G _FS is better than
XGB _G_1V).

e As far as the comparison between XGB and RF is concerned, RF seem to

fare better but not statistically significant.

We will elaborate on all these themes as we move in the local classifiers

analysis of results.
AUC H-Measure

XGB_G_FS RF_G n FS LR G_n_IV
2.61 4.45 7.75

XGB_G_IV
374

XGB_n_FS
5.86

XGB G_IV

J-4."03 l RF G n FS
REG IV | XGB G S

24

Figure 12: Graph of rankings for global models
(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, I\V=feature selection based on 1V,
FS=implicit feature selection, n=no retrain,)

Visualizing the timeseries of performance measures (Figure 13 and Figure 14)7,
we observe that additional to the apparent superiority of the retrained models over their
“static” ones (in the sense of no retraining), as LR degrades quite significantly over time
(-15.71% drop in AUC between 2009ql and 2018q4 and -30.81% drop in H-Measure

correspondingly), whereas XGB and RF keep their corresponding performance. Population

17 We kept only the “* _FS” models for XGB and RF (i.e. the ones fed the entire feature space, not with an
IV-based feature selection
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drift is also showcased as it becomes evident after the first retraining point (2011q1) where

the performance deviation grows thereafter.
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Figure 13: AUC degradation of global classifiers with and without retraining

(y-axis not starting from 0)
(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, dashed lines=no retrain)
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Figure 14: : H-Measure degradation of global classifiers with and without retraining

(y-axis not starting from 0)
(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, dashed lines=no retrain)
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Thus for the rest of the thesis we will solely use the retrained global models as our

benchmark for comparing global and local models and for XGB and RF the FS option for
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feature selection. For brevity in the following sections we will omit the feature selection

procedure from the labels of the models (e.g. XGB_G_FS will be shorthanded to XGB_G)

4.2 Local classification

4.2.1 Euclidean vs Mahalanobis Distance and size of k (KNN)

For tackling the hypothesis regarding the superiority of local models over their
global counterparts, we started by examining whether the choice of distance metric and the
size of the local region impacts the classification performance. Since we are using LR as a
baseline we tried different kNN sizes (k={2000,4000,6000}) for Euclidean as well the
Mahalanobis distance metric for this classifier. Table 4 summarizes the performance (AUC,
H-Measure) results and Table A-11and Table A-12 in Appendix D provide the detailed
results over all snapshots. Figure 15 and Figure 16 depict graphically these results.

Table 4: Performance measures of LR_L using different distance metrics and local region sizes
(LR=Logistic Regression,2k,4k,6k=k in KNN, euc=Euclidion dist. mah=Mahalanobis)

Model Mean Standard Mean Standard
AUC Deviation AUC H-Measure Deviation H-

Measure

LR L 2k euc 0.926 0.009 0.636 0.028
LR L 2k mah 0.891 0.013 0.559 0.021
LR L 4k euc 0.926 0.012 0.630 0.030
LR L 4k mah 0.905 0.008 0.585 0.021
LR L 6k euc 0.926 0.012 0.627 0.031

LR L 6k mah 0.911 0.009 0.595 0.023
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Figure 15: AUC of LR_L using different distance metrics and local region sizes (y-axis
not starting from zero)
(LR=Logistic Regression,2k,4k,6k=k in kNN, euc=Euclidion dist. maha=Mahalanobis)
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Figure 16: H-Meausre of LR_L using different distance metrics and local region sizes (y-

axis not starting from zero)
(LR=Logistic Regression,2k,4k,6k=k in kNN, euc=Euclidion dist. maha=Mahalanobis)

As evidenced the choice of k does not have a significant impact performance of

logistic regression, when Euclidian distance 1s used as distance metric for the choice of
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kNNs. Specifically, we observe that when using the H-measure, the performance results
are slightly and non-significantly decreasing as k increases (mean=0.6360, 0.6298, 0.6270
for k=2000, 4000, 6000, correspondingly) see Figure 17, whereas the opposite holds when
using AUC as performance measure (mean=0.9256, 0.9259, 0.9265 for corresponding
k’s)- see Figure 18.

However, there is an obvious a statistically significant difference between
Euclidean distance and Mahalanobis distance in the choice of local regions, with the first
clearly outperforming the second one. The p-value matrixes (Figure 17, Figure 18) indicate
two distinct “groups” (Euclidean - Mahalanobis); whereas the null hypothesis can’t be

rejected intra-group, we safely can reject the inter-group null hypothesis.
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LR_L_4k_mah-

p-value
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<

LR L 2k euc- 0.25
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LR_L_6k_euc-

LR L Bk euc LR L 4k euc LR L 2k eucLR L 6k _mahLR L 4k _mahLR_L 2k mah
Algorithm

Figure 17: AUC based statistical differences of LR-L using different distance metrics

and local region sizes (p-value matrix)
(LR=Logistic Regression,2k,4k,6k=k in KNN, euc=Euclidion dist. maha=Mahalanobis)
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Figure 18: H-Measure based statistical differences of LR-L using different distance

metrics and local region sizes (p-value matrix)
(LR=Logistic Regression,2k,4k,6k=k in kNN, euc=Euclidion dist. maha=Mahalanobis)

Thus, for the rest of our process we choose to use k=2000 for local models since
model performance is not significantly affected, whereas computational performance and
memory requirements are considerably improved with lower k’s and we will use only

Euclidian distance.

4.2.2 Local vs Global Classifiers

Summing up our findings this far, we compared the following classifiers:

LR-L 2k = Local LR using 2000 kNNs with Euclidean distance (and 1V
feature selection)

XGB-L 2k = Local XBG on the same local regions with LR (no IV features)

RF-L 2k = Local RF on the same local regions with LR (no IV features)
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LR-G = Global LR with retraining every 2 years (and IV feature selection)
XGB-G = Global XBG with retraining every 2 years (no IV features)
RF-G = Global RF with retraining every 2 years (no IV features)

Comparing visually the performance timeseries of the local classifiers with their
corresponding global ones, we get a mixed picture (see Table A-13 and Table A-
l4inAppendix D: Detailed Results): whereas local LR models characteristically
outperform their global counterparts, for XGB and RF the differences between global and

local classifiers do not appear to be significant (Figure 19).
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Figure 19: Pairwise timeline comparison between local/global classifiers sizes (y-axis not

starting from zero)
(different y-axis scales, LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, solid blue line denotes local
classifier, red line with markers global classifier)

Table 5 summarizes average performance and Figure 20 and Figure 21 depicts.

RF-L 2k is the best performing classifier in terms of average performance.
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Table 5: Performance of Local vs Global Classifiers

&3

(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, L=Local classifier, G=Global Classifier, 2k=2000 for
kNN, , bold indicate the best classifier for the specific snapshot))

Model Mean Standard Mean Standard
AUC Deviation AUC  H-Measure Deviation H-

Measure

LR-L_2k 0.9256 0.0086 0.6360 0.0278
XGB-L 2k 0.9267 0.0118 0.6445 0.0368
RF-L 2k 0.9366 0.0111 0.6695 0.0351
LR-G 0.8729 0.0161 0.4987 0.0344
XGB-G 0.9306 0.0138 0.6435 0.0382
RF-G 0.9334 0.0123 0.6588 0.0348

1.00-

“HHOH Y

0.85-

0.80-
LR-L 2k XGB-L 2k RF-L 2k

XGB-G

RF-G

LR-G

Figure 20: AUC of Local vs Global Classifiers (y-axis not starting from zero)
LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, L=Local classifier, G=Global Classifier, 2k=2000 for kNN)
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Figure 21: AUC of Local vs Global Classifiers (y-axis not starting from zero)
LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, L=Local classifier, G=Global Classifier, 2k=2000 for kNN)

Displaying the average ranking of the local and global models used (Figure 22), we
observe two things:

e The overall order is grouped by the algorithm used: 1-RF, 2-XGB, 3-LR

e Within each group local model outperforms its corresponding global
AUC H-Measure

XGB-L_2k
4.05

XGB-L_2k

3.69

Figure 22: Graph of rankings for global models
(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, I\V=feature selection based on IV,
FS=implicit feature selection, n=no retrain,)
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Analyzing the statistical differences (
Figure 23 and Figure 24) we observe that in both measures (AUC and H-Measure) LR-G
differs significantly from all other classifiers. Going in more details, in the AUC-based
matrix two “clusters” of classifiers emerge for which the null hypothesis of not been equal
cannot be rejected: a) XGB-G, RF-G, RF-L 2k and b) LR-L 2k and XGB-L 2k. For the
H-measure-based p-value matrix the analogous “clusters” observed are: a) RF-L 2k, RF-
G and b) XGB-G, XGB-L 2k, LR-L_2k. Thus, there seems to be an “interlacing” between
the performance of all ML models (both local and global) and LR-L_2k which cannot be
statistically rejected and strengthens the evidence that local models are at least on par with
their global counterparts. Especially for LR-L it is clearly evidenced that it outperforms

LR-G with statistical significance.

LR-G -

LR-L_2k-

p-value

XGB-L_2k-

XGB-G -

0.02 0.01

RF-G- 0.11| 0 0

FtF-L Eh_ -

RF-L 2k RF-G XGB-G XGB-L 2kLRL 2k LAG
Figure 23: AUC based statistical differences of Local vs Global Classifiers (p-value matrix)
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Figure 24: H-Measure based statistical differences of Local vs Global Classifiers (p-
value matrix)

As a next step we use the Nemenyi post-hoc test that is designed to check the
statistical significance between the differences in the average rank of a set of predictive
models. In the resulting Critical Distance (CD) graph (Figure 25) the horizontal axis
represents the average rank position of the respective model. The null hypothesis is that the
average ranks of each pair of predictive models do not differ with statistical significance
of 0.05. Horizontal lines connect the lines of the models for which we cannot exclude the
hypothesis that their average ranks are equal. Any pair of models whose lines are not
connected with a horizontal line can be seen as having an average rank that is different with
statistical significance. On top of the graph a horizontal line is shown with the required
difference between the average ranks (known as the critical distance or difference) for two

pair of models to be considered significantly different.
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To test for statistical differences between all classifiers (i.e. the case of multiple
methods on multiple data sets as noted in Demsar (2006)) we use Friedman’s Aligned Rank
Test (Garcia et al., 2010) to assess all the pairwise differences between algorithms and then

correct the p-values for multiple testing (Figure 6 visualizes the results in matrix format).

AUC H-Measure
cD cD
1 2 3 4 5 6 1 2 3 4 5 [
! 1 1 1 L L 1 1 1 1
RF-L_2k — XGB-L_2k RF-L_2k - XGB-G
RF-G LR-L_2k RF-G LR-L_2k
XGB-G ——M8M LR-G XGB-L_2k LR-G

Figure 25: Critical Distances between local and global classifiers
(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, L=Local classifier, G=Global Classifier, 2k=2000 for kNN)
Thus, it is evidenced that the case of local LR consistently and statistically
significantly outperforms global LR although the same conclusion does not seem to hold
for RF and XGB, despite the minor difference in favor of the local methods when

comparing average performance.

4.3 Random regions of competence vs KNNs

To examine whether the choice of a specific local region based on kNNs vs random
sub-sampling plays a role in the performance, we trained a series of models LR-L._2k rnd
where for each test instance X its local region N, is a set of randomly selected training cases,
instead of employing the kNNs scheme. Appendix D: Detailed Results Table A-15provided
in Table A-15 whereas the following Figure 26 and Figure 27 highlight the fact that

selecting local regions through kNNs does makes a difference and the performance gain
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with respect to a random choice of regions is statistical significant. It should be noted here
that the performance of LR-L 2k rnd appears somewhat similar to the global one LR-G.
This is of no surprise, since the attributes of a random sample are, by selection, more similar
to the overall population from which the sample is drawn than from a sub-region with

specific characteristics chosen by their similarity (in terms of a distance metric) to the query

mstance.
AUC H-Measure
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Figure 26: kNNs vs random regions (different y-axis scales)
(LR=Logistic Regression, G=Global Classifier, 2k=2000 for kNN, *= training snapshot for global LR)
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Figure 27: Statistical differences of KNNs vs random regions
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5 Conclusions and Future Work

The development of reliable models for credit scoring remains a challenge for
researchers and practitioners. Technological advances in ML/AI provide new capabilities
in this field, enabling the exploitation of large amounts of data. However, as conditions in
the economic and business environment are in constant change, credit scoring models
require regular updating. Motivated by this finding, we presented an adaptive behavioral
credit scoring scheme which uses online training to provide estimates for the probability
of default through an instance-specific basis.

Going back to our research hypotheses we can draw our conclusions:

H1: With respect to the potential gain of local methods vis-a-vis their global
counterparts our results indicate clearly that local logistic regression outperforms and
outranks the baseline global logistic regression. This does not seem to hold for the ML
methods we used (RF and XGB) where the differences between local and global models
are not statistically significant.

H2: Concerning the superiority of ML methods over baseline LR-G our results fall
within a range of performance improvement of 2% - 8% (AUC) observed in various credit
scoring applications of ML/AI found in literature (Addo et al., 2018; Albanesi & Vamossy,
2019; Alonso & Carbo, 2020; Gunnarsson et al., 2021; Hamori et al., 2018; Kvamme et al.,
2018). However, it is quite important to observe that the performance of Local LR is on
par with RF and XGB. Thus, the performance of Local LR (LR_L) does not differ
statistically from the ML algorithms, contrasting the case of global LR (LR_G) which is
vastly outranked and outperformed. The gain, when comparing the AUC of these classifiers

to the “baseline” global LR, is within the range of 6%-8% (Table 6), which is well within
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the empirical range observed in other studies (Alonso & Carbd, 2020) comparing ML
algorithms to the basic logistic regression in credit scoring.

Table 6: Performance of Local vs Global Classifiers
(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, L=Local classifier, G=Global Classifier, 2k=2000 for kNN)

H-Measure AUC
XGB-GL 29.02% 6.61%
RF-GL 32.09% 6.94%
XGB-L 29.22% 6.16%
RF-L 34.24% 7.31%
LR-L 2k 27.53% 6.04%

Another important observation is that the choice of feature selection method (using
in ML models the same variables which were used for LR based on their Information Value)
affects negatively ML performance. This is quite understandable as ML methods build
explicitly on exploring the entire feature space and therefore constricting their feature space
does not allow them to capture all the inherent dynamics.

H3: Finally, our analysis clearly indicates that the performance of a local model is
affected by the selection of a region of competence based on similar characteristics with
the queried test instance. A random selection of points from the feature space provides
inferior results compared to the kNN approach adopted in this study. Also we observed that
the distance used plays an important role: Although both LR L methods based on different
distance metric outperform LR G, Euclidean distance is in all cases better than

Mabhalanobis. This is quite interesting and it may be a result of the way that Mahalanobis
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distance works based on the covariance matrix. However, this is a good point for further
research.

Bearing into consideration the volume of the real-world data used and the extensive
out-of-sample validation performed, thus safeguarding for overfitting, our work clearly
indicates that using local LR methods can provide real-time adaptation therefore providing
a solution to the problem of population drift and the need for continuous re-calibration
(which holds for LR and ML models alike), yielding comparable results with complex
state-of-the-art ML algorithms. Additionally, LR per se is not a “black box model which
is extremely beneficial for regulatory purposes. However, dealing with the complexities of
model risk management and governance (Guégan & Hassani, 2018; Kiritz & Sarfati, 2018;
Morini, 2011) in the case of using real-time, adaptive local models may pose equal or even
greater challenges for their practical application.

Another issue that yields further examination is the reason that the tested ML
methods do not get the benefit of applying the same local regions as in LR. One possible
answer tends towards the direction of the intrinsic way that RF and XGB are working by
exploiting combinations of predictors within the feature space, thus better capturing the
specific dynamics of a sub-region. This needs to be further examined.

Further work can also be performed towards the direction of:

e exploring advanced balancing techniques such as SMOTE (Chawla et al.,
2002), G-SMOTE or G-SOMO (Camacho et al., 2022; Douzas et al., 2021)
or RUSBoost (Seiffert et al., 2010) for local sampling considering the highly
imbalancing nature of credit datasets (Bischl et al., 2016; He et al., 2018)

where balancing may affect not only performance in terms of
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misclassification errors but also non-convergence errors when using local
LR;

e usage of penalized methods such as LASSO or Ridge (Wang et al., 2015;
Wang et al., 2017);

e usage of additional distance metrics (e.g., Manhattan)

e usage of different algorithms for choosing local regions instead of the basic

kNNs, such as Reduced Minority kNNs (Melo Junior et al., 2020).



Appendix A: Alternative Data

Table A-7: Alternative data in Credit Scoring Source: (ICCR, 2019)

Data category Data type Credit scoring application

Traditional Bank transactional data | Records of late payments on current and past credit, current loan
amounts and loan purpose, credit history

Traditional Credit bureau checks Number of credit inquiries

Traditional Commercial data Financial statements, number of working capital loans, and
others

Alternative Utilities data Steady records of on-time payments as possible consideration

as an indicator of creditworthiness

Alternative Social media Social media data with possible insights on consumer’s lifestyle

Alternative Mobile applications Mabile payment systems with possible view on the consumer’s
behavior

Alternative Online transactions Granular transactional data with possible detailed insights on

spending patterns

Alternative Behavioral data Psychometrics, form filling

Table A-8: Types of data used in Credit Scoring Source: (ICCR, 2019)

Examples of factors are as follows:

+ Payment history- Arecord of late payments on current and past credit accounts may have an adverse effect on
an individual's score. Payments on time and in full may improve the score.

» Public records: Matters of public record such as bankruptcies, judgments, and collection items may impact the score.

» Amount owed and loan purpose: High levels of debt may impact the score. The purpose of the loan and the type
of CSP may also be linked to creditworthiness.

» Length of credit history and length of ime at address: Length of credit history and time at current address are
associated with creditworthiness.

+ New accounts: Opening multiple new credit accounts in a short period of time may impact the score.

« Credit bureau checks: Whenever a request for a credit report is made, the inquiry is recorded. Recent inquiries
may impact the score.

+ Social media data: Social media data may provide insights info a consumer's lifestyle, indicating credit worthiness.
* Mobile data: Mobile data may provide granular information and insights into consumer behavior.
« Utilities data: A steady record of payments may contribute to an individual’s credit score.

» Commercial data- Financial statements, operational information, and working capital loans may indicate the
creditworthiness of businesses.

+ Macroeconomic data: A change in the macroeconomy (that is, a change in the unemployment rate or GDP of a
region) may impact the credit scores of consumers and businesses in that region.
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Appendix B: List of Variables

Feature Description
1 RH_N_NUM Number or HOUSING loans
2 RR_N_NUM Number or RETAIL
3 RS_N_NUM Number or RESTRUCTURING (pvbpiceig)
4 R_N_NUMGR Number of loans as guarantor
5 RH_N_DEL 1 MAX Max delinquency (months in arrears) of HOUSING
6 RH_N_DEL_3_MAX LOANS, for the last 1 month (current delinquency),
7 RH_N_DEL_6_MAX 3,6,12, 18 months
8 RH_N_DEL_12_MAX
9 RH_N_DEL_18_MAX
10 RR_N_DEL_1 MAX Max delinquency (months in arrears) of RETAIL
11 RR_N_DEL_3 MAX LOANS for the last 1 month (current delinquency),
12 RR_N_DEL_6_MAX 3,6,12, 18 months
13 RR_N_DEL_12_MAX
14 RR_N_DEL_18_MAX
15 RS_N_DEL_1_MAX Max delinquency (months in arrears) for
16 RS_N_DEL_3 MAX RESTRUCTURING LOANS for the last 1 month
17 RS_N_DEL_6_MAX (current delinquency), 3,6,12, 18 months
18 RS_N_DEL_12_MAX
19 RS_N_DEL_18_MAX
20 R_N_DELGR_MAX Max. current delinquency (months in arrears) for
all loans as GUARANTOR
21 RH_A CURBAL_1 MAX MAX of CURRENT BALANCE of HOUSING
22 RH_A_CURBAL_3_MAX LOANS for the last 1 month (current month),
23 RH_A_CURBAL_6_MAX 3,6,12, 18 months
24 RH_A_CURBAL_12_MAX
25 RH_A_CURBAL_18_MAX
26 RR_A CURBAL_1_MAX MAX of CURRENT BALANCE of RETAIL
27 RR_A_CURBAL_3 MAX LOANS for the last 1 month (current month),
28 RR_A_CURBAL_6_MAX 3,6,12, 18 months
29 RR_A_CURBAL_12_MAX
30 RR_A_CURBAL_18_MAX
31 RS_A CURBAL_1 MAX MAX of CURRENT BALANCE of
32 RS_A_CURBAL_3_MAX RESTRUCTURING LOANS for the last 1 month
33 RS_A_CURBAL_6_MAX (current month), 3,6,12, 18 months
34 RS_A_CURBAL_12_MAX
35 RS_A_CURBAL_18 MAX
36 RH_A DELBAL_1_MAX MAX of Delinquent BALANCE of HOUSING
37 RH_A_DELBAL_3_MAX LOANS for the last 1 month (current month),
38 RH_A DELBAL_6_MAX 3,6,12, 18 months
39 RH_A_DELBAL_12_MAX
40 RH_A_DELBAL_18_MAX
41 RR_A_DELBAL _1 MAX MAX of Delinquent BALANCE of RETAIL
42 RR_A DELBAL 3 MAX LOANS for the last 1 month (current month),
43 RR_A DELBAL 6 _MAX 3,6,12, 18 months

44

RR_A_DELBAL 12 MAX
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Feature

Description

25
46
47
48
49
50
51

52

53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

RR_A_DELBAL _18_MAX
RS_A_DELBAL _1_MAX
RS_A_DELBAL_3 MAX
RS_A_DELBAL_6_MAX
RS_A_DELBAL_12_MAX
RS_A_DELBAL_18 _MAX
RH_A_CLIM_1_SUM

RR_A_CLIM_1_SUM

RS_A_CLIM_1_SUM

R_R_BALRATIO_1_MAX
R_R_BALRATIO 3 MAX
R_R_BALRATIO 6 _MAX
R_R_BALRATIO_12_ MAX
R_R_BALRATIO_18 MAX
RH_R_BALRATIO_1_MAX
RH_R_BALRATIO_3_MAX
RH_R_BALRATIO_6_MAX
RH_R_BALRATIO_12_MAX
RH_R_BALRATIO_18_MAX
RR_R_BALRATIO_1_MAX
RR_R_BALRATIO 3 MAX
RR_R_BALRATIO_6_MAX
RR_R_BALRATIO_12_ MAX
RR_R_BALRATIO_18 MAX
RS_R_BALRATIO_1_MAX
RS_R_BALRATIO 3 MAX
RS_R_BALRATIO_6_MAX
RS_R_BALRATIO_12_MAX
RS_R_BALRATIO_ 18 MAX
R_R_UTILIZATION_1_MAX
R_R_UTILIZATION_3_MAX
R_R_UTILIZATION_6_MAX
R_R_UTILIZATION_12._ MAX
R_R_UTILIZATION_18_MAX
RH_R_UTILIZATION_1_MAX
RH_R_UTILIZATION_3_MAX
RH_R_UTILIZATION_6_MAX
RH_R_UTILIZATION_12_MAX
RH_R_UTILIZATION_18_MAX
RR_R_UTILIZATION_1_MAX
RR_R_UTILIZATION_3_MAX
RR_R_UTILIZATION_6_MAX
RR_R_UTILIZATION_12_ MAX

MAX of Delinquent BALANCE of
RESTRUCTURING LOANS for the last 1 month
(current month), 3,6,12, 18 months

Current Credit Limit (for revolving = credit limit,
for rest = approval amount), Housing loans

Current Credit Limit (for revolving = credit limit,
for rest = approval amount), retail loans

Current Credit Limit (for revolving = credit limit,
for rest = approval amount), restructuring loans

Max. Ratio of [Current delinquent balance / Current
balance] among all loans, for the last 1 month
(current month), 3,6,12, 18 months

Max. Ratio of [Current delinquent balance / Current
balance] // Housing Loans, for the last 1 month
(current month), 3,6,12, 18 months

Max. Ratio of [Current delinquent balance / Current
balance] // Retail Loans, for the last 1 month
(current month), 3,6,12, 18 months

Max. Ratio of [Current delinquent balance / Current
balance] // Restructuring Loans, for the last 1
month (current month), 3,6,12, 18 months

Max. Utilization =[ Current balance / Credit limit]
/I all loans, for the last 1 month (current month),
3,6,12, 18 months for the last 1 month (current
month), 3,6,12, 18 months

Max. Utilization =[ Current balance / Credit limit]
I/ housing loans, for the last 1 month (current
month), 3,6,12, 18 months for the last 1 month
(current month), 3,6,12, 18 months

Max. Utilization =[ Current balance / Credit limit]
Il retail loans, for the last 1 month (current month),
3,6,12, 18 months for the last 1 month (current
month), 3,6,12, 18 months
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Feature

Description

88
89
90
91
92
93
94

95

96

97

98

99

100
101
102
103

104

105

106

107

108

109
110
111
112
113
114
115
116
117
118

RR_R_UTILIZATION_18_MAX
RS_R_UTILIZATION_1_MAX
RS_R_UTILIZATION_3_MAX
RS_R_UTILIZATION_6_MAX
RS_R_UTILIZATION_12_MAX
RS_R_UTILIZATION_18_MAX
R_R_CONSEC12_UTIL100_MAX

R_R_CONSEC6_UTIL100 MAX

R_R_NUMS6_UTIL90_MAX

RR_R_CONSEC12_UTILINCR_MAX

RR_R_CONSEC6_UTILINCR_MAX

R_T_AGEDIFF
RH_T_AGENEW
RR_T_AGENEW
RS_T_AGENEW
RH_T_18MOS1P

RR_T_18MOSIP
RS_T_18MOSIP
RH_T_18MOS2P
RR_T_18MOS2P
RS_T_18MOS2P

RH_N_60CC1P
RH_N_120CC1P
RH_N_180CC1P
RR_N_6 OCC1P
RR_N_6 OCC1P
RR_N_18 OCC1P
RS_N_60CC1P
RS_N_60CC1P
RS_N_60CC1P
D_T_NEWSET

Max. Utilization =[ Current balance / Credit limit]
Il restructuring loans, for the last 1 month (current
month), 3,6,12, 18 months for the last 1 month
(current month), 3,6,12, 18 months

Maximum Number of Consecutive Months with
over 100% of Percent Credit Utilization in last 12
Months

Maximum Number of Consecutive Months with
over 100% of Percent Credit Utilization in last 6
Months

Total Number of Months with over 90% of Percent
Credit Utilization in last 6 months

Number of Months with Consecutive Increase of
Maximum Percent Credit Utilization in last 12
Months // retail loans

Number of Months with Consecutive Increase of
Maximum Percent Credit Utilization in last 6
Months // retail loans

Xpdvog petal&d vedtepng & TaAOTEPNG XOPNYNONG
Neotepn yopiynon -HOUSING

Nedtepn yoprynon -Retail

Nedtepn yopnrynon -Restructured

Months Since 1+ months delinquency in last 18
months - Housing

Months Since 1+ months delinquency in last 18
months - Retail

Months Since 1+ months delinquency in last 18
months - Restructured

Months Since 2+ months delinquency in last 18
months - Housing

Months Since 2+ months delinquency in last 18
months - Retail

Months Since 2+ months delinquency in last 18
months - Restructured

Number of Occurrences of Delinquency 1+months -
Last 6,12,18 Months //HOUSING

Number of Occurrences of Delinquency 1+months -
Last 6,12,18 Months //Retail

Number of Occurrences of Delinquency 1+months -
Last 6,12,18 Months// Restructured

Newest (in months) settled NEGATIVE excluding
mortgages
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Feature

Description

119

120
121
122
123
124
125

D_T_NEWUNSET

D_N_MORTGAGE
D_N_NEGATIVE
I_N_1ALL
I_N_3ALL
I_N_12ALL
|_T_OLDEST

Newest (in months) unsettled NEGATIVE
excluding mortgages

Number of mortgages

Number of negative excluding mortgages
No. of inquiries last 1 month

No. of inquiries last 3 months

No. of inquiries last 12 months

Months since oldest inquiry
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Skim summary statistics

n obs: 3200000 (2009q1 - 2018q12)

n variables: 125

— Variable type:integer
variable
ALLRCS
D_N_MORTGAGE
D_N_NEGATIVE
D_T_NEWSET
D_T_NEWUNSET
I N_11ALL
I_N_1ALL
I_N_3ALL
I_T_OLDEST
R_N_DELGR_MAX
R_N_NUMGR
R_R_CONSEC12_UTIL100_MAX
R_R_CONSEC6_UTIL100_MAX
R_R_NUM6_UTIL9®_MAX
R_T_AGEDIFF
RH_N_120CC1P
RH_N_180CC1P
RH_N_60CC1P
RH_N_DEL_1_MAX
RH_N_DEL_12_MAX
RH_N_DEL_18_MAX
RH_N_DEL_3_MAX
RH_N_DEL_6_MAX
RH_N_NUM
RH_T_18MOS1P
RH_T_18MOS2P
RH_T_AGENEW
RR_N_120CC1P
RR_N_180CC1P
RR_N_60CC1P
RR_N_DEL_1_MAX
RR_N_DEL_12_MAX
RR_N_DEL_18_MAX
RR_N_DEL_3_MAX
RR_N_DEL_6_MAX

missing complete

]
2771606
2771606
3189510
3200000
2023992
2023992
2023992
2023992
2701541

[OCRECER RN RN )

2212980
2212980
2212980
2212980
2212980
2212980
2212980
2212980
0
2957066
3086648
2212980
268960
268960
268960
268960
268960
268960
268960
268960

3200000
428394
428394

10490
]

1176008

1176008

1176008

1176008
498459

3200000

3200000

3200000

3200000

3200000
987020
987020
987020
987020
987020
987020
987020
987020

3200000
242934
113352
987020

2931040

2931040

2931040

2931040

2931040

2931040

2931040

2931040

n
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000

3
1

59.

NaN

w

73.

w
[y

102.

OO0 0O R K

PO OOONOO

AUV OO0

mean

.78
.34

72

.21
.27
77
.99
.33
.24
.57
.32

(o}
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18
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18
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hist
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RR_N_NUM
RR_R_CONSEC12_UTILINCR_MAX
RR_R_CONSEC6_UTILINCR_MAX
RR_T_18MOS1P

RR_T_18MOS2P

RR_T_AGENEW

RS_N_120CC1P

RS_N_180CC1P

RS_N_60CC1P

RS_N_DEL_1_MAX
RS_N_DEL_12_MAX
RS_N_DEL_18_MAX
RS_N_DEL_3_MAX
RS_N_DEL_6_MAX

RS_N_NUM

RS_T_18MOS1P

RS_T_18MOS2P

RS_T_AGENEW

— Variable type:numeric
variable mi
R_R_BALRATIO 1 _MAX 3
R_R_BALRATIO 12 MAX 1
R_R_BALRATIO_18_MAX 1
BALRATIO_3_MAX 2
BALRATIO_6_MAX 2
R_R_UTILIZATION_1_MAX
R_R_UTILIZATION_12_MAX
R_R_UTILIZATION_18 MAX
R_R_UTILIZATION_ 3_MAX
R_R_UTILIZATION_6_MAX
RH_A CLIM_1_SUM 23
RH_A_CURBAL_1_MAX 23
RH_A_CURBAL_12 MAX 23
RH_A_CURBAL_18 MAX 22
RH_A_CURBAL_3_MAX 23
RH_A_CURBAL_6_MAX 23
RH_A_DELBAL_1_MAX 23
RH_A_DELBAL_12_MAX 23
RH_A DELBAL_18 MAX 22
RH_A_DELBAL_3_MAX 23

R_R_|
R_R_

u
u

268960

268960
2436257
2849625

268960
3025129
3025129
3025129
3025129
3025129
3025129
3025129
3025129

3100653
3130307
3025129

ssing
58869
82489
70478
85042
36354
99718
52240
46050
83714
70356
37632
37632
02523
88498
28361
19247
37632
02523
88498
28361

@ 3200000 3200000

2931040 3200000
2931040 3200000
763743 3200000
350375 3200000
2931040 3200000
174871 3200000
174871 3200000
174871 3200000
174871 3200000
174871 3200000
174871 3200000
174871 3200000
174871 3200000

0 3200000 3200000

complete
2841131
3017511
3029522
2914958
2963646
3100282
3147760
3153950
3116286
3129644
862368
862368
897477
911502
871639
880753
862368
897477
911502
871639

99347 3200000
69693 3200000
174871 3200000

n
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000

3200000
3200000
3200000
3200000

51.
64.
68.
55.
58.
3200000 90087.
3200000 51298.
3200000 53587.
3200000 54618.
3200000 51811.
3200000 52460.
209.
451.
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v b 0N W
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w
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mean
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RH_A_DELBAL_6_MAX
RH_R_BALRATIO_1_MAX
RH_R_BALRATIO_12_MAX
RH_R_BALRATIO_18_MAX
RH_R_BALRATIO_3_MAX
RH_R_BALRATIO_6_MAX
RH_R_UTILIZATION_1_MAX
RH_R_UTILIZATION_12_MAX
RH_R_UTILIZATION_18_MAX
RH_R_UTILIZATION_3_MAX
RH_R_UTILIZATION_ 6_MAX
RR_A_CLIM_1_SUM
RR_A_CURBAL_1_MAX
RR_A_CURBAL_12_MAX
RR_A_CURBAL_18_MAX
RR_A_CURBAL_3_MAX
RR_A_CURBAL_6_MAX
RR_A_DELBAL_1_MAX
RR_A_DELBAL_12_MAX
RR_A_DELBAL_18_MAX
RR_A_DELBAL_3_MAX
RR_A_DELBAL_6_MAX
RR_R_BALRATIO_1_MAX
RR_R_BALRATIO_12_MAX
RR_R_BALRATIO 18 MAX
RR_R_BALRATIO_3_MAX
RR_R_BALRATIO_6_MAX
RR_R_UTILIZATION_1_MAX
RR_R_UTILIZATION 12_MAX
RR_R_UTILIZATION_ 18_MAX
RR_R_UTILIZATION_3_MAX
RR_R_UTILIZATION_6_MAX
RS_A CLIM_1_SUM
RS_A_CURBAL_1_MAX
RS_A_CURBAL_12_MAX
RS_A_CURBAL_18_MAX
RS_A_CURBAL_3_MAX
RS_A_CURBAL_6_MAX
RS_A_DELBAL_1_MAX
RS_A_DELBAL_12_MAX
RS_A_DELBAL_18_MAX

2319247
2340835
2306197
2292160
2331698
2322826
2337634
2302528
2288503
2328363
2319252
435563
435563
372458
355451
418626
401125
435563
372458
355451
418626
401125
882935
648329
615449
793318
727801
524569
437360
412607
501284
476305
3039443
3039443
3033233
3031883
3037078
3035327
3039443
3033233
3031883

880753
859165
893803
907840
868302
877174
862366
897472
911497
871637
880748
2764437
2764437
2827542
2844549
2781374
2798875
2764437
2827542
2844549
2781374
2798875
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2551671
2584551
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160557
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164673
160557
166767
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3200000
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3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
3200000
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3200000
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3200000
3200000
3200000
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RS_A DELBAL_3_MAX
RS_A DELBAL_6_MAX
RS_R_BALRATIO 1 MAX
RS_R_BALRATIO 12 MAX
RS_R_BALRATIO 18 MAX
RS_R_BALRATIO_3_MAX
RS_R_BALRATIO_6_MAX
RS_R_UTILIZATION 1_MAX
RS_R_UTILIZATION 12_MAX
RS_R_UTILIZATION 18 MAX
RS_R_UTILIZATION_3_MAX
RS_R_UTILIZATION_6_MAX

3037078
3035327
3039860
3033539
3032130
3037380
3035646
3039454
3033245
3031895
3037089
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Appendix C: Execution Environment

102

For implementation we used Microsoft R Open v3.5.1 and the corresponding R

libraries: speedglm 0.3-2, randomForest 4.6-14 and xgboost 0.71.2. In all cases, default

parameter values were used and no hyper-parameter optimization was performed other

than internally used by the methods.

We used default values for the parameters for the calculation of H-measure as

defined in the corresponding R-Package.

Below detailed information about the execution environment is provided:

— Session info

setting value

version R version 3.5.1 (2018-07-02)

os Ubuntu 16.04.7 LTS

system x86_64, linux-gnu

ui RStudio

language (EN)

collate en_US.UTF-8

tz Europe/Athens

date 2022-06-28

— Packages

package * version date source

"*': whether the package is attached to the search path
abind 1.4-5 2016-07-21 CRAN (R 3.5.1)
assertthat 0.2.0 2017-04-11 CRAN (R 3.5.1)
backports 1.1.2 2017-12-13 CRAN (R 3.5.1)
base64url 1.4 2018-05-14 CRAN (R 3.5.1)
BBmisc 1.11 2017-03-10 CRAN (R 3.5.1)
bindr 0.1.1 2018-03-13 CRAN (R 3.5.1)
bindrcpp 0.2.2 2018-03-29 CRAN (R 3.5.1)
BiocGenerics * 0.26.0 2020-03-13 Bioconductor
boot * 1.3-20 2017-08-06 CRAN (R 3.5.1)
Boruta * 6.0.0 2018-07-17 CRAN (R 3.5.1)
broom 0.5.0 2018-07-17 CRAN (R 3.5.1)
caret * 6.0-80 2018-05-26 CRAN (R 3.5.1)
cellranger 1.1.0 2016-07-27 CRAN (R 3.5.1)
checkmate 1.8.5 2017-10-24 CRAN (R 3.5.1)
class * 7.3-14 2015-08-30 CRAN (R 3.5.1)
cli 1.0.0 2017-11-05 CRAN (R 3.5.1)
clisymbols 1.2.0 2017-05-21 CRAN (R 3.5.1)
codetools 0.2-15 2016-10-05 CRAN (R 3.5.1)
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1.
.3.4
.2-2
.11.4
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.0-8

colorspace
crayon
CVST
data.table
dbscan
ddalpha
DEoptimR
dgof
digest
dimRed
doMC
doParallel
dplyr
drake

DRR

ele71
evaluate
extrafont
extrafontdb
fastmatch
filelock
flexclust
forcats
foreach
formatR
Formula

fs

fst
geometry
ggplot2
glmnet
glue

gower
graph
gridExtra
gtable
hashr
haven
hmeasure
hms
hrbrthemes
htmltools
httr
igraph
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Appendix D: Detailed Results

Table A-9: Performance (AUC) for Global Classifiers
LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, SD= Standard deviation, I\VV=feature

2009-Q1
2009-Q2
2009-Q3
2009-Q4
2010-Q1
2010-Q2
2010-Q3
2010-Q4
2011-Q1
2011-Q2
2011-Q3
2011-Q4
2012-Q1
2012-Q2
2012-Q3
2012-Q4
2013-Q1
2013-Q2
2013-Q3
2013-Q4
2014-Q1
2014-Q2
2014-Q3
2014-Q4
2015-Q1
2015-Q2
2015-Q3
2015-Q4
2016-Q1
2016-Q2
2016-Q3
2016-Q4
2017-Q1
2017-Q2
2017-Q3
2017-Q4
2018-Q1
2018-Q2
2018-Q3
2018-Q4

selection based on IV, FS=implicit feature selection, n=no retrain)
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LRGn IV LR G_IV XGBnFS XGBGFS XGBG.IV RFGnNFS RFGFS RF_G_IV
0.8885 0.8885 0.9158 0.9158 0.9124 0.9193 0.9193 0.9162
0.8806 0.8806 09113 09113 0.9167 0.9213 0.9213 0.9198
0.8889 0.8889 0.9159 0.9159 0.9204 0.9246 0.9246 0.9259
0.8784 0.8784 0.9170 0.9170 0.9170 0.9214 0.9214 0.9223
0.8829 0.8829 0.9183 0.9183 0.9193 0.9251 0.9251 0.9270
0.8749 0.8749 0.9208 0.9208 0.9214 0.9276 0.9276 0.9289
0.8720 0.8720 0.9118 0.9118 0.9143 0.9198 0.9198 0.9242
0.8619 0.8619 0.9111 09111 0.9143 0.9169 0.9169 0.9215
0.8498 0.8701 0.8994 0.9246 0.9206 0.9093 0.9265 0.9218
0.8366 0.8618 0.8962 0.9222 0.9187 0.9028 0.9236 0.9182
0.8397 0.8599 0.8820 0.9114 0.9113 0.8979 0.9168 09125
0.8393 0.8613 0.8773 0.9166 0.9151 0.8987 0.9196 0.9146
0.8257 0.8589 0.8875 0.9219 0.9221 0.9096 0.9264 0.9234
0.8304 0.8587 0.8910 0.9243 0.9232 0.9112 0.9275 0.9234
0.8233 0.8519 0.8841 0.9209 0.9198 0.9048 0.9251 0.9200
0.8099 0.8389 0.8814 0.9169 0.9168 0.9032 0.9197 0.9130
0.8057 0.8591 0.8745 0.9253 0.9209 0.9010 0.9256 0.9182
0.8138 0.8617 0.8839 0.9237 0.9174 0.9052 0.9248 09178
0.8014 0.8516 0.8687 0.9142 0.9096 0.8915 0.9154 0.9086
0.8201 0.8757 0.8919 0.9271 0.9224 09128 0.9288 0.9239
0.8227 0.8790 0.8954 0.9299 0.9255 0.9190 0.9318 0.9277
0.8046 0.8628 0.8875 0.9265 0.9238 09115 0.9302 0.9249
0.8108 0.8722 0.8932 0.9333 0.9332 0.9198 0.9392 0.9343
0.8012 0.8708 0.8916 0.9330 0.9315 0.9190 0.9369 0.9321
0.8006 0.8878 0.8911 0.9397 0.9366 0.9167 0.9404 0.9362
0.8054 0.8941 0.9033 0.9452 0.9417 0.9249 0.9470 0.9432
0.8123 0.8958 0.9084 0.9457 0.9400 0.9274 0.9455 0.9404
0.8095 0.8960 0.9046 0.9426 0.9392 0.9288 0.9442 0.9399
0.8158 0.8975 0.9091 0.9489 0.9450 0.9331 0.9515 0.9481
0.8113 0.8980 0.9038 0.9428 0.9392 0.9279 0.9454 0.9394
0.8098 0.8959 0.9004 0.9437 0.9400 0.9251 0.9473 0.9424
0.8106 0.9082 09175 0.9540 0.9509 0.9382 0.9566 0.9526
0.8109 0.8725 0.9163 0.9559 0.9508 0.9384 0.9571 0.9499
0.8051 0.8776 0.9124 0.9518 0.9483 0.9355 0.9516 0.9483
0.7913 0.8676 0.8942 0.9432 0.9384 0.9227 0.9426 0.9368
0.7787 0.8649 0.8941 0.9439 0.9398 0.9229 0.9451 0.9392
0.7707 0.8686 0.8994 0.9462 0.9407 0.9278 0.9460 0.9403
0.7388 0.8635 0.9024 0.9470 0.9427 0.9285 0.9491 0.9454
0.7707 0.8583 0.8977 0.9402 0.9358 0.9218 0.9389 0.9324
0.7487 0.8455 0.9009 0.9375 0.9330 0.9228 0.9352 0.9290
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Table A-10: Performance (H-Measure) for Global Classifiers
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LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, SD= Standard deviation, I\V=feature

2009-Q1
2009-Q2
2009-Q3
2009-Q4
2010-Q1
2010-Q2
2010-Q3
2010-Q4
2011-Q1
2011-Q2
2011-Q3
2011-Q4
2012-Q1
2012-Q2
2012-Q3
2012-Q4
2013-Q1
2013-Q2
2013-Q3
2013-Q4
2014-Q1
2014-Q2
2014-Q3
2014-Q4
2015-Q1
2015-Q2
2015-Q3
2015-Q4
2016-Q1
2016-Q2
2016-Q3
2016-Q4
2017-Q1
2017-Q2
2017-Q3
2017-Q4
2018-Q1
2018-Q2
2018-Q3
2018-Q4

selection based on IV, FS=implicit feature selection, n=no retrain)

LRGn IV LRG_IV XGBnFS XGBGFS XGBG.IV RFGnNFS RFGFS RF_G_IV
0.8885 0.8885 0.9158 0.9158 0.9124 0.9193 0.9193 0.9162
0.8806 0.8806 09113 09113 0.9167 0.9213 0.9213 0.9198
0.8889 0.8889 0.9159 0.9159 0.9204 0.9246 0.9246 0.9259
0.8784 0.8784 0.9170 0.9170 0.9170 0.9214 0.9214 0.9223
0.8829 0.8829 0.9183 0.9183 0.9193 0.9251 0.9251 0.9270
0.8749 0.8749 0.9208 0.9208 0.9214 0.9276 0.9276 0.9289
0.8720 0.8720 0.9118 0.9118 0.9143 0.9198 0.9198 0.9242
0.8619 0.8619 0.9111 09111 0.9143 0.9169 0.9169 0.9215
0.8498 0.8701 0.8994 0.9246 0.9206 0.9093 0.9265 0.9218
0.8366 0.8618 0.8962 0.9222 0.9187 0.9028 0.9236 0.9182
0.8397 0.8599 0.8820 0.9114 0.9113 0.8979 0.9168 09125
0.8393 0.8613 0.8773 0.9166 0.9151 0.8987 0.9196 0.9146
0.8257 0.8589 0.8875 0.9219 0.9221 0.9096 0.9264 0.9234
0.8304 0.8587 0.8910 0.9243 0.9232 09112 0.9275 0.9234
0.8233 0.8519 0.8841 0.9209 0.9198 0.9048 0.9251 0.9200
0.8099 0.8389 0.8814 0.9169 0.9168 0.9032 0.9197 0.9130
0.8057 0.8591 0.8745 0.9253 0.9209 0.9010 0.9256 0.9182
0.8138 0.8617 0.8839 0.9237 0.9174 0.9052 0.9248 09178
0.8014 0.8516 0.8687 0.9142 0.9096 0.8915 0.9154 0.9086
0.8201 0.8757 0.8919 0.9271 0.9224 0.9128 0.9288 0.9239
0.8227 0.8790 0.8954 0.9299 0.9255 0.9190 0.9318 0.9277
0.8046 0.8628 0.8875 0.9265 0.9238 09115 0.9302 0.9249
0.8108 0.8722 0.8932 0.9333 0.9332 0.9198 0.9392 0.9343
0.8012 0.8708 0.8916 0.9330 0.9315 0.9190 0.9369 0.9321
0.8006 0.8878 0.8911 0.9397 0.9366 0.9167 0.9404 0.9362
0.8054 0.8941 0.9033 0.9452 0.9417 0.9249 0.9470 0.9432
0.8123 0.8958 0.9084 0.9457 0.9400 0.9274 0.9455 0.9404
0.8095 0.8960 0.9046 0.9426 0.9392 0.9288 0.9442 0.9399
0.8158 0.8975 0.9091 0.9489 0.9450 0.9331 0.9515 0.9481
0.8113 0.8980 0.9038 0.9428 0.9392 0.9279 0.9454 0.9394
0.8098 0.8959 0.9004 0.9437 0.9400 0.9251 0.9473 0.9424
0.8106 0.9082 09175 0.9540 0.9509 0.9382 0.9566 0.9526
0.8109 0.8725 0.9163 0.9559 0.9508 0.9384 0.9571 0.9499
0.8051 0.8776 0.9124 0.9518 0.9483 0.9355 0.9516 0.9483
0.7913 0.8676 0.8942 0.9432 0.9384 0.9227 0.9426 0.9368
0.7787 0.8649 0.8941 0.9439 0.9398 0.9229 0.9451 0.9392
0.7707 0.8686 0.8994 0.9462 0.9407 0.9278 0.9460 0.9403
0.7388 0.8635 0.9024 0.9470 0.9427 0.9285 0.9491 0.9454
0.7707 0.8583 0.8977 0.9402 0.9358 0.9218 0.9389 0.9324
0.7487 0.8455 0.9009 0.9375 0.9330 0.9228 0.9352 0.9290
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Table A-11: Comparison of different local region sizes (KNNs) using Euclidean distance
(LR=Logistic Regression, L=Local classifier, 2k=2000, 4k=4000, 6k=6000 for kNN)

AUC H-Measure

LR-L_2k LR-L_4k LR-L_6k LR-L_2k LR-L_4k LR-L_6k
2009-Q1 0.9100 0.9112 0.9134 0.5983 0.6003 0.6000
2009-Q2 0.9236 0.9265 0.9255 0.6276 0.6306 0.6267
2009-Q3 0.9278 0.9302 0.9298 0.6395 0.6392 0.6329
2009-Q4 0.9212 0.9225 0.9224 0.6228 0.6240 0.6204
2010-Q1 0.9282 0.9284 0.9283 0.6400 0.6350 0.6328
2010-Q2 0.9269 0.9279 0.9294 0.6385 0.6382 0.6374
2010-Q3 0.9222 0.9272 0.9260 0.6206 0.6248 0.6193
2010-Q4 0.9254 0.9242 0.9227 0.6289 0.6194 0.6148
2011-Q1 0.9169 0.9146 0.9137 0.6075 0.6030 0.5953
2011-Q2 0.9123 0.9084 0.9096 0.5944 0.5833 0.5799
2011-Q3 0.9113 0.9031 0.9116 0.5942 0.5759 0.5894
2011-Q4 0.9129 0.9115 0.9166 0.6019 0.5991 0.6004
2012-Q1 0.9240 0.9223 0.9233 0.6246 0.6195 0.6183
2012-Q2 0.9256 0.9200 0.9231 0.6264 0.6129 0.6169
2012-Q3 0.9178 0.9110 0.9149 0.6176 0.6004 0.6037
2012-Q4 0.9171 0.9092 0.9138 0.6151 0.6024 0.6090
2013-Q1 0.9171 0.9161 0.9108 0.6083 0.6013 0.5916
2013-Q2 0.9185 0.9117 0.9071 0.6015 0.5852 0.5774
2013-Q3 0.9098 0.9018 0.8957 0.5840 0.5653 0.5538
2013-Q4 0.9235 0.9230 0.9212 0.6166 0.6081. 0.5995
2014-Q1 0.9259 0.9252 0.9228 0.6304 0.6231 0.6144
2014-Q2 0.9235 0.9157 0.9146 0.6140 0.5913 0.5854
2014-Q3 0.9285 0.9301 0.9301 0.6440 0.6363 0.6313
2014-Q4 0.9286 0.9322 0.9350 0.6433 0.6426 0.6400
2015-Q1 0.9293 0.9315 0.9298 0.6462 0.6434 0.6317
2015-Q2 0.9327 0.9355 0.9364 0.6552 0.6480 0.6466
2015-Q3 0.9317 0.9310 0.9359 0.6614 0.6516 0.6503
2015-Q4 0.9314 0.9352 0.9364 0.6548 0.6550 0.6553
2016-Q1 0.9314 0.9353 0.9352 0.6570 0.6583 0.6573
2016-Q2 0.9216 0.9290 0.9324 0.6289 0.6299 0.6294
2016-Q3 0.9232 0.9321 0.9300 0.6370 0.6421 0.6410
2016-Q4 0.9407 0.9472 0.9484 0.6891 0.6896 0.6910
2017-Q1 0.9417 0.9449 0.9460 0.6949 0.6882 0.6822
2017-Q2 0.9402 0.9434 0.9446 0.6791 0.6757 0.6790
2017-Q3 0.9377 0.9380 0.9374 0.6699 0.6642 0.6565
2017-Q4 0.9402 0.9393 0.9397 0.6731 0.6606 0.6586
2018-Q1 0.9337 0.9367 0.9366 0.6693 0.6613 0.6558
2018-Q2 0.9351 0.9359 0.9397 0.6730 0.6624 0.6649
2018-Q3 0.9306 0.9347 0.9359 0.6549 0.6439 0.6393
2018-Q4 0.9239 0.9309 0.9333 0.6581 0.6548 0.6522
Mean 0.926 0.926 0.926 0.636 0.630 0.627
StdDev 0.009 0.012 0.012 0.028 0.030 0.031
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Table A-12: Comparison of different local region sizes (kNNs) using Mahalanobis distance

(LR=Logistic Regression, L=Local classifier, 2k=2000, 4k=4000, 6k=6000 for kNN)

AUC H-Measure

LR-L_2k LR-L_4k LR-L_6k LR-L_2k LR-L_4k LR-L_6k
2000-Q1 0.8982 0.9020 0.9022 0.5714 0.5686 0.5738
2009-Q2 0.9065 0.9129 0.9145 0.5891 0.6045 0.6031
2009-Q3 0.9127 0.9173 0.9183 0.5972 0.6022 0.6004
2009-Q4 0.9032 0.9115 0.9152 0.5790 0.5962 0.6007
2010-Q1 0.9104 0.9185 0.9208 0.5985 0.6107 0.6176
2010-Q2 0.8993 0.9126 0.9201 0.5841 0.6045 0.6116
2010-Q3 0.9024 0.9097 0.9145 0.5737 0.5857 0.5897
2010-Q4 0.9031 0.9122 0.9152 0.5822 0.5958 0.5973
2011-Q1 0.8970 0.9047 0.9062 0.5536 0.5707 0.5709
2011-Q2 0.9002 0.9002 0.9021 0.5668 0.5646 0.5660
2011-Q3 0.8935 0.9025 0.9040 0.5516 0.5683 0.5736
2011-Q4 0.8997 0.9052 0.9081 0.5631 0.5750 0.5783
2012-Q1 0.9029 0.9077 0.9092 0.5671 0.5826 0.5861
2012-Q2 0.9083 0.9131 0.9165 0.5849 0.5942 0.6021
2012-Q3 0.8998 0.9047 0.9085 0.5687 05735 0.5828
2012-Q4 0.8957 0.9038 0.9082 0.5596 0.5744 0.5853
2013-Q1 0.8927 0.9011 0.9032 0.5547 0.5624 0.5777
2013-Q2 0.8916 0.9042 0.9097 0.5458 0.5670 0.5835
2013-Q3 0.8813 0.8899 0.8951 0.5265 0.5429 0.5615
2013-Q4 0.8850 0.8981 0.9077 0.5279 0.5529 0.5794
2014-Q1 0.8862 0.9064 0.8963 0.5469 0.5805 0.5639
2014-Q2 0.8843 0.8982 0.9070 0.5273 0.5673 0.5785
2014-Q3 0.8934 0.9075 0.9126 0.5499 0.5817 0.5912
2014-Q4 0.8925 0.9116 0.9187 0.5486 0.5850 0.6033
2015-Q1 0.8789 0.9071 0.9150 0.5340 0.5778 0.5940
2015-Q2 0.8934 0.9108 0.9211 0.5564 0.5886 0.6124
2015-Q3 0.8872 0.9093 0.9200 0.5490 0.5946 0.6144
2015-Q4 0.8550 0.8845 0.8942 0.5202 0.5724 0.5806
2016-Q1 0.8754 0.8975 0.9069 0.5495 0.5789 0.5980
2016-Q2 0.8700 0.8829 0.8922 0.5206 0.5403 0.5437
2016-Q3 0.8617 0.8916 0.9011 0.5234 05702 0.5823
2016-Q4 0.8776 0.9014 0.9091 0.5611 0.6152 0.6239
2017-Q1 0.8889 0.9154 0.9249 0.5805 0.6322 0.6462
2017-Q2 0.8989 0.9187 0.9272 0.5817 0.6211 0.6397
2017-Q3 0.8908 0.9018 0.9082 0.5712 0.6118 0.6280
2017-Q4 0.8928 0.9061 0.9191 0.5658 0.5930 0.6181
2018-Q1 0.8923 0.8993 0.9040 0.5650 0.5937 0.6056
2018-Q2 0.8795 0.9077 0.9154 0.5481 0.6026 0.6157
2018-Q3 0.8845 0.9040 0.9156 0.5472 0.5885 0.6028
2018-Q4 0.8781 0.9096 0.9226 0.5614 0.6144 0.6331
Mean 0.891 0.905 0.911 0.559 0.585 0.595
Silelpay 0.013 0.008 0.009 0.021 0.021 0.023
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Table A-13: Local vs Global Classifiers (AUC)
(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, L=Local classifier, G=Global Classifier, 2k=2000 for kNN,
*= training snapshot for global classifiers, bold indicate the best classifier for the specific snapshot)

AUC

LR-L 2k | XGB-L 2k | RF-L_2k LR-G XGB-G RF-G
2009-Q1* 0.9100 0.9059 0.9202 0.8885 0.9158 0.9103
2009-Q2 0.9236 0.9174 0.9267 0.8806 0.9113 0.9213
2009-Q3 0.9278 0.9219 0.9336 0.8889 0.9159 0.9246
2009-Q4 0.9212 0.9218 0.9305 0.8784 0.9170 0.9214
2010-Q1 0.9282 0.9235 0.9335 0.8829 0.9183 0.9251
2010-Q2 0.9269 0.9249 0.9368 0.8749 0.9208 0.9276
2010-Q3 0.9222 0.9238 0.9322 0.8720 0.9118 0.9198
2010-Q4 0.9254 0.9201 0.9298 0.8619 0.9111 0.9169
2011-Q1* 0.9169 0.9141 0.9257 0.8701 0.9246 0.9265
2011-Q2 0.9123 0.9154 0.9238 0.8618 0.9222 0.9236
2011-Q3 0.9113 09115 0.9232 0.8599 0.9114 0.9168
2011-Q4 0.9129 0.9101 0.9216 0.8613 0.9166 0.9196
2012-Q1 0.9240 0.9218 0.9299 0.8589 0.9219 0.9264
2012-Q2 0.9256 0.9214 0.9312 0.8587 0.9243 0.9275
2012-Q3 0.9178 0.9173 0.9297 0.8519 0.9209 0.9251
2012-Q4 0.9171 0.9176 0.9267 0.8389 0.9169 0.9197
2013-Q1* 0.9171 0.9128 0.9239 0.8501 0.9253 0.9256
2013-Q2 0.9185 0.9118 0.9233 0.8617 0.9237 0.9248
2013-Q3 0.9098 0.9059 0.9154 0.8516 0.9142 0.9154
2013-Q4 0.9235 0.9218 0.9321 0.8757 0.9271 0.9288
2014-Q1 0.9259 0.9236 0.9366 0.8790 0.9299 0.9318
2014-Q2 0.9235 0.9240 0.9338 0.8628 0.9265 0.9302
2014-Q3 0.9285 0.9337 0.9416 0.8722 0.9333 0.9392
2014-Q4 0.9286 0.9318 0.9413 0.8708 0.9330 0.9369
2015-Q1* 0.9293 0.9286 0.9392 0.8878 0.9397 0.9404
2015-Q2 0.9327 0.9348 0.9448 0.8941 0.9452 0.9470
2015-Q3 0.9317 0.9332 0.9419 0.8958 0.9457 0.9455
2015-Q4 0.9314 0.9307 0.9434 0.8960 0.9426 0.9442
2016-Q1 0.9314 0.9338 0.9462 0.8975 0.9489 0.9515
2016-Q2 0.9216 0.9305 0.9418 0.8980 0.9428 0.9454
2016-Q3 0.9232 0.9301 0.9439 0.8959 0.9437 0.9473
2016-Q4 0.9407 0.9453 0.9561 0.9082 0.9540 0.9566
2017-Q1* 0.9417 0.9477 0.9580 0.8725 0.9559 0.9571
2017-Q2 0.9402 0.9467 0.9556 0.8776 0.9518 0.9516
2017-Q3 0.9377 0.9416 0.9506 0.8676 0.9432 0.9426
2017-Q4 0.9402 0.9437 0.9524 0.8649 0.9439 0.9451
2018-Q1 0.9337 0.9440 0.9517 0.8686 0.9462 0.9460
2018-Q2 0.9351 0.9446 0.9526 0.8635 0.9470 0.9491
2018-Q3 0.9306 0.9412 0.9446 0.8583 0.9402 0.9389
2018-Q4 0.9239 0.9362 0.9389 0.8455 0.9375 0.9352
Mean 0.9256 0.9267 0.9366 0.8729 0.9306 0.9334
StdDev 0.0086 0.0118 0.0111 0.0161 0.0138 0.0123
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Table A-14: Local vs Global Classifiers (H-Measure)
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(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, L=Local classifier, G=Global Classifier, 2k=2000 for kNN,
*= training snapshot for global classifiers, bold indicate the best classifier for the specific snapshot)

H-Measure

LR-L_2k XGB-L_2k RF-L_2k LR-G XGB-G RF-G
2009-Q1* 0.5983 0.5936 0.6224 0.5485 0.6005 0.6151
2009-Q2 0.6276 0.6156 0.6412 0.5590 0.6109 0.6337
2009-Q3 0.6395 0.6347 0.6607 0.5695 0.6168 0.6418
2009-Q4 0.6228 0.6266 0.6475 0.5534 0.6100 0.6297
2010-Q1 0.6400 0.6369 0.6620 0.5607 0.6188 0.6396
2010-Q2 0.6385 0.6332 0.6639 0.5525 0.6231 0.6438
2010-Q3 0.6206 0.6257 0.6474 0.5281 0.5965 0.6230
2010-Q4 0.6289 0.6237 0.6543 0.5156 0.5931 0.6217
2011-Q1* 0.6075 0.6064 0.6330 0.4887 0.6215 0.6316
2011-Q2 0.5944 0.6023 0.6243 0.4779 0.6169 0.6244
2011-Q3 0.5942 0.5866 0.6182 0.4839 0.5840 0.6113
2011-Q4 0.6019 0.5964 0.6230 0.4809 0.5953 0.6155
2012-Q1 0.6246 0.6191 0.6448 0.4726 0.6203 0.6387
2012-Q2 0.6264 0.6180 0.6463 0.4842 0.6230 0.6405
2012-Q3 0.6176 0.6168 0.6464 0.4726 0.6225 0.6417
2012-Q4 0.6151 0.6193 0.6416 0.4555 0.6089 0.6275
2013-Q1* 0.6083 0.6066 0.6374 0.5005 0.6265 0.6378
2013-Q2 0.6015 0.6019 0.6267 0.4867 0.6174 0.6285
2013-Q3 0.5840 0.5865 0.6090 0.4806 0.5934 0.6055
2013-Q4 0.6166 0.6274 0.6494 0.5034 0.6244 0.6377
2014-Q1 0.6304 0.6368 0.6675 0.5188 0.6347 0.6476
2014-Q2 0.6140 0.6299 0.6553 0.4977 0.6216 0.6418
2014-Q3 0.6440 0.6597 0.6801 0.5236 0.6433 0.6677
2014-Q4 0.6433 0.6544 0.6813 0.5181 0.6423 0.6587
2015-Q1* 0.6462 0.6539 0.6778 0.4916 0.6703 0.6766
2015-Q2 0.6552 0.6661 0.6911 0.4982 0.6865 0.6940
2015-Q3 0.6614 0.6784 0.6944 0.5042 0.6870 0.6909
2015-Q4 0.6548 0.6576 0.6899 0.5072 0.6732 0.6809
2016-Q1 0.6570 0.6787 0.7051 0.5005 0.6918 0.7022
2016-Q2 0.6289 0.6562 0.6865 0.5053 0.6769 0.6886
2016-Q3 0.6370 0.6600 0.6897 0.4939 0.6776 0.6886
2016-Q4 0.6891 0.7052 0.7307 0.5385 0.7117 0.7241
2017-Q1* 0.6949 0.7172 0.7361 0.4776 0.7225 0.7341
2017-Q2 0.6791 0.6947 0.7184 0.4846 0.7041 0.7176
2017-Q3 0.6699 0.6906 0.7122 0.4779 0.6816 0.6916
2017-Q4 0.6731 0.6952 0.7165 0.4702 0.6769 0.6952
2018-Q1 0.6693 0.7039 0.7220 0.4669 0.6883 0.7026
2018-Q2 0.6730 0.6981 0.7195 0.4435 0.6872 0.7002
2018-Q3 0.6549 0.6882 0.7028 0.4373 0.6707 0.6806
2018-Q4 0.6581 0.6767 0.7031 0.4192 0.6670 0.6778
Mean 0.6360 0.6445 0.6695 0.4987 0.6435 0.6588
StdDev 0.0278 0.0368 0.0351 0.0344 0.0382 0.0348
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Table A-15: KNNs vs Random sub-sampling

(LR=Logistic Regression, L=Local classifier, G=Global Classifier, 2k=2000 for kNN, rnd=random,

*= training snapshot for global classifiers)

AUC H-Measure

LR-L_2k LR-G* LR-L-rnd LR-L_2k LR-G* LR-L-rnd
2009-Q1* 0.9100 0.8885 0.8872 0.5983 0.5485 0.5499
2009-Q2 0.9236 0.8806 0.8818 0.6276 0.5590 0.5576
2009-Q3 0.9278 0.8889 0.8948 0.6395 0.5695 0.567
2009-Q4 0.9212 0.8784 0.8859 0.6228 0.5534 0.553
2010-Q1 0.9282 0.8829 0.8913 0.6400 0.5607 0.5543
2010-Q2 0.9269 0.8749 0.858 0.6385 0.5525 0.5342
2010-Q3 0.9222 0.8720 0.8156 0.6206 0.5281 0.4827
2010-Q4 0.9254 0.8619 0.8043 0.6289 0.5156 0.4644
2011-Q1* 0.9169 0.8701 0.8223 0.6075 0.4887 0.4725
2011-Q2 0.9123 0.8618 0.8186 0.5944 0.4779 0.4607
2011-Q3 0.9113 0.8599 0.8114 0.5942 0.4839 0.4607
2011-Q4 0.9129 0.8613 0.8366 0.6019 0.4809 0.4839
2012-Q1 0.9240 0.8589 0.8389 0.6246 0.4726 0.4904
2012-Q2 0.9256 0.8587 0.8523 0.6264 0.4842 0.5015
2012-Q3 0.9178 0.8519 0.8539 0.6176 0.4726 0.4866
2012-Q4 0.9171 0.8389 0.8571 0.6151 0.4555 0.4852
2013-Q1* 0.9171 0.8591 0.8525 0.6083 0.5005 0.4721
2013-Q2 0.9185 0.8617 0.8618 0.6015 0.4867 0.4854
2013-Q3 0.9098 0.8516 0.8494 0.5840 0.4806 0.4743
2013-Q4 0.9235 0.8757 0.8772 0.6166 0.5034 0.5317
2014-Q1 0.9259 0.8790 0.8792 0.6304 0.5188 0.5284
2014-Q2 0.9235 0.8628 0.8681 0.6140 0.4977 0.5055
2014-Q3 0.9285 0.8722 0.8823 0.6440 0.5236 0.5316
2014-Q4 0.9286 0.8708 0.8758 0.6433 0.5181 0.5177
2015-Q1* 0.9293 0.8878 0.8789 0.6462 0.4916 0.5162
2015-Q2 0.9327 0.8941 0.8758 0.6552 0.4982 0.5169
2015-Q3 0.9317 0.8958 0.8809 0.6614 0.5042 0.5191
2015-Q4 0.9314 0.8960 0.8686 0.6548 0.5072 0.502
2016-Q1 0.9314 0.8975 0.879 0.6570 0.5005 0.524
2016-Q2 0.9216 0.8980 0.8787 0.6289 0.5053 0.5079
2016-Q3 0.9232 0.8959 0.8811 0.6370 0.4939 0.5126
2016-Q4 0.9407 0.9082 0.8935 0.6891 0.5385 0.5326
2017-Q1* 0.9417 0.8725 0.8929 0.6949 0.4776 0.536
2017-Q2 0.9402 0.8776 0.8948 0.6791 0.4846 0.5359
2017-Q3 0.9377 0.8676 0.8872 0.6699 0.4779 0.5329
2017-Q4 0.9402 0.8649 0.8877 0.6731 0.4702 0.5299
2018-Q1 0.9337 0.8686 0.8868 0.6693 0.4669 0.5377
2018-Q2 0.9351 0.8635 0.8865 0.6730 0.4435 0.547
2018-Q3 0.9306 0.8583 0.8872 0.6549 0.4373 0.5524
2018-Q4 0.9239 0.8455 0.8787 0.6581 0.4192 0.5513
Mean 0.9256 0.8729 0.8674 0.6360 0.4987 0.5151
StdDev 0.0086 0.0161 0.0253 0.0278 0.0344 0.0301
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