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Abstract—We consider the problem of nonnegative tensor
completion. We adopt the alternating optimization framework
and solve each nonnegative matrix completion problem via a
stochastic variation of the accelerated gradient algorithm. We
experimentally test the effectiveness and the efficiency of our
algorithm using both real-world and synthetic data. We develop a
shared-memory implementation of our algorithm using the multi-
threaded API OpenMP, which attains significant speedup. We
believe that our approach is a very competitive candidate for the
solution of very large nonnegative tensor completion problems.

Index Terms—tensors, stochastic gradient, nonnegative tensor
completion, optimal first-order optimization algorithms, parallel
algorithms, OpenMP.

I. INTRODUCTION

Tensors have recently gained great popularity due to their
ability to model multiway data dependencies [1], [2], [3],
[4]. Tensor decomposition (TD) into latent factors is very
important for numerous tasks, such as feature selection, di-
mensionality reduction, compression, data visualization and
interpretation. The Canonical Polyadic Decomposition (CPD)
is one of the most important tensor decomposition models.
Tensor Completion (TC) arises in many modern applications
such as machine learning, signal processing, and scientific
computing.

We focus on the CPD model and consider the nonnegative
tensor completion (NTC) problem, using as quality metric the
Frobenius norm of the difference between the true and the
estimated tensor. We adopt the Alternating Optimization (AO)
framework, that is, we work in a circular manner and update
each factor by keeping all other factors fixed. We update each
factor by solving a nonnegative matrix completion (NMC)
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problem via a stochastic variant of the accelerated (Nesterov-
type) gradient [5].

Recent tensor applications, such as social network analy-
sis, recommendation systems, and targeted advertising, need
to handle very large sparse tensors. We propose a shared-
memory implementation of our algorithm that attains signifi-
cant speedup and can efficiently handle very large problems.

A. Related Work

Most of the papers that consider sparse TD and TC focus
on unconstrained problems. One of the earliest works is
Gigatensor [6], which was followed by DFacTo [7]. In [8],
two parallel algorithms for the unconstrained TC have been
developed and results concerning the speedup attained by
their MPI implementations on a linear processor array have
been reported. In [9], the authors introduce fine- and medium-
grained partitionings for the TC problem, while [10] incorpo-
rates dimension trees into the developed parallel algorithms.
In [11] and [12], the AO-ADMM framework has been adopted
for constrained matrix/tensor factorization and completion.
In [13], the medium-grained approach of [9] was used for
the solution of the nonnegative TD problem in distributed
memory systems. The same problem has been considered in
[14], where the authors incorporate the dimension trees and
observe performance gains due to reduced computational load.
The works in [15], [16], and [17] make use of either the Map-
Reduce programming model or the Spark engine. In [18], a
hypergraph model for general medium–grain partitioning has
been presented.

Works that employ Stochastic Gradient Descent (SGD)
on shared memory and distributed systems for sparse tensor
factorization and completion include [19], [20], [21], [22].
In [19], the authors describe a TC approach which uses the
CPD model and employs a proximal SGD algorithm, that
can be implemented in a distributed environment. In [20],
the authors examine three popular optimization algorithms:
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alternating least squares (ALS), SGD, and coordinate descent
(CCD++), implemented on shared- and distributed-memory
systems. They conclude that SGD is most competitive in a
serial environment, ALS is recommended for shared-memory
systems, and both ALS and CCD++ are competitive on
distributed systems. In [21], the authors propose a GPU-
accelerated parallel TC scheme (GPU-TC) for accurate and
fast recovery of missing data via SGD. Finally, [22] presents
GentenMPl, a toolkit for sparse CPD that is designed to run
effectively on distributed-memory high-performance comput-
ers. The authors use the Trilinos libraries and they present
implementations of the CPD-ALS and an SGD method.

B. Notation
Vectors, matrices, and tensors are denoted by small, capital,

and calligraphic capital letters, respectively; for example, x,
X, and X . RI1×···×IN

+ denotes the set of (I1 × · · · × IN )
nonnegative tensors. The elements of tensor X are denoted as
X (i1, . . . , iN ). In many cases, we use Matlab-like notation, for
example, A(j, :) denotes the j-th row of matrix A. The outer
product of vectors a and b is defined as a◦b. The Kronecker,
Khatri-Rao, and Hadamard product of matrices A and B, of
compatible dimensions, are defined, respectively, as A ⊗ B,
A � B and A ~ B; extensions to the cases with more than
two arguments are obvious. IP denotes the (P × P ) identity
matrix, ‖ · ‖F denotes the Frobenius norm of the matrix or
tensor argument, and (X)+ denotes the matrix derived after
the projection of the elements of X onto R+.

II. NONNEGATIVE TENSOR COMPLETION

Let X o ∈ RI1×···×IN
+ be an N -th order tensor which admits

the rank-R CPD [3], [4]

X o = 〚Uo(1), . . . ,Uo(N)〛 =

R∑
r=1

uo(1)
r ◦ · · · ◦ uo(N)

r , (1)

where Uo(i) = [u
o(i)
1 · · · uo(i)

R ] ∈ RIi×R
+ , for i = 1, . . . , N .

We observe X = X o + E , where E is additive noise. Let
Ω ⊆ {1, . . . , I1} × · · · × {1, . . . , IN} be the set of indices
of the observed entries of X . Also, let M be a tensor with
the same size as X , with elements M(i1, i2, . . . , iN ) equal
to one or zero based on the availability of the corresponding
element of X . That is

M(i1, i2, . . . , iN ) =

{
1, if (i1, i2, . . . , iN ) ∈ Ω,
0, otherwise. (2)

We consider the NTC problem

min{
U(i)∈RIi×R

+

}N

i=1

fΩ

(
U(1), . . . ,U(N)

)
+
λ

2

N∑
i=1

∥∥∥U(i)
∥∥∥2

F
, (3)

where

fΩ

(
U(1), . . . ,U(N)

)
=

1

2

∥∥∥M~
(
X−〚U(1), . . . ,U(N)〛

)∥∥∥2

F
.

If Y = 〚U(1), . . . ,U(N)〛, then, for an arbitrary mode i, the
corresponding matrix unfolding is given by

Y(i) = U(i)
(
U(N)�· · ·�U(i+1)�U(i−1)�· · ·�U(1)

)T
. (4)

Thus, for i = 1, . . . , N , fΩ can be expressed as

fΩ(U(1), . . . ,U(N)) =
1

2

∥∥M(i) ~
(
X(i) −Y(i)

)∥∥2

F
, (5)

where M(i), and X(i) are the matrix unfoldings of M and X ,
with respect to the i-th mode, respectively. These expressions
form the basis of the AO algorithm for the solution of (3).
Namely, we solve

min
U(i)∈RIi×R

+

1

2

∥∥M(i) ~
(
X(i) −Y(i)

)∥∥2

F
, i = 1, . . . , N. (6)

A. Nonnegative Matrix Completion

We consider the NMC problem, which will be the building
block of our AO NTC algorithm. Let X ∈ RP×Q

+ , A ∈ RP×R
+ ,

B ∈ RQ×R
+ , Ω ⊆ {1, . . . , P}×{1, . . . , Q} be the set of indices

of the known entries of X, and M be the matrix with the same
size as X, with element M(i, j) equal to one or zero based
on the availability of the corresponding element of X. We
consider the problem

min
A∈RP×R

+

fΩ(A) :=
1

2

∥∥M~
(
X−ABT

)∥∥2

F
+
λ

2
‖A‖2F . (7)

The gradient and the Hessian of fΩ, at point A, are given by

∇fΩ(A) = −
(
M~X−M~ (ABT )

)
B + λA, (8)

and

∇2fΩ(A)=(BT⊗ IP )diag(vec(M))(B⊗ IP )+λIPR. (9)

B. Accelerated stochastic gradient for NMC

We solve problem (7) via the stochastic variant of the
accelerated (Nesterov-type) gradient algorithm which appears
in Algorithm 1.

During each iteration of the “while” loop, we use a subset of
the available entries of matrix X. More specifically, at iteration
l, we define a set of indices Ω̂l ⊂ Ω and a matrix M̂l, of the
same size as M, as

M̂l(i, j) =

{
1, if (i, j) ∈ Ω̂l,
0, otherwise.

(10)

We create Ω̂l randomly. We define Bl := |Ω̂l| and select c :=
Bl

|Ω| < 1. For row p of matrix X, for p = 1, . . . , P , we sample,
uniformly at random, Bl,p := bc‖M(p, :)‖0c nonzero elements
of X(p, :) (Bl,p denotes the blocksize per row). If Bl,p = 0,
then we skip the p-th row.

We perform an accelerated gradient step using only the
elements of X whose indices appear in Ω̂l. Thus, our cost
function becomes fΩ̂l

with gradient and Hessian similar to
those in (8) and (9), with the only difference being that M is
replaced by M̂l. We find it convenient to compute the gradient
and update the matrix variable in a row-wise fashion.

A novel feature of our algorithm is that each row of the
matrix variable is updated via a different step-size, determined
by the parameter Lp (see rows 9–13 of Algorithm 1). This
can be motivated as follows. It is well known that the optimal
step size for the gradient (or accelerated gradient) algorithm
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Algorithm 1: Accelerated stochastic gradient for NMC

Input: X,M∈ RP×Q+ , B∈ RQ×R+ , A∗∈ RP×R+ , λ.
1 A0 = Y0 = A∗
2 l = 0
3 while (l <MAX INNER) do
4 for p = 1 . . . P do
5 M̂l(p, :) = sample(M(p, :))

6 Wl(p, :) = −
(
M̂l(p, :)~X(p, :)

)
B

7 Zl(p, :) =
(
M̂l(p, :)~

(
Yl(p, :)B

T
))

B

8 ∇fΩ̂l
(Yl(p, :)) = Wl(p, :) + Zl(p, :) + λYl(p, :)

9 Hl,p = BTdiag
(
M̂l(p, :)

)
B+ λIR

10 Lp = max(eig (Hl,p))

11 Al+1(p, :) =
(
Yl(p, :)− 1

Lp
∇fΩ̂l

(Yl(p, :))
)

+

12 βl,p =

√
Lp−

√
λ√

Lp+
√
λ

13 Yl+1(p, :) = Al+1(p, :)+βl,p (Al+1(p, :)−Al(p, :))

14 l = l + 1

15 return Al.

for the minimization of a smooth convex function f : Rn →
R is equal to 1

L , where L satisfies ∇2f(x) � LI, for all
x ∈ Rn. In line 9 of Algorithm 1, we compute Hl,p which
is the Hessian of fΩ̂l

, with respect to the p-th row of A. Lp

is the largest eigenvalue of Hl,p. For very sparse cases, the
smallest eigenvalue of Hl,p is equal or very close to λ. Thus,
the parameters used in the gradient and acceleration steps (i.e.,
lines 11 and 13 of Algorithm 1) are those used by the constant
step scheme III of [5, p. 81], and can be considered as “locally
optimal” for the problem at hand.

The most demanding computations of the algorithm are as
follows:

1) the computation of Wl(p, :) requires O(Bl,pR) arith-
metic operations (in total, O(BlR));

2) the computation of Zl(p, :) requires O(Bl,pR) arith-
metic operations (in total, O(BlR));

3) the computation of Hl,p requires O(Bl,pR
2) arithmetic

operations (in total, O(BlR
2));

4) the computation of Lp, via the power method, requires
O(R2) arithmetic operations (in total, O(PR2)).

The computation of each of the matrices ∇fΩ̂l
, Al+1 and

Yl+1 requires O(PR) arithmetic operations.
For notational convenience, we denote Algorithm 1 as

Aopt = S NMC(X,M,B,A∗, λ).

We note that, in this work, Hl,p is used only for the deter-
mination of Lp. A very interesting topic is the development
of algorithms that fully exploit Hl,p. Initial efforts with a
“projected Newton step” have not led to algorithms superior to
the one presented in this paper, especially in the noisy cases.
A related important topic is the development of more efficient
methods for the estimation of Lp.

Algorithm 2: AO accelerated stochastic NTC

Input: X , Ω,
{
U

(i)
0

}N

i=1
, λ, R.

1 k = 0
2 while (1) do
3 for i = 1, 2, . . . N do
4 U

(i)
k+1 = S NMC

(
X(i),M(i),K

(i)
k ,U

(i)
k , λ

)
5 if (term cond is TRUE) then break; endif
6 k = k + 1

7 return
{
U

(i)
k

}N

i=1
.

Algorithm 3: Parallel accelerated stochastic gradient
for NMC
Input: X,M∈ RP×Q

+ , B∈ RQ×R
+ , A∗∈ RP×R

+ , λ
1 A0 = Y0 = A∗
2 l = 0
3 while (1) do
4 if (l ≥MAX INNER) then
5 break
6 else
7 in parallel for p = 1 . . . P do
8 lines 5-13 of Algorithm 1

9 l = l + 1

10 return Al.

III. AO ACCELERATED STOCHASTIC NTC
In order to solve the NTC problem using our accel-

erated stochastic algorithm, we start from initial values
U

(1)
0 , . . . ,U

(N)
0 and solve, in a circular manner, NMC prob-

lems, based on the previous estimates. We define

K
(i)
k =

(
U

(N)
k � · · · �U

(i+1)
k �U

(i−1)
k+1 � · · · �U

(1)
k+1

)
,

where k denotes the k–th AO iteration. The
update of U

(i)
k is attained by the function call

S NMC(X(i),M(i),K
(i)
k ,U

(i)
k , λ). The Stochastic NTC

algorithm appears in Algorithm 2.

A. Parallel Implementation of AO accelerated stochastic NMC

In Algorithm 3, we provide a high level algorithmic sketch
of the accelerated stochastic gradient for NMC. We employ
the OpenMP API, which is suitable for our multi-threading
approach. The update of each row can be done independently.
Therefore, lines 5-13 of Algorithm 1, can be computed sepa-
rately by each available thread.

IV. NUMERICAL EXPERIMENTS

In this section, we test the effectiveness of our algorithm in
various test cases, using both real-world and synthetic data. We
denote as epoch the number of iterations required to access
once all available tensor elements. In subsections IV-B and
IV-C, we compute averages over 5 Monte Carlo trials.
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(a) Original

(b) Corrupted (90% sparse)

(c) Restored

Fig. 1: Tensor Completion on a corrupted image.

A. Stochastic NTC on corrupted image

We start by estimating missing data in images,1 following
the RGB model. In Fig. 1, we depict the results obtained from
the application of the AO Stochastic NTC on a corrupted
image of dimensions 1063 × 1599 × 3 (90% sparse). We
set c = 0.02, number of epochs 500, MAX INNER = 1,
and rank R = 50. We observe that the algorithm is able to
reconstruct the image even for small values of c.

B. Convergence speed of Stochastic NTC

We experimentally evaluate the convergence speed of our
algorithm using both real-world and synthetic data. Concern-
ing the real-world data, we use the dataset “MovieLens 10M”
[23] of dimensions 71567 × 65133 × 730. Concerning the
synthetic data, we generate a rank-10 nonnegative tensor X o,
of size equal to the real-world data, whose true latent factors
have independent and identically distributed (i.i.d.) elements,
drawn from U [0, 1]. The additive noise E has i.i.d. elements
N (0, σ2

N ). In order to create a tensor of the same sparsity level

1Image can be found at https://images.freeimages.com/images/large-
previews/7bb/building-1222550.jpg
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Fig. 2: Relative Reconstruction Error vs Epochs for real-world
(T) and noisy synthetic (S1 and S2) data, using various values
of c = 0.05, 0.2, 0.5.
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Fig. 3: Execution time per epoch (in seconds) for synthetic
(S) and real-world (T) dataset with dimensions 183 × 24 ×
1140×1717 and c = 0.5, for various values of rank R, versus
number of threads.

as the real-world dataset, we generate a tensor M of the same
size as X o according to (2). The observed incomplete tensor
is expressed as M~(X o + E). We define the Signal-to-Noise
ratio as

SNR :=
‖M~X o‖2F
‖M~ E‖2F

. (11)

In Fig. 2, we plot the average Relative Reconstruction Error
for 100 epochs, MAX INNER = 1 and rank R = 10. We
observe that, in noisy environments, choosing small values of
c is not effective. On the contrary, in the high SNR cases,
small values of c are more suitable.

C. Execution time for parallel stochastic NTC

We assess the performance of our algorithm in a shared-
memory environment using both real-world and synthetic data
(of the same dimensions). Concerning the real-world data, we
use the dataset “Uber Pickups” [24], which can be represented
as a 4–th order tensor of dimensions 183×24×1140×1717 and
3309490 nonzero elements. For the synthetic data, we create
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Fig. 4: Speedup attained for synthetic (S) and real-world (T)
dataset with dimensions 183× 24× 1140× 1717 and c = 0.5,
for various values of rank R, versus number of threads.

a rank-10 tensor X o, whose latent factors have i.i.d elements
U [0, 1]. Similarly, we generate a tensor M of the same size
with X o. Thus, the observed incomplete and noiseless tensor
is M ~ X o with the same number of nonzeros as in the
“Uber Pickups” dataset. We set c = 0.5, number of epochs
1, MAX INNER = 1. In order to test the algorithm’s perfor-
mance, we examine various values of the rank R = 10, 30, 50.
In Fig. 3, we illustrate the average execution time per epoch
versus the number of threads. In Fig. 4, we present the aver-
age attained speedup. We observe that significant speedup is
attained in all cases. We also observe that the speedup attained
with synthetic data is somewhat higher than that attained with
real-world data. This happens due to load imbalancing, caused
by the nonuniform distribution of the nonzero elements of the
real-world data, among the available threads.

V. CONCLUSION

We considered the NTC problem. First, we developed an
accelerated stochastic algorithm for the NMC problem. A
unique feature of our approach is that each row of the matrix
variable is updated using a different step-size, specifically
tailored to this row. Then, we used this algorithm and built
an AO algorithm for the NTC problem. We tested the data
reconstruction effectiveness as well as the convergence speed
of our approach using both synthetic and real-world data.
We implemented our algorithm using the OpenMP API, and
observed significant speedup. Our method is an effective and
efficient candidate for the solution of very large-scale NTC
problems.
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