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TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Electrical and Computer Engineering

Electrical and Computer Engineer

A Hardware - Accelerated Cryptography IP for Disaggregated Datacenters

by Eleni DRAKOULAKI

The world generates an unfathomable amount of data every minute of ev-
ery day, and it continues to multiply at a staggering rate. Organizations in
every industry are rapidly moving from batch processing to real-time data
streams to keep pace with modern demands. The need to secure and protect
private and personal data is greater than ever, and the field of cryptography
provides the tools to handle this task. This thesis presents a design for a
hardware-accelerated cryptography IP with the goal to be incorporated into
a disaggregated datacenter and protect the data without interfering with the
bandwidth and latency requirements of the server. In this thesis, we present
the implementation of the AES, RC6, and Blowfish algorithms, both encryp-
tion and decryption, in the Zynq UltraScale+ ZCU102 Evaluation Platform
and their evaluation based on a series of simulation-level tests, with AES
and RC6 achieving the best throughput at 12.79 Gbps, while AES kept the
resource utilization at a low level. As well as, the evaluation of AES encryp-
tion and decryption design in a physical board, by using the PYNQ Z1 FPGA
board, and its overall performance compared to a software implementation
running in a high-speed server, and even though it loses in terms of perfor-
mance against the Zynq UltraScale+ ZCU102, it proves that the design, while
implemented at a small, low cost, low-power consumption FPGA board can
perform as well in the case of encryption, or even two times better, in the case
of decryption, against a high-speed server.
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1

Chapter 1

Introduction

The world generates an unfathomable amount of data every minute of every
day, and it continues to multiply at a staggering rate. Organizations in every
industry are rapidly moving from batch processing to real-time data streams
to keep pace with modern demands.

The need to secure and protect private and personal data by using unique
codes that encrypt the data and make it impossible for intruders to read is
greater than ever.

Due to the nature of the data, we must keep in mind that the encryption/de-
cryption process must be done as quickly as possible. No one has the time to
wait for their data to be encrypted/decrypted.

1.1 Motivation

Cryptography is the study of secure communication techniques that allow
only the sender and intended recipient of a message to view its contents.
The term is derived from the Greek word "kryptos", which means hidden.
It is closely associated to encryption, which is the act of scrambling ordi-
nary text into what’s known as ciphertext and then back again upon arrival.
In addition, cryptography also covers the obfuscation of information in im-
ages using techniques such as microdots or merging. Ancient Egyptians were
known to use these methods in complex hieroglyphics, and Roman Emperor
Julius Caesar is credited with using one of the first modern ciphers.

The two main types of cryptography are the symmetric or "secret key" algo-
rithms and the asymmetric or "public key" algorithms. In the first case, data
is encrypted using a secret key, and then both the encoded message and se-
cret key are sent to the recipient for decryption. In the other case, every user
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FIGURE 1.1: Symmetric and Asymmetric Key Algorithms
URL

has two keys: one public and one private. Senders request the public key of
their intended recipient, encrypt the message and send it along. When the
message arrives, only the recipient’s private key will decode it.

In today’s cloud datacenters, the physical system is composed of individ-
ual server units contributing processing, memory, accelerators, and storage
resources. However, this arrangement incurs a significant waste of these
resources as well as low power utilization, due to the inherent inability to
closely match user IT requirements to the resources available within a single
server or sets of servers. The challenge in this arrangement is to be more ef-
ficient, flexible, and agile with these resources. Disaggregated datacenters,
such as dReDBox [1] aspires to remedy this by moving from today’s server-
as-the-unit model to a pooled-computing model, enabling an arbitrary sizing
of disaggregated IT resources, deploying them where and when required, to
perfectly match cloud user requirements.

https://www.cisco.com/c/en/us/products/security/encryption-explained.html#~q-a
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FPGA programming has been gaining momentum lately, as it offers consider-
able benefits. It allows you to offload resource-hungry tasks to hardware and
thus increase performance. FPGAs can be programmed and reprogrammed
according to the needs of each application, which is very cost-effective in the
long run.

Although specialized hardware has the potential to provide huge acceler-
ation at a fraction of a processor’s energy, the main drawback is related
to its design. On the one hand, describing these components in a hard-
ware description language (HDL) (e.g., VHSIC hardware description lan-
guage (VHDL) or Verilog) allows the designer to incorporate existing tools
for register transfer level (RTL) and logic synthesis into the target technol-
ogy. On the other hand, this requires the developer to specify functionality
at a low level of abstraction where cycle-by-cycle behavior is fully specified.
Using such languages requires advanced hardware knowledge and is also
complicated to develop. This leads to longer development times, which can
have a critical impact on the time-to-market. An interesting solution to re-
solve this issue is to combine reconfigurable hardware architectures, such
as field-programmable gate arrays (FPGAs) and high-level synthesis (HLS)
tools. [2]

HLS tools start from a software programmable high-level language (HLL)
(e.g., C, C++, and SystemC) to automatically create a circuit specification in
HDL that performs the same function. HLS benefits software engineers by
allowing them to profit by the speed and power advantages of hardware
without having to build up hardware expertise, as well as design systems
faster at a high-level of abstraction.

1.2 Scientific Contributions

The goal of this thesis was to explore and determine which of the algorithms
belonging to the symmetric key encryption family when implemented in the
ZCU102 Evaluation Platform by the use of HLS tools, have the potential to
be incorporated into a disaggregated datacenter such as dRedBox, and effec-
tively protect the data while supporting the bandwidth and latency require-
ments of the communication that is currently inside the server. This trans-
lates to a desirable throughput of at least 10 Gbps while keeping resources
and initial latency at a minimal level.
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The algorithms chosen for this task, based on their performance in existing
hardware implementations, are the Advanced Encryption Standard (AES),
RC6 (Rivest Cipher 6), and Blowfish.

The most significant contributions of our work are the following:

• Study of related works that map encryption algorithms on hardware-
based platforms and concentrate their results.

• Map symmetric key encryption algorithms, i.e. the Advanced Encryp-
tion Standard (AES), RC6 (Rivest Cipher 6), and Blowfish, on reconfig-
urable platform and compare their architectural characteristics.

• Optimizing reconfigurable algorithm architectures and minimizing re-
sources and latency when processing data streams of varying sizes.

• The proposed systems achieve high processing throughput rates up to
12.8 Gbps for AES and RC6 (for both encryption and decryption).

• Successfully download the design of a small, low-cost, low-energy con-
sumption FPGA board, such as PYNQ-Z1.

• The design on the PYNQ-Z1 board can perform as well as a high-speed
server in the case of AES Encryption, and 2x better in the case of AES
Decryption.

1.3 Thesis Outline

• Chapter 2 - Related Work: Comparative study of hardware implemen-
tations of Symmetric-key algorithms.

• Chapter 3 - Encryption/Decryption Algorithms: Detailed presentation
of the theoretical background for AES, RC6, and Blowfish algorithms.

• Chapter 4 - Architecture and Detailed Design of AES Encryption: De-
scription of the architecture and detailed hardware implementation de-
sign of the AES Encryption algorithm and optimizations.

• Chapter 5 -Hardware Architecture of AES Decryption, RC6 Encryp-
tion, RC6 Decryption, Blowfish Encryption, and Blowfish Decryp-
tion: Description of the Hardware Architecture of all the rest algo-
rithms.
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• Chapter 6 - Design Verification and Performance Evaluation from Ac-
tual Runs: Description of the results and performance from the differ-
ent platforms.

• Chapter 7 - Conclusions and Future Work: Conclusions of the thesis
and ideas for further research.
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Chapter 2

Related Work

Symmetric-key algorithms also known as single-key, one-key, and private-
key encryption are a class of algorithms for cryptography, that uses a Private
(shared secret) key and a Public (non-secret) algorithm to execute encryption
/decryption process. The keys may be identical or there may be a simple
transformation to go between the two keys. The keys, in practice, represent
a shared secret between two or more parties that can be used to maintain a
private information link.

In this chapter, we have concentrated various information on 16 symmet-
ric encryption algorithms based on their performance in hardware imple-
mentations. For most of those algorithms, the scientific community has pro-
vided several publications with interesting results. We mostly focused on
recent publications as possible with the use of Field-Programmable Gate Ar-
ray (FPGA) devices and a targeted throughput of 10 Gbps and above.

The algorithms that we have researched are DES (Data Encryption Standard),
TDES (or 3DES / TDEA - Triple Data Encryption Standard / Algorithm), AES
(Advanced Encryption Standard, Rijndael), Blowfish, Serpent, Twofish, RC6
(Rivest Cipher 6), MARS, IDEA (International Data Encryption Algorithm),
TEA (Tiny Encryption Algorithm), XTEA (eXtended TEA), CAST-128 (alter-
natively CAST5), MISTY1, KHAZAD, ARIA, and Camellia. [3] [4] [5]

Our goal is to choose three algorithms that can achieve the desired through-
put and also provide a good level of security with low resource utilization
and low latency.
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FIGURE 2.1: Comparative Analysis Table of Symmetric - Key
Algorithms (Part 1)

FIGURE 2.2: Comparative Analysis Table of Symmetric - Key
Algorithms (Part 2)
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FIGURE 2.3: Comparative Analysis Table of Symmetric - Key
Algorithms (Part 3)

FIGURE 2.4: Comparative Analysis Table of Symmetric - Key
Algorithms (Part 4)
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2.1 Symmetric Key Algorithms

2.1.1 DES - Data Encryption Standard

DES is the earliest symmetric encryption algorithm developed by IBM in
1972 and adopted in 1977 as the Federal Information Processing Standard
(FIPS) by the National Bureau of Standards (NBS).

It includes 64 bits key that contains 56 bits that are directly utilized by the
algorithm as key bits and are randomly generated and the remaining 8 bits,
that are not used by the algorithm, are used for error detection as set to make
a parity of each 8-bit byte. DES utilized the 56 bits key for the encryption and
decryption process and performs the encryption of messages using the 64 bits
block size. Similarly, the decryption process on a 64 bits ciphertext by using
the same 56 bits key to produce the original 64 bits block of the message.
The DES algorithm processes the 64 bits input with an initial permutation, 16
rounds of the key, and the final permutation. The DES algorithm structure
is based on Feistel function F which divides the block into two halves. The
function F is based on four stages such as expansion, key mixing, substitu-
tion, and permutation.

DES is mostly used in the banking industry, commercial and military secret
information sharing purposes. Security is the major concern in DES because
it uses the 56 bits key (256) or 7.2 x 1016 keys and cryptanalysts are trying to
crack an encrypted message by key exhaustion. Brute force attack is possi-
ble through parallel machines of more than 2000 nodes with each node that
has capabilities of key search 50 million keys/sec. DES was cracked in 1998
by using Electronic Freedom Foundation constructed device within 22 hours
due to the less number of key length and is highly susceptible to the linear
cryptanalysis attacks.[4]

S.Oukili, et. al. [6] in 2015 presented an efficient implementation of a 16-stage
pipelined DES algorithm using time variable permutations. As a result, they
increased the security of the algorithm achieving a throughput of 9.453 Gbps
with 147.71MHz clock rate. Their design was implemented on a Spartan-3e
device XC3s500e-4fg320. It occupied 2046 (43%) CLB slices, and 1143 (12%)
slice Flip Flops and it takes 17 clock cycles latency first time only then en-
crypts one data block (64 bits) per clock cycle.

C. Patterson [7] in 2000 with a Java-base (Jbits) implementation achieved a
fast encryption rate of 10.752 Gbps with 168 Mhz clock rate, using 1584 CLBs
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(91%) of the Virtex XCV150. That makes it really impressive, considering the
great result in such old technology.

V.Pasham, et. al. [8] in 2001 using loop unrolling and pipelining to gain
speed, succeeded to achieve a throughput of 15.1 Gbps with 237 Mhz clock
rate, using 5036 LUTs (49%) and 5185 Flip Flops (50%) on a Virtex-II XC2V1000
-5FG456 device, with an initial latency of 48 clock cycles.(16 copies of the
round were built to unroll the loop, pipelining the data through the 16 stages,
each round of DES is pipelined in three stages to enhance performance).

2.1.2 TDES - Triple Data Encryption Standard

Triple Data Encryption Standard ( TDES or 3DES) referred as Triple Data En-
cryption Algorithm (TDEA) that was firstly proposed by IBM in 1998 and
standardized in ANSI X9.17 and ISO 8732. TDES has appeared as the re-
placement of DES due to the improvement in the key length and applies the
DES algorithm three times in each data block. The 56 bits key length of DES
algorithm was generally adequate earlier when the algorithm was designed,
but as the computation power increases then the brute force attack is feasible.
On the other hand, TDES provides a very simple method by the increment
of key length instead of designing a complete block cipher and it protects
against the brute force attack. The key length for the TDES is 112 bits and 168
bits, the number of rounds is 48, and the block size is 64 bits. The purpose
of this algorithm is to increase the security with longer key length, so it is
challenging for the cryptanalyst to predict the pattern, and attacks become
rapidly impractical. [4]

P. Kitsos, et. al. [9] in 2004 using a full loop unrolling architecture with a
48-stage pipeline achieved a throughput of 6.9 Gbps with 108MHz clock rate
on a Virtex XCV1600EBG560-6 device. It occupied 14240 CLB slices with a
0.44 µs latency (around 48 clock cycles).

V.Pasham, et. al. [8] in 2001 using three copies of the DES implementation
mentioned earlier achieved a throughput of 13.3 Gbps with a 207 MHz clock
rate. Their design was implemented on a Virtex-II XC2V3000-5FG676 device.
It occupied 16181 (56%) LUTs and 15759 (54%) slice Flip Flops. The latency
for Triple DES implementation is 144 cycles, i.e., 48 cycles for each copy of
DES.

E.J. Swankoski, et. al. [10] in 2004 proposed a parallel architecture in which
internal hardware functionality is not duplicated but reused. This creates a
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reasonably compact single block, which is ideal for duplication. This archi-
tecture includes 17 separate parallel DES or Triple DES blocks on a Virtex-II
device (51 parallel DES Blocks). Given that the Triple DES implementation
takes up 3.47% of the Virtex-II device and each single DES encryption or de-
cryption operation has a latency of 17 cycles, each Triple DES Block could
be duplicated 17 times to create a high-throughput zero latency cryptopro-
cessor. As a result, they achieved a throughput of 8.631 Gbps with a 134.862
MHz clock rate using 14525 CLB slices with zero latency.

2.1.3 AES - Advanced Encryption Standard

The NIST announced a call for the candidates of a cipher to implement a
new encryption standard in 1997 because of the need for high security and
efficiency, it’s time to replace the existing DES and TDES encryption algo-
rithm with new AES. All candidates of ciphers submitted their proposal by
1998 and finalized it in 2000. Finally, Rijndael was selected as the AES out of
15 candidates. Rijndael was developed by Vincent Rijmen and Joan Daemen
in 2001. The US government is employed AES to protect sensitive informa-
tion and implemented it across the world for data encryption purposes in the
form of software and hardware.

AES appears as the recent generation block cipher and significantly increases
in the block size up to 128 bits with key sizes 128 bits, 192 bits, and 256 bits.
The number of rounds set with the respective key size is 10, 12, and 14 for
the 128 bits, 192 bits, and 256 bits, respectively. The data blocks are used as
the array of bytes and represented in a matrix that is referred to as the state
array which changed in every step of the encryption and decryption process.
Each round follows some steps during the encryption process to complete
each round. The steps for each round consist of four layers i.e. substitute
byte, shift rows, mix column and add round key. After the final step, the
state array is transferred into the output matrix.

U. Farooq, et. al. [11] in 2016 presented a work that AES is implemented
on FPGA using five different techniques. These techniques are based on op-
timized implementation of AES on FPGA by making efficient resource us-
age of the target device. Experimental results obtained are quite varying in
nature. They range from smallest (suitable for area critical applications) to
fastest (suitable for performance critical applications) implementation. The
results of their best technique are 1) throughput of 113.5 Gbps with 886.64
MHz clock rate using 9375 LUTs, 256 flip flops, and 0 BRAMs on a Spartan-6
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(xc6s1x150-3-fgg900) device, 2) throughput of 82.47 Gbps with 644.33 MHz
clock rate using 9276 LUTs, 255 flip flops and 0 BRAMs on a Virtex - 5 FPGA
device.

R.R. Farashahi, et. al. [12] in 2014 presented a high throughput digital design
of the 128-bit Advanced Encryption Standard (AES) algorithm based on the
2-slow re-timing technique on FPGA. The C-slow re-timing is a well-known
optimization and high-performance technique. It can enhance designs with
feedback loops and automatically rebalances the registers in the design. The
C-slow re-timing can break the critical path of the design into finer pieces
to improve the throughput of the design. This work has been implemented
using a Virtex - 5, XC5VLX85 FPGA device. It achieves a high throughput
of 86 Gbps and a high maximum operation frequency of 671.524 MHz, using
3557 LUTs and 2132 Flip Flops.

S.S.H. Shan, et. al. [13] in 2015 described an FPGA implementation of chaotic-
based advanced encryption standard (AES) using pipeline technique. The
algorithm is a combination of chaotic maps and AES. In the proposed archi-
tecture, the AES key is generated by chaotic maps, and encryption is done by
AES. The internal operations of each round of AES are optimized and paral-
lel RAMs are used to implement the Sub-Bytes operation. They achieved a
throughput of 45 Gbps with a 351.66 MHz clock rate on a Virtex-5 XC5VLX50
device. It occupied 3256 slice registers, 4234 LUTs, and 24 BRAMs.

S.Oukili, et. al. [14] in 2017 presented a high-speed efficient AES architecture.
Pipelining technique is performed to obtain high throughput than the basic
structure by inserting registers in optimum placements. Also, by employ-
ing a 5-stage pipelining S-box using combinational logic circuits to break the
critical path delay, increased the speed and reduced the used resources. They
implemented their design on a Virtex-6 device (xc6vlx240t-3ff1156). It occu-
pied 4830 (12%) slices, 18305 (6%) slice registers, and 14736 (9%) slice LUTs.
It takes 80 clock cycles latency for the first time only. Then, can recover the
output at each clock cycle. The design achieves a maximum clock frequency
of 617.627 MHz and a throughput of 79 Gbps.

2.1.4 Blowfish

The Blowfish algorithm is a 64-bit block cipher. It was designed in 1993 by
Bruce Schneier as a symmetric block cipher. The Blowfish algorithm has a
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variable key, from 32 bits to 448 bits. It has a 16-round Feistel function. Blow-
fish is unpatented and license-free and is available free for all users. It is
effectively used for the encryption process and providing security to confi-
dential data.

S.Oukili, et. al. [15] in 2016 presented a pipeline and parallel encryption
techniques for the Blowfish algorithm. The pipelining technique modifies the
critical path by increasing the possible frequency of the clock cycle. It con-
sists in parallelizing the data inputs and outputs with the processing. Con-
sequently, the algorithm is divided into stages, and registers are placed. As
a result of this, the throughput can be increased. The FPGA implementation
of the proposed Blowfish architecture was established on the Virtex-5 device
(xc5vlx220t-2ff1738). They achieved a throughput of 12.008 Gbps at 187.633
MHz clock rate and used 1280 CLBs (3%), 3163 LUTs (2%), 3002 flip flops
(2%), and 79 BRAMs (37%). The first encrypted data takes 34 clock cycles la-
tency. Then, we recover the forthcoming encrypted data at each clock cycle.

S. B. Nalawade, et. al. [16] in 2017 presented a hardware implementation of
the Blowfish algorithm. They achieved a throughput of 12.056 Gbps (1632
Mbps) at 153 MHz clock rate and used 939 LUTs (3%), 420 flip flops (1%),
and 4 BRAMs (6%) of a Virtex-5 XC5VLX50T.

2.1.5 Serpent

Serpent is a symmetric key block cipher that was a finalist in the Advanced
Encryption Standard (AES) contest, where it was ranked second to Rijndael.
Serpent was designed by Ross Anderson, Eli Biham, and Lars Knudsen.

Like other AES submissions, Serpent has a block size of 128 bits and sup-
ports a key size of 128, 192, or 256 bits. The cipher is a 32-round substitu-
tion–permutation network operating on a block of four 32-bit words. Each
round applies one of eight 4-bit to 4-bit S-boxes 32 times in parallel.

J. Sugier [17] in 2012 published the results of a hardware implementation of
the Serpent cipher which in its fully pipelined version achieved a throughput
of 21.1 Gbps on a Spartan-6 XC6SLX75 at 169 MHz clock rate and used 22029
LUTs(47.22%), 16768 flip flops (17.97%) and 0 BRAMs(0%) with an initial la-
tency of 34 clock cycles.

J. Làzaro, et. al. [18] in 2004 presented a fully pipelined Serpent architec-
ture implemented in a Virtex - II X2C2000 - 6 FPGA device, and runs at a
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throughput of 42.8 Gbps. The encryption stage is fully pipelined. Through
reconfiguration encryption and decryption share the same hardware struc-
ture. This achieved an FPGA area usage at 8.013 slices.

B. Najafi, et. al. [19] in 2004 presented a pipelined design on a Virtex XCV
- 1000 FPGA which can encrypt/decrypt with 172.12 MHz clock rate that
yields in 22 Gbps throughput.

K. Gaj, et. al. [20] in 2001 published a research of a hardware implemen-
tation for four AES candidates using a high-throughput architecture with
pipelining inside and outside of cipher rounds, achieving speeds ranging
over 12.2 Gbps. Specifically for Serpent by using two FPGA devices XCV-
1000, achieved a throughput of 16.8 Gbps using 19700 slices of the devices.

2.1.6 Twofish

Twofish is a symmetric key block cipher with a block size of 128 bits and key
sizes up to 256 bits. It was one of the five finalists of the Advanced Encryp-
tion Standard contest. Twofish is related to the earlier block cipher Blowfish.
Twofish was designed by Bruce Schneier, John Kelsey, Doug Whiting, David
Wagner, Chris Hall, and Niels Ferguson.The Twofish cipher works with a
16-round iteration structure of the Feistel network, where function F is the
basis.

Towfish was one of the algorithms that was implemented by K. Gaj, et. al.
[20]. With the use of two XCV - 1000 FPGA devices, achieved a throught of
15.2 Gbps with area usage of 21000 slices.

D. Smekal, et. al. [21] in 2018 described in their article a hardware-accelerated
implementation of the Twofish encryption algorithm on network card NFB-
100G2Q equipped with a powerful FPGA chip Xilinx Virtex-7 HT. The en-
cryption core was implemented to achieve real-time encryption and decryp-
tion. The algorithm was implemented for 128-bit words and 128-bit keys.
This article demonstrates that the Twofish encryption core can operate with
clock frequencies of 240 MHz and achieves a throughput of 30.72 Gbps. The
design takes 45% of available Logic LUT and 6 % Memory LUT resources.
Then it makes use of 13% FF registers and 28% of available RAM.
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2.1.7 RC6 - Rivest cipher 6

RC6 (Rivest cipher 6) is a symmetric key block cipher derived from RC5. It
was designed by Ron Rivest, Matt Robshaw, Ray Sidney, and Yiqun Lisa Yin
to meet the requirements of the Advanced Encryption Standard (AES) com-
petition. The algorithm was one of the five finalists and also was submit-
ted to the NESSIE and CRYPTREC projects. It was a proprietary algorithm,
patented by RSA Security.

RC6 proper has a block size of 128 bits and supports key sizes of 128, 192, and
256 bits up to 2040 bits, but, like RC5, it may be parameterized to support a
wide variety of word lengths, key sizes, and number of rounds. RC6 is very
similar to RC5 in structure, using data-dependent rotations, modular addi-
tion, and XOR operations. In fact, RC6 could be viewed as interweaving two
parallel RC5 encryption processes, although RC6 does use an extra multipli-
cation operation not present in RC5 in order to make the rotation dependent
on every bit in a word, and not just the least significant few bits.

K. Gaj, et. al. [20] also implemented RC6 block cipher. In this case, by using
four XCV-1000 FPGA devices, achieved a throughput of 13.1 Gbps with an
area consumption of 46900 slices.

J.-L. Beuchat [22] in their paper, implemented and compared several imple-
mentations of the RC6 block cipher on Virtex - E and Virtex - II devices. They
described several architectures of a RC6 processor designed for feedback or
non-feedback chaining modes, and their fastest implementation achieved a
throughput of 15.2 Gbps on a Xilinx XC2V3000-6 device with 8554 (59%) area
utilization.

2.1.8 MARS

MARS is a block cipher that was IBM’s submission to the Advanced Encryp-
tion Standard process. MARS was selected as an AES finalist in August 1999,
after the AES2 conference in March 1999, where it was voted as the fifth and
last finalist algorithm.

The MARS design team included Don Coppersmith, who had been involved
in the creation of the previous Data Encryption Standard (DES) twenty years
earlier. The project was specifically designed to resist future advances in
cryptography by adopting a layered, compartmentalized approach.
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MARS has a 128-bit block size and a variable key size of between 128 and 448
bits (in 32-bit increments). Unlike most block ciphers, MARS has a hetero-
geneous structure: several rounds of a cryptographic core are "jacketed" by
unkeyed mixing rounds, together with key whitening.

D.Theodoropoulos, et. al. [23] in 2009 presented CCProc, a flexible cryp-
tography coprocessor for symmetric-key algorithms. They designed an In-
struction Set Architecture tailored to symmetric-key ciphers and built a hard-
ware processor prototype. With a 4-core FPGA implementation mapped on
XC4VLX200 FPGA at 95 MHz yielded a throughput of 143 Mbps (= 0.143
Gbps) for MARS block cipher.

2.1.9 IDEA

International Data Encryption Algorithm (IDEA), originally called Improved
Proposed Encryption Standard (IPES), is a symmetric-key block cipher de-
signed by James Massey of ETH Zurich and Xuejia Lai and was first de-
scribed in 1991.

IDEA operates on 64-bit blocks using a 128-bit key and consists of a series of
8 identical transformations and an output transformation (the half-round).
The processes for encryption and decryption are similar. IDEA derives much
of its security by interleaving operations from different groups — modular
addition and multiplication, and bitwise eXclusive OR (XOR) — which are
algebraically "incompatible" in some sense.

J.-L. Beuchat [24] in their paper described several architectures of the IDEA
block cipher and compared them from different points of view: throughput
to area ratio or adequation with feedback and non-feedback chaining modes.
Their fastest circuit achieved a throughput of 8.5 Gbps with a clock rate of
133.3 MHz on a XC2V1000 - 6 FPGA device and 3077 (60 %) area usage.

2.1.10 TEA and XTEA

2.1.10.1 TEA - Tiny Encryption Algorithm

Tiny Encryption Algorithm (TEA) is a block cipher notable for its simplicity
of description and implementation, typically a few lines of code. It was de-
signed by David Wheeler and Roger Needham of the Cambridge Computer
Laboratory. It was first presented at the Fast Software Encryption workshop
in Leuven in 1994.
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TEA operates on two 32-bit unsigned integers (could be derived from a 64-bit
data block) and uses a 128-bit key. It has a Feistel structure with a suggested
64 rounds, typically implemented in pairs termed cycles. It has an extremely
simple key schedule, mixing all of the key material in exactly the same way
for each cycle. Different multiples of a magic constant are used to prevent
simple attacks based on the symmetry of the rounds. The magic constant,
2654435769 or 0x9E3779B9 is chosen to be b232/φc , where φ is the golden
ratio.

M.A. Hussain, et. al. [25] in 2015 presented hardware implementation of TEA
block cipher on a Spartan 6 - xc6slx45 FPGA device for three different design
approaches, sequential, combinational, and a hybrid of those two, achieving
with the last approach a throughput of 7.7 Gbps.

2.1.10.2 XTEA - eXtended TEA

XTEA (eXtended TEA) is a block cipher designed to correct weaknesses in
TEA. The cipher’s designers were David Wheeler and Roger Needham of
the Cambridge Computer Laboratory, and the algorithm was presented in
an unpublished technical report in 1997.

Like TEA, XTEA is a 64-bit block Feistel cipher with a 128-bit key and a sug-
gested 64 rounds. Several differences from TEA are apparent, including a
somewhat more complex key-schedule and a rearrangement of the shifts,
XORs, and additions. [3]

Jens-Peter Kaps [26] presented in their research an efficient implementation
of XTEA on FPGAs and ASICs for ultra-low power applications such as
RFID tags and wireless sensor nodes as well as fully pipelined designs for
high-speed applications. A novel ultra-low power implementation was in-
troduced which consumed less area and energy than a comparable AES im-
plementation. The high-speed implementations of XTEA operated at 20.6
Gbps on a Virtex 5 xc5vlx85-3 FPGA device with area utilization of 9647 slices
and 192 clock cycles latency.

2.1.11 CAST - 128

CAST-128 (alternatively CAST5) is a symmetric-key block cipher used in a
number of products, notably as the default cipher in some versions of GPG
and PGP. It has also been approved for the Government of Canada use by the
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Communications Security Establishment. The algorithm was created in 1996
by Carlisle Adams and Stafford Tavares using the CAST design procedure.

CAST-128 is a 12- or 16-round Feistel network with a 64-bit block size and a
key size of between 40 and 128 bits (but only in 8-bit increments). The full 16
rounds are used when the key size is longer than 80 bits.

Components include large 8×32-bit S-boxes based on bent functions, key-
dependent rotations, modular addition and subtraction, and XOR opera-
tions. There are three alternating types of round function, but they are simi-
lar in structure and differ only in the choice of the exact operation (addition,
subtraction, or XOR) at various points.[3]

P. Kitsos, et. al. [9] in 2004 using a full loop unrolling architecture achieved a
throughput of 3.3 Gbps with 53 MHz clock rate on a Virtex XCV1600EBG560-
6 device. It occupied 24200 CLB slices with a 0.3 µs latency.

2.1.12 MISTY1

MISTY1 (or MISTY-1) is a block cipher designed in 1995 by Mitsuru Mat-
sui and others for Mitsubishi Electric. "MISTY" can stand for "Mitsubishi
Improved Security Technology". It is also the initials of the researchers in-
volved in its development: Matsui Mitsuru, Ichikawa Tetsuya, Sorimachi
Toru, Tokita Toshio, and Yamagishi Atsuhiro.

MISTY1 is one of the selected algorithms in the European NESSIE project and
has been among the cryptographic techniques recommended for Japanese
government use by CRYPTREC in 2003. It was successfully broken in 2015
by Yosuke Todo using integral cryptanalysis.

MISTY1 is a Feistel network with a variable number of rounds (any multiple
of 4), though 8 are recommended. The cipher operates on 64-bit blocks and
has a key size of 128 bits. MISTY1 has an innovative recursive structure; the
round function itself uses a 3-round Feistel network. MISTY1 claims to be
provably secure against linear and differential cryptanalysis. [3]

P. Kitsos, et. al. [27] in 2005 presented a hardware architecture and an FPGA
implementation of the MISTY1 block cipher. In their architecture, the MISTY1
rounds are unrolled and RAM blocks embedded in the XCVII3000 FPGA de-
vice are used for the implementation of the S-boxes. With 75-stage pipeline
achieved a maximum throughput of 12.6 Gbps at a frequency of 168 MHz,
with an area usage of 4039 slices.
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F.-X. Standaert, et. al. [28] in 2003 presented a hardware implementation for
MISTY1 block cipher. With the use of a Xilinx VIRTEX1000BG560 - 4 FPGA
device achieved a throughput of 10.1 Gbps with a clock ratio of 159 MHz and
6322 slices area usage. Their design targeted on unrolling and pipelining the
rounds of the cipher which resulted in having an output every cycle after the
initial latency of 208 clock cycles.

2.1.13 KHAZAD

KHAZAD is a block cipher designed by Paulo S. L. M. Barreto together with
Vincent Rijmen, one of the designers of the Advanced Encryption Standard
(Rijndael). KHAZAD is named after Khazad-dûm, the fictional dwarven
realm in the writings of J. R. R. Tolkien. KHAZAD was presented at the
first NESSIE workshop in 2000, and, after some small changes, was selected
as a finalist in the project.

KHAZAD has an eight-round substitution–permutation network with a 64-
bit block size and a 128-bit key.[3]

F.-X. Standaert, et. al. [29] in 2002 published a hardware implementation for
KHAZAD block cipher-focused high throughput circuits. By unrolling the
cipher rounds and pipelining them they achieve a throughput of 9.4 Gbps in
a Xilinx VIRTEX1000BG560 - 4 FPGA device, with a clock frequency of 148
MHz and a 8800 slices area usage.

2.1.14 Camellia

Camellia is a symmetric key block cipher with a block size of 128 bits and key
sizes of 128, 192, and 256 bits. It was jointly developed by Mitsubishi Electric
and NTT of Japan. The cipher has been approved for use by the ISO/IEC,
the European Union’s NESSIE project, and the Japanese CRYPTREC project.
The cipher has security levels and processing abilities comparable to the Ad-
vanced Encryption Standard.

The cipher was designed to be suitable for both software and hardware im-
plementations, from low-cost smart cards to high-speed network systems.
It is part of the Transport Layer Security (TLS) cryptographic protocol de-
signed to provide communications security over a computer network such
as the Internet.
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The cipher was named for the flower Camellia japonica, which is known for
being long-lived as well as because the cipher was developed in Japan.

Camellia is a Feistel cipher with either 18 rounds (when using 128-bit keys) or
24 rounds (when using 192- or 256-bit keys). Every six rounds, a logical trans-
formation layer is applied: the so-called "FL-function" or its inverse. Camel-
lia uses four 8×8-bit S-boxes with input and output affine transformations
and logical operations. The cipher also uses input and output key whiten-
ing. The diffusion layer uses a linear transformation based on a matrix with
a branch number of 5.[3]

Z.Čiča [30] presented a pipelined implementation of the Camellia encryption
algorithm. Using a Virtex5 XC5FX70T FPGA device achieved a throughput
of 32.15 Gbps for encryption and 32.2 Gbps for decryption, with a clock fre-
quency of 251.2 MHz and 251.6 MHz and with resource usage of 9753 (21%)
slices, 3369 (7%) FF and 9753 (21%) slices, 3352 (7%) FF respectively.

2.1.15 ARIA

ARIA is a block cipher designed in 2003 by a large group of South Korean re-
searchers. In 2004, the Korean Agency for Technology and Standards selected
it as a standard cryptographic technique.

The algorithm uses a substitution–permutation network structure based on
AES. The interface is the same as AES: 128-bit block size with key size of 128,
192, or 256 bits. The number of rounds is 12, 14, or 16, depending on the key
size. ARIA uses two 8×8-bit S-boxes and their inverses in alternate rounds,
one of these is the Rijndael S-box.

The key schedule processes the key using a 3-round 256-bit Feistel cipher,
with the binary expansion of 1/π as a source of "nothing up my sleeve num-
bers". [3]

S.-W. Lee, et. al. [31] in 2008 presented a four-stage sub-pipelined archi-
tecture for ARIA block cipher achieving a throughput of 43 Gbps in a 0.25
µm CMOS technology, reaching 338 MHz clock frequency and using 260354
gates.
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2.2 Conclusions of the Comparative Analysis

Based on the information we gathered above some of the algorithms are not
able to meet the low limit of the desired throughput of 10 Gbps, as a result,
they have been eliminated as an option for our implementation. These algo-
rithms are MARS, IDEA, TEA, CAST - 128, and KHAZAD.

DES and TDES even though appeared to have some publications with great
results, the fact that are "old technology" and are more vulnerable to attacks
doesn’t render them as a suitable option.

Considering the limited number of hardware implementation publications
for some of the algorithms, we excluded XTEA, MISTY1, Camellia, and ARIA
even though they show promising results.

All the above leaves us with five suitable options: AES, Serpent, RC6, Blow-
fish, and Twofish. For our first choice, we selected AES. The algorithm has
an enormous number of software and hardware implementation in various
technologies, with impressive results, and is used in several applications to
this day. Serpent, even though appears to be a great competitor to AES, seems
to show a larger area usage in comparison to AES. So we decided to exclude
it. For our second choice, we selected Blowfish. As we can see Blowfish can
achieve high throughput with a low area utilization which makes it a great
option. Finally, we decided to also exclude Twofish based on the fact that
has a bigger area utilization in comparison to Blowfish, which is his ancestor.
This leaves us with our third and final choice the RC6 block cipher.
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Chapter 3

Encryption/Decryption Algorithms

In this chapter, we will analyze the encryption/decryption algorithms im-
plemented in our system and how each works. In Figure 3.1, we present a
flowchart of our design to give a general idea of the way it operates as we
proceed with the description of the individual parts.

FIGURE 3.1: Flowchart of the Design

In particular, as we saw at the start, the key is used as input in the Check
Key function (described in sec. 3.1). The result of the Check Key function is
entered into the Key Function, along with the input key.

The Key Function is in charge of generating the Extended Keys that will be
utilized later in the input data encryption or decryption process. Depending
on the result of the Check Key function, the Key Function will either provide
the Expended Keys that have been stored in case the key is the same as before
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or will initiate the respective key expanding function of each algorithm if the
key is new. Furthermore, we describe the individual key-expansion function
of each algorithm - In sec. 3.2.1 for AES, in sec.3.3.1 for RC6, and in sec.3.4.1
for Blowfish.

The individual algorithm’s (AES, RC6, or Blowfish) encryption or decryption
procedure is carried out by the Core Function. The Input Data and Expanded
Keys are entered into the Core, and the Output Data is created after the corre-
sponding task is performed. Later on, we’ll describe in detail the encryption
and decryption processes of all algorithms - AES in sec.3.2.2 and sec.3.2.3,
RC6 in sec.3.3.2, and Blowfish in sec.3.4.2 and sec.3.4.3.

3.1 Check Key

The Check Key functions works as a comparator. Its task is to identify if
the incoming key is new or the same as the previous one and notify the Key
Function with the result. This function is the same for every algorithm im-
plemented.

3.2 Advanced Encryption Standard - AES

[32] For the AES algorithm, the length of the input block, the output block,
and the State is 128 bits. This is represented by Nb = 4, which reflects the
number of 32-bit words (number of columns) in the State.

For the AES algorithm, the length of the Cipher Key, K, is 128, 192, or 256
bits. The key length is represented by Nk = 4, 6, or 8, which reflects the
number of 32-bit words (number of columns) in the Cipher Key.

For the AES algorithm, the number of rounds to be performed during the ex-
ecution of the algorithm is dependent on the key size. The number of rounds
is represented by Nr, where Nr = 10 when Nk = 4, Nr = 12 when Nk = 6, and
Nr = 14 when Nk = 8. The only Key-Block-Round combinations that conform
to this standard are given in Table 3.1.

In our design, we consider the case of AES - 128, with Key Length 128 bits
(Nk = 4), Block Size 128 bits (Nb = 4), and Number of Rounds Nr = 10.

For both its Cipher/Encryption and Inverse Cipher/Decryption, the AES
algorithm uses a round function that is composed of four different byte-
oriented transformations:
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TABLE 3.1: Key-Block-Round Combinations.

Key Length Block Size Number of Rounds
(Nk words) (Nb words) (Nr)

AES - 128 4 4 10
AES - 192 6 4 12
AES - 256 8 4 14

1. byte substitution using a substitution table (S-box),

2. shifting rows of the State array by different offsets,

3. mixing the data within each column of the State array, and

4. adding a Round Key to the State.

3.2.1 AES Key Function

The AES algorithm takes the Cipher Key, K, and performs a Key Expansion
routine to generate a key schedule. The Key Expansion generates a total of
Nb(Nr + 1) words: the algorithm requires an initial set of Nb words, and
each of the Nr rounds requires Nb words of key data. The resulting key
schedule consists of a linear array of 4-byte words, denoted [wi], with i in the
range 0 ≤ i < Nb(Nr + 1).

The expansion of the input key into the key schedule proceeds according to
the pseudo-code in 1.

SubWord() is a function that takes a four-byte input word and applies the
S-box (Sec. 3.2.2.1) to each of the four bytes to produce an output word. The
function RotWord() takes a word [a0, a1, a2, a3] as input, performs a cyclic
permutation, and returns the word [a1, a2, a3, a0]. The round constant word
array, Rcon[i], contains the values given by [xi−1, {00}, {00}, {00}], with xi−1

being powers of x (x is denoted as {02}) in the field GF(28), as discussed in
Sec. A.3.2 (note that i starts at 1, not 0).

From the algorithm 1, it can be seen that the first Nk words of the expanded
key are filled with the Cipher Key. Every following word, w[i], is equal to
the XOR of the previous word, w[i-1], and the word Nk positions earlier,
w[i-Nk]. For words in positions that are a multiple of Nk, a transformation
is applied to w[i-1] prior to the XOR, followed by an XOR with a round con-
stant, Rcon[i]. This transformation consists of a cyclic shift of the bytes in a
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word (RotWord()), followed by the application of a table lookup to all four
bytes of the word (SubWord()).

It is important to note that the Key Expansion routine for 256-bit Cipher Keys
(Nk = 8) is slightly different than for 128- and 192-bit Cipher Keys. If Nk = 8
and i− 4 is a multiple of Nk, then SubWord() is applied to w[i-1] prior to the
XOR.

Note that Nk=4, 6, and 8 do not all have to be implemented; they are all included in
the conditional statement below for conciseness.

Algorithm 1 Pseudo Code for AES Key Expansion source:[32]
Nr : Number of rounds, which is a function of Nk and Nb (which is
fixed). For this standard, Nr = 10, 12, or 14.
Nk : Number of 32-bit words comprising the Cipher. Key For this
standard, Nk = 4, 6, or 8.
Nb : Number of columns (32-bit words) comprising the State. For
this standard, Nb = 4.

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)
begin

word temp

i = 0

while (i < Nk)
w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])
i = i+1

end while

i = Nk

while (i < Nb * (Nr+1)]
temp = w[i-1]
if (i mod Nk = 0)

temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]
else if (Nk > 6 and i mod Nk = 4)

temp = SubWord(temp)
end if
w[i] = w[i-Nk] xor temp
i = i + 1

end while
end
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3.2.2 AES Cipher / Encryption Core

At the start of the Cipher, the input is copied to the State array using the
conventions described in Sec.A.2.4. After an initial Round Key addition, the
State array is transformed by implementing a round function 10 times, with
the final round differing slightly from the first 9 (Nr -1) rounds. The final
State is then copied to the output as described in Sec. A.2.4.

The Cipher is described in the pseudo-code in 2. The individual transfor-
mations -SubBytes(), ShiftRows(), MixColumns(), and AddRoundKey() –
process the State and are described in the following subsections.

Algorithm 2 Pseudo Code for the AES Cipher / Encryption source:[32]
Nr : Number of rounds, which is a function of Nk and Nb (which is
fixed). For this standard, Nr = 10, 12, or 14.
Nb : Number of columns (32-bit words) comprising the State. For
this standard, Nb = 4.

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin

byte state[4,Nb]

state = in

AddRoundKey(state, w[0, Nb-1])
for round = 1 step 1 to Nr-1

SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])

end for

SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])

out = state
end

3.2.2.1 SubBytes() Transformation

The SubBytes() transformation is a non-linear byte substitution that operates
independently on each byte of the State using a substitution table (S-box).
This S-box (Table 3.2), which is invertible, is constructed by composing two
transformations:
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1. Take the multiplicative inverse in the finite field GF(28), described in
Sec.A.3.2; the element {00} is mapped to itself.

2. Apply the following affine transformation (over GF(2) ):

b′i = bi ⊕ b(i+4)mod8 ⊕ b(i+5)mod8 ⊕ b(i+6)mod8 ⊕ b(i+7)mod8 ⊕ ci (3.1)

for 0 ≤ i < 8, where bi is the ith bit of the byte, and ci is the ith bit
of a byte c with the value {63} or {01100011}. Here and elsewhere, a
prime on a variable (e.g., b′ ) indicates that the variable is to be updated
with the value on the right.

In matrix form, the affine transformation element of the S-box can be
expressed as:

b'0
b'1
b'2
b'3
b'4
b'5
b'6
b'7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





b0

b1

b2

b3

b4

b5

b6

b7


+



1
1
0
0
0
1
1
0


(3.2)

Figure 3.2 illustrates the effect of the SubBytes()transformation on the State.

s0,0 s0,1 s0,2 s0,3

s1,0 sr,c s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

S-Box

s'0,0 s'0,1 s'0,2 s'0,3

s'1,0 s'r,c s'1,2 s'1,3

s'2,0 s'2,1 s'2,2 s'2,3

s'3,0 s'3,1 s'3,2 s'3,3

FIGURE 3.2: SubBytes() applies the S-box to each byte of the
State. source : [32]

The S-box used in the SubBytes() transformation is presented in hexadecimal
form in Table 3.2 . For example, if s1,1 = {53}, then the substitution value
would be determined by the intersection of the row with index '5' and the
column with index '3' in Table 3.2 . This would result in s'1,1 having a value
of {ed}.



3.2. Advanced Encryption Standard - AES 29

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

x

y

TABLE 3.2: S-box: substitution values for the byte xy (in hex-
adecimal format). source: [32]

3.2.2.2 ShiftRows() Transformation

In the ShiftRows() transformation, the bytes in the last three rows of the State
are cyclically shifted over different numbers of bytes (offsets). The first row,
r = 0, is not shifted.

Specifically, the ShiftRows() transformation proceeds as follows:

s'r,c = sr,(c+shi f t(r,Nb)) mob Nb f or 0 < r < 4 and 0 ≤ c < Nb, (3.3)

where the shift value shift(r,Nb) depends on the row number, r, as follows
(recall that Nb = 4):

shi f t(1, 4) = 1; shi f t(2, 4) = 2; shi f t(3, 4) = 3. (3.4)

This has the effect of moving bytes to “lower” positions in the row (i.e., lower
values of c in a given row), while the “lowest” bytes wrap around into the
“top” of the row (i.e., higher values of c in a given row).

Figure 3.3 illustrates the ShiftRows() transformation.
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Sr,0 Sr,1 Sr,2 Sr,3 ShiftRows() S'r,0 S'r,1 S'r,2 S'r,3

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S

S'0,0 S'0,1 S'0,2 S'0,3

S'1,1 S'1,2 S'1,3 S'1,0

S'2,2 S'2,3 S'2,0 S'2,1

S'3,3 S'3,0 S'3,1 S'3,2

S'

FIGURE 3.3: ShiftRows() cyclically shifts the last three rows in
the State. source: [32]

3.2.2.3 MixColumns() Transformation

The MixColumns() transformation operates on the State column-by-column,
treating each column as a four-term polynomial as described in Sec. A.3.3.
The columns are considered as polynomials over GF(28) and multiplied mod-
ulo x4 + 1 with a fixed polynomial a(x), given by

a(x) = {03}x3 + {01}x3 + {01}x3 + {02}. (3.5)

As described in Sec.A.3.3, this can be written as a matrix multiplication. Let
s'(x) = a(x)⊕ s(x) :

s'0,c

s'1,c

s'2,c

s'3,c

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




s0,c

s1,c

s2,c

s3,c

 f or 0 ≤ c < Nb. (3.6)

As a result of this multiplication, the four bytes in a column are replaced by
the following:

s'0,c = ({02} • s0,c)⊕ ({03} • s1,c)⊕ s2,c ⊕ s3,c

s'1,c = s0,c ⊕ ({02} • s1,c)⊕ ({03} • s2,c)⊕ s3,c

s'2,c = s0,c ⊕ s1,c ⊕ ({02} • s2,c)⊕ ({03} • s3,c)

s'3,c = ({03} • s0,c)⊕ s1,c ⊕ s2,c ⊕ ({02} • s3,c)

(3.7)

Figure 3.4 illustrates the MixColumns()transformation.
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S0,0 S0,c S0,2 S0,3

S1,0 S1,c S1,2 S1,3

S2,0 S2,c S2,2 S2,3

S3,0 S3,c S3,2 S3,3

MixColumns()

S'0,0 S'0,c S'0,2 S'0,3

S'1,0 S'1,c S'1,2 S'1,3

S'2,0 S'2,c S'2,2 S'2,3

S'3,0 S'3,c S'3,2 S'3,3

FIGURE 3.4: MixColumns() operates on the State column-by-
column. source: [32]

3.2.2.4 AddRoundKey() Transformation

In the AddRoundKey() transformation, a Round Key is added to the State
by a simple bitwise XOR operation. Each Round Key consists of Nb words
from the key schedule (described in Sec....). Those Nb words are each added
into the columns of the State, such that

[ S'0,c , S'1,c , S'2,c , S'3,c ] = [ S0,c , S1,c , S2,c , S3,c ] ⊕ [ Wround∗Nb+c ] f or 0 ≤ c < Nb,

(3.8)

where [wi] are the key schedule words described in Sec...., and round is a
value in the range 0 ≤ round ≤ Nr. In the Cipher, the initial Round Key
addition occurs when round = 0, prior to the first application of the round
function (see alg. 2). The application of the AddRoundKey() transformation
to the Nr rounds of the Cipher occurs when 1 ≤ round ≤ Nr.

The action of this transformation is illustrated in Fig. 3.5, where l = round ∗
Nb. The byte address within words of the key schedule was described in Sec.
A.2.2.

3.2.3 AES Inverse Cipher / Decryption Core

The Cipher transformations in Sec.3.2.2 can be inverted and then implemented
in reverse order to produce a straightforward Inverse Cipher for the AES al-
gorithm. The individual transformations used in the Inverse Cipher - In-
vShiftRows(), InvSubBytes(), InvMixColumns(), and AddRoundKey() –
process the State and are described in the following subsections.
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S0,0 S0,c S0,2 S0,3

S1,0 S1,c S1,2 S1,3

S2,0 S2,c S2,2 S2,3

S3,0 S3,c S3,2 S3,3

wl wl+c wl+2 wl+3

l = round ∗ Nb

S'0,0 S'0,c S'0,2 S'0,3

S'1,0 S'1,c S'1,2 S'1,3

S'2,0 S'2,c S'2,2 S'2,3

S'3,0 S'3,c S'3,2 S'3,3

⊕

FIGURE 3.5: AddRoundKey() XORs each column of the State
with a word from the key schedule. source: [32]

The Inverse Cipher is described in the pseudo-code in 3. In algorithm 3, the
array w[] contains the key schedule, which was described previously in Sec.
3.2.1.

3.2.3.1 InvShiftRows() Transformation

Specifically, the InvShiftRows() transformation proceeds as follows:

sr,(c+shi f t(r,Nb)) mob Nb = s'r,c f or 0 < r < 4 and 0 ≤ c < Nb, (3.9)

Figure 3.6 illustrates the InvShiftRows() transformation.

Sr,0 Sr,1 Sr,2 Sr,3 InvShiftRows() S'r,0 S'r,1 S'r,2 S'r,3

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S

S'0,0 S'0,1 S'0,2 S'0,3

S'1,3 S'1,0 S'1,1 S'1,2

S'2,2 S'2,3 S'2,0 S'2,1

S'3,1 S'3,2 S'3,3 S'3,0

S'

FIGURE 3.6: InvShiftRows() cyclically shifts the last three rows
in the State. source: [32]
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Algorithm 3 Pseudo Code for the AES Inverse Cipher / Decryption
source:[32]
Nr : Number of rounds, which is a function of Nk and Nb (which is
fixed). For this standard, Nr = 10, 12, or 14.
Nb : Number of columns (32-bit words) comprising the State. For
this standard, Nb = 4.

InvCipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin

byte state[4,Nb]

state = in

AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
for round = Nr-1 step -1 downto 1

InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
InvMixColumns(state)

end for

InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state, w[0, Nb-1])

out = state
end

3.2.3.2 InvSubBytes() Transformation

InvSubBytes() is the inverse of the byte substitution transformation, in which
the inverse S-box is applied to each byte of the State. This is obtained by ap-
plying the inverse of the affine transformation (3.2.2) followed by taking the
multiplicative inverse in GF(28). The inverse S-box used in the InvSubBytes()
transformation is presented in Table 3.3:
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0 1 2 3 4 5 6 7 8 9 a b c d e f

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef

e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

x

y

TABLE 3.3: Inverse S-box: substitution values for the byte xy
(in hexadecimal format). source: [32]

3.2.3.3 InvMixColumns () Transformation

InvMixColumns() is the inverse of the MixColumns() transformation. In-
vMixColumns() operates on the State column-by-column, treating each col-
umn as a four-term polynomial as described in Sec. A.3.3. The columns are
considered as polynomials over GF(28) and multiplied modulo x4 + 1 with a
fixed polynomial a−1(x), given by

a−1(x) = {0b}x3 + {0d}x3 + {09}x3 + {0e}. (3.10)

As described in Sec. 4.3, this can be written as a matrix multiplication. Let
s'(x) = a−1(x)⊕ s(x) :

s'0,c

s'1,c

s'2,c

s'3,c

 =


0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e




s0,c

s1,c

s2,c

s3,c

 f or 0 ≤ c < Nb. (3.11)
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As a result of this multiplication, the four bytes in a column are replaced by
the following:

s'0,c = ({0e} • s0,c)⊕ ({0b} • s1,c)⊕ ({0d} • s0,c)⊕ ({09} • s0,c)

s'1,c = ({09} • s0,c)⊕ ({0e} • s1,c)⊕ ({0b} • s2,c)⊕ ({0d} • s0,c)

s'2,c = ({0d} • s0,c)⊕ ({09} • s0,c)⊕ ({0e} • s2,c)⊕ ({0b} • s3,c)

s'3,c = ({0b} • s0,c)⊕ ({0d} • s0,c)⊕ ({09} • s0,c)⊕ ({0e} • s3,c)

(3.12)

3.2.3.4 Inverse of the AddRoundKey() Transformation

AddRoundKey(), which was described in Sec. 3.2.2.4 is its own inverse since
it only involves an application of the XOR operation.
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3.3 RC6 - Rivest Cipher 6

[33] RC6 is a fully parameterized family of encryption algorithms. A version
of RC6 is more accurately specified as RC6 -w/r/b where the word size is w
bits, encryption consists of a non-negative number of rounds r, and b denotes
the length of the encryption key in bytes.

Since our chosen version of AES consists of 128-bit Block Size with a Key
Length of 128-bits, the equivalent version of RC6 -w/r/b is RC6 - 32/ 20/ 16.

For all variants, RC6 - w/r/b operates on units of four w-bit words using the
following six basic operations. The base-two logarithm of w will be denoted
by lg w

a + b integer addition modulo 2w

a− b integer subtraction modulo 2w

a⊕ b bitwise exclusive-or of w-bit words

a× b integer multiplication modulo 2w

a ≪ b rotate the w -bit word a to the left by the amount given by the least
significant lg w bits of b

a ≫ b rotate the w -bit word a to the right by the amount given by the
least significant lg w bits of b

3.3.1 RC6 Key Expansion

The key schedule of RC6-w/r/b is practically identical to the key schedule of
RC5-w/r/b, the only difference is that more words are derived from the user-
supplied key for use during encryption and decryption. The user supplies a
key of b bytes. Sufficient zero bytes are appended to give a key length equal
to a non-zero integral number of words; these key bytes are then loaded in
little-endian fashion into an array of c w-bit words L[0], ..., L[c− 1]. Thus the
first byte of the key is stored as the low-order byte of L[0], etc., and L[c− 1] is
padded with high-order zero if necessary. (Note that if b = 0 then c = 1 and
L[0] = 0). The number of w - bit words that will be generated for the additive
round keys is 2r + 4 and these are stored in the array S[0, ..., 2r + 3].

The constants P32 = B7E15163 and Q32 = 9E3779B9 (hexadecimal) are the
same " magic constants" as used in the RC5 key schedule. The value of P32 is
derived from the binary expansion of e− 2, where e is the base of the natural
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logarithm function. The value of Q32 is derived from the binary expansion
of φ− 1, where φ is the Golden Ratio. Similar definitions from RC5 for P64

etc. can be used for versions of RC6 with other word sizes. These values are
somewhat arbitrary, and other values could be chosen to give "custom" or
proprietary versions of RC6.

Algorithm 4 Pseudo Code For Key Schedule for RC6 - w/r/b. source:[33]

Key schedule f o r RC6 − w/r/b
where w : word s i z e in b i t s

r : number of rounds
b : length of the encryption key in bytes

Input : User−supplied b byte key preloaded i n t o the
c−word array L[0, ..., c− 1]
Number r of rounds

Output : w − b i t round keys S[0, ..., 2r + 3]

Procedure : S[0] = Pw

f o r i = 1 to 2r + 3 do
S[i] = S[i− 1] + Qw

A = B = i = j = 0

v = 3×max{c, 2r + 4}
f o r s = 1 to v do
{

A = S[i] = (S[i] + A + B) ≪ 3
B = L[j] = (L[j] + A + B) ≪ (A + B)
i = (i + 1) mod (2r + 4)
j = (j + 1) mod c

}
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3.3.2 RC6 Encryption and Decryption Core

RC6 works with four w -bit registers A, B, C, D which contain the initial input
plaintext as well as the output ciphertext at the end of encryption. The first
byte of plaintext or ciphertext is placed in the least-significant byte of A; the
last byte of plaintext or ciphertext is placed into the most-significant byte of
D. We use (A, B, C, D) = (B, C, D, A) to mean the parallel assignment of
values on the right to registers on the left.

FIGURE 3.7: Encryption with RC6 - w /r /b. Here f (x) = x×
(2x + 1).

source : https://en.wikipedia.org/wiki/RC6

https://en.wikipedia.org/wiki/RC6
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Algorithm 5 Pseudo Code For Encryption with RC6 - w/r/b source:[33]

Encryption with RC6 − w/r/b
where w : word s i z e in b i t s

r : number of rounds
b : length of the encryption key in bytes

Input : P l a i n t e x t s tored in four w − b i t input
r e g i s t e r s A, B, C, D
Number r of rounds
w − b i t round keys S[0, ..., 2r + 3]

Output : Cipher text s tored in A, B, C, D

Procedure : B = B + S[0]
D = D + S[1]
f o r i = 1 to r do
{

t = (B× (2B + 1)) ≪ lg w
u = (D× (2D + 1)) ≪ lg w
A = ((A⊕ t) ≪ u) + S[2i]
C = ((C⊕ u) ≪ t) + S[2i + 1]
(A, B, C, D) = (B, C, D, A)

}
A = A + S[2r + 2]
C = C + S[2r + 3]
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Algorithm 6 Pseudo Code For Decryption with RC6 - w/r/b source:[33]

Decryption with RC6 − w/r/b
where w : word s i z e in b i t s

r : number of rounds
b : length of the encryption key in bytes

Input : Cipher text s tored in four w − b i t input r e g i s t e r s
A, B, C, D
Number r of rounds
w − b i t round keys S[0, ..., 2r + 3]

Output : P l a i n t e x t s tored in A, B , C, D

Procedure : C = C + S[2r + 3]
A = A + S[2r + 2]
f o r i = 1 to r do
{

(A, B, C, D) = (D, A, B, C)
u = (D× (2D + 1)) ≪ lg w
t = (B× (2B + 1)) ≪ lg w
C = ((C− S[2i + 1]) ≫ t)⊕ u
A = ((A− S[2i]) ≫ u)⊕ t

}
D = D + S[1]
B = B + S[0]
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3.4 Blowfish

[34] Blowfish is a variable-length key, 64-bit block cipher. The algorithm con-
sists of two parts: a key-expansion part and a data-encryption part. Key
expansion converts a key of 32 bits up to 448 bits into several subkey arrays
totaling 4168 bytes.

In our design, the version of Blowfish being implemented consists of a 128-bit
key size.

Data encryption occurs via a 16-round Feistel network. Each round consists
of a key-dependent permutation, and a key- and data-dependent substitu-
tion. All operations are XORs and additions on 32-bit words. The only addi-
tional operations are four indexed array data lookups per round.

Subkeys:

Blowfish uses a large number of subkeys. These keys must be precomputed
before any data encryption or decryption.

1. The P-array The P-array consists of 18 32-bit subkeys:
P1, P2, ..., P18

2. There are four 32-bit S-boxes with 256 entries each:
S1,0, S1,1, ..., S1,255

S2,0, S2,1, ..., S2,255

S3,0, S3,1, ..., S3,255

S4,0, S4,1, ..., S4,255

The exact method used to calculate these subkeys is described in Sec 3.4.1.

3.4.1 Blowfish Key Function

The subkeys are calculated using the Blowfish algorithm (described at Sec.
3.4.2). The exact method is as follows:

1. Initialize first the P-array and then the four S-boxes, in order, with a
fixed string. This string consists of the hexadecimal digits of pi (less the
initial 3). For example:
P1 = 0x243 f 6a88
P2 = 0x85a308d3
P3 = 0x13198a2e
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P4 = 0x03707344

2. XOR P1 with the first 32 bits of the key, XOR P2 with the second 32-
bits of the key, and so on for all bits of the key (possibly up to P14).
Repeatedly cycle through the key bits until the entire P-array has been
XORed with key bits. (For every short key, there is at least one equiv-
alent longer key; for example, if A is a 64-bit key, then AA, AAA, etc.,
are equivalent keys.)

3. Encrypt the all-zero string with the Blowfish algorithm, using the sub-
keys described in steps (1) and (2).

4. Replace P1 and P2 with the output of step (3).

5. Encrypt the output of step (3) using the Blowfish algorithm with the
modified subkeys.

6. Replace P3 and P4 with the output of step (5).

7. Continue the process, replacing all entries of the P- array, and then all
four S-boxes in order, with the output of the continuously-changing
Blowfish algorithm.

In total, 521 iterations are required to generate all required subkeys. Ap-
plications can store the subkeys rather than execute this derivation process
multiple times.

3.4.2 Blowfish Encryption Core

Blowfish is a Feistel network consisting of 16 rounds (see Figure 3.8). The
input is a 64-bit data element, x.

Algorithm 7 Pseudo Code For Blowfish Encryption source:[34]

Divide x i n t o two 32− b i t halves : xL , xR
For i = 1 step 1 to 1 6 :

xL = xL ⊕ Pi
xR = F(xL)⊕ xR
Swap xL and xR

Swap xL and xR (Undo the l a s t swap . )
xR = xR ⊕ P17
xL = xL ⊕ P18
Recombine xL and xR



3.4. Blowfish 43

FIGURE 3.8: Blowfish Encryption Block Diagram. source:[34]
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Function F (see Figure 3.9):

Divide xL i n t o four eight − b i t quar te rs : a, b, c, and d
F(xL) = ((S1,a + S2,b mod 232)⊕ S3,c) + S4,d mod 232

FIGURE 3.9: Function F. source:[34]

3.4.3 Blowfish Decryption Core

Decryption is exactly the same as encryption, except that P1, P2 ..... P18 are
used in the reverse order (see Figure 3.10).

Algorithm 8 Pseudo Code For Blowfish Decryption source:[34]

Divide x i n t o two 32− b i t halves : xL , xR
For i = 18 step −1 downto 3 :

xL = xL ⊕ Pi
xR = F(xL)⊕ xR
Swap xL and xR

Swap xL and xR (Undo the l a s t swap . )
xR = xR ⊕ P2
xL = xL ⊕ P1
Recombine xL and xR
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FIGURE 3.10: Blowfish Decryption Block Diagram
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Chapter 4

Architecture and Detailed Design
of AES Enryption

In this chapter, we will analyze the steps we took to implement the AES En-
cryption algorithm in the Vivado HLS environment (2017.1 version), as well
as the optimizations we used to improve the overall performance (through-
put, initial latency, and area utilization).

4.1 Vivado High-Level Synthesis (HLS)

The Xilinx Vivado High-Level Synthesis (HLS) tool transforms a C specifi-
cation into a register transfer level (RTL) implementation that you can syn-
thesize into a Xilinx field programmable gate array (FPGA). You can write
C specifications in C, C++, SystemC, or as an Open Computing Language
(OpenCL™) API C kernel, and the FPGA provides a massively parallel ar-
chitecture with benefits in performance, cost, and power over traditional pro-
cessors.[35]

High-level synthesis bridges hardware and software domains, providing the
following primary benefits:

• Improved productivity for hardware designers

Hardware designers can work at a higher level of abstraction while cre-
ating high-performance hardware.

• Improved system performance for software designers

Software developers can accelerate the computationally intensive parts
of their algorithms on a new compilation target, the FPGA.

Using a high-level synthesis design methodology allows us to:
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• Develop algorithms at the C-level

Work at a level that is abstract from the implementation details, which
consumes development time.

• Verify at the C-level

Validate the functional correctness of the design more quickly than with
traditional hardware description languages.

• Control the C synthesis process through optimization directives

Create specific high-performance hardware implementations.

• Create multiple implementations from the C source code using opti-
mization directives

Explore the design space, which increases the likelihood of finding an
optimal implementation.

• Create readable and portable C source code

Retarget the C source into different devices as well as incorporate the C
source into new projects.

4.1.1 Synthesis Report

High-level synthesis creates the optimal implementation based on default
behavior, constraints, and any optimization directives we specify. We can
use optimization directives to modify and control the default behavior of the
internal logic and I/O ports. This allows us to generate variations of the
hardware implementation from the same C code.

To determine if the design meets our requirements, we can review the per-
formance metrics in the synthesis report generated by high-level synthesis.
After analyzing the report, we can use optimization directives to refine the
implementation. The synthesis report contains information on the following
performance metrics:

• Area: Amount of hardware resources required to implement the design
based on the resources available in the FPGA, including look-up tables
(LUT), registers, block RAMs, and DSP48s.

• Latency: Number of clock cycles required for the function to compute
all output values.
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• Initiation interval (II): Number of clock cycles before the function can
accept new input data.

• Loop iteration latency: Number of clock cycles it takes to complete one
iteration of the loop.

• Loop initiation interval: Number of clock cycles before the next itera-
tion of the loop starts to process data.

• Loop latency: Number of cycles to execute all iterations of the loop.

4.1.2 Directives

This section outlines various optimizations and techniques we can use to di-
rect Vivado HLS to optimize the design: reduce latency, improve throughput
performance, and reduce area and device resource utilization of the resulting
RTL code.

Some of these optimizations used in our project are described below.

• pragma HLS inline

Removes a function as a separate entity in the hierarchy. After inlining,
the function is dissolved into the calling function and no longer appears
as a separate level of hierarchy in the register transfer level (RTL). In
some cases, inlining a function allows operations within the function to
be shared and optimized more effectively with surrounding operations

• pragma HLS interface

Specifies the interface protocol mode for function arguments, global
variables used by the function, or the block-level control protocols.

• pragma HLS pipeline

The PIPELINE pragma reduces the initiation interval (II) for a function
or loop by allowing the concurrent execution of operations.

• pragma HLS unroll

Unroll loops to create multiple independent operations rather than a
single collection of operations. The UNROLL pragma transforms loops
by creating multiple copies of the loop body in the register transfer level
(RTL) design, which allows some or all loop iterations to occur in par-
allel.
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• pragma HLS allocation

Specifies instance restrictions to limit resource allocation in the imple-
mented kernel. This defines and can limit the number of register trans-
fer level (RTL) instances and hardware resources used to implement
specific functions, loops, operations, or cores.

• pragma HLS array_map

Combines multiple smaller arrays into a single large array to help re-
duce block RAM resources.

• pragma HLS array_partition

Partitions an array into smaller arrays or individual elements and pro-
vides the following: Results in RTL with multiple small memories or
multiple registers instead of one large memory. Effectively increases
the amount of read and write ports for storage. Potentially improves
the throughput of the design. Requires more memory instances or reg-
isters.

• pragma HLS dataflow

The DATAFLOW pragma enables task-level pipelining, allowing func-
tions and loops to overlap in their operation, increasing the concur-
rency of the register transfer level (RTL) implementation, and increas-
ing the overall throughput of the design. Used to minimize interval.

• pragma HLS stream

Specifies that a specific array is to be implemented as a FIFO or RAM
memory channel during dataflow optimization.

4.2 Optimizations

Based on the AES Encryption as an example we will describe step by step the
stages we took to optimize the overall performance of the algorithm.

Initially, we focused on the main body of the algorithm and decided to keep
the key steady at the same value for the time. The functions for the creation
of the expanded keys (KeyExpansion, KeyExpansionCore, and SubWord) are
not being used, and the expanded keys needed for the encryption process are
stored in an array. The project also includes a number of arrays needed for
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the calculation of the SubBytes and the MixColumns transformations, as well
as an array for the Rcon values needed for the key functions, for later use.

The initial version uses the following directives in its functions:

AES_Full_axis (Top Function)
At first, the top function uses the directive #pragma HLS inline region. This
applies the pragma to the region or the body of the function it is assigned in.
It applies downward, inlining the contents of the region or function, but not
inlining recursively through the hierarchy.

The #pragma HLS interface directive is being used to determine the I/O
(input-output) protocol for the input and output arguments. For the argu-
ments stream_in and stream_out of our top function, the mode is set to axis
which implements those ports as an AXI4-Stream interface.

We used the directive #pragma HLS pipeline set to II = 1. This means that
the function processes new inputs every clock cycle. Vivado HLS tries to
meet this request. Based on data dependencies, the actual result might have
a larger initiation interval.

AES_Encrypt

FIGURE 4.1: AES Encryption Core Block Diagram

The AES_Encrypt is responsible for the proper use of the individual functions
needed to perform the encryption process which is described in sec.3.2.2.
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Firstly, we use the #pragma HLS inline region directive. This applies the
pragma to the region or the body of the function it is assigned in. It applies
downward, inlining the contents of the region or function, but not inlining
recursively through the hierarchy.

To determine the I/O (input-output) protocol for their input and output ar-
guments, we use the #pragma HLS interface directive. For the plaintext and
ciphertext, the mode is set to axis which implements those ports as an AXI4-
Stream interface, as well.

Also, we include the directive #pragma HLS pipeline set to II = 1. This means
that they process new inputs every 1 clock cycle.

In the function, we also use the #pragma HLS allocation directive for their
individual functions to determine the number of RTL instances and the hard-
ware resources used to implement those. More specifically, we set the limit
to 11 for the AddRoundKey, 10 for SubBytes, and 9 for MixColumns.

Additionally, we included the directive #pragma HLS array_map for the
s_box and the arrays that keep the values needed for the SubBytes and the
MixColumns operations, respectively. This directive combines those arrays
into the same target instance = cipher in horizontal mapping. This corre-
sponds to creating a new array by concatenating the original arrays. Physi-
cally, this gets implemented as a single array with more elements.

Finally, we use the #pragma HLS unroll directive for all the for-loops in-
cluded in the code, as to make all calculation to be implemented in parallel.

AddRoundKey
The function AddRoundKey initially uses the directive #pragma HLS inline
off so as to NOT be inlined upward into the calling functions or regions.

It also includes the directive #pragma HLS unroll to store the results in the
state array in parallel.

MixColumns
The MixColumns function uses the directive #pragma HLS inline off . This
means that the functions should NOT be inlined upward into any calling
functions or regions.

It also uses the directive #pragma HLS unroll for storing its results in the state
array in parallel.
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SubBytes
The SubBytes function uses the directive #pragma HLS inline off . This means
that the function should NOT be inlined upward into any calling functions
or regions.

It also uses the directive #pragma HLS unroll for storing their results in the
state array in parallel.

ShiftRows
In this function, the directive #pragma HLS unroll is being used for parallel
storing the results in the state array.

Note: All the data types of the variable are defined as ap_uint<N>, where N
is the number of bits. The size is determined by the nature of each variable.

The Synthesis Report after those changes is shown in fig.4.2. As can be seen,
the latency is reduced and Interval = 1 is achieved. We also see an increase
in the use of BRAMs as the number of instances required to attain interval =
1 grows.

FIGURE 4.2: Initial Synthesis Report of AES Encryption

4.2.1 Optimization Phase One

In this phase, our primary goal was to reduce the number of BRAMs being
used. After analyzing the code, we discover that the major part of BRAMs is
being used by the MixColumns function.

After deleting the arrays that kept the values needed in the MixColumns
calculations and we created two new functions to produce the same results
using multiplications with Galois Field A.3.3.

The Synthesis Report after those changes is shown in fig.4.3. As can be seen,
we achieved a decrease in the usage of BRAMs, and of Flip Flops, but we had
an increase in the use of LUTs due to the fact that Galois Field multiplications
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consist of a series of XOR operations. Additionally, we had a reduction in the
latency.

FIGURE 4.3: First Step Synthesis Report of AES Encryption

4.2.2 Optimization Phase Two

In this stage, we initiated the use of the key functions. We created a top
function for the keys called KeyFunction, that handles the other ones needed
for this process (KeyExpansion, KeyExpansionCore, and SubWord). We re-
moved the array that kept the old expanded keys and replaced it with eleven
static variables to store the new expanded keys after the key functions pro-
duce them.

FIGURE 4.4: AES Key Function

For this task, we created the key_encr_configuration function, whose job is to
take the results of the KeyExpansion and stored them in the static variables.
This function also resolves a conflict between read and write the expanded
keys at the same clock cycle.
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The directives used in the KeyFunction are the following. The directive #pra-
gma HLS inline off is being used so as to not be inlined upward into the call-
ing function. We also add the directive #pragma HLS pipeline set to II = 1
as to keep the desired target of the pipeline to 1 clock cycle. Additionally,
we use the #pragma HLS array_partition for the variable = expandedKey by
complete to partition it completely into individual elements. The expanded-
Key is the array holding the results of the KeyExpansion function. Finally,
the use of the #pragma HLS unroll is needed for the for-loop used for the
separation of the expandedKey array into the eleven variables.

Further, we perform some changes in the AddRoundKey function. At this
stage, AddRoundKey no longer produces its results using the arrays storing
the expanded keys, but the static variables created for this purpose. As a
result, the #pragma HLS array_map directive is no longer needed, and it’s
being removed.

At this point, we change the variable type of the Top Function AES_Full_axis
to stream <axiWord>, where axiWord is a struct containing the variables
ap_uint<128> data, ap_uint<16> strb, and ap_uint<1> last, needed for the
proper use of the AXI4 Stream Protocol.

Finally, we added two nested FSMs in the top function. The first one is for
the separation of the key expansion process from the data encryption process.
The other one is to continuously keep processing the data through encryption
if there is valid data available.

Also, we included a register to keep the value of the key, so we can check if
the incoming key is new or the same as before, and determine the need to
call the Key Function or not.

The Synthesis Report after this step is shown in fig.4.5. We notice that unfor-
tunately we lost the desired pipeline of one cycle, and the rest of the synthesis
results don’t represent the real numbers since the project doesn’t work in the
way we want. At this point, a major issue appeared, a warning said that the
input/output variables of our top function contain leftover data, which may
result in RTL simulation hanging.
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FIGURE 4.5: Second Step Synthesis Report of AES Encryption

4.2.3 Optimization Final Phase

At the final stage of the project’s optimizations, we need to address the issue
of the leftover data and the pipeline. This made us reconsider the overall
design. The final design is shown in fig.4.6.

FIGURE 4.6: Top Module Block Diagram
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my_ip_hls function (Top Function)

The top-level function of our project is my_ip_hls. It takes the variables key
and slaveIn as inputs and masterOut as outputs (all variables are stream axi-
Word> types). The directive #pragma HLS DATAFLOW is included in the
function. The DATAFLOW pragma enables task-level pipelining, which al-
lows functions and loops to overlap in their operation, enhancing RTL con-
currency and overall design performance.

For all three of its input/output variables, the directive #INTERFACE axis
register both port = <name> is being used. This signifies that the function’s
arguments are all implemented as AXI4-Stream interfaces. The directive #IN-
TERFACE ap_ctrl_none port = return was also added to prevent the hand-
shake signal ports (ap_start, ap_idle, ap_ready, and ap_done) from being
formed.

Due to the dataflow directive the use of the #pragma HLS STREAM vari-
able=<variable> depth=<int> dim=<int> is needed. It was used to generate
a FIFO for each of the function’s three arguments. In particular, we have a
64-depth fifo dimension 1 for the input and output data, and a 4-depth fifo
dimension 1 for the key.

Finally, in this function, the calls of the rest of our design functions are being
performed, as well as the interconnections of their variables.

Check Key Function

The Check Key function was created to identify in an early stage if the in-
coming key is new or is the same as the previous one that is stored in the
key register. It notifies the Key Function with the result. The need for this
function is to avoid creating additional latency.

It consists of an FSM that continuously reads if there is a new valid incoming
key. The directive #pragma HLS pipeline II = 1 is being used, as to be able to
process new data every one clock cycle. Additionally, the directive #pragma
HLS inline off is set to prevent the function to be inlined upward into the
calling function.

Key Function

The Key Function creates the expanded keys in the same way described in
phase 2. We added two FSMs, the first one to continuous reading if we have
new incoming valid keys due to the nature of the protocol our project is based
on. The second one exists to determine, based on the result of the Check Key
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function, if the expanded keys needed for the encryption process are the ones
stored in the static variables or if we need to initiate the process to create new
ones.

Core Function

The Core Function is the renamed version of our previous top function AES_-
Full_axis, and it’s no longer the top function. At this stage, the function takes
as input variables the input data from the ps2ip FIFO as well as the expanded
keys calculated from the Key Function, and after producing its results sends
them to the ip2ps fifo.

The function contains one FSM, that continuously reads if we have new in-
coming valid data, and calls the AES_Encrypt function to perform the en-
cryption process. In this function the directive #pragma HLS pipeline II=1
enable_flush is being used, as to be able to process new data every one cycle,
and if the data valid at the input of the pipeline goes inactive to flush and
empty the pipeline.

Additionally, we removed the #pragma HLS allocation directive for the three
functions AddRoundKey, SubBytes, and MixColumns and let Vivado auto-
matically decide the number of instances needed to be created. We also re-
moved from the AddRoundKey function the #pragma HLS inline off direc-
tive, and let the AES_Encrypt absorb the function. As a result of this change,
the number of flip-flops and LUTs was slightly reduced.

We also set the directive #pragma HLS INTERFACE ap_ctrl_none port = re-
turn. Function-level protocols, also called block-level I/O protocols, provide
signals to control when the function starts operation, and indicate when func-
tion operation ends, is idle, and is ready for new inputs. The ap_ctrl_none
means that the handshake signal ports (ap_start, ap_idle, ap_ready, and ap_-
done) are not created. Block-level I/O protocols can be assigned to a port for
the function return value.

It also contains the #pragma HLS unroll directive for all the for-loops in-
cluded in the code, as to make all calculations be implemented in parallel.

ps2ip fifo and ip2ps fifo

The ps2ip and the ip2ps are 64-depth FIFOs that keep the input and output
data respectively. The ps2ip FIFO takes the input data and promotes them
into the Core function, and the ip2ps FIFO takes the results of the Core func-
tion and sends them as output data.
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The Synthesis Report of our final design is shown in fig.4.7. As we can see,
we successfully restored the Initiation Interval to 1, meaning that the project
processes new data and has a new outcome every 1 clock cycle. Our final
latency is 25, which means that our first result will be produced after 25 clock
cycles. Furthermore, the overall usage of the resources is kept at a low level.

FIGURE 4.7: Final Step Synthesis Report of AES Encryption

4.3 Summary

In this chapter, as previously stated, we analyzed the phases of the develop-
ment and optimization of the AES Encryption, starting from the beginning
and ending with the final framework. In each phase, we applied a variety
of directives that work best to optimize these types of algorithms, such as
i) inline, ii) unroll, iii) pipeline, ..., etc. In table 4.1 we summarized all the
directives we met throughout this process and displayed which of these are
included in our final form.

Directives AES Encryption
inline 3

allocation 7

unroll 3

array_map 7

array_partition 3

interface 3

pipeline 3

dataflow 3

stream 3

TABLE 4.1: Directives of AES Encryption
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Chapter 5

Hardware Architectures of AES
Decryption, RC6 Encryption, RC6
Decryption, Blowfish Encryption,
and Blowfish Decryption

For the purpose of this thesis, we developed six projects, two for each of the
three algorithms we implemented: AES, RC6, and Blowfish, one for their
encryption and one for their decryption procedures, respectively.

In the previous chapter, we analyzed the creation of the AES Encryption and
how we ended up with its final framework. For the rest of the projects, a
similar procedure was followed. Our main goal was to implement the rest of
them based on the same framework described by the block diagram shown
in fig.4.6.

In the following image, we demonstrate a more detailed version of the block
diagram.
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FIGURE 5.1: Detailed Version of the Block Diagram

In this chapter, we will analyze the architecture of the final form of each of
these algorithms and which optimizations were used.

5.1 AES Decryption

The AES Decryption project, since it’s the reverse of AES Encryption, has a
similar structure and fits ideally in the targeted framework. In this section,
we will analyze its functions and the directives being used. The block dia-
gram of the design is demonstrated in fig. 5.1.

my_ip_hls function (Top Function)

The top-level function for the AES Decryption project is my_ip_hls. It takes
the variables key and slaveInDec as inputs and masterOutDec as outputs.
The directive # pragma HLS DATAFLOW is used in the function. The DATA-
FLOW pragma enables task-level pipelining, which allows functions and
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loops to overlap in their operation, enhancing RTL concurrency and overall
design performance.

Again in this project, for all three of its input/output variables, the directive
#INTERFACE axis register both port = <name> is being used. To signify that
the functions’ arguments are all implemented as AXI4-Stream interfaces. The
directive #INTERFACE ap_ctrl_none port = return was also added to prevent
the handshake signal ports (ap_start, ap_idle, ap_ready, and ap_done) from
being formed.

Due to the dataflow directive the use of the #pragma HLS STREAM vari-
able=<variable> depth=<int> dim=<int> is needed. It was used to generate
a FIFO for each of the function’s three arguments. In particular, we have a
64-depth FIFO dimension of 1 for the input and output data and a 4-depth
FIFO dimension of 1 for the key.

Finally, in this function, the calls of the rest of our design functions are being
performed, as well as the interconnections of their variables. Note that, all
variables are type stream <axiWord>, where axiWord is a struct containing
the variables ap_uint<128> data, ap_uint<16> strb, and ap_uint<1> last.

Check Key Function

The Check Key function is exactly the same as the one in the AES Encryption
project, described in sec.4.2.3.

Key Function

FIGURE 5.2: AES Decryption Key Function Block Diagram
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The Key Function is the same as the one in AES Encryption. In detail, it
consists of two FSMs, the first one to continuous reading if we have new
incoming valid keys due to the nature of the protocol our project is based
on. The second one exists to determine, based on the result of the Check Key
function, if the expanded keys needed for the encryption process are the ones
we stored or if we need to initiate the process to create new ones.

When there is the need to generate new expanded keys, the functions Key-
Expansion, KeyExpansionCore, and SubWord are called by the Key Function
to complete this task.

The new expanded keys are stored in eleven static variables after the key
function produces them. We created the key_decr_configuration function,
whose job is to take the results of the KeyExpansion and stored it in the static
variables. This function also resolves a conflict between read and write the
expanded keys at the same clock cycle.

The directives used in the KeyFunction are the same as before. More specifi-
cally, the #pragma HLS inline off is being used so as to not be inlined upward
into the calling function. The directive #pragma HLS pipeline is set to II = 1 to
keep the desired target of the pipeline to 1 clock cycle. Additionally, we use
the #pragma HLS array_partition for the variable = expandedKey by com-
plete to partition it completely into individual elements. The expandedKey
is the array holding the results of the KeyExpansion function. Finally, the use
of the #pragma HLS unroll is needed for the for-loop used for the separation
of the expandedKey array into the eleven variables.

The KeyExpansion function uses the directive #pragma HLS inline off , so as
to not be inlined upward into the calling function. The rest of them (KeyEx-
pansionCore, and SubWord) don’t include any directives.
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Core Function

FIGURE 5.3: AES Decryption Core Function Block Diagram

The Core Function is the one that handles the incoming/outcoming data and
calls the corresponding function to perform the wanted process. The func-
tion takes as input variables the input data from the ps2ip FIFO as well as
the expanded keys calculated from the Key Function, and after produces its
results sends them to the ip2ps fifo.

The function contains one FSM, that continuously reads if we have new in-
coming valid data, and calls the AES_Decrypt function to perform the de-
cryption process. In this function the directive #pragma HLS pipeline II=1
enable_flush is being used, as to be able to process new data every one cycle,
and if the data valid at the input of the pipeline goes inactive to flush and
empty the pipeline.

Additionally, we set the directive #pragma HLS INTERFACE ap_ctrl_none
port = return. Function-level protocols, also called block-level I/O proto-
cols, provide signals to control when the function starts operation, and in-
dicate when function operation ends, is idle, and is ready for new inputs.
The ap_ctrl_none means that the handshake signal ports (ap_start, ap_idle,
ap_ready, and ap_-done) are not created. Block-level I/O protocols can be
assigned to a port for the function return value.

It also contains the directive #pragma HLS unroll directive for all the for-
loops included in the code, as to make all calculations to be implemented in
parallel.
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AES_Decrypt
The AES_Decrypt is responsible for the proper use of the individual func-
tions needed to perform the decryption process which is described in sec.
3.2.3.

Firstly, the directive #pragma HLS inline region is being used. This applies
the pragma to the region or the body of the function it is assigned in. It
applies downward, inlining the contents of the region or function.

Also, we include the directive #pragma HLS pipeline set to II = 1. This means
that they process new inputs every 1 clock cycle.

Finally, we use the #pragma HLS unroll directive for all the for-loops in-
cluded in the code, as to make all calculation to be implemented in parallel.

AddRoundKey
The function AddRoundKey is the same as in the AES Encryption, it uses
the directive #pragma HLS inline off so as to not be inlined upward into
the calling functions or regions. It also includes the directive #pragma HLS
unroll to store the results in the state array in parallel.

InvMixColumns
The InvMixColumns function uses the directive #pragma HLS inline off .
This means that the functions should not be inlined upward into any call-
ing functions or regions. It also uses the directive #pragma HLS unroll for
storing its results in the state array in parallel.

InvSubBytes
The InvSubBytes function uses the directive #pragma HLS inline off . This
means that the function should not be inlined upward into any calling func-
tions or regions. It also uses the directive #pragma HLS unroll for storing
their results in the state array in parallel.

InvShiftRows
In this function, the directive #pragma HLS unroll is being used for parallel
storing the results in the state array.

ps2ip fifo and ip2ps fifo

The ps2ip and the ip2ps are 64-depth FIFOs that keep the input and output
data respectively. The ps2ip FIFO takes the input data and promotes them
into the Core function, and the ip2ps FIFO takes the results of the Core func-
tion and sends them as output data.
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5.1.1 Synthesis Report

The Synthesis Report of our AES Decryption project is shown in fig.5.4. As
we can see, we have successfully achieved the Initiation Interval of 1, which
means that the project processes new data and produces a new result every 1
clock cycle. Our final latency is 25, which indicates that we will get our first
result after 25 clock cycles. Furthermore, the overall resource utilization is
maintained to a minimum.

FIGURE 5.4: AES Decryption Synthesis Report

5.1.2 Directives Summary

In the following table, we summarized all the directives used in our AES
Decryption project compared with the ones used in its corresponding of AES
Encryption.

Directives AES Encryption AES Decryption
inline 3 3

allocation 7 7

unroll 3 3

array_map 7 7

array_partition 3 3

interface 3 3

pipeline 3 3

dataflow 3 3

stream 3 3

TABLE 5.1: Directives of AES Decryption
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5.2 RC6 Encryption

The block diagram of the top module of the RC6 Encryption project is again
demonstrated in fig. 5.1 .

rc6_top_module (Top Function)

The top-level function for the RC6 Encryption project is rc6_top_module. It
has the same structure as the top function of our targeted framework. It takes
the variables key and input_enc as inputs and output_enc as outputs. The
directive # pragma HLS DATAFLOW is used in the function. The DATA-
FLOW pragma enables task-level pipelining, which allows functions and
loops to overlap in their operation, enhancing RTL concurrency and overall
design performance.

Again in this project, for all three of its input/output variables, the directive
#INTERFACE axis register both port = <name> is being used. To signify that
the functions’ arguments are all implemented as AXI4-Stream interfaces. The
directive #INTERFACE ap_ctrl_none port = return was also added to prevent
the handshake signal ports (ap_start, ap_idle, ap_ready, and ap_done) from
being formed.

Due to the dataflow directive the use of the #pragma HLS STREAM vari-
able=<variable> depth=<int> dim=<int> is needed. It was used to generate
a FIFO for each of the function’s three arguments. In particular, we have a
64-depth FIFO dimension of 1 for the input and output data and a 4-depth
FIFO dimension of 1 for the key.

Finally, this function is responsible for the calls of the rest of our design func-
tions, as well as the interconnections of their variables. Note that, all vari-
ables are type stream <axiWord>, where axiWord is a struct containing the
variables ap_uint<128> data, ap_uint<16> strb, and ap_uint<1> last.

Check Key Function

The Check Key function is exactly the same as the one in the AES Encryption
project, described in sec.4.2.3.
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Key Function

FIGURE 5.5: RC6 Key Function Block Diagram

The Key Function has a similar structure as the one in AES Encryption. Specif-
ically, again in this case, it consists of two FSMs, the first one to continuous
reading if we have new incoming valid keys due to the nature of the pro-
tocol our project is based on. The second one exists to determine, based on
the result of the Check Key function, if the expanded keys needed for the
encryption process are the ones we stored or we need to initiate the process
to create new ones.

The directives #pragma HLS inline region is being used. This applies the
pragma to the region or the body of the function it is assigned in. It applies
downward, inlining the contents of the region or function, but not inlining
recursively through the hierarchy.

The directive #pragma HLS pipeline is set to II = 1 to keep the desired target
of the pipeline to 1 clock cycle.

The code used for the creation of the expanded key is described in sec. 3.3.1,
is incorporated in the body of this function. The use of the #pragma HLS un-
roll is needed for the for-loop that performs the calculations of the expanded
keys as to be implemented in parallel. We also used the directive #pragma
HLS dependence for the arrays S and L, set to type inter, which indicates de-
pendence between different loop iterations, and dependence to false. This
allows the HLS tool to perform operations in parallel if the function or loop
is pipelined, or the loop is unrolled.

The expanded keys are stored in 44 32-bit variables.
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Core Function

FIGURE 5.6: RC6 Encryption Core Function Block Diagram

The Core Function is similar to the initial framework. The function takes as
input variables the input data from the ps2ip FIFO as well as the 44 expanded
keys calculated from the Key Function, and after producing its results sends
them to the ip2ps FIFO.

The function contains one FSM, that continuously reads if we have new in-
coming valid data, and calls the encrypt function to perform the encryption
process of the RC6. In this function the directive #pragma HLS pipeline II=1
enable_flush is being used, as to be able to process new data every one cycle,
and if the data valid at the input of the pipeline goes inactive to flush and
empty the pipeline.

Additionally, we set the directive #pragma HLS INTERFACE ap_ctrl_none
port = return. Function-level protocols, also called block-level I/O proto-
cols, provide signals to control when the function starts operation, and in-
dicate when function operation ends, is idle, and is ready for new inputs.
The ap_ctrl_none means that the handshake signal ports (ap_start, ap_idle,
ap_ready, and ap_-done) are not created. Block-level I/O protocols can be
assigned to a port for the function return value.

It also contains the directive #pragma HLS unroll directive for all the for-
loops included in the code, to make all the calculations to be implemented in
parallel.
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encrypt

The encrypt function performs the encryption process of the RC6 algorithm
described in sec. 3.3.2.

The directive #pragma HLS inline region is being used. This applies the
pragma to the region or the body of the function it is assigned in. It applies
downward, inlining the contents of the region or function.

Also, we include the directive #pragma HLS pipeline set to II = 1. This means
that they process new inputs every 1 clock cycle.

Finally, we use the #pragma HLS unroll directive for all the for-loops in-
cluded in the code, as to make all calculation to be implemented in parallel.

rotatel

The rotatel function performs the left rotation needed in the encryption pro-
cess and the creation of the expanded keys. In this function, we use the
#pragma HLS inline region directive. This applies the pragma to the region
or the body of the function it is assigned in. It applies downward, inlining
the contents of the region or function.

ps2ip fifo and ip2ps fifo

The ps2ip and the ip2ps are 64-depth FIFOs that keep the input and output
data respectively. The ps2ip FIFO takes the input data and promotes them
into the Core function, and the ip2ps FIFO takes the results of the Core func-
tion and sends them as output data.

5.2.1 Synthesis Report

The Synthesis Report of our RC6 Encryption project is shown in fig.5.7. As
we can see, we have successfully achieved the Initiation Interval of 1, which
means that the project processes new data and produces a new result every 1
clock cycle. Our final latency is 100, which indicates that we will get our first
result after 100 clock cycles. Furthermore, the overall resource utilization is
maintained at a low level, but not as much as the AES Encryption.
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FIGURE 5.7: RC6 Encryption Synthesis Report

5.2.2 Directives Summary

In the following table, we summarized all the directives used in our RC6
Encryption project.

Directives RC6 Encryption
inline 3

allocation 7

unroll 3

array_map 7

array_partition 7

interface 3

pipeline 3

dataflow 3

stream 3

dependence 3

TABLE 5.2: Directives of RC6 Encryption

5.3 RC6 Decryption

The block diagram of the top module of the RC6 Decryption project is again
demonstrated in fig. 5.1 .

rc6_top_module (Top Function)

The top-level function for the RC6 Decryption project is rc6_top_module. It
is the same as the RC6 Encryption, described in sec. 5.2 and it uses the same
directives.

Check Key Function

The Check Key function is exactly the same as the one in the AES Encryption
project, described in sec.4.2.3.
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Key Function

The Key Function is the same as the one in RC6 Encryption, described in sec.
5.2.

Core Function

FIGURE 5.8: RC6 Decryption Core Function Block Diagram

The Core Function is the same as the one in the RC6 Encryption project, de-
scribed in sec. 5.2, with the only difference that in this case the decrypt func-
tion is being called instead of the encrypt.

decrypt

The decrypt function performs the decryption process of the RC6 algorithm
described in sec. 3.3.2.

The directive #pragma HLS inline region is being used. This applies the
pragma to the region or the body of the function it is assigned in. It applies
downward, inlining the contents of the region or function.

Also, we include the directive #pragma HLS pipeline set to II = 1. This means
that they process new inputs every 1 clock cycle.

Finally, we use the #pragma HLS unroll directive for all the for-loops in-
cluded in the code, as to make all calculation to be implemented in parallel.

rotatel

The rotatel function is the same as in the RC6 Encryption project, described
in sec. 5.2.
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rotater

The rotater function performs the right rotation needed in the decryption
process of the RC6 algorithm. In this function, we use the #pragma HLS
inline region directive. This applies the pragma to the region or the body of
the function it is assigned in. It applies downward, inlining the contents of
the region or function.

ps2ip fifo and ip2ps fifo

The ps2ip and the ip2ps are 64-depth FIFOs that keep the input and output
data respectively. The ps2ip FIFO takes the input data and promotes them
into the Core function, and the ip2ps FIFO takes the results of the Core func-
tion and sends them as output data.

5.3.1 Synthesis Report

The Synthesis Report of our RC6 Decryption project is shown in fig.5.7. As
we can see, we have successfully achieved the Initiation Interval of 1, which
means that the project processes new data and produces a new result every 1
clock cycle. Our final latency is 91, which indicates that we will get our first
result after 91 clock cycles. Furthermore, the overall resource utilization is
maintained at a low level, a little lower than the RC6 Encryption.

FIGURE 5.9: RC6 Decryption Synthesis Report

5.3.2 Directives Summary

In the following table, we summarized all the directives used in our RC6
Decryption project compared with the ones used in its corresponding RC6
Encryption.
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Directives RC6 Encryption RC6 Decryption
inline 3 3

allocation 7 7

unroll 3 3

array_map 7 7

array_partition 7 7

interface 3 3

pipeline 3 3

dataflow 3 3

stream 3 3

dependence 7 3

TABLE 5.3: Directives of RC6 Decryption

5.4 Blowfish Encryption

The block diagram of the top module of the Blowfish Encryption project is
again demonstrated in fig. 5.1.

blowfish (Top Function)

The top-level function for the Blowfish Encryption project is blowfish. It has
the same structure as the top function of our targeted framework. It takes the
variables key and data_in_enc as inputs and data_out_enc as outputs. The
directive # pragma HLS DATAFLOW is used in the function. The DATA-
FLOW pragma enables task-level pipelining, which allows functions and
loops to overlap in their operation, enhancing RTL concurrency and overall
design performance.

For all three of its input/output variables, we use the directive #INTERFACE
axis register both port = <name>. To signify that the functions’ arguments
are all implemented as AXI4-Stream interfaces. The directive #INTERFACE
ap_ctrl_none port = return was also added to prevent the handshake signal
ports (ap_start, ap_idle, ap_ready, and ap_done) from being formed.

Due to the dataflow directive the use of the #pragma HLS STREAM vari-
able=<variable> depth=<int> dim=<int> is needed. It was used to generate
a FIFO for each of the function’s three arguments. In particular, we have a
64-depth FIFO dimension of 1 for the input and output data and a 4-depth
FIFO dimension of 1 for the key.

Finally, this function is responsible for the calls of the rest of our design func-
tions, as well as the interconnections of their variables. Note that, the input
and output variables are type stream <axiWord>, where axiWord is a struct
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containing the variables ap_uint<64> data, ap_uint<8> strb, and ap_uint<1>
last, and the key is type stream <axiKey>, where axiKey is a struct containing
the variables ap_uint<128> data, ap_uint<16> strb, and ap_uint<1> last.

Check Key Function

The Check Key function is exactly the same as the one in the AES Encryption
project, described in sec.4.2.3.

Key Function

FIGURE 5.10: Blowfish Key Function Block Diagram

The Key Function has a similar structure as the ones described before. Specif-
ically, again in this case, it consists of two FSMs, the first one to continuous
reading if we have new incoming valid keys due to the nature of the protocol
our project is based on. The second one exists to determine, based on the
result of the Check Key function, if the subkeys needed for the encryption
process are the ones we stored or if we need to initiate the process to create
new ones.

The directive #pragma HLS inline region is being used. This applies the
pragma to the region or the body of the function it is assigned in. It applies
downward, inlining the contents of the region or function, but not inlining
recursively through the hierarchy.

The directive #pragma HLS pipeline is set to II = 1 to keep the desired target
of the pipeline to 1 clock cycle.

When there is the need to generate the subkeys, the function Blowfish_Init is
called to complete this task. The results of the P array are stored in a static
array size 18, and the 4 S-boxes are stored in 4 static arrays size 256.
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The use of the #pragma HLS unroll is needed for the for-loops that perform
the calculations of the subkeys as to be implemented in parallel.

Blowfish_Init

The way the Blowfish_Init generated the subkeys is described in sec. 3.4.1.
The directive #pragma HLS inline region is being used. This applies the
pragma to the region or the body of the function it is assigned in. It applies
downward, inlining the contents of the region or function, but not inlining
recursively through the hierarchy.

The directive #pragma HLS pipeline is set to II = 1 to keep the desired target
of the pipeline to 1 clock cycle.

The use of the #pragma HLS unroll is needed for the for-loops that perform
the calculations of the subkeys as to be implemented in parallel.

Core Function

FIGURE 5.11: Blowfish Encryption Core Block Diagram

The Core Function is similar to the initial framework. The function takes as
input variables the input data from the ps2ip FIFO as well as the P-array and
the S-boxes calculated from the Key Function, and after produces its results
sends them to the ip2ps fifo.

The function contains one FSM, that continuously reads if we have new in-
coming valid data, and calls the Blowfish_Encrypt function to perform the
encryption process of the Blowfish algorithm. In this function the directive
#pragma HLS pipeline II=1 enable_flush is being used, as to be able to pro-
cess new data every one cycle and if the data valid at the input of the pipeline
goes inactive to flush and empty the pipeline.
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Additionally, we set the directive #pragma HLS INTERFACE ap_ctrl_none
port = return. Function-level protocols, also called block-level I/O proto-
cols, provide signals to control when the function starts operation, and in-
dicate when function operation ends, is idle, and is ready for new inputs.
The ap_ctrl_none means that the handshake signal ports (ap_start, ap_idle,
ap_ready, and ap_-done) are not created. Block-level I/O protocols can be
assigned to a port for the function return value.

Blowfish_Encrypt

The Blowfish_Encrypt function performs the encryption process of the Blow-
fish algorithm described in sec. 3.4.2.

The directive #pragma HLS inline off is being used. This means that the
function should not be inlined upward into any calling functions or regions.

Also, we include the directive #pragma HLS pipeline II = 1 which indicates
that is set to process new inputs every 1 clock cycle.

Finally, we use the #pragma HLS unroll directive for all the for-loops in-
cluded in the code, as to make all calculation to be implemented in parallel.

ps2ip fifo and ip2ps fifo

The ps2ip and the ip2ps are 64-depth FIFOs that keep the input and output
data respectively. The ps2ip FIFO takes the input data and promotes them
into the Core function, and the ip2ps FIFO takes the results of the Core func-
tion and sends them as output data.

5.4.1 Synthesis Report

The Synthesis Report of our Blowfish Encryption project is shown in fig.5.12.
Unfortunately, the Blowfish Encryption didn’t perform as well as the other
projects. Even though we adjust the algorithm to the targeted framework,
the algorithm wasn’t able to be pipelined with II=1 and produce results every
clock cycle.

As we can see from the synthesis result, the interval has a range of value
between 17 and 9753 clock cycles, meaning the fastest we can process new
data is every 17 clock cycles and the slowest every 9753 clock cycles. The
same phenomenon we can spot in the initial latency, which also has a range
of values between 24 and 9775 clock cycles.
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The cause of this is the complexity of the Blowfish_Init function. It performs
a very large number of calculations, that have dependencies between their
intermediate results and are unable to perform different operations in the
same clock cycle. The same applies to the Blowfish_Encrypt function which
also carries dependencies between its intermediate results.

The resource utilization is kept at a low level, not as low as the AES Encryp-
tion project, with the exception of the use of BRAMs, which is higher in the
AES. But overall, the project didn’t perform in the way we wanted.

FIGURE 5.12: Blowfish Encryption Synthesis Report

5.4.2 Directives Summary

In the following table we summarised all the directives used in our Blowfish
Encryption project.

Directives Blowfish Encryption
inline 3

allocation 7

unroll 3

array_map 7

array_partition 7

interface 3

pipeline 3

dataflow 3

stream 3

dependence 7

TABLE 5.4: Directives of Blowfish Encryption
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5.5 Blowfish Decryption

The block diagram of the top module of the Blowfish Decryption project is
again demonstrated in fig. 5.1.

blowfish (Top Function)

The top-level function for the Blowfish Decryption project is blowfish. It is
the same as the Blowfish Encryption, described in sec. 5.4 and it uses the
same directives.

Check Key Function

The Check Key function is exactly the same as the one in the AES Encryption
project, described in sec.4.2.3.

Key Function

The Key Function is the same as the one in Blowfish Encryption, described
in sec. 5.4.

Blowfish_Init Function

The Blowfish_Init is the same as the one in Blowfish Encryption, described
in sec. 5.4.

Blowfish_Encrypt

The Blowfish_Encrypt is the same as the one in Blowfish Encryption, de-
scribed in sec. 5.4. It is included in this project due to its use from the Blow-
fish_Init.

Core Function

FIGURE 5.13: Blowfish Decryption Core Block Diagram
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The Core Function is the same as the one in the Blowfish Encryption project,
described in sec. 5.4, with the only difference that in this case the Blow-
fish_Decrypt function is being called instead of the Blowfish_Encrypt.

Blowfish_Decrypt

The Blowfish_Decrypt function performs the decryption process of the Blow-
fish algorithm described in sec. 3.4.3.

The directive #pragma HLS inline off is being used. This means that the
function should not be inlined upward into any calling functions or regions.

Also, we include the directive #pragma HLS pipeline II = 1 which indicates
that is set to process new inputs every 1 clock cycle.

Finally, we use the #pragma HLS unroll directive for all the for-loops in-
cluded in the code, as to make all calculation to be implemented in parallel.

ps2ip fifo and ip2ps fifo

The ps2ip and the ip2ps are 64-depth FIFOs that keep the input and output
data respectively. The ps2ip FIFO takes the input data and promotes them
into the Core function, and the ip2ps FIFO takes the results of the Core func-
tion and sends them as output data.

5.5.1 Synthesis Report

The Synthesis Report of our Blowfish Decryption project is shown in fig.5.14.
As it was expected, the Blowfish Decryption project has a similar perfor-
mance to the Blowfish Encryption project.

Also, in this case, the algorithm wasn’t able to be pipelined with II=1 and
produce results every one clock cycle. the interval has a range of value be-
tween 17 and 9753 clock cycles, meaning the fastest we can process new data
is every 17 clock cycles and the slowest every 9753 clock cycles. The same
phenomenon we can spot in the initial latency, which also has a range of
values between 24 and 9775 clock cycles.

The cause again is the complexity of the calculation and the dependencies
between their intermediate results of the Blowfish_Init, Blowfish_Encrypt,
and Blowfish_Decrypt functions.
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The resource utilization is kept at a low level, not as low as the AES Encryp-
tion project, with the exception of the use of BRAMs, which is higher in the
AES. But overall, the project didn’t perform in the way we wanted.

FIGURE 5.14: Blowfish Decryption Synthesis Report

5.5.2 Directives Summary

In the following table, we summarized all the directives used in our Blow-
fish Decryption project compared with the ones used in its corresponding
Blowfish Encryption.

Blowfish Blowfish
Encryption Decryption

inline 3 3

allocation 7 7

unroll 3 3

array_map 7 7

array_partition 7 7

interface 3 3

pipeline 3 3

dataflow 3 3

stream 3 3

dependence 7 7

Directives

TABLE 5.5: Directives of Blowfish Decryption
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5.6 Summary

In the following table, we summarize all directives we met during the imple-
mentation of each algorithm and display which ones are being used in each
of our six projects.

AES AES RC6 RC6 Blowfish Blowfish
Encrypt Decrypt Encrypt Decrypt Encrypt Decrypt

inline 3 3 3 3 3 3

allocation 7 7 7 7 7 7

unroll 3 3 3 3 3 3

array_map 7 7 7 7 7 7

array_partition 3 3 7 7 7 7

interface 3 3 3 3 3 3

pipeline 3 3 3 3 3 3

dataflow 3 3 3 3 3 3

stream 3 3 3 3 3 3

dependence 7 7 3 3 7 7

Directives

TABLE 5.6: Directives of All Algorithms

The conclusions considering the usage of directives are the following:

• As we can tell, for each algorithm, the encryption and decryption part
consist of the same directives since they have the same structure.

• In the case of RC6, the majority of directives are the same as the ones in
our targeted framework of AES Encryption, except for the array_parti-
tion. The RC6 doesn’t need the array_partition directive, since the sep-
aration of the array holding the expanded keys was performed by hand
(the expanded keys are kept in 44 variables).

• For RC6 we needed to include the dependence directive to distinguish
the dependence of its arrays between different loop iterations during
the process of its key function.

• In the case of Blowfish, the majority of directives are again the same
as the ones in our targeted framework of AES Encryption, except for
the array_partition. We tried to include this directive in the Blowfish
encryption and decryption project for its four S-boxes but didn’t end
up in the final form, because Vivado was unable to finish the synthesis
of the project due to lack of memory.

• The allocation directive wasn’t used in the final form of any algorithm,
since it was more resource utilization effective to allow the Vivado to
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decide automatically the number of instances of the functions needed
in each algorithm.

• Again, the array_map directive was not used in any algorithm’s final
version. The reason for this is that either the algorithm did not have any
arrays that could be combined into a larger one (in the case of RC6), or
during the optimization process we reduced the array to the absolute
necessary ones and there was no need to combine those into larger ar-
rays or make any difference in the number of BRAMs used (in case of
AES and Blowfish).
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Chapter 6

Design Verification and
Performance Evaluation from
Actual Runs

In this chapter, we will demonstrate the results of our hardware implemen-
tations. More specifically, we analyze the performance of AES, RC6, and
Blowfish, both encryption and decryption, based on a series of simulation-
level tests. Furthermore, we verified our design by executing a series of runs
in real hardware and checking the validity of the outcomes from each dataset
we used.

6.1 FPGA Platforms

Initially, all of our designs were tested and implemented using Xilinx’s Vi-
vado HLS 2017.1 with the Zynq UltraScale+ ZCU102 Evaluation Platform as
the target device (xczu9eg-ffvb1156-1-i-es1). We ran a series of simulation-
level tests with various sizes of streaming data to evaluate the behavior of
each algorithm in terms of area utilization, latency, interval, and how the
clock value can affect them, and their throughput.

Later on, we wanted to evaluate our architecture’s performance on a physical
FPGA Board. For this purpose, we used the PYNQ-Z1 (Python Productivity
for Zynq-7000 ARM/FPGA SoC). With some small adjustments in the design
of our two AES projects (Encryption and Decryption), we successfully down-
load them on the board and evaluate their overall performance compared to
a software implementation.
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6.1.1 Zynq UltraScale+ ZCU102 Evaluation Platform

The ZCU102 is a high-performance, high-speed hardware/software design
platform providing the integration of hardware, software, IP, and reference
designs which enables quicker time-to-innovation for researchers. Based
around the Xilinx Zynq Ultrascale+ MPSoC, it is equipped with industry-
standard peripherals, connects, and interfaces that offer a rich set of features
suitable for a wide range of applications.

System Logic Cells Flip-Flops LUTs Block RAM (Mb) DSP Slices

599,550 548,160 274,080 912 2,520

FIGURE 6.1: Zynq UltraScale+ ZCU102 Evaluation Platform

6.1.2 PYNQ

Digilent PYNQ-Z1 Python Productivity Board for Zynq-7000 ARM/FPGA
SoC is a general-purpose, programmable platform for embedded systems.
The PYNQ-Z1 Board is designed to be used with PYNQ. PYNQ is an open-
source framework that enables embedded programmers to explore the capa-
bilities of Xilinx Zynq All Programmable SoCs (APSoCs) without having to
design programmable logic circuits. Alternately, the APSoC is programmed
using Python and the code is developed and tested directly on the PYNQ-Z1.
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The programmable logic circuits are imported as hardware libraries and pro-
grammed through their APIs. The PYNQ-Z1 board is the hardware platform
for the PYNQ open-source framework.

The PYNQ-Z1 supports multi-media applications with onboard audio and
video interfaces. The Board is designed to be easily extensible with Pmod,
Arduino, and Grove peripherals, as well as general-purpose IO pins. The
PYNQ-Z1 Board can be also expanded with USB peripherals including WiFi,
Bluetooth, and Webcams.

Logic slices Flip-Flops LUTs Block RAM (KB) DSP Slices

13,300 106,400 53,200 630 220

FIGURE 6.2: PYNQ Z1 Board
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6.2 Throughput

Throughput is the flow rate. It is the rate at which the number of units goes
through the process per unit of time. In our point of view, throughput is de-
fined as the amount of data that is successfully transmitted through a system
in a certain amount of time, measured in bits per second (bps).

Throughput can be calculated using the following formula:

T =
I
F

(6.1)

where:

T = Throughput
I = Inventory (the number of units in the production process - in our case the
data packets that are being encrypted/decrypted)
F = The time the inventory units spend in production from start to finish

6.3 Simulation Testing and Results

We tested each algorithm using 30 packets of streaming data and chang-
ing the algorithm’s key every 10 packets to evaluate its behavior. The term
packet refers to a group of 128-bit variables for AES and RC6, or 64-bit vari-
ables for Blowfish, with the last variable of each packet signaling the end of
the stream. We began with a size of a 64-byte packet, and we doubled its size
for each test until we reached 1 MB.

6.3.1 RTL Waveform

The following image shows the RTL waveform provided by the Vivado IDE,
which shows the behavior of the AES Encryption design. More specifically,
it demonstrates the output of the algorithm for the first packet of data it pro-
cessed.

As we can see, the first expected result should be available at 415 ns, un-
fortunately, we don’t have a valid result, instead, we get an "XXXXX...XX"
value.

The "XXXX..XX" value means unknown/impossible to determine this val-
ue/result. The problem that is causing this, originates in the key function.
During the process of producing the outcome, the key functions give to the
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FIGURE 6.3: first encrypted output

encryption function the variables that hold the expanded keys one clock cy-
cle earlier before they are ready, and that is causing the invalid result.

This happens every time we have a new key. Due to this problem, we have an
invalid encrypted result of the first 128 bits of plaintext, but all the following
outcomes are correct.

We tried to fix this issue, but unfortunately, we didn’t succeed. The Vivado
HLS compiler is creating this problem during the translation from the C++
code to VHDL. Cause of the directive #pragma HLS pipeline, the tool is
being ordered to produce a code that will provide us with a result every 1
clock cycle after the initial latency, and during the translations to VHDL, to
meet our command, the expanded keys variables are being used before the
initialization with the correct values. Every control we added to prevent this
issue was ignored in the translation.

A possible solution to this is if we intervene in the VHDL code and add con-
trol and prevent the algorithm from using the expanded keys before they are
ready.

All of the algorithms behave in the same way. The first outcome when
the key changes is invalid, and the rest are valid. Usually in the process of
encryption/decryption of data, the key doesn’t change very often, thereafter
the loss can be considered negligence, since we only lose 128-bits or 64-bits
of data depending on the algorithm.
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6.3.2 Simulations Run Time Results

In the following tables, we gathered the run times of each algorithm for its
first valid result as well as its last, for all the individual packet sizes.

AES Simulation Run Time Results
The 6.1 table shows the run times for AES Encryption and Decryption.

Size of Total AES AES AES AES
Stream Amount of Encryption Encryption Decryption Decryption
Packet Data first last first last
(bytes) Send (bytes) result (ns) result (ns) result (ns) result (ns)

1 64 1920 425 1615 425 1615
2 128 3840 425 2815 425 2815
3 256 7680 425 5215 425 5215
4 512 15360 425 10015 425 10015
5 1024 30720 425 19615 425 196155
6 2048 61440 425 38915 425 38915
7 4096 122880 425 77215 425 77215
8 8192 245760 425 154015 425 154015
9 16384 491520 425 307615 425 307615
10 32768 983040 425 614815 425 614815
11 65536 1966080 425 1229215 425 1229215
12 131072 3932160 425 2458015 425 2458015
13 262144 7864320 425 4915615 425 4915615
14 524288 15728640 425 9830815 425 9830815
15 1048576 31457280 425 19661215 425 19661215

TABLE 6.1: AES Simulation Run Time Results

As we can see, the time that we got the first correct result of the first packet
regardless of the packet size is stable.

In detail, as mentioned earlier each packet of AES consists of a specific num-
ber of 128-bit variables, based on its size. More specifically, the 64-byte packet
consists of 4 128-bit variables that are being transmitted through the algo-
rithm, and we send 30 packets, as a result, we have a total amount of 120
transmissions.

As we can see, we get the first correct encrypted result in 425 ns, the second
one in 435 ns, the third in 445 ns,..., etc. Meaning that after the initial latency,
and the first outcome being ignored due to invalid results, we get a new
correct result every 10 ns which translates in every clock cycle.

The same behavior we observe in every case regardless of the packet size.
Every time the key changes (in our case every 10 packets) we lose the first
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outcome of the first packet due to an invalid result, and after that, we receive
a correct result every clock cycle.

RC6 Simulation Run Time Results
The 6.2 table shows the results for RC6 Encryption and Decryption.

Size of Total RC6 RC6 RC6 RC6
Stream Amount of Encryption Encryption Decryption Decryption
Packet Data first last first last
(bytes) Send (bytes) result (ns) result (ns) result (ns) result (ns)

1 64 1920 1175 2365 1085 2275
2 128 3840 1175 3565 1085 3475
3 256 7680 1175 5965 1085 5875
4 512 15360 1175 10765 1085 10675
5 1024 30720 1175 20365 1085 20275
6 2048 61440 1175 39565 1085 39475
7 4096 122880 1175 77965 1085 77875
8 8192 245760 1175 154765 1085 154675
9 16384 491520 1175 308375 1085 308275

10 32768 983040 1175 615565 1085 615475
11 65536 1966080 1175 1229965 1085 1229875
12 131072 3932160 1175 2458765 1085 2458675
13 262144 7864320 1175 4916365 1085 4916275
14 524288 15728640 1175 9831565 1085 9831475
15 1048576 31457280 1175 19661965 1085 19661875

TABLE 6.2: RC6 Simulation Run Time Results

Based on the results of the RC6 Encryption and Decryption algorithms, we
can state that the RC6 has a similar behavior as the AES. Again the time that
we got the first correct result of the first packet for every packet size is stable.
For RC6 Encryption and Decryption, we lose the first result when the key
changes as well, and after that we have a valid result every clock cycle.
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Blowfish Simulation Run Time Results
The 6.3 table shows the results for Blowfish Encryption and Decryption.

Size of Total Blowfish Blowfish Blowfish Blowfish
Stream Amount of Encryption Encryption Decryption Decryption
Packet Data first last first last
(bytes) Send (bytes) result (ns) result (ns) result (ns) result (ns)

1 64 1920 99035 602195 99035 602195
2 128 3840 99035 914195 99035 914195
3 256 7680 99035 1538195 99035 1538195
4 512 15360 99035 2786195 99035 2786195
5 1024 30720 99035 75282195 99035 5282195
6 2048 61440 99035 10274195 99035 10274195
7 4096 122880 99035 20258195 99035 20258195
8 8192 245760 99035 40226195 99035 40226195
9 16384 491520 99035 80162195 99035 80162195
10 32768 983040 n/a n/a n/a n/a
11 65536 1966080 n/a n/a n/a n/a
12 131072 3932160 n/a n/a n/a n/a
13 262144 7864320 n/a n/a n/a n/a
14 524288 15728640 n/a n/a n/a n/a
15 1048576 31457280 n/a n/a n/a n/a

TABLE 6.3: Blowfish Simulation Run Time Results

Regarding the results of the Blowfish Encryption and Decryption, it is impor-
tant to mention that we only manage to get the results for packet sizes up to
16 KBytes, after that Vivado HLS was unable to produce the results due to
lack of memory.

Both cases of Blowfish produce new outcomes every 1300 ns (130 clock cy-
cles). When we have a new key the algorithms give us the first outcome after
97530 ns. The additional delay is created by the computational complexity of
the key function.

Once again the time for the first result of the first packet is stable in both
cases, regardless of the size of the packet.

Finally, Blowfish produces an invalid result for the first outcome when the
key changes, similarly to the rest algorithms.
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6.4 Throughput Results

In the 6.4 table, we are demonstrating the throughput of each algorithm for
every size of stream packet, which is calculated based on the mathematical
formula 6.1.

Total Amount of AES AES RC6 RC6 Blowfish Blowfish
Data Send (bits) Encr Decr Encr Decr Encr Decr

1 15360 9.5108 9.5108 6.4947 6.7516 0.0255 0.0255
2 30720 10.913 10.913 8.6171 8.8403 0.0336 0.0336
3 61440 11.7814 11.7814 10.3001 10.4579 0.0399 0.0399
4 122880 12.2696 12.2696 11.4148 11.511 0.0441 0.0441
5 245760 12.5292 12.5292 12.0678 12.1213 0.0465 0.0465
6 491520 12.6306 12.6306 12.4231 12.4514 0.0478 0.0478
7 983040 12.7312 12.7312 12.6087 12.6233 0.0485 0.0485
8 1966080 12.7655 12.7655 12.7036 12.711 0.0489 0.0489
9 3932160 12.7827 12.7827 12.7512 12.7554 0.0491 0.0491

10 7864320 12.7914 12.7914 12.7758 12.7776 n/a n/a
11 15728640 12.7957 12.7957 12.7879 12.7888 n/a n/a
12 31457280 12.7978 12.7978 12.7939 12.7944 n/a n/a
13 62914560 12.7989 12.7989 12.797 12.7972 n/a n/a
14 125829120 12.7995 12.7995 12.7985 12.7986 n/a n/a
15 251658240 12.7997 12.7997 12.7992 12.7993 n/a n/a

TABLE 6.4: Throughput (Gbits/sec)

As seen in the following table 6.4 and the diagram 6.4, the throughput of
AES and RC6 for encryption and decryption tends to stabilize at 12.79 Gbps
as the amount of data being processed via the algorithms reaches 15 Mbits or
higher.

The lower values of throughput numbers we observe for the smaller quan-
tities of data are caused by the initial latency. If we increase the number of
packets we send for processing in the cases of the smaller packet sizes and
thus the total amount of bits, we will notice that the value of throughput will
tend to stabilize at 12.79 Gbps as well because the initial latency won’t have
a big impact on it.

Furthermore, Blowfish Encryption and Description’s throughput fall behind
in comparison to the throughput of the other algorithms. The best value
we got was 0.0491 Gbps. As demonstrated in 6.5, Blowfish Encryption and
Description’s throughput improves as the amount of data increases, but their
overall performance is far from our target, which is at least 10 Gbps since
Blowfish was unable to provide us with an outcome every clock cycle, as the
others did.
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FIGURE 6.4: Throughput
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6.5 Zynq UltraScale+ ZCU102 Resource Utilizations

The following table shows the resource utilization for all algorithms on the
Zynq UltraScale+ ZCU102 Evaluation Platform as provided by Vivado HLS
2017.1.

Algorithm BRAM_18K DSP FF LUT
Available 1824 2520 548160 274080

AES Encryption 110 0 15614 14701
utilization % 6% 0 2% 2%

AES Decryption 110 0 15614 30937
utilization % 6% 0 2% 11%

RC6 Encryption 0 120 35507 70885
utilization % 0 4% 6% 25%

RC6 Decryption 0 120 33883 70885
utilization % 0 4% 6% 25%

Blowfish Encryption 26 0 30148 43660
utilization % 1% 0 5% 15%

Blowfish Decryption 26 0 30148 43660
utilization % 1% 0 5% 15%

TABLE 6.5: Algorithms Resource Utilization in Zynq Ultra-
Scale+ ZCU102

Based on the information above, AES Encryption has the lowest resource uti-
lization of all the algorithms, and AES Decryption comes right after. The
algorithms that occupied the most resources are the RC6 Encryption and De-
cryption.

6.6 Clocks and Resources

At this point, our goal was to observe how the clock’s value can affect the
usage of the available resources, as well as if it can influence the initial latency
or the pipeline (interval) of each algorithm.

6.6.1 AES

Initially, the target clock for each algorithm was set at 10 ns as a default. In
the case of AES, both Encryption and Decryption, the estimated clock was
calculated at 2.3 ns with 1.25 ns uncertainty. As we lower the value of the
target clock to get closer to its estimated, we can observe the following:
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Target Est. Unc. min max min max BRAM FF LUT
10 2.3 1.25 25 25 1 1 110 (6%) 15614 (2%) 14701 (2%)
5 2.3 0.63 25 25 1 1 110 (6%) 15614 (2%) 14701 (2%)
3 2.3 0.38 25 25 1 1 110 (6%) 15614 (2%) 14701 (2%)

2.68 2.3 0.34 25 25 1 1 110 (6%) 15614 (2%) 14701 (2%)
2.5 1.67 0.31 27 27 1 1 110 (6%) 18579 (3%) 14815 (5%)
2 1.67 0.25 27 27 1 1 110 (6%) 18579 (3%) 14815 (5%)

1.5 1.35 0.19 55 55 1 1 110 (6%) 20019 (3%) 16038 (5%)
1 1.35 0.13 56 56 1 1 110 (6%) 22836 (4%) 16137 (5%)

ResourcesIntervalLatencyClock

AES Encryption

TABLE 6.6: AES Encryption Clock and Resources Behaviour

Target Est. Unc. min max min max BRAM FF LUT
10 2.3 1.25 25 25 1 1 110 (6%) 15614 (2%) 30937 (11%)
5 2.3 0.63 25 25 1 1 110 (6%) 15614 (2%) 30937 (11%)
3 2.3 0.38 25 25 1 1 110 (6%) 15614 (2%) 30937 (11%)

2.68 2.3 0.34 25 25 1 1 110 (6%) 15614 (2%) 30937 (11%)
2.5 1.92 0.31 27 27 1 1 110 (6%) 18579 (3%) 31051 (11%)
2 1.67 0.25 36 36 1 1 110 (6%) 19856 (3%) 31218 (11%)

1.5 1.35 0.19 55 55 1 1 110 (6%) 20019 (3%) 32274 (11%)
1 1.35 0.13 56 56 1 1 110 (6%) 22836 (4%) 32373 (11%)

ResourcesIntervalLatencyClock

AES Decryption

TABLE 6.7: AES Decryption Clock and Resources Behaviour

1. The lower value of the clock we got, without any changes in the latency or
the resource utilization was 2.68 ns.

2. The Interval remained constant at 1 clock cycle, regardless of the value of
the target clock.

3. The number of BRAMs that are being used remained unchanged as well,
regardless of the value of the target clock.

4. When we get lower to 2.68 ns we observe an increase in the initial latency,
as well as in the number of Flip - Flops and LUTs that are being used.
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FIGURE 6.6: AES Encryption Resources, Latency, and Interval
Behaviour
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FIGURE 6.7: AES Decryption Resources, Latency, and Interval
Behaviour

6.6.2 RC6

Again, in the case of the RC6 algorithm, the target clock was set at 10 ns as a
default. In both the Encryption and Decryption of RC6, the estimated clock
was calculated at 8.75 ns with 1.25 ns uncertainty. As we lower the value of
the target clock to get closer to its estimated, we can observe the following:

1. Any try to lower the value of the target clock below 10 ns, increase the
initial latency, as well as the Flip-Flops and LUTs usage. Initially, as the clock
value remained close to 10 ns, the increase in resources was quite small, of the
order of 1%, but as the limit for the clock was pushed to reach a significantly
smaller value, the resource usage was up around 3% to 4%. Additionally,
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Target Est. Unc. min max min max BRAM DCP FF LUT
10 8.75 1.25 100 100 1 1 0 120 (4%) 35507 (6%) 70885 (25%)
9 7.86 1.13 110 110 1 1 0 120 (4%) 38559 (7%) 68722 (25%)

8.75 7.49 1.09 123 123 1 1 0 120 (4%) 41051 (7%) 79809 (29%)
8 6.99 1 123 123 1 1 0 120 (4%) 41181 (7%) 81616 (29%)
5 4.28 0.63 214 214 1 1 0 160 (6%) 58058 (10%) 91376 (33%)

ResourcesIntervalLatencyClock

RC6 Encryption

TABLE 6.8: RC6 Encryption Clock and Resources Behaviour

Target Est. Unc. min max min max BRAM DCP FF LUT
10 8.75 1.25 91 91 1 1 0 120 (4%) 33883 (6%) 70885 (25%)
9 7.86 1.13 110 110 1 1 0 120 (4%) 40727 (7%) 69245 (25%)

8.75 7.49 1.09 123 123 1 1 0 120 (4%) 42035 (7%) 73506 (26%)
8 6.99 1 123 123 1 1 0 120 (4%) 42165 (7%) 75312 (27%)
5 4.28 0.63 214 214 1 1 0 160 (6%) 60866 (11%) 91376 (33%)

ResourcesIntervalLatencyClock

RC6 Decryption

TABLE 6.9: RC6 Decryption Clock and Resources Behaviour

the latency had similar behavior, it started with small increases, around 10 to
20 clock cycles, and as the limit for the clock was pushed to 5 ns, we saw it
double in size.

2. The Interval remained constant at 1 clock cycle, regardless of the value of
the target clock.

3. The number of DSPs that are being used remained unchanged for most of
the cases, only when we tried to push the clock at 5 ns we saw an increase in
the order of 2% in the number of DSPs that are being used.
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FIGURE 6.8: RC6 Encryption Resources, Latency, and Interval
Behaviour
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FIGURE 6.9: RC6 Decryption Resources, Latency, and Interval
Behaviour

6.6.3 Blowfish

For the Blowfish algorithm, the target clock was set at 10 ns as a default, as
well. In both the Encryption and Decryption of Blowfish, the estimated clock
was calculated at 6.16 ns with 1.25 ns uncertainty. As we lower the value of
the target clock to get closer to its estimated, we can observe the following:

1. The number of Flip-Flops and LUTS that are being used, remained un-
changed in most tries. Only when we set the target clock at 5 ns we saw an
increase in the order of 1% to 2% of the recourse usage.

2. The maximum value of the Latency and Interval remained constant at 9775
and 9753 clock cycles, respectively, for most of the tries, except for the case of
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Target Est. Unc. min max min max BRAM DCP FF LUT
10 6.16 1.25 24 9775 17 9753 26 (1%) 0 30148(5%) 43660 (15%)
7.5 6.16 0.94 24 9775 17 9753 26 (1%) 0 30148(5%) 43660 (15%)
7 6.12 0.88 24 9775 17 9753 26 (1%) 0 30148(5%) 43660 (15%)
6 5.25 0.75 24 9775 17 9753 26 (1%) 0 30148(5%) 43660 (15%)
5 4.66 0.62 24 17590 17 17568 26 (1%) 0 38752 (7%) 43907 (16%)

ResourcesIntervalLatencyClock

Blowfish Encryption

TABLE 6.10: Blowfish Encryption Clock and Resources Be-
haviour

Target Est. Unc. min max min max BRAM DCP FF LUT
10 6.16 1.25 24 9775 17 9753 26 (1%) 0 30148(5%) 43660 (15%)
7.5 6.16 0.94 24 9775 17 9753 26 (1%) 0 30148(5%) 43660 (15%)
7 6.12 0.88 24 9775 17 9753 26 (1%) 0 30148(5%) 43660 (15%)
6 5.25 0.75 24 9775 17 9753 26 (1%) 0 30148(5%) 43660 (15%)
5 4.66 0.62 24 17590 17 17568 26 (1%) 0 38752 (7%) 43907 (16%)

ResourcesIntervalLatencyClock

Blowfish Decryption

TABLE 6.11: Blowfish Decryption Clock and Resources Be-
haviour

the 5 ns clock when their value almost doubled in size.

3. The minimal value of the Latency and Interval remained constant at 24
and 17 clock cycles, respectively, regardless of the value of the target clock.

4. The number of BRAMs that are being used remained unchanged as well,
regardless of the value of the target clock.
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6.7 PYNQ Results

For the evaluation on a physical board of our architecture, we chose to use
AES, both encryption and decryption designs. For this task, due to restric-
tions from the PYNQ Z1 FPGA board, we had to make some changes in the
design. More specifically, due to the fact that the PYNQ Z1 provides us with
4 high-performance AXI3 slave ports, all the inputs/outputs of our design
had to go through those 4 ports.

Initially, AES Encryption/Decryption had 2 128-bit inputs, the key, the plain-
text/ciphertext, and 1 128-bit output, the ciphertext/plaintext. We change
that to 2 64-bit inputs, that carry the plaintext/ciphertext, and 2 64-bit out-
puts to carry the result of the individual algorithm, ciphertext/plaintext. For
the key, each algorithm uses the first value from both of the 64-bit inputs.
Also, since all the data for processing are provided from DMAs, to signal the
algorithm of the end of the steaming packet, the last value of the two 64-bit
inputs is set to 0xFFFFFFFFFFFFFFFF.

6.7.1 PYNQ Synthesis Result

In this section, we present the resource utilization for the PYNQ Z1 board as
provided by Vivavo HLS 2020.1.

AES ENCRYPTION BRAM_18K DSP FF LUT

Total 110 0 17005 21668
Available 280 220 106400 53200

Utilization (%) 39 0 15 40

TABLE 6.12: AES Encryption PYNQ Resource Utilization

AES DECRYPTION BRAM_18K DSP FF LUT

Total 110 0 44683 48915
Available 280 220 106400 53200

Utilization (%) 39 0 41 91

TABLE 6.13: AES Decryption PYNQ Resource Utilization

The first thing we can observe is that the design of the Decryption uses more
than double the amount of Flip-Flops and LUTs in comparison to the design
of the Encryption.



104
Chapter 6. Design Verification and Performance Evaluation from Actual

Runs

This happens due to the complexity of the calculations in the InvMixColumns
Transformations. Even though we used multiplications with Galois Field to
avoid the use of arrays for these calculations, the InvMixColumns Transfor-
mations are more complex compared to the MixColumns Transformations of
the Encryption.

From this, we came to the conclusion that we are able to fit 2 modules of AES
Encryption, in the PYNQ Board, instead of 1 module of AES Decryption due
to resource usage.

6.7.2 PYNQ RTL Waveform

FIGURE 6.12: AES Encryption PYNQ output

In the case of AES ENCRYPTION, the first two results are incorrect, and the
rest of them correct. The first value is the result of the encryption of the
value that is being used as a key from the algorithm, and we can ignore it.
Meaning that our design produces an invalid result for the first input, and
the following are valid results.

Also, as we can see the run time for every result differs from the next one
for 130 ns, and since the clock is set at 10 ns, this means that the algorithm
produces a new outcome every 13 clock cycles.

In the case of AES DECRYPTION, the first result IS incorrect, and the rest of
them correct. The first value is the result of the decryption of the value that is
being used as a key from the algorithm, and we can ignore it. Meaning that
our design produces valid results.
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FIGURE 6.13: AES Decryption PYNQ output

Also, in the case of AES Decryption the run time for every result differs from
the next one for 220 ns, and since the clock is set at 10 ns, this means that the
algorithm produces a new outcome every 22 clock cycles.

6.7.3 Validation of the Algorithm

First of all, we needed to validate our design and figure out if the results of
the encryption/decryption process are correct. To do so, initially, we created
a small dataset with 10 128-bit values, a specific 128-bit key, and the termina-
tion value. We send those values to be encrypted and later use those results
in the decryption design.

The results were consistent with the simulations. The Encryption loses two
values, with the one being the key, and the Decryption loses only the value
of the key, as mentioned earlier. The rest are correct.

After that, we performed the Known Answer Test (KAT) in type Variable
Text, from The Advanced Encryption Standard Algorithm Validation Suite
(AESAVS), Appendix D, section D.1 [36].

This test contains a specific value for the key and 128 different plaintext val-
ues and the corresponding values of ciphertext. Using those data, we create
a dataset for each design and initialize the DMAs with those values. The re-
sults of this process were as expected. Once again, Encryption misses two
values, with one being the key, and Decryption misses only the key. All the
remaining are the same as the values provided in the test.



106
Chapter 6. Design Verification and Performance Evaluation from Actual

Runs

6.7.4 Hardware vs. Software Performance

For this section, we created a number of datasets of various sizes, for testing
the performance of our hardware designs and their equivalent versions in
software.

The initial C code of AES Encryption and Decryption we used can be found
in [37]. We made some changes in the code to accommodate our hardware
architecture, more specifically, AES in ECB mode, with a block size of 128 bits
and a 128-bit key. Read and write in a file, so we can use the same datasets
we used for the hardware designs.

The runs in software were performed in a high-speed server (Kronos) with
the following specifications:

• Model name: Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz

• Architecture: x86_64

• CPU(s): 40

• Memory: 263850120 kB

with GCC -O3 compiler, using a single thread.

6.7.4.1 Run Time Results

In the following tables, we gathered the run times of our algorithms for each
dataset in software and hardware.

No File Data HW Run Server SW Performance
Name Size Time (sec) Run Time (sec) HW vs. SW

1 dataset0 10 0.142 0.001 0.01
2 dataset1 128 0.145 0.002 0.01
3 dataset2 1000 0.149 0.006 0.04
4 dataset3 10000 0.17 0.058 0.34
5 dataset4 100000 0.3995 0.314 0.79
6 dataset5 200000 0.651 0.682 1.05
7 dataset6 300000 0.9035 0.927 1.03
8 dataset7 400000 1.03 1.082 1.05
9 dataset8 500000 1.419 1.517 1.07

AES Encryption

TABLE 6.14: AES Encryption

Based on the results in the tables above we can observe the following:
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No File Data HW Run Server SW Performance
Name Size Time (sec) Run Time (sec) HW vs. SW

1 dataset0 10 0.291 0.002 0.01
2 dataset1 128 0.293 0.007 0.02
3 dataset2 1000 0.36 0.037 0.10
4 dataset3 10000 0.412 0.22 0.53
5 dataset4 100000 1.03 1.626 1.58
6 dataset5 200000 1.663 3.232 1.94
7 dataset6 300000 2.323 4.846 2.09
8 dataset7 400000 2.962 6.404 2.16
9 dataset8 500000 3.671 7.978 2.17

AES Decryption

TABLE 6.15: AES Decryption

1. The AES Encryption Hardware is 2 to 2.5 times faster than the AES De-
cryption Hardware. This happens due to the fact that the encryption consists
of 2 independent and parallel modules of our design, and the decryption
only consists of 1 module.

2. The AES Encryption Software is up to 5 times faster than the AES De-
cryption Software, especially in the bigger dataset. This happens cause, even
though the process of encryption and decryption consists of similar steps,
the calculations in decryption are higher in terms of complexity compared to
those in encryption.

3. The performance of AES Encryption Hardware is similar to its Software
performance as the amount of data that is being processed through the algo-
rithm increases. As we can see, considering that the PYNQ board is small,
low cost, and with low power consumption, with the proper design can suc-
cessfully compete against a high-performance server.

For the smaller datasets hardware is far worst than software. This happens
because the initial latency in hardware makes a bigger impact on the run
times for smaller datasets, in contrast to the larger ones.

4. AES Decryption Hardware in comparison to its Software is up to 2 times
better, especially for larger amounts of data. In this case, even though the
software runs were executed on a high-speed server, the PYNQ board suc-
ceeded to execute faster the complex calculations of the decryption process.
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6.7.4.2 Throughput Hardware vs. Software

In this section, we calculated the throughput of AES Encryption and Decryp-
tion based on the run times on the PYNQ board and the run times on the
server.

File Data Total Amount HW AES SW AES HW AES SW AES
No Name Size of Data (bits) Encryption Encryption Decryption Decryption
1 dataset0 10 1280 0.009 1.28 0.0044 0.64
2 dataset1 128 16384 0.113 8.192 0.056 2.341
3 dataset2 1000 128000 0.859 21.333 0.356 3.459
4 dataset3 10000 1280000 7.529 22.069 3.107 5.818
5 dataset4 100000 12800000 32.04 40.764 12.427 7.872
6 dataset5 200000 25600000 39.324 37.537 15.394 7.921
7 dataset6 300000 38400000 42.501 41.424 16.53 7.924
8 dataset7 400000 51200000 49.709 47.32 17.286 7.995
9 dataset8 500000 64000000 45.102 42.189 17.434 8.022

TABLE 6.16: Throughput of HW and SW (Mbits/sec)
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FIGURE 6.14: Throughput of HW in PYNQ and SW

Based on the 6.14 diagram, we can see that Encryption’s throughput, in both
cases of hardware and software, is better than the Decryption’s throughput.
But even though Encryption performance is better, the best value of through-
put we got from its hardware design is 49.709 Mbps, which still is 257 times
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worst than the throughput of AES Encryption’s design in the Zynq Ultra-
Scale+ ZCU102, at 12,79 Gbps, we analyzed at sec 6.4

This makes us come to the conclusion that when we have the ability to work
with expensive equipment, such as Zynq UltraScale+ ZCU102, gives us the
flexibility to design a high-performance project since we have fewer restric-
tions to keep in mind.

But in a more realistic perspective, we aren’t always able to have access to
such expensive equipment. So by using low-cost equipment, such as the
PYNQ-Z1 board may have an impact on the performance, but as we saw we
can create a design that can compete with a high-speed server.
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Chapter 7

Conclusions and Future Work

In the final chapter of this thesis, we summarize and evaluate our work. Ad-
ditionally, we include some ideas for future work with the hope to inspire
people to further research this subject.

7.1 Conclusions

The purpose of this thesis was the creation of hardware-accelerated cryptog-
raphy IP that can be incorporated into a disaggregated datacenter.

The Advanced Encryption Standard even though it was created in 2001, and
can be considered "old", can successfully stand in modern problems. Our
proposed design of AES, when implemented in the Zynq UltraScale+ ZCU102,
achieved a throughput of 12.79 Gbps, while the resource utilization was kept
at a very low level.

Furthermore, our design when implemented at a small, low-cost, low-power
consumption FPGA board, such as PYNQ-Z1, even though it loses in terms
of performance against the Zynq UltraScale+ ZCU102, can perform as well,
in case of encryption, or even two times better, in the case of decryption,
against a high-speed server.

7.2 Future Work

Regarding future work, based on the performance of the AES-128, the other
versions of AES can be implemented, and compare their performance to this
work.
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Additionally, some next-generation cryptography algorithms, such as Adi-
antum, can be explored if can be incorporated into the design of a disaggre-
gated datacenter.

Finally, a hardware-accelerated IP can be produced by combining cryptog-
raphy methods that will swap during the encryption process, increasing the
level of security, and making it harder to breach through.
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AES Specifications

A.1 Definitions

A.1.1 Glossary of Terms and Acronyms

The following definitions are used throughout this standard:

AES Advanced Encryption Standard.

Affine Transformation A transformation consisting of multiplication by a
matrix followed by the addition of a vector.

Array An enumerated collection of identical entities (e.g., an array of bytes).

Bit A binary digit having a value of 0 or 1.

Block Sequence of binary bits that comprise the input, output, State, an-
dRound Key. The length of a sequence is the number of bits it contains.
Blocks are also interpreted as arrays of bytes.

Byte A group of eight bits that is treated either as a single entity or as an
array of 8 individual bits.

Cipher Series of transformations that converts plaintext to ciphertext using
the Cipher Key.

Cipher Key Secret, cryptographic key that is used by the Key Expansion
routine to generate a set of Round Keys; can be pictured as a rectan-
gular array of bytes, having four rows and Nk columns.

Ciphertext Data output from the Cipher or input to the Inverse Cipher.

Inverse Cipher Series of transformations that converts ciphertext to plain-
text using the Cipher Key.
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Key Expansion Routine used to generate a series of Round Keys from the
Cipher Key.

Plaintext Data input to the Cipher or output from the Inverse Cipher.

Round Key Round keys are values derived from the Cipher Key using the
Key Expansion routine; they are applied to the State in the Cipher and
Inverse Cipher.

State Intermediate Cipher result that can be pictured as a rectangular array
of bytes, having four rows and Nb columns.

S-box Non-linear substitution table used in several byte substitution trans-
formations and in the Key Expansion routine to perform a one-for-one
substitution of a byte value.

Word A group of 32 bits that is treated either as a single entity or as an array
of 4 bytes.

A.1.2 Algorithm Parameters, Symbols, and Functions

The following algorithm parameters, symbols, and functions are used through-
out this standard :

AddRoundKey() Transformation in the Cipher and Inverse Cipher in which
a Round Key is added to the State using an XOR operation. The length
of a Round Key equals the size of the State (i.e., for Nb = 4, the Round
Key length equals 128 bits/16 bytes).

InvMixColumns() Transformation in the Inverse Cipher that is the inverse
of MixColumns().

InvShiftRows() Transformation in the Inverse Cipher that is the inverse of
ShiftRows().

InvSubBytes() Transformation in the Inverse Cipher that is the inverse of
SubBytes().

K Cipher Key.

MixColumns() Transformation in the Cipher that takes all of the columns of
the State and mixes their data (independently of one another) to pro-
duce new columns.

Nb Number of columns (32-bit words) comprising the State. For this stan-
dard, Nb = 4.
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Nk Number of 32-bit words comprising the Cipher Key. For this standard,
Nk = 4, 6, or 8.

Nr Number of rounds, which is a function of Nk and Nb (which is fixed).
For this standard, Nr = 10, 12, or 14.

Rcon[ ] The round constant word array.

RotWord() Function used in the Key Expansion routine that takes a four-
byte word and performs a cyclic permutation.

ShiftRows() Transformation in the Cipher that processes the State by cycli-
cally shifting the last three rows of the State by different offsets.

SubBytes() Transformation in the Cipher that processes the State using a
nonlinear byte substitution table (S-box) that operates on each of the
State bytes independently.

SubWord() Function used in the Key Expansion routine that takes a four-
byte input word and applies an S-box to each of the four bytes to pro-
duce an output word.

XOR Exclusive-OR operation.

⊕ Exclusive-OR operation.

⊗ Multiplication of two polynomials (each with degree < 4) modulo x4 + 1.

• Finite field multiplication.

A.2 Notation and Conventions

A.2.1 Inputs and Outputs

The input and output for the AES algorithm each consist of sequences of 128
bits (digits with values of 0 or 1). These sequences will sometimes be referred
to as blocks and the number of bits they contain will be referred to as their
length. The Cipher Key for the AES algorithm is a sequence of 128, 192 or
256 bits . Other input, output and Cipher Key lengths are not permitted by
this standard.

The bits within such sequences will be numbered starting at zero and ending
at one less than the sequence length (block length or key length). The number
i attached to a bit is known as its index and will be in one of the ranges
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0 ≤ i < 128, 0 ≤ i < 192 or 0 ≤ i < 256 depending on the block length and
key length (specified above).

A.2.2 Bytes

The basic unit for processing in the AES algorithm is a byte , a sequence of
eight bits treated as a single entity. The input, output and Cipher Key bit
sequences described in Sec. A.2.1 are processed as arrays of bytes that are
formed by dividing these sequences into groups of eight contiguous bits to
form arrays of bytes (see Sec. A.2.3 ). For an input, output or Cipher Key
denoted by a, the bytes in the resulting array will be referenced using one of
the two forms, an or a[n], where n will be in one of the following ranges:

Key length = 128 bits , 0 ≤ n < 16; Block length = 128 bits , 0 ≤ n < 16;

Key length = 192 bits , 0 ≤ n < 24;

Key length = 256 bits , 0 ≤ n < 32;

All byte values in the AES algorithm will be presented as the concatenation
of its individual bit values (0 or 1) between braces in the order { b7, b6, b5,
b4, b3, b2, b1, b0 }. These bytes are interpreted as finite field elements using a
polynomial representation:

b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x1 + b0 =
7

∑
i=0

bixi. (A.1)

For example, {01100011} identifies the specific finite field element x6 + x5 + x
+ 1.

It is also convenient to denote byte values using hexadecimal notation with
each of two groups of four bits being denoted by a single character as in Table
A.1 .

Hence the element {01100011} can be represented as {63}, where the charac-
ter denoting the four-bit group containing the higher numbered bits is again
to the left.

Some finite field operations involve one additional bit (b8) to the left of an 8-
bit byte. Where this extra bit is present, it will appear as ‘{01}’ immediately
preceding the 8-bit byte; for example, a 9-bit sequence will be presented as
{01}{1b}.
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Big Pattern Character Big Pattern Character
0000 0 1000 8
0001 1 1001 9
0010 2 1010 a
0011 3 1011 b
0100 4 1100 c
0101 5 1101 d
0110 6 1110 e
0111 7 1111 f

TABLE A.1: Hexadecimal representation of bit patterns

A.2.3 Array of Bytes

Arrays of bytes will be represented in the following form:

a0 a1 a2 ... a15

The bytes and the bit ordering within bytes are derived from the 128-bit input
sequence

input0 input1 input2 ... input126 input127

as follows:

a0 = {input0, input1, ..., input7}
a1 = {input8, input9, ..., input15}

...
a15 = {input120, input121, ..., input127}

The pattern can be extended to longer sequences (i.e., for 192- and 256-bit
keys), so that, in general,

an = {input8n, input8n+1, ..., input8n+7} (A.2)

Taking Sections A.1.3.2 and A.1.3.2 together, Table A.2 shows how bits within
each byte are numbered.

Input bit sequence 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
Byte number 0 1 ...

Bit numbers in byte 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 ...

TABLE A.2: Indices for Bytes and Bits.
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A.2.4 The State

Internally, the AES algorithm’s operations are performed on a two - dimen-
sional array of bytes called the State. The State consists of four rows of bytes,
each containing Nb bytes, where Nb is the block length divided by 32. In the
State array denoted by the symbol s, each individual byte has two indices,
with its row number r in the range 0 ≤ c < 4 and its column number c in the
range 0 ≤ c < Nb. This allows an individual byte of the State to be referred
to as either sr,c or s[r,c]. For this standard, Nb = 4, i.e., 0 ≤ c < 4.

At the start of the Cipher and Inverse Cipher described in Sec. 5, the input –
the array of bytes in0, in1, ...in15 – is copied into the State array as illustrated
in Fig. 3. The Cipher or Inverse Cipher operations are then conducted on this
State array, after which its final value is copied to the output – the array of
bytes out0, out1, ...out15.

input bytes

in0 in4 in8 in12

in1 in5 in9 in13

in2 in6 in10 in14

in3 in7 in11 in15

⇒

State array

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

⇒

output bytes

out0 out4 out8 out12

out1 out5 out9 out13

out2 out6 out10 out14

out3 out7 out11 out15

TABLE A.3: State array input and output

Hence, at the beginning of the Cipher or Inverse Cipher, the input array, in,
is copied to the State array according to the scheme:

s[r, c] = in[r + 4c] for 0 ≤ r < 4 and 0 ≤ c < Nb, (A.3)

and at the end of the Cipher and Inverse Cipher, the State is copied to the
output array out as follows:

out[r + 4c] = s[r, c] for 0 ≤ r < 4 and 0 ≤ c < Nb, (A.4)

A.2.5 The State as an Array of Columns

The four bytes in each column of the State array form 32-bit words, where
the row number r provides an index for the four bytes within each word.
The state can hence be interpreted as a one-dimensional array of 32 bit words
(columns), w0...w3, where the column number c provides an index into this
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array. Hence, for the example in Fig. 3, the State can be considered as an
array of four words, as follows:

w0 = s0,0 s1,0 s2,0 s3,0 w2 = s0,2 s1,2 s2,2 s3,2

w1 = s0,1 s1,1 s2,1 s3,1 w3 = s0,3 s1,3 s2,3 s3,3
(A.5)

A.3 Mathematical Preliminaries

All bytes in the AES algorithm are interpreted as finite field elements using
the notation introduced in Sec. 3.2. Finite field elements can be added and
multiplied, but these operations are different from those used for numbers.
The following subsections introduce the basic mathematical concepts needed
for Sec. 5.

A.3.1 Addition

The addition of two elements in a finite field is achieved by “adding” the
coefficients for the corresponding powers in the polynomials for the two el-
ements. The addition is performed with the XOR operation (denoted by ⊕)
- i.e., modulo 2 - so that 1⊕ 1 = 0, 1⊕ 0 = 1, and 0⊕ 0 = 0. Consequently,
subtraction of polynomials is identical to addition of polynomials.

Alternatively, addition of finite field elements can be described as the modulo
2 addition of corresponding bits in the byte. For two bytes {a7 a6 a5 a4 a3 a2 a1 a0}
and {b7 b6 b5 b4 b3 b2 b1 b0}, the sum is {c7 c6 c5 c4 c3 c2 c1 c0}, where each ci =

ai ⊕ bi (i.e., c7 = a7 ⊕ b7, c6 = a6 ⊕ b6, ... c0 = a0 ⊕ b0).

For example, the following expressions are equivalent to one another:

(x6 + x4 + x2 + x + 1) + (x7 + x + 1) = x7 + x6 + x4 + x2 (polynomial notation)

{01010111} ⊕ {10000011} = {11010100} (binary notation)

{57}⊕{83} = {d4} (hexadecimal notation)

A.3.2 Multiplication

In the polynomial representation, multiplication in GF(28) (denoted by •)
corresponds with the multiplication of polynomials modulo an irreducible
polynomial of degree 8. A polynomial is irreducible if its only divisors are
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one and itself. For the AES algorithm, this irreducible polynomial is

m(x) = x8 + x4 + x3 + x + 1, (A.6)

or {01}{1b} in hexadecimal notation.

For example, {57} • {83} = {c1}, because

(x6 + x4 + x2 + x + 1)(x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + x + 1

= x13 + x11 + x9 + x8 + x6 + x5+

x4 + x3 + 1

and

x13 + x11 + x9 + x8 + x6 + x5 + x4+x3 + 1 modulo (x8 + x4 + x3 + x + 1)

= x7 + x6 + 1.

The modular reduction by m(x) ensures that the result will be a binary poly-
nomial of degree less than 8, and thus can be represented by a byte. Unlike
addition, there is no simple operation at the byte level that corresponds to
this multiplication.

The multiplication defined above is associative, and the element {01} is the
multiplicative identity. For any non-zero binary polynomial b(x) of degree
less than 8, the multiplicative inverse of b(x), denoted b−1(x), can be found
as follows: the extended Euclidean algorithm [7] is used to compute polyno-
mials a(x) and c(x) such that

b(x)a(x) + m(x)c(x) = 1. (A.7)

Hence, a(x) • b(x) mod m(x) = 1, which means

b−1(x) = a(x)modm(x). (A.8)

Moreover, for any a(x), b(x) and c(x) in the field, it holds that

a(x) • (b(x) + c(x)) = a(x) • b(x) + a(x) • c(x).
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It follows that the set of 256 possible byte values, with XOR used as addition
and the multiplication defined as above, has the structure of the finite field
GF(28).

A.3.2.1 Multiplication by x

Multiplying the binary polynomial defined in equation A.1 with the polyno-
mial x results in

b7x8 + b6x7 + b5x6 + b4x5 + b3x4 + b2x3 + b1x2 + b0x. (A.9)

The result x • b(x) is obtained by reducing the above result modulo m(x), as
defined in equation A.6. If b7 = 0, the result is already in reduced form. If
b7 = 1, the reduction is accomplished by subtracting (i.e., XORing) the poly-
nomial m(x). It follows that multiplication by x (i.e., {00000010} or {02}) can
be implemented at the byte level as a left shift and a subsequent conditional
bitwise XOR with 1b. This operation on bytes is denoted by xtime(). Multi-
plication by higher powers of x can be implemented by repeated application
of xtime(). By adding intermediate results, multiplication by any constant
can be implemented.

For example,{57} • {13} = { f e} because

{57} • {02} = xtime({57}) = {ae}
{57} • {04} = xtime({ae}) = {47}
{57} • {08} = xtime({47}) = {8e}
{57} • {10} = xtime({8e}) = {07},

thus,

{57} • {02} = {57} • ({01} ⊕ {02} ⊕ {10})
= {57} ⊕ {ae} ⊕ {07}
= { f e}.

A.3.3 Polynomials with Coefficients in GF(28)

Four-term polynomials can be defined - with coefficients that are finite field
elements - as:

a(x) = a3x3 + a2x2 + a1x1 + a0 (A.10)
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which will be denoted as a word in the form [a0, a10, a2, a3]. Note that the
polynomials in this section behave somewhat differently than the polynomi-
als used in the definition of finite field elements, even though both types of
polynomials use the same indeterminate, x. The coefficients in this section
are themselves finite field elements, i.e., bytes, instead of bits; also, the mul-
tiplication of four-term polynomials uses a different reduction polynomial,
defined below.The distinction should always be clear from the context.

To illustrate the addition and multiplication operations, let

b(x) = b3x3 + b2x2 + b1x1 + b0 (A.11)

define a second four-term polynomial. Addition is performed by adding the
finite field coefficients of like powers of x. This addition corresponds to an
XOR operation between the corresponding bytes in each of the words – in
other words, the XOR of the complete word values.

Thus, using the equations of A.10 and A.11,

a(x) + b(x) = (a3 ⊕ b3)x3 + (a2 ⊕ b2)x2 + (a1 ⊕ b1)x1 + (a0 ⊕ b0) (A.12)

Multiplication is achieved in two steps. In the first step, the polynomial
product c(x) = a(x) • b(x) is algebraically expanded, and like powers are
collected to give

c(x) = c6x6 + c5x5 + c4x4 + c3x3 + c2x2 + c1x1 + c0 (A.13)

where

c0 = a0 • b0 c4 = a3 • b1 ⊕ a2 • b2 ⊕ a1 • b3

c1 = a1 • b0 ⊕ a0 • b2 c5 = a1 • b0 ⊕ a0 • b2

c2 = a2 • b0 ⊕ a1 • b1 ⊕ a0 • b2 c6 = a3 • b3

c3 = a3 • b0 ⊕ a2 • b1 ⊕ a1 • b2 ⊕ a0 • b3
(A.14)

The result, c(x), does not represent a four-byte word. Therefore, the second
step of the multiplication is to reduce c(x) modulo a polynomial of degree 4;
the result can be reduced to a polynomial of degree less than 4. For the AES
algorithm, this is accomplished with the polynomial x4 + 1, so that

xi mod (x4 + 1) = xi mod 4 (A.15)
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The modular product of a(x) and b(x), denoted by a(x)⊕ b(x), is given by
the four-term polynomial d(x), defined as follows:

d(x) = d3x3 + d2x2 + d1x1 + d0 (A.16)

with
d0 = (a0 • b0)⊕ (a3 • b1)⊕ (a2 • b2)⊕ (a1 • b3)

d1 = (a1 • b0)⊕ (a0 • b1)⊕ (a3 • b2)⊕ (a2 • b3)

d2 = (a2 • b0)⊕ (a1 • b1)⊕ (a0 • b2)⊕ (a3 • b3)

d3 = (a3 • b0)⊕ (a2 • b1)⊕ (a1 • b2)⊕ (a0 • b3)

(A.17)

When a(x) is a fixed polynomial, the operation defined in equation A.16 can
be written in matrix form as:

d0

d1

d2

d3

 =


a0 a3 a2 a1

a1 a0 a3 a2

a2 a1 a0 a3

a3 a2 a1 a0




b0

b1

b2

b3

 (A.18)

Because x4 + 1 is not an irreducible polynomial over GF(28), multiplication
by a fixed four-term polynomial is not necessarily invertible. However, the
AES algorithm specifies a fixed four-term polynomial that does have an in-
verse (see Sec. 5.1.3 and Sec. 5.3.3):

a(x) = {03}x3 + {01}x2 + {01}x1 + {02} (A.19)

a−1(x) = {0b}x3 + {0d}x2 + {09}x1 + {0e} (A.20)

Another polynomial used in the AES algorithm (see the RotWord()function
in Sec. 5.2) has a0 = a1 = a2 = 00 and a3 = 01, which is the polynomial x3.
Inspection of equation (4.13) above will show that its effect is to form the out-
put word by rotating bytes in the input word. This means that [b0, b1, b2, b3]

is transformed into [b1, b2, b3, b0] .
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