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Abstract: The presented work explores the structural properties, gasification reactivity, and syngas
production of Greek lignite fuel (LG) and ex-situ produced chars during CO2 gasification. Three
different slow pyrolysis protocols were employed for char production involving torrefaction at 300 ◦C
(LG300), mild-carbonization at 500 ◦C (LG500), and carbonization at 800 ◦C (LG800). Physicochemical
characterization studies, including proximate and ultimate analysis, X-ray Diffraction (XRD), and
Raman spectroscopy, revealed that the thermal treatment under inert atmospheres leads to chars
with increased fixed carbon content and less ordered surface structures. The CO2 gasification re-
activity of pristine LG and as-produced chars was examined by thermogravimetric (TG) analysis
and in batch mode gasification tests under both isothermal and non-isothermal conditions. The
key parameters affecting the devolatilization and gasification steps in the overall process toward
CO-rich gas mixtures were thoroughly explored. The gasification performance of the examined
fuels in terms of carbon conversion, instant CO production rate, and syngas generation revealed
an opposite reactivity order during each stage. TG analysis demonstrated that raw lignite (LG)
was more reactive during the thermal devolatilization phase at low and intermediate temperatures
(da/dtmax,devol. = 0.022 min−1). By contrast, LG800 exhibited superior gasification reactivity at high
temperatures (da/dtmax,gas. = 0.1 min−1). The latter is additionally corroborated by the enhanced CO
formation of LG800 samples under both non-isothermal (5.2 mmol) and isothermal (28 mmol) condi-
tions, compared to 4.1 mmol and 13.8 mmol over the LG sample, respectively. The pronounced CO2

gasification performance of LG800 was attributed to its higher fixed carbon content and disordered
surface structure compared to LG, LG300, and LG500 samples.

Keywords: Greek lignite coal; lignite chars; CO2 gasification; Raman analysis; gasification reactivity;
syngas production

1. Introduction

The world coal proved reserves were estimated at 1070 billion tons (bt) at the end of
2019, with the global coal production reaching ca. 8.1 bt in 2019, resulting in the largest
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reserves-to-production ratio of 132 years among the fossil fuels [1,2]. Nowadays, coal
accounts for a ca. 28% share of global primary energy consumption and almost 40% of
electricity generation [2], with future projections highlighting the importance of coal for
the emerging economies and the high energy scenario [3,4].

In 2019, the European Commission announced the European Green Deal to direct the
EU economy down a pathway focused on climate neutrality by 2050 [5]. This ambitious
target will require a fundamental transformation of the energy system. Traditional energy
sectors relying on the production and use of coal and other fossil fuels will shrink, with
concomitant negative consequences on the GDP and employment rates of the coal-intensive
regions that are on their way to clean energy transition. In the current decade, the estimated
number of direct coal mining and power generation jobs at risk under various coal phase-
out scenarios ranges from 54,000 to 112,000, without considering the losses in jobs indirectly
related to the coal sector [6,7]. The countries likely to see the most coal-related job losses
are Poland, Germany, Romania, Bulgaria, and Greece [5]. Therefore, alternative strategies
to diversify local economies are required to ensure that the transition will be fair and leave
no one behind [6,7].

Apart from the progressive shut-down of coal-fired plants in Europe, the Green Deal
strategy foresees the large-scale deployment of renewables in the energy mix (wind/solar
combined shares target up to 70% of electricity generation for 2050 EU full decarbonization
scenario), which is expected to counterbalance the income and employment losses in the
traditional EU coal regions. However, the timeframe for this transition may take longer
than expected since challenges associated with the efficiency and cost of renewables as
well as with the development of efficient grid-scale energy storage technologies to avoid
curtailment of excess renewable power still need to be resolved, decelerating to some
extent the progress toward clean energy transition [7]. On the other hand, in case of peak
demands or grid instabilities, coal can be regarded as a domestic and cheap natural source
that can ensure the safe, stable, and reliable operation of the power grids. Moreover, the
backup use of native fuel sources could secure the energy supply and protect the economy
of energy-importing countries in case of high energy prices. Thus, for the short-to-medium
term, environmentally friendly and energy-efficient approaches for coal exploitation should
also be considered in future national energy plans.

Gasification is an established thermochemical route for coal utilization [8–11]. By
employing different gasifier configurations (i.e., up-draft, down-draft, fluidized, etc.),
operational conditions (i.e., temperature, heating rate, feed flows, equivalence ratios, etc.)
and gasifying agent mixtures (air, pure oxygen, steam, carbon dioxide, or mixtures), coal
fuels can be efficiently converted to high heating value syngas. Syngas is a mixture
consisting mainly of H2 and CO, which can be employed, depending on its composition,
for power generation or as a valuable building block for a variety of chemicals (e.g.,
methanol, olefins, DME) and liquid synthetic fuels [12–15].

When industrial captured CO2 emissions are coupled with the gasification of solid
fuels, this integrated approach can be regarded as an alternative CO2 utilization technology
that turns a climate change threat into a CO-rich gas mixture, suitable for synthesizing
several added-value chemicals employing downstream catalytic processes [16–19]. CO is a
versatile molecule that can act as a significant precursor and intermediate for a wide range
of chemicals (different types of acids, dimethyl carbonate, formamides). Moreover, CO is a
significant feedstock for hydrogen production via the water-gas shift reaction [16,20].

The Boudouard reaction (C + CO2 ↔ 2CO, ∆H = 172 kJ/mol) is the main method of
converting carbon fuels and CO2 to carbon monoxide [7]. The reaction is highly endother-
mic and favored at high temperatures (typically >700 ◦C). Compared to other gasifying
agents (air and/or steam), CO2 reveals noteworthy advantages [21,22]. In contrast to air
gasification, when using CO2 as a gasifying medium the dilution of syngas with air-derived
N2 is avoided, leading to higher heating value fuel gas mixtures. In addition, contrary to
steam gasification, the use of CO2 as gasifying agent eliminates the heat demands associ-
ated with water evaporation [23]. Moreover, CO2 favors the cracking of volatiles, resulting
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in reduced tar formation and higher syngas production. In light of the above consider-
ations, many researchers [24–27] have explored the reaction mechanism and kinetics of
CO2 gasification using various coal types regarding its practical application in industrial
(gasification) plants.

The first stage during gasification is the drying of solid fuel followed by the pyrolysis
step, which leads to the thermal degradation of carbon structures through the release of
volatiles and loosely-bonded functional groups. The thermal treatment of carbonaceous
solid fuels under inert atmospheres produces chars with upgraded fuel characteristics
and higher energy content than the pristine fuel, along with liquids and non-condensable
gases, with the individual yields being dictated by the pyrolysis conditions. Many re-
searchers [28–36] have examined the effect of different pyrolysis parameters prior to gasi-
fication, involving the carrier gas, temperature, heating rate, and residence time. The
gasification performance of as-produced chars is dependent on their physicochemical
properties, including the elemental composition, proximate analysis, degree of aromaticity,
structural order/disorder, particle size, etc. [28–30,37].

In order to examine and validate the gasification performance of solid fuels, several ex-
perimental procedures have been employed. For instance, the gasification of solid fuels may
be conducted either isothermally or non-isothermally. Non-isothermal gasification offers
the advantage of revealing the relationship between the temperature range, heating rate,
and reaction characteristics [17,19]. On the other hand, thermogravimetric (TG) analysis is
the optimum choice for assessing the gasification reactivity and kinetics of carbonaceous
solid fuels since it is a quick and accurate method, requiring small sample amounts [19].
Moreover, fixed bed lab-scale reactor gasifiers coupled with Gas Chromatography are
employed to monitor the amount and composition of produced syngas, thus allowing the
direct correlation of gasification performance with syngas quality [17,38,39].

Lignite belongs to the family of “Brown” coals and is Greece’s most important local
energy resource. Due to its low extraction costs, stable prices, and security of supply, Greek
lignite supported the national electricity grid as well as the local economies and national
growth for more than six decades [6,7]. In the light of the necessity to explore alternative
pathways to exploit the existing lignite deposits and consider the great importance of
mitigating climate change, the present work originally investigates the CO2 gasification
performance of Greek lignite and as-produced chars in terms of gasification reactivity,
carbon conversion, and CO production. This particular approach could combine the
energy conversion of Greek lignite with the parallel utilization of industrially captured
CO2 emissions towards mitigating the environmental impact of coal utilization.

In the present work, low-rank lignite coal from the Western Macedonia region in
Greece was sampled, grounded, and slowly pyrolyzed at 300, 500, and 800 ◦C. Then the
raw lignite and the ex-situ derived chars were characterized in terms of ultimate and
proximate analysis as well as utilizing structural analysis (XRD, Raman) with the main aim
of exploring the effect of thermal treatment protocol on the physicochemical properties of
as-produced chars. TG experiments under non–isothermal conditions were employed to
assess the CO2 gasification reactivity and explore the underlying reaction mechanism for all
fuels. Finally, the CO production rate was monitored under non-isothermal and isothermal
conditions to reveal possible relationships between the gasification performance of fuel
samples and their physicochemical characteristics. To the best of our knowledge, most of
the CO2 gasification works reported in the literature are limited to kinetic and gasification
reactivity studies using thermogravimetric analysis (TGA), while the experimental data
on syngas evaluation and its correlation with the physicochemical characteristics and
gasification reactivity of fuels are barely discussed. Remarkably, there are no relevant
studies focused on the gasification reactivity and syngas production of raw lignite and
ex-situ pyrolyzed chars under both isothermal and non-isothermal experimental conditions,
highlighting the novelty of the present work [19,40].
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2. Materials and Methods
2.1. Materials and Chemical Analysis

Low-rank lignite coal from the Western Macedonia basin (Ptolemais Region) in Greece
was employed as fuel feedstock in the present study. The as-received pristine lignite (LG)
was first crushed to a particle size of between 1–3 mm, air-dried, and milled to 100–200 µm
using an agate mortar. Then, grounded lignite samples were slowly pyrolyzed under
nitrogen flow at 300, 500, and 800 ◦C, resulting in three different chars, i.e., LG300, LG500,
LG800. The experimental procedure for chars preparation has been thoroughly described
elsewhere [41]. Ultimate and proximate analyses of all samples were performed in a Vario
Macro CHN/CHNS analyzer (Elementar, Langenselbold, Germany) and TGA LECO 701
analyzer (LECO, St. Joseph, MO, USA), correspondingly, and the results are illustrated in
Table 1.

Table 1. Proximate and ultimate analysis of fuel samples.

Fuel LG LG300 LG500 LG800

Proximate analysis (wt.%) adb

Fixed carbon 17.96 19.12 21.89 25.23

Volatile matter 41.85 38.84 29.31 11.79

Ash 40.18 42.03 48.79 62.97

Moisture 7.67 3.36 2.82 0.91

Elemental analysis (wt.%) db

Carbon 36.22 36.32 35.26 32.01

Hydrogen 2.94 2.75 1.75 1.01

Sulfur 0.97 0.92 0.68 0.90

Nitrogen 1.05 1.05 0.99 0.73

Oxygen * 18.63 16.93 12.53 0.37

Aromaticity factor daf,a 0.41 0.44 0.54 0.79

Aromaticity factor b 0.39 0.42 0.47 0.74

Note: adb: air dry basis, db: dry basis, daf: dry ash-free basis, *: determined by difference, a: obtained from ultimate
and proximate analysis, b: obtained from XRD analysis.

2.2. Structural Characterization

X-ray diffraction patterns of fuels were obtained using a Bruker AXS D8 (Bruker,
Germany) Advance copper anode diffractometer (CuKα radiation) equipped with a Nickel
foil monochromator operated at 40 kV and 40 Ma, over the 2θ collection range of 10–80◦. The
scan rate was 0.05◦s−1. The Origin 2019® software was used to remove noise from the XRD
spectra. Crucial parameters such as peak position (2θ), area (A), and aromaticity factor, f a,
obtained from XRD spectra were calculated according to Jingyu Jianga et al. [42] methodology.

Raman measurements were performed at room temperature using a Nicolet Almega
XR Raman spectrometer (Thermo Scientific, Waltham, MA, USA) with a 473 nm blue
laser as an excitation source. The laser power was 15 mW, and the beam was focused on
the sample through a confocal microscope equipped with a 50× objective. Analysis and
deconvolution of the obtained data was performed using Origin 2019®.

2.3. Thermogravimetric Analysis

Non-isothermal thermogravimetric (TG) analysis was carried out to gain insight into
the different stages involved during the gasification process of raw lignite and as-derived
chars. Themogravimetric experiments were conducted in a Q600 SDT (TA Instruments,
USA) thermobalance. About 15 mg of sample were heated at 20 ◦C/min from room
temperature to 1000 ◦C under a pure carbon dioxide stream of 100 mL/min.
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Carbon conversion, a, in terms of the sample weight loss, was calculated by the
following equation:

a = (m0 −mt)/ (m0 −m∞) (1)

where m0 is the initial weight of the sample, mt is the weight at the reaction time t, and
m∞ is the final weight after the end of the gasification process. Equation (2) was applied to
estimate the instant gasification reaction rate (R, min−1) with respect to the instantaneous
weight loss rate (dm/dt):

R = −(1/(m0 −m∞))/(dm/dt) = da/dt (2)

To further gain insight into the gasification performance of samples, the comprehensive
gasification characteristic index (S), initial (Ti), and final process temperature (Tf), along
with the maximum and mean carbon conversion rate (da/dt), were introduced to assess
the reactivity of fuels during the different steps of the gasification process.

S = ((da/dt)max × (da/dt)mean)/ (Ti
2 × Tf) (3)

2.4. Gasification Experiments

To assess the gasification performance of fuel samples in terms of syngas production,
isothermal and non-isothermal gasification experiments under the batch mode of operation
using pure CO2 or CO2/He mixtures as gasifying agents were carried out. Non-isothermal
experiments were carried out in a quartz fixed-bed, U-shaped reactor loaded with 100 mg of
fuel, in the temperature range of 300–950 ◦C (heating rate 5 ◦C/min). Helium was used as a
diluent to obtain different gasifying agent mixtures (5/95, 10/90, 20/80, 50/50, 100/0 vol.%
CO2/He) at a total feed flow rate of 30 cm3 (STP)/min. The experimental apparatus of
non-isothermal experiments has been described in detail elsewhere [41].

In the case of isothermal gasification tests, instead of the quartz reactor, a tailor made
inox reactor with a custom funnel was used to deliver the fuel feedstock into the reactor
upon reaching the set up temperature. During isothermal experiments, 0.5 gr of LG or
LG800 were gasified under 30 cm3 (STP)/min of pure CO2 flow rate at 800 ◦C. Gas sampling
from the effluent stream was performed at 1, 2, 3, 4, 5, 7, 10, 14, 17, 22, 27, 35, 40, 45, 50, 55,
60 min since the introduction of feedstock into the reactor (t = 0 min) and subsequently at
intervals of dt = 10 min until fuel depletion.

Since CO was practically the only product during gasification, the carbon to CO
conversion, XC, the instant CO production rate, RCO (min−1), and the cumulative CO yield,
YCO (mol), were determined by using the following expressions [43,44]:

XC =
∑

tpyrolysis
t=0 yCO,t × 12

m×wc
+

∑tf
tpyrolysis

yCO,t × 12

2×m×wc
(4)

RCO = dXC/dt (5)

YCO =
∫ tf

0

Ft × [CO]

VM × 100
× dt (6)

where yCO,t corresponds to the cumulative CO production moles in time t, m is the initial
mass of fuel sample (gr), [CO] is the concentration of CO, Ft is the effluents flowrate
(lt/min), wc is the elemental carbon content of fuels, and VM is the molecular volume
at 298 K and 1 atm (24.436 lt/mol). Equation (4), used to evaluate the carbon to CO
conversion, XC, contains two terms. The first term stands for the CO production during the
devolatilization stage, whereas the second term corresponds to the CO formation associated
with the Boudouard reaction (C + CO2 → 2 CO) during the gasification stage [43,44].

In both non-isothermal and isothermal gasification tests, the effluent stream was
passed through a cold trap to remove the existing tarry matter in the produced syngas prior
to Gas Chromatography analysis. The contained ash in fuels was trapped in the frit inside
the gasifier and removed mechanically at the conclusion of each experiment.
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To ensure the accuracy and reliability of the experimental results, all tests were re-
peated 3 times.

3. Results and Discussion
3.1. Physicochemical Characterization
3.1.1. Chemical Analysis

Table 1 presents the chemical composition of both raw and thermally treated lignite
samples. The fixed carbon and ash contents gradually increase upon increasing the treat-
ment temperature, whereas the moisture, volatile matter, hydrogen, and oxygen contents
showed an opposite trend [41]. The aromaticity factor values of all fuel samples were
calculated after applying empirical mathematical expressions provided in the literature
and taking the average value for each sample [45]. The increasing trend of the aromaticity
factor is reflected in the increasing number of aromatic carbon atoms in lignite chars, as
confirmed by the XRD analysis presented below.

3.1.2. XRD Analysis

The XRD patterns of both raw and thermally treated samples are depicted in Figure 1.
The minerals identified in all fuels were calcite, dolomite, olivine, and silicon oxide
(Figure 1a). The same minerals were also observed in Turkish and other Greek lignite sam-
ples, as reported in the literature [46,47]. A closer inspection of XRD patterns (Figure 1b)
reveals the existence of two peaks at ca. 20 and 42◦, corresponding to 002 and 100 planes
of the aromatic carbon/graphite lattice, respectively. The 002 plane corresponds to the
cross-section plane, from which the interlayer distance (d002) between the aromatic ring
layers can be derived, while the 100 plane corresponds to the parallel plane of the aromatic
ring layers. Moreover, the 002 band reflects the distance between the aromatic ring lay-
ers [48,49]. On the left side of the 002 peak the γ-band appears, ascribed to the aliphatic
side chains connected to the edge of aromatic rings from which the packing distance of
saturated structures can be derived [50]. To further elaborate on the aromaticity of the fuels
used in this study, the ratio of carbon atoms in aliphatic chains and aromatic rings (f a), was
calculated according to the following equation [42]:

fa = Car/(Car + Cal)= A002/(Aγ + A002) (7)

where Car and Cal are the numbers of aromatic and aliphatic carbon atoms, respectively.
From the XRD spectra depicted in Figure 1 and the area Aγ used to calculate the aromaticity
factor, fa, through Equation (7), the area of γ peak is decreased as the temperature of thermal
treatment increases, i.e., from 3.47 for LG to 1.61 for LG800 sample. This behavior indicates
the decrease in the number and length of aliphatic side chains at the aromatic structure
edges, i.e., the decrease of the aliphatic character of fuels. However, there is an increase in
the area of the 002 band upon increasing the thermal treatment temperature (from 2.2 for LG
to 4.76 for LG 800), which could be indicative of larger crystals for the condensed aromatic
rings. Therefore, the increased aromaticity of chars with thermal treatment temperature
could be attributed to both shorter/less aliphatic chains present in the samples, as well
as to the larger microcrystals of the aromatic structure. The f a values extracted from XRD
analysis (Table 1) revealed the same trend as that obtained from ultimate and proximate
analysis (Table 1), further verifying the enhanced aromaticity of char fuels upon increasing
the thermal treatment temperature.

3.1.3. Raman Analysis

Figure 2 illustrates the Raman spectra of all fuel samples. Two distinct bands at
1350 cm−1 (D band) and 1590 cm−1 (G band) can be clearly observed.
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D band is ascribed to the disordered structure of carbonaceous matter, while G band
is associated with the vibrations of aromatic rings (graphite lattice) presented at varying
intensities in highly or less ordered carbonaceous structures [42,51–56]. However, the
significant overlap between the D and G bands results in a loss or misinterpretation of
structure information, especially for highly disordered carbonaceous materials such as low-
rank coals. To resolve this issue, deconvolution of original Raman spectra was conducted
in order to more precisely analyze the fuels’ structural properties. In specific, each Raman
spectra was baseline corrected and peak-fitted into four Lorentzian bands (D4, D1, G, D2)
and one Gaussian band (D3), as depicted in Figure 3a–d. The G band corresponds to the
stretching mode of the C=C alkene bond found on perfect single crystal graphite, while
the D1 band indicates large sp2 bonding of more than six aromatic carbon atoms being
presented as in-plane graphite lattice flaws. Detailed analysis concerning the position and
origin of the aforementioned bands is well described in literature [54,57–59].

It can be observed that, as the pretreatment temperature increases, the intensity of the
G band is progressively decreased, as compared to that of the D1 band. This is an indication
that thermal pretreatment resulted in chars with a more disordered structure at their
surface compared to the raw fuel, in accordance with relevant literature studies [53,54,60].
Bands area ratios, AD1/AG and AG/Aall, are usually used to semi-quantitatively define the
disorder and graphitic carbon degree of the examined fuels, where AD1 and AG correspond
to the integral areas of D1 and G bands, respectively. Total Raman area, denoted as Aall,
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results from the sum of the AD4, AD1, AD3, AG, and AD2. As shown in Figure 4, the
band area ratios of AD1/AG and AG/Aall follow an opposite trend upon increasing the
pyrolysis temperature.
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More specifically, the AD1/AG ratio, which is proportional to the disordered carbona-
ceous structure, is increased with pyrolysis temperature, implying chars with a more
disordered carbon structure than the pristine lignite. This behavior can be further verified
by the descending trend of the AG/Aall ratio, taking into account that the G band is related
to the vibrations of the ideal graphitic lattice. The lower degree of order in the surface
structure of chars, compared to the raw lignite, could be attributed to the formation of
molecular amorphous structures on the surface of chars due to the breakage of chemi-
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cal bonds in macromolecular compounds during the condensation stage of the pyrolysis
process [53,56,61].

3.2. Gasification Reactivity

Temperature programmed thermogravimetric analysis under a pure CO2 atmosphere
was performed to assess the gasification reactivity of both raw lignite and as-produced
chars. Figure 5 illustrates the TG curves and gasification reaction rate (min−1) for all fuel
samples under non-isothermal CO2 gasification conditions.
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It is generally agreed that during non-isothermal TGA gasification tests, mass loss is
attributed to phenomena which occur at different temperature regimes (Figure 5a). Initially,
inherent moisture is released at temperatures below 150 ◦C. Weight loss due to water
removal follows the order LG > LG300 > LG500 > LG800 in complete agreement with
the moisture content of the fuels (Table 1). Pyrolysis and gasification stages are clearly
separated with regard to the temperature regime they take place. In the temperature range
between 150–650 ◦C, mass loss is 22.6, 21.6, 13.8, and 4% for LG, LG300, LG500, and LG800,
respectively (Table 2), following the order of the volatile matter content (Table 1). In this
temperature range, mass loss is attributed to the primary and secondary devolatilization
reactions, including the release of volatile matter, degradation of loosely bonded macro-
molecules, and thermal decomposition of aliphatic and aromatic structures [62]. The
gasification process, for all cases, is initiated at higher temperatures compared to pyrol-
ysis, mainly attributed to the Boudouard reaction, which is thermodynamically favored
at temperatures above 700 ◦C [18]. All fuels present almost the same weight loss in this
temperature regime (Table 2). Notably, for LG800, both the initiation and peak temperatures
are ca. 50 ◦C higher compared to the other fuels, possibly due to the higher fixed carbon
content along with the lower volatile matter content. The insignificant mass loss presented
above 920 ◦C is associated with the decomposition of the remaining inorganic matter.
Notably, the residual mass of all fuels at 920 ◦C is identical to the content of unreacted ash
(Table 1). The high concentration of minerals in both raw Greek lignite and chars can be
easily noticed.

Table 2 summarizes the temperature range of the different processes along with the
characteristic parameters used to describe the reactivity of fuels during the pyrolysis and
gasification stages. Figure 5b presents the gasification reaction rate, R, as described by
Equation (2). Below 650 ◦C, the reactivity of fuels can be mainly ascribed to primary
and secondary devolatilization and oxidation reactions due to the release of oxygenated
compounds. In this temperature regime, the reactivity of fuels is consistent with the order
of mass loss and volatile matter content, i.e., LG ≈ LG300 > LG500 > LG800 (Figure 5a,
Table 1).
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Table 2. Characteristic parameters of pyrolysis and gasification stages during non-isothermal ther-
mogravimetric analysis under pure CO2 atmosphere.

Fuel Devolatilization Stage

Temp.
Range, ◦C

Weight Loss,
%

da/dtmax,
min−1

da/dtmean,
min−1 S × 10−12

LG 150–650 22.6 0.022 0.014 1.85

LG300 150–650 21.6 0.022 0.014 1.85

LG500 150–650 13.8 0.012 0.009 0.68

LG800 150–700 4 0.007 0.002 0.22

Fuel Gasification Stage

Temp.
Range,◦C

Weight Loss,
%

da/dtmax,
min−1

da/dtmean,
min−1 S × 10−12

LG 650–920 29 0.06 0.04 2.24

LG300 650–920 30 0.064 0.042 2.50

LG500 650–920 31 0.076 0.051 3.69

LG800 700–920 31 0.1 0.059 5.43

In the temperature range of 650–920 ◦C, where the Boudouard reaction is thermo-
dynamically favored, the gasification rate of fuels reveals an opposite trend compared to
the pyrolysis stage, i.e., LG800 > LG500 > LG300 > LG. The parameters (da/dt)max and
(da/dt)mean were calculated in order to quantitatively evaluate the comprehensive gasifi-
cation characteristic index (S), according to Equation (3). The comprehensive gasification
characteristic index follows the same trend regarding the reaction rate for both pyrolysis
and gasification stages, implying the validity of the S index to assess the reactivity of raw
lignite and as-produced chars.

Moreover, a linear relationship between the S index and AD1/AG ratio was revealed
(Figure 6), further confirming the suitability of first-order Raman band ratios to correlate the
gasification reactivity of fuels with their structure. Similar findings have also been reported
for different carbonaceous feedstock [54,63,64]. For instance, Wang et al. [63] explored
the effect of carbonization conditions on the gasification reactivity of biocarbon. The
enhanced reactivity of chars prepared at 800 ◦C compared to chars produced at 600 ◦C was
ascribed to the higher fixed carbon content and lower volatile matter content. Yu et al. [54]
examined the effect of pyrolysis conditions on the CO2 gasification reactivity of lignite
and bituminous coal chars. Thermal pretreatment under an N2 atmosphere of up to
900 ◦C led to the formation of amorphous carbon structures on the surface of the coals.
Further increase in the pyrolysis temperature resulted in the gradual modification of these
amorphous structures to more ordered ones, indicating the formation of chars with higher
graphitization degree and thus lower gasification reactivity.

3.3. Syngas Production during Non-Isothermal Gasification Tests

Figure 7 depicts the instant CO production rate, RCO (min−1), and the cumulative CO
production (mmol) as a function of temperature during the non-isothermal CO2 gasification
of raw lignite and as-produced chars.

In all cases, carbon monoxide was the main product of gasification, started to appear
at ca. 550 ◦C, reaching its maxima between 650 and 750 ◦C, and then gradually decreased
at temperatures higher than ca. 850 ◦C until fuel depletion. The production of CO is
enhanced with temperature due to the high endothermic nature of the Boudouard reac-
tion [17,32,33,65–67]. The LG300 sample exhibited a similar RCO value with raw lignite LG
(0.009 min−1), whereas the chars at 500 ◦C (LG500) and 800 ◦C (LG800) showed increased
instant CO production rates equal to 0.011 and 0.013 min−1, respectively. Notably, the
maximum RCO for LG800 shifts at a slightly higher temperature (ca. 730 ◦C) than the
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maxima for LG, LG300, and LG500. These findings are consistent with the gasification
reaction rate (Figure 5b) and the comprehensive gasification characteristic index (Table 2)
obtained by the thermogravimetric analysis. This behavior is also reflected in the higher
CO production of LG800 (5.2 mmol) compared to other samples (4.7, 4.3, and 4.1 mmol for
LG500, LG300, and LG, respectively), as shown in the inset of Figure 6.
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Figure 8 shows the effect of thermal pretreatment temperature on carbon to CO
conversion efficiency during non-isothermal CO2 gasification of both raw and as-produced
lignite chars. Notably, there are three distinct temperature regimes. At temperatures up
to 600 ◦C, where the devolatilization and tar thermal cracking reactions are prevailing,
carbon conversion to CO is almost equal for LG, LG300, and LG500 (XC = 0.2), whereas it is
almost zero for the LG800 sample. This behavior implies that CO production for LG800
is essentially negligible during the pyrolysis step reactions due to its very low volatile
matter content (Table 1) compared to LG, LG300, and LG500 samples. At the temperature
regime between 600 and 750 ◦C, carbon starts to react with CO2, resulting in a significant
CO production. At 750 ◦C, XC follows the order LG500 (0.81) > LG800 (0.78) > LG300
(0.71) ≈ LG (0.70). At higher temperatures, the carbon conversion for raw and thermally
treated lignite chars at 300 and 500 ◦C reaches a plateau, whereas LG800 exhibits a slight
increase up to 800 ◦C where Xc levels off at ca. 0.90. The superior behavior of LG800 can be
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attributed to its enhanced fixed carbon content as well as to its more disordered surface
structure compared to LG, LG300, and LG500 samples, as previously discussed.
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Apart from CO, which is the primary product during CO2 gasification of lignite
and as-produced chars, substantially lower amounts of hydrogen and methane were also
detected at the effluent of the reactor. Figure 9 illustrates the H2 and CH4 concentration
profiles over the examined temperature range. By integrating the corresponding curves
in Figure 9a, the cumulative hydrogen production was calculated, and it was found equal
to ca. 0.1 mmol for LG and LG300 and 0.08 mmol for LG500 and LG800. Remarkably,
for LG and LG300 fuels, hydrogen production appears in the temperature range between
300 and 600 ◦C, while for LG500 and LG800 samples, H2 evolution is shifted to higher
temperatures (600–700 ◦C). In general, during CO2 gasification, hydrogen is mainly derived
by the rapture of the hydrogen rich-matrix in lignite’s structure during the devolatilization
step [68]. In this regard, the evolution of H2 during LG and LG300 gasification with CO2,
which is maximized at ca. 450 ◦C, can be attributed to the dehydrogenation of aliphatic
and alicyclic structures [69].
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Methane production (Figure 9b) was favored at temperatures up to ca. 600 ◦C, being,
however, two orders of magnitude lower compared to CO, i.e., 0.017 mmol, 0.016 mmol,
and 0.008 mmol for LG, LG300, and LG500, respectively, following the order of volatile
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matter content. In the case of LG and LG300, CH4 appeared between 300 and 500 ◦C
and can be attributed to the thermal cracking of alkyl- and aryl-ether bonds as well as to
tar cracking reactions [69,70]. In LG500, methane was released in the temperature range
between 500 and 600 ◦C, resulting from the breakage of strongly bonded functional groups
such as methyl and methylene [70]. The almost negligible production of methane in the
case of the LG800 sample is in solid agreement with its limited volatile matter content
compared to the other fuel samples.

Effect of CO2 Concentration on the Gasification Performance

The CO2 gasification process is regarded as an integrated approach to convert in-
dustrial captured CO2 emissions to a CO-rich gas mixture that can be used to produce
value-added chemicals. There are many industrial processes where CO2 is emitted in large
quantities and its concentration in flue gases varies depending on the application [71,72].
Therefore, it is worth examining the effect of CO2 concentration in the gasifying agent
mixture on CO production.

Figure 10 presents the outlet CO concentration profiles in the examined temperature
range and the overall production of CO (mmol) under different CO2/He mixtures as gasi-
fying agents and for two representative samples, i.e., LG and LG800. For both fuels, upon
increasing CO2 concentration from 5 vol.% CO2/He to pure CO2, CO generation steadily
increases, with the effect being more pronounced in the case of LG800 char. Interestingly,
as the amount of CO2 decreases, the CO concentration profiles are shifted to higher temper-
atures retarding at the same time the complete depletion of fuels. In the case of LG and for
CO2 concentrations higher than 50 vol.%, the differences in CO production are marginal.
This indicates that for CO2 concentrations above 50 vol.%, the process is taking place under
excess CO2 conditions. However, this is not the case for LG800, where an increase in
CO production is observed upon increasing the CO2 content in the gasifying agent from
50 vol.% to pure CO2 flow. This could be attributed to the higher fuel quantity entering
the gasification stage and the increased fixed carbon content of LG800, in agreement with
relevant studies [66,70,73–76].
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3.4. Syngas Production during Isothermal CO2 Gasification Tests

The pristine lignite sample, LG, and the char at 800 ◦C, LG800, were further examined
during isothermal CO2 gasification tests at 800 ◦C under the batch mode of operation. Slow
pyrolysis of raw coals at such high temperatures leads to more energy condensed fuels, as
in the case of LG800, with higher fixed carbon content and much less volatility compared to
pristine lignite (Table 1). A mild operation temperature of 800 ◦C was selected to perform
the experiments since at higher temperatures agglomeration and melting phenomena are
enhanced, posing several challenges in the design and operation of gasifiers [77].
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Figure 11 depicts the evolution of syngas constituents over time on stream for LG and
LG800 fuel samples until fuel depletion. Focusing on the CO concentration profile, two
distinct areas are clearly observed in both cases. Regarding the LG sample, the presence of
CO in the first 4 min is mainly ascribed to the devolatilization and tar cracking reactions,
which occur during the pyrolysis step. On the contrary, CO evolution at t > 4 min is
attributed to the Boudouard reaction, which is thermodynamically favored at 800 ◦C.
The CO concentration profile exhibited a second peak at t = 5 min and then decreased
exponentially with time due to fuel consumption. The corresponding concentration profiles
for hydrogen and methane are only present during the first four minutes and then totally
disappear, indicating the completion of the pyrolysis step and confirming that both H2 and
CH4 are mainly derived through the thermal cracking reactions.
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Figure 11. Syngas composition with time on stream for LG (a) and LG800 (b) CO2 gasification at
800 ◦C. Fuel: 500 mg, Flowrate: 30 cm3/min.

Significant differences are observed in the case of the LG800 sample. The pyrolysis
stage lasts about 3 min, a shorter period compared to raw lignite (LG). In this first stage,
both H2 and CH4 concentrations are clearly lower than the corresponding pyrolysis stage
of LG in accordance with the difference in the volatile matter content of LG and LG800
samples (Table 1). Again, the concentration profiles of H2 and methane sharply decreased
over time on stream, denoting the end of the pyrolysis step. At t > 3 min, CO concentration
exhibits a notable increase showing a second maximum peak at t = 10 min, and then
gradually decreases upon fuel’s depletion at ca. 80 min. For both fuels, the process involves
two different distinct phases: a rapid pyrolysis stage followed by the slow char gasification
stage via the Boudouard reaction.

The previous observations are quantitatively mirrored in syngas production, depicted
in Figure 12. Carbon monoxide, derived from both pyrolysis and gasification stages, is
the primary product, followed by lower quantities of hydrogen and negligible amounts of
methane (Figure 12a). The overall production of hydrogen was equal to ca. 2.8 and 2.0 mmol
for LG and LG800, respectively. Larger differences were observed for CO production.
LG800 produced almost two times higher CO (28 mmol) compared to LG (13.8 mmol) and
thus substantial higher amounts of syngas. Figure 12b depicts the individual contribution
of pyrolysis and gasification stages to the overall CO production, where it identifies as
the enhanced share of char gasification in the case of LG800 char. This indicates that the
gasification process is significantly affected by the fuel thermal treatment history. The ex-
situ char, LG800, exhibited better gasification performance in terms of syngas production
compared to the as-derived “in-situ char” after the devolatilization stage.
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mal cracking stage. Interestingly, both the raw lignite and the ex-situ produced char at 800 
oC did not reveal any substantial differences concerning instant CO production rate, indi-
cating the insignificant effect of thermal pretreatment on the CO formation rate during 
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Flowrate: 30 cm3/min.

Figure 13 shows the corresponding instant CO production rate (RCO, min−1) and
carbon to CO conversion (XC) as a function of time on stream during CO2 gasification
of LG and LG800 samples at 800 ◦C. The CO production rate for both fuels is sharply
increased until carbon conversion (XC) of c.a. 0.2, corresponding to the devolatilization and
tar thermal cracking stage. Interestingly, both the raw lignite and the ex-situ produced char
at 800 ◦C did not reveal any substantial differences concerning instant CO production rate,
indicating the insignificant effect of thermal pretreatment on the CO formation rate during
this step. Remarkably, the two examined fuels illustrated a different behavior during the
gasification stage. In the case of LG, RCO is drastically decreased and almost nullified at
Xc ≈ 0.55. Comparably, RCO illustrated a gradual descending trend for the LG800 sample
and became equal to zero when complete conversion of carbon was achieved. Notably, the
instant CO production rate for LG800 during the gasification stage was clearly higher than
LG. The pronounced gasification performance of LG800 can be presumably ascribed to its
higher fixed carbon content and disordered surface structure compared to raw lignite.
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The aforementioned considerations were also highlighted by other researchers in
relevant studies dealing with the isothermal gasification of fossil and bio-based solid
fuels [40,43,66,78–81]. For instance, Porada et al. [81] examined CO production during
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CO2 gasification of coals and their chars under isothermal conditions at 750, 850, and
950 ◦C. They concluded that the enhanced CO production of coal chars was attributed to
the higher fixed carbon and ash content of coal chars due to the pyrolysis pretreatment
stage. Xie et al. [43] noticed that the thermal pretreatment of raw coal led to 1–6 times
higher CO production in the case of coal char pyrolyzed at 750 ◦C.

4. Conclusions

The CO2 gasification performance of pristine Greek lignite fuel and ex-situ produced
chars under various pyrolysis protocols, and its correlation with their structural/chemical
properties, was systematically examined in the present work. The thermal pretreatment
of raw lignite under an inert atmosphere at different temperatures led to significant al-
terations in the chemical composition and structure of as-produced chars. Notably, by
increasing the thermal treatment temperature, the fuel undergoes several modifications
leading to less ordered and more active surface structures, as confirmed by the observed
trend of AD1/AG and AG/Aall Raman band area ratios. The reactivity of fuels, in terms
of mass loss, was evaluated by TG analysis under a CO2 reactive atmosphere. During the
devolatilization phase, the reactivity of fuels is in accordance with the order of volatile
matter content, i.e., LG ≈ LG300 > LG500 > LG800, whereas at higher temperatures, the
gasification performance follows the opposite behavior compared to the pyrolysis stage,
i.e., LG800 > LG500 > LG300 > LG. A linear relationship between the comprehensive char-
acteristic gasification index, S, and the band area ratio AD1/AG was revealed, confirming
the suitability of first-order Raman band ratios to correlate the gasification reactivity with
the structure of the different fuels. Syngas production was monitored during both non-
isothermal and isothermal batch mode gasification tests. In both cases, CO was the primary
product with its production following the order of fuels reactivity during the gasification
stage. The higher amount of fuel, which remains after devolatilization and enters the
gasification stage, along with the higher fixed carbon content and the more disordered
surface structure, are the key factors that presumably lead to the pronounced gasification
performance of LG800 compared to raw lignite and chars at 300 and 500 ◦C.
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