
Enabling Malware Analysis for IoT Devices
using Remote Trusted Execution Environments

Georgios Sapounas

Thesis submitted in partial fulfillment of the requirements for the

Diploma in Electrical and Computer Engineering

Thesis Committee:

Associate Professor Sotirios Ioannidis (supervisor)
Professor Apostolos Dollas

Professor Antonios Deligiannakis

School of Electrical and Computer Engineering
Technical University of Crete

Chania, July 2023

Abstract

The proliferation of Internet of Things (IoT) devices has raised significant con-
cerns regarding the privacy and security of sensitive data processed by these devices.
In response to these challenges, this research presents a novel cloud-based mal-
ware detection solution that leverages Intel SGX enclaves, offering robust privacy-
preserving guarantees for IoT devices transmitting sensitive data to remote infras-
tructure for malware analysis. The proposed system consists of a lightweight client
application and a centralized server side infrastructure that exploits hardware-
assisted encryption and remote attestation capabilities.

By offloading the computationally intensive task of malware analysis to remote
servers, hosted within SGX enclaves, a secure environment is established, effectively
shielding the transfer and processing of user data, even in untrusted infrastruc-
tures. This solution not only addresses the inherent security and privacy concerns
of data offloading but also optimizes IoT resource utilization, providing an efficient
and secure framework for malware detection in IoT environments. The research
outcomes contribute to the advancement of signature-based malware detection for
IoT ecosystems and serve as a blueprint for enhancing other security systems that
leverage user-level enclaves in the IoT domain. Furthermore, the proposed solution
ensures secure communication, attestation, and data management, thereby offering
a practical and scalable approach to protect private user data from malicious enti-
ties and potential inquisitive service providers. The research findings address the
critical need to safeguard sensitive data in IoT environments and provide valuable
insights into preserving privacy and security in the era of interconnected devices.

Περίληψη

Η εξάπλωση των συσκευών Internet of Things (IoT) έχει εγείρει σημαντικές
ανησυχίες σχετικά με την ιδιωτικότητα και την ασφάλεια των δεδομένων που επεξερ-

γάζονται από αυτές τις συσκευές. Σε απάντηση σε αυτήν την πρόκληση, η έρευνά μας

παρουσιάζει ένα καινοτόμο σύστημα εντοπισμού κακόβουλου λογισμικού, βασισμένο

σε απομακρυσμένη εκτέλεση. Το σύστημα, χρησιμοποιώντας Intel SGX enclaves,
προσφέρει σημαντικές εγγυήσεις για την ιδιωτικότητα των δεδομένων που μεταδίδο-

νται στις απομακρυσμένες υποδομές για την ανίχνευση κακόβουλου λογισμικού. Το

προτεινόμενο σύστημα αποτελείται από μια εφαρμογή-πελάτη και μια κεντρική υποδο-

μή από την πλευρά του διακομιστή που εκμεταλλεύεται τις δυνατότητες κρυπτογράφη-

σης και απομακρυσμένης βεβαίωσης με υποβοήθηση υλικού. Με την εκφόρτωση του

υπολογιστικά εντατικού έργου της ανίχνευσης κακόβουλου λογισμικού σε απομακρυ-

σμένους διακομιστές, που παρέχουν Intel SGX enclaves, δημιουργείται ένα ασφαλές
περιβάλλον, το οποίο θωρακίζει αποτελεσματικά τη μεταφορά και την επεξεργασία των

δεδομένων, ακόμη και σε μη αξιόπιστες υποδομές. Αυτή η λύση όχι μόνο αντιμετωπίζει

τις εγγενείς ανησυχίες για την ασφάλεια και το απόρρητο της εκφόρτωσης δεδομένων,

αλλά επίσης βελτιστοποιεί τη χρήση των πόρων, παρέχοντας ένα αποτελεσματικό και

ασφαλές πλαίσιο για τον εντοπισμό κακόβουλου λογισμικού σε περιβάλλοντα IoT. Τα
αποτελέσματα της έρευνας αυτής συμβάλλουν στην πρόοδο της ανίχνευσης κακόβου-

λου λογισμικού που βασίζεται σε υπογραφές για οικοσυστήματα IoT και χρησιμεύουν
ως σχέδιο για την ενίσχυση άλλων συστημάτων ασφαλείας που αξιοποιούν ενςλαvες σε

επίπεδο χρήστη στον συγκεκριμένο τομέα. Επιπλέον, η προτεινόμενη λύση προσφέρει

ασφαλή επικοινωνία και διαχείριση δεδομένων, προσφέροντας έτσι μια πρακτική και

επεκτάσιμη προσέγγιση για την προστασία των ιδιωτικών δεδομένων των χρηστών

από κακόβουλες οντότητες ή πιθανή παρακολούθησή τους από τους παρόχους των

απομακρυσμένων υποδομών. Τα ευρήματα της έρευνας αντιμετωπίζουν την κρίσιμη

ανάγκη προστασίας ευαίσθητων δεδομένων σε περιβάλλοντα IoT και παρέχουν πο-
λύτιμες γνώσεις για τη διατήρηση του απορρήτου και της ασφάλειας στην εποχή των

διασυνδεδεμένων συσκευών.

Acknowledgments

I would like to take this opportunity to express my sincere gratitude and pro-
found appreciation to Associate Professor Sotirios Ioannidis for his invaluable men-
torship as my supervisor, which has enabled me to undertake and conduct my re-
search, expanding my knowledge in the field of hardware and software significantly.

I wish to express my deep appreciation to Dr. Dimitrios Deyannis for his
unwavering guidance and steadfast support throughout the entirety of my thesis
endeavor.

Furthermore, I am profoundly thankful to Professor Apostolos Dollas and Pro-
fessor Antonios Deligiannakis for their esteemed roles as committee members, as
well as for their meticulous assessment of my thesis.

Lastly, I extend my heartfelt thanks to my beloved family and cherished friends,
whose trust and continuous support have been a constant source of motivation
throughout the years.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Outline . 3

2 Background 5
2.1 Malware Analysis . 5

2.1.1 Choosing the Appropriate Technique 8
2.1.2 Pattern-based Malware Analysis 8
2.1.3 Pattern-matching Algorithms 10
2.1.4 Aho-Corasick . 11

2.2 Trusted Execution Environments 12
2.2.1 Intel SGX . 14
2.2.2 Arm TrustZone . 17
2.2.3 AMD SEV-SNP . 18
2.2.4 AMD PSP . 18
2.2.5 Apple Secure Enclave . 19
2.2.6 Choosing the Appropriate TEE 19

3 Design 21
3.1 Threat Model . 21
3.2 Client . 23
3.3 Server . 24
3.4 Database . 25
3.5 Registration . 26
3.6 Attestation . 26

4 Implementation 29
4.1 Client . 29

4.1.1 Connection . 30
4.1.2 Whitelist . 32
4.1.3 Encryption . 32
4.1.4 Data Transmission . 33

I

4.1.5 Database Updates . 34
4.1.6 Quarantine & Mitigation . 35

4.2 Server . 35
4.2.1 Data Handling . 36
4.2.2 Malware Analysis . 37
4.2.3 Enclave I/O . 39
4.2.4 Database Updates . 40

4.3 Reports & Statistics . 40
4.4 Execution Life Cycle . 41

5 Evaluation 45
5.1 Experimental Setup . 45
5.2 Workloads . 45
5.3 DFA Properties . 46
5.4 Micro-benchmarks . 47
5.5 Malware Detection Performance . 48

5.5.1 Synthetic Workload . 49
5.5.2 Real-World Workload . 50

6 Related Work 53

7 Conclusion and Future Work 55
7.1 Summary of Contributions . 55
7.2 Future Work . 56

II

List of Figures

2.1 Aho-Corasick goto, output and failure functions. 12
2.2 Attack-surface areas with and without Intel SGX enclaves. 14
2.3 Intel SGX application execution flow. 15
2.4 Intel SGX attestation flow. 16

3.1 System architecture overview. 22

4.1 Data buffer overview. 38
4.2 The Aho-Corasick Deterministic Finite Automaton (DFA) is repre-

sented as an integer array and consists of patterns such as "he,"
"she," "his," and "hers." In sub-figure (a), the DFA is visualized
with dark blue nodes indicating the final states, which mark the end
of a pattern. Alternatively, in sub-figure (b), the same information
is represented using negative values. 39

5.1 DFA size and number of states for the three synthetic signature sets
and real-world signature set. 47

5.2 DFA size and number of states for the three synthetic signature sets
and real-world signature set. 48

5.3 Malware detection throughput evaluation using workloads infected
by 0%, 5%, 10%, 20%, 50% and 100% and synthetic malware signa-
ture sets containing 2000, 4000 and 6000 patterns. 49

5.4 Malware detection throughput evaluation using workloads infected
by 0%, 5%, 10%, 20%, 50% and 100% and a signature set containing
real-world malware patterns, collected by various online sources. . . 50

III

IV

List of Tables

2.1 Trusted Execution Environments. 13

V

VI

Chapter 1

Introduction

With the proliferation of Internet of Things (IoT) devices, ensuring the privacy
and security of sensitive data processed by these devices has become a pressing
concern. To address this challenge, we propose a cloud-based malware detection
solution that leverages Intel SGX enclaves, offering strong privacy-preserving guar-
antees for IoT devices transmitting sensitive data to remote locations for malware
analysis. By offloading malware analysis to remote servers, within SGX enclaves,
we create a secure environment that shields the transfer and processing of user data,
even in untrusted infrastructure. Our motivation stems from the need to protect
private user data from malicious entities and potentially honest-but-curious service
providers.

We specifically aim to overcome the performance limitations introduced by Intel
SGX in signature-based analysis systems, such as intrusion or malware detection,
by mitigating their impact and optimizing resource utilization. The research out-
comes will not only advance signature-based malware detection for IoT devices but
also serve as a blueprint for enhancing other security systems leveraging user-level
enclaves in the IoT domain. Additionally, the performance improvement method-
ologies derived from this work will benefit multiple components of our proposed
security stack, ensuring secure communication, attestation, and system call han-
dling in enclave-based software as a service.

1.1 Motivation

The literature on malware detection often involves works that rely on complex
systems that require high computational capacity or external/custom hardware.
These modifications cannot always be applied on small IoT devices due to their
limited hardware capabilities and software stacks. Also, maintaining full-scale an-
tivirus solutions on every device found in a large network of interconnected IoT
devices presents multiple implementation and management issues.

Moreover, the malware protection systems themselves can fall victims of mali-
cious parties, aiming to disrupt or tamper their execution. Thus, requiring a way

1

2 CHAPTER 1. INTRODUCTION

to verify their correct and uninterupted execution. A possible approach to this
issue could be the utilization of a Trusted Execution Environment (TEE) to safe-
guard the protection system’s operation. The most common TEE available to IoT
devices is ARM’s TrustZone but developing software based on TrustZone can be
an even more challenging task since it requires control of each device’s firmware.
This approach however is not always possible and does not scale since an IoT net-
work may contain multiple and different devices, some of which may not be able
to support the technology.

A solution to these problems is the utilization of a centralized malware detection
system that provides its functionalities as a service. In this way, multiple devices
can connect and offload the malware detection process, utilizing very minimal client
applications that can easily be developed for a plethora of devices. Also, this
approach minimizes the computation requirements for the client applications and
preserves the limited resources offered by most IoT devices. However, in such a
configuration, the management of the transmitted, and most possibly sensitive,
device data has to be carefully carried out.

Leveraging a remote server that can be executed on more powerful X86 in-
frastructure provides multiple benefits. First, we can ensure that the malware
detection software is always up to date, providing analysis with the latest and
most up-to-date malware signature data, where rules need to be added to a single
point. Also, we are able to monitor the entire network of IoT devices, perform
valuable analytics and compare the results. Furthermore, we can provide multiple
server instances for load balancing and dynamically change the enforced policies
for malware mitigation centrally, with the server notifying the various devices and
proposing the appropriate policies based on the device and identified threats.

In this work, we base our malware detection service on Intel’s x86 platform,
since it provides another great benefit, the utilization of the Intel SGX Trusted Ex-
ecution Environment. SGX is the most versatile and extendable user-level enclave-
based TEE up to this date and enables us to completely safeguard the malware
detection service, its metadata as well as the transmitted client data. This tech-
nology enables the creation of protected and hardware-assisted isolated software
containers in the user-space that act as reverse sandboxes. Thus, code and data en-
closed in these containers, called enclaves, cannot be read or modified by any other
process aside from the one utilizing them. This includes the operating system’s
kernel, other processes or even debugging tools. By transferring the client’s data
in an encrypted format and only decrypting and processing them in the server’s
secure enclaves we can guarantee that they are never accessible throughout the
path from the IoT device to the malware detection service. Also, with this ap-
proach, sensitive data are never exposed in the server’s file system or DRAM, thus
being inaccessible even when transmitted to possibly tampered hosts or accessed
by honest-but-curious infrastructure providers.

SGX uses hardware-assisted encryption to protect the confidentiality of the
enclave pages, even when assuming an untrusted infrastructure. Enclave data can
be securely sealed and exported in the untrusted infrastructure if needed, since they

1.2. CONTRIBUTIONS 3

now contain the required metadata that verify their integrity upon reuse. Finally,
SGX provides Remote Attestation capabilities, enabling the client IoT devices to
attest and verify the validity of the server at any point during the execution of the
remote malware analysis.

1.2 Contributions

The contributions of this work are summarized as follows:

• We propose a practical cloud-based malware detection solution that aims
to provide malware detection service to a plethora of IoT devices without
exhausting their limited resources.

• Our system prioritizes strong privacy-preserving guarantees for clients with
emphasis on the secure remote analysis of their sensitive data.

• We present the methodology that can be used to leverage user-level enclaves
in designing a signature detection engine able to preserve its security prop-
erties even when residing in untrusted or hostile infrastructure.

1.3 Outline

The rest of this thesis is organized as follows. Chapter 2 provides an in-depth
background on the most popular malware detection techniques and algorithms
for malware signature identification. Also, it provides an overview of the avail-
able Trusted Execution Environments and explores prominent TEEs such as Intel
SGX, Arm TrustZone, AMD SEV-SNP, AMD PSP, and Apple Secure Enclave.
The chapter examines the selection process for an appropriate TEE based on spe-
cific requirements and criteria, taking into consideration factors such as security,
performance, and compatibility.

Chapter 3 provides the design overview of our system’s critical components, in-
cluding the client, server, database, registration process, and attestation. Also, it
provides our work’s threat model. Then, Chapter 4 describes the implementation
details of the components comprising our malware detection system. It presents
essential functionalities such as establishing connections, managing whitelists, im-
plementing encryption mechanisms, efficient data parsing techniques, and the mal-
ware detection engine.

Chapter 5 presents the evaluation of our system, focusing on the workloads,
infrastructure and methodology utilized to evaluate the performance and effective-
ness of our system. We provide the results obtained by analyzing the performance
of each component and involved process as well as end-to-end performance metrics.

Chapter 6 provides a summary of prior research and related work in the field,
highlighting the advancements, challenges, and limitations in existing approaches.
Finally, Chapter 7 concludes this thesis by summarizing the key contributions,
achievements, and provides directions for future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Malware Analysis

In general, malware analysis is the process of identifying and classifying malicious
software, commonly known as malware, that can compromise the security and
functionality of computer systems, networks, and devices. It involves the use of
various techniques and technologies to detect the presence of malware and protect
against its harmful effects.

Malware can take many forms, such as viruses, worms, Trojans, ransomware,
spyware, and adware. Its primary objective is to gain unauthorized access, steal
sensitive information, disrupt operations, or cause damage to the targeted system.
Malware analysis plays a crucial role in maintaining the integrity and security of
computer systems and preventing potential threats. Below, we present a set of
commonly employed techniques in malware analysis:

Static file analysis Static file analysis is a fundamental technique employed in
the realm of malware detection, aiming to scrutinize files without their execution.
This approach involves a meticulous examination of file attributes, structure, con-
tent, and metadata to identify potential indicators of malicious activity. During
static file analysis, key attributes, including file headers, extensions, import/export
functions, and embedded strings, undergo rigorous scrutiny to ascertain the pres-
ence of malicious traits. By detecting patterns such as obfuscated code, encrypted
payloads, or anomalous file formats, static file analysis aids in the identification of
known malware and the identification of suspicious patterns. This proactive ap-
proach enables the preemptive detection and mitigation of potential threats before
their execution, bolstering overall system security. However, it may have limita-
tions in detecting sophisticated or polymorphic malware that actively tries to evade
detection through code manipulation techniques.

Dynamic malware analysis Dynamic malware analysis is a robust technique
employed in the examination of malware behavior in real-time, achieved by execut-

5

6 CHAPTER 2. BACKGROUND

ing the malware within a controlled environment. This approach typically involves
running the malware in a secure sandbox or virtual machine, facilitating meticulous
monitoring of its activities to discern its functionality and potential repercussions.
Throughout the process of dynamic analysis, comprehensive observations are made
on the malware’s interactions with the operating system, including system calls,
registry modifications, network connections, and file accesses, providing valuable
insights into its operational characteristics and potential impact. This approach
allows for the detection of malicious behaviors that may not be apparent through
static analysis alone, such as the ability to evade detection or exploit vulnerabili-
ties. Dynamic malware analysis is an essential tool in understanding and mitigating
emerging threats, enabling security researchers to gather valuable insights and de-
velop effective countermeasures.

Dynamic monitoring of mass file operations Dynamic monitoring of mass
file operations is an advanced technique that focuses on real-time observation and
analysis of large-scale file modifications or transfers occurring within a system or
network. This approach entails vigilant monitoring of file-related activities, includ-
ing file creations, deletions, modifications, and transfers, coupled with in-depth
analysis of associated metadata and behavior patterns. By dynamically monitor-
ing these mass file operations, potentially suspicious activities can be analyzed and
identified, such as an abrupt surge in file transfers or unauthorized alterations to
critical files. This technique serves as a proactive measure to detect and miti-
gate potential data breaches, ransomware attacks, or insider threats involving the
manipulation or unauthorized exfiltration of a substantial volume of files.

File extension blocklisting File extension blocklisting, also known as file type
blocklisting, is a technique used in cybersecurity to restrict or block specific file
types from being accessed or executed. It involves maintaining a list of file ex-
tensions that are considered potentially dangerous or prone to carrying malicious
payloads. When implemented, any file with a blocked extension is prevented from
being opened, downloaded, or executed within a system or network. This approach
helps prevent the execution of known file types associated with malware, such as
.exe, .bat, or .dll, thereby reducing the risk of infection. File extension blocklisting
is a proactive measure that adds an extra layer of defense against potential threats
by restricting the handling of files that are commonly used to distribute malware.

Application allowlisting Application allowlisting, also referred to as applica-
tion whitelisting, is a security practice that involves creating a list of approved
applications that are allowed to run within a system or network. It works on
the principle of only permitting the execution of pre-approved applications while
blocking all others. This approach helps prevent unauthorized or malicious soft-
ware from running, as only applications on the allowlist are granted execution
privileges. By maintaining a strict control over the software environment, applica-

2.1. MALWARE ANALYSIS 7

tion allowlisting enhances security by mitigating the risks associated with unknown
or unauthorized applications. It helps protect against various threats, such as mal-
ware, ransomware, and unauthorized software installations, providing a proactive
defense mechanism against potential cyberattacks.

Malware honeypots A malware honeypot, also known as a honeypot file, is a
decoy system or file designed to attract and trap malicious actors. It is a security
mechanism that lures attackers into interacting with a simulated target, allowing
researchers to gather valuable information about their tactics, techniques, and
intentions. A honeypot file can be a seemingly vulnerable document, script, or
executable, purposely left exposed to entice hackers. By monitoring and analyzing
the activity surrounding the honeypot, security professionals gain insights into the
latest malware threats, attack vectors, and exploitation techniques. Honeypots
provide a valuable tool for understanding the evolving landscape of cyber threats
and enhancing overall system defenses.

Checksumming Checksumming, also known as cyclic redundancy check (CRC),
is a method used to verify the integrity and authenticity of data. It involves
calculating a unique value, known as a checksum or CRC, from the data being
transmitted or stored. The checksum acts as a fingerprint of the data, allowing
comparison with the calculated value at the receiving end to detect any errors or
alterations. By comparing the checksums, data corruption due to transmission
errors or malicious tampering can be detected. Checksumming/CRC is widely
used in various applications, including network protocols, file transfers, and data
storage, to ensure data integrity and provide a reliable means of error detection.

File entropy File entropy refers to a measure of the randomness or unpredictabil-
ity of the data within a file. It quantifies the information content of the file and
can be used to detect changes in the file’s data. The entropy value is calculated
based on the frequency distribution of bytes or bits within the file. When a file
undergoes changes, such as encryption, compression, or the insertion of malicious
code, the entropy level tends to increase. By monitoring the entropy of files, se-
curity systems can identify suspicious or potentially harmful modifications. This
helps uncover hidden or obfuscated data within files and detects deviations from
normal entropy patterns.

Machine learning behavioral analysis Machine learning behavioral analysis
is a technique used in cybersecurity to detect and identify malicious activities based
on patterns and behaviors exhibited by software or network entities. It involves
training machine learning algorithms on large datasets of normal and anomalous
behaviors to recognize patterns indicative of malicious intent. By leveraging tech-
niques such as anomaly detection, clustering, and classification, machine learning
models can learn to identify and differentiate normal behaviors from suspicious or

8 CHAPTER 2. BACKGROUND

malicious behaviors. This approach enables the detection of previously unknown
or evolving threats that may not match known signatures. Thus it enhances the ef-
fectiveness of security systems by providing proactive and dynamic defense against
emerging cyber threats.

Signature-based detection Signature-based detection is a common approach
in malware detection that relies on comparing the patterns and signatures of known
malware with the files or processes being analyzed. Malware signatures are unique
identifiers derived from specific characteristics or code snippets of known malware.
By maintaining a regularly updated database of signatures, antivirus software can
quickly scan files and detect malware based on these predefined patterns. This
method of malware detection provides an efficient means to identify and mitigate
known malware threats, contributing to a proactive defense strategy against mali-
cious activities within systems and networks.

2.1.1 Choosing the Appropriate Technique

In our proposed approach, we advocate for the utilization of signature-based detec-
tion as the optimal strategy to swiftly address the identified challenges, driven by
its effectiveness and efficiency in detecting and mitigating known threats within the
targeted system or network. Signature-based detection stands out among the listed
techniques due to its remarkable ability to identify and neutralize known threats
very fast by matching specific patterns or signatures associated with malware or
viruses. The primary reason for choosing signature-based detection is its robust
reliance on a comprehensive signature database, which empowers the approach
to swiftly and accurately detect potential infiltrations, effectively minimizing the
risk of system or network compromise. Moreover, signature-based detection distin-
guishes itself by its efficiency and real-time scanning capabilities, enabling proactive
defense against known malicious activities. As opposed to alternative methods,
such as behavioral analysis or static file analysis, signature-based detection can
be achieved with low complexity and executed without special requirements for
powerful hardware resources.

2.1.2 Pattern-based Malware Analysis

Pattern-based malware analysis is an essential methodology, extensively employed
within the realm of cybersecurity to ascertain and dissect malicious software by
leveraging pre-established patterns or signatures. This approach entails compre-
hensive scrutiny of distinct attributes, behavioral attributes, and code sequences
affiliated with recognized malware strains, subsequently culminating in the creation
of signatures aimed at detecting analogous instances in subsequent occurrences.
By adopting this systematic technique, the ability to detect and mitigate potential
threats posed by malicious software within various environments is enhanced. The

2.1. MALWARE ANALYSIS 9

process of performing malware analysis through pattern matching can be delineated
into the following phases:

Signature Creation Experienced security researchers and analysts conduct com-
prehensive examination of established malware samples to meticulously identify
discrete and singular patterns that can function as discernible indicators of mali-
cious code. These patterns encompass diverse elements, including specific character
strings, byte sequences, cryptographic constants, API invocations, file or registry
alterations, network communication patterns, and behavioral sequences. Through
rigorous analysis, these distinctive patterns are discerned and catalogued, enabling
the development of a robust signature-based detection system that effectively iden-
tifies and mitigates known threats within a targeted system or network.

Signature Database Creation The discerned patterns are systematically com-
piled into a comprehensive signature database, commonly referred to as a signature
repository. This repository is diligently managed by antivirus vendors, security or-
ganizations, or researchers, and undergoes regular updates to incorporate newly
discovered signatures in response to emerging malware variants. By ensuring the
database remains up-to-date, security tools are equipped with the most current
information necessary to proficiently identify and counter known malware threats,
thereby bolstering their efficacy in safeguarding targeted systems or networks.

Scanning and Detection During the malware scanning process, antivirus soft-
ware or other security tools systematically compare files, processes, or network ac-
tivity against the meticulously stored patterns within the signature database. This
comparison encompasses a range of techniques, including string matching, regular
expressions, hash-based lookups, or specialized algorithms specifically designed for
distinct types of signatures. Upon detecting a correlation between the observed
data and a known malware signature, it unequivocally indicates the existence of
malware within the system, prompting appropriate remedial action.

Alert or Quarantine Upon successfully identifying a correspondence between
the observed data and a known malware signature, the security tool promptly trig-
gers an appropriate response mechanism. This response may entail the generation
of an alert, serving as a notification to both the user and system administrator
regarding the detection of the malicious software. Furthermore, the security tool
may enact immediate actions, such as isolating the infected files, quarantining the
affected components, or executing measures to expunge the deleterious code. These
decisive steps effectively curtail the potential for subsequent harm and impede the
propagation of the identified malware, thereby bolstering the overall security pos-
ture of the system.

10 CHAPTER 2. BACKGROUND

2.1.3 Pattern-matching Algorithms

Pattern matching algorithms are fundamental techniques used in various fields,
including malware analysis, to identify specific patterns within a given set of data.
These algorithms systematically search for occurrences of patterns, which can be
strings, sequences of characters, or other structured representations, within a larger
text or data stream. Some of the pattern matching algorithms extensively utilized
in the realm of malware analysis are the following:

Knuth-Morris-Pratt (KMP) Algorithm The Knuth-Morris-Pratt (KMP) al-
gorithm [1] is a highly efficient pattern matching algorithm. It achieves its efficiency
through the construction and utilization of a failure function, also referred to as
the failure table. The failure function enables the algorithm to intelligently skip
unnecessary character comparisons during the matching process, thereby improv-
ing its overall performance. By maintaining separate pointers for the pattern and
the text, and employing the failure function to determine optimal shifts in the pat-
tern pointer, the KMP algorithm minimizes redundant comparisons and achieves
linear time complexity of O(n + m), where n represents the length of the text and
m denotes the length of the pattern. As a result, the KMP algorithm provides a
robust and efficient solution for pattern matching tasks, making it invaluable in
the field of malware analysis and related domains.

Boyer-Moore Algorithm The Boyer-Moore algorithm [2] is a powerful and
widely used pattern matching algorithm. It employs two heuristics, the bad char-
acter rule and the good suffix rule, to achieve efficient pattern matching. Through a
preprocessing step, the algorithm constructs lookup tables, namely the bad charac-
ter table and the good suffix table, which provide information for intelligent shifts
and skipping irrelevant portions of the text during matching. By leveraging these
rules and tables, the Boyer-Moore algorithm minimizes redundant character com-
parisons, resulting in an average-case time complexity of O(n/m), where n is the
text length and m is the pattern length. This makes the Boyer-Moore algorithm
highly efficient for detecting malware signatures within large datasets.

Rabin-Karp Algorithm The Rabin-Karp algorithm [3] is a widely utilized pat-
tern matching algorithm. It efficiently searches for multiple patterns by leveraging
hashing techniques. During the preprocessing step, the algorithm calculates the
hash values for the pattern and all possible windows of the same length in the input
text. By comparing these hash values with the precomputed hash value of the pat-
tern, matches are identified and further validated through character-by-character
comparisons. The Rabin-Karp algorithm employs a rolling hash technique to op-
timize hash calculations and handles spurious hits using additional checks. With
a linear time complexity of O(n + m), where n represents the text length and m
denotes the pattern length, the Rabin-Karp algorithm offers an efficient solution
for detecting malware signatures and pattern matching tasks within large datasets.

2.1. MALWARE ANALYSIS 11

2.1.4 Aho-Corasick

The Aho-Corasick algorithm [4] is considered as the best option for multiple pat-
tern searching, since it matches all signatures simultaneously. This simultaneous
matching can be achieved when the set of patterns is being preprocessed. In the
preprocessing phase, an automaton is built, which is eventually used in the match-
ing phase. Also, each character of the input is processed only one time during the
matching phase. The Aho-Corasick algorithm has the property that, theoretically,
the processing time does not explicitly depend on the number of patterns. Let P =
p1p2...pn be the patterns to be searched inside a text T = t1t2...tm (with lengths
n and m accordingly), both sequences of characters form a finite character set Σ.
The complexity of the algorithm is linear in the pattern length ν, plus the length
of the given text μ, plus the number of output matches. Given a set of patterns,
the algorithm constructs a state machine, that matches all patterns in the text at
once, one byte at a time. Each processing action of the automaton, accepts an
input event. The very first action starts with the initial state, represented with
zero. Each action that accepts an input event moves the current state to the next
state, based exclusively on that input.

The algorithm includes three distinct functions: (i) a goto function, (ii) a failure
function, and (iii) an output function. According to the input, one function is being
triggered. Figure 4.2 present an example of these functions for the set of patterns
he, she, his, hers.

The goto function, depicted in Figure ??, plays a crucial role in determining
state transitions based on the current state and the ASCII value of the input char-
acter. By examining the transitions originating from the current state, the goto
function determines if a transition can be made. If the input character corresponds
to one of the transitions, the next state is set to the state indicated by that tran-
sition. Conversely, if there is no matching transition, the failure function f(i =
current state) is invoked to determine the next state. For instance, in Figure ??,
the presence of an edge labeled ’h’ from state 0 to state 1 signifies that goto(0,
h) = 1, while the absence of a transition for ’a’ indicates a failure. The failure
function either leads to one or more intermediate states or returns to the initial
state (represented by 0 in the goto graph).

After each state transition, the output function output(i = current state) is
checked to determine if the pattern matches a sub-string of the input text T. This
process continues until the entire input text T is processed. Since failed transitions
can be devoid of consuming any input, the resulting automaton is non-deterministic
(NFA). Additionally, the failure function can generate multiple state transitions
for a single input character. Consequently, the matching operation may require
exploring multiple paths before an actual pattern match is found.

To overcome performance issues arising from large pattern sizes, an enhanced
version of the traditional Aho-Corasick algorithm exists. In this revised version, all
failure transitions are replaced to mitigate performance degradation. The resulting
automaton, called a deterministic finite automaton (DFA), offers a single transition

12 CHAPTER 2. BACKGROUND

per state and input character. Although this approach necessitates more memory
compared to the previous one, it exhibits superior processing throughput efficiency.
The complexity achieved by this approach is O(n), where n represents the length
of the patterns being searched.

Figure 2.1: Aho-Corasick goto, output and failure functions.

Given the requirements of our research in malware analysis, we have chosen
to utilize the Aho-Corasick algorithm due to its significant advantages over other
algorithms in certain scenarios. While other algorithms have their merits and ap-
plications, the Aho-Corasick algorithm surpasses them in terms of efficiency and
effectiveness. The algorithm has gained widespread recognition and adoption in
renowned open-source security solutions like the ClamAV antivirus and the Snort
network intrusion detection system. Its exceptional efficiency, simultaneous match-
ing of multiple signatures, and efficient transitions between branches with shared
prefixes make it a critical component in state-of-the-art malware detection systems.
By leveraging the Aho-Corasick algorithm, we aim to enhance our malware analysis
capabilities and achieve more accurate and efficient detection results.

2.2 Trusted Execution Environments

Trusted Execution Environments (TEEs) are specialized security technologies that
play a crucial role in enhancing security within modern computing systems. TEEs
create isolated environments, either in hardware or software, where critical code
and data can be securely executed and protected from unauthorized access. These
environments, known as secure enclaves, are shielded from external interference,
ensuring the integrity and confidentiality of sensitive operations.

2.2. TRUSTED EXECUTION ENVIRONMENTS 13

Table 2.1: Trusted Execution Environments.

TEE ISA IE DS RA
Intel SGX x86_64 Y Y Y

ARM TrustZone ARM Y Y N
AMD SEV-SNP x86_64 Y N N

AMD PSP x86_64 Y Y N
Apple Secure Enclave ARM Y Y N

The technical foundations of TEEs rely on a combination of hardware and
software mechanisms. Secure enclaves, implemented using hardware extensions,
partition a portion of the processor’s memory and execution pipeline, establishing
a trusted execution environment. Additionally, TEEs incorporate components like
secure boot, trusted platform modules, and attestation mechanisms. Secure boot
ensures the integrity of the system’s boot process, while trusted platform modules
provide secure storage and cryptographic functionalities. Attestation mechanisms
enable remote parties to verify the integrity of a TEE and its security properties.

TEEs find practical applications in various industries and domains. In cloud
computing, TEEs enable secure execution of sensitive workloads in potentially un-
trusted environments, safeguarding critical data and operations. In blockchain
technologies, TEEs facilitate secure and verifiable smart contract execution, ensur-
ing the integrity and confidentiality of transactions. Moreover, TEEs are utilized
in mobile devices and Internet of Things (IoT) devices to protect sensitive user
data and enable secure transactions.

In our work, we choose to utilize a Trusted Execution Environment (TEE) for
our pattern matching malware detection server to prioritize system security and
integrity. Leveraging the TEE’s hardware-backed security mechanisms, including
secure enclaves and trusted platform modules, ensures robust protection for our
sensitive code, data, and computations. This fortified security posture shields
against attacks, unauthorized access, and manipulation attempts, bolstering the
confidentiality and integrity of our algorithms.

Table 2.1 presents a compilation of widely utilized hardware-assisted Trusted
Execution Environments (TEEs) available in the current landscape. The table
provides information on the Instruction Set Architecture (ISA) supported by each
technology, whether the TEE supports Isolated Execution (IE), secure Data Stor-
age (DS), and Remote Attestation (RA). This comprehensive overview offers valu-
able insights into the key features and capabilities of these popular TEEs.

In the subsequent sections, we will explore the following widely recognized
Trusted Execution Environments (TEEs): Intel SGX, ARM TrustZone, AMD SEV-
SNP, AMD PSP, and Apple Secure Enclave. These TEEs have gained prominence
in the field of secure computing due to their robust security features and trusted
execution capabilities. We will provide detailed explanations of each TEE, high-
lighting their distinctive attributes and mechanisms. By examining these TEEs

14 CHAPTER 2. BACKGROUND

individually, we aim to offer a comprehensive understanding of their functionalities
and their relevance in ensuring secure and trustworthy computing environments.

2.2.1 Intel SGX

Intel Software Guard Extensions (SGX) [5] is a collection of security instructions
integrated into modern Intel x86 CPUs, initially introduced with the Skylake fam-
ily of processors. These instructions enable the creation of isolated software con-
tainers, known as enclaves, which provide secure and hardware-assisted execution
environments. Enclaves ensure that their code and data remain inaccessible and
unmodifiable by any other process, including the operating system kernel or debug-
gers. This isolation property significantly reduces the attack surface. SGX utilizes
on-chip hardware mechanisms, such as the Memory Encryption Engine (MEE), for
encryption of enclave data and code. The MEE encrypts a portion of live memory
and makes it accessible to SGX, while ensuring that other processes cannot access
enclave contents. Swapping of enclave memory pages to DRAM is also handled
by SGX, encrypting the data to maintain confidentiality. The available memory
for Intel SGX enclaves ranges from 64MB to 128MB, configurable through BIOS
settings, and developers can utilize swapping techniques to access additional mem-
ory if needed. An overview of a system’s attach surface with and without SGX is
presented in Figure 2.2.

Figure 2.2: Attack-surface areas with and without Intel SGX enclaves.

Nevertheless, it is important to note that memory page swapping is exclusive to
Linux systems, and Intel’s SGX driver does not support this feature. As a result,
the usable memory within enclaves is confined to a maximum of 128MB. On a

2.2. TRUSTED EXECUTION ENVIRONMENTS 15

positive note, enclave data can be securely sealed and exported to the untrusted
file system, ensuring encryption of the data in transit. To maintain data integrity,
accompanying metadata is included, enabling integrity checks when the sealed data
is later accessed and reused.

An SGX application typically comprises two main components. The first is
the untrusted application, residing in the untrusted operating system (OS) and
communicating with the secure enclave. The second is the secure enclave, which
can be associated with one or multiple applications.

Communication between these components relies on specific functions and APIs
declared in the SGX Enclave Definition Language (EDL) during software develop-
ment. These interfaces are immutable and cannot be modified or extended after
compilation and enclave signing. Enclaves are restricted from directly performing
undeclared I/O, accessing system calls, or invoking privileged instructions, as the
host OS kernel is untrusted and inaccessible. To handle such requests, develop-
ers must proxy them to the untrusted part of the application using designated
OCALLs, which transfer execution outside of the secure enclave and can only be
invoked by the enclave itself. Similarly, applications can invoke ECALLs, which
transfer execution from the untrusted application to the trusted enclave at prede-
fined entry points, triggering specific enclave functions. The execution flow of an
SGX-enabled application follows a predefined pattern, as illustrated in Figure 2.3

Figure 2.3: Intel SGX application execution flow.

Remote attestation is the process of verifying the authenticity of a software
component running within an isolated container to a remote entity. In the context
of SGX, the attested software is a secure enclave created by the trusted CPU hard-
ware. During the remote attestation procedure, the CPU generates a measurement

16 CHAPTER 2. BACKGROUND

for the attested enclave, providing a unique identifier. This measurement is then
signed by the privileged Quoting Enclave, resulting in an attestation signature
(QUOTE).

Figure 2.4: Intel SGX attestation flow.

Intel possesses the SGX hardware attestation key responsible for signing the
measurement. To maintain privacy, the attestation signature employs the EPID
group signature scheme. Secure communication between enclaves necessitates the
establishment of a secure channel through local attestation. The attestation signa-
ture is then transmitted to a remote party, who forwards it to the Intel Attestation
Service (IAS) for verification. This validation enables the remote party to deter-
mine if the enclave has been tampered with or if the attested software is executing
within a genuine hardware-assisted SGX enclave. It ensures that the SGX enclave
operates on SGX-enabled hardware and not in simulation mode, thereby preventing
access through debugging utilities. The SGX Remote Attestation process employs
a modified SIGMA protocol, enabling the remote party and the enclave to estab-
lish a shared secret for secure communication. Figure 2.4 provides an overview
of the Intel SGX attestation process. Unlike Trusted Platform Modules (TPMs),
SGX Remote Attestation offers improved performance as the attested software runs
within the CPU. Additionally, SGX employs an EPID group signature scheme, en-
suring that attested enclaves cannot be uniquely traced back to a specific CPU
through their attestation signature.

Intel SGX2, the second iteration of Intel Software Guard Extensions (SGX),
introduces several key features that enhance the security and functionality of the
technology compared to its predecessor, Intel SGX1. One notable addition is the
provision of extended memory size, enabling larger secure enclaves and facilitating

2.2. TRUSTED EXECUTION ENVIRONMENTS 17

the execution of more complex and resource-intensive applications within the pro-
tected environment. Furthermore, SGX2 introduces dynamic attestation, enabling
secure enclaves to establish their authenticity and integrity on-demand, allowing for
flexible deployment scenarios. Additionally, SGX2 incorporates a new mode called
Flexible Launch Control, which provides enhanced control over enclave execution,
allowing for greater flexibility in managing enclave security policies. These advance-
ments in Intel SGX2 further strengthen the platform’s ability to safeguard sensitive
data and code, empowering developers to build secure and privacy-preserving ap-
plications in a more versatile and scalable manner.

2.2.2 Arm TrustZone

Arm TrustZone [6] is a hardware-based security extension that introduces a system-
wide security framework for processors based on the ARM architecture. Its objec-
tive is to establish a secure environment known as the secure world, alongside the
conventional world, where the majority of system software resides. This dichotomy
enables the isolation and safeguarding of sensitive code and data from potential
security threats.

Central to the TrustZone design is the trusted execution environment (TEE),
also referred to as the secure monitor. This critical component orchestrates the
transition between the secure and normal worlds, ensuring the enforcement of se-
curity policies and the execution of trusted code. Effectively functioning as a
gatekeeper, the secure monitor regulates access to the secure world, guaranteeing
that only authorized software can operate within its confines.

During system boot-up, the processor initiates execution in the secure world,
where the secure monitor is located. The secure monitor initializes the secure
world environment and subsequently hands control over to the normal world, where
the operating system and other software components operate. This transition is
facilitated by secure monitor calls (SMC), establishing a mechanism for inter-realm
communication.

The secure world and the normal world maintain separate memory spaces, pro-
viding robust isolation between the two domains. Sensitive code and data are
securely stored in the memory allocated to the secure world, rendering them im-
pervious to potential tampering from the normal world or other untrusted enti-
ties. Access to the resources of the secure world is rigorously controlled, effectively
thwarting unauthorized access or modifications. Interactions between software run-
ning in the normal world and the secure world are facilitated by issuing SMC in-
structions. These instructions trigger a context switch to the secure world, enabling
the secure monitor to execute requested operations on behalf of the normal world
software. This mechanism empowers the execution of secure operations, including
key management, secure storage, and secure communication.

TrustZone exhibits a flexible and scalable security solution, offering system
designers the opportunity to define their own security policies and the partitioning
parameters between the secure and normal worlds. By serving as a foundation

18 CHAPTER 2. BACKGROUND

for constructing secure systems, it has gained widespread adoption across various
devices, spanning smartphones, tablets, and Internet of Things (IoT) devices.

2.2.3 AMD SEV-SNP

AMD SEV-SNP (Secure Nested Paging) [7] is an advanced security feature de-
signed to enhance the protection of virtualized environments. Building upon the
existing AMD Secure Encrypted Virtualization (SEV) technology, SEV-SNP ex-
tends the capabilities to deliver enhanced memory security for virtual machines
(VMs). The primary objective of SEV-SNP is to isolate VMs from each other and
the hypervisor, effectively safeguarding them against diverse software and hardware
attacks.

SEV-SNP addresses the vulnerabilities associated with speculative execution
attacks, side-channel attacks, and hypervisor-related weaknesses by employing ro-
bust memory encryption techniques. It ensures that the memory of VMs is en-
crypted and segregated from the underlying system. Hardware-enforced memory
protection mechanisms are leveraged to restrict unauthorized access to VM mem-
ory, bolstering overall security.

Key to SEV-SNP’s functionality is the introduction of nested page tables,
which optimize memory management in virtualized environments. Furthermore,
a hardware-based root of trust is established to manage encryption keys, ensuring
that only authorized VMs can access their encrypted memory regions. Moreover,
SEV-SNP facilitates the seamless live migration of encrypted VMs. This capability
enables the secure relocation of VMs across physical hosts while preserving encryp-
tion and the associated protective measures, thereby enhancing the flexibility and
resilience of virtualized environments.

In summary, AMD SEV-SNP represents a significant advancement in virtu-
alization security, providing enhanced memory protection and isolation for VMs,
bolstered by advanced encryption, nested page tables, and secure migration capa-
bilities.

2.2.4 AMD PSP

In contrast to Intel’s Platform Trust Technology (PTT), AMD processors incorpo-
rate a distinct security mechanism called the Platform Security Processor (PSP) [8],
also known as AMD Secure technology. Integrated within AMD processors since
approximately 2013, the PSP operates as a trusted runtime environment with a
range of responsibilities. These include managing the boot process, initializing
security-related mechanisms, monitoring system behavior for potential anomalies,
and implementing appropriate security responses.

The PSP can be conceptualized as an ARM kernel, with the integrated Trust-
Zone extension functioning as a coprocessor within the primary CPU. AMD follows
a firmware signing process to ensure the authenticity of the PSP firmware, which is
then distributed through UEFI image files. The firmware execution occurs prior to

2.2. TRUSTED EXECUTION ENVIRONMENTS 19

the main CPU boot and coincides with the loading of the fundamental UEFI. Func-
tioning within the same system memory space as user applications, the firmware
is allowed unrestricted access to Memory-Mapped I/O (MMIO).

While there are architectural and implementation disparities between AMD’s
PSP and Intel’s PTT, both comply with the Trusted Platform Module (TPM) se-
curity protocol. This alignment ensures that both mechanisms deliver comparable
security functionality, despite their underlying technical differences.

2.2.5 Apple Secure Enclave

The Apple Secure Enclave [9] is an isolated subsystem integrated into Apple’s A-
series chips, providing a secure execution environment for sensitive operations on
devices. Operating independently from the main CPU, it has segregated memory
and processing resources. Through a unique identifier and secure boot process,
it establishes a chain of trust, ensuring software integrity and restricting access
to authorized code for sensitive data. The Secure Enclave plays a crucial role in
security features like Touch ID, Face ID, Apple Pay, and encrypted data storage.

In addition to its primary functionalities, the Secure Enclave offers a highly
secure environment for executing sensitive code and managing confidential data. It
employs multiple layers of security features, including hardware-based encryption,
safeguards against tampering and replay attacks, and a dedicated random number
generator. Notably, the Secure Enclave’s inaccessibility to the main CPU and other
components significantly reduces the potential attack surface, further enhancing
device security.

Overall, the Apple Secure Enclave acts as a specialized and isolated enclave
within the device’s architecture, ensuring robust security measures for critical op-
erations and sensitive data. Its independent nature, secure boot process, and
hardware-based security features contribute to the overall protection, integrity,
and user trust in Apple devices, safeguarding the confidentiality of information
and enhancing overall device security.

2.2.6 Choosing the Appropriate TEE

After a thorough technical analysis, Intel Software Guard Extensions (SGX) emerges
as the superior choice for our system over the other Trusted Execution Environ-
ments mentioned above. SGX offers several advantages that make it highly suitable
for this task. First, SGX provides hardware-enforced memory encryption, ensuring
the confidentiality of sensitive data during pattern matching operations. Addi-
tionally, SGX allows for the creation of secure enclaves, isolated regions of code
execution, which protect the pattern matching algorithm and data from unau-
thorized access. Moreover, SGX’s fine-grained attestation mechanism ensures the
integrity of the enclave and enhances trustworthiness. Finally, SGX exhibits supe-
rior performance due to its optimized design and dedicated instruction set. These
technical differentiators firmly establish Intel SGX as the preferred choice for our

20 CHAPTER 2. BACKGROUND

application using commercial hardware, guaranteeing both security and efficiency
in this critical application.

Chapter 3

Design

In this section, we provide an extensive account of the design and implementation
of our system’s architecture. The comprehensive outline of our system can be
found in Figure 3.1. The system is composed of three fundamental entities: (i)
the client, which facilitates the transmission of essential files to the remote server
for scanning purposes, (ii) the server, which assumes responsibility for conducting
malware analysis in a manner that preserves user privacy and (iii) the database,
which stores the reports and statistics generated by our malware detection tool for
future usage.

The entire process of malware scanning takes place within the confines of
a cloud-based server, securely enclosed within Intel Software Guard eXtensions
(SGX) enclaves. This encapsulation enables us to safeguard the integrity of data
processing algorithms, the signature set, and most notably, the privacy of the user’s
sensitive information, which has to be transmitted to the remote server.

3.1 Threat Model

Providing security applications as a service has become a very popular approach due
to lower cost and maintenance complexity, as well as the ability to serve multiple
client platforms simultaneously. However, in the context of malware detection,
the data that need to be offloaded may contain important information about the
client. More specifically, a malware detection tool has privileged access to client
files that may contain configuration files, e-mails, applications, sensitive files or even
logged network traffic and metadata. Transferring and processing such sensitive
information has to strictly comply to security and privacy preserving standards to
guarantee confidentiality.

To specify the treat model for our malware detection system, we define four
different entities: (i) the client, (ii) the server, (iii) the database and (iv) the
infrastructure provider. The malware detection process takes place in the remote
server’s SGX enclaves and the server communicates with the client via a network
channel. We assume that our system’s client is installed and executed on the

21

22 CHAPTER 3. DESIGN

.bin

.conf

SHA-1 / MD5
Whitelist

Quarantine

Client
C

on
ne

ct
io

n
H

an
dl

er
 &

 D
at

a
Pa

rs
er

Suspicious Files

Report & Statistics

Malware Detection
Server

Report & Statistics

Malware Detector

Malware Signatures

SGX Enclave

Database

Encryption

D
at

a
Bu

ffe
r

D
ec

ry
pt

io
n

Figure 3.1: System architecture overview.

end-user device prior to any malicious party taking control of the device and its
software.

The infrastructure that hosts our server is considered untrusted, since there
is no control over the operating system, the possible hypervisor, the host’s drivers
and I/O devices, etc. Also, even if a benign environment is assumed, the possibility
of an honest-but-curious cloud provider still exists.

In this work, we aim to protect both clients and server from these threats.
We assume that the server and client(s) never expose their cryptographic keys to
third parties. Also, we assume that the server is always executed on SGX-enabled
hardware, compiled with SGX hardware mode, something that we can further
attest using Intel’s Remote Attestation procedure. Furthermore, we assume that
the implementation of the SGX SDK, PSW, driver and required services are free
of software bugs. We also exclude denial-of-service (DoS) attacks on enclaves from
our threat model since the life cycle of the process handling the SGX enclaves can
be controlled by a malicious operating system or superuser but without gaining any
useful information by doing so. Finally, handling any side-channel attacks against
Intel SGX or software flaws in SGX’s implementation is out of our scope and any
works that improve SGX on this direction can have a direct, drop-in, benefit to
our system.

3.2. CLIENT 23

3.2 Client

The client provides three distinct functionalities, implemented through separate
components. Firstly, the client prompts users to select a specific directory within
the file system that they wish to scan and offers corresponding actions for any
detected infected files. Second, it gathers the selected data and periodically verifies
their status by comparing their hash values against a pre-defined white-list of
known hash values. Last, the client transfers files with hash values that do not
match the white-list to our server hosted in the cloud for malware scanning and
result reporting.

The client is designed to require minimal effort and functionality, as the compu-
tationally intensive malware scanning is offloaded to our cloud-based server. This
approach ensures the server’s independence from the client implementation and al-
lows for the development of multiple client versions to support different platforms
and operating systems.

The hashing component within the client is responsible for retrieving data from
the file system, which may include various file types such as applications, configura-
tion files, etc. The client periodically computes the hash values of all selected files
and directories, forwarding these values to the white-list component. The scanning
window for periodic checks can be customized by each user based on the device
type and its current status. For example, a larger window can be chosen when the
system operates on battery power-saving mode to conserve device resources.

The client’s white-list component compares the hash values obtained from the
hash computation module against a list of hashes calculated from a known clean
state of each file. If a hash value does not match its corresponding file, the file is
flagged as suspicious, and the client forwards it to our server for malware scanning.
Additionally, the client manages the maintenance of the white-list by handling en-
tries for newly added or deleted files and updating existing entries with new benign
hash values. Files marked as potentially infected, due to hash value mismatches,
are then passed to the Data I/O module for transmission to our remote server.

The motivation behind the periodic hash-checking functionality is threefold.
First, comparing hash values against a set of known hashes representing the clean
state of files is a quick and efficient process, aided by the availability of various hash
algorithms. Second, this approach serves as a fast preliminary filter to differentiate
between benign and potentially infected files, eliminating the need for complex
malware analysis on every file of a device. The aforementioned solution offers
significant utility for IoT devices by effectively managing their network utilization,
ensuring they do not excessively consume network resources at all times. Third, by
marking only a limited subset of files as potentially infected, the amount of data
to be transferred to our remote server is minimized, enhancing the overall system
performance and reducing costs for users employing metered connections, mobile
data plans, or low-bandwidth channels.

The secure communication component is the key element of our client, ensur-
ing the transmission of potentially infected files to the remote server for thorough

24 CHAPTER 3. DESIGN

malware analysis while maintaining security and privacy. Each file undergoes en-
cryption using a secret cryptographic key established with the server. Following
the successful transmission of marked files, the client awaits the encrypted response
from the remote server. This response contains the total number of malware signa-
tures and acts as confirmation for the client to continue. Based on the information
received from the server, the client is endowed with the capability to enact file
quarantine measures or maintain the existing state of the files without taking any
further action. Subsequently, the white-list module updates the list for any files
that have undergone benign modifications, resulting in the generation of new hash
values, and removes entries for deleted files.

3.3 Server

Our server, the second component of our SGX-enabled antivirus system, is com-
posed of three distinct modules, which are elaborated upon in the following section.
The server possesses the capability to accept connections from multiple clients and
conduct malware analysis on the incoming data. It can be hosted in private or
public cloud infrastructures, or on a dedicated server.

One of the modules within the server is responsible for maintaining an up-to-
date signature-set, which is utilized for malware analysis. By storing the entire
signature-set on the remote server, the system gains two significant advantages.
First, it eliminates the need for individual users to maintain the latest signature-
set locally on their client devices, as the local update process may be overlooked
by many users, potentially allowing undetected malware to operate on multiple
devices. Additionally, users are relieved from the burden of storing the signature-
set on their devices, particularly in our case of IoT devices where storage capacity
is limited.

Offloading the entire malware analysis process to our cloud-based server allows
us to leverage Intel SGX enclaves, even if the client device does not support them.
The utilization of SGX enclaves enables the execution of the entire virus scan-
ning process within a trusted environment. This ensures that sensitive user data,
cryptographic keys, and signature-sets are never exposed in the server’s Dynamic
Random Access Memory (DRAM) or file system. This attribute holds critical im-
portance for two reasons. First, it guarantees secure offloading of sensitive data to
the remote server for malware analysis without the risk of data leakage. Second,
even if the server is compromised, malicious actors cannot identify the signatures
used in the signature-set or tamper with them. Furthermore, Intel SGX enclaves
ensure secure code execution of the malware detection engine, rendering the scan-
ning algorithms immune to attacks such as code tampering or data leakage from
active variables. By operating as a reverse sandbox and establishing communi-
cation solely with the client, SGX enclaves protect user data from access even
by honest-but-curious providers hosting the server, thus preserving the privacy of
offloaded user data.

3.4. DATABASE 25

Upon receipt, user data are encrypted and securely transmitted to our server,
where they are decrypted inside the Intel SGX enclave hosting our system’s engine.
The cryptographic keys necessary for successful decryption of the client’s data re-
side exclusively within the SGX enclave. Consequently, the server’s file system or
DRAM never contain plain-text secret keys or sensitive data such as system con-
figuration, binary or log files, thereby ensuring their inaccessibility to the server’s
host or provider. Even in the event of a compromise of the non-SGX part of our
server or the hosting infrastructure, the keys, malware signatures, and private user
data remain inaccessible.

The focal point of our system revolves around the malware scanning mod-
ule, which operates exclusively within the secure Intel SGX enclave. Within this
enclave, the module conducts thorough analysis of incoming data using a prede-
fined set of malware signatures. Each signature rule in the set possesses a unique
identifier and comprises patterns and metadata that elucidate the malware’s func-
tionalities, risk levels, and recommended actions. Utilizing the client’s secret key,
the virus scanning process unfolds within the enclave subsequent to decrypting the
data. Once an input file triggers a rule successfully, the associated metadata and
file details undergo processing and are subsequently transmitted to our database
as a comprehensive status report.

Furthermore, an additional component housed within the secure enclave gen-
erates the scanning report. Our server receives the outputs from the malware
scanning engine and assembles a comprehensive report for subsequent processing
by our client. This report encompasses pertinent information regarding identified
malicious files, including filenames, action needed and scanning timestamps.

3.4 Database

Our database serves as a centralized repository for securely storing critical data
and statistics generated by our SGX-enabled antivirus system. It efficiently cap-
tures and retains essential information, including file paths, file hashes, iteration
statistics, and processing times of clients, servers, and the database itself.

The database effectively captures and organizes file paths, providing a struc-
tured representation of the specific locations within the file system where scanned
files are located. This structured organization enables efficient file retrieval, man-
agement, and subsequent operations or investigations.

Furthermore, the database preserves the iteration statistics of file hashes, en-
compassing the computed hash values of files and directories, along with relevant
statistical data derived from the hashing process. These statistics capture crucial
metrics such as hashing algorithm performance, processing speeds, and resource
utilization. By storing and tracking these statistics, the database facilitates per-
formance analysis and monitoring of the hashing operations, contributing to the
overall efficiency of the system.

Additionally, the database records and maintains processing times for various

26 CHAPTER 3. DESIGN

components within the system, including the client, server, and the database itself.
This includes the time durations required for specific operations to complete by
each component. By capturing and storing these processing times, the database
enables comprehensive analysis of system performance, identification of potential
bottlenecks, and opportunities for optimization.

In a production deployment, the ideal choice for implementing the database in
our SGX-enabled antivirus system would be Microsoft SGX enabled SQL [10]. This
solution combines the enhanced security benefits provided by Intel Software Guard
Extensions (SGX) with the robust features and scalability of a SQL-based database
management system. However, as our project is currently in the prototype phase,
we have chosen to utilize free and open-source software to facilitate the development
process without incurring additional costs.

3.5 Registration

The registration process serves as the initial task carried out by our system upon
the initiation of our client on a user’s device. In the first step of this process, the
client establishes communication with our cloud-based server and performs a key
exchange to establish a shared key. During this interaction, the server generates a
unique client ID and securely stores the shared key, along with the corresponding
ID, within the SGX enclave.

The second step involves the generation of a comprehensive list containing the
hash values of each file in a clean and uninfected state. To accomplish this, our
client applies a hashing algorithm to every selected file, temporarily populating the
white-list with the resulting hash values. Subsequently, each file is transmitted to
our remote server for thorough malware analysis.

Upon receiving the server’s response in the form of a report, the hash values
corresponding to the uninfected files are considered permanent entries in the white-
list. Any identified malicious files, if present, are presented to the user along with
suggested actions from the report. Following the completion of the registration
process, our client prompts the user to specify a periodic hashing interval, with
automated periodic scanning being the default setting.

3.6 Attestation

Our system can enhance its security and establish a higher level of trust in the SGX-
enabled server by leveraging Intel’s Remote Attestation services. Through remote
attestation, our client can challenge the server to verify that the core component
of the engine resides within a signed SGX enclave and is executed on an SGX-
enabled processor in a trusted hardware mode. This approach effectively mitigates
the risk of malicious entities masquerading as an SGX-enabled server in order to
gain unauthorized access to users’ private data. Additionally, it prevents entities
from running our server in SGX debug or simulation mode, thereby thwarting

3.6. ATTESTATION 27

attempts to gain access to sensitive user data and the server’s secret keys through
the use of debuggers.

28 CHAPTER 3. DESIGN

Chapter 4

Implementation

In this section, we describe in detail the implementation of our signature-based
malware detection system, providing in depth details about the operations per-
formed by the client and the server components. Also, we present the process of
secure communication establishment and the operation of our custom version of
the Aho-Corasick pattern matching algorithm, utilized for malware detection. Fur-
thermore, we describe the operation of the SGX enclaves, the process of result and
metrics logging and provide a step-by-step execution life cycle.

4.1 Client

The client is designed to address the need for secure file checking and communica-
tion in a networked environment. By implementing formal and technical methods,
the client ensures reliable and tamper-proof data exchange. The client’s function-
alities, cover various aspects such as configuration parsing, socket creation, key
exchange, initialization, file searching, and file processing.

Configuration Prasing The client exhibits a robust capability to adapt to di-
verse environments by leveraging configuration parsing mechanism. This enables
the retrieval of critical parameters essential for customization. Parameters encom-
pass the hash mode, such as MD5 or SHA1, the bit mode with options like 128 or
256, the interval duration between file checks, the option to search files again, the
database reset functionality, and the ability to quarantine files. The client gains
the flexibility to adjust its behavior based on the specific requirements of different
environments.

Socket Creation and Key Exchange To establish secure and reliable commu-
nication, the client takes a proactive step by creating a TCP socket. This socket
acts as a conduit for seamless data exchange between the client and the server.
Moreover, the client implements a robust key exchange protocol to ensure the con-
fidentiality and integrity of transmitted data. By engaging in this protocol, the

29

30 CHAPTER 4. IMPLEMENTATION

client verifies the authenticity of the communication parties, preventing unautho-
rized access or modification of the exchanged information.

Initialization and File Searching The client demonstrates meticulous prepa-
ration by initializing key components necessary for cryptographic operations. It
sets up the Initialization Vector (IV) and TAG, crucial elements for maintaining
data security during cryptographic operations. Leveraging the dirent.h library,
the client performs an extensive file search within the specified directory and its
subdirectories. This exhaustive scanning capability allows the client to identify all
relevant files for subsequent processing.

File Processing and Communication With each discovered file, the client
initiates a series of various operations. It captures and stores the file’s path, hash,
and ID values in a structured format, enabling efficient retrieval and reference
in the future. By determining the file’s length and content, the client gains a
comprehensive understanding of its characteristics. Employing the configured hash
mode and bit mode, the client computes an appropriate hash value. It compares
this hash value to the previous check, ensuring the detection of any modifications.
Employing cryptographic algorithms, the client encrypts the file’s data, reinforcing
its security. The encrypted data is then promptly dispatched to the server for
detailed analysis. Concurrently, the client logs relevant file details, including the
transmitted files, to the database. Upon server response, the client determines the
file’s status based on the server’s evaluation.

Logging and Performance Monitoring To ensure meticulous tracking and
performance analysis, the client captures and logs the precise execution times for
each operation performed. This comprehensive logging mechanism allows for a
thorough evaluation of the client’s efficiency, effectiveness, and overall performance.
By leveraging this data, the client gains valuable insights, identifies potential bot-
tlenecks, and allows us to determine where to implement future optimizations.

4.1.1 Connection

To establish a secure and reliable communication channel with the malware anal-
ysis server, the client first creates a Transmission Control Protocol (TCP) socket.
This socket acts as a conduit for seamless data exchange between the client and
our server, ensuring the integrity and ordered delivery of the transmitted data. By
leveraging the TCP socket, the client establishes a stable and dependable connec-
tion with our server.

The utilization of Intel SGX technology provides a secure enclave where the
sensitive data for malware analysis is processed. This hardware-based security
mechanism ensures that the data remains protected inside the enclave, safeguard-
ing it from external threats. As a result, the need for additional encryption pro-
tocols such as SSL/TLS is obviated. The data transmitted between the client and

4.1. CLIENT 31

the Intel SGX server remains encapsulated within the server’s secure enclave, min-
imizing the risk of unauthorized access or tampering during transmission. The
combination of Intel SGX’s trusted execution environment and the secure com-
munication established through the Diffie-Hellman key exchange protocol ensures
that the data is securely transmitted and analyzed without relying on SSL/TLS en-
cryption. Moreover, the client implements a robust key exchange protocol based on
the widely-used Diffie-Hellman algorithm, enabling secure key establishment over
an insecure network without prior cryptographic material exchange. This proto-
col ensures the confidentiality and integrity of the transmitted data and verifies
the authenticity of the communication parties, preventing unauthorized access or
modification of the exchanged information.

The Diffie-Hellman [11] key exchange process involves several steps. First, both
the client and our server agree upon a prime number (p) and a base value (g). These
values are known to both parties. Next, each party independently selects a random
secret value (a for the client and b for the server). These secret values are kept
private and not exchanged over the network.

Using modular arithmetic operations, each party computes their respective pub-
lic keys. The client computes its public key (A) by raising the base value (g) to the
power of its secret value (a) modulo the prime number (p). Similarly, our server
computes its public key (B) by raising the base value (g) to the power of its secret
value (b) modulo the prime number (p). The client and the server then exchange
their computed public keys.

Upon receiving the public key from the other party, each participant uses their
own secret value to compute a shared secret key. The client computes the shared
secret key (K) by raising the received public key (B) to the power of its secret value
(a) modulo the prime number (p). Likewise, our server computes the shared secret
key (K) by raising the received public key (A) to the power of its secret value (b)
modulo the prime number (p).

Both the client and our server now have the required information to derive a
shared secret key (K’) that is known only to them. This shared secret key can be
used for subsequent symmetric encryption and decryption operations, ensuring the
confidentiality and integrity of the files sent during their transmission and storage.
Since the shared key resides in the enclave and the client data decryption is exclu-
sively performed within the enclave, we can ensure that sensitive client data are
never exposed in plaintext format in the server’s DRAM or file system; something
that could not be achieved with traditional secure communication protocols.

In conclusion, by combining the utilization of a TCP socket for seamless data
exchange, the implementation of a robust key exchange protocol based on the
Diffie-Hellman algorithm, and the utilization of Intel SGX technology for hardware-
based security, the client establishes a secure and reliable connection with our
server for malware analysis. This approach ensures the confidentiality, integrity,
and authenticity of the exchanged information, enabling a trusted environment for
malware analysis.

32 CHAPTER 4. IMPLEMENTATION

4.1.2 Whitelist

The client implements a robust hash whitelist mechanism utilizing either the SHA-
1 or MD5 cryptographic hash algorithm for file integrity verification. In the initial
iteration, the client diligently calculates the hashes of all files present in the desig-
nated system or directory using the selected hash function. These computed hash
values serve as the fundamental reference for subsequent iterations.

In each subsequent iteration, the client evaluates the current hash of each file
against its corresponding previously calculated hash. This comparison enables the
client to discern any alterations or unauthorized modifications that may have tran-
spired since the inception of the hash whitelist. The successful matching of the
current hash with the previous hash indicates the absence of tampering or mod-
ifications, thereby affirming the file’s integrity. Conversely, a mismatch between
the current and previous hashes signifies potential tampering or unauthorized al-
terations, compelling the client to undertake further investigative measures.

By leveraging SHA-1 or MD5, the client ensures an efficient and reliable file
integrity verification process. The comparison between the current and previous
hashes facilitates the identification of discrepancies without the necessity of storing
or analyzing the entire file contents. This approach is particularly advantageous
when dealing with extensive files or a substantial volume of files that necessitate
frequent verification.

The implementation of the hash whitelist mechanism by the client significantly
enhances the overall security of the system. Through the continuous monitoring
and evaluation of file hashes, the client promptly detects and responds to po-
tential security breaches or unauthorized modifications. This proactive approach
safeguards the integrity and trustworthiness of the data within the system and
minimizes the need for unnecessary data transfers and malware analysis.

4.1.3 Encryption

Encryption is implemented using a key establishment protocol, as described earlier.
This protocol ensures secure and confidential communication between the client
and the server. While the Intel SGX server leverages its hardware-based security
to safeguard the data within its enclave, the client, which lacks SGX capabilities,
performs encryption within its main memory. This approach ensures that sensitive
information remains protected during transmission and data cannot be decrypted
anywhere in the path other than in the server’s enclave which holds the key.

The encryption algorithm employed is AES-128-GCM, chosen due to its robust-
ness and availability in the client’s environment. As the Intel SGX enclave does
not support AES-256-GCM, AES-128-GCM provides a suitable alternative with
a higher level of encryption strength. AES-256-GCM combines the Advanced En-
cryption Standard (AES) symmetric encryption algorithm with the Galois/Counter
Mode (GCM) for authentication and integrity checks. This combination ensures
both confidentiality and integrity of the encrypted data, providing a strong defense

4.1. CLIENT 33

against unauthorized access and tampering.
By utilizing the key establishment protocol for secure communication and im-

plementing encryption with AES-256-GCM, the system ensures that sensitive in-
formation is effectively protected. The encryption process, performed within the
client’s main memory, adds an extra layer of security to prevent unauthorized ac-
cess and maintain the confidentiality of the data. This comprehensive approach to
encryption contributes to the overall security posture of the system, safeguarding
against potential threats and ensuring the integrity and privacy of the transmitted
and stored information.

4.1.4 Data Transmission

To facilitate focused analysis and optimize resource utilization within the SGX-
enabled antivirus system, the file sending process follows a specific sequence. First,
the client sends the file size in bytes, enabling the server to anticipate the total
number of bytes to receive. This information allows for efficient resource alloca-
tion on the server side. Subsequently, the client transmits the actual file content,
ensuring its integrity and confidentiality through encryption.

Upon the discovery of a file, the client prepares it for transmission. It captures
and stores essential file attributes, such as the file’s path, hash, and ID values, in a
structured format. These attributes enable efficient retrieval and reference in the
future, streamlining file management within the system. Additionally, the client
determines the file’s length and content to gain a comprehensive understanding
of its characteristics, enabling subsequent analysis and processing to be tailored
accordingly.

To ensure data integrity, the client computes an appropriate hash value for the
file using the configured hash mode and bit mode. This hash value acts as a unique
identifier and enables the client to detect any modifications or tampering that may
have occurred since the last check. By comparing the computed hash value to the
previous check, the client ensures the file’s integrity throughout the transmission
process.

To reinforce the security of the file during transmission, the client employs ro-
bust cryptographic algorithms to encrypt the file’s data. This encryption process
safeguards the confidentiality and integrity of the file, preventing unauthorized
access or modifications during transit. By encrypting the file data, the client en-
hances its protection and ensures that only the server, equipped with the necessary
decryption capabilities, can access and analyze its contents within its secure en-
clave.

During the file transmission process, the client diligently logs relevant file de-
tails, including the transmitted files, in the database. This comprehensive logging
provides an auditable record of the file sending process, facilitating subsequent
analysis, investigation, and reference. The database serves as a centralized repos-
itory of file-related information, contributing to efficient file management within
the system.

34 CHAPTER 4. IMPLEMENTATION

Once all files have been sent, the client concludes the transmission by sending
a special marker, represented by the string "##EOS##" (End of Stream), to the
server. This marker signifies the end of the file stream and allows the server to
process the transmitted files accordingly. It serves as a signal that no further files
are expected, enabling the server to allocate its resources appropriately for analysis
and evaluation.

By adhering to the sequence of sending the file size first, followed by the actual
file content, and employing the "##EOS##" marker to signify the end of the file
stream, the client ensures optimal resource utilization, and effective communica-
tion with the server during the file transmission process without exhausting the
resources of the SGX-enabled antivirus system.

4.1.5 Database Updates

On the client’s side, the process of updating the database involves the logging
of critical statistics and processing times related to files and client operations to
the central repository. During the database update, the client ensures that the
repository reflects accurate file statistics, including the unique file ID, file path,
and file hash. The file ID serves as a distinctive identifier within the system,
facilitating subsequent operations and investigations. The file path denotes the
precise location of the scanned file within the file system, enabling efficient file
organization and management. The file hash, derived from the file’s contents,
acts as a unique identifier and enables fast file comparisons. By incorporating
these updated statistics into the database, the client guarantees the repository’s
alignment with the current file information, even after service disruptions.

Furthermore, the client captures and updates the database with processing
times associated with client operations. This includes the encryption time, rep-
resenting the time required for the client to encrypt the file prior to transmitting
it to the SGX-enabled antivirus system. Additionally, the client records the send
time, which signifies the duration of transmitting the encrypted file to the server
or database. These processing times contribute to the assessment of encryption
efficiency and data transmission, facilitating analysis and potential optimizations.

Moreover, the client records and updates the database with database query
times. This metric represents the duration it takes for the client to retrieve infor-
mation from the central database, such as searching for specific files or retrieving
relevant statistics. By monitoring query times and updating the database accord-
ingly, the system gains insights into the performance of database operations and
identifies opportunities for query optimization. By consolidating the updates for
file statistics, encryption and transmission times, and database query duration, the
client ensures the central repository remains auditable.

4.2. SERVER 35

4.1.6 Quarantine & Mitigation

File quarantine is an essential component in our malware detection workflow, en-
suring the safe handling and containment of potentially malicious files. When a
file is quarantined, multiple actions are taken to mitigate any risks associated with
the file. First, the file is permanently deleted from its original location to prevent
accidental execution or inadvertent access. This proactive measure minimizes the
potential harm that the file may pose to the system or network.

In addition to deletion, the quarantined file is marked as non-executable. This
further reduces the risk of any accidental execution, preventing malware from exe-
cuting and potentially causing harm to the system or compromising its security. By
preventing the execution of quarantined files, the system ensures that the client’s
environment remains controlled and secure.

To preserve the file for subsequent analysis, the system employs file compression
techniques. Compressing the quarantined file reduces its size, making it more
manageable for storage and transmission purposes. This allows for efficient archival
and future examination without consuming excessive storage resources while also
prevents unwanted or accidental malware execution.

To enhance the security of the quarantined file, the client goes a step further by
applying both file compression and encryption. By combining these two techniques,
the file is not only compressed for efficient storage but also encrypted to prevent
accidental or unauthorized access. This ensures that the malicious file cannot be
decompressed and accessed either on purpose, by a malicious party, or accidentally,
by the client.

The file quarantine process, involving deletion, marking as non-executable, and
applying file compression with optional encryption, strengthens the system’s overall
security and enables the safe handling and analysis of potentially malicious files.
These measures ensure that the quarantined files are securely contained, minimizing
the risk of any accidental execution or unauthorized access, while maintaining the
necessary data for further investigation and analysis.

4.2 Server

The server plays a vital role in secure pattern matching and database management.
By employing several techniques, the server ensures the integrity and confidential-
ity of processed data. The server’s operations include enclave initialization, data
buffer initialization, DFA pattern loading, TCP socket setup, data reading, pattern
matching, report generation and database updates.

Enclave and Data Buffer Initialization The server undertakes the initializa-
tion of the Intel SGX enclave. By creating a secure execution environment, the
enclave safeguards the confidentiality and integrity of the critical malware detec-
tion code and the required data. Furthermore, data buffers are initialized within
the enclave to optimize data handling and processing efficiency.

36 CHAPTER 4. IMPLEMENTATION

DFA Loading To identify specific patterns within the incoming data, the server
loads the DFA generated by the available malware patterns into its enclave memory.
The DFA serves as the rule-set to be used for the malware detection process.
Leveraging a serialized DFA approach, as we explain further in this chapter, the
server achieves a high-performance during the malware detection process.

TCP Socket Setup and Data Handling Facilitating reliable and secure data
exchange with clients, the server establishes separate TCP sockets. The TCP socket
configuration ensures seamless and trustworthy communication. The server reads
data from each socket, employing a repeated reading process until the complete
data stream is received, based on the information received upon client connection.

Pattern Matching and Database Updates Following the complete reception
of data, the server engages the pattern matching function. This function exploits
the preloaded DFA to swiftly identify matches within the data stream using our
custom version of the Aho-Corasick pattern matching algorithm. When a match
is successfully detected, the server updates the corresponding fields within the
database. By doing so, the server maintains a comprehensive record of identified
malware patterns and their associated data.

Logging To meticulously monitor server’s performance and track its operational
processes, the server logs the precise execution times of each operation within the
database. This meticulous logging mechanism serves as a vital tool for measuring
the server’s efficiency, identifying potential bottlenecks, and pinpointing areas that
may require optimization.

4.2.1 Data Handling

The server’s data parsing process within the SGX enclave is critical for receiv-
ing and processing files efficiently. It involves the utilization of a function called
databuf_add(), which is responsible for receiving and storing the specified amount
of bytes for each file in the data buffer. The function is designed to manage the
buffer effectively, ensuring it can handle incoming files and prepare them for anal-
ysis. When the server receives a file, the databuf_add() function is invoked to
receive the specified number of bytes and store them in the data buffer. By incre-
mentally adding the received bytes to the buffer, the function ensures that the file
data is correctly accumulated in the intended order. It carefully tracks the buffer’s
size and determines when it reaches its capacity, indicating that it can no longer
accommodate additional file data.

Upon reaching the buffer’s capacity, the function initiates the processing of the
stored data by first transferring them within the secure enclave. This processing
phase involves executing various algorithms to achieve malware detection. The
server performs tasks such data decryption within the enclave and threat detection

4.2. SERVER 37

and evaluation on the received files. This analysis aims to identify potential threats,
verify the files’ integrity, and extract essential information for subsequent actions.

After completing the processing of the data buffer, the server prepares to receive
new files by either clearing the buffer or allocating a new buffer instance. This
ensures that subsequent files can be received and stored without interference or
data corruption from previously processed files. The function then resumes its
operation, repeatedly receiving the specified amount of bytes for each file and
following the process described above. This cycle continues as long as there are
incoming files to be processed, enabling the server to handle files in a continuous
and efficient manner, optimizing resource utilization within the SGX-enclave.

Once the server receives the special marker "##EOS##" (End of Stream) from the
client, it signifies the completion of the file transmission process. At this point, the
server proceeds to perform additional tasks, including the evaluation of statistics
and updating the relevant database fields.

Upon receiving the "##EOS##" marker, the server extracts the necessary infor-
mation from the data buffer and initiates statistical analysis. This analysis involves
aggregating and processing the data received for each file, allowing the server to cal-
culate various statistics such as the number of files processed, average file size, pro-
cessing times, and other performance indicators. These statistics provide valuable
insights into the system’s performance, aiding in performance analysis, optimiza-
tion efforts, and overall system monitoring. In addition to generating statistics,
the server updates the relevant database values based on the processed files. It
logs the processed files’ attributes, analysis results, and other pertinent details into
the database. This comprehensive and up-to-date database serves as a centralized
repository for efficient file management, historical analysis, system auditing, and
supporting the decision-making processes.

By combining the functionality of the databuf_add() function to handle incom-
ing file data and the processing of the "##EOS##" marker for generating statistics
and updating the database values, the server ensures a robust and efficient data
handling process within the SGX enclave.

4.2.2 Malware Analysis

Our malware scanning engine utilizes our custom version of the highly efficient
Aho-Corasick pattern matching algorithm. Variations of this algorithm are widely
adopted by various signature-based solutions, including the renowned open-source
antivirus ClamAV. Our system ensures maximum data privacy, code security, and
signature-set integrity by executing the entire malware scanning process within
Intel SGX enclaves. By leveraging this secure execution environment, our system
safeguards the confidentiality of offloaded data, protects the integrity of executed
code, and maintains the integrity of the signature-set.

As explained earlier, traditional implementations of the Aho-Corasick pattern
matching algorithm utilize a state machine structure represented as a tree. How-
ever, this structure is not optimized for use within SGX enclaves due to its memory

38 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Data buffer overview.

constraints and the detrimental effect on performance caused by scattered memory
access during pattern matching process.

To overcome these limitations and enhance performance, we adopt an alterna-
tive approach. We represent the DFA as a serialized version of the state machine
tree, using a one-dimensional integer array. The serialization process involves con-
verting the tree into an array which we will describe as two-dimensional array for
presentation purposes. In reality, the rows of this two-dimensional array are con-
catenated into one. The 2D array has 256 columns to accommodate the ASCII set,
representing all possible values of a single input byte. Each row corresponds to a
DFA state, and each cell contains the ID of the next valid transition for the input
byte it represents.

During the matching process, traversal of the serialized DFA tree starts from the
initial state (row 0). The appropriate column is selected based on the ASCII value
of the first input character. The next valid state is retrieved from the corresponding
cell, pointing to another row. The process continues by fetching the next character
from the input and moving to the cell indicated by the row and column. Negative
values in the array indicate final states and signify a successful match. The search
then proceeds using the absolute value as a reference for the next step. Fail states
direct the matcher to a previous valid state or the initial state 0.

The serialized DFA array simplifies the traversal process, minimizes the mem-
ory requirements to store the state machine and provides significant performance
benefits by enabling caching effects. Also, it enables fast and efficient malware
detection with a minimal codebase since DFA traversal is performed with simple
table indexing. Moreover, it reduces the Trusted Computing Base (TCB) and facil-

4.2. SERVER 39

(a) Aho-Corasick tree. (b) Aho-Corasick DFA serialized as an integer
array.

Figure 4.2: The Aho-Corasick Deterministic Finite Automaton (DFA) is repre-
sented as an integer array and consists of patterns such as "he," "she," "his," and
"hers." In sub-figure (a), the DFA is visualized with dark blue nodes indicating the
final states, which mark the end of a pattern. Alternatively, in sub-figure (b), the
same information is represented using negative values.

itates easy auditing to identify and eliminate any potential security vulnerabilities
or software bugs.

4.2.3 Enclave I/O

Our implementation focuses on ensuring both security and efficiency during the I/O
operations with the SGX enclaves, where the malware scanning code, signature-
set (DFA), and user data are securely stored. The enclave only provides a single
entry point for user-data input. However, due to the limitations of SGX enclaves
in accessing system calls, the non-SGX enabled portion of our server manages the
network sockets required for receiving client data. The data is encrypted when
transmitted over the network, and the secret keys necessary for decryption are
exclusively stored within the SGX enclave.

To minimize performance overhead, we employ an approach where incoming
encrypted client data is batched using a buffer in the non-SGX enabled part of
the application, as previously described. Once the buffer is full, it is transferred
into the enclave. The size of the buffer can be dynamically optimized based on the
current workload. Once a batch of user data is gathered, it is sent to the enclave
for processing via an Ecall function.

Before the malware detection can be performed, the matcher within the se-
cure enclave decrypts the user data using the appropriate key. This ensures that
even if the server is compromised and blocks data forwarding into the enclave, the
data, DFA, and secret keys remain protected and are not stored in plain text for-
mat in main memory or the file system. The results of the malware analysis are
compiled into a report that it is sent to the database so it can be parsed by the
client. This report contains information about infected files, identified malware,
and recommended actions for mitigating each threat.

40 CHAPTER 4. IMPLEMENTATION

4.2.4 Database Updates

The server’s database update process includes the tasks of updating the central
repository with crucial information and precise processing times pertaining to file
matches and various server-side operations. The server is responsible for updating
the database with malware pattern matches corresponding to each file. These
matches represent the outcomes of the file analysis conducted by the SGX-enabled
malware detection system. By associating files with their respective matches, the
database serves as a comprehensive repository of detected threats, vulnerabilities,
or other pertinent information. This facilitates efficient retrieval and analysis of
match data during subsequent operations or investigations.

In addition to file matches, the server captures and updates the database with
processing times related to specific server-side operations. This includes the data
receiving time, which denotes the duration required for the server to receive the
encrypted file(s) from the client. The decryption time signifies the duration nec-
essary for the server to decrypt the received file(s), ensuring its accessibility for
analysis. Furthermore, the matcher processing time quantifies the time taken by
the server to perform the actual analysis and match detection on the decrypted
file. By incorporating these processing times into the database, the system gains
insights into the performance of server-side operations, enabling the identification
of potential areas for optimization and performance enhancement.

Moreover, the server records and updates the database with server database
querying times. This metric denotes the duration it takes for the server to query the
central database when retrieving relevant information during the analysis process.
By monitoring and updating these query times in the database, the system can
evaluate the efficiency of server database operations, leading to analysis-driven
optimization opportunities.

By diligently updating the database with file matches, processing times (such as
receive time, decryption time, and matcher processing time), and server database
querying times, the server ensures the central repository accurately reflects the
outcomes of file analysis and provides performance-related insights. Consequently,
this enables efficient retrieval of all required data, meticulous analysis of server-
side operations, and optimization of database querying within the SGX-enabled
antivirus system.

4.3 Reports & Statistics

The reports and statistics captured offer valuable insights into the behavior and
effectiveness of the SGX-enabled antivirus system. The metrics related to buffer
entries and entry size provide an understanding of the system’s capacity to handle
incoming data and the granularity with which it can process individual items. The
DFA memlock status reveals whether the DFA component is securely locked in
memory, ensuring its integrity and protection from unauthorized access.

The metrics concerning states, cached states, and caching efficiency shed light

4.4. EXECUTION LIFE CYCLE 41

on the system’s utilization of deterministic finite automaton technology for threat
analysis. By monitoring the number of states and the effectiveness of caching,
administrators can assess the system’s efficiency in pattern matching and threat
detection. Additionally, these metrics serve as indicators for potential performance
bottlenecks or areas for improvement in the analysis process.

The metrics related to DFA size, DFA cache size, cache hits, cache misses,
cache references, hit rate, and miss rate provide an in-depth understanding of the
system’s memory consumption, cache utilization, and cache performance. A well-
optimized DFA cache with a high hit rate can significantly enhance the speed and
efficiency of the system’s operations, reducing the reliance on external resources
and improving overall performance.

In addition to the aforementioned metrics, the statistics on processed data and
throughput offer valuable insights into the system’s data handling capabilities.
The volume measurements in various units provide a comprehensive overview of
the amount of data processed by the system. This information enables adminis-
trators to gauge the system’s capacity and scalability, ensuring it can handle large
data volumes without compromising performance or stability. Furthermore, the
throughput metric, measured in Mbps or Gbps, provides a quantitative assessment
of the system’s processing speed. A higher throughput indicates a more efficient
handling of incoming data streams, reducing processing delays and enhancing the
system’s responsiveness.

The generated reports are stored in a designated logfile within the server. This
logfile serves as a persistent record of the system’s performance and analysis-related
information. By storing the reports in a logfile, the system ensures the availabil-
ity of historical data for future analysis, comparison, and reference purposes. It
also enables system administrators to track and monitor the system’s performance
over time, facilitating the identification of long-term trends and patterns. The log-
file serves as a valuable resource for ongoing system evaluation, troubleshooting,
and optimization efforts, providing a centralized repository of crucial performance-
related information within the SGX-enabled antivirus system.

4.4 Execution Life Cycle

In this section, we present the complete execution life cycle of our system. We
present the step-by-step processes involved in both the client and server compo-
nents, which are vital for ensuring secure and efficient communication and malware
identification. From the client’s perspective, we discuss tasks such as configura-
tion parsing, file search, encryption, and database logging. On the server side,
we present enclave initialization, data buffer management, pattern matching, and
database logging. By thoroughly examining the execution life cycle, we aim to
provide a comprehensive understanding of the processes that enable secure data
transmission, effective malware analysis, and insightful logging for subsequent anal-
ysis and system optimization.

42 CHAPTER 4. IMPLEMENTATION

The execution life cycle of the server side entails a series of fundamental steps.
First, the server initializes the Intel SGX enclave, establishing a secure and trusted
execution environment for confidential data processing. The enclave ensures the
integrity and confidentiality of the server’s operations, safeguarding against unau-
thorized access or tampering.

Upon enclave initialization, the server allocates and initializes a data buffer,
providing a protected and isolated space for temporary data storage during the
analysis process. This buffer is meticulously designed to efficiently handle incoming
data and facilitate subsequent operations, ensuring optimal performance and secure
data handling.

Furthermore, the server loads the Deterministic Finite Automaton (DFA), a
specialized data structure utilized for efficient pattern matching and malware de-
tection. Constructed based on known malicious patterns, the DFA serves as a
reference model for identifying potential threats within the analyzed data. Its im-
plementation allows for fast and reliable pattern matching, enhancing the server’s
capability to detect and mitigate potential security risks. Subsequently, the server
establishes a TCP socket and awaits for incoming client connections and malware
detection requests.

Once the server is initialized, the client(s) can begin to offload data for malware
analysis. The execution life cycle of the program on the client side adheres to a of
operations. Initially, the client retrieves the configuration file, parsing its contents
to determine pertinent parameters such as the hash mode, encryption bit mode,
time interval, iterative file search behavior, database table reset policy, and file
quarantine preferences. Armed with this information, the client proceeds to create
a TCP socket, and establishing a communication channel with the server.

Upon successful socket creation, the client engages in a secure key exchange
protocol with the server, guaranteeing the confidentiality and integrity of subse-
quent communication. Then, the client initializes a file structure, a data entity
designed to encapsulate crucial file attributes.

Then, the client initiates the file iteration phase by conducting an exhaustive
search of designated directories and subdirectories, collecting file metadata for anal-
ysis. For each encountered file, the client records its path, hash value, and unique
identifier within the file structure. Additionally, the client evaluates the file’s length
and content, employing cryptographic hash functions to calculate the hash value.

Moreover, the client applies data encryption to protect the file contents, ensur-
ing its confidentiality during transit. The encrypted file data is securely transmit-
ted to the server via the established TCP connection. Simultaneously, the client
maintains an auditable log in the database, documenting essential information, in-
cluding file details and timestamps. Following the transmission, the client awaits
the server’s response, facilitating bidirectional communication and synchronization.
The client logs client processing times and database query times into the database,
furnishing valuable insights into the execution performance and interaction of the
client with the database.

The server continuously receives the incoming data from the socket until the

4.4. EXECUTION LIFE CYCLE 43

data buffer reaches its capacity or all the required data has been received. This
iterative reading process ensures data integrity and minimizes the risk of data loss
or corruption, guaranteeing reliable data transfer between the client and the server.

Once the complete data has been acquired, the server transfers the data within
the enclave where they are decrypted with the appropriate shared key. Then, it in-
vokes the matcher function, utilizing the loaded DFA to perform pattern matching
and identify potential malware within the received data. Leveraging our custom im-
plementation of the Aho-Corasick algorithm, the matcher function systematically
compares the data against the DFA, enabling the accurate detection of potential
threats.

Upon completion of the analysis, the server logs relevant information into the
database. This includes the total number of matches found and the correspond-
ing files in which they were detected, providing valuable insights for subsequent
analysis and investigation. Additionally, the server records crucial statistics, such
as processing times, to assess performance and optimize the efficiency of its oper-
ations. The server also captures database querying times, facilitating performance
analysis and enabling optimization of database interactions for enhanced overall
system efficiency.

Once the malware detection is completed, the server notifies the client that
the process is completed. Then, the client can react to the identified threats and
utilize is quarantine capabilities. In subsequent iterations, the client verifies if
the calculated hash value of the marked files differs from the one computed in
the previous iteration and requests malware analysis only for the modified files,
minimizing the need for data transmission and malware scanning.

In essence, the client’s execution life cycle encompasses a series of operations,
spanning configuration parsing, secure communication establishment, file retrieval,
metadata collection, hash calculation, encryption, transmission, and logging. The
server’s execution life cycle encompasses critical phases, including enclave initial-
ization, data buffer allocation, DFA loading, socket creation, iterative data reading,
pattern matching using the DFA, database logging of match results, and perfor-
mance logging. These steps ensure the secure analysis of data, efficient malware
detection, and provide valuable insights for subsequent analysis, optimization, and
security enhancement. By utilizing SGX enclaves on the remote server, we ensure
that the malware analysis code, virus signatures and transmitted user data always
remain protected and unhampered. Also, we ensure user data privacy since even
honest-but-curious infrastructure providers, hosting our server, can never gain ac-
cess to the transmitted data or modify the signature DFA to perform side channel
attacks that could compromise data privacy.

44 CHAPTER 4. IMPLEMENTATION

Chapter 5

Evaluation

In this chapter, we present our system’s evaluation using micro- and macro- bench-
marks and a combination of real and synthetic workloads. We present the perfor-
mance metrics collected by measuring each component’s various operations, as well
as end-to-end performance metrics.

5.1 Experimental Setup

Our malware detection server is hosted on a desktop computer with an eight-core
Intel i7-8700K CPU, operating at a frequency of 3.7GHz, and is able to utilize Intel
SGX enclaves. The server is also equipped with 32GB of DDR4 RAM clocked at
2400MHz. The host is running Arch Linux with Linux kernel version 6.1.29-1-lts
and the official Intel SGX SDK, PSW and driver.

The client is hosted on a Raspberry Pi 4, a single-board computer widely used
for various applications. The Raspberry Pi 4 features a Broadcom BCM2711 quad-
core Cortex-A72 (ARMv8) 64-bit SoC operating at a frequency of 1.5GHz. The
client system is equipped with either 2GB, 4GB, or 8GB of LPDDR4-3200 SDRAM.
The Raspberry Pi 4 has built-in Gigabit Ethernet for network connectivity. The
client and the server reside in the same network for testing purposes.

5.2 Workloads

To thoroughly evaluate our system, we use a combination or real and synthetic
workloads. This combination of workloads allows us to obtain the real performance
metrics of our system as well as stress the malware detection system on purpose in
order to understand its behaviour under the worst case conditions.

Synthetic Workload The synthetic signature set consists of custom patterns,
with each pattern being 255 bytes in size. In total, we generate three synthetic
signature sets, containing 2000, 4000 and 6000 patterns respectively. In this way,
we aim to understand how the number of malware patterns affect the number of

45

46 CHAPTER 5. EVALUATION

generated DFA states and its overall size, and how, consecutively, this affects the
malware detection performance.

Along with this synthetic signature set, we generate a set of six synthetic data
workloads. These data sets contain thousands of files (of various data types) rang-
ing in size from 100 KB to 1 MB, aiming to emulate real-world files found in
common IoT devices. Each of these data workloads are carefully infected at 0%,
5%, 10%, 20%, 50%, and 100% respectively, using the custom malware patterns.
In total, we generate 18 data workloads spanning three sets, each covering various
contamination cases for each of the three synthetic signature sets.

The first workload contains only benign files; a case which is the most com-
monly expected. The next three workloads aim to emulate low, medium, and high
infection rates that might be encountered in real use cases. Finally, the workloads
infected by 50% and 100% represent cases that we do not expect to encounter but
are used to stress the limits of our malware detection engine.

Real Workload In contrast to the synthetic signature workload, the real-world
signature workload contains 1400 malware patterns that we acquire and extract
from various sources, such as malware signature databases and threat intelligence
networks. The patterns in this workload do not have a fixed size and span from
several bytes to a few hundreds of bytes. The purpose of this workload is to evaluate
our system using real-world data.

To generate the data workload for the real-world ruleset, we gather 1500 benign
files from the client’s file system, including various files and executables, ranging
from 100 KB to 1 MB, for consistency with the synthetic workload. Similar to
the synthetic workload, we use these data to generate six workloads, infected by
0%, 5%, 10%, 20%, 50%, and 100% respectively. During the datasets’ infection,
we select the malware patterns randomly but avoid to infect multiple files with
the same pattern, thus triggering all 1400 malware patterns when using the 100%
infected workload.

5.3 DFA Properties

We start our evaluation by presenting the properties of the DFAs generated us-
ing the three synthetic signature sets (containing 2000, 4000 and 6000 patterns
respectively) and the real-world signature set containing 1400 malware patterns.
We compile all the signature sets and measure the number of generated states and
the overall serialized DFA size. The results of this evaluation are presented in Fig-
ure 5.1, where sub-figure 5.1(a) depicts the DFA’s size and sub-figure 5.1(b) the
number of generated DFA states.

We notice that the DFA size increase between the automaton containing 2000
signatures and 4000 signatures is 100%. Also, the DFA compiled with 6000 malware
patterns has a 50% increased size compared to the automaton containing 4000.
This indicates that the size of the serialized DFA is proportional to the number

5.4. MICRO-BENCHMARKS 47

 0

 400

 800

 1200

 1600

Synth_2k

Synth_4k

Synth_6k

R
eal_1.4K

D
F
A

 S
iz

e
 (

M
B

y
te

s
)

Size

(a) DFA Size.

 10000

 100000

 1x106

Synth_2k

Synth_4k

Synth_6k

R
eal_1.4K

N
u

m
b

e
r

o
f

S
ta

te
s

States

(b) DFA States

Figure 5.1: DFA size and number of states for the three synthetic signature sets
and real-world signature set.

of malware patterns, when they have the same or similar size. Also, we notice
that when compiling more than 4000 patterns, sized at 255 bytes, the serialized
automaton exceeds 1GB in size. Observing sub-figure 5.1(b), we notice that the
same behaviour is reported for the number of generated states.

On the other hand, the DFA compiled with 2000 synthetic patterns has only
40% more patterns than the real-world DFA but requires 7.2 times more memory
and has 7.2 times less states. This indicates that the size and randomness of
the malware patterns are more important than their absolute number in affecting
the DFA’s properties. We also notice that the states of the DFA compiled with
the real-world signature set are more dense, meaning that each state contains more
transitions to other states; a behaviour that is exhibited due to the partial similarity
of certain patterns (e.g., common prefixes or suffixes). These results indicate that
several thousands of real malware signatures could be compiled to a singe DFA
without requiring excessive memory capacity for their storage. Also, this can lead
to several optimizations where patterns with similarities can be grouped together
to generate multiple small DFAs with better caching properties.

5.4 Micro-benchmarks

In this section, we evaluate the performance of the various operations performed
both by the client and the server. At the client’s side, we measure the time required
to fetch the files that need to be sent remotely for malware analysis and the time
required to evaluate their hash values, using both SHA1 and MD5. Also we measure
the time required to encrypt them before transmission, using AES-GCM-128 as well
as the time required for the client to perform the database logging. The data set
used for this evaluation contains ∼1GB of data, spanning 2000 files and the server
is configured with the DFA produced by compiling 2000 random synthetic malware
signatures. The results of this evaluation are presented in Figure 5.2(a).

48 CHAPTER 5. EVALUATION

 0.1

 1

 10

 100

R
ead

H
ash_SH

A1

H
ash_M

D
5

Encrypt

D
B_W

rite

E
xe

c
u

ti
o

n
 T

im
e

 (
S

e
c
o

n
d

s
) Exec. Time

(a) Client

 0.1

 1

 10

 100

Initialize

D
ecrypt

Processing

D
B_W

rite

E
xe

c
u

ti
o

n
 T

im
e

 (
S

e
c
o

n
d

s
) Exec. Time

(b) Server

Figure 5.2: DFA size and number of states for the three synthetic signature sets
and real-world signature set.

We notice that the most time consuming operations is the database logging
functionality, requiring ∼11 seconds to complete. During this process, the client
saves all the required metadata for each transmitted file, such as its name, absolute
path, hash values, status, etc. Also, we notice that, as expected, the encryption
operation is quite fast, requiring less time to complete compared to the hash value
generation. Moreover, MD5 is ∼30% faster than SHA1, with SHA1 providing
higher collision resistance. However, MD5 is a perfect alternative for low power
IoT devices offering adequate collision resistance for our use case.

We also measure the various operations performed by the malware detection
server and report their execution times in Figure 5.2(b). As expected, the malware
scanning process consumes the most time, as it is the most complex operation.
Also, we notice that data decryption within the SGX enclave is more time consum-
ing than the encryption performed by the client. Moreover, the server performs
less write operations to the remote database, as its main logging concerns only the
malware detection process, producing less metadata. Finally, the server’s initial-
ization time is reported at ∼6 seconds. During this operation, the server sets up
all the required data structures, such as the data buffers, initializes its network
sockets and SGX enclave, and loads the DFA into the enclave. While this process
seams time consuming, we note that it is only performed once, during its bootstrap
phase, and is not performed between every consecutive remote malware detection
request.

5.5 Malware Detection Performance

In this section, we conclude our evaluation by measuring the sustainable through-
put achieved by our enclave-protected malware detection engine. To identify its
performance characteristics we evaluate the engine using both the synthetic and
the real-world workload.

5.5. MALWARE DETECTION PERFORMANCE 49

5.5.1 Synthetic Workload

We begin the evaluation starting with the synthetic workload. For this analysis,
we set up the malware detection server, each time using one of the three synthetic
signature DFAs, containing 2000, 4000 and 6000 patterns respectively. Then, we
utilize the client to offload each synthetic data workload for malware analysis 10
times and report the average sustainable throughput achieved by the malware de-
tection engine. Between each consecutive offload request, we do not place malicious
files in the quarantine after their identification so that the data stream maintains
its worst case properties.

 0

 200

 400

 600

 800

0% 5% 10%
20%

50%
100%

Signatures

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Infection Percentage

2000
4000
6000

Figure 5.3: Malware detection throughput evaluation using workloads infected by
0%, 5%, 10%, 20%, 50% and 100% and synthetic malware signature sets containing
2000, 4000 and 6000 patterns.

The results of this analysis are presented in Figure 5.3. The X-axis indicates the
infection percentage of each data workload while the Y-axis indicates the achievable
malware detection throughput in Mbits/second. We notice that the best perfor-
mance is achieved when utilizing 2000 malware signatures, where the engine is able
to perform the analysis at ∼570 Mbps. Increasing the number of patterns to 4000
yields a ∼17.5% decreased throughput. Also, the DFA containing 6000 patterns
yields a ∼23% decreased processing throughput compared to the automaton con-
taining 2000 patterns and exhibits a ∼7% performance decrease compared to the
DFA compiled with 4000 patterns. These results indicate that the malware scan-
ning performance decreases when the DFA’s size increases, but it is not directly
proportional to its size.

50 CHAPTER 5. EVALUATION

5.5.2 Real-World Workload

We conclude our evaluation by performing a similar malware detection throughput
evaluation, this time using the real-world signature set and data workloads, follow-
ing the same configuration and methodology as described in the previous section.
The results of this analysis are presented in Figure 5.4. The first thing that we
notice is that the infection percentage has a low effect on the malware detection
engine’s performance. The best throughput is achieved when the entire data set
is benign, with a ∼0.5% performance decrease when the data are infected at 5%
(i.e. every 100 files, 5 are infected). The worst performance is recorded for the 50%
and 100% infection rates (i.e., half and all files are infected), yielding ∼1% lower
throughput than the benign data set.

 800

 805

 810

 815

 820

0% 5% 10%
20%

50%
100%

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Infection Percentage

Throughput

Figure 5.4: Malware detection throughput evaluation using workloads infected
by 0%, 5%, 10%, 20%, 50% and 100% and a signature set containing real-world
malware patterns, collected by various online sources.

After examining the DFA access patterns during the malware detection pro-
cess, we notice that the malware engine performs several traversals on the DFA
but without managing to reach a final state. This happens due to the high byte
randomness exhibited both by the contents of the executable files and the malware
signatures, constantly triggering the pattern matching process but without termi-
nating it since the patterns do not always exist in the files. For example, several
five- to ten-byte sequences in the input files trigger the prefixes of various patterns.
This behaviour eliminates possible caching effects, affecting the overall performance
of all workloads. The best caching effects are reported for text-based files, where
the possible input bytes are limited to the printable ASCII set, thus triggering less
patterns and with smallwe sequences (i.e., for up to five bytes). Finally, we notice
that the malware engine is able to achieve up to ∼815 Mbps of malware detec-

5.5. MALWARE DETECTION PERFORMANCE 51

tion throughput, being able to process data received by a 1Gbps network channel
almost in real time. This results indicate that with a certain level of parallelism
and optimizations, the system will be able to sustain real-time processing when
communicating over 1Gbps network streams.

52 CHAPTER 5. EVALUATION

Chapter 6

Related Work

The security research community is primarily focused on developing malware de-
tection techniques to safeguard users and organizations from ever-evolving cyber
threats. Among the notable contributions in this field, ClamAV [12] has emerged as
a popular open-source anti-malware solution that effectively accelerates scanning
and matching processes. CloudAV [13] introduced the concept of cloud-based mal-
ware scanning, later extended to the mobile environment in [14]. However, while
CloudAV achieves high detection rates, it compromises user privacy by exposing
sensitive information.

SplitScreen proposes a distributed anti-malware system that utilizes bloom fil-
ters to expedite malware scanning [15]. RScam offers another cloud-based anti-
malware system that ensures efficient security services and data privacy protection
for resource-constrained devices [16]. However, RScam assumes a trusted server en-
vironment. In our work, we propose a cloud-based malware detection engine that
leverages hardware-assisted enclaves to safeguard user data and preserve privacy.

In the context of cloud-based services, there is a growing interest in outsourcing
network processing applications to improve cost-effectiveness, performance, and
scalability. APLOMB enables the outsourcing of enterprise middlebox processing in
the cloud [17], while BlindBox and Embark propose processing encrypted traffic for
confidentiality [18, 19]. The lack of transparency regarding user data manipulation
by cloud service providers has been addressed by works like CloudFence [20].

TEEs, such as Intel SGX, have gained attention for ensuring data and code
protection. Several works explore the utilization of TEEs for outsourced appli-
cations in the cloud, including privacy-preserving data analytics [21, 22, 23] and
secure middlebox functionality [24, 25, 26, 27]. Unlike these works, our system
aims to provide a secure cloud-based anti-malware solution for all device types
while prioritizing user privacy. Furthermore, our approach avoids executing the
antivirus solution on top of SGX using unmodified applications, as it would in-
crease the trusted computing base (TCB), potentially enlarging the attack surface
and reducing end-to-end performance [28, 29, 30, 31, 32].

In the context of IoT devices State of the Art [33] aims to develop a hybrid

53

54 CHAPTER 6. RELATED WORK

in-cloud malware analysis and detection system for intelligent IoT devices, incor-
porating a lightweight anti-malware engine, a lightweight agent, and cloud-based
anti-malware engines to enhance response time, client protection, and bandwidth
efficiency compared to existing systems while EPMDroid [34] is a research endeavor
that proposes EPMDroid, a privacy-preserving malware detection scheme utilizing
hardware-based Trusted Execution Environment technologies like Intel SGX, to
effectively detect mobile malware in the rapidly expanding mobile communication
networks and IoT, overcoming memory limitations through data fusion techniques.

Several recent advancements have emerged to enhance the security of SGX, fo-
cusing on mitigating memory bugs [35, 36]. SGXBOUNDS [37] introduces efficient
bounds-checking mechanisms that minimize memory overhead and accommodate
the limited size of the EPC. SGX-Shield [38] implements Address Space Layout
Randomization (ASLR) within enclaves, employing a scheme to maximize entropy
and provides the capability to conceal and enforce ASLR decisions. Eleos [39]
presents a novel approach to reduce enclave exits by asynchronously servicing sys-
tem calls outside of enclaves and enabling user-space memory paging. Additionally,
SGX-Elide [40] aims to protect the confidentiality of SGX code itself by enabling
dynamic updates of the enclave code. Lastly, T-SGX [10] combines SGX with
Transactional Synchronization Extensions to mitigate controlled-channel attacks.
These advancements operate independently from our security stack and can be
seamlessly integrated into our proposed system.

Chapter 7

Conclusion and Future Work

In conclusion, this work presents the developement of a cloud-based malware detec-
tion system, aiming to provide malware scanning as a service to the IoT ecosystem.
Our work highlights the potential of user-level enclave-based Trusted Execution En-
vironments (TEEs) in developing a secure and privacy preserving malware detec-
tion solution that safeguards the protection tool’s execution as well as the privacy
of the offloaded data, even on hostile infrastructure.

By securely offloading the computationally intensive malware analysis task to
remote servers, hosted within SGX enclaves, the proposed system addresses perfor-
mance limitations enforced by low-power IoT devices and provides a scalable and
centralized protection solution. The system optimizes IoT resource utilization and
offers a new approach to signature-based malware detection in IoT environments.

The research outcomes aim to contribute to the advancement of IoT security by
providing insights into preserving privacy and security in interconnected devices.
Additionally, the proposed system enables secure communication, attestation, en-
hanced data privacy and auditable logging capabilities. Also, in this work we
explore customizations that can be performed to popular pattern-matching algo-
rithms used in the field of malware detection, such as Aho-Corasick, that enable
them to be efficiently and securely executed in memory-constrained TEEs.

7.1 Summary of Contributions

In summary, the contributions of this work are the following:

• We propose a practical cloud-based malware detection solution that aims
to provide malware detection service to a plethora of IoT devices without
exhausting their limited resources.

• Our system prioritizes strong privacy-preserving guarantees for clients with
emphasis on the secure remote analysis of their sensitive data.

55

56 CHAPTER 7. CONCLUSION AND FUTURE WORK

• We present the methodology that can be used to leverage user-level enclaves
in designing a signature detection engine able to preserve its security prop-
erties even when residing in untrusted or hostile infrastructure.

7.2 Future Work

As future work, there are several areas that can be explored to further enhance our
proposed cloud-based malware detection solution leveraging Intel SGX enclaves.
First, we aim to optimize our server for handling multiple clients concurrently. By
implementing efficient thread handling mechanisms, we can improve the scalability
and performance of our system allowing it to handle a larger number of IoT devices
simultaneously. This can be particularly beneficial in scenarios where there is a
significant number of IoT devices requiring malware analysis at the same time.
Also, we plan to implement load balancing mechanisms responsible for managing
multiple server instances, aiming to mitigate possible load spikes and latency issues
when handling large workloads.

Second, we can integrate advanced threat intelligence capabilities into our solu-
tion. This can involve incorporating YARA rules, a powerful format for identifying
and categorizing malware based on patterns and characteristics. We can automate
the retrieval of YARA rules from threat intelligence networks using STIX (Struc-
tured Threat Information Expression), which will provide up-to-date and relevant
rules for malware detection in a completely automated manner. This integration
can greatly enhance the accuracy and effectiveness of our malware detection sys-
tem, enabling it to detect and mitigate new and emerging threats and immediately
respond to malware campaigns.

Additionally, exploring the possibilities offered by Intel SGX2, the next gen-
eration of Intel SGX technology, holds promise for future enhancements. SGX2
introduces new features and improvements, such as larger enclave sizes, enhanced
attestation mechanisms, and support for dynamic memory management within en-
claves. By leveraging SGX2, we can further optimize the performance and security
of our solution, enabling even more efficient and robust malware detection capa-
bilities and the ability to store and process several thousands of malware patterns
simultaneously while serving multiple clients concurrently.

Bibliography

[1] “Knuth–morris–pratt algorithm,” https://en.wikipedia.org/wiki/Knuth%E2%
80%93Morris%E2%80%93Pratt_algorithm.

[2] “Boyer–moore string-search algorithm,” https://en.wikipedia.org/wiki/
Boyer%E2%80%93Moore_string-search_algorithm.

[3] “Rabin–karp algorithm,” https://en.wikipedia.org/wiki/Rabin%E2%80%
93Karp_algorithm.

[4] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to bibli-
ographic search,” Communications of the ACM, vol. 18, no. 6, pp. 333–340,
1975.

[5] “Intel sgx,” https://www.intel.com/content/www/us/en/developer/tools/
software-guard-extensions/get-started.html.

[6] “Arm trustzone,” https://www.arm.com/technologies/trustzone-for-cortex-a.

[7] “Amd sev-snp,” https://www.amd.com/system/files/techdocs/
sev-snp-strengthening-vm-isolation-with-integrity-protection-and-more.pdf.

[8] “Amd psp,” https://en.wikipedia.org/wiki/AMD_Platform_Security_
Processor.

[9] “Apple secure enclave,” https://support.apple.com/guide/security/
secure-enclave-sec59b0b31ff/web.

[10] “Enclavedb,” https://www.microsoft.com/en-us/research/uploads/prod/
2018/02/enclavedb.pdf.

[11] “Diffie-hellman,” https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_
key_exchange.

[12] “Clamav-cisco talos intelligence group,” https://www.talosintelligence.com/
clamav.

[13] J. Oberheide, E. Cooke, and F. Jahanian, “Cloudav: N-version antivirus in
the network cloud.” in USENIX Security Symposium, 2008, pp. 91–106.

57

https://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm
https://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm
https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string-search_algorithm
https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string-search_algorithm
https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_algorithm
https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_algorithm
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/get-started.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/get-started.html
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.amd.com/system/files/techdocs/sev-snp-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/techdocs/sev-snp-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://en.wikipedia.org/wiki/AMD_Platform_Security_Processor
https://en.wikipedia.org/wiki/AMD_Platform_Security_Processor
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://www.microsoft.com/en-us/research/uploads/prod/2018/02/enclavedb.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2018/02/enclavedb.pdf
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://www.talosintelligence.com/clamav
https://www.talosintelligence.com/clamav

58 BIBLIOGRAPHY

[14] J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn, and F. Jahanian, “Virtu-
alized in-cloud security services for mobile devices,” in Proceedings of the first
workshop on virtualization in mobile computing, 2008, pp. 31–35.

[15] S. K. Cha, I. Moraru, J. Jang, J. Truelove, D. Brumley, and D. G. Andersen,
“Splitscreen: Enabling efficient, distributed malware detection,” Journal of
Communications and Networks, vol. 13, no. 2, pp. 187–200, 2011.

[16] H. Sun, X. Wang, J. Su, and P. Chen, “Rscam: Cloud-based anti-malware via
reversible sketch,” in Security and Privacy in Communication Networks: 11th
EAI International Conference, SecureComm 2015, Dallas, TX, USA, October
26-29, 2015, Proceedings 11. Springer, 2015, pp. 157–174.

[17] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar,
“Making middleboxes someone else’s problem: Network processing as a cloud
service,” ACM SIGCOMM Computer Communication Review, vol. 42, no. 4,
pp. 13–24, 2012.

[18] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox: Deep packet
inspection over encrypted traffic,” in Proceedings of the 2015 ACM conference
on special interest group on data communication, 2015, pp. 213–226.

[19] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark: Securely
outsourcing middleboxes to the cloud,” in 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 16), 2016, pp. 255–273.

[20] V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, and A. D. Keromytis,
“Cloudfence: Data flow tracking as a cloud service,” in Research in Attacks,
Intrusions, and Defenses: 16th International Symposium, RAID 2013, Rodney
Bay, St. Lucia, October 23-25, 2013. Proceedings 16. Springer, 2013, pp. 411–
431.

[21] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz,
and M. Russinovich, “Vc3: Trustworthy data analytics in the cloud using sgx,”
in 2015 IEEE symposium on security and privacy. IEEE, 2015, pp. 38–54.

[22] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and I. Sto-
ica, “Opaque: An oblivious and encrypted distributed analytics platform,” in
14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), 2017, pp. 283–298.

[23] S. Chandra, V. Karande, Z. Lin, L. Khan, M. Kantarcioglu, and B. Thurais-
ingham, “Securing data analytics on sgx with randomization,” in Computer
Security–ESORICS 2017: 22nd European Symposium on Research in Com-
puter Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part I 22.
Springer, 2017, pp. 352–369.

BIBLIOGRAPHY 59

[24] C. Priebe, K. Vaswani, and M. Costa, “Enclavedb: A secure database using
sgx,” in 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018,
pp. 264–278.

[25] D. Goltzsche, S. Rüsch, M. Nieke, S. Vaucher, N. Weichbrodt, V. Schiavoni,
P.-L. Aublin, P. Cosa, C. Fetzer, P. Felber et al., “Endbox: Scalable middlebox
functions using client-side trusted execution,” in 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). IEEE,
2018, pp. 386–397.

[26] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer,
“Shieldbox: Secure middleboxes using shielded execution,” in Proceedings of
the Symposium on SDN Research, 2018, pp. 1–14.

[27] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy, “{SafeBricks}: Shielding
network functions in the cloud,” in 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), 2018, pp. 201–216.

[28] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’keeffe, M. L. Stillwell et al., “{SCONE}: Secure
linux containers with intel {SGX},” in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), 2016, pp. 689–703.

[29] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an un-
trusted cloud with haven,” ACM Transactions on Computer Systems (TOCS),
vol. 33, no. 3, pp. 1–26, 2015.

[30] S. Shinde, D. Le Tien, S. Tople, and P. Saxena, “Panoply: Low-tcb linux
applications with sgx enclaves.” in NDSS, 2017.

[31] H. Tian, Y. Zhang, C. Xing, and S. Yan, “Sgxkernel: A library operating
system optimized for intel sgx,” in Proceedings of the Computing Frontiers
Conference, 2017, pp. 35–44.

[32] C.-C. Tsai, D. E. Porter, and M. Vij, “{Graphene-SGX}: A practical library
{OS} for unmodified applications on {SGX},” in 2017 USENIX Annual Tech-
nical Conference (USENIX ATC 17), 2017, pp. 645–658.

[33] S. Alam, I. Sogukpinar, I. Traore, and Y. Coady, “In-cloud malware analy-
sis and detection: State of the art,” in Proceedings of the 7th International
Conference on Security of Information and Networks, 2014, pp. 473–478.

[34] W. Wei, J. Wang, Z. Yan, and W. Ding, “Epmdroid: Efficient and privacy-
preserving malware detection based on sgx through data fusion,” Information
Fusion, vol. 82, pp. 43–57, 2022.

[35] “Fabrice bellard. quickjs benchmark.” https://bellard.org/quickjs/bench.html.

https://bellard.org/quickjs/bench.html

60 BIBLIOGRAPHY

[36] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: A
virtual machine-based platform for trusted computing,” in Proceedings of the
nineteenth ACM symposium on Operating systems principles, 2003, pp. 193–
206.

[37] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia, P. Felber, and
C. Fetzer, “Sgxbounds: Memory safety for shielded execution,” in Proceedings
of the Twelfth European Conference on Computer Systems, 2017, pp. 205–221.

[38] J. Seo, B. Lee, S. M. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim, “Sgx-
shield: Enabling address space layout randomization for sgx programs.” in
NDSS, 2017.

[39] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos: Exitless os
services for sgx enclaves,” in Proceedings of the Twelfth European Conference
on Computer Systems, 2017, pp. 238–253.

[40] E. Bauman, H. Wang, M. Zhang, and Z. Lin, “Sgxelide: enabling enclave
code secrecy via self-modification,” in Proceedings of the 2018 International
Symposium on Code Generation and Optimization, 2018, pp. 75–86.

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Outline

	2 Background
	2.1 Malware Analysis
	2.1.1 Choosing the Appropriate Technique
	2.1.2 Pattern-based Malware Analysis
	2.1.3 Pattern-matching Algorithms
	2.1.4 Aho-Corasick

	2.2 Trusted Execution Environments
	2.2.1 Intel SGX
	2.2.2 Arm TrustZone
	2.2.3 AMD SEV-SNP
	2.2.4 AMD PSP
	2.2.5 Apple Secure Enclave
	2.2.6 Choosing the Appropriate TEE

	3 Design
	3.1 Threat Model
	3.2 Client
	3.3 Server
	3.4 Database
	3.5 Registration
	3.6 Attestation

	4 Implementation
	4.1 Client
	4.1.1 Connection
	4.1.2 Whitelist
	4.1.3 Encryption
	4.1.4 Data Transmission
	4.1.5 Database Updates
	4.1.6 Quarantine & Mitigation

	4.2 Server
	4.2.1 Data Handling
	4.2.2 Malware Analysis
	4.2.3 Enclave I/O
	4.2.4 Database Updates

	4.3 Reports & Statistics
	4.4 Execution Life Cycle

	5 Evaluation
	5.1 Experimental Setup
	5.2 Workloads
	5.3 DFA Properties
	5.4 Micro-benchmarks
	5.5 Malware Detection Performance
	5.5.1 Synthetic Workload
	5.5.2 Real-World Workload

	6 Related Work
	7 Conclusion and Future Work
	7.1 Summary of Contributions
	7.2 Future Work

