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Abstract

Scene understanding, localization and mapping, play a crucial role in computer vision,
robotics and geomatics, providing valuable knowledge through a vast and increasing
number of methodologies and applications. However, although the literature
flourishes with related studies in urban and indoor environments, far fewer studies
concentrate in unstructured environments.

The main goal of this dissertation is to design and develop a visual localization
framework based on deep learning that aims to enhance scene understanding and the
potential of autonomous navigation in challenging unstructured scenes and develop a
precise positioning methodology, for characteristic point localization in GNSS-denied
environments. The dissertation can be divided in five different parts: (a) design of the
training and evaluation datasets, (b) implementation and improvement of a keypoint
detection and description neural network for unstructured environments (c)
implementation and development of a lightweight neural network for visual
localization focused on unstructured environments and integration of the trained
model in a SLAM (Simultaneous Localization and Mapping) system as a feature
extraction module (d) development of a lightweight encoder-decoder architecture for
lunar ground segmentation (e) development of a precise positioning and mapping
alternative for GNSS-denied environments.

Regarding the first part of the dissertation, two datasets were designed and created for
the training and evaluation of keypoint detectors and descriptors. The training dataset
includes 48 000 of FPV (First-Person-View) images with wide range of variations in
landscapes, including images from Earth, Moon and Mars while the evaluation dataset
includes about 120 sequences of planetary-(like) scenes where each sequence contains
the original image and five different generated representations of the same scene, in
terms of illumination and viewpoint.

In the second part of this dissertation, a self-supervised neural network architecture
called SuperPoint was implemented and modified, investigating its efficiency in
keypoint detection and description applied in unstructured and planetary scenes.
Three different SuperPoint models were produced: (a) an original SuperPoint model
trained from scratch, (b) an original fine-tuned SuperPoint model, (c) an optimized
SuperPoint model trained from scratch. The experimentation proved that the
optimized SuperPoint model provides superior performance, compared with the
original SuperPoint models and handcrafted keypoint detectors and descriptors.

Concerning the third part of the dissertation, a multi-task deep learning architecture is
developed for keypoint detection and description, focused on poor-featured
unstructured and planetary scenes with low or changing illumination while the
training and evaluation processes were conducted using the proposed datasets.
Moreover, the trained model was integrated in a visual SLAM (Simultaneous
Localization and Maping) system as a feature extraction module, and tested in two



feature-poor unstructured areas. Regarding the results, the proposed architecture
provides increased accuracy in terms of keypoint description, outperforming well-
known handcrafted algorithms while the proposed SLAM achieved superior results in
areas with medium and low illumination compared with the ORB-SLAM2 algorithm.

In the fourth part of the dissertation, a lightweight encoder-decoder neural network
(NN) architecture is proposed for rover-based ground segmentation on the lunar
surface. The proposed architecture is composed by a modified MobilenetV2 as
encoder and a lightweight U-net decoder while the training and evaluation process
were conducted using a publicly available synthetic dataset with lunar landscape
images. The proposed model provides robust segmentation results, achieving similar
accuracy with the original U-net and U-net-based architectures which are 110 - 140
times larger than the proposed architecture. This study, aims to contribute in lunar
ground segmentation utilizing deep learning techniques, while it proves a significant
potential in autonomous lunar navigation ensuring a safer and smoother navigation on
the moon.

Regarding the fifth part of the dissertation, a precise positioning alternative was
developed aiming to localize fiducial markers and characteristic points of the scene,
providing their local coordinates in 3D space under a high level of accuracy. At first,
the fiducial markers are placed in the scene where one of them is used as the origin
marker, while the target markers represent the characteristic points or features.
Subsequently, the proposed SLAM algorithm enables an RGB-Depth camera to map
the desired area and localize itself in an unknown and challenging environment, while
in combination with geometrical transformations, localization and optimization
techniques, the present methodology estimates the coordinates of target markers and
an arbitrary point cloud which approximates the structure of the environment.

It is clear that the use of deep learning in unstructured and planetary environments in
terms of scene recognition, localization and mapping provides a significant potential
for the future applications, reinforcing crucial topics such as autonomous navigation
in hazardous and unknown environments. This dissertation aspires to encourage the
investigation and development of AI models and datasets, focused on planetary
exploration missions and especially on high and low-level scene understanding using
computationally efficient equipment and methods, reducing the economic and energy
costs of robotic systems.
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Chapter 1

Introduction
A key factor in all mobile robotic systems is autonomous navigation, which enables
the robotic system to sense, perceive, interpret its surroundings, act, and ultimately
complete its mission without any human intervention or control (Bagnell et al. 2010).
Autonomous navigation enhances the functionality of robotic systems, allowing them
to perform demanding, hazardous, or even impossible tasks for humans in a wide
range of environments, while also increasing safety in the workspace and reducing the
risk of accidents and injuries (Cheng et al. 2018).

Scene understanding, localization and mapping constitute significant scientific tasks
within autonomous navigation, incorporating numerous novel methodologies,
applications, and services. These applications range from self-driving cars and search
and rescue operations to industrial automation and inspection, and they are deployed
in various environments, each presenting unique challenges. However, despite the
abundance of literature on autonomous navigation in urban and indoor settings, there
are notably far fewer studies that focus on unstructured environments (Guastella &
Muscato 2021). As Brock et al. (2016) stated, “unstructured environments are the
environments that have not been modified specifically to facilitate the execution of a
task by a robot”.

Unstructured environments present unique challenges for autonomous robotic systems,
especially for ground-based vehicles that must adapt and operate within uncertain and
demanding conditions (Wang et al. 2017). Navigation and localization over uneven
terrain in completely unknown or GNSS (Global Navigation Satellite System)-denied
scenes, including planetary environments, while adapting to changes in illumination
or weather conditions, can significantly reduce the effectiveness of most state-of-the-
art algorithms, which may fail to provide robust and accurate results.

Furthermore, planetary landscapes feature sand dunes, large rocks, boulders, craters,
and harsh surfaces, further complicating the safe navigation and operation of a rover.
Several incidents during Mars exploration underscore the importance of effective
rover navigation: The Opportunity rover was stuck within a sand dune on Meridiani
Planum (Cowen 2005) for five weeks, the Spirit rover was trapped in soft soil in an
area called "Troy," leading to the mission's termination in 2011, and Curiosity's
wheels suffered damage due to the harsh Martian terrain.

Nonetheless, for nearly two decades, planetary rovers have continued to explore Mars,
while the Artemis program's primary objective is to establish a human presence on the
Moon, with the aim to further improve the required technology for upcoming space
missions (Dunbar 2019).
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Ground-based autonomous vehicles can also play a crucial role in other types of
unstructured environments, such as construction sites, which are considered
hazardous due to heavy machinery and the presence of moving construction vehicles.
Therefore, autonomous navigation has the potential to enhance worker and equipment
safety by automating tasks that are currently performed manually, including material
handling, excavation, and site inspection (Xu et al. 2020).

However, despite the importance of autonomous navigation in unstructured
environments, there is a scarcity of specialized studies focused on these terrains, along
with a lack of datasets compared to urban and indoor environments (Schubert et al.
2018, Geiger et al. 2012, Burri et al. 2016, Huang et al. 2018). Hence, there is a need
to explore and develop new approaches, methodologies, and datasets that emphasize
the autonomous navigation capabilities in unstructured and planetary environments.

The motivation behind this dissertation stems from the need to address a significant
gap in the literature concerning scene understanding, localization, and mapping in
GNSS-denied, unstructured environments. Specifically, two main driving forces fuel
this research: (i) the necessity to investigate autonomous navigation techniques in
challenging terrains using specialized learning-based architectures and (ii) the need to
investigate and develop precise localization techniques based on visual sensors in
unstructured environments. Following these motivations, this dissertation proposes a
visual localization framework tailored to unstructured environments, capable of
providing both low and high levels of scene understanding and precise localization of
characteristic points with high accuracy.

1.1 Objectives

The main objective of this dissertation is to design and develop a visual localization
framework based on deep convolutional neural networks that aims to enhance scene
understanding and the potential of autonomous navigation in challenging unstructured
environments and develop a precise positioning methodology, for characteristic point
localization in GNSS-denied environments.

The principal objective of this dissertation that is described above, can be divided in
five major objectives which analyzed below.

1. Creation of datasets for training and evaluation of the learning-based architectures

The backbone of the learning-based visual localization framework is the training and
evaluation datasets which are used to feed the deep learning architectures. However,
these methods use image datasets which include scenes by urban, indoor, or vegetated
environments (Weyand et al. 2020, Lin et al. 2014, Cao et al. 2021) while there is a
lack of publicly available datasets for unstructured environments.
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In this dissertation, a dataset specialized on unstructured environments focused on
rocky and sandy scenes is created aiming to be used for the training and evaluation
processes of deep learning architectures for the feature extraction. The dataset will
contain about 50 000 images by planetary-like and real-planetary scenes.

Moreover, an evaluation dataset is designed inspired by the structure of HPatches
dataset (Balntas et al. 2017), using about 120 representative images from rocky and
sandy terrains. For each image, a sequence of five different image representations of
the same scene will be generated, aiming to evaluate the proposed architectures in
terms of illumination and viewpoint changes.

2. Implementation, development and improvement of deep learning models for
accurate feature extraction in unstructured environments

Feature extraction which is composed by interest-keypoint detectors and descriptors,
is a fundamental building block in low-level scene understanding and autonomous
navigation while multiple conventional and learning-based approaches have been
proposed, focused on urban or indoor environments (Xin et al. 2019). In this
dissertation, an investigation of deep convolutional neural networks (CNNs) in feature
extraction is conducted, while the selected architectures will be implemented and
improved aiming to export characteristic features in unstructured environments with
high accuracy and robustness.

Initially, the selected architectures will be explored in different training processes,
parameterization, and fine-tuning, using the aforementioned proposed dataset, while
afterwards the architectures will be modified aiming to improve their efficiency.

Subsequently, the models will be evaluated in terms of their robustness and accuracy
in different lighting conditions and geometric transformations, while they will be
compared with the initial pre-trained architectures and other well-known keypoint-
detectors and descriptors, utilizing the proposed evaluation dataset.

3. Development of a visual SLAM (Simultaneous Localization and Mapping)
algorithm focused on completely unknown and unstructured environments

Visual SLAM is a fundamental component of autonomous navigation since it allows a
robotic system to build a map of its surroundings while simultaneously estimating its
own position within that map using only camera sensors. One of the main components
of a SLAM system is the feature extraction module, since it provides the external
information from the observed environment.

However, the effectiveness of traditional SLAM systems, based on handcrafted
feature extraction algorithms can be highly reduced in challenging environments with
limited texture, repetitive patterns, or dynamic scenes. On the other hand, the SLAM
systems which utilize learning-based approaches in feature extraction, are based on
NNs which are focused on urban or indoor environments.
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In this dissertation, a visual SLAM system is proposed in which an optimized, trained
and fine-tuned NN for feature extraction, focused on unstructured environments, is
integrated. Thus, during the SLAM process, the feature extraction will be performed
by the integrated NN, increasing the robustness and accuracy in challenging
unstructured environments, with lack of visual cues, illumination changes and limited
texture. Regarding the evaluation of the proposed SLAM system, an extended
experimentation will be conducted in order to estimate the accuracy of self-
localization during the SLAM process.

4. Development of a learning-based precise positioning methodology in GNSS-denied
environments

The precise positioning is the main research field of geodesy and topograhy while it is
crucial in many applications and services including navigation, target tracking, search
and rescue, inspection, etc, (Queralta et al. 2020). Conventional geodetic equipment
provides high accuracy in positioning but requires extensive human effort in the field
while GNSS signal coverage can be decreased or denied in several environments
including heavy vegetated or intense rocky areas, construction sites or other planets
(Trigkakis et al. 2020).

In this dissertation, a precise positioning methodology is developed, in order to
localize fiducial markers in unknown scenes with a centimeter-level of accuracy. The
methodology is based on the proposed SLAM system focused on unstructured
environments while it utilizes an RGB camera with a depth sensor in order to
calculate the scale of the features. After the mapping process, the methodology uses
the extracted point cloud, the camera poses and the detected markers aiming to
estimate the target locations while transforms the estimations in a generated local
coordinate system. Regarding the testing process, the methodology will be evaluated
using a geodetic total station which will provide the ground truth measurements.

5. Development of a deep learning model for scene understanding using semantic
information in rocky unstructured environments

Semantic segmentation determines a significant potential in visual localization and
autonomous navigation, allowing the machines to derive deeper insights from the
scene, enhancing their ability to perceive and interpret their surroundings. Semantic
information reinforces the identification and recognition of objects, scenes, and
landmarks in pixel level, enriching the low-level information of mere visual cues to
high-level scene understanding (Bowman et al. 2017).

However, one of the most challenging tasks of semantic segmentation architectures is
their efficiency in performance-time which is inadequate for low-resources computing
systems. Most of the semantic segmentation architectures includes a large number of
parameters, increasing the required computing power, while lightweight architectures
have to sacrifice the segmentation precision, affecting the overall quality of the results
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(Mo et al. 2022). Although several studies investigate semantic segmentation for real-
time processing, they are focused on self-driving cars applications in urban
environments (Wang et al. 2019, Zhou et al. 2019, Zhang et al. 2022). Nevertheless,
it is crucial for an autonomous robotic system in a rocky unstructured scene to detect
and classify semantic features, especially the boulders and rocks which can harm
itself and the attached equipment.

In this dissertation, an encoder-decoder semantic segmentation neural network will be
implemented and improved aiming to interpret and recognize a scene in a rocky
unstructured environment. Moreover, the proposed NN will be modified in order to
increase its efficiency for real-time applications, without severe decrease of its
accuracy. Due to the lack of publicly available datasets for unstructured environments,
the proposed NN will have to be capable of training with limited-size of datasets.

The objectives described above are complementary and compose a framework of
methodologies focused on scene understanding localization and mapping in
unstructured environments. More specifically, the objective 2 is based on the
objective 1 due to the designed datasets while the objective 3 utilizes the extracted
models of objective 2. The objective 4 is based on the proposed SLAM of objective 3,
while the objective 5 enriches the functionality of the framework increasing the level
of scene understanding (fig. 1.1).

Figure 1.1 Structure of the dissertation objectives

1.2 Contribution and originality

In this dissertation, a visual localization framework is developed, including optimized
techniques and novel methodologies for visual localization through deep learning,
focused on unstructured and challenging environments. To the best of the author’s
knowledge, there is no similar framework which studies the potential of artificial
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intelligence in autonomous navigation and localization techniques, focused on
challenging, unstructured and GNSS-denied environments.

More specifically, the contributions of the dissertation are stated below:

 Investigation of feature extraction potential, in challenging and unstructured
environments, including planetary scenes, using handcrafted and deep learning
keypoint detectors and descriptors.

 Design of a training dataset for unknown and unstructured environments using
FPV (First-Person-View) images from planetary environments.

 Implementation of an evaluation dataset for unknown and unstructured
environments including sequences with original and transformed images, aiming
to test the efficiency of the algorithms in terms of illumination and viewpoint. To
the best of the author’s knowledge, this evaluation dataset is the only publicly
available dataset for testing handcrafted and deep learning-based algorithms in
unstructured environments

 Implementation and optimization of a self-supervised CNN-based architecture for
keypoint detection and description in unstructured environments.

 Implementation and development of a teacher-student CNN-based architecture
for visual localization in unstructured environments.

 Implementation and development of a SLAM system, specialized in unstructured
and challenging environments. It utilizes the aforementioned teacher-student
CNN-based model as feature extraction module, in order to accurately interpret
the external information in unstructured feature-poor scenes, with intense lighting
changes.

 Implementation and development of a lightweight semantic segmentation
architecture for high-level scene understanding in rocky environments. The
model will provide high efficiency in performance-time with limited size of
datasets without reducing the segmentation accuracy.

 Creation of a benchmark dataset for visual SLAM evaluation using sequences of
RGB-depth data and the corresponding ground truth, in rocky unstructured
environments

 Development of a precise positioning methodology for GNSS-denied
environments which can be adapted and optimized in specialized environments
through deep learning. The methodology combines a proposed deep learning-
based SLAM algorithm with localization and geometric transformation
techniques aiming to optimize the location of fiducial targets with high level of
accuracy.

 The proposed precise positioning methodology utilizes computer vision within a
topographic approach, providing a potential for autonomous accurate mapping in
challenging and harsh environments.
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1.3 General background

Intelligent machines and robotic systems, are able to communicate with humans and
interact with the environment providing valuable knowledge (Alkendi et al., 2021)
through a vast and increasing number of methodologies and applications (Rubio et al.
2019). For instance, humanoid robots demonstrate a significant potential in
manufacturing, education, retail, healthcare, companionship, etc (Appel et al. 2020)
which notes a growing demand in several workspaces (Ajoudani et al. 2018). On the
other hand, aerial robotic systems, provide significant value in search and rescue
applications (Ajith & Jolly, 2020), precision agriculture (Velusamy et al. 2022),
military surveillance (Gupta et al 2022), construction (Tatum & Liu, 2017) etc, while
underwater vehicles play a vital role in marine engineering through hydrographic
surveys, hull inspection, oil and gas exploration (Yang et al. 2021, Wynn et al. 2014).
Self-driving cars are envisaged as the future of transportation gathering the research
interest of academia and industry (Badue et al. 2021, Simoni et al. 2019) while
planetary rovers are crucial for collecting data in space exploration missions (Zhang et
al. 2019).

One of the most crucial components of mobile robotic systems is the self-localization,
the ability of a machine to continuously track its position and orientation in the scene
during a mission (Panigrahi & Bisoy, 2022). Self-localization typically relies on
modules and sensors attached in the robotic system and can be divided in two main
categories: (a) the GNSS (Global Navigation Satellite System)-based self-localization
and (b) the sensor-based self-localization

Regarding the GNSS-based self-localization, GNSS receivers are electronic devices
that are attached to a robotic system and through the timing of the received satellite
signals, are able to triangulate and define the robotic system’s position. Although the
accuracy of a conventional GNSS receiver is limited, RTK (Real-time-kinematics)
and PPP (Precise Point Positioning) methods are able to enhance the GNSS receiver,
providing centimeter-level of accuracy (Huang et al. 2023). However, GNSS
receivers include several constraints that can affect the performance of a robotic
system. The main issue of a GNSS receiver is the signal degradation in dense urban or
vegetated environments due to signal blockage or multipath effect, an effect that
occurs when GNSS module receives signals at different times due to the signal
reflection by different surfaces (Partsinevelos et al. 2020). Moreover, in some
environments including covered-structures (e.g tunnels), indoor environments or other
planets, GNSS signal does not exist.

On the other hand, the sensor-based self-localization techniques, utilize the attached
sensors (Mohamed et al. 2019) and the movement of a robotic system in order to track
its location, avoiding the dependence on external resources. These techniques are
called odometry techniques in robotics terminology and include the visual odometry,
wheel odometry, inertial odometry, laser odometry radar-based odometry, and sonar-
ultrasonic odometry.
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Visual odometry is able to analyze visual input using one or more on-board cameras,
monitoring the movement of visual features over time, estimating the mobile robot’s
position and orientation. The wheel odometry, utilizes rotary encoders aiming to
calculate the number of wheel’s rotations while inertial odometry uses the IMU
(Inertial Measurement Unit) sensor which contains gyroscopes and accelerometers for
measuring the linear acceleration and angular velocity of the robotic system. On the
other hand, laser, radar and sonar-ultrasonic odometry techniques, perform self-
localization by tracking laser speckle patterns, radio and sound waves respectively,
reflected by the surroundings (Mohamed et al. 2019). Moreover, hybrid odometry
approaches have been proposed aiming to increase the efficiency of self-localization
combining more odometry techniques and sensors including visual-laser odometry,
visual-inertial odometry, visual-radar odometry, radar-inertial odometry etc (Huang et
al. 2019, Usenko et al 2016, Doer & Trommer 2020, Mostafa et al. 2018).

Although, the odometry techniques provide valuable information about the position
and orientation of a robotic system, several constraints are able to decrease their
efficiency. For instance, visual odometry can be affected by feature-poor
environments with low illumination. Wheel odometry provides decreased accuracy in
slippery environments with / or uneven terrains due to wheel slippage (Mohamed et al.
2019) while the inertial odometry is affected by errors of the accelerometer and
gyroscope measurements (Solin et al 2018). Laser odometry is unsuitable for robotic
systems with limited computing resources due to large amounts of data processing
generated by the LiDAR sensor (Aqel et al. 2016), radar odometry is affected by
outliers and uneven terrains (Quist et al. 2016) while sonar odometry provides limited
range compared with LiDAR or radar, reducing its efficiency in long distances
(Burguera et al. 2007).

However, the main issue of odometry is the error accumulation over time which
significantly affects the self-localization accuracy. This issue is encountered by
SLAM (Simultaneous Localization and Mapping), a super-set of odometry that is able
to estimate the robot’s location constructing a dynamically generated local map
simultaneously while a back-end optimization algorithm minimizes the errors
between the predicted map features and the initially observed features. Moreover, a
loop-closure module, detects a re-visit of a previously explored area performing
further optimization of the whole scene, increasing the accuracy of mapping and
camera trajectory estimations (Taketomi et al. 2017).

Nevertheless, the last decade, an evolution is observed in visual-based localization
and mapping (Poddar et al. 2019) due to the modern image interpretation techniques
and the cost-effective required equipment (e.g cameras, conventional computing
systems). The main idea of localization and mapping using visual data is the
extraction of distinct points from the camera frames which are called “keypoints”.
Keypoints are recognized by keypoint detectors through the analysis of local intensity
changes aiming to detect edges and corners with increased contrast, compared with
their local neighbourhood. Afterwards, a process called “keypoint description”,
establishes the keypoints aiming to be recognizable in the neighboring frames,
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regardless of the viewpoint or scale changes while a matching process utilizes the
keypoint locations and descriptions, matching the common features among the
neighboring frames (Liu et al. 2021). The detection and description outputs, which
compose the low-level scene understanding, aid the pose estimation algorithms to
compute the position and orientation of the camera during its motion in the scene.
However, several factors including intensive illumination changes, extreme weather
conditions, occlusions or poor information in the scene, are able to reduce the
robustness and accuracy of feature extraction (Naseer et al., 2018).

Several studies investigate the use of deep learning in feature extraction and SLAM
(Li et al. 2018, Arshad et al. 2021, Duan et al. 2019, Xiao et al. 2019, Li et al. 2018)
aiming to increase the efficiency of self-localization processes. Convolutional neural
network (CNN)-based architectures, are trained in order to detect interest-points
which are included in edges, corners, shadows and color changes without the need of
pixel-level image processing techniques (Kazerouni et al. 2022). Instead of traditional
feature extraction algorithms, the CNN-based models are able to predict features with
increased accuracy and robustness in challenging environments due to the following
factors (Martins et al. 2021, Tang et al. 2019, Mokssit et al. 2023):

 Robustness in variations: CNN-based models are able to provide robust results in
challenging environments and conditions with variations in scale, rotation, and
illumination

 Multi-scale processing: CNN-based models are able to perform image processing
in multiple scales, increasing the accuracy of keypoint detection in different
image resolutions

 Specialized scenarios: CNN-based models can be re-trained or fine-tuned aiming
to recognize features in specialized scenarios, conditions or environments.

 Flexibility in inference-time: deep learning models can be modified in order to
reduce the inference-time, a crucial factor for embedded systems with limited
resources.

Another significant use of deep learning is the semantic segmentation. Semantic
segmentation models are trained to recognize semantic objects or features e.g.
buildings, roads, trees etc, increasing the level of scene understanding which is crucial
for autonomous navigation, especially in dynamic or completely unknown
environments (Naseer et al. 2017). The predicted semantic features, can aid the
robotic systems to navigate with increased efficiency and safety, since many features
including trees, large rocks buildings etc that could harm a robotic system (Lai 2022)
are localized and classified by the semantic segmentation model. Moreover, semantic
segmentation reinforces the robustness of the scene understanding in cases of seasonal
variations or extreme weather conditions which are able to deform the low-level
information of the scene (Larsson et al. 2019) while is able to provide increased
effectiveness in environments suffered by occlusions, identifying and recovering the
occluded features (Qin et al. 2022).
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1.4 Structure of the dissertation

The structure of this dissertation is as follows:
 In chapter 2, the literature review is analyzed and divided in three main sections

(a) feature extraction in challenging environments (b) Scene understanding using
semantic segmentation in unstructured environments and (c) Precise positioning
and mapping in GNSS-denied environments

 Chapter 3, focuses on the methods and techniques that were developed and
implemented for the proposed framework. At first, two approaches for visual
localization in unstructured environments are presented: (a) a CNN-based self-
supervised architecture for keypoint detection and description, and (b) a
lightweight CNN-based teacher-student architecture which is able to extract
keypoints, local and global descriptors while a SLAM algorithm which uses the
aforementioned feature extractor is proposed. Subsequently, two datasets for
unstructured environments are designed and utilized in order to be used in the
training and evaluation processes. Then, a semantic segmentation architecture for
planetary environments is proposed, capable of being used in systems with low
computing resources, providing high efficiency with a limited size of dataset
while finally, a precise positioning and mapping alternative in GNSS-denied
environments is presented, designed for point positioning in feature-poor scenes
with low illumination.

 In chapter 4, an extended description about the implementation and technical
details of the proposed framework are analyzed, including the feature extraction
approaches, the proposed SLAM, the semantic segmentation architecture and the
precise positioning and mapping alternative, while afterwards the corresponding
evaluation and results are presented.

 Chapter 5, discusses and analyzes the results while all the proposed architectures
and algorithms are compared with the corresponding state-of-the-art
implementations, highlighting the capabilities and limitations of the proposed
framework.

 Finally, in chapter 6, the conclusions of each component of the proposed
framework are presented while afterwards a summation about the achievement of
the thesis’ objectives is presented.
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Chapter 2

Literature Review
In this section, the state-of-the-art approaches that compose the research fields of this
dissertation, are analyzed with respect to three main pillars:

1. Feature extraction in challenging environments
2. Scene understanding using semantic segmentation in unstructured environments
3. Precise positioning and mapping in GNSS-denied environments

In the following sections of this chapter, the literature review and theoretical concepts
of the three pillars above are critically discussed aiming to clearly describe the gap of
knowledge and the research directions of this dissertation.

2.1 Feature extraction in challenging environments

Feature extraction from visual data, plays a critical role in computer vision and
robotics, offering valuable low-level information for real-time self-localization and
scene understanding. The first step of feature extraction is the keypoint detection
which refers to distinctive and invariant image locations that represent important
features including unique patterns, corners, edges etc while subsequently, the
keypoint description encodes each detected keypoint’s relevant information, enabling
the robust matching among the neighboring frames and scene recognition (Liu et al.
2021). Feature extraction process is the backbone of many advanced computer vision
applications and tasks including autonomous navigation and 3D reconstruction, with
several handcrafted algorithms and deep learning architectures proposed in the
literature.

2.1.1 Handcrafted keypoint detectors and descriptors

Handcrafted keypoint detectors rely on designed filters or mathematical operations
that are based on gradient-based or intensity-based techniques, while attempt to
maintain their reliability in scale, rotation, and viewpoint changes (Isık et al. 2015).
There are several widely used keypoint detectors including Harris (Harris & Stephens
1988), Shi-Tomasi (Shi & Tomasi 1993), FAST (Rosten & Drummond 2006), and
AKAZE (Alcantarilla et al. 2013) and keypoint descriptors such as ORB (Rublee et al.
2011), SIFT (Lowe 2004) and SURF (Bay et al. 2008).

Harris (Harris & Stephens 1988) is a widely used algorithm for identifying corners in
an image. It aims to localize regions with significant intensity changes in different
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directions, which are indicative of corner points. The algorithm begins by calculating
the gradient of the image while afterwards computes the autocorrelation matrix for
each pixel by convolving the image gradients with a Gaussian window. From the
autocorrelation matrix, the algorithm derives a corner response function by taking into
account the eigenvalues of the matrix. High eigenvalues indicate corners, while low
eigenvalues correspond to edges or flat regions (fig 2.1). The corners are then
identified by applying a threshold to the corner response values or by selecting local
maxima in the response map.

Figure 2.1 (left) flat region (blue square): Region without change in all directions, (middle) edge: No
change along the edge direction, (right) corner: change in all directions

The Shi-Tomasi (Shi & Tomasi 1993) detector, is an extension of the Harris corner
detector, which instead of using the corner response function based on eigenvalues, it
selects keypoints based on a score computed from the smallest eigenvalue of the
autocorrelation matrix. This modification allows the algorithm to prioritize the
detection of sharper corners, ranking the keypoints based on their scores and selects
the most important, up to a specified number or based on a minimum threshold.

FAST (Features from Accelerated Segment Test) (Rosten & Drummond 2006)
algorithm is a popular keypoint detector known for its computational efficiency. It
aims to identify keypoints by comparing the pixel intensities in a circular
neighborhood (Fig 2.2). The algorithm examines a set of contiguous pixels and
evaluates whether a pixel within the set is significantly brighter or darker than the
central pixel. By finding a contiguous set of at least 12 such consecutive pixels, the
algorithm can classify the central pixel as a keypoint. This rapid classification process
makes the FAST detector well-suited for real-time applications.
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Figure 2.2 The circular neighborhood that the FAST algorithm uses. The highlighted pixels (in green
squares) are the set of contiguous pixels which are evaluated and compared with the central pixel (p) in
order to classify a corner

The AKAZE (Accelerated-KAZE) (Alcantarilla et al. 2013) algorithm is a keypoint
detector and descriptor, designed to be robust to various image transformations,
including rotation, scale changes, and affine transformations. It operates by extracting
multiscale nonlinear diffusion filtering responses from the input image, capturing the
image's structural information (e.g edges) across different scales. Subsequently,
AKAZE computes the gradient magnitude and orientation using the nonlinear scale
space representation, utilized to generate a binary descriptor, which encodes the local
features around each keypoint. The descriptor is designed to be highly distinctive and
robust to image variations, allowing for accurate matching of keypoints.

ORB (Oriented FAST and Rotated BRIEF) (Rublee et al. 2011) combines the
efficiency of the FAST keypoint detector with the robustness of the BRIEF (Binary
Robust Independent Elementary Features) (Calonder et al. 2010) descriptor. Initially,
ORB builds a pyramid which is a multi-scale representation of a single image while
subsequently identifies keypoints using the FAST algorithm, comparing the intensities
of pixels in a circular neighborhood. Afterwards, it computes a binary feature vector
for each keypoint using the BRIEF descriptor, which encodes the relative intensities
of pixel pairs. To enhance invariance in rotations, ORB additionally calculates an
orientation for each keypoint based on the intensity distribution around it, used to
reinforce the rotational invariance of BRIEF descriptor. ORB has gained popularity
due to its balance between speed and accuracy, making it suitable for real-time
applications.

SIFT (Scale-Invariant Feature Transform) (Lowe 2004) is a widely used keypoint
descriptor. Initially, SIFT constructs a scale-space representation of the input image
by applying Gaussian blurring at multiple scales, while subsequently it locates
potential keypoints as local maxima in images filtered by difference-of-Gaussian
(DoG), highlighting regions with significant changes in terms of intensity across
scales. The descriptor part, generates a total of 128 bin values for each keypoint, by
extracting a 16x16 pixel neighborhood around each identified feature and
subsequently subdividing the region into blocks. Although SIFT is a quite accurate
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keypoint descriptor with increased robustness in scale, rotation, and affine
transformations, it requires high computational cost.

SURF (Bay et al. 2008) relies on scale-space analysis for keypoint detection in
different scales while employs the concept of box filters which are approximations of
second-order Gaussian derivatives aiming to accelerate the computation of image
features. It utilizes integral images to efficiently calculate the sum of pixel intensities
within rectangular regions allowing for fast feature extraction and matching.
Regarding the keypoint description, it encodes the local image information using
gradient orientations and magnitudes. SURF is designed to be both distinctive and
invariant to changes in scale, rotation, and affine transformations while provides low
computational cost.

The handcrafted keypoint detectors and descriptors encounter significant tasks of
computer vision with respectable accuracy, however they are quite susceptible and
error prone in high level of noise, complex backgrounds, image artifacts or low level
of illumination, which are able to decrease their efficiency (Liu et al. 2021).

2.1.2 Keypoint detectors and descriptors based on deep learning

Before the advent of deep learning (DL), several studies investigated the use of
machine learning techniques such as SVM (Support Vector Machine), PCA (Principal
Component Analysis) and decision tree in handcrafted algorithms, aiming to improve
the feature extraction accuracy (Ke et al. 2004, Rosten et al. 2006, Ma et al. 2021).
However, the last decade the research interest has been shifted in the feature
extraction architectures based on deep learning and more specifically, CNNs.

CNN-based feature extraction architectures are often composed by a detection and
description part in order to extract both keypoint predictions and their corresponding
descriptions. Initially, DL architectures creates response maps aiming to detect
interest points while subsequently learn representations of each keypoint using either
local patches centered on the predicted keypoints or the entire image using the pixel-
level keypoint locations (Ma et al. 2021).

In keypoint detection and description process, the DL architectures can be divided in
three main categories in terms of the learning process:
 Supervised learning
 Self-supervised learning
 Unsupervised learning

In supervised learning, the DL architecture uses annotated images during the training
process in order the model to learn feature extraction in a scene or object while in
unsupervised learning, the architecture utilizes only the non-annotated image dataset
and several transformation techniques constructing a learning process, based on the
comparison between the original and transformed images. On the other hand, in self-
supervised learning, initially, the DL architecture predicts the feature maps from the
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training data using the weights from a previous training while afterwards, it utilizes
the predicted feature maps as ground truth for the main training process.

LIFT (Learned Invariant Feature Transform) (Yi et al. 2016) is a DL architecture for
keypoint detection and description which is based on supervised learning. It is
composed of three CNN-based components: The detector, the orientation estimator
and the descriptor while it uses image patches in order to feed the architecture instead
of the entire image, due to scalability in the learning process without information
losses. Regarding the training process, the architecture is not trained with an end-to-
end manner because of different aspects that the individual components try to
optimize. Instead, the descriptor is trained first, then the orientation estimator and
finally the detector based on the weights of the previous training processes. The
ground truth which the LIFT uses for the training process, are generated by a
Structure-from-Motion (SfM) algorithm which is performed on images captured
under various illumination conditions and viewpoints.

LF-net (Ono et al. 2018) is another approach of a supervised DL architecture for
keypoint detection and description (fig. 2.3). It is composed of two main components:
The first component is a fully CNN which predicts local keypoint locations (xi, yi)
combined with the corresponding scale (si) and orientation (θi) on entire images while
simultaneously, it uses an optimization technique called “softargmax” for sub-pixel
accuracy in keypoint detection. The K most important interest points including
locations, scale map and orientation map, combined with image patches cropped
around of the selected keypoints using a differentiable sampler (STN), feed the
second component which is a CNN-based descriptor. The descriptor is composed of
three convolutional filters followed by two fully connected layers while the final
output (Di) is normalized using the L-2 norm.

Figure 2.3 LF-net end-to-end architecture

Superpoint (DeTone et al. 2018) is a fully-CNN for keypoint detection and
description trained in a self-supervized manner operating on full-sized images.
Regarding its architecture, Superpoint is composed of a shared encoder which is
based on VGG (Simonyan & Zisserman 2015) NN reducing the input image
dimensions and two decoder branches where the first one learns to detect interest
keypoints and the second one, the corresponding descriptions. The training process of
Superpoint can be divided in three different stages:
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 Interest-point pre-training: In this stage, the detector part of SuperPoint, called
MagicPoint, is trained using labeled synthetic data which are simple geometric
shapes with well-defined keypoints, representing the labels of the images.

 Interest-point self-training: The detector is trained using the weights from the pre-
training process using unlabeled real-world images. In this stage, a technique
called “homographic adaptation” transforms the input images in terms of scale
and viewpoint aiming to train and optimize the detector to automatically label
real-world images.

 Joint training: In this stage, the SuperPoint architecture is trained using the labels
extracted by the trained MagicPoint model of the previous step, aiming to predict
both interest points and the corresponding descriptions in real-world images.

It’s worth noting that Superpoint is quite efficient in illumination and viewpoint
changes. Detailed information about SuperPoint is referred in chapter 3.

Unsuperpoint (Christiansen et al. 2019), is a CNN-based architecture inspired by
Superpoint, for keypoint detection and description which is trained in an unsupervised
manner operating on entire images. Similar to Superpoint, UnsuperPoint is composed
of a shared encoder based on VGG neural network which provides a downsampled
feature map while three decoders focus on learning to extract keypoint locations, the
corresponding scores and descriptors respectively, for each image. Instead of
supervised and self-supervised-based NNs, Unsuperpoint doesn’t require ground-truth
based on SfM algorithm such as LIFT or LF-net nor automatic labeling using a pre-
trained detector as SuperPoint. Unsuperpoint utilizes a siamese network of
Unsuperpoint twins (twin A and twin B) where the first one (twin A) processes
original images and the second one (twin B), the corresponding warped images
transformed by a transformation matrix T. Afterwards, the twin A transforms the
detected keypoints by the transformation matrix T and the loss functions track the
keypoint correspondences from both twins (fig 2.4). Although Unsuperpoint seems a
reliable and straightforward solution of feature extraction, it has not evaluated in real-
time applications.

Figure 2.4 Unsupervised learning process of Unsuperpoint
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HF-net (Hierarchical Feature network) (Sarlin et al. 2019), is a lightweight CNN-
based architecture focused on visual localization operating in full-sized images. HF-
net architecture comprises a shared encoder and three sub-modules which focus on
keypoint detection scores, local and global description. The shared encoder processes
the input image using a pre-trained MobilenetV2 (Sandler et al. 2018) NN, a quite
popular architecture designed for mobile devices, while the global descriptor branch is
composed by a NetVLAD layer (Arandjelovic et al. 2016), located on top of the last
output of the shared encoder. The local descriptor sub-module uses a decoder of
Superpoint, which undertakes the extraction of keypoint scores and local descriptors.
Regarding the training process, the HF-net is based on a teacher-student architecture
in order to reduce the complexity of an end-to-end multi-task NN during training.
More specifically, HF-net utilizes two NN as teachers during the training process,
feeding the main HF-net architecture with the corresponding teachers’ predictions
which represent the ground-truth. Superpoint is the teacher for keypoint detection and
local description while NetVLAD is the teacher for global description. The teacher-
student HF-net architecture is presented in the following figure:

Figure 2.5 HF-net architecture

2.1.3 Feature extraction and SLAM in challenging environments

The handcrafted feature extraction algorithms have been widely investigated and used
in multiple applications of computer vision and photogrammetry for more than three
decades, while recently several studies utilize the DL-based architectures aiming to
optimize more complicated tasks such as visual localization and autonomous
navigation.
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The literature abounds with studies which focus on autonomous driving (Lategahn et
al 2011, Singandhupe et al. 2019), indoor navigation (Zou et al. 2022), 3D
reconstruction (Inzerillo et al 2018) or inspection (Jordan et al. 2018) in urban and
industrial scenes. However, there are far fewer studies which concentrate in
autonomous navigation-based techniques applied on unstructured environments
including rocky, vegetated and underwater scenes or even on planetary environments
such as Mars and Moon.

Regarding the Earth-based environments, in Aulinas et al. 2011, a visual feature
extraction methodology is proposed for underwater environments aiming to improve
the subsea scene understanding using an optical sensor. The authors propose a
methodology which is based on a SLAM algorithm in order to retrieve 3D spatial
information, combined with a semantic segmentation technique which uses traditional
image processing algorithms for contextual object identification (e.g rock) and the
SIFT (Lowe 2004) and SURF (Bay et al. 2008) algorithms for feature extraction on
the segmented images. In Jung et al. 2022, a technique for coloring 3D point clouds
using visual data in subsea environments is proposed, aiming to reinforce the
handcrafted 3D feature extraction algorithms, since visual data is suffered by low
illumination and noise in subsea scenes. In Guo et al. 2018, a methodology for place
recognition using LiDAR intensity is presented, tested in large-scale vegetated scenes.
Authors utilize a 3D local descriptor called ISHOT (Intensity Signature of Histograms
of Orientations) aiming to match features in a pre-built 3D LiDAR-based map, while
a probabilistic place voting technique aid to bring out the most likely place candidate,
from the global database in the scene.

Concerning the planetary-based scenes, several studies investigate feature extraction
methodologies in extraterrestrial terrains using conventional algorithms. In Oelsch et
al. 2017 and Wan et al. 2017, an evaluation of handcrafted feature extraction
algorithms, in Mars-like environment is presented. In Oelsch et al. 2017, authors
compare the algorithms’ performance in terms of location recognition, using Devon
Island dataset (Furgale et al. 2012), concluding that SURF (Bay et al. 2008) achieves
the highest accuracy in non-vegetated and rocky unstructured environments. On the
other hand, Wan et al. 2017 evaluates the efficiency of the algorithms in terms of
several metrics including repeatability and precision, using simulated images
generated with the aid of the DEM (Digital Elevation Model) and DOM (Digital
Orthophoto Map) of a Mars region, proving that SIFT (Lowe 2004) scores the highest
overall efficiency. In Wu et al. 2018, an improved version of SIFT (Lowe 2004) for
high-resolution remote sensing images from Mars and Moon is proposed, aiming to
reinforce the invariance of SIFT in differences due to illumination. Initially, authors
apply feature extraction using SIFT while afterwards a Gaussian suppression function
is used to evenly distribute the histogram which is highly biased due to the solar
azimuth angle and finally, the suppression function is performed to the extracted
descriptors. The improved-SIFT technique. provides 40 - 60% increased accuracy,
based on the total number of correct matches.
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Several studies investigate methodologies aiming to improve the autonomous
navigation in feature-poor environments such as planetary scenes. In Otsu et al. 2018,
authors attempt to solve this issue presenting a system called VOSAP (VO-aware
sampling-based planner) which explores the rich-featured paths which are available in
the scene, achieving increased performance in localization accuracy, tested in
simulated Mars-like surfaces. In Kostavelis et al 2014, a complete vision system for
autonomous rover-based Mars exploration is proposed aiming to increase the
accuracy in terms of performance-time and self-localization. The system is based on
two stereo cameras, for navigation and localization while the SURF (Bay et al. 2008)
algorithm is selected for feature extraction and matching. Although authors managed
to highly increase the performance-time of the system, accumulated errors are
expected in visual odometry and localization for long-distances. In Giubilato et al.
2021, a stereo SLAM system, focused on the loop-closure refinement using elevation
information of the terrain in poor-featured environments is presented, using a
technique called Gaussian Process Gradient Maps. The authors use Moon and Mars-
analogous terrains for the experimentation of the system while compare it with state-
of-the-art SLAM algorithms including ORB-SLAM2 (Mur-Artal & Tardos 2017) and
VINS-MONO (Qin et al. 2017) determining higher efficiency especially in loop
closure. In Hong et al. 2021, a stereo SLAM system for highly detailed 3D point-
cloud mapping in planetary environments is proposed. The authors combine
traditional front-end and back-end SLAM components in order to produce a sparse
map, with a self-supervized deep learning architecture which generates disparity maps
aiming to dense the 3D scene information.

Datasets are crucial for visual localization, SLAM and autonomous navigation, since
are used for evaluation of feature extraction algorithms such as HPatches (Balntas et
al. 2017), for evaluation of SLAM systems such as TUM (Schubert et al. 2018),
KITTI (Geiger et al. 2012), EuRoC (Burri et al. 2016), or for training in case of deep
learning-based architectures including COCO (Lin et al. 2014), Berkeley Deep Drive
(Fisher et al. 2018), Google Landmarks (Noh et al. 2017), etc. However, datasets
which present completely unknown, vegetation-free and unstructured environments
are quite few compared with datasets which was captured in urban and indoor scenes.
In Driver et al. 2023, authors propose a dataset with remote sensing images for
training deep learning architectures to extract keypoints and descriptors in small
celestial bodies aiming in autonomous navigation for the future spacecrafts.
Concerning the FPV (first-person-view) or rover-based datasets, most of these studies,
focus on SLAM evaluation designing datasets in Moon and Mars-like environments
using cameras, IMUs and LiDAR data combined with GNSS-based ground truth
(Meyer et al. 2021, Furgale et al. 2012, Giubilato et al 2022, Hewitt et al. 2018).
However, to the best of our knowledge there is no publicly available dataset for
training deep learning architectures for keypoint detection and description in FPV
images, nor a feature extraction evaluation dataset.

In this study, two different approaches for feature extraction based on deep learning in
unstructured and challenging environments are proposed:
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 A Keypoint detection and description model architecture based on SuperPoint
(DeTone et al. 2018), trained and evaluated with two proposed training and
benchmark datasets for unstructured environments and planetary scenes,

 A Lightweight teacher-student architecture for feature extraction, trained and
evaluated using two proposed training and benchmark datasets for unstructured
environments and planetary scenes while a SLAM system which uses the
aforementioned deep learning model as a feature extractor, is proposed and tested
in planetary-like environments.

Regarding the first approach, a SuperPoint neural network (DeTone, 2018) is
implemented, optimized and trained in order to accurately conduct feature extraction
in unstructured environments, focused on rocky and sandy scenes. For the training
process, a dataset of 48 000 images was utilized (Petrakis & Partsinevelos 2023)
representing unstructured and planetary scenes from Earth, Moon and Mars.
Concerning images from Earth, they were captured from construction sites,
mountainous areas, sandy beaches and a quarry, while the images from Mars were
collected by a publicly available dataset of NASA which includes rover-based images,
captured by Mars Science Laboratory (MSL, Curiosity) rover. Regarding the lunar
dataset, it dataset includes artificial images, created by Keio University in Japan.
Concerning the learning process, the standalone part of SuperPoint detector, was
trained in three phases, one time with synthetic data and two times using the
aforementioned dataset enabling homographic adaptation, a technique to increase the
efficiency of the architecture in geometric transformations. Finally, the SuperPoint
neural network was trained based on the weights of the standalone detector in order to
fine-tune the keypoint detector and train the descriptor. Three different models were
produced using the aforementioned dataset: (a) an original SuperPoint model, trained
from scratch, (b) an original fine-tuned SuperPoint model, (c) an optimized model,
trained from scratch. The models were evaluated using a benchmark dataset (Petrakis
& Partsinevelos, 2023), designed for unstructured environments including earthy and
planetary scenes, aiming to test the accuracy in illumination and viewpoint changes.
The experimentation proves that the optimized SuperPoint model provides
satisfactory results in keypoint detection and description, compared with the original
SuperPoint and popular handcrafted detectors and descriptors.

Concerning the second approach, although several studies propose feature extraction
and SLAM-based techniques in unstructured environments, there is no study that
investigates the potential of a deep learning in keypoint detection and description,
focused and fine-tuned for unstructured environments or planetary scenes. In this
study, a teacher-student CNN-based architecture is developed for keypoint detection
and description in unstructured and challenging environments with feature-poor
scenes and low or changing illumination. The proposed architecture was trained using
the aforementioned dataset including images from Earth, Mars and Moon while for
the evaluation process, the aforementioned benchmark dataset (Petrakis &
Partsinevelos, 2023) was utilized testing the model in terms of illumination and
viewpoint changes. Moreover, the trained model, was integrated in a visual SLAM
system as a feature extraction module, aiming to investigate the potential of a deep
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learning-based SLAM system, focused on unstructured and planetary scenes. The
proposed architecture and SLAM system provide high accuracy and superior results
compared with several well-known algorithms. The main contributions of this study
can be described as follows:
 An investigation of the feature extraction potential through deep learning in

unstructured environments was conducted
 A training and evaluation dataset for keypoint detection and description focused

on unstructured and planetary scenes were designed and implemented. To the
best of the author’s knowledge, the benchmark dataset is the only publicly
available dataset for testing handcrafted and deep learning-based algorithms in
unstructured environments

 A deep learning model for keypoint detection and description focused on
unstructured and challenging environments was developed

 A visual SLAM that is aware of unstructured and planetary scenes using the
proposed deep learning model was implemented.

2.2 Scene understanding using semantic segmentation in unstructured

environments

Semantic segmentation is a powerful technique for scene understanding, that enables
machines to comprehend and interpret visual information in a more detailed and
meaningful way. By dividing an image into several regions and assigning semantic
labels to each pixel, semantic segmentation algorithms or architectures, can accurately
identify and classify different objects and structures within the scene. Semantic
segmentation is a distinct task that differs from similar computer vision tasks such as
classification and object detection. Classification involves assigning a single label or
category to an entire input image or object, aiming to identify the presence of a
specific class within the image but does not provide any information about the
location or extent of the object. On the other hand, object detection is not only limited
in classifying the objects with single labels but also it localizes their positions within
the image simultaneously. Object detection algorithms encompass the objects using
bounding boxes, indicating their spatial extent, allowing for the detection and
classification of multiple objects within a single image. Semantic segmentation, aims
to classify and assign a class label to each pixel in an image, effectively segmenting
the image into different regions based on their semantic meaning. Instead of providing
bounding boxes, semantic segmentation provides a pixel-level understanding of the
scene, enabling precise localization and detailed segmentation of objects and their
boundaries. This level of understanding goes beyond traditional image recognition, as
machines are able to comprehend the contextual relationships and spatial layout of the
scene. (Guo et. al 2018). Contemporary semantic segmentation architectures, provide
a significant potential for even more intelligent and sophisticated systems that can
interact with and comprehend the world around them, reinforcing applications such as
autonomous driving, surveillance systems, augmented reality, under-water and planet
exploration, etc (Garcia et al. 2017). Pixel-wise semantic or image segmentation can
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be performed through traditional image processing or machine learning algorithms
while the last decade, deep learning architectures have shown a huge potential in this
field (Hao et al 2020).

2.2.1 Traditional and machine learning -based segmentation approaches

Traditional algorithms primarily rely on handcrafted features (e.g. edges, corners) and
conventional image processing techniques to extract relevant information and classify
pixels into different semantic classes. Most of the traditional segmentation algorithms
are based on pixel color using several color spaces such as RGB, YcBcr, HSL, HSI,
YIQ e.t.c (Cohen et al. 2015, Kasson & Plouffe 1992) and on texture analysis,
utilizing algorithms including histogram of oriented gradients (HoG) (Dalal &Triggs
2005), canny edge detector (Canny 1986), laplacian of gaussian (LoG), BoW (Bag of
Words) (Csurka et al. 2004) etc.

On the other hand, supervized machine learning-based approaches are able to classify
each pixel in an image into specific semantic features. Initially, relevant features,
based on color, texture, shape, or other visual attributes, are extracted by the input
images while subsequently, the extracted features are utilized as input to a
classification algorithm, such as decision trees (Quinlan 1986), random forests
(Breiman 2001), support vector machines (SVM) (Cortes & Vapnik 1995) etc.
Afterwards, during the training process, the algorithms using a dataset with pairs of
original and annotated images, create a classification model that can accurately assign
class labels to pixels in unknown images.

Significant role in traditional supervised semantic segmentation is the unsupervized
segmentation which composes a complementary approach, aiming to gather refined
information about the classes and their consistency. Some of the most widely used
unsupervized segmentation algorithms in the literature are the k-means clustering
(Hartigan et al. 1979), random walker (Grady 2006), active contour models (Kass et
al. 1988) and watershed segmentation (Roerdink & Meijster 2000). Although
unsupervized segmentation algorithms don’t identify semantic features, however, they
are utilized to investigate the potential of the data and the desired classes before
performing supervized semantic-segmentation.

2.2.2 Deep learning-based segmentation approaches

Deep learning-based architectures, enables a superior scene understanding, compared
with the traditional and machine learning approaches, predicting more accurate and
robust pixel-level segmentation maps (Sehar & Naseem 2022). Deep learning
architectures, particularly convolutional neural networks (CNNs), have revolutionized
semantic segmentation by automatically learning intricate features and capturing
complex spatial relationships leveraging their ability to extract hierarchical features
from raw image data, allowing them to accurately distinguish between different object
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classes and delineate their boundaries. The training process involves feeding large
datasets with pairs of original and annotated images into a CNN-based neural network,
enabling it to learn and generalize patterns effectively (Lateef & Ruichek 2019).

The tricky part of the CNN-based semantic segmentation models, is the spatial
awareness and accurate localization of semantic features’ outline, due to
dimensionality reduction and max-pooling operations that are performed by a typical
CNN model. This issue is commonly encountered by an encoder-decoder architecture,
utilized in an end-to-end training process, in order to combine the capturing of low
and high-level contextual information in the image content with the corresponding
regions of the desired semantic features. The encoder component is responsible for
capturing hierarchical representations of the input image, gradually extracting high-
level features through a series of convolutional and pooling layers, encoding essential
information about the image's content. On the other hand, the decoder component,
utilizes these encoded features to generate a segmentation map that matches the
spatial dimensions of the original input. The decoder, applies transposed convolutions
or upsampling operations aiming to reconstruct the spatial details and refine the
segmentation map (Ye & Sung 2019) while at the end, an activation function (e.g
softmax) exports the predicted classes (Banerjee et al. 2020) (fig 2.6).

Figure 2.6 Typical example of an encoder-decoder architecture

There are several widely used encoder-decoder architectures for semantic
segmentation including FCN (Fully Convolutinoal Network) (Long et al. 2015), U-net
(Ronneberger et al. 2015), Segnet (Badrinarayanan et al. 2015), PSPNet (Zhao et al.
2017), DeeplabV3+ (Chen et al. 2018), etc.

FCN (Long et al. 2015), is a pioneering architecture which introduced the concept of
fully convolutional networks for semantic segmentation, replacing the fully connected
layers with convolutional layers, allowing to utilize image datasets of arbitrary sizes.
The encoder extracts features through convolutional layers and downsampling
techniques, while afterwards the decoder upsamples the feature maps to the original
image size. Skip connections reinforce the communication between the encoder and
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decoder aiming the extracted by the encoder features to correlate with the
corresponding spatial information, providing each semantic feature with its
segmentation boundary.

U-Net (Ronneberger et al. 2015) is a fully convolutional architecture for semantic-
segmentation which initially proposed for biomedical image segmentation, however it
has been widely used in a wide range of segmentation tasks. It is composed by an
encoder-decoder architecture with skip connections preserving spatial information
with high accuracy. The encoder captures contextual information and learns high-
level representations, while the decoder recovers spatial information and generates the
segmentation mask. U-Net is able to provide satisfactory accuracy after training with
small training datasets, a fact that makes U-net suitable for applications with limited
size of datasets.

SegNet (Badrinarayanan et al. 2015), is a lightweight encoder-decoder architecture
for semantic segmentation which maintains the spatial information of the encoder, by
saving pooling indices in the max-pooling layers, performing efficient upsampling in
the decoder. Although SegNet provides decreased accuracy in capturing feature’s
boundaries compared with other segmentation architectures such as U-net, it can
efficiently upsample feature maps without requiring additional parameters. In other
words, Segnet is lighter and requires less memory than U-net which instead of pooling
indices, it uses the entire feature maps in order to perform upsampling operations in
the decoder part.

PSPNet (Zhao et al. 2017) is composed of three main parts: a convolutional neural
network which extracts a tuning number of feature maps, a “pyramid pooling module”
which reinforces the accurate multi-scale contextual information detection and an
upsampling module, which reconstructs the segmented image, using bi-linear
interpolation or transposed convolution methods. The pyramid pooling module
aggregates information at different scales by pooling feature maps with different
kernel sizes, allowing PSPNet to have a global semantic understanding, preserving
detailed information.

DeepLabV3+ (Chen et al. 2018) is the latest version of the DeepLab family and is
composed of an encoder-decoder architectures aiming to perform image segmentation
with efficiency and accuracy. In the encoder part, DeepLabV3+ utilizes a technique
called “separable atrous convolution” which separate the process of convolution in
two main components: the “depthwise convolution” and “pointwise convolution”
aiming to apply and combine different filters to each input channel. Regarding the
decoder, it is composed of upsampling operations in order to reconstruct the
segmented images achieving accurate semantic features’ localization.

In summary, semantic segmentation based on deep learning proves a significant
potential compared with traditional and machine learning algorithms in several fields
including, medical, remote sensing, self-driving cars, etc, FCN introduced the
encoder-decoder architecture while U-net utilizes sophisticated skip connections in
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order to predict semantic features’ boundaries with high accuracy without the need of
large datasets. On the other hand, Segnet focuses on high inference time due to the
lightweight “pooling indices” technique, while PSPNet and DeepLabV3+ introduced
several new methods for accurate multi-scale segmentation such as “pyramid pooling
module” and “separable atrous convolution” respectively.

2.2.3 Semantic segmentation in unstructured environments

Semantic segmentation plays a significant role in unstructured and planetary scene
understanding, offering to a robotic system or a planetary rover valuable knowledge
about its surroundings (Swan et al. 2021). Through terrain semantic segmentation,
robotic systems are able to analyze images or videos and accurately detect and
classify multiple features or regions within their environments, allowing superior
comprehension and spatial awareness. More specifically, robotic systems are capable
of identifying and differentiating various elements including boulders, rocks, craters,
soil, or even potential obstacles and hazards, reinforcing the accurate path planning
and enabling the robotic system to navigate in challenging landscapes with safety.
Moreover, accurate semantic segmentation is able to identify potential mineral
deposits or geological formations, contributing to scientific research for planet
exploration.

Several studies investigate semantic segmentation in unstructured and planetary
scenes using traditional algorithms without learning-based processes including
George et al. 2000, Howard & Seraji 2001, Gong & Liu 2012, Di et al. 2013, and
machine learning algorithms such as Song & Shan 2006, Dunlop et al. 2007, Fujita &
Ichimura 2011 and Lu & Oij 2017. However, the last five years, terrain semantic
segmentation based on deep neural networks dominates the literature (Kuang et al.
2022).

Regarding the earthy unstructured scenes, in Baheti et al. 2020, authors propose a
semantic segmentation methodology focused on self-driving in unstructured
environments, using a modified DeepLabV3+ (Chen et al. 2018) neural network with
dilated Xception (Chollet 2016) as a backbone network while Baheti et al. 2020,
proposes a U-net neural network which utilizes the EfficientNet (Mingxing & Le
2019) as the encoder. Both models were trained and evaluated with IDD (Indian
Driving dataset) dataset due to its high diversity achieving satisfactory results using
mIoU (mean Intersection over Union) metric. In Guan et al. 2022, authors propose a
lightweight neural network for terrain semantic segmentation focused on unstructured
environments which is capable of merging multi-scale visual features, in order to
efficiently group and classify different types of terrains while a reinforcement
learning algorithm, is able to utilize the predicted segmentation maps aiming to plan
and guide a robot in paths with high safety. Similarly, in Guan et al. 2021, a real-time
terrain mapping method for autonomous excavators is presented, which is able to
provide semantic and geometric information for the terrain using RGB images and 3D
point cloud data, while a dataset which includes images from construction sites is
designed and utilized. Regarding the datasets for earthy unstructured environments, in
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Metzger et al. 2021 and Wigness et al. 2019, two publicly available datasets were
developed for semantic segmentation deep learning models, focusing on self-driving
in semi-unstructured or dense-vegetated environments. In Metzger et al. 2021, the
dataset designed, for accurate comprehension in scenes with high coverage in grass,
asphalt, soil and sand, while authors in Wigness et al. 2019, targeted more on dense-
vegetated and rough terrain scenes for off-road self-driving scenarios.

Concerning the planetary environments, several methodologies have been proposed
for feature detection and terrain or scene segmentation aiming to reinforce and
improve planet exploration tasks including landing, rover-based path planning,
localization or planet surface investigation. In Furlan et al. 2019, a modified-U-net
architecture (Ronneberger et al. 2015) for rock segmentation on the martian surface is
proposed, which was trained and tested with a Mars-like dataset (Furgale et al. 2012)
captured on Devon Island, achieving satisfactory accuracy while in Furlan et al. 2020,
authors conduct a performance evaluation in rock detection for Mars-like
environments using an original and modified versions of SSD (Single-Shot-Detector)
(Liu et al. 2016) neural network, trained with the aforementioned dataset (Furgale et
al. 2012). In Kuang et al. 2021, a modified Unet++ architecture (Zhou et al. 2018) for
rock segmentation in planetary-like environments is proposed where two rounds of
training are performed for the learning process. In the pre-training stage, the proposed
architecture is fed by a synthetic dataset, created by a proposed algorithm while in the
fine-tuning stage, the architecture is trained using a limited part of the Katwijk beach
planetary rover dataset (Hewitt et al. 2018). In Tomita et al. 2020 and Claudet et al.
2022, authors conduct a benchmark analysis in Hazard Detection (HD) for planetary
landing using several state-of-the-art semantic segmentation models compared with a
replicated HD algorithm from NASA’s Autonomous Landing Hazard Avoidance
Technology (ALHAT) project while for the training process, realistic and noisy
DEMs (Digital Elevation Models) with hazardous features were generated. The
results proved that the segmentation architectures provide high efficiency on hazard
detection outperforming the ALHAT algorithm in performance time and accuracy.

The sky and ground segmentation in planetary environments is investigated by several
studies since it is able to refine the scene understanding (Kuang et al. 2021, Ebadi et
al. 2022). In Kuang et al. 2021, an architecture for sky and ground segmentation for
planetary scenes is proposed using a neural network inspired by U-net (Ronneberger
et al. 2015) and NiN (Network In Network) (Lin et al. 2013), trained for two rounds
with SkyFinder (Mihail et al. 2016) and Katwijk beach planetary rover datasets
(Hewitt et al. 2018) respectively, while in Ebadi et al. 2022, skyline contour
identification in Martian environment is conducted, using DeeplabV3+ (Chen et al.
2018) for sky and ground segmentation aiming to estimate the rover’s global position.

A significant limitation of deep learning methods in planetary environments, is the
lack of qualitative available datasets real or even synthetic, compared with datasets
for urban or indoor environments which abound in the literature (Müller et al. 2021).
In Müller et al. 2021, authors propose a simulator which is able to construct valuable
synthetic scenes for planetary environments including rich metadata while
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furthermore it is capable of generating multi-level semantic labels based on pre-
defined materials. On the other hand, in Swan et al. 2021, authors propose a large-
scale dataset called AI4MARS for terrain semantic segmentation of Mars, aiming to
reinforce autonomous navigation on the martian surface. AI4Mars includes about 35K
annotated images captured by Curiosity, Opportunity and Spirit rovers while the
labeling conducted by experts with the aid of crowdsourcing using a web-based
annotation tool. The proposed dataset was utilized to train DeeplabV3 neural network,
proving that is a valuable dataset for Martian terrain semantic segmentation.

A crucial use of terrain classification in planetary environments is the path planning
optimization (Chiodini et al. 2020). In Huang et al. 2021, a deep learning model for
terrain segmentation is proposed using PSPNet (Zhao et al. 2017) model, trained by
real rover-based images from Mars and artificial images generated by the Unity3D
software, aiming to automate a path planning algorithm on the Martian surface while
in Chiodini et al. 2021, authors propose a methodology for path rerouting using
imagery data, depth maps and a CNN-based neural network trained with Katwijk
beach planetary rover dataset (Hewitt et al. 2018), aiming to detect and avoid
obstacles such as rocks and boulders.

Although several studies investigate rover-based scene recognition in Martian surface
or planetary environments in general, quite few investigate similar tasks for the lunar
surface. Lunar topography includes several features including rocks, boulders and
craters, while the terrain in many areas is quite uneven with mounds and valleys.
Although several studies propose methodologies for crater (Jia et al. 2020, Hashimoto
et al. 2019, Hu et al. 2021) or hazard (Moghe & Zanetti 2020) detection and
segmentation, they use remote sensing images (not rover-based) and focus on safe
landing while there is a deficiency in rock and boulder identification during the rover
navigation; a quite important issue for the smooth and trouble-free navigation.

In this study, a lightweight encoder-decoder neural network (NN) architecture is
proposed for rover-based ground segmentation on the lunar surface. The proposed
architecture is based on U-net (Ronneberger et al. 2015) and MobilenetV2 (Sandler et
al. 2018) while the training and evaluation process were conducted using a synthetic
dataset with lunar landscape images. The proposed model provides robust results,
achieving similar accuracy with original U-net and U-net-based architectures which
are 100 - 150 times larger than the proposed architecture. This study aims to
contribute in lunar ground segmentation utilizing deep learning techniques, while it
proves a significant potential in autonomous lunar navigation ensuring a safer and
smoother navigation on the moon. To the best of our knowledge, this is the first study
that proposes a lightweight semantic segmentation architecture for the lunar surface,
focused on rover navigation.
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2.3 Precise positioning and mapping in GNSS-denied environments

Geospatial technology, based on higher geodesy, remote sensing and geographical
information science has change the way that scientists, engineers and citizens study or
interact with their environment. This fact results in fundamental advances in various
topics of geomatics such as location-based applications, spatial data infrastructures,
navigation or geodetic equipment. Nevertheless, conventional surveying, although is
the most accurate and robust method of applied geodesy, it remains a time-consuming
process with significant human effort (Carrera-Hernández et al., 2020). On the other
hand, GNSS (Global Navigation Satellite System) positioning method, provides
unsatisfactory accuracy in several cases including dense urban and high vegetated
areas or remote unstructured environments due to the degraded GNSS signal coverage
(Chiang et al., 2019) while in planetary exploration missions GNSS doesn’t exist.

More specifically, urban, vegetated or rocky areas pose challenges to precise GNSS
positioning because of signal interference, multipath effect or line of sight occlusion,
factors which do not necessarily decrease over time during the measurement (Bastos
et al. 2013). Typically, even a satellite signal blockage of short duration can
significantly degrade performance in navigation systems. On the other hand, non-
GNSS surveying alternatives, including total stations and laser scanners, involve time
consuming practices in the field and/or costly equipment. There are cases where
typical surveying cannot be substituted at the moment from GNSS, while in other
cases classic surveying remains impractical. In between, there is an unresolved set of
circumstances, where the need of cost-effective rapid mapping in GPS-denied
environments remains crucial (Trigkakis et al. 2020).

Several studies attempt to improve the GNSS signal in challenging environments with
respect to independent system analysis (Panigrahi et al., 2015) while other
methodologies propose techniques including angle approximation (Tang et al., 2015),
shadow matching (Urzua et al., 2017), multipath estimations using 3D models
(Zahran et al, 2018) and statistical models (Romero-Ramirez et al., 2018,
Partsinevelos et al., 2020).

Alternative solutions to this problem result from methods which work on improving
GNSS positioning performance by introducing information from other modalities. In
(Panigrahi et al., 2015), the authors use a dead reckoning sensor, which is a spatial
sensor comprising of 3-axis gyros, 3-axis accelerometers, 3-axis magnetometers,
temperature and barometric altimeter to extrapolate a trajectory when there is no
GNSS signal. Similarly, Kim & Sukkarieh 2005, integrate a simultaneous localization
and mapping (SLAM) system to a GNSS/ Inertial Navigation System (INS) fusion
filter. INS calculates the position of a moving object by dead reckoning without
external references. In Javanmardi et al. 2017 and Jende et al. 2018, authors use post
and real-time processing of high-resolution aerial images utilizing statistical
techniques in order to georeference mobile mapping data extracted from GNSS-
denied areas, while in Heng et al. 2019, a platform for autonomous vehicle is
proposed, which performs real-time 3d mapping without the need of GNSS using a
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360-degree camera system, multi-view geometry and fully convolutional neural
networks. In Bobbe et al. 2017, authors combine an aerial (UAV) and a ground
(computing processing) platform to georeference aerial data extracted by online visual
SLAM based on ORB-SLAM2 algorithm utilizing photogrammetric techniques while
authors in Mostafa et al. 2018, use visual odometry and extended Kalman filters in
order to improve on inertial measurement unit (IMU) measurements. Xu et al. 2019,
developed an ORB-SLAM method for real-time locating systems in indoor GNSS-
denied environments in order to detect characteristic points achieving an accuracy
which ranges from 0.39–0.18 m aided by a depth sensor to acquire the scale
information of the scene. Tang et al. 2015 claim SLAM performance in featureless
environments is poor and opt for a method without SLAM while in Munguía et al.
2016, a visual-based SLAM system for navigation using a UAV, a monocular camera,
an orientation sensor (AHRS) and a position sensor (GNSS receiver) is proposed. The
system performs SLAM processing for navigation but it fuses GNSS measurements
during initialization period to estimate the metric scale of the scene.

Several studies have been conducted for accurate and / or rapid mapping with the use
of mobile mapping systems (MMS), Photogrammetry and image processing
techniques. In Kalacska et al. 2020, authors follow the approach of Structure-from-
Motion (SfM) with multi-view stereo technique of Photogrammetry to produce ortho-
images and 3D surfaces without the use of ground control points (GCPs) using UAVs
equipped with GNSS receivers and optical sensors. In Pinto & Matos 2020, dense 3D
information in underwater environments is constructed through the fusion of multiple
light stripe range (LSR) and photometric stereo (PS) methods outperforming the
corresponding conventional methods in terms of accuracy while in Bañón et al. 2019,
aerial images and ground control points (GCPs) are used in order to produce a 3D
model in a coastal region through SfM. The characteristic points are measured using a
GNSS receiver for the validation of the methodology with a vertical RMSE error of
0.12 meters. Tomaštík J. et al. 2017, evaluate the positional accuracy of forest rapid -
mapping, using point cloud data created by UAV images and the Agisoft software
with an accuracy level of 20 cm.

Various studies are referred to localization and detection methods employing MMS
equipped with stereo sensors. Haque et al. 2020, propose an unmanned aerial system
(UAS) which is able to find its location in a 3D CAD model of a pre-defined
environment. The UAS with a stereo-depth camera, maps the area using ORB-
SLAM2 algorithm, detects and extracts vector features with the aid of a convolutional
neural network (CNN) and rectifies its location comparing the SLAM mapping area
with the 3D CAD model. In Li et al. 2017, authors propose a pose estimation
methodology based on mobile accelerometers, visual markers and stereo vision fusion,
achieving a centimeter level of accuracy while in (Vrba & Saska 2020; Vrba et al.,
2019), a methodology that detects a micro aerial vehicle (MAV) is proposed, utilizing
machine learning techniques and an RGB-Stereo depth camera with an average RMS
error of 2.86 meters. In Zhang C. et al, 2019, a real-time obstacle avoidance method is
developed with the aid of a stereo camera, a GNSS receiver and an embedded system
mounted on a UAV in order to detect obstacles and follow an alternative, obstacle-
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free path. In Ma et al. 2021, authors utilize a UAV with two cameras and a GNSS
receiver in order to detect and geographically localize insulators in power
transmission lines based on the bounding box of the detected insulators. Moreover,
depth-based cameras have been used in UAVs for autonomous landing in GNSS-
denied environments, where a UAV is able to detect, locate and land on an unmanned
ground vehicle (UGV) making use of information from a multi-camera system and
deep learning algorithms (Yang et al., 2018; Animesh et al., 2019).

As referred above, the literature abounds of positioning methodologies for GNSS-
denied areas, rapid mapping solutions using photogrammetric techniques or
localization systems based on SLAM and detection. Although most of the studies
propose alternative localization solutions, none of them focus on surveying or
traditional topography combined with computer vision and multi-view geometry
algorithms.

In this study, a cost-effective, rapid and efficient surveying solution for GNSS-denied
and challenging environments is proposed where a RGB-Depth sensor and a
computing system are enough to map an area of interest. The methodology combines
the following three proposed methods aiming to localize specific points which are
represented by specialized fiducial markers in the scene:
 A SLAM system based on deep learning, focused on environments with poor-

featured information and intense illumination changes
 A localization method called multi-line convergence method (MLC) and
 An optimization method called Plane alignment (PA)

The study is an extended and improved approach of two previous studies (Trigkakis et
al, 2020, Petrakis et al, 2023) which utilized the MLC and PA methods with a
traditional SLAM system in order to localize the desired fiducial markers. More
specifically, in Trigkakis et. al, 2020, an implementation based on SLAM, point cloud
and image processing techniques, localizes characteristic points in a local coordinate
system using a monocular camera in combination with a fiducial marker. Although
the main issue of the monocular setup approaches is the scale estimation (Sahoo et al.,
2021), the study controlled this issue by using the MLC method achieving an
accuracy level of 50 cm. In Petrakis et al, 2023, the aforementioned methodology was
extended using a stereo camera instead of a single sensor and validated, conducting
various indoor and outdoor experiments on dense and sparse urban and vegetated
scenes. In Petrakis et al, 2023, the methodology is capable of mapping an unknown
area, providing refined estimations of point coordinates in a local 3D coordinate
system fusing stereo SLAM, image processing techniques and coordinate system
transformations, increasing the accuracy level in about 10 cm.

In this study, the methodology was further extended aiming to be used in challenging
environments with poor information in visual cues and features or/and intense
illumination changes including unstructured scenes. To achieve this goal, a proposed
SLAM system based on a lightweight neural network is utilized, where combined
with the aforementioned MLC and PA methods, is able to provide robust results and
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maintain satisfactory accuracy in challenging and unstructured GNSS-denied
environments. The main improvement of this study compared with the two previous
approaches is that can be specialized in specific environments and scenes by re-
training and fine-tuning of the neural network for each specific scene, an extremely
useful approach, since it is potentially capable utilizing in several environments
including glacial scenes, dense-canopy areas, factory facilities, dense-urban
environment etc, maintaining the rapid mapping and robust results.

To the best of our knowledge, there is no similar solution that makes use of a visual
SLAM algorithm based on deep learning, an RGB-depth camera and a fiducial marker
in order to provide a 3D local coordinate system in challenging environments with
high level of accuracy. Unlike the similar localization methods, the coordinate
estimations were not extracted in a software-based reference system but in a reference
system which is well-defined in the scene. The main contributions of the study are as
follows:

 An alternative surveying solution was developed using a deep learning-based
SLAM, multi-view geometry and coordinate system transformations.

 The methodology can be performed with minimum and cost-effective equipment
since an RGB-depth camera and at least one fiducial marker are enough to map
an unknown environment localizing characteristic points in a 3D local coordinate
system.

 All coordinate estimations are transferred and exported in a local reference
system which is well-defined in the scene, using the plane and the pose of a
fiducial marker.

 The proposed solution can be specialized in specific challenging environments by
re-training and fine-tuning the neural network which is integrated on the SLAM
system.

To sum up, in this chapter, a literature review was conducted regarding the feature
extraction and semantic segmentation in unstructured environments following with
the precise positioning methods in GNSS-denied environments. In chapter 3, the
methodological approaches that were developed in each pillar of this dissertation are
analyzed, aiming to fulfill the gaps that emerged by the literature review.
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Chapter 3

Methodological Approach
In this chapter, the methodology employed in this dissertation is presented, which
aimed to explore and analyze the datasets, methods, techniques and architectures that
were utilized in order to develop the proposed framework. Initially, two different
approaches for feature extraction in challenging environments are presented while the
integration and use of the second architecture in a SLAM system, is analyzed.
Afterwards, a methodology for scene understanding using semantic segmentation is
analyzed while finally, the architecture and techniques that were developed for the
precise positioning and mapping alternative in GNSS-denied environments, are
described.

3.1 Visual localization in challenging environments

Visual localization either as a technique to estimate the pose of a robotic system in a
predefined map or as a SLAM sub-module performed in unknown environments,
includes several challenges when applied in unstructured environments including
planetary scenes. More specifically, in rocky and sandy environments or even Moon
and Mars-like scenes two are the main challenges that this study attempts to encounter:

 Poor information in visual cues and features
 Intense changes in lighting conditions

In this study, two deep learning architectures were implemented aiming to deal with
the above challenges. Initially, a CNN-based self-supervized architecture is
implemented and optimized for keypoint detection and description while afterwards a
lightweight CNN-based teacher-student architecture is developed for feature
extraction and SLAM-based navigation. Both architectures were trained, fine-tuned
and evaluated using datasets that were designed for unstructured and planetary-based
environments.

3.1.1 Keypoint detection and description model architecture

To deal with the issues of visual cues lack and intense lighting changes in
unstructured environments, SuperPoint (DeTone et al. 2018), a state-of-the-art
methodology which outperforms handcrafted and deep learning feature extractors
(Bojanic et al. 2019, Liu et al. 2022) was implemented and improved.
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3.1.1.1 SuperPoint architecture

Superpoint is a fully convolutional neural network, composed by an encoder-decoder
architecture which is performed using full-sized images as input. At first, a shared
encoder, based on VGG neural network (Simonyan & Zisserman 2015) is utilized
aiming to reduce the image dimensionality using three max-polling operations,
extracting image cells in a size of Hc = H / 8 and Wc = W / 8 where H and W are the
height and width of an image. The extracted tensor is imported in two decoders, one
of which acts as a keypoint detector and the other one as a descriptor (fig 3.1).

Concerning the keypoint detector decoder, it undertakes the reconstruction of the full-
sized image, extracting the probability of a keypoint existence in each pixel. Initially,
it forms a tensor X ∈ ℝHcWc×65 where 65 channels is composed by 64 non-
overlapping 8x8 pixel cells and an extra cell, called “no interest point dustbin”
(DeTone et al. 2018). Subsequently, this tensor is imported to a “softmax function”
where the dustbin cell is removed while the resulted tensor is reshaped to a full-sized
image output (ℝ�ö) after a “reshape operation”. It’s worth noting that the detector
decoder doesn’t upsample the full resolution of the image using transposed
convolution techniques such as Unet due to high demands on computing resources
while according to DeTone et al. 2018, these upsampling techniques are able to
introduce checkerboard artifacts. Instead a”sub-pixel convolution” (Shi et al. 2016) is
utilized, which doesn’t include training parameters, aiming to reduce the computation
process.

Regarding the descriptor decoder, it computes a tensor ℝHcWc×D where D is the
descriptor length equal to 256 while via two convolutional layers, it extracts fixed
feature maps in a shape of IdescHcWc×D . The feature maps are reconstructed to the full-
sized dimensions through a bi-linear interpolation while afterwards, the L2 norm
operation is performed aiming to calculate the unit length of the descriptors. It’s worth
noting that the original SuperPoint architecture utilizes bi-cubic interpolation instead
of bi-linear. However, in case of unstructured environments, it was observed that bi-
linear interpolation provided similar accuracy while reducing the computation process
compared with bi-cubic interpolation.

SuperPoint utilizes a unified loss function which is composed by the loss function of
keypoint detector (ℒp ) and the loss function of the descriptor (ℒd ). SuperPoint uses
pairs of wrapped images with the predicted keypoint locations and the corresponding
transformation matrices or homography, utilized as ground truth. The unified loss
function is presented in equation (3.1):

ℒ(X, X', D, D'; Y, Y', S) = ℒp(X, Y) + ℒp(X', Y') + λℒd(D, D', S) (3.1)

Where ℒp(X, Y) and ℒp(X', Y') are the keypoint detector loss function for the
original and a wrapped image respectively, defined as follows:
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ℒp(X, Y) =
1

HcWc
h = 1
w = 1

HcWc lp(xhw; yhw� ) (3.2)

with: lp (xhw; y) = − log( exp(xhwy)

k=1
65 exp(xhwk)�

), (3.3)

where xhw ∈ X are pixel cells of the input image while yhw ∈ Y the corresponding
labels.

The loss function of the descriptor can be defined below:

ℒd(D, D', S) =
1

(HcWc)2 h = 1
w = 1

HcWc
h' = 1
w' = 1

HcWc ld( dhw 2, dh'w' 2; shwh'w')�� , (3.4)

Where: dhw 2 and dh'w' 2 ∈ D are the normalized descriptor cells from the
original and wrapped image respectively while shwh'w' is a binary variable which
presents the homography correspondence between (h, w) and (h’, w’) cells.

Moreover, the parameter λd was added, aiming to reinforce the balance between
negative and positive correspondences while the hinge loss is used (3.5):

ld(d, d'; s) = λd ∗ s ∗max(0, mp − dTd') +
+ (1 − s) ∗max(0, dTd' − mn), (3.5)

wheremp andmn are the positive and negative margins (Rosasco et al. 2004).

It’s worth noting that, in the original SuperPoint, the descriptor cells ( dhw 2, dh'w' 2)
are not normalized. However, it was observed that the normalized descriptors, tuning
the factor λ (3.1) and the weighting term λd (3.5) accordingly, produced more
accurate results in unstructured environments (see section 4.1.2).

Figure 3.1 SuperPoint architecture
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3.1.1.2 Self-supervized training of SuperPoint

The self-supervized training process of SuperPoint is conducted in several rounds
aiming to increase the accuracy of feature detection. At first, the standalone keypoint
detector, called MagicPoint (DeTone et al. 2018) is trained using a generated
synthetic dataset which includes 2D geometric shapes such as lines, ellipses, triangles
etc. During the training process, homographic adaptation is performed, which
combines multiple random homographies of the input image and the keypoint
predictions of the model, aiming to reinforce the efficiency in geometric
transformations (fig 3.2a).

After the first round of training, the trained model is used in order to extract pseudo-
ground truth of the desired dataset (fig 3.2b) while afterwards, the MagicPoint is re-
trained using the desired dataset and the extracted labels while the homographic
adaptation is utilized also. It’s worth noting that, the MagicPoint training with the
desired dataset can be repeated for two or three rounds using the optimized pseudo-
ground truth each time, in order to further improve the detector’s accuracy.

Finally, the SuperPoint including detector and descriptor is trained using the desired
dataset and the optimized psudo-ground truth (fig. 3.2c).

ba

c
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Figure 3.2 SuperPoint training process: (a) MagicPoint training using homographic adaptation, (b)
Pseudo-ground truth prediction based on the trained model, (c) SuperPoint training and fine-tuning

3.1.2 Lightweight feature extraction model architecture

In this section, an alternative and lightweight approach for keypoint detection and
description through deep learning in unstructured environments is presented. More
specifically, a multi-task encoder-decoder architecture, based on HF-net (Sarlin et al.
2019) was implemented, focused on visual localization, being able to predict keypoint
locations, local and global descriptors. The proposed NN, which can be called HF-
net2, utilizes a teacher - student architecture (fig.3.3) in order to increase efficiency in
terms of performance-time without decreasing the accuracy and reliability, while
being capable of using in real-time applications.

Figure 3.3 A multi-teacher-student architecture
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Initially, the training dataset feeds two pre-trained models which represent the
teachers, while the distilled knowledge plays the role of ground truth for the student
during the training process. The one teacher utilizes the SuperPoint architecture
(DeTone et al. 2018) extracting keypoint locations and local descriptors while the
second one extracts global descriptors using the NetVLAD architecture (Arandjelovic
et al. 2016).

The student architecture is composed of a shared encoder and three different sub-
modules which focus on: (a) keypoint detection (b) local description (c) global
description. For the shared encoder, the MobilenetV3-large (Howard et al. 2019) is
utilized instead of MobilenetV2 (Sandler et al. 2018) which is used on the original
HF-net while a decoder based on SuperPoint extracts the keypoint scores and local
descriptors. Simultaneously, on top of the last feature map of MobilenetV3-large a
NetVLAD layer predicts the global descriptor of each entire image (fig. 3.4).

Figure 3.4 HF-net2 architecture

MobilenetV3-large utilizes Neural Architecture Search (NAS) (Elsken et al. 2019)
and the non-linearity activation function called hard-Swish (Ramachandran et al 2017)
which combines the Swish activation function (3.6) (Ramachandran et al 2017) with
the piece-wise alternative of the sigmoid function ����6( + 3)

6 , described by the
equation (3.7).

swish[x] = x σ(x) (3.6)

h − swish[x] = x ReLU6(x + 3)6 (3.7)

Where σ(x) is the sigmoid function and ReLU6 is a modification of the well-known
“rectified linear unit” activation function.
Thus, MobilenetV3-large achieves increased efficiency in terms of performance time
and accuracy compared with MobilenetV2.
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As a result, the proposed NN, is able to combine multi-task prediction, utilizing
knowledge distillation, achieving a flexible end-to-end training process with high
efficiency in low-resources computing systems. The proposed NN was trained and
fine-tuned using a dataset which includes FPV images from Earth, Mars and Moon,
aiming to increase its robustness in unstructured and challenging environments. More
information about the dataset is referred in the section 3.1.4.

3.1.3 SLAM system for unstructured environments

The proposed NN, trained and optimized for unstructured environments was
integrated in a SLAM system aiming to increase the efficiency of autonomous
navigation in challenging conditions and completely unknown environments. In other
words, the proposed SLAM system focuses on unstructured environments with visual
cues lack and intense lighting conditions, using the trained and fine-tuned model for
keypoint detection, local and global description.

The proposed SLAM system is based on ORB-SLAM2 (Mur-Artal & Tardos 2017)
where instead of using ORB descriptor to extract features, the HF-net2 model is
utilized. The proposed SLAM uses RGB images with the corresponding depth
information aiming to be scale-aware while is divided in three different modules
which are performed simultaneously in separated threads: (a) tracking, (b) local
mapping and (c) loop closing.

The tracking module processes the RGB-Depth data while the integrated HF-net2
model predicts keypoint locations, local and global descriptors. The keypoints and
local descriptors are used for the camera pose prediction while when the SLAM
system detects multiple features in neighbored frames, it extracts a new keyframe
using the camera pose predictions. The keyframes which are treated as landmarks
combined with the keypoints, aid the local mapping module to map the surroundings.

The loop-closing module is based on DXSLAM (Li et al. 2020) and combines the
Fast BoW (Bag-of-Words) algorithm (Munoz-Salinas & Medina-Carnicer, 2020)
which converts each keyframe in a vector of words using the pre-trained vocabulary
tree, with the images representation extracted by the global descriptors predicted by
the proposed HF-net2 model. When a loop is detected, the system optimizes the
camera trajectory and point cloud using full bundle adjustment technique (fig 3.5).
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Figure 3.5 SLAM architecture based on the proposed NN

3.1.4 Datasets

Several studies investigate feature extraction in FPV images in urban and indoor
environments using deep learning architectures. However, those architectures are
trained with general-purpose datasets such as COCO (Lin et al. 2014) while the best
of author’s knowledge, there is not any deep learning model for feature extraction,
focused on unstructured and planetary scenes.

Thus, two different datasets were design aiming to train and evaluate the proposed
deep learning methodologies:

 A training dataset
 An evaluation dataset

3.1.4.1 Training dataset

The training dataset includes 48 000 of FPV (First-Person-View) or rover-based
images with wide range of variations in landscapes, including images from Earth,
Moon and Mars.

Regarding the Earth, dataset contains 26 000 RGB images, captured from
construction sites, mountainous areas, sandy beaches and a quarry from the area of
Crete, Greece (fig 3.6a). The images were taken in scenes with various lighting and
weather conditions in day and nighttime while the camera was located 1.5 meter from
the ground in a direction of 10 and 60 degrees from the horizon (fig. 3.7).

The images from Mars were collected by a publicly available dataset of NASA which
includes about 13 000 images captured by Mars Science Laboratory (MSL, Curiosity)
rover using three instruments: Mastcam Right eye Mastcam Left eye, and MAHLI
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(Lu 2023) (fig 3.6b). Concerning the Moon’s dataset, includes about 9 000 artificial
rover-based images which generated and released with CC (Creative Commons)
license by Keio University in Japan (fig 3.6c). The dataset was created using the
Moon LRO LOLA digital elevation model which is based on the Lunar Orbiter Laser
Altimeter (Smith et al. 2010) combined with the simulation software Terragen of
Planetside Software.

Figure 3.6: A sample of training dataset. (a) images from Earth, (b) images from Mars (c) images from
artificial lunar surface

Figure 3.7 Camera’s direction relative to the horizon

a

b

c
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3.1.4.2 Evaluation dataset

For the evaluation of feature extraction architectures and the comparison with other
widely used handcrafted algorithms, an evaluation dataset were designed for
unstructured and planetary scenes inspired by HPatches dataset (Balntas et al. 2017),
one of the most popular datasets for keypoint detection and description evaluation in
general-interest images.

The proposed dataset contains 120 sequences of images from Earth, Mars and Moon
which not included in the training dataset. Each sequence is composed of the original
image and five different representations of the original image in terms of illumination
and viewpoint. More specifically, 60 out of 120 sequences includes the original image
and five generated images with intense illumination changes while the remaining 60
sequences contains the original image and five generated images with various
viewpoint changes (fig. 3.8, fig. 3.9). In each sequence, five transformation matrices
determine the ground truth between the original image and each of the five
representations. The sequences with illumination changes contains identity matrices,
since the only difference among the representations is the illumination.

Figure 3.8: A sample of illumination-part evaluation dataset. (a) sequence from Earth, (b) sequence
from Mars (c) sequences from artificial lunar surface

a

b

c



Chapter 3 - Methodological Approach42

Figure 3.9: A sample of viewpoint-part evaluation dataset. (a) sequence from Earth, (b) sequence from
Mars (c) sequences from artificial lunar surface

3.2 Semantic segmentation in unstructured environments

Semantic information in unstructured environments provides a contextual
understanding of objects and their relationships within an image, enabling machines
to recognize and categorize features semantically, reinforcing crucial tasks including
autonomous navigation in unknown planetary scenes. Although the literature includes
several studies focused on terrain segmentation in unstructured scenes, there are two
main gaps, that the dissertation attempts to fill:

 Semantic segmentation specialized in the lunar surface, since most of the studies
investigate scene understanding through semantic segmentation in earthy
unstructured environments or in the martian surface

 A lightweight semantic segmentation model, capable of being used in systems
with low computing resources, providing high efficiency after training with a
limited size of dataset

In other words, the scope of this study, is the development of a lightweight semantic
segmentation model which is able to provide increased accuracy with potential use in
real-time tasks during a rover-based mission on the lunar surface. Two challenges
have to be encountered. The first one is the lack of valuable rover-based datasets for
the lunar surface, compared with Mars where several datasets have been implemented.

a

b

c
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The second challenge is the size of the model, since most of the semantic
segmentation architectures are computationally expensive.
To address these challenges above, a modified U-net architecture is proposed, since
U-net is an efficient and accurate neural network in terms of accuracy which doesn’t
require large datasets (Eui-ik et al. 2021, Chhabra et al. 2022).

More specifically, the proposed architecture, is composed by an encoder-decoder
architecture where a modified version of MobileNetV2 neural network (Sandler et al.
2018) is used as an encoder and a lighter decoder of U-net is utilized for the
segmentation stage. To speed up, the learning process, the MobileNetV2 has been
trained with ImageNet, a well-known image dataset which includes millions of
general-purpose photographs, so as during the training process, to “transfer” its
earned “experience” to the model, encountering the issue of the limited size of lunar
surface dataset.

3.2.1 Modified U-net architecture

3.2.1.1 U-net architecture

As referred above, the proposed architecture is based on U-net (Ronneberger et al.
2015), a well-known architecture for semantic segmentation which initially proposed
for medical applications. The U-shaped model of U-net can be separated in two main
components: (a) the encoder, which reduces the image dimensions, increasing the
feature maps while learns to classify the desired features, and (b) the decoder, which
reconstructs the image dimensions, decreasing the feature maps and performs precise
segmentation of the detected features. U-net decoder, is able to segment the detected
features retrieving the topology of the image content through four skip connections
among different levels of the encoder which transfer information to the decoder in
order to maintain the spatial details of images with the aim to reconstruct them (fig.
3.10).
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Figure 3.10 U-net architecture

U-net is mainly composed by convolutional (Conv2D) and “BatchNormalization”
layers. Regarding the encoder-decoder functionality, the encoder downsamples the
image through the “MaxPooling2D” layer, and the decoder upsamples the image
using the UpSampling2D layer while the “Concatenate” layer creates the skip
connections between the encoder and decoder part. At the end, “softmax” (3.8) which
is the activation function is utilized in order to export the segmentation map for each
input image.

σ(z)� ������ i =
ezi

j = 1
K ezj�

(3.8)

Where �� ���� is the input vector and zi are the elements of the input vector while

j = 1
K ezj� is a normalization term with K classes which ensures that the output of the

function will sum to one and each output value will be in a range of (0, 1).

3.2.1.2 U-net with MobileNetV2 as encoder

Although U-net is an accurate semantic segmentation architecture, it provides high
performance-time while it requires a time-consuming training process with much
experimentation in fine-tuning, since it includes about 31,000,000 trainable
parameters. In order to accelerate the training process, “transfer learning” technique is
utilized, using a pre-trained (with ImageNet dataset) MobileNetV2 (Sandler et al.
2018) as the encoder (fig. 3.11).
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Figure 3.11 Architecture of U-net with MobilenetV2 as encoder

MobileNetV2 (Sandler et al. 2018) is a CNN-based architecture designed for
providing high efficiency in mobile devices while has been utilized in multiple tasks
of computer vision including classification, semantic segmentation, object detection,
etc. The main MobilenetV2 architecture is composed by 19 residual bottleneck layers
where each bottleneck is based on inverted residual block. The inverted residual block
is based on a narrow-wide-narrow approach using a point-wise convolution with
Relu6, followed by a depth-wise convolution with Relu6, followed by a linear point-
wise convolution, while a skip connection, merges the input of the block with the
output through the “Add” layer (fig 3.12). This approach reduces the extracted
parameters and computation compared with conventional convolution layers while
according to Sandler et al. 2018 when the kernel k=3 for 3x3 depth-wise convolution,
the computational cost is about 9 times smaller compared with traditional convolution
without significant reduction in accuracy.
More specifically, if the input of a traditional convolution is ℎ� × �� × �� where h
and w, the image dimensions and d, the depth or channels while the output is ℎ� ×
�� × �� , then the computational cost is calculated as ℎ� × �� × �� × �� × � × � ,
where k, the kernel size, while the corresponding computational cost of an inverted
residual block will be: ℎ� × �� × �� (�2 + ��).

Figure 3.12 Inverted residual block architecture

The combination of the original pre-trained MobileNetV2 as an encoder with U-net
decoder, provides a more lightweight architecture including about 8,000,000 trainable
parameters which quite less than U-net which includes about 31,000,000, while is
able to accelerate the training process. However, this architecture remains unsuitable
for applications which require high efficiency in inference-time especially for real-
time tasks.
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3.2.1.3 A lightweight version of U-net with MobileNetV2 as encoder

To deal with low-performance time without reducing the accuracy, a more lightweight
architecture is proposed based on a modified MobileNetV2 encoder and a lightweight
U-net decoder.

Regarding the modified MobileNetV2, is composed by an initial fully convolution
layer followed by 13 residual bottleneck layers, instead of the original MobileNetV2
which includes 19, since right after the block 13, the parameters are highly increased
from about 92,000 to 155,000 in the original architecture. Moreover, to further reduce
the computational cost, the depth-multiplier which is a positive factor that multiplies
the channels through the depth-wise convolution, was defined with a value of 0.35
instead of 1.0 which is the default value aiming to decrease the output channels of the
depth-wise convolution layers. It’s worth mentioning that for depth-multiplier values
less than 1.0, the depth-multiplier is applied to all layers except the last convolution
layer.

Concerning the U-net decoder, all the filters of the convolution layers were divided by
the factor of 2 aiming to accelerate the segmentation stage while the four skip
connections connects the input image, the block 1, block 3 and block 6 of the encoder
respectively.

The proposed architecture includes about 220,000 trainable parameters which are far
fewer than the 31,000,000 and 8,000,000 trainable parameters of U-net and original
MobileNetV2/U-net respectively.

The proposed architecture with detailed representation of the layers is presented in
figure 3.13 while a more abstract representation is depicted in figure 3.14.

Figure 3.13 Proposed architecture
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Figure 3.14 Proposed architecture for lunar terrain segmentation

The proposed architecture deals the first aforementioned challenge for a semantic
segmentation in unstructured environments, since it doesn’t require large datasets due
to U-net capabilities and transfer learning technique, while it is suitable for systems
with low computing resources since it includes only 220,000 parameters which are
about 140 times less than the original U-net. Moreover, as the experimentation proves
(see section 4) the accuracy is not reduced, providing robust and satisfactory results.

3.2.2 Dataset

As referred above, there is a lack in datasets for lunar surface segmentation while to
the best of author’s knowledge, there is not rover-based image dataset which depicts
the real lunar landscapes instead of Mars where several rover-based datasets have
been proposed.

Thus, for training and validation of the proposed architecture in lunar environment, a
dataset with artificial rover-based images which depict lunar landscapes was utilized,
created by the Space Robotics Group of Keio University in Japan. The images
generated using Planetside Software's Terragen and a real DEM (Digital Elevation
Model, which is based on data from the Lunar Orbiter Laser Altimeter on NASA
(Smith et al. 2010). It includes about 9,700 artificial images and the corresponding
annotated masks taking the following four classes into account (fig 3.15):
 Large rocks
 small rocks
 Sky
 Ground (backgrand)
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Figure 3.15 Dataset of lunar surface for semantic segmentation bySpace Robotics Group of Keio
University in Japan. The artificial images are presented in the left column while the corresponding
masks in the right column

Several drawbacks are included in the dataset, such as the decreased accuracy in
feature segmentation and the lack of balance between the classes of large rocks and
small rocks, since the examples of small rocks are by far more than the examples of
large rocks. To deal with the imbalanced classes, the two classes of rocks were
merged in one class. Thus, the new dataset includes the following classes:

 Rocks
 Sky
 Ground (background)

Nevertheless, since this is the only publicly available dataset for the lunar surface
focused on semantic segmentation, it was utilized in order to train and validate the
proposed architecture, aiming to provide a lightweight model for potential use in
systems with low computing resources during the rover navigation, on the lunar
surface.

3.3 Precise positioning and mapping in GNSS-denied environments

The main goal of this study is the localization of fiducial markers and characteristic
points of the scene, providing their local coordinates in 3D space under a high level of
accuracy, using minimal equipment. In other words, presented methodology maps an
area of interest, by extracting the pose estimation of pre-defined fiducial markers and
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a point cloud in a local coordinate system using an RGB-Depth camera. At first, the
fiducial markers are placed in the scene where one of them is used as the origin
marker while the target markers represent the characteristic points or features.
Subsequently, the proposed SLAM (see section 3.1.3), enables the RGB-Depth
camera to map the desired area and localize itself in an unknown and challenging
environment, while in combination with geometrical transformations, localization and
optimization techniques, the present methodology estimates the coordinates of target
markers and an arbitrary point cloud which approximates the structure of the
environment.

3.3.1 System Architecture

The system architecture is presented in the following figure:

Figure 3.16 Overall architecture of precise positioning and mapping methodology

Initially, a fiducial marker which is defined as the origin of the local coordinate
system is placed in the area of interest, while a number of fiducial markers which are
defined as targets represent natural or artificial features. Afterwards, the user can
record a video, passing through all the desired characteristic points capturing RGB
and depth information. During the data processing, the RGB-Depth image frames are
inserted to the proposed HF-Net2 neural network (please see section 3.1.2) in order to
extract keypoints and local / global descriptors of the scene (feature extraction
module). The system using the internal parameters of the camera and the local
keypoints and descriptors, predicts the camera pose while utilizes the global
descriptors in case of a prediction failure. If it observes groups of features in multiple
sequential frames, it stores a keyframe. Based on the process above, the SLAM
algorithm outputs multiple keyframes which are treated as landmarks since, in
combination with the keypoints, are necessary for the local mapping, the loop closure
detection and for the re-localization of the camera. For the optimization of the
camera’s pose prediction, local mapping and loop closure detection, SLAM algorithm
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utilizes the bundle adjustment (BA) algorithm using the Levenberg-Marquardt
method (Mur-Artal & Tardo 2017).

After the end of the SLAM process, it outputs a point cloud and a trajectory of the
scene while traditional image processing techniques such as adaptive and Otsu
thresholding (Otsu 1979) provide the identifications of target markers. Subsequently,
through the multi-line convergence method (Trigkakis et. al, 2020), the locations of
the markers are estimated while the pose of the origin marker is optimized with the
utilization of plane alignment method (Trigkakis et. al, 2020). Finally, the coordinate
estimations are transferred in a local coordinate system, defined by the pose of the
origin marker. After the end of the process, the user is able to study the mapping area
and conduct measurements using a 3D point cloud, a camera trajectory and the marker
estimations, which are defined in the local coordinate system with origin, the origin
marker.

3.3.2 Coordinate system definition

A core component of the methodology for the final coordinate estimations and 3D
scene reconstruction is the coordinate system definition. The first coordinate system is
defined and established by the proposed SLAM system using the first frame of the
captured video. The x and y axes in this initial coordinate system, follow the right and
top directions of the frame respectively while the z axis is equivalent with the camera
direction towards the landscape of the area. Subsequently, the calibration data and the
camera pose (retrieved by camera trajectory information) along with the target marker
coordinates which are calculated by marker detection module, extract the vectors of
rotation and translation that are utilized in transformation of the initial reference
system to the camera reference system. Finally, the reference system definition
module, calculates the translation vector and rotation matrix from the orientation and
translation of the origin marker and defines the final reference system based on the
origin marker’s pose. The x and y axes of the marker reference system follow the
right and top direction of the marker while the z axis follows the zenith direction (fig.
3.17).
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Figure 3.17 Initial and final coordinate systems. The initial coordinate system defined by SLAM is
formed by the first recorded frame of the camera while the final coordinate system is defined by a
single marker (the origin marker). Both coordinate systems are visualized with x axis in blue, y axis in
green and z axis in red

3.3.3 Multi-line convergence (MLC) and Plane Alignment (PA) methods

Multi-line convergence method (MLC), is a method for the marker location definition
that is based on the observation that the extended line segments which connect each
marker pose estimation with the corresponding camera position, converge in an area
that corresponds to the location of the marker in the 3D scene (fig 3.18). The method
defines the optimized point that the extended line segments converge, using pseudo-
inverse least squares optimization (Samuel 2004, Eldén 1982). The method can be
described by the following equation:

p = S+ ⋅ C, (3.9)

Where p is the minimized distance of the theoretical convergence point from all the
lines while S+ is the pseudo-inverse matrix of S which is defined in eq 3.10. C is
defined in eq. 3.11.

� = � ����
� − �� , (3.10)

� = � ����
� − �� ��, (3.11)

Where each line is defined with “i”, “αi” is the starting point of line “i” and “ni” is the
direction of line i while “I” is an identity matrix.



Chapter 3 - Methodological Approach52

Figure 3.18 The detection of a fiducial marker implies that its location lies on a line connecting the
camera's location with the center of the fiducial marker. By obtaining multiple such detections, it is
determined the point where the lines intersect, or at least, are close to intersecting

Regarding the Plane alignment method (P.A.), it is performed to correct the
translation and rotation errors of the origin marker that defines the final coordinate
system of the scene. This step is important because any pose estimation error in the
origin marker is transferred in every target marker and point cloud data of the scene.
With the PA method, the pose and rotation of the origin marker is corrected leading to
reliable measurements and an accurate definition of the origin coordinate system.

More specifically, initially, plane segmentation is performed on the point cloud,
aiming to produce part of the point cloud that matches a plane while it gives access to
the plane coefficients, in the form of ax+by+cz+d = 0. At the same time, it is able to
obtain the normal vector from the plane coefficients, forming n = [a, b, c].

For the marker alignment with the point cloud, a rotation is performed that when
applied on the pose normal vector, it aligns it with the plane normal vector. By
expressing this rotation based on the normal vectors, it is able to apply it as a rotation
matrix to the pose rotation matrix (through matrix multiplication), and define all three
rotation angles at the same time:

Using the above formulas, a transformation matrix U is obtained (eq. 3.17):

G =
A ⋅ B
A × B
0

− A × B
A ⋅ B
0

0
0
1

, (3.12)

u = (A⋅B)A
(A⋅B)A = A, (3.13)

υ = B − (A⋅B)A
B −(A⋅B)A , (3.14)

ω = B× A, (3.15)

F = (u υ ω)−1 = A B − (A⋅B)A
B −(A⋅B)A B × A

−1
, (3.16)
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U = F−1 ⋅ G ⋅ F, (3.17)

The multiplication of U with a vector v expresses the rotation from A to B where A
and B are the normal vectors of the solution. Instead of multiplying U with a vector, it
can be multiplied with the rotation matrix corresponding to the pose of the marker to
form a new pose. Then the normal of the marker will align with the plane normal.

The matrix U, when multiplied with the marker’s rotation matrix (U x R) forms a new
rotation matrix that is aligned to the plane normal. In order for the algorithm to match
enough points to obtain an accurate normal, a procedure of plane segmentation is
performed on the entire point cloud while then, the procedure is applied again, but
only locally (1 meter radius). Finally, the minimum distance between the most
significant 1-meter radius plane normal and the set of normals from the entire point
cloud is estimated. Thus, the plane normal is extracted from the entire point cloud,
that matches the local plane normal best. By performing this procedure, it is possible
to correct both the pose and rotation of a fiducial marker, leading to robust
measurements, and a fine-tuned definition of the origin coordinate system, which is
paramount to obtaining the final estimates for all markers that do not participate in
defining the coordinate system.

As a conclusion, in this chapter the methodologies and architectures that were
developed in order to reinforce the efficiency of feature extraction, SLAM, semantic
segementation and precise positioning processes in unstructured environments were
analyzed. In the next chapter, the implementation details and the extracted results
derived by an extended experimentation of each methodology including the optimized
SuperPoint model, the Hf-net2 with the proposed SLAM, the modified U-net and the
precise positioning alternative are presented.
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Chapter 4

Implementation and results
In this chapter, the technical details about the implementation and the design of
experimentation for the proposed framework is analyzed while the results of each
methodology are presented. The structure of this chapter follows the four main
components of the framework described below:

 Implementation and results of SuperPoint model
 Implementation and results of HF-net2 architecture and the proposed SLAM
 Implementation and results of the proposed NN for semantic segmentation
 Implementation and results of the precise positioning and mapping in GNSS-

denied environments

4.1 Implementation and results of SuperPoint model

In this section, the implementation and training procedure of the SuperPoint
architecture are presented, while afterwards the evaluation and results of the extracted
models are described.

4.1.1 SuperPoint implementation and training

SuperPoint was implemented using the TensorFlow (Abadi et al. 2015) deep learning
platform and trained utilizing the proposed dataset (see 3.1.4.1), aiming to increase
the SuperPoint’s sensitivity in planetary and unstructured scenes.

As described in section 3.1.1, the original SuperPoint’s architecture was improved
applying the following two modifications:
 The bi-linear interpolation is utilized for feature maps reconstruction in full-sized

images instead of bi-cubic interpolation, used by the original SuperPoint
 In the loss function of keypoint description, the descriptors of initial and wrapped

images are L2 normalized while tuning the weighting parameters including λ and
λd accordingly (see 3.1.1.1).

During the experimentation, three SuperPoint models were produced following the
training approaches presented below:

 The original SuperPoint was trained from scratch, using the proposed dataset
aiming to focus on planetary environments

 The original SuperPoint was trained using the proposed datastet, based on the
weights extracted by the training of SuperPoint with COCO (Lin et al. 2014)
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dataset (fine-tuning). This model aims to combine the general-purpose knowledge,
with the specialized knowledge for unstructured environments acquired by the
proposed dataset

 The optimized SuperPoint trained from scratch, using the proposed dataset,
aiming to focus on planetary environments

Both, original and optimized SuperPoint models were trained under the same
parameterization. For each model, the MagicPoint which is the standalone detector of
SuperPoint, was trained for three rounds applying 18 000 iterations with batch size
equal to 32 and homographic adaptation enabled. Subsequently, SuperPoint was
trained for 250 000 iterations with batch size equal to 2 with homographic adaptation
disabled due to high demands on computing resources. The Adam optimizer with
default learning rate equal to 0.001 were utilized while the image input size that was
used is 240 x 320 in grayscale.

Before each round of training, the weights from the last round are used to extract the
pseudo-ground truth of the dataset which is subsequently used in the next round of
training. It’s worth noting that in the first round, the pseudo-ground truth is extracted
using the weights based on a MagicPoint model, trained with the synthetic shapes
dataset.
Regarding the computing resources, an Intel i7-4771 CPU with 3.50GHz × 8
combined with an NVIDIA GeForce GTX 1080 Ti GPU were utilized while an
external hard drive of 3.5 inches and a size of 4TB was used for retrieving and storing
data during the training.

4.1.2 Evaluation and results of SuperPoint models

In this section, the implemented SuperPoint models focused on unstructured
environments, are evaluated in terms of keypoint detection and description, compared
with well-known and widely used algorithms and the pre-trained SuperPoint model.

The evaluation is conducted using the benchmark dataset (3.1.4.2) designed for
planetary and unstructured scenes while the repeatability and homography estimation
metrics are utilized for the evaluation of keypoint detection and description
respectively.

Regarding the evaluation of keypoint detection, the produced models are compared
with the algorithms SHI (Shi & Tomasi 1993), Harris (Harris & Stephens 1988), and
FAST (Rosten & Drummond 2006) implemented with OpenCV library (Bradski 2000)
and the original SuperPoint model, trained with 80 000 general-purpose images of
COCO dataset. The repeatability metric, which determines the efficiency of the model
to detect the same keypoints in different image representations of the same scene, was
estimated using 300 detected points as the maximum limit and threshold of
correctness ε=3 pixels (table 4.1).
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Concerning the evaluation of keypoint description, the produced models are compared
with ORB (Rublee et al. 2011), SIFT (Lowe 2004) and the original SuperPoint pre-
trained with COCO dataset. The homography estimation metric was utilized, based on
nearest neighbor matching of keypoints and the corresponding descriptors between an
original image and a different representation of same image while 1000 detected
points were utilized with correctness threshold ε=3 (table 4.2).

Keypoint detectors Rep. (i) Rep. (v)

FAST 0.72 0.61
Harris 0.75 0.73
SHI 0.74 0.61
Original SuperPoint
(Pre-trained)

0.85 0.63

Original SuperPoint
(Trained from scratch)

0.83 0.65

Original SuperPoint
(Fine-tuning)

0.83 0.65

Optimized SuperPoint
(Trained from scratch)

0.82 0.66

Table 4.1 Evaluation of keypoint detectors based on illumination (i) and viewpoint (v) changes in
planetary and unstructured environments, using repeatability metric with ε=3

Descriptors Homography estimation (i) Homography estimation (v)
ORB 0.82 0.53
SIFT 0.97 0.96
Original SuperPoint
(Pre-trained)

0.98 0.81

Original SuperPoint
(Trained from scratch)

0.99 0.85

Original SuperPoint
(Fine-tuning)

0.98 0.84

Optimized SuperPoint
(Trained from scratch)

0.99 0.87

Table 4.2 Evaluation of keypoint descriptors based on illumination (i) and viewpoint (v) changes in
planetary and unstructured environments, using homography estimation with ε=3

As presented in table 4.1, the optimized and original SuperPoint models trained and
fine-tuned with the proposed dataset, provided similar repeatability of 0.82 and 0.83
respectively in terms of illumination changes, outperforming the SHI, Harris and
FAST detectors, while the pre-trained SuperPoint model achieves the highest
repeatability equal to 0.85. Instead, the optimized SuperPoint model outperforms SHI,
FAST and all the original SuperPoint models, (the pre-trained model and trained from
scratch with the proposed dataset) in terms of viewpoint changes, achieving a
repeatability score equal to 0.66. It’s worth noting that Harris detector provides the
highest repeatability in terms of viewpoint changes, equal to 0.73.

As presented in table 4.2, the optimized and original SuperPoint models provide the
highest homography estimation in terms of illumination changes (0.99) outperforming
the descriptors ORB, SIFT and the original pre-trained and fine-tuned SuperPoint
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models. In terms of viewpoint changes, the SIFT algorithm provides high accuracy in
a level of 0.95 while the optimized SuperPoint model, achieves homography
estimation equal to 0.87, outperforming ORB and all the original SuperPoint models
(the trained and fine-tuned with the proposed dataset models and the pre-trained
model).

Qualitative results of keypoint detection and description evaluation, are depicted in
figures 4.1, 4.2.

(a) Fast

(b) Harris

(c) SHI
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(d) Pre-tr. Sp

(e) TfS. Or. Sp

(f)FT. Or. Sp

(g) TfS. Opt. Sp
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(h) Fast

(i) Harris

(j) SHI

(k) Pre-tr. Sp
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Figure 4.1 a - g: Detected keypoints in two images from a scene of Mars with different levels of
illumination: (a) FAST, (b) Harris, (c) SHI, (d) Pre-trained SuperPoint, (e) original SuperPoint, trained
from scratch with the proposed dataset, (f) original SuperPoint, fine-tuned with the proposed dataset,
(g) optimized SuperPoint, trained from scratch with the proposed dataset. h-n: Detected keypoints in
two images from the same scene of artificial lunar surface with different viewpoints: (h) FAST, (i)
Harris, (j) SHI, (k) Pre-trained SuperPoint, (l) original SuperPoint, trained from scratch with the
proposed dataset, (m) original SuperPoint, fine-tuned with the proposed dataset, (n) optimized
SuperPoint, trained from scratch with the proposed datase

(l) TfS. Or. Sp

(m) FT. Or. Sp

(n) TfS opt. Sp
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(a) ORB

(b) SIFT

(c) Pre-tr. Sp

(d) TfS. Or. Sp
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(e) FT. Or. Sp

(f) TfS. Opt. Sp

(g) ORB

(h) SIFT
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Figure 4.2 a - f: Keypoint matches in two images from an earthy scene in different levels of
illumination: (a) ORB, (b) SIFT, (c) Pre-trained SuperPoint, (d) original SuperPoint, trained from
scratch, (e) original fine-tuned SuperPoint, (f) optimized SuperPoint, trained from scratch. g-l:
Keypoint matches in two images from the same lunar scene in different viewpoints: (g) ORB, (h) SIFT,

(i) Pre-tr. Sp

(j) TfS. Or. Sp.
Sp

(k) FT. Or. Sp.
Sp

(l) TfS. Opt. Sp.
Sp
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(i) Pre-trained SuperPoint, (j) original SuperPoint, trained from scratch, (k) original fine-tuned
SuperPoint, (l) optimized SuperPoint, trained from scratch

As observed in both figures (4.1, 4.2), the trained from scratch original and optimized
SuperPoint models, using the proposed dataset, provide high accuracy and sensitivity
in feature-poor scenes with illumination and viewpoint changes, outperforming the
handcrafted algorithms and the pre-trained SuperPoint model. The fine-tuned
SuperPoint, provides refined results compared with the pre-trained SuperPoint but it is
not as accurate as the trained from scratch models.

4.2 Implementation and results of HF-net2 architecture and SLAM

In this section, the implementation and results of HF-net2 architecture is analyzed
while afterwards an extended experimentation of the proposed SLAM system is
presented.

4.2.1 Training process

As referred in chapter 3, HF-net2 uses a multi-task distillation approach for the
training process using SuperPoint and NetVLAD as the teachers for keypoint
detection, local and global description respectively. Utilizing this self-distillation
process, there is no need for labeled data, since the labeling of the dataset is implicitly
conducted by the teachers which provide the corresponding ground truth to the
student network.

During the experimentation, the following two models were produced:
 HF-net2: The proposed architecture was trained from scratch using the proposed

dataset with the FPV images from Earth, Mars and Moon.
 HF-net: The original HF-net (Sarlin et al 2019) was trained from scratch with the

proposed dataset.

Both models were trained for 30 000 iterations while, the RMSProp optimizer was
utilized with learning rate in a range of 0.001 - 0.00001.

The training process of the multi-teacher-student architecture is conducted using the
following loss function:

L = e−w1 ds
g − dt1

g
2

2 + e−w2 dsl − dt2
l

2

2 +
(4.1)

+ 2e−w3CrossEntropy(ps, pt3) + iwi�

Where ds
g − dt1

g
2 is the L2 norm of student (s) and NetVLAD (t1) global

descriptors while dsl − dt2
l

2 is the L2 norm of student (s) and SuperPoint (t2) local
descriptors. The w1,2,3 represent optimized variables while ps and pt3 represent the
keypoint scores of student (s) and SuperPoint (t3) respectively.
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For the training process, an Intel i7-4771 CPU with 3.50GHz × 8 combined with an
NVIDIA GeForce GTX 1080 Ti GPU were utilized, while the implementation of the
architecture was conducted using the TensorFlow (Abadi et al. 2015) deep learning
platform.

4.2.2 Evaluation and Results of HF-net2

To evaluate HF-net2 model, the proposed evaluation dataset was utilized. As referred
in section 3.1.4 the dataset includes 120 sequences of images from Earth, Moon and
Mars, designed for evaluation in terms of illumination and viewpoint changes. The
performance of HF-net2 in keypoint detection and description, was tested and
compared with several well-known algorithms for keypoint detection and description.

Regarding the keypoint detection, the repeatability and mAP (mean Average
Precision) metrics were utilized in image sequences which includes image
representations with different illumination (i) or viewpoint (v) (table 4.3). The
repeatability measure the percentage of keypoints that are repeatable in different
image representations of the same scene while mAP utilizes the precision
# ������e ��e�ℎ��

# ��e�ℎ�� and recall # ������e ��e�ℎ��
# ��������������� curve, aiming to form a reliable

metric for the accuracy of the algorithms. Similarly in the description part, the
matching score, which is the percentage of the correct matching points out of a pre-
defined number of detected points (e.g 300), and the mAP are utilized, aiming to
evaluate the proposed descriptor in terms of illumination (i) and viewpoint (v)
changes (table 4.4).

Keypoint detectors Rep. (i) mAP (i) Rep. (v) mAP (v)
SIFT 0.48 0.24 0.54 0.26
FAST 0.65 0.46 0.61 0.38
Harris 0.71 0.55 0.77 0.57
SuperPoint 0.82 0.77 0.76 0.67
HF-net (original) 0.72 0.68 0.69 0.47
HF-net2 (proposed) 0.74 0.71 0.69 0.49

Table 4.3 Evaluation of HF-net2 as a keypoint detector in terms of intense illumination (i) and
viewpoint (v) changes using repeatabilitity metric

Keypoint
descriptors

Matching score (i) mAP (i) Matching score (v) mAP (v)

SIFT 0.51 0.87 0.54 0.83
ORB 0.46 0.61 0.36 0.34
SuperPoint 0.81 0.99 0.71 0.99
HF-net
(original)

0.72 0.98 0.58 0.94

HF-net2
(proposed)

0.74 0.98 0.63 0.95

Table 4.4 Evaluation of HF-net2 as a descriptor in terms of intense illumination (i) and viewpoint (v)
changes using mAP an matching score metrics
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As presented in table 4.3, regarding the illumination changes, SuperPoint which is the
teacher of HF-net and HF-net2, achieves the highest repeatability and mAP with
values 0.82 and 0.77 respectively while the proposed HF-net2 follows with the next
most accurate results with repeatability and mAP with values 0.72 and 0.68
respectively. The original HF-net provides lower accuracy in terms of repeatability
and mAPs compared with SuperPoint and HF-net2, while the non-learning algorithms
noted significantly decreased accuracy. Concerning the viewpoint changes, Harris
achieves the highest repeatability with a value of 0.77 while SuperPoint provides the
highest overall accuracy with repeatability 0.76 and mAP 0.67. The HF-net and HF-
net2 architectures provide respectable accuracy while the proposed HF-net2 achieves
slightly higher mAP (0.49) than HF-net (0.47). SIFT and FAST noted significantly
lower accuracy than Harris algorithm and learning-based architectures.

Regarding the evaluation of descriptors (table 4.4), SuperPoint achieves the highest
matching score and mAP both in illumination and viewpoint changes while the
proposed architecture provides the next most accurate results with matching score in a
level of 0.75 and 0.65 and mAP 0.98 and 0.95, in illumination and viewpoint changes
respectively, outperforming the original HF-net and the traditional descriptors SIFT
and ORB. It’s worth noting that the superiority of SuperPoint proves that it is a robust
keypoint detection and description architecture, capable of being a teacher of HF-net
during the training process.

Concerning the performance-time of the proposed model was tested in several frame
frame resolutions including the following:
 560 x 500 pixels
 640 x 480 pixels
 720 x 480 pixels
 1920 x 1080 pixels
In the resolutions of 560x500, 640x480 and 720x480 pixels, that are quite common in
sensors focused on robotics, the model achieves 16 ms (milliseconds) inference-time
per frame and 62.5 FPS (Frames per Second) in a GPU-enabled machine while in the
resolution of 1920 x 1080 pixels the inference time increases in 70 ms and 14.28 FPS.
It’s worth noting that SuperPoint and the handcrafted algorithms provide similar
inference time but the HFnet model exports not only keypoint scores and local
descriptions but also global descriptions in the same time. The aforementioned results
in inference-time are considered satisfactory and prove that the model is adequate for
real-time applications.

4.2.3 Evaluation of the proposed SLAM system

As referred in chapter 3, the proposed HF-net2, was integrated in a SLAM system as
feature extraction module aiming to increase the sensitivity of the system in multiple
and accurate keypoint detections and descriptions in order to encounter the issue of
illumination changes and lack of visual cues in unstructured and planetary scenes. The
proposed SLAM is based on ORB-SLAM2 (Mur-Artal & Tardos 2017) and is built on
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C++ and Python programming languages while RGB images combined with depth
information were utilized for accurate scale estimation.

An extended experimentation was conducted in two environments with rocky and
sandy terrains respectively while in each experiment, videos and ground truth data
were captured aiming to evaluate the accuracy of the predicted camera trajectory.
Regarding the equipment, the RGB and depth sensor of Intel RealSense D435 camera
was utilized, while the CHCNAV i73 RTK GNSS receiver was used in order to
measure the coordinates of the camera trajectory in a geodetic reference system.

More specifically, two sources of data were captured in each experiment:
 A rosbag, a file format in ROS (Robot Operating System) (Stanford Artificial

Intelligence Laboratory et al. 2018), which includes XYZ coordinates, orientation
and optical center with respect to the world origin of the SLAM coordinate
system, captured in a video of 30 FPS with resolution 848 x 480.

 GNSS data which contains XYZ coordinates in GGRS-87 geodetic coordinate
system, captured with a frequency of one measurement per second.

Regarding the camera data, initially RGB and depth frames are extracted from the
rosbag file and synchronized, so as each timestamp to correspond in a specific RGB
and depth frame while afterwards the proposed SLAM estimates the camera trajectory
in TUM format (Schubert et al. 2018) using the RGB-depth information. Concerning
the GNSS data, are transferred in a local coordinate system with origin the starting
point of the trajectory and formed in a TUM format. Subsequently, both data sources
are synchronized aiming each timestamp to be related with a specific location in
SLAM and GNSS data. Finally, the predicted and ground-truth trajectories are
compared, estimating the accuracy of the predicted trajectory. The pipeline of the
SLAM evaluation process is presented in fig. 4.3.

Figure 4.3 Pipeline of the SLAM evaluation process
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4.2.3.1 Experiments and results

As referred above, the experiments were conducted in two different environments: a
rocky and a sandy scene (fig 4.4) while different cases in terms of illumination were
performed. The proposed SLAM system was compared with the ORB-SLAM2 (Mur-
Artal & Tardos 2017), one of the most popular SLAM systems, aiming to evaluate the
added value of the HF-net2 model trained in unstructured environments instead of a
traditional keypoint detector and descriptor such as ORB.

Figure 4.4 Left image: Rocky scene, right image: sandy scene

More specifically, the experiments were performed in day and evening time using
different trajectory paths and natural light, while an experiment was conducted with
artificially low illumination with extremely fast lighting changes (table 4.5).

Experiments Scene Day-time Illumination Light
Square-based path Rocky terrain 10:00 a.m High Natural
Square-based path Rocky terrain 7:00 p.m Medium to low Natural
right-angle based
path

Rocky terrain 5:00 p.m Medium Natural

Random path Sandy terrain 10:00 a.m High Natural
Random path Sandy terrain -- Very low - Low Artificial
Table 4.5 Experiments, performed in different scenes, trajectory paths and illumination conditions

The results of the experiments above, are presented in the tables 4.6 - 4.10. The
metrics RMSE (Root-Mean-Squared-Error) and standard deviation with max and min
errors are used, calculated using the GNSS-based data as a reference, aiming to
determine the SLAM systems’ accuracy. The corresponding visual results, with the
predicted and GNSS-based trajectories, are presented in figure 4.5.

RMSE (m) Std. Dev. (m) Max (m) Min (m)
ORB-SLAM2 0.10 0.03 0.19 0.02
HF-net2-based
SLAM 0.11 0.04 0.22 0.03
Table 4.6 Square-based path in rocky terrain with high illumination

RMSE (m) Std. Dev. (m) Max (m) Min (m)
ORB-SLAM2 0.15 0.06 0.32 0.03
HF-net2-based
SLAM 0.12 0.05 0.19 0.03
Table 4.7 Square-based path in rocky terrain with medium to low illumination



Chapter 4 - Implementation and results69

RMSE (m) Std. Dev. (m) Max (m) Min (m)
ORB-SLAM2 0.09 0.05 0.20 0.01
HF-net2-based
SLAM 0.08 0.04 0.16 0.008
Table 4.8 Right angle-based path in rocky terrain with medium illumination

RMSE (m) Std. Dev. (m) Max (m) Min (m)
ORB-SLAM2 0.34 0.12 0.58 0.11
HF-net2-based
SLAM 0.21 0.07 0.35 0.04
Table 4.9 Random path in sandy terrain with high illumination

RMSE (m) Std. Dev. (m) Max (m) Min (m)
ORB-SLAM2 0.50 0.17 0.85 0.21
HF-net2-based
SLAM 0.24 0.06 0.36 0.07
Table 4.10 Random path in sandy terrain with artificially quite low illumination which changes during
the SLAM process with a range of extremely low to low lighting conditions

a

b
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Figure 4.5 Predicted trajectories of the ORB-SLAM2 (left column) and proposed SLAM (right
column) compared with the ground truth trajectory (presented as gray dashed line). (a) rocky terrain
with high illumination, (b) rocky terrain with medium to low illumination, (c) rocky terrain with
medium illumination, (d) sandy terrain with high illumination, (e) sandy terrain with artificially low
illumination

Regarding the rocky scene, the proposed SLAM and ORB-SLAM2 provide similar
accuracy under normal conditions as presented in tables 4.6 and 4.8, since ORB-
SLAM2 slightly outperforms the proposed SLAM in square-based path with high
illumination while the reverse occurs in the right-angle based path with medium

c

d

e



Chapter 4 - Implementation and results71

illumination (fig 4.5a, fig 4.5c). However, in square-based path with low illumination
(table 4.7), the proposed SLAM provides higher accuracy with RMSE error in a value
of 0.12 with maximum error equal to 0.19 m instead of ORB-SLAM2 which produced
a maximum error equal to 0.32 m (fig 4.5b).

Concerning the sandy scene, the proposed SLAM provides significant higher
accuracy than ORB-SLAM2 in high illumination with RMSE 0.21 m and standard
deviation 0.07 instead of ORB-SLAM2 which provides RMSE 0.34 and standard
deviation 0.12 respectively (table 4.9, fig. 4.5d). In the last experiment, the same data
frames were processed using GAMMA correction (eq. 4.2) aiming to highly decrease
the illumination in a specific range.

Output = I
255

1
γ 255 (4.2)

Where I is the input pixel value and γ the gamma parameter which controls the image
brightness. The gamma values below 1 (gamma < 1) produce darker images while
gamma values above 1 (gamma > 1) produce brighter images than the original image.
In this experiment all the recorded frames were processed aiming to generate frames
with low illumination using uniformly random gamma values between 0.2 - 0.4 (fig
4.6).

As a result, the SLAM systems encounter a scene which lack of significant visual
cues in a quite low illumination environment with changing lighting conditions in
each frame. However, the proposed SLAM, maintained its accuracy with RMSE 0.24
m and standard deviation 0.06 m, instead of ORB-SLAM2 accuracy which is further
decreased with RMSE 0.50 m and standard deviation 0.12 m. It's worth noting that the
maximum and minimum errors of the proposed SLAM is 0.36 and 0.07 respectively
while the corresponding errors of ORB-SLAM2 are 0.85 and 0.21 (table 4.10, fig.
4.5e).

Figure 4.6 Right: Original image, middle: darken image with gamma=0.4, right: darken image with
gamma=0.2

4.3 Implementation and results of the proposed NN for semantic segmentation

In this section, the implementation of the proposed modified U-net architecture is
described while afterwards, the evaluation and results of the model for lunar ground
semantic segmentation, are presented.
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4.3.1 Training process of modified U-net

The proposed architecture was implemented using Python and Keras / TensorFlow
deep learning library (Chollet et al. 2015) while several Python libraries including
NumPy (Harris et al. 2020), Matplotlib (Hunter 2007) and Scikit-learn (Pedregosa et
al. 2011) were utilized.

The main goal of the architecture is to detect and localize rocks and boulders while in
order to segment the whole scene, three classes are taken into account: rocks, sky and
background. The training data which constitute the 70% of the lunar landscape dataset
feed the modified U-net while the remaining 30% of the dataset is used for the
validation and testing. The model was trained for 15 epochs using early stopping
technique while the batch size was defined equal to 16. The categorical cross entropy
loss function and Adam optimizer with a learning rate of 5x10-5 were utilized.
Regarding the input size, the dimensions of 480 x 480 pixels was used, since it was
observed that a larger image size provided more refined results than the widely used
size of 256 x 256 pixels.

The training and validation process were conducted in a machine with Intel i7- 3.50
GHz x 8 cores of CPU, 16 Gb of RAM and NVIDIA GTX 1080 Ti of GPU with
CUDA version 11.2 enabled.

4.3.2 Evaluation and Results of modified U-net

The proposed architecture was trained and validated using Dice-coefficient and Recall
metrics which are defined with the following formulas:

Recall = TP
TP + FN (4.3)

Dice = TP
2TP + FN + FP (4.4)

Where, TP stands for true positive while FN and FP stand for false negative and false
positive. The results of dice coefficient and recall after the training process are
presented in table 4.11 while the learning curves of loss function and dice coefficient
are depicted in fig 4.7.

Loss Dice-coef Recall

Training 0.07 0.79 0.98

Validation 0.06 0.78 0.98

Table 4.11 Loss function, dice-coefficient and recall after the training process
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Figure 4.7 Loss and dice coefficient curves during training and validation

As observed in table 4.11, the value of loss function is below 0.1, the dice-coefficient
is in a level of 0.80 while the recall is close to 1.0, indicating that the model will
provide satisfactory results while in figure 4.7 the learning curves of the training and
validation process for loss function and dice-coefficient are quite close after the sixth
epoch without fluctuations proving that the model doesn’t overfit.

After the training process, the proposed architecture was validated in testing data
which are completely unknown for the model including images from the synthetic
dataset and from real lunar landscape images while the corresponding qualitative
results are presented in the figures 4.8 and 4.9.

(a)
ΙοU: 0.92

(b)
ΙοU: 0.89

(c)
ΙοU: 0.84
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Figure 4.8 Left column: Original images from the synthetic lunar surface, (middle column) The
corresponding annotated masks, (right column) Predictions of the proposed architecture. In each
prediction (row) the IoU (Intersection over Union) metric is presented.

(d)
ΙοU: 0.99

(e)
ΙοU: 0.97

(f)
ΙοU: 0.97

(g)
ΙοU: 0.86
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Figure 4.9 Left column: Real images from the lunar surface, (right column) Predictions of the
proposed architecture. In each prediction (row) the IoU (Intersection over Union) metric is presented.

As observed in figure 4.8, the proposed architecture provides satisfactory results in
testing data with synthetic images, achieving IoU (Intersection over Union) in a level
of 0.85 or above. It is able to differentiate the sky from the ground region defining the
horizon line with high accuracy while it precisely predicts the location of the small
rocks and boulders on the lunar surface. It is not affected from the number of rocks
that exist in the scene, since it is able to provide robust results in a scene without any
or one rock (fig 4.8d, 4.8e) or with multiple small rocks and boulders (fig 4.8c).

Moreover, the proposed architecture achieves respectable results in real rover-based
images (fig 4.9) which are quite different in terms of color and illumination compared
with the training data while the model is not affected from the camera tilt, being
efficient to identify rocks, either the camera targets on the horizon (fig 4.9ab) or on
the ground (fig 4.9cd).

Regarding size of the model, it includes only 220,000 trainable parameters while the
weights file size of the model is about 3.5 MB which is quite small for semantic
segmentation models. The model was tested in terms of inference time for a set of
images with a size of 480x480 pixels using three different computing setups: (a) a
GPU-enabled conventional desktop machine, (b) CPU-only conventional desktop
machine and (c) a CPU-only embedded system with quite low resources. The results
are presented in table 4.12.

Inference time Conventional machine
/GPU-enabled

Conventional machine
/CPU-only

Embedded system
Rasp. Pi 4

ms FPS ms FPS ms FPS
Proposed model 43 23.25 100 10 1080 0.92

Table 4.12 Inference time (in milliseconds and FPS) of the proposed model in a desktop GPU-enabled
and CPU-only conventional desktop computer and in a CPU-only embedded system with low resources

As observed in the table 4.12, the model provides quite satisfactory inference time in
the GPU-enabled machine achieving 43 ms inference time per image and about 23

d
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FPS (Frames per second), while the model performs sufficiently without GPU (CPU-
only) in the same machine, providing a performance time in a level of 100 ms per
image and 10 FPS. The model was also tested on a Raspberry Pi 4 with 4 GB of RAM
which is a CPU-only embedded system with quite low resources, providing inference
time equal to 1080 ms and 0.92 FPS. Overall, the results are considered respectable
taking into account that the image segmentation tasks require high-end GPU-enabled
machines and prove that the model is able to be utilized in GPU-enabled or CPU-only
conventional machines and embedded systems with low computing resources.

4.4 Implementation and results of the precise positioning and mapping in GNSS-

denied environments

In this section, the implementation and pipeline of the precise positioning
methodology is presented while afterwards the experimentation and results are
analyzed.

4.4.1 System implementation

The methodology is a combination of SLAM, image processing and geometric
transformations, implemented on C++ and Python programming languages. The
system is able to receive as input ROS (Robot Operating System)-based files (rosbag
files) (Stanford Artificial Intelligence Laboratory et al. 2018) since in case of real-
time processing, ROS (Robot Operating System) is the leading open-source
ecosystem for the robotic systems. Thus, initially, the system processes the rosbag
files, extracting and synchronizing the RGB and depth frames.

Regarding the SLAM part, the proposed SLAM system (see 3.1.3) is used, while the
integrated HF-net2 model (see 3.1.2), utilized as a feature extractor, has been trained
and evaluated by TensorFlow (Abadi et al. 2015) deep learning library. Concerning
the image processing for fiducial marker calculation, the ArUco (Romero-Ramirez et
al. 2018, Garrido-Jurado et al. 2016) and OpenCV (Bradski 2000) libraries are
utilized, in order to detect and identify the fiducial markers while regarding the
geometric transformations, the PCL library (Rusu & Cousins 2011) is utilized for
plane segmentation.

The overall procedure of mapping consists of three main stages. At first, python
scripts extract the data from inside a Robot Operating System (ROS) bag file which is
captured by an RGB-depth camera during the video recording process. The camera
itself is used to obtain the calibration information from its factory settings while the
image data streams (RGB and depth) are separated into frames and stored in two
separate folders. The following step is the SLAM processing using the extracted
frames as input, relating the image content with a camera trajectory and a point cloud.
Finally, the fiducial markers of the scene are detected and the coordinate system with
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origin, the origin marker is generated, producing the markers and point cloud
coordinate estimations (fig 4.10).

Figure 4.10 Pipeline of the overall end-to-end methodology

4.4.2 Equipment setup

The main equipment components include an RGB-depth camera, the ArUco markers,
utilized as fiducial markers and a computing machine (embedded or conventional).
Concerning the RGB-depth-camera, the Intel Realsense D435 camera was used which
includes two infrared sensors (left and right), an RGB sensor and an infrared projector
for the depth information (fig 4.11a). In the present study, only the RGB and depth
sensor were used. The resolution of the RGB sensor is 1920 x 1080, the depth output
is 1280 x 720, the focal length is 1.93 mm, while the format is 10-bit RAW.

The origin and the target markers are 30 x 30 cm in size while they are installed in a
custom-made adjustable stand. This stand is able to stabilize the marker pose in a
horizontal reference plane with the aid of two stainless steel threaded rods and a
leveler (fig. 4.11b).

For validation purposes and ground-truth measurements, a Topcon GPT 3000
geodetic total station was used with ± (3mm+2ppm × D) mean square error (MSE)
measurement accuracy where D is the measured distance between the total station and
the prism (fig 4.11c).
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Figure 4.11. (a) the Intel Realsense D435 camera (b) The origin marker located on a custom-made
adjustable stand which is able to stabilize the marker pose in a horizontal reference plane using two
stainless steel threaded rods and a leveler. (c) The GTP-3000 geodetic total station

4.4.3 Experimentation and results

To validate the present methodology a set of experiments was performed in the
following areas (fig. 4.12):
 an unstructured urban area (university campus)
 a sandy area
 a rocky area
All areas lack of feature-rich information while most of the experiments were
conducted with high, medium and low lighting conditions.

Figure 4.12 (a) Unstructured urban area (university campus) (b) sandy area (c) rocky area

For the evaluation process, a geodetic total station was utilized in order to measure the
reference coordinates of the visual markers and several characteristic points. The
origin of the local coordinate system was defined using the center of the origin marker
with the coordinates X=0, Y=0 and Z=0. It’s worth mentioning that the videos were
recorded at 30fps using 848 × 480 resolution.

For the evaluation of the experiments the absolute error ( Xmeas −Xest ) between the
measured coordinates of X, Y, Z and the corresponding estimations is used while the
horizontal error ( Xerr2 + Yerr2 ) is also calculated.

In each experiment, a fiducial marker which represents the origin of local coordinate
system and one or three markers which represent the targets are located to the scene
and measured with the total station for ground truth information. Afterwards, the
RGB-depth camera, is guided through a desired trajectory path in order to identify the
markers and maps the surroundings.

The experiments were designed aiming to simulate a real-case scenario of surveying a
plot or a field in which traditional land surveying techniques and equipment are

a b c



Chapter 4 - Implementation and results80

utilized. More specifically, the main field-work of a surveyor is to measure the
coordinates of a few points that form the borders of the mapping area while in most of
the cases, the path that the surveyor follows can be approached with right-angle and
squared-based paths.

Thus, in the present experimentation, the methodology was tested utilizing the
commonly-used paths that referred above while the fiducial markers which represent
the characteristic points of the path were placed on locations aiming to form the shape
of each path similarly to a real-case scenario. For instance in a surveyed area with
square shape, the fiducial markers are placed in the four corners of the square.

4.4.3.1 Experiments

Square path - Unstructured urban area (University campus)

The first experiment was conducted in the university campus (fig 4.12a) in a sunny
day with high illumination. Four markers were used, one for the origin and three for
the targets in a distance of about 5 meters while the camera followed a square path as
presented in figure 4.13. The results of this experiment are presented in table 4.13.

Figure 4.13 Square trajectory path and camera direction

Target marker X (cm) Y (cm) Z (cm)
Target 1: Ground Truth 0 486 0
Target 1: Estimations 7 49 1
Target 1: Error 7 4 1
Target 1: XY error 8.06 -

Target 2: Ground truth -492 486 0
Target 2: Estimation -491 493 -0.3
Target 2: Error 1 7 0.3
Target 2: XY Error 7.07 -

Target 3: Ground truth -497 0 0
Target 3: Estimation -486 -1.4 -8
Target 3: Error 11 1.4 8
Target 3: XY Error 11.08 -
Table 4.13 Estimations of square-path experiment in unstructured urban area
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As observed in table 4.13, the horizontal error of all the targets are in a level of 10 cm
or below while the vertical error is in a range of 1 cm (target 1) to 8 cm (target 3). It’s
worth mentioning that the errors in Y and Z axes of target 1 which are 4 cm and 1 cm
respectively, the errors in X and Z axes of target 2 which are 1 cm and 0.3 cm
respectively and the error in Y axis of target 3 which is 1.4 cm, are quite close to the
ground truth measured with a geodetic total station.

Right-angle path - Sandy area

The second experiment was conducted in a sandy area (fig 4.12b) with high
illumination. Three markers were used, one for the origin and two for the targets in a
distance of about 6 meters while the camera followed a right-angle path as presented
in figure 4.14. The results of this experiment are presented in table 4.14.

Figure 4.14 Right-angle path in sandy area

Target marker X (cm) Y (cm) Z (cm)
Target 1: Ground Truth 0 600 0
Target 1: Estimations 0.07 605 -0.85
Target 1: Error 0.07 5 0.85
Target 1: XY error 5 -

Target 2: Ground truth -600 600 0
Target 2: Estimation -602 596.8 15
Target 2: Error 2 3.2 15
Target 2: XY Error 3.8 -
Table 4.14 Estimations of right-angle path experiment in the sandy area

As observed in table 4.14, the horizontal error of all the targets provides high
accuracy since the error is in a level of 5 cm. Regarding the vertical errors, the error in
target 1 is 0.85 cm which is almost equal to the reference while the error of target 2 is
quite larger (15 cm). This error was possibly generated due to temporary SLAM
inadequacy in performing local mapping close to target 2, combined with the lack of
loop-closure which could further optimize the results.

Square path - Rocky area
The third experiment was conducted in a rocky area (fig 4.12c) with medium
illumination. Four markers were used, one for the origin and three for the targets in a
distance of about 6 meters while the camera followed a square path as presented in
figure 4.15a. The results of this experiment are presented in table 4.15.
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Target marker X (cm) Y (cm) Z (cm)
Target 1: Ground Truth 7 598 2
Target 1: Estimations 9 589 0.60
Target 1: Error 2 9 1.4
Target 1: XY error 9.22 -

Target 2: Ground truth 582 529 2
Target 2: Estimation 568 526 1.3
Target 2: Error 14 3 0.7
Target 2: XY Error 14.32 -

Target 3: Ground truth 479 -47 1
Target 3: Estimation 473 -35 -8
Target 3: Error 6 12 9
Target 3: XY Error 13.41 -
Table 4.15 Estimations of square path experiment in the rocky area

As presented in table 4.15, the horizontal error in target 1 is about 9 cm while in
targets 2 and 3 the error is increased in a level of 15cm. The vertical error is quite low
in the targets 1 and 2 (1.4 and 0.7 cm respectively) while in the third target, the error
is equal to 9 cm. The overall accuracy in this experiment, is slightly lower than the
sandy and unstructured urban areas, however the results are considered satisfactory
taking into account the medium illumination during the experiment and the poor-
feature information of the rocky area.

Right-angle path - Rocky area

This experiment was conducted in the rocky area (fig 4.12c) with medium
illumination due to cloudy weather. Three markers were used, one for the origin and
two for the targets forming a right-angle path. The first two targets were positioned on
a straight line from the origin in a distance of about 4 and 9 m respectively while the
third target, positioned on the perpendicular line, in a distance of about 11 meters
from the origin (fig 4.15b). The results of this experiment are presented in table 4.16.

Target marker X (cm) Y (cm) Z (cm)
Target 1: Ground Truth 34 414 3
Target 1: Estimations 21 412 -0.5
Target 1: Error 13 2 3.5
Target 1: XY error 13.15 -

Target 2: Ground truth 71 922 1.6
Target 2: Estimation 41 916 1.3
Target 2: Error 30 6 0.3
Target 2: XY Error 30.6 -

Target 3: Ground truth 576 879 2.1
Target 3: Estimation 543 883 -19
Target 3: Error 33 4 21.1
Target 3: XY Error 33.2 -
Table 4.16 Estimations of right-angle path experiment in the rocky area with high illumination

As observed in table 4.16, the horizontal error in the target 1 is about 13 cm while the
targets 2 and 3 is in a level of 30 cm. The vertical error of the targets 1 and 2 is about
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3.5 cm or below and the error of the target 3 is in a level of 20 cm. The decreased
accuracy of this experiment compared with the aforementioned experiments is
reasonable due to two reasons: At first, the trajectory path of the camera and the
distance of the targets from the origin are quite larger (11 meters instead of 6) while at
second the SLAM algorithm doesn’t perform loop closure in the right-angle path, a
significant optimization step for the accuracy of the SLAM results which affect the
coordinate estimations.

For further experimentation, the RGB frames of the aforementioned experiment were
processed in order to artificially reduce the illumination aiming to test the
methodology in quite low illumination (nighttime). The results of this experiment are
presented in the table below.

Target marker X (cm) Y (cm) Z (cm)
Target 1: Ground Truth 34 414 3.2
Target 1: Estimations 23 412 0.7
Target 1: Error 11 2 2.5
Target 1: XY error 11.18

Target 2: Ground truth 71 922 2
Target 2: Estimation 46 915 9
Target 2: Error 25 7 7
Target 2: XY Error 26

Target 3: Ground truth 577 879 2
Target 3: Estimation 546 886 -9
Target 3: Error 31 7 11
Target 3: XY Error 31.8
Table 4.17 Estimations of right-angle path experiment in the rocky area with very low illumination
(night time)

As presented in table 4.17 the horizontal error in the first target is about 11 cm while
the targets 2 and 3 is in a level of 30 cm while the vertical error of the target 1 is 2.5
cm and the errors of targets 2 and 3, are 7 cm and 11 cm respectively. It’s worth
noting that beyond the vertical error of target 2 which is increased, all the other
horizontal and vertical errors are decreased instead of increasing due to the low
illumination. This is possibly due to the training process of the HFnet2 with the
proposed dataset (see 3.1.4) which includes thousands of images captured in
nighttime but also the high contrast where some regions had, because of the white
color of several features (fig. 4.16).
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Figure 4.15 Trajectory paths in rocky area: (left) Square path experiment (right) right-angle path
experiment

Figure 4.16 Rocky area (left) physical illumination, (right) artificially low illumination

To sum up, in this chapter, the implementation of each methodology including the
required programming languages, libraries and platforms was described, while the
experimentation details and the extracted results were presented. In the next chapter,
the results for each methodology and architecture are further analyzed, while
comparisons with similar well-known and state-of-the-art algorithms are presented,
aiming to further evaluate the proposed framework.

a
b
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Chapter 5

Discussion
In this chapter, the interpretation of the results, described and analyzed in chapter 4
are presented, following the structure below:

 Discussion about the results of the optimized SuperPoint architecture
 Discussion about the results of HF-net2 architecture and proposed SLAM
 Discussion about the results of the proposed NN for semantic segmentation
 Discussion about the results of the precise positioning methodology in GNSS-

denied environments

5.1 Discussion about the results of the optimized SuperPoint architecture

In this study, an investigation of SuperPoint architecture’s efficiency in keypoint
detection and description applied to unstructured and planetary scenes was conducted.
Two modifications in the original SuperPoint architecture including the use of bi-
linear instead of bicubic interpolation in the descriptor decoder and the normalization
of the descriptors in the descriptor's loss function, were implemented, aiming to
increase the accuracy of the model in unstructured environments. The original and an
optimized architecture of SuperPoint, were trained with the proposed dataset,
producing three different models: (a) an original SuperPoint model trained from
scratch, (b) an original fine-tuned SuperPoint model, (c) an optimized SuperPoint
model, trained from scratch with the same parametarization as the corresponding
original model. The models were evaluated using the designed benchmark dataset
while the repeatability and homography estimation metrics were utilized in order to
evaluate the produced models and compared with the pre-trained SuperPoint model,
trained with COCO dataset and several popular keypoint detectors and descriptors.

Regarding the evaluation of keypoint detectors in terms of illumination changes,
although the original and optimized models perform respectable results outperforming
the handcrafted algorithms, the pre-trained SuperPoint provides the highest score in
repeatability. This is reasonable, since the COCO dataset which has been utilized for
the pre-trained SuperPoint model, includes thousands of images with increased
variance in lighting conditions, instead of the proposed dataset which includes limited
variance in illumination changes. On the contrary, the optimized SuperPoint model
achieves the highest repeatability in terms of viewpoint changes, proving that
enriching the dataset with high variance in illumination changes, the overall accuracy
of the optimized SuperPoint will be enhanced outperforming the pre-trained
SuperPoint in both illumination and viewpoint changes. Concerning the evaluation of
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descriptors, the optimized SuperPoint model outperforms all the original SuperPoint
models and ORB algorithm in illumination and viewpoint changes while SIFT
achieves the highest score in overall homography estimation.

In figure 5.1, the progress of the SuperPoint’s learning process is presented through
the visualization of detected features in two scenes from Mars. Initially, in fig. 5.1a,
5.1b the features are detected using the MagicPoint (the standalone detector of
SuperPoint) model trained with the synthetic shapes dataset, while afterwards the
results of the MagicPoint models produced by two rounds of MagicPoint training with
the proposed dataset (fig. 5.1c, 5.1d, 5.1e, 5.1f), prove the increased sensitivity in
feature-poor planetary scenes. Finally, in fig 5.1g, 5.1h, the superiority of the final
SuperPoint model is presented through the multiple detected features which describe
the content of each scene with quite higher detail than the aforementioned MagicPoint
models.

a

c

b
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Figure 5.1 (a, b) MagicPoint model trained with synthetic shapes dataset (c, d) first round of
MagicPoint training with the proposed dataset, (e, f) second round of MagicPoint training with the
proposed dataset, (g, h) SuperPoint model, trained after two rounds of MagicPoint training

It’s worth mentioning that most of the studies which utilize feature extractors based
on deep learning, use models that have been trained with general-purpose datasets
such as COCO, regardless of the environments that are applied. The superiority of
SuperPoint models, trained for unstructured environments, compared with the pre-
trained SuperPoint, proves that the feature extractors based on deep learning, trained
for a specialized and completely different environment, are able to provide increased
efficiency compared with a model trained with general-purpose datasets including
images from urban, indoor, or vegetated scenes.

5.2 Discussion about the results of HF-net2 architecture and proposed SLAM

In this study, HF-net2, a multi-task teacher student architecture for keypoint detection
and description is proposed, aiming to be used in computer vision tasks including
autonomous navigation in challenging unstructured environments. Regarding its
architecture, SuperPoint and NetVLAD neural networks are used as teachers for
extracting keypoint locations, local and global descriptors aiming of labeling the
dataset while in the main HF-net2 architecture, MobilenetV3-large is utilized as a
shared encoder and three different sub-modules, a keypoint detector, a local descriptor
and a global descriptor represent the multi-task decoder part or the architecture. The
HF-net2, was trained using a dataset composed of 48 000 captured and selected
images from Earth, Mars and Moon aiming to learn accurate feature extraction in
unstructured and planetary environments, while the trained model was integrated in a
SLAM system as a feature extraction module, for further evaluation in unstructrured
scenes. The main goal of the proposed feature extraction model is to efficiently deal
with two significant challenges in unstructured and planetary environments (a) the
lack of visual cues (b) and the intense illumination changes.

To evaluate the model, a benchmark dataset was created which contains image
sequences from Earth, Mars and Moon, aiming to evaluate the detector and descriptor
of the model in terms of illumination and viewpoint changes. Regarding the keypoint

h
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detection, HF-net2 achieves the highest repeatability and mAP (0.74 and 0.71
respectively), in terms of illumination changes after the Superpoint, outperforming the
original HF-net trained under the same dataset and parameters and several well-
known keypoint detectors including SIFT, FAST and Harris. In terms of viewpoint
changes, HF-net2 provides respectable accuracy which is slightly higher than original
HF-net while provide increased overall accuracy compared with the SIFT and FAST
algorithms. Regarding the keypoint description, the proposed model outperforms the
original HF-net, SIFT and ORB descriptors in terms of both illumination and
viewpoint changes, achieving the highest matching score and mAP after the
SuperPoint.

Qualitative results in keypoint detection and description, can also prove the
superiority of the proposed architecture and its robustness in scenes with lack of
visual cues (fig. 5.2, fig. 5.3).

(a) SIFT
Rep: 0.54

(b) FAST
Rep: 0.73

(c) Harris
Rep: 0.79
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(d) Sp
Rep: 0.87

(e) HF-net
Rep: 0.80

(f) HF-net2
Rep: 0.83

(g) SIFT
Rep: 0.60
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(h) FAST
Rep: 0.62

(i) Harris
Rep: 0.73

(j) Sp
Rep: 0.83

(k) HF-net
Rep: 0.75
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Figure 5.2: Keypoint locations and repeatability scores for SIFT, FAST, Harris, SuperPoint, original
HF-net and HF-net2. Two images from the evaluation dataset are presented: (a - f) scene from Mars
testing illumination changes, (g-l) earthy scene testing viewpoint changes. The green dots are points
that were detected in both images while the red dots are detected points in one image only. The blue
points are not depicted in both images due to different viewpoint

(l) HF-net2
Rep: 0.75

(b) ORB
MS: 0.49

(a) SIFT
MS: 0.55

(c) SP
MS: 0.85
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(d) HF-net
MS: 0.80

(e) HF-net2
MS: 0.86

(f) SIFT
MS: 0.55

(g) ORB
MS: 0.43
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Figure 5.3: Matching scores of the SIFT, ORB, SuperPoint, original HF-net and proposed HF-net2
descriptors. Two images from the evaluation dataset are presented: (a - e) lunar scene testing
illumination changes, (f - j) earthy scene testing viewpoint changes

As presented in figure 5.2, the green dots extracted from SuperPoint, HF-net2 and
HF-net, which are repeatable points in both (right and left) images of each row, are
localized on more meaningful features which better describe the scene, than the
detected keypoints of SIFT, FAST and Harris in terms of illumination. Moreover, the
HF-net2 achieves the highest repeatability after the SuperPoint with a value of 0.83
while in terms of viewpoint, HF-net2 and HF-net achieves a repeatability score with a
value of 0.75 outperforming SIFT, FAST and Harris. As presented in figure 5.3,
which visualizes the matching points in two different scenes where suffer from lack of
visual cues, the proposed architecture provides outstanding results (fig 5.3e, 5.3j)
compared with SIFT and ORB and increased matching score compared with the
original HF-net. It’s worth noting that in fig 5.3a-e which represents an artificial lunar

(h) SP
MS: 0.69

(i) HF-net
MS: 0.62

(j) HF-net2
MS: 0.66
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scene, the proposed architecture outperforms even SuperPoint which was its teacher
during training.

The HF-net2 model was further evaluated as an integrated feature extraction module
in a SLAM system based on ORB-SLAM2, while an extended experimentation was
performed in a rocky and a sandy scene in different day-time, using an RGB-Depth
camera, while a GNSS receiver was utilized for ground truth. Regarding the
experimentation in the rocky scene, beyond the first experiment of a square-based
path with high illumination where the proposed SLAM provides similar results
compared with ORB-SLAM2, the proposed SLAM outperforms ORB-SLAM2 in the
experiments with a square-based path and a right-angle path with low and medium
illumination respectively. Moreover, in the second square-based path experiment (fig.
4.5b) the error of ORB-SLAM2 in the end of the path is in a level of 30 cm instead of
the proposed SLAM with an error in a level of 12 cm.

Concerning the sandy scene, the first experiment, was performed using a random-
based path in a sunny day with high illumination, while in the second experiment the
illumination of the first experiment was artificially decreased using different levels of
quite low illumination in each frame aiming to evaluate the proposed SLAM system
in extremely challenging conditions. The proposed SLAM proved its robustness
achieving an RMSE error in a level of 0.25 and standard deviation in a level of 0.05 in
both experiments instead of ORB-SLAM2 where in the first experiment noted an
RMSE in a level of 0.35 and in the second experiment in a level of 0.50 with standard
deviation 0.12 and 0.17 respectively.

The experimentation of the SLAM systems, proves that the proposed SLAM provides
higher accuracy than ORB-SLAM2 in unstructured environments with medium and
low illumination while in extremely challenging scenes either due to poor-featured
information or to extremely low illumination, the proposed SLAM extracts significant
higher and robust results compared with ORB-SLAM2.

5.3 Discussion about the results of the proposed NN for semantic segmentation

In this study, a deep learning architecture for semantic segmentation is proposed
based on U-net neural network, which is able to understand semantically the scene,
focused on detecting and classifying rocks and boulders on the lunar surface. The
main goal of this study is a lightweight deep learning model with potential of real-
time use, in order to increase the safety of rover navigation during a mission on the
moon.

Thus, an encoder-decoder architecture was developed which is composed by a
modified MobileNetV2 neural network as encoder and a lightweight U-net decoder.
Regarding the MobileNetV2 architecture, it includes a fully convolution layer
followed by 13 residual bottleneck layers while the depth-multiplier factor was
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defined in a value of 0.35 instead of the original MobileNetV2 which includes 19
residual bottleneck layers and the default depth-multiplier factor is equal to 1.0.
Concerning the segmentation stage, all the filters of U-net decoder were divided by
the factor of 2 while the skip connections transfer information related with the spatial
content of each image from the initial input, the block 1, the block 3 and the block 6
of the encoder part.

As presented in section 4.3, the proposed architecture provides robust results
achieving IoU in a level of 0.80 or above, detecting and classifying rocks and
boulders with satisfactory accuracy in both synthetic and real rover-based images
from the lunar surface. To further validate the proposed architecture, it was compared
with three similar and widely used encoder-decoder architectures based on U-net:

 The original U-net
 The U-net with VGG16 (Simonyan & Zisserman 2015) as encoder
 The U-net with the original MobileNetV2 as encoder

The architectures above, were trained and tested under the same parametrization so as
a fair and proper evaluation to be conducted.

The trainable parameters of the proposed architecture are about 220,000 while the
corresponding trainable parameters of U-net, VGG16/U-net and MobileNetV2/U-net
are about 31,000,000, 24,000,000 and 8,000,000 respectively while the weights file
sizes are about 370 MB for U-net, 285 MB for VGG16/U-net and 97 MB for
MobileNetV2/U-net while the corresponding weights file size of the proposed
architecture is about 3.5 MB (table 5.1).

Architecture
Encoder / Decoder

Total params Trainable params Non-trainable
params

Model file size
(MB)

U-net 31,061,416 31,047,712 13,704 373.1
VGG16 / U-net 23,752,708 23,748,676 4,032 285.4
MobV2 / U-net 8,047,876 8,011,780 36,096 97.3
Proposed
architecture

228,588 221,724 6,864 3.5

Table 5.1 Parameters and model size of the U-net, VGG16/U-net, MobV2/U-net and the proposed
architecture

In figure 5.4, qualitative results from the alternative and the proposed architectures are
depicted while in table 5.2 the corresponding IoU score is presented. It’s worth noting
that original MobileNetV2/U-net could not converge with this specific
parametrization, thus in the results below the proposed architecture is compared with
original U-net and VGG16/U-net.
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Original Image U-net VGG16/U-net Proposed model

Figure 5.4 First column: original synthetic (a, b, c) and real (d, e, f) lunar images, second column:
original U-net model predictions, third column: VGG16/U-net model predictions, fourth column:
proposed architecture

a

b
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d

e

f
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Architecture
Encoder / Decoder

IoU

U-net 0.86
VGG16 / Unet 0.82
Proposed model 0.84
Table 5.2 IoU score in testing data of the original U-net, VGG16/U-net and the proposed model,
trained with the same dataset and parametrization

As observed in figure 5.4, all the models produce respectable segmentation results. In
figures 5.4a, 5.4b and 5.4c, 5.4d the proposed model provides similar accuracy in
rocks segmentation compared with the original U-net and VGG16/U-net, predicting
all the important rocks and boulders that could harm a rover during navigation. On the
other hand, in figures 5.4e, 5.4f which are real images from lunar surface, the
proposed architecture provides refined segmentation results compared with the
alternative models. For instance, in figure 5.4e, the proposed model precisely
segments the two main rocks on the ground instead of original U-net which fails to
predict them while VGG16/U-net falsely unifies them in a bigger rock. Similarly, in
figure 5.4f, the proposed model and VGG16/U-net produce quite close results while
original-U-net falsely predicts a large shadow as a rock.

Regarding the evaluation of the models on testing data in terms of intersection over
union (IoU), the proposed architecture provides an IoU score of 0.84 (table 5.2)
outperforming the VGG16/U-net while is close to IoU of U-net which is equal to 0.86.
The results above, determines the superiority of the proposed architecture since, it is
about 110 times and about 140 times smaller than the VGG16/U-net and the original
U-net respectively while provides similar segmentation predictions in both alternative
architectures.

It’s worth noting that, although all the models provide robust results in sky
segmentation defining the horizon line, they are unable to classify the sky as separate
class. This is due to dataset's lack of color variety on the ground features while in
addition, many images include large black areas which represent shadows on the
ground, but because the images are synthetic, there is no a meaningful difference
between the sky and the large black shadows. Nevertheless, a refined synthetic rover-
based dataset or a dataset with real lunar landscape images, could solve this issue,
improving the classification results of all the models.

Regarding the inference-time, the models were tested on a large set of images with a
size of 480x480 in three different computing setups: (a) a GPU-enabled conventional
desktop machine, (b) CPU-only conventional desktop machine and (c) a CPU-only
embedded system with quite low resources. The corresponding results are presented
in the table 5.3 and figure 5.5.

Inference time per
image

Conventional machine
/GPU-enabled

Conventional machine /
CPU-only

Embedded system /
Rasp. Pi 4

ms FPS ms FPS ms FPS
U-net 100 10 850 1.17 19680 0.05

VGG16/U-net 52 19.23 640 1.56 11120 0.09
Proposed model 43 23.25 100 10 1080 0.92
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Table 5.3 Comparison in terms of inference time (in milliseconds and FPS) of the original U-net,
VGG16/U-net and the proposed model in a desktop GPU-enabled and CPU-only conventional desktop
computer and in a CPU-only embedded system with low resources

Figure 5.5 Inference time in millisecond (ms) of the U-net, VGG16 / U-net and the proposed model for
the GPU-enabled machine, the CPU-only machine, and the Raspberry Pi 4 embedded system

As observed in table 5.3 and figure 5.5, the proposed model achieves quite less
inference time compared with the U-net and VGG16 / U-net while the difference in
performance-time is increased among the models when the computing resources are
reduced. Regarding the GPU-enabled machine, the proposed model achieves 43 ms
and 23.25 FPS, while the VGG16/U-net provides 52 ms (19.23 FPS) of inference-
time and U-net about 100 ms (10 FPS) which is twice the time compared with the
proposed model. In the CPU-only machine, the proposed model provides inference-
time in a level of 100 ms (10 FPS) while the VGG16 / U-net and U-net models
perform predictions with 640 ms (1.56 FPS) and 850 ms (1.17 FPS) inference-time
respectively, six and nine times more than the proposed model. Concerning the
Raspberry Pi 4 with 4GB of RAM embedded system, the proposed model achieves an
inference-time about 1080 ms (0.92 FPS) which is quite satisfactory since to the best
of our knowledge, this embedded system provides the lowest computing resources on
the market, especially in deep learning. Instead, the VGG16/U-net and U-net models
provide 11120 ms (0.09 FPS) and 19680 ms (0.05 FPS) inference-time, proving that
the proposed model is about 11 and 20 times faster in the Raspberry Pi 4 embedded
system compared with the VGG16/U-net and U-net models respectively.

5.4 Discussion about the precise positioning and mapping methodology in GNSS-

denied environments

In this study, a precise positioning methodology is proposed, which estimates
characteristic points and arbitrary point locations in 3D space of an unstructured and
challenging GNSS-denied environment, with centimeter-level of accuracy, using at
least a fiducial marker and an RGB-Depth camera. At first, the camera is guided
through a desired path, identifies the markers and maps the surroundings. In a second
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step, a local coordinate system is created for the scene with an origin defined by the
initial marker that the camera comes across, while the coordinates of the target
markers and the arbitrary points of the point cloud are calculated based on the origin
marker. In order to evaluate the methodology, different sets of experiments were
performed in terms of study area, the number and location of markers, the trajectory
paths and the illumination conditions. Although the methodology’s accuracy is highly
correlated with some factors that will be further mentioned, it achieved quite
satisfactory horizontal and vertical accuracy considering the poor-feature scenes and
in some cases the low illumination.

As presented in the section 4.4, the proposed methodology achieved satisfactory
results with low horizontal and vertical error, in the first three experiments conducted
with medium and high illumination in unstructured urban, sandy and rocky areas with
values in a range of about 4 to 14.50 cm for the horizontal error and about 0.30 to 15
cm for the vertical error. However, in the last two experiments of the right-angle path
conducted in the rocky area with medium and artificially low illumination
respectively, the horizontal and vertical errors increased, providing errors in a range
of 13 cm to 33 cm (horizontal error) and 0.3 to 21 cm (vertical error) for the
experiment with medium illumination and in a range of 11 to 32 cm (horizontal error)
and 2.5 to 11 cm (vertical error) for the experiment with low illumination. This
increase of the errors is due to several factors including the large distance of the target
2 and target 3 from the origin marker, the lack of loop closure which could further
optimize the results and the feature-poor environment of the rocky area. It’s worth
noting that the results in the experiment with low illumination is similar and slightly
refined than the results of the same experiment with medium illumination. This fact,
proves the importance of HF-net2 model in the SLAM for the mapping process on
challenging and unstructured environments in terms of illumination changes.

To further validate the importance of deep learning and especially HF-net2 neural
network in the proposed methodology, all the experiments described in the section 4.4
were performed also using the ORB-SLAM2. The horizontal and vertical errors of
both approaches are presented in the tables (5.4 - 5.8):

Proposed with HF-net2-SLAM Proposed with ORB-SLAM2
Target marker XY error(cm) Z error (cm) XY error(cm) Z error (cm)

Target 1 8.06 1 28.6 5.8
Target 2 7.07 0.3 27.3 1
Target 3 11.08 8 28.6 4
Mean 8.74 3.1 28.17 3.6

Table 5.4 Horizontal and vertical errors of the methodology based on HF-net2 and ORB-SLAM2.
Experiment in unstructured urban area (University campus) with high illumination - square path

Proposed with HF-net2-SLAM Proposed with ORB-SLAM2
Target marker XY error(cm) Z error (cm) XY error(cm) Z error (cm)

Target 1 5 0.85 5.9 32.4
Target 2 3.8 15 26.5 80
Mean 4.4 7.9 16.2 56.2

Table 5.5 Horizontal and vertical errors of the methodology based on HF-net2 and ORB-SLAM2.
Experiment in sandy area with high illumination - right-angle path
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Proposed with HF-net2-SLAM Proposed with ORB-SLAM2
Target marker XY error(cm) Z error (cm) XY error(cm) Z error (cm)

Target 1 9.22 1.4 18.63 0.7
Target 2 14.32 0.7 18.60 0.85
Target 3 13.41 9 7.12 1.5
Mean 12.32 3.7 14.8 1.01

Table 5.6 Horizontal and vertical errors of the methodology based on HF-net2 and ORB-SLAM2.
Experiment in rocky area with medium illumination - square path

Proposed with HF-net2-SLAM Proposed with ORB-SLAM2
Target marker XY error(cm) Z error (cm) XY error(cm) Z error (cm)
Target 1 13.15 3.5 15.7 7.8
Target 2 30.6 0.3 26 35.7
Target 3 33.2 21.1 33 26.2
Mean 25.65 8.3 24.9 23.2

Table 5.7 Horizontal and vertical errors of the methodology based on HF-net2 and ORB-SLAM2.
Experiment in rocky area with medium illumination - large right-angle path

Proposed with HF-net2-SLAM Proposed with ORB-SLAM2
Target marker XY error(cm) Z error (cm) XY error(cm) Z error (cm)
Target 1 11.18 2.5 17.8 34.1
Target 2 26 7 46.7 104.3
Target 3 31.8 11 49.6 0.72
Mean 23.0 6.83 38.03 46.37

Table 5.8 Horizontal and vertical errors of the methodology based on HF-net2 and ORB-SLAM2.
Experiment in rocky area with artificially low illumination - large right-angle path

In table 5.4 which present the results from the experiment in the unstructured urban
area (university campus), the proposed methodology outperforms the ORB-SLAM2
based methodology since it provides a mean horizontal error (MHE) in a level of 9 cm
and mean vertical error (MVE) equal to 3.1 cm instead of ORB-SLAM2-based
methodology which provides a MHE in a level of 28 cm and a MVE equal to 3.6 cm.
It's worth noting that the horizontal error of ORB-SLAM2-based methodology is
above three-times larger than the proposed methodology.

In table 5.5 which represent the results from the experiment with right-angle path in
the sandy area, a quite feature-poor scene, the proposed methodology provides
satisfactory results with MHE 4.4 cm and MVE equal to 7.9 cm instead of the ORB-
SLAM2-based methodology which exports a MHE equal to 16.2 cm and the MVE
equal to 56.2 cm which is about 7 times larger than the corresponding MVE of the
proposed methodology.

Table 5.6, represents the results from a square-path experiment conducted in the rocky
area with medium illumination, an area with more features than the unstructured
urban and sandy areas. In this experiment the two methodologies provide similar
results since the proposed methodology achieves a MHE in a level of 12 cm instead of
the ORB-SLAM2-based methodology with MHE in a level of 15 cm while the MVE
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of the proposed methodology is in a level of 4 cm instead of the ORB-SLAM2-based
methodology which is in a level of 1 cm.

The last two experiments presented in tables 5.7 and 5.8, were performed in the rocky
area following a larger right-angle path. In the first experiment, the physical medium
illumination of the scene (table 5.7) was utilized while in the second experiment (table
5.8), artificially decreased in terms of illumination RGB frames were used. Regarding
the first experiment (table 5.8), the two methodologies provide similar MHE in a level
of 25 cm while the proposed methodology outperforms the ORB-SLAM2-based
methodology in terms of vertical error, producing a MVE in a level of 8 cm instead of
23 cm. In the second experiment, where the mapping process was conducted using
RGB frames with quite low illumination, the proposed methodology maintains its
accuracy compared with the first experiment providing a MHE equal to 23 cm and
MVE in a level of 7 cm while the ORB-SLAM2-based methodology produces quite
increased errors with MHE in a level of 40 cm and MVE equal to 46.37 cm (table 5.8).
It's worth noting that the target 2 vertical error of the ORB-SLAM2-based
methodology is in a level of 1 m which is inadequate even for rapid mapping
applications.

As the experimentation proves, the proposed methodology is able to accurately map
and localize fiducial markers in feature-poor scenes or environments with low
illumination, outperforming the ORB-SLAM2-based methodology. This is due to the
feature extraction process of HF-net2 which is capable of detecting and describing
features with a more sophisticated fashion than the ORB algorithm. For instance, the
figure below (fig. 5.6), presents the captured features of ORB-SLAM2 (a) and
HFnet2-SLAM (b) during the SLAM process of the unstructured urban area where the
only features are the pavement joints. It is clear that the HFnet2-SLAM captures with
a more refined way the pavement joints forming clearer squares, than the ORB-
SLAM2.

(a) (b)
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Figure 5.6 Square-path experiment in unstructured urban area (University campus) Column (a):
mapping using ORB-SLAM2, (b) mapping using HFnet2-SLAM

Regarding the mapping process of methodology on the field, a certain way of
mapping has to be followed in order the methodology to provide qualitative results.
The camera has to follow a trajectory that begins a few meters before the origin
marker and then proceed, approaching close and overtaking all the markers (origin
and targets) maintaining a non-complicated path. This technique, provides a
reasonable sequence of frames to the system, aiding the feature extraction process,
camera pose estimations and consequently marker localization using the M.L.C and
P.A methods. The sudden unreasonable camera movements or a complicated camera
trajectory where the camera doesn’t approach the markers directly maintaining a
steady direction, will significantly decrease the accuracy.

Moreover, the error of each target is dependent only on the location of the origin
marker and not affected by the other markers. Nevertheless, the increased distance
between the origin and target markers can affect the accuracy. This issue is a
limitation of the methodology which can be encountered with the integration of a life-
long SLAM architecture (as referred by the computer vision community) which
constitutes one of the main future goals of the proposed methodology.

As a conclusion, in this chapter an extended analysis of each part of the proposed
framework was conducted, evaluating its efficiency using state-of-the-art algorithms
and architectures. In the next chapter the final thoughts and conclusions regarding
each pillar of the framework are presented.
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Chapter 6

Conclusions
In this chapter, the conclusions of the visual localization framework specialized for
unstructured environments are presented, following the structure below:

 Conclusions of the optimized SuperPoint architecture
 Conclusions of the HF-net2 architecture and proposed SLAM
 Conclusions of the modified U-net for unstructured scenes
 Conclusions of the precise positioning and mapping methodology in GNSS-

denied environments

6.1 Conclusions of the optimized SuperPoint architecture

In summary, a SuperPoint architecture was utilized aiming to develop a model for
keypoint detection and description, with increased sensitivity and accuracy in
unstructured environments and planetary scenes. SuperPoint was implemented and
trained using the proposed training dataset which includes planetary-like and real-
planetary scenes. During experimentation, three different models were produced using
the aforementioned dataset: (a) an original SuperPoint model, trained from scratch, (b)
an original fine-tuned SuperPoint model, (c) an optimized model, trained from scratch.
The models were evaluated using a proposed benchmark dataset, designed for
unstructured environments including earthy and planetary scenes, testing their
accuracy in illumination and viewpoint changes. The experimentation proves that the
optimized SuperPoint model provides satisfactory results in keypoint detection and
description, compared with the re-trained SuperPoint models, the original SuperPoint
model trained with COCO dataset and several popular handcrafted detectors and
descriptors.

However, the lack of samples with high variance in illumination changes, is a
significant issue for the methodology which affects the optimized and original
SuperPoint models, providing slightly lower repeatability in keypoint detection
compared with the pre-trained SuperPoint. A second issue is that SIFT descriptor
outperforms the optimized SuperPoint although the proposed model outperforms all
the original SuperPoint models and ORB.

Thus, the future work of the optimized model can be focused on two main
improvements. At first, the proposed dataset could be enriched including real or
artificial images with high lighting changes, while the difficulty of homographic
adaptation during the training process could be increased through more examples and
extremely transformed representations. The aforementioned improvements, will
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further escalate the efficiency of the model in illumination and viewpoint changes,
providing refined results in both illumination and viewpoint changes.

As a conclusion, the optimized SuperPoint model, is a promising solution for accurate
keypoint detection and description in unstructured and planetary scenes, which could
be an inspiration for the computer vision community, increasing the potential for
accurate autonomous navigation in completely unknown and unstructured scenes.

6.2 Conclusions of the HF-net2 architecture and proposed SLAM

To sum up, a multi-task distillation-based architecture, called HF-net2 was developed
aiming to implement a keypoint detector and descriptor which focuses on
unstructured environments and completely unknown planetary scenes. The model was
trained with a specialized image dataset from Earth, Mars and Moon and evaluated
using a proposed benchmark dataset, compared with several keypoint detectors and
descriptors, testing its accuracy in illumination and viewpoint changes. HF-net2
proved its robustness achieving the highest overall accuracy after the SuperPoint
which was its teacher during the training process.

Moreover, the HF-net2 model was integrated in a visual SLAM system based on
ORB-SLAM2 while an extended experimentation was conducted in two unstructured
scenes, using an RGB-depth camera and an RTK-GNSS receiver, utilized for ground
truth. The experimentation, which performed in two different areas with several
illumination conditions, proved that the proposed SLAM provides satisfactory
accuracy in unstructured feature-poor environments with illumination changes,
outperforming the ORB-SLAM2.

The future work of this study is two-fold. At first, the proposed architecture will be
further improved and fine-tuned by enriching the training and evaluation dataset with
more rover-based data, while secondly, the proposed SLAM system will be further
optimized in terms of a loop closing module utilizing only the global descriptor
instead of a BoW algorithm which can fail in completely unknown environments
(Garcia-Fidalgo et al. 2018).

As a conclusion, this study proved that the use of deep learning architectures in
feature extraction provides a crucial potential in autonomous navigation on
unstructured environments which can reinforce the planetary exploration missions,
acquiring extremely valuable knowledge for the future of humanity.

6.3 Conclusions of the modified U-net for unstructured scenes

In summary, an encoder-decoder deep learning architecture for lunar ground
segmentation was developed, aiming to reinforce the potential of rover safety during a
mission. The main goal of this study was the implementation of a semantic
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segmentation model with low requirements in computing resources and large training
datasets.

To achieve this goal, a deep learning architecture based on U-net neural network was
developed, since U-net is able to provide respectable results, trained with limited size
of datasets (Ronneberger et al. 2015). To reduce the computational cost of U-net, a
modified MobileNetV2 neural network was used as the encoder, while a lighter
version of U-net decoder was implemented in order to accelerate the segmentation
stage. The proposed architecture was trained with a publicly available dataset with
artificial lunar scenes, which is the only available training dataset for the Moon
environment.

As a result, the proposed model achieves satisfactory accuracy in scene segmentation,
not only in testing data of synthetic images but also in real rover-based images of the
lunar surface while it includes significantly less trainable parameters than U-net based
alternatives. The proposed architecture was evaluated compared with the original U-
net, the VGG16/U-net and the original MobileNetV2/Unet neural networks which
were trained under the same parametrization. The proposed architecture is about 140
times smaller than the original U-net, 110 times than the VGG16/U-net and 36 times
smaller than the original MobilenetV2/U-net while it provides similar accuracy with
the original U-net and outperforms the U-net based alternatives. Moreover, the
models were tested in three different computing setups, two conventional machines
(GPU-enabled and CPU-only) and an embedded system with low computing
resources, proving that the proposed model is quite faster than the U-net-based
alternatives in all computing systems and especially in the embedded system.

However, the proposed model could be further improved especially in classification
and segmentation tasks adding more classes such as, sandy regions, bedrocks, craters,
etc, using a refined dataset with synthetic and real lunar images. Given that a
qualitative dataset from the lunar surface will be available in the near future due to the
planned missions of NASA’s Artemis program, the proposed architecture is able to
provide a significant potential in lunar exploration, ensuring safe and precise
navigation.

6.4 Conclusions of the precise positioning and mapping methodology in GNSS-

denied environments

The present study, proposes an alternative mapping methodology which focuses on
point localization in challenging GNSS-denied environments in terms of feature-poor
information and low illumination. The main contribution of this study is that solves
the issue of characteristic points’ precise localization in a few-centimeter level of
accuracy using only an RGB-depth camera, a conventional computing system and at
least one fiducial marker while a novel deep learning-based SLAM method, the MLC
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and P.A methods compose a pipeline of algorithmic processing in order to provide the
desired coordinate estimations.

In other words, instead of similar computer vision systems, this study focuses on the
accurate point localization using a coordinate system defined in the scene, based on
the pose of a physical marker. This fact, makes the methodology completely
comparable with the traditional surveying process in which the measurements are
conducted using a geodetic total station and the coordinate system is defined in the
scene, using the internal geometry of the total station on a reference point. However,
while the traditional surveying requires significant human effort and a quite costly
equipment, the proposed methodology is conducted with just following a specific path
of the scene, being able to be used not only by humans but also by mobile robotic
systems. It’s worth noting that the proposed methodology doesn’t aspires to replace
the traditional surveying, since it is a robust and well-established methodology with
the highest accuracy in point localization, instead the present study could be utilized
as an alternative in GNSS-denied environments, that is hard or impossible of using
topographic equipment.

Although the present study provides several novel advances compared with the
conventional localization methods, some limitations are still under research. Although
the mapping process is quite straightforward, is affected by factors including long
distance between the origin and the targets, the complicated paths and the high speed
of the camera which are able to decrease the accuracy of the results. However,
knowing the factors that decrease the accuracy, is setting the basis for the future
research of the further methodology development. For instance, the optimization of
the SLAM algorithm in order to maintain its accuracy in larger distances, or
effectively match and export keyframes with high camera speed, could increase even
more the efficiency of this study.

Taking into account all the above constraints, the main goal of this study for the future
is to achieve accuracy in a level of 2-5 cm in feature-poor scenes with low
illumination and trajectory paths larger than 20 m. This level of accuracy under the
aforementioned challenging conditions in combination with the cost-effective
equipment is possible to change the way of mainstream point localization introducing
a precise positioning alternative with potential use in autonomous robotic systems.

6.5 Summary of conclusions

In this dissertation, a visual localization framework was presented, which is composed
of deep learning-based methodologies for critical computer vision tasks including
feature extraction, SLAM, semantic segmentation and point positioning, with main
goal to reinforce the potential of scene understanding, localization and mapping in
unstructured and planetary environments.
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One of the main challenges of the dissertation was the lack of training and benchmark
datasets focused on unstructured environments, compared with urban, vegetated and
indoor environments where multiple datasets are publicly available in order to train
and evaluate deep learning architectures, algorithms and SLAM implementations.
Thus, two datasets were designed, including images from planetary-like and real-
planetary scenes, for the training and evaluation processes of the proposed deep
learning models and the related state-of-the-art algorithms.

The second challenge was to investigate the potential of deep learning-based feature
extractors in planetary environments while afterwards to modify and improve the
selected approaches. Regarding the selected architectures, SuperPoint is a self-
supervized convolutional neural network, which is able to extract keypoints and
descriptors while the pre-trained model, provided by the authors of DeTone et al.
2018, was trained using the general-purpose dataset COCO. Through the
experimentation and evaluation process, the architecture was further improved
providing satisfactory results in unstructured environments, compared with the pre-
trained and re-trained original SuperPoint models and several conventional keypoint
detectors and descriptors. Concerning the HF-net neural network, it is an encoder-
decoder CNN-basesd architecture which is trained through a teacher-student approach
using the SuperPoint and NetVLAD as teachers for local and global feature extraction
respectively. The HF-net was further improved replacing the shared encoder
MobilenetV2 with the MobilenetV3-large due to its increased efficiency in terms of
performance time and accuracy. The new version of HF-net, called HF-net2 was
trained and evaluated using the proposed training and evaluation datasets aiming to
extract accurate keypoint detectors and descriptors in unstructured and planetary
environments. The experimentation proved that the HF-net2 outperforms the original
HF-net model and several handcrafted algorithms in terms of illumination and
viewpoint changes while its efficiency was quite close to the SuperPoint model which
is the teacher of both HF-net and HF-net2 models.

The third challenge was the development of a visual SLAM system focused on
unstructured environments aiming to improve the autonomous navigation in feature-
poor scenes under intense lighting changes or low illumination conditions. Thus, a
SLAM algorithm based on ORB-SLAM2 was proposed, which utilizes the HF-net2
model as feature extractor instead of the ORB algorithm, specializing the SLAM
system in unstructured and planetary scenes. For the evaluation of the proposed
SLAM, an extended experimentation was conducted in two different study areas with
feature-poor information (a) a rocky scene and (b) a sandy scene, in different
illumination conditions and trajectory paths. The equipment of experimentation
includes an RGB-depth camera, a conventional laptop for the video recording and an
RTK-GNSS receiver for the ground truth measurements. The proposed SLAM proved
that is able to provide robust and accurate results maintaining its accuracy in high,
medium and low illumination outperforming the ORB-SLAM2 especially in
challenging environments with low illumination.
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The fourth challenge was the development of a deep learning architecture for
semantic segmentation focused on lunar environment aiming to recognize rocks and
boulders which could harm the attached equipment of an autonomous rover. The
architecture should be trained with a limited size of dataset while being efficient in
computing systems with low resources. Thus, a semantic segmentation architecture
was developed based on U-net while a modified MobilenetV2 was implemented,
aiming to reduce the training parameters of the proposed architecture. The present
architecture was trained and tested using a dataset with simulated lunar scenes while
three different architectures, an original MobilenetV2/U-net, a VGG16/U-net and an
original U-net architecture were also trained and evaluated under the same
parametrization. The results proved that the proposed architecture outperforms the
original MobilenetV2/U-net and the VGG16/U-net and provides similar accuracy of
the U-net while it contains only 220,000 parameters instead of the original
MobilenetV2/U-net, the VGG16/U-net and the U-net which include about 8,000,000,
24,000,000 and 31,000,000 parameters respectively. The models were also evaluated
in terms of performance-time using three computing setups: (a) a GPU-enabled
machine, (b) a CPU-only machine and (c) a Raspberry Pi 4 embedded system. The
results proved the superiority of the proposed architecture, since it was 2 times faster
than U-net in a GPU-enabled machine, nine times faster in a CPU-only machine and
20 times faster in a Raspberry Pi 4 embedded machine.

The fifth challenge was the development of a precise positioning methodology for
challenging GNSS-denied environments. The methodology should estimate the
coordinates of specific points with centimeter-level of accuracy in several scenes of
unstructured environments with feature-poor information and medium to low
illumination. Thus, a precise positioning methodology was developed inspired by the
traditional surveying using computer vision and deep learning techniques, with
limited requirements in terms of equipment. More specifically, the methodology could
divided in two main procedures. (a) the field work and (b) the data processing.
Regarding the field work, the user or a robotic system is able to map the study area
using only an RGB and depth sensor, a conventional machine (laptop) and at least one
fiducial marker while after placing the targets on the ground, the sensors need only to
cross a path which follows the arrangement of the targets in the scene. After the field
work, the recorded video feeds the algorithmic pipeline which is a combination of the
proposed SLAM system with target detection, localization and optimization
techniques. The experimentation proved that the methodology is able to provide
centimeter-level of accuracy in three different study areas including an unstructured
urban, a sandy and a rocky scene with several conditions of illumination. Moreover,
the use of a deep learning model focused on unstructured environments seems to
significantly improve the results, since the proposed methodology with use of deep
learning-based SLAM, outperforms the proposed methodology with use of ORB-
SLAM2, especially in the environments with low illumination.

It is clear that the use of deep learning in unstructured and planetary environments in
terms of scene recognition, localization and mapping provides a significant potential
for the future applications, reinforcing crucial topics such as autonomous navigation
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in harsh environments. The scalability of deep learning-based methodologies is
extremely important since the proposed framework could be further optimized or
implemented in different environments using enriched or specialized datasets. For
instance, after the landing of a rover on the Moon during the NASA Artemis mission,
new rover-based data will be available, enriching the proposed dataset with real
images from the lunar surface, improving the efficiency of the proposed feature
extraction and semantic segmentation models. Moreover, beyond the planetary
environments, there is a need of unmanned vehicles and robotic systems in several
other hazardous environments such as glacial scenes or smoky areas, where the
proposed framework could be utilized using different datasets for the fine-tuning
process or/end more sensors such as laser range-finders. Thus, this dissertation aspires
to encourage the investigation and development of AI models and datasets using
computationally efficient methods and equipment, aiming to reinforce the
autonomous navigation focused on challenging environments, improving the future
society and well-being.
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