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Protein Kinase C signaling pathway Simulation 

 

A General Overview  

 

In the recent years a tremendous progress has been made in the field of 

biology. With the development of technological assistance biologists have been able 

to obtain a better image of the microcosm of a living mammalian and especially the 

cells which are the basic elements of a living matter.  

Cells interact with each other, grow, divide and eventually die and all these 

functions are regulated by reactions caused by proteins. These reactions are very 

difficult to describe and the use of Systems Theory is obligatory in order to 

understand the hidden mechanisms beneath them. This field of science is also known 

as Systems Biology and it is very prominent in the use of medicine. 

 

 

 

 

A Closer approach of a Cell 

 
In the past two decades the structure and function of genes has met a 

tremendous progress. DNA’s sequence led to unfamiliar abilities in terms of genetic 

engineer. DNA or deoxyribonucleic acid is a polymer (molecule of similar repeating 

units which are linked together by a common bonding mechanism) made up of a 

linear arrangement of subunits known as nucleotides. Genes are composed 

approximately by 6 to 7 billion sequences of DNA and are the basis of heredity. The 

genetic information which is at the DNA’s chromosome is located at the nucleus of 

the cell. Cells are therefore the fundamental units of living matter.  

On the other hand the creation of proteins, which are responsible for the 

interpretation of genetic information, is made at the cytoplasm. This diversification 

reflects the fact that human organism is eukaryotic and it means that the nucleus is 

divided from the cytoplasm by nucleic membrane.  
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As said above proteins are responsible for the interpretation of genetic 

information but this is not their only purpose. Proteins can turn the genes on or off  

but they can also carry out most of the cells functions. Most of them are enzymes 

which carry out the reactions responsible for the cell’s metabolism the reactions that 

allow it to process nutrients, to build new cellular material, to grow and to divide. 

Cells can even receive signals from the outer environment through specially designed 

proteins also known as receptors (Figure 1). Receptors are proteins that span the 

membrane, with a site for binding the signalling compound on the outer surface. 

Binding of the extra cellular signalling compound to the outer surface of the receptor 

results in an activation of an intracellular protein (the ―response regulator‖), for 

example, by phosphorylation. 

 

 

                  
 

Figure 1 

 

Signal transduction pathways can be represented as sequences of enzyme 

kinetics reactions which turn a substrate S into a product P via an 

intermediate complex SE and regulated by an enzyme E. The rate by which 

the enzyme-substrate complex SE is formed is denoted by k1. The complex 

SE holds two possible outcomes in the next step. It can be dissociated into E 

and S with a rate constant k2 or it can further proceed to form a product P 

with a rate constant k3. It is required to express the relations between the rate 

of catalysis and the change of concentration for the substrate, the enzyme, 
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the complex, and the product. Figure 2 shows the schematic. 

 
  

 

 
Figure 2 

 

Introduction 

From the database of Quantitative Cellular Signaling (http://doqcs.ncbs.res.in/) we 

obtain the model that describes our pathway. The database also contains the model 

structure ( the interactions that play role in the formulation of the protein), parameter 

values (as for example rate constant), and the initial concentrations. The activation of 

the PKC pathway is done by three second messengers, arachidonic acid (AA), 

diacyglycerol (DAG), and calcium (Ca
++

). Using the Matlab/Simulink simulation 

environment we will study the sensitivity of different types of stimuli, parameter 

values, and initial concentrations. Simulations have shown as that the amplitude of the 

active PKC concentration is proportional to the time period of Ca
2+

 stimulus. Also 

http://doqcs.ncbs.res.in/
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from the simulation we obtain the ascertainments that second messengers AA and 

DAG also play a role on the active PKC concentration. 

 

 
 

The model of PKC signal transduction pathway 
  

    As said above in the previous chapter we are going to analyze the pathway 

developed by  Bhalla and Iyengar [3] in order to model the hippocampal neuron. 

The model describing the PKC pathway is obtained from the database of 

Quantitative Cellular Signaling (http://doqcs.ncbs.res.in/). The database contains 

explicit chemical reaction kinetic models for signaling pathways, including 

annotations, information on data sources, and model parameter derivations based 

on publications. Our model consists of 15 different chemical species. The inputs 

of the system (shown in figure 1 in yellow) are the three second messengers: Ca
2+

, 

AA and DAG. These inputs are used to activate and modulate the system. Also in 

figure 1 the species in green boxes represent the computational intermediates that 

are summed in order to study the concentration of active PKC (denoted in blue). 

 

Figure 3: Graphical representation of the PKC model according to DOQCS [3], [8], 

[19] 

Reactants that are  green represent the computational intermediates. The inputs of the 

system Ca
++

, AA and DAG are in yellow 

http://doqcs.ncbs.res.in/
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As we see in figure 1 we have fifteen different interacting chemical spieces: 

 R1 which is the basal activity of PKC transforms Protein Kinace C (inactive) to 

Protein kinace C (basal level, intermediate) leading to Protein kinace C 

(active) 

 R2 which is Activation of PKC by AA or Arachidonic acid has as an 

intermediate product  AAPKC* or Arachidonic acid-protein kinase C which is 

membrane-bound and active form of the AAPKC complex 

 R3 is the translocation of PKC to membrane. CaPKC or Calcium - protein 

kinase C has as an intermediate product CaPKCmemb* or Calcium - protein 

kinase C (on membrane, intermediate) which is finally transformed to Protein 

kinace C (active) 

 R4 is the activation of PKC by AA in presence of Ca and as an intermediate 

product we have the creation of AACaPKC or Arachidonic acid-Calcium-

protein kinase C 

 R5 is the activation of DAGCaPKC or diacyglycerol - calcium -protein kinase C 

with the creation of the intermediate product DAGPKCmemb* or 

diacyglycerol - protein kinase C 
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 R6 is the activation of AADAGPKC or arachidonic acid-diacylglycerol-protein 

kinase C 

 R7 is the activation of PKC by Calcium ions leading to the creation of Calcium 

- protein kinase C (Synergistic activation of PKC by combinations of DAG and 

Ca as well as AA and Ca and Ca) 

 R8 is the activation of PKC by diacyglycerol in presence of Calcium ions 

leading to the creation of Diacyglycerol - protein kinase C (Synergistic 

activation of PKC by combinations of DAG and Ca as well as AA and Ca and 

Ca) 

 R9 is the activation of PKC by diacyglycerol  

 R10 is the synergistic activation of PKC by diacyglycerol and Arachidonic acid 

(Membrane translocated form of AADAGPKC complex) 

              

 

 

 

 

 

 

 

Background of the mathematical formulation  
The reactions that are shown in table 2 derive using biochemical reaction kinetics 

which are based on mass action law .The biochemical reaction kinetics that has A and 

B as reacting species and C as a product, is described by: 
1

1

k

k
A B C


   (1), where 

k1 is the forward and k-1 is the backward rate constant. Equation  

1 1

[ ] [ ] [ ]
[ ][ ] [ ]

d C d A d B
u k A B k C

dt dt dt
        (2) is an ordinary differential 

representation of equation 1 where u is the reaction rate  and  [A] ,[B] and [C] are 

concentrations of the chemical species A, B  and C (variables in simulations).In the 

case of a system of differential equations , the differential equation to all species can 

be written in the form:  
0

[ ]

in

Ri Ri

i I i I

d C
u u

dt  

     (3)  where Iin  is the set of reaction 
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indices leading leading to the species C and Io is the set of reaction indices leading out 

if the species C. uRi  is the reaction rate in reaction Ri. 

  Reactions that are represented in Figure 1 are represented in the form of 

1

1

k

k
A B C


   as follows: 

1
1

1
1

1: *

R

R

k

i a
k

R PKC PKCbasal PKC


     (4) 

2
1

2
1

2 : *

R

R

k

i a
k

R PKC AA AAPKC PKC


      (5) 

3
1

3
1

3: *

R

R

k

a
k

R CaPKC CaPKCmemb PKC


     (6) 

4
1

4
1

4 :

R

R

k

a
k

R CaPKC AA AACaPKC PKC


      (7) 

5
1

5
1

5: *

R

R

k

a
k

R DAGCaPKC DAGPKCmemb PKC


    (8) 

6
1

6
1

6 : *

R

R

k

a
k

R AADAGPKC AADAGPKC PKC


         (9) 

7
1

7
1

27 :

R

R

k

i
k

R PKC Ca CaPKC


                                       (10) 

8
1

8
1

8:

R

R

k

k

R CaPKC DAG DAGCaPKC


     (11) 

9
1

9
1

9 :

R

R

k

i
k

R PKC DAG DAGPKC


     (12) 

10
1

10
1

10 :

R

R

k

k

R DAGPKC AA AADAGPKC


    (13) 

 

And so by using the ordinary differential equation form we have for the previous 

equations: 

 

1 1

1 1 1

[ ] 1[ *] 1
[ ] [ *]R Ri

R i

d PKC Rd PKCbasal R
U k PKC k PKCbasal

dt dt
             (14) 

2

2 2

1 1

[ ] 2[ *] 2 [ ] 2

[ ][ ] [ *]

i
R

R R

i

d PKC Rd AAPKC R d AA R
U

dt dt dt

k PKC AA k AAPKC

     

       (15)
 

3

3 3

1 1

[ *] 3 [ ] 3

[ ][ ] [ *]

R

R R

d CaPKCmemb R d CaPKC R
U

dt dt

k CaPKC AA k CaPKCmemb

   

        (16) 
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4

4 4

1 1

[ *] 4 [ ] 4 [ ] 4

[ ][ ] [ *]

R

R R

d AACaPKC R d CaPKC R d AA R
U

dt dt dt

k CaPKC AA k AACaPKC

     

      (17)
 

5

5 5

1 1

[ *] 5 [ ] 5

[ ] [ *]

R

R R

d DAGPKCmemb R d DAGCaPKC R
U

dt dt

k DAGCaPKC k DAGPKCmemb

   

       (18) 

6

6 6

1 1

[ *] 6 [ ] 6

[ ] [ *]

R

R R

d AADAGPKC R d AADAGPKC R
U

dt dt

k AADAGPKC k AADAGPKC

   

       (19) 

2

7

7 7

1 1

[ ] 7[ ] 7 [ ] 7

[ ] [ ]

i
R

R R

i

d PKC Rd CaPKC R d Ca R
U

dt dt dt

k PKC k CaPKC





     

 
     (20)

 

8

8 8

1 1

[ ] 8 [ ] 8 [ ] 8

[ ][ ] [ ]

R

R R

d DAGCaPKC R d CaPKC R d DAG R
U

dt dt dt

k CaPKC DAG k DAGCaPKC

     

      (21)
 

9

9 9

1 1

[ ] 9[ ] 9 [ ] 9

[ ][ ] [ ]

i
R

R R

i

d PKC Rd DAGPKC R d DAG R
U

dt dt dt

k PKC DAG k DAGPKC

     

 
     (22)

 

10

10 10

1 1

[ ] 10 [ ] 10 [ ] 10

[ ][ ] [ ]

R

R R

d AADAGPKC R d DAGPKC R d AA R
U

dt dt dt

k DAGPKC AA k AADAGPKC

     

 
    (23)

 

 

 

By adding the concentrations of  intermediate species we have the concentration of 

active PKC: [PKCa]=[PKCbasal*]+[AAPKC*]+[CaPKCmemb*]+[AACaPKC*]+ 

+ [DAGPKCmemb*] + [AADAGPKC*]  (24) 

Equations UR1-UR10 are used for implementing the PKC pathway to Matlab. Our 

system contains differential equations for 11 species: 1Ru  is for 
[ *]d PKCbasal

dt
, 2Ru  

is for 
[ *]d AAPKC

dt
, 3Ru  is for 

[ *]d CaPKCmemb

dt
, 4Ru  is for 

[ *]d AACaPKC

dt
, 5Ru  is 

for 
[ *]d DAGPKCmemb

dt
, 6Ru  is for 

[ *]d AADAGPKC

dt
, for 

[ ]d PKCi

dt
 we have 

1 2 7 9R R R Ru u u u    , for 
[ ]d CaPKC

dt
 we have 7 3 4 8R R R Ru u u u   , for 

[ ]d DAGPKC

dt
 we have 9 10R Ru u , for 

[ ]d DAGCaPKC

dt
 we have 8 5R Ru u  and for 

[ ]d AADAGPKC

dt
 we have 10 6R Ru u  



 15 

Using these equations we will simulate the behavior of our pathway. 

 

Simulation of PKC pathway  

The use of MATLAB simulation tool has been used in order to study the behavior 

of the protein kinase C pathway. The simulation of the neuron model was easier 

by using an extension of matlab the simulink gui. The version that we used is 

7.0.0.19920 (R14) which uses different kinds of ordinary differential equation 

solvers (ode) in order to solves differential equations. We used the ode23s solver 

for our simulation with absolute tolerance 10^(-15) and relative tolerance 10^(-6) 

in the simulation parameters drop-down menu at Simulink’s toolbar, but other 

numerical integration methods (ode) can also be used , like ode45 , ode23, ode11 

and many others. 

The behavior of the PKC pathway is simulated using different kinds of inputs for 

Ca
2+

, AA, and DAG. Various numerically generated stimuli are used for Ca
2+

, 

such as linear and step functions as well as rectangular and sine waves. The 

concentrations of other second messengers of the PKC pathway, AA and DAG, 

are first kept constant but later also triangular and sine waves are used. 

We have divided the simulation in 10 different cases: 

 

1) The linear case: Ca
++

, AA, DAG are kept constant to the 1uM, 50uM, 

150uM values respectively. 

2) The step case: Ca
++

 has a step stimulus from 0 to 10uM every 100 sec, 

while AA and DAG are kept constant to 50uM and 150uM respectively. 

3) The rectangular case: Ca
++

 has a rectangular stimulus with time period of 

100sec followed by a time period of quiescent 100sec, while AA and DAG 

are kept constant to 50uM and 150uM respectively. 

4) The rectangular case: Ca
++

 has a rectangular stimulus with time period of 

50sec followed by a time period of quiescent 50sec, while AA and DAG 

are kept constant to 50uM and 150uM respectively. 

5) The sine wave case: Ca
++

 has a sine wave stimulus from 0uM to 2uM with 

time period 50sec, while AA and DAG are kept constant to 50uM and 

150uM respectively. 
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6) The sine wave case: Ca
++

 has a sine wave stimulus from 0uM to 2uM with 

time period 10sec, while AA and DAG are kept constant to 50uM and 

150uM respectively. 

7) Varying sine wave Ca
++

 stimulus while AA and Dag are again kept 

constant at values 50uM and 150uM respectively: 

 Ca
++

 has a sine wave stimulus from 0uM to 2uM with time period 

50sec 

 Ca
++

 has a sine wave stimulus from 1uM to 3uM with time period 

50sec 

 Ca
++

 has a sine wave stimulus from 0uM to 2uM with time period 

10sec 

 Ca
++

 has a sine wave stimulus from 1uM to 3uM with time period 

10sec 

8) Effect of varying AA and DAG stimuli while Ca
++

 has a sine wave stimuli: 

  AA and DAG are kept constant with values 50uM and 150uM 

respectively 

 AA and DAG are kept constant with values 1uM and 150uM 

respectively 

 AA and DAG are kept constant with values 150uM and 150uM 

respectively 

 AA has a triangular stimuli while DAG is kept constant at 150uM 

 Both AA and DAG have triangular stimuli 

9) Effect of varying sine wave stimuli for Ca
++

, AA and DAG 

 Ca
++

 has a sine wave stimuli with time period 50sec, AA has a sine 

wave stimuli with time period 10sec and DAG has a sine wave 

stimuli with time period 100sec 

 Same as above but the stimulus is between 49-51uM 

 Ca
++

 has a sine wave stimuli with time period 10sec, AA has a sine 

wave stimuli with time period 50sec and DAG has a sine wave 

stimuli with time period 100sec 

 Ca
++

 has a sine wave stimuli with time period 10sec, AA has a sine 

wave stimuli with time period 100sec and DAG has a sine wave 

stimuli with time period 50sec 
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 Ca
++

 has a sine wave stimuli with time period 50sec, AA has a sine 

wave stimuli with time period 10sec and DAG has a sine wave 

stimuli with time period 100sec 

 Ca
++

 has a sine wave stimuli with time period 100sec, AA has a 

sine wave stimuli with time period 50sec and DAG has a sine wave 

stimuli with time period 10sec 

10)  Effect of varying parameter values  

 K1 value is increased by 20% in R6 

 K1 value is increased by 50% in R6 

 K-1 value is increased by 20% in R6 

 K-1 value is increased by 50% in R6 

 K1 value is increased by 20% in R7 

 K1 value is increased by 50% in R7 

 K-1 value is increased by 20% in R7 

 K-1 value is increased by 50% in R7 

 K1 and K-1 values are increased by 20% in R6 and R7 

 K1 and K-1 values are increased by 50% in R6 and R7 

               

We must mention that for all these cases the initial concentrations of the PKC 

pathway are kept constant and are obtained from the database of Quantitative 

Cellular Signaling (http://doqcs.ncbs.res.in/). 

Species Inti. Concentartion 

AA 5*10-5 

AACaPKC* 1.75810-22 

AADAGPKC 2.5188810-25 

AADAGPKC* 4.9137*10-24 

AAPKC* 1.8133*10-23 

Ca 1*10-6 

CaPKC 3.7208*10-23 

CaPKCmemb* 1.3896*10-23 

DAG 1.5*10-4 

DAGCaPKC 8.4632*10-29 

DAGPKC 1.161*10-22 

DAGPKCmemb* 9.4352*10-27 

PKCa 2.122*10-22 

PKCi 1*10-6 

http://doqcs.ncbs.res.in/
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PKCbasal* 2*10-8 
 

Also the rate constants are kept constant (except from case 10) and are obtained 

from the database of Quantitative Cellular Signaling. 

Reaction K1 k-1 

R1 1
1

s
 

1
50

s
 

R2 1
120

Ms
 

1
0.1

s
 

R3 1
1.2705

s
 

1
3.5026

s
 

R4 1
1200

Ms
 

1
0.1

s
 

R5 1
1

s
 

1
0.1

s
 

R6 1
2

s
 

1
0.2

s
 

R7 5 1
6*10

Ms
 

1
0.5

s
 

R8 1
7999.8

Ms
 

1
8.6348

s
 

R9 1
600

Ms
 

1
0.1

s
 

R10 4 1
1.8*10

Ms
 

1
2

s
 

 

Below we have categorized the 10 cases according to the 10 different stimulus: 

 

Case 1 

The linear case: First Ca
++ 

(green), AA(blue), DAG(red) are kept constant to the 

1uM ,50 uM ,150 uM values respectively. 
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Then, the output value of PKCa has the form as seen below: 

 

 

 

 

 

Active PKC converges to 0.66 uM in about 100 seconds. 

 

Case 2 

In this case the inputs we use are in the form we see below. At figure A, Ca
2+

  has 

a step stimulus from 0 to 10 uM every 100secs,  
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while at figure B [AA] (blue) and [DAG] (green) are kept constants 

 

 

 

Below the outputs-states of the system are being represented with the following 

figures: 

 

C) [PKCi] (magenta), [CaPKC] (blue), [DAG-PKC] (green), [DAGCaPKC] 

(cyan), and [AADAGPKC] (black),  
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D) [PKCbasal*] (magenta), [AAPKC*] (red), [CaPKCmemb*] (blue), 

[AACaPKC*] (cyan), [DAGPKCmemb*] (green), and [AADAGPKC*] (black)  

 

 

E) [PKCa].  
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Clear step like behavior is seen in [PKCi] and [CaPKC]. The final product, 

[PKCa], is also slightly changed at each step. 

 

Case 3 

 

In case 3 the inputs we use are of the form we can see in the following graphs. 

 

A) Rectangular Ca
2+

 stimulus with time period of 100 s, followed by a time period 

of quiescent 100 s 

 

 

B) [AA] (blue) and [DAG] (green) are kept constant 
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The outputs-states of the system are: 

At graph C the following concentrations are being represented: [PKCi] (magenta), 

[CaPKC] (blue), [DAGPKC] (green), [DAGCaPKC] (cyan), and [AADAGPKC] 

(black),  

 

 

while at graph D we have [PKCbasal*] (magenta), [AAPKC*] (red), 

[CaPKCmemb*] (blue), [AACaPKC*] (cyan), [DAGPKCmemb*] (green), and 

[AADAGPKC*] (black). 
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At the last graph E the concentration of PKCa is represented. 

 

 

As we can observe clear rectangular behavior is seen in [PKCi], [CaPKC],and 

[PKCa]. 

 

Herein, we believe it is useful to mention that all the graphic images can be seen 

more clearly if the reader increases the zoom level of the picture .With this way it 

is more clearly what the behaviors of the studied waveforms are. 

 

Due to the large number of the studied species, it was very difficult for the writer 

to present all the trajectories one by one, as there are many cases under 

examination.     
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Case 4 

 

Again at the fourth case the concentrations of AA and DAG are kept constant 

([AA]=50, [DAG]=150) as we see at figure B while Ca
2+

 has a repetitive 

rectangular stimulus for 50 secs (10 rectangles), followed by a time period of 

quiescent 50 secs, (figure A) 

 

 

 

 

The outputs-states of the system are: 

 

C) [PKCi] (magenta), [CaPKC] (blue), [DAGPKC] (green), [DAGCaPKC] (cyan), 

and [AADAGPKC] (black)  
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D) [PKCbasal*] (magenta), [AAPKC*] (red), [CaPKCmemb*] (blue), 

[AACaPKC*] (cyan), [DAGPKCmemb*] (green), and [AADAGPKC*] (black) 

 

 

E) [PKCa] 
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Clear oscillatory behavior is seen in [PKCi], [CaPKC], and [PKCa]. 

Analytically, if we carefully notice the trajectory of PKCa we will see that there is 

a slight oscillatory behavior during the time spaces were Ca
2+ 

stimulus the whole 

system. For example notice the PKCa behavior between 50-100 sec 150-200, 250-

300 and so on. 

 

 

 

 

Case 5 

 

 At case 5 the inputs we examine are:  

 

Sine wave Ca
2+

 stimulus from 0 uM to 2 uM, time period 50 s, at figure A. 
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Again at figure B: [AA] (blue) and [DAG] (green) are kept constants  

 

 

Then for the above stimulations we have the next output waveforms that describe 

each system state. 

Figures: 

C) [PKCi] (magenta), [CaPKC] (blue), [DAGPKC] (green), [DAGCaPKC] (cyan), 

and [AADAGPKC] (black)  
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D) [PKCbasal*] (magenta), [AAPKC*] (red), [CaPKCmemb*] (blue), [AACaPKC*] 

(cyan), [DAGPKCmemb*] (green), and [AADAGPKC*] (black)  

 

E) [PKCa]. 
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Clear oscillatory behavior is seen in all concentrations. 

Specifically, in case 5 we use a simulation in which a sine wave of time period 50 s, 

as the Ca
2+

 stimulus for the PKC pathway. Immediately can be seen that the 

concentrations of all species follow the stimulus. In this case, [PKCa] has the 

amplitude of 0.05 uM. We also implement the PKC differential equation model in 

GENESIS/Kinetikit. We verify that the Matlab simulation gives the same results as 

the GENESIS/Kinetikit simulation when using the input of figure A. 

Case 6  

At this case we have at the first figure (A) a sine wave Ca
2+

 stimulus from 0 uM to 2 

uM, time period 10 s, while at figure B again [AA] (blue) and [DAG] (green) are kept 

constants 
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The outputs of the system are: 

C) [PKCi] (magenta), [CaPKC] (blue), [DAGPKC] (green), [DAGCaPKC] (cyan), 

and [AADAGPKC] (black).  
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D) [PKCbasal*] (magenta), [AAPKC*] (red), [CaPKCmemb*] (blue), [AACaPKC*] 

(cyan), [DAGPKCmemb*] (green), and [AADAGPKC*] (black).  

 

E) [PKCa]. 
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Clear oscillatory behavior is seen in all concentrations. 

For a comparison, case 6 (A) shows a sine wave of time period 10 s as the Ca2+ 

stimulus for the PKC pathway. The concentrations of all species in case 6 change 

according to the Ca2+ stimulus. The amplitude of [PKCa] in Figure 6 (E) is 0.02 uM. 

Furthermore, a sine wave of time period 3 s is used as the stimulus for calcium ions 

(not shown). The concentrations of all species change according to the sine wave but 

the changes are minimal. In this case, the amplitude of [PKCa] is 0.002 uM which is 

ten times less compared to the amplitude of [PKCa] in case 5 and 6. 

Case 7 

In this case we examine the effect of varying Ca2+ stimulus, while [AA] and [DAG] 

are kept constants. 
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Subcase7.1:                                                                                                                                                                                                                                                                                                                           

Al) Sine wave Ca
2+

 stimulus, with time period of 50 s.  

 

At figure A2 we see the PKCa response to stimulus from Al while  

 

at figure A3 we have a detailed presentation of A2. 
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Subcase7.2:                                                                                                                                                                                                                                                                                                                           

Bl) Sine wave Ca
2+

 stimulus, with time period of 50 s.  

 

At figure B2 we see the PKCa response to stimulus from Bl  
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while at figure B3 we have a detailed presentation of B2. 

 

Subcase7.3:                                                                                                                                                                                                                                                                                                                           

Cl) Sine wave Ca
2+

 stimulus, with time period of 10 s.  
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At figure C2 we see the PKCa response to stimulus from Cl  

 

while at figure C3 we have a detailed presentation of C2. 
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Subcase7.4:                                                                                                                                                                                                                                                                                                                           

Dl) Sine wave Ca
2+

 stimulus, with time period of 10 s.  

 

At figure D2 we see the PKCa response to stimulus from Dl while  
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at figure D3 we have a detailed presentation of D2. 

 

 

A detailed sine wave comparison is being represented in case 7. Sine waves of time 

period 50 secs are used as the stimulus to calcium ions for the first two sub cases 

while a time period of 10 secs is used for the sub case’s 3,4.  The difference between 

the curves of sub case 7.1 and 7.2 is that the concentration of Ca2+ changes between 

0 uM and 2 uM on the first sub case and between 1 uM and 3 uM on the second. 

Respectively, the same changes in the concentration of Ca
2+

 are made for sub case 7.3 
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and 7.4. The changes in [PKCa] are not as large on the sub case 7.2 and 7.4 because 

the stimulus is not reset to 0 uM on these cases. In case where the concentration of 

Ca
2+

 changes between 1 uM  and 3 uM  and the time period of the signal is 50 s, the 

amplitude of [PKCa] is 0.02 uM. Furthermore, when the time period is 10 s, the 

amplitude of [PKCa] is 0.01 uM.  

 

 

The table below shows the activation delays and [PKCa] amplitudes in the case of 

sine wave stimuli. The delay is obtained by comparing the time difference in the 

concentration of the Ca2+ stimulus and PKCa end product at local maximum and 

minimum concentration points. Delays are calculated at two time points, at 100 s and 

450 s. It can be observed that the longer the time period of the Ca2+ stimulus, the 

larger the amplitude of [PKCa] and the longer the activation delay. If the Ca2+ 

stimulus has the concentration of 0 uM at specific time points during the simulation, 

the amplitude of [PKCa] becomes larger and the delay longer. 

Sine wave stimulus Amplitude of 

[PKCa] 

Delay at 100sec Delay at 450sec 

0-2μM for period 

50s 

0.05 μM 3sec 2sec 

1-3μM for period 

50s 

0.02 μM 2sec 2sec 

0-2μM for period 

10s 

0.02 μM 2sec 1sec 

1-3μM for period 

10s 

0.01 μM 1sec 1sec 

Case 8 

At this case we keep constant the waveform of the  Ca
2+

 stimulus. Specifically the 

sine wave has a time period of 50 secs and concentrations that vary from 0 uM to 2 

uM. For the Ca 
2+  

we have the following plot: 
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For the next sub cases we study the effect of varying AA and DAG stimuli. 

 

Sub case 8.1 

Plot A:  Constant AA, 50 uM (blue) and DAG, 150 uM (green) stimuli 
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Plot B: PKCa response to stimuli in A and Ca
++

 

 

Sub case 8.2 

Plot C: constant AA, 1 uM (blue) and DAG, 150 uM (green) stimuli  

 

Plot D: PKCa response to stimuli in C and Ca
++
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Sub case 8.3 

Plot E: constant AA, 150 uM and DAG, 150 uM stimuli  

 

Plot F: PKCa response to stimuli in E and Ca
++
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Sub case 8.4 

Plot G: triangular AA (blue) and constant DAG (green) stimuli  

 

Plot H: PKCa response to stimuli in G and Ca
++
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Sub case 8.5 

Plot I: triangular AA (blue) and DAG (green) stimuli  

 

Plot J: PKCa response to stimuli in I and Ca
++ 
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When the Ca2+ stimulus is a sine wave and the constant concentration value of AA is 

increased from 50 uM to 150 uM, also the [PKCa] values are increased, and when the 

constant concentration value of AA is decreased to 1 uM, the [PKCa] values are 

decreased. When the Ca2+ stimulus is a sine wave, and [DAG] and [AA] are 

triangular waves, [PKCa] has a sine wave form with the same time period as the Ca2+ 

stimulus but it follows the triangular forms of the AA and DAG stimuli. 

Case 9 

In case 9 we use different kinds of sine waves stimuli for all second messengers Ca
++ 

, 

AA, DAG. 

Sub case 9.1 

Plot Al: Sine wave Ca2+, time period 50 s (green), AA, time period 10 s (blue), and 

DAG, time period 100 s (red) stimuli.  
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Plot A2: PKCa response to stimuli in Al. 

 

 

Sub case 9.2 
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Plot Bl: Sine wave Ca2+, time period 50 s (green), AA, time period 10 s (blue), and 

DAG, time period 100 s (red) stimuli.  

 

Plot B2: PKCa response to stimuli in Bl. 

 

Sub case 9.3 
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Plot Cl: Sine wave Ca2+, time period 10 s (green), AA, time period 50 s (blue), and 

DAG, time period 100 s (red) stimuli  

 

Plot C2: PKCa response to stimuli in Cl. 

 

Sub case 9.4 
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Plot Dl: Sine wave Ca2+, time period 10 s (green), AA, time period 100 s (blue), and 

DAG, time period 50 s (red) stimuli. 

 

Plot D2: PKCa response to stimuli in Dl. 

 

Sub case 9.5 



 51 

Plot El: Sine wave Ca2+, time period 100 s (green), AA, time period 50 s (blue), and 

DAG, time period 10 s (red) stimuli. 

 

Plot E2: PKCa response to stimuli in El. 

 

 

We notice that if the values of [Ca2+], [AA], and [DAG] are between 0 and 2 uM, 45 

and 55 uM, and 45 and 55 uM, respectively, the form of [PKCa] follows the form of 
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[Ca
2+

]. However, when values of [Ca
2+

], [AA], and [DAG] are between 0 and 2 uM, 0 

and 50 uM, and 0 and 150 uM, respectively, the form of [PKCa] follows all stimuli. 

Case 10 

In case 10 we are changing the parameter values of the model and we observe 

differences in the concentration of the active PKC 

Sub case 10.1 

 

Plot A: Sine wave Ca2+ stimulus, time period 50 s,  

 

plot B original [PKCa], 
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Plot C: PKCa response when k1 value increased by 20 % in reaction R6,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plot D: PKCa response when k1 value increased by 50 % in reaction R6, 
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Plot E: PKCa response when k-1 value increased by 20 % in reaction R6,  

 
 

Plot F: PKCa response when k-1 value increased by 50 % in reaction R6. 
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Plot G: PKCa response when k1 value increased by 20 % in reaction R7,  

 
 

Plot H: PKCa response when k1 value increased by 50 % in reaction R7. 

 
 

Plot I: PKCa response when k-1 value increased by 20 % in reaction R7,  
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Plot J: PKCa response when k-1 value increased by 50 % in reaction R7. 

 
 

Plot K: PKCa response when k1 and k-1 values increased by 20 % in reaction R6 and 

R7,  
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Plot L: PKCa response when k1 and k-1 values increased by 50 % in reaction R6 and 

R7. 

 
 

 

 

 

Simulation results and conclusion 

As said in previous chapter we studied the protein kinase c pathway developed by  

Bhalla and Iyengar [3]. The model describing the PKC pathway was obtained from 

the database of Quantitative Cellular Signaling (http://doqcs.ncbs.res.in/). In the 

simulation that we made, we studied the effects of different kind of stimuli in the 

inputs as well as changes at parameter values. The results show a clear effect of the 

PKC’s active concentration due to changes of Ca
++

, AA and DAG. In particular, sine 

wave stimuli for Ca
++

 component, induces oscillating PKC activity. When two sine 

wave stimuli have the same time period but different concentration levels, also the 

behavior of [PKCa] is different. If the Ca++ stimulus attains 0uM during the 

simulation, the amplitude of [PKCa] is larger compared to the sine wave stimulus 

which does not attain 0uM during the simulation. Simulations also show that the 

longer the time period of Ca++ stimulus, the larger the amplitude of [PKCa]. When 

all inputs are sine waves, the model output follows the Ca++ stimulus in most cases. 

However, we find that the larger the amplitudes of AA and DAG, the clearer their 

effect on [PKCa]. 

The model simulation was implemented by using the Matlab simulation tool extended 

by Simulink, a particular script language used to simulate biochemical pathways.  

http://doqcs.ncbs.res.in/
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Background of neural networks 
General  

There is no precise agreed-upon definition among researchers as to what a 

neural network is, but most would agree that it involves a network of simple 

processing elements (neurons), which can exhibit complex global behaviour, 

determined by the connections between the processing elements and element 

parameters. The original inspiration for the technique was from examination of the 

central nervous system and the neurons (and their axons, dendrites and synapses) 

which constitute one of its most significant information processing elements. In a 

neural network model, simple nodes (called variously "neurons") are connected 

together to form a network of nodes — hence the term "neural network." While a 

neural network does not have to be adaptive per se, its practical use comes with 

algorithms designed to alter the strength (weights) of the connections in the network 

to produce a desired signal flow. 

There are several types of neural networks used in control systems. The choice 

of the appropriate network and training method depends on the application. For 

instance, feedforward multilayer neural network, where no information is feedback 

during operation. However, there is feedback information during training. Also, 

supervised learning methods, where the neural network is trained to learn input-output 

patterns presented to it, are used. This process is slow and time consuming, because 

the algorithm takes a long time to converge. Moreover other methods as 

Backpropagation (BP) algorithm, which adjusts the weights during training, or 

recurrent networks are used. 

Theoretical studies have proved that multilayer neural networks with one 

hidden layer can approximate any continuous function uniformly over a compact 

domain by adjusting synaptic weights in order to minimize the error between the 

network output and the output of the unknown map [27], [28], [29], [30]. 

Forward modelling is the training of a neural network to model the forward 

dynamics of a plant. The neural network model is placed in parallel with the plant and 

the error between the plant and the network outputs is the training signal. The training 

http://en.wikipedia.org/wiki/Neural_network
http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Central_nervous_system
http://en.wikipedia.org/wiki/Axons
http://en.wikipedia.org/wiki/Dendrites
http://en.wikipedia.org/wiki/Synapses
http://en.wikipedia.org/wiki/Node_%28neural_networks%29
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procedure may needs discrete samples of the plant inputs and outputs. If we consider 

that the system output at time k+1 depends on the past n output values and the past m 

values of input u, we have: 

 

Thus, the output of the neural network is: 

 

aprf  represents the nonlinear input-output map of the network, or the approximation 

of. It is clear that the network’s input includes the past values of the real system’s 

output. In other words the system has not feedback. After the training, the network 

approximates the plant or m py y . When this is true, the network’s output and the 

delay values can be fed back and be part of the network’s input. In this way, the network 

can be used independently of the plant and the model function can be written: 

 

The information about the plant can be in the form of an input-output table. In this 

case the training of the network necessitates current and previous inputs or outputs of 

the plant. Alternatively the states of the plant or their derivatives can be used. 

Consequently, for the case of feedforward multilayer neural network and BP training 

algorithm we consider discrete or discretized continuous plant, as is described in 

Figure. 

 

Another approach of training aims to identify the inverse dynamics of the 

plant. In this case the network’s input is the plant’s output and the plant’s input is the 

network’s output. The training signal is the error between the actual input of the plant 
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and the network’s output. The current input of the plant is the de- sired output of the 

network. We have assumed that the inverse of the plant is unique. If the inverse is not 

unique, we must restrict the ranges of the input to the network. 

The architecture of the network is chosen appropriately according to the case. 

The first step is the identification of the plant. Then, a controller can be designed. In 

Figure  the training of a neural network as open loop controller is described. The error 

de y y   is used in order to train the net-work. As we can see the error is 

backpropagated through the plant. 

 

We must add that the neural model of a controller can include mean squared error 

between the reference output and model output or other terms as the error between the 

reference input and real output and the input u.  

In most applications we meet dynamical systems which necessitate the use of 

feedback connections in order to approximate them. Such networks are known as 

recurrent. A static neural network can also be transformed to a dynamic one, by 

simply connecting the past neural outputs as inputs to the neural network, thus making 

the neural network a very complicated and highly nonlinear dynamical system. 

The main difficulty with the dynamic neural networks that are based on static 

multilayer networks is that the synaptic weights appear nonlinearly in their 

mathematical representation. This creates a number of significant hurdles. Firstly, the 

learning laws that are used require a high computational time. Secondly, since the 

synaptic weights are adjusted to minimize a functional of the approximation error and 

the weights appear nonlinearly, the functional has many local minima so there is no 

way to ensure the convergence of the weights to the global minimum. Moreover, due 

to the highly nonlinearity of the neural network architecture, basic properties like 
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stability, convergence and robustness are very difficult to verify. On the other hand 

for the recurrent neural networks that possess a linear-in-the weights property, is 

feasible to prove the stability and convergence properties. 

In this chapter Recurrent High-Order Neural Networks’ (RHONN) structure is 

introduced and their approximation capabilities are analyzed. This network  

scheme approximates nonlinear systems whose vector fields satisfy a local Lipschitz 

condition. 

 

Identification of dynamical systems using Recurrent 

High-Order Neural Networks 

 

Recently there is renewed interest in the usage of neural networks for 

modelling and identification of dynamical systems in the form of feedback 

connections, most known as recurrent neural networks (RNN).  

Several training methods are used. For example, recurrent backpropagation [6], 

backpropagation-through-time algorithms[7], real-time recurrent learning 

algorithm[8] and the dynamic backpropagation[9] algorithm. The last method is based 

on the computation of sensitivity models for generalized neural networks. Generalized 

neural networks combine feedforward neural networks and dynamical components of 

stable rational transfer functions. All these training methods have been widely used in 

empirical studies and had many drawbacks. First of all they rely on the approximation 

of computing a partial derivative. Moreover these methods need much computational 

time. Also, it is very difficult to produce analytical results for the convergence and 

stability.  

An interesting effort is the design of training methods based on the Lyapunov stability 

theory [10], [11], [12], [13], [14], [15], [16], [17], [18]. These methods have the 

advantage of stability, convergence and robustness proofs which promotes control 

theory.  

RHONNs are appropriate for identification models. High-order networks are 

expansions of the first-order Hopfield [19] and Cohen-Grossberg [36] models  

which allow higher-order interaction between neurons. Their superior storage capacity 

has been demonstrated in [20], [21], and their stability properties for fixed-weight 

values have been studied in [37], [22]. Furthermore, several authors have 
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demonstrated the feasibility of using these architectures in applications such as 

grammatical inference [23] and target detection [24]. In [18] was introduced the idea of 

recurrent neural networks with dynamical components distributed throughout the network 

in the form of dynamical neurons and their application for identification of dynamical 

systems. In this chapter, we combine distributed recurrent networks with high-order 

connections between neurons. The next section shows that recurrent high-order neural 

networks can model a large class of dynamical systems. Specifically, it is proven that if 

enough higher-order connections are allowed in the network then there exist weight 

values such that the input-output behaviour of the RHONN model approximates that of an 

arbitrary dynamical system whose state trajectory remains in a compact set. 

 

The RHONN Model 

 

Recurrent neural network models have two way connectivity between units (or 

neurons). On the other hand, feedforward neural networks have the output of one unit 

connected only to units of the next layer. In the simplest case, the state history of each 

neuron is represented by the following form: 

.
.

i i i i ij j

j

x a x b w y     

where ix , is the state of the i-th neuron, ia , ib  are constants, ijw  are synaptic weights 

connecting the j-th input to the i-th neuron and yj is either an external input or the 

state of a neuron passed through a sigmoid function ( yj = s(xj)), where s(.) is the 

sigmoidal.  

With respect to the order of a RNN (k) the input to the neuron contains the product: 

_

........i j

k times

y y


 

 

For instance, in a second order RNN the input to the neuron is a linear combination of 

not only jy  but also of jy ky  

Now we consider a RHONN consisting of n neurons and m inputs. The state of each 

neuron is represented by: 
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.
( )

1

j

L
d k

i i i ik ji
k j IK

a x b w yx
 

 
    

 
   

where I1, I2, …,IL is a collection of L not-ordered subsets of {1,2,…,m+n}, ia , ib  are 

real coefficients, 
ikw  are synaptic weights of the neural network and ( )

j
d k are non-

negative integers. The state of the i-th neuron is again represented by xi and y = [y1, 

y2, …,ym+n]T is the input vector to each neuron defined by: 
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where u = T

1 2 m[u , u ,..., u ]  is the external input vector to the network. The function 

s(.) is monotone-increasing, differentiable usually represented by sigmoidals of the 

form: 
-βx

α
s(x)=

1+e
  where α, β are the bound and slope of sigmoid's curvature and 

γ a bias con-stant. When α = β = 1, γ =0, we obtain the logistic function and by setting 

α = β = 2, γ = 1, we obtain the hyperbolic tangent function; these are the sigmoid 

activation functions most commonly used in neural network applications. 

We now introduce the L-dimensional vector z, which is defined as: 

(1)

1

(2)1
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Therefore, the RHONN model (2.2) becomes  

.
T

ix Ax W z    (2.6) 
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Moreover, if we define the adjustable parameter vector as 
1 2[ , ,..., ]T

i i i i iLw b w w w  

then (2.6) becomes   
.

T
i i i ix a x w z    where vectors { iw :i=1,2,…,n} represent the 

adjustable weights of the network and the coefficients { ia :i=1,2,…,n} are fixed 

during training. In order to guarantee that each neuron ix  is bounded-input bounded-

out-put (BIBO) stable, we shall assume that ia >0,  i=1,2,…,n. In the special case of 

a continuous time Hopfield model [19], we have ia =1/(
jR jC ) , where 

jR >0 and 
jC

>0 are the resistance and capacitance connected at the i-th node of the network 

respectively.  

In vector form the dynamic behaviour of the overall network is described by: 

.
T

ix Ax W z   (2.8) 

Where 
1 2[ , ,..., ]T

nx w w w 
nR ,W=

1 2[ , ,..., ]T

nw w w 
LxnR  and A = =diag(

1 2, ,..., na a a   ) a n x n diagonal matrix. Since ia >0  i=1,2,…,n ,A is a stability 

matrix. Vector z is a function of the state x and the external input u.  

 

 

Identification of Protein Kinase C using Reccurent High 

Order Neural Networks 

 

In this section we represent the simulation results of our protein kinase C’s 

identification. The efficiency of the identification procedure, depends mainly on the 

following: 

 The error convergence of abrupt input changes 

 Stability in cases of abrupt input changes 

 Performance of the identification model after the training stops 

Below are represented the robust learning algorithms: 

System model: 

.

( , )F x u  , 

Parametric model: 

.
* ( )T

i i i i ia w z v t     , 
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RHONN identifier model: 

.
T

i i i ix a w z   , 

Identifier Error: 

i i ie x   , 

Weight estimation error: 

*

i i iw w   , 

Modeling error: 

*( ( ), ( )) ( ) ( ( ), ( ))T

i i i iF x t u t a x t w z x t u t  , 

Robust learning algorithms: 

a) switching σ-modification:   


.

, | |

, | |
i i i i

i i i i i i i

ze if w M

ze w if w Mw 

 

   
 

b)  

   

 

 

.
, {| | } {| | } { 0}

, {| | } { 0}

, {| | } {| | } { }

T
i i i i i i i i i

T
T Ti i

i i i i i i i i i iT
i i i

T T
i i i i i i i i i i i i i

ze if w M or w M and w ze
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ze w if w M and w w w ze

i i w w

ze w if w M or w M and w ze w w
i i

w
 

 

    


        



       





 



 

x n ,u m ,i=1,2,….,n 

 

The block diagram of our ―Rhonn-PKC‖ is represented in the following picture: 
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The output of our actual system is the input to our neural network. In the above 

diagram we see that the inputs of our actual system (that is [AA], [Ca++], [DAG]) are 

held constants. The values of our concentration are represented in the following table: 

 

Input Concentration(uM) 

[AA] 50 

[Ca++] 1 

[DAG] 150 

 

The actual system is being fed up to the rhonn which is shown in the following 

picture: 
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X1 and X2 are the inputs of the rhonn model, A is a 2x2 diagonal matrix A and has 

values: 
3 0

0 3
A

 
  
 

 

and matrix G: 
100 0

0 100
G

 
  
   

The outputs of the rhonn model are e (the error of the system that has to go to zero), z, 

x~1 and x~2 are the neural’s outputs and w are the weights of the system that have to 

settle into a specific value. 
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From theory to action – The scopes of the model 

Configuration parameters: 
 

 The systems simulation stop time is set to 10 seconds. 

 The solver that we selected is ode23s (stiff/Mod. Rosenbrock) 

 Type is variable step 

 The step size (max and min) are set to auto 

 And the relative tolerance is set to 1e-6 

  

Scopes: 
The desired scopes for our system are: 

 

 The concentration of PKC in our real system must coincide after a while with 

the one of our rhonns 

 The error of our system must be driven to zero 

 The weights of our rhonn model must be stabilized to a certain value 

 The z values also have to be stabilized to a certain value 

 

According to the theory we have the following graphs: 

In the first scope we see in blue the concentration of PKC and in green the output of 

our neural. At about 3 sec time, we see that the two graphs coincide. 
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An alternative way of watching our neural network is by plotting the error: 

 

 

 

Again we see that at about 3 sec the error becomes zero. 

At the next graph the four weights are represented: 
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As we see the curves of the weights for the first 3 sec’s examine big changes and they 

become smaller as time goes on until they reach a steady state. From this point we are 

in position to know the neural network has trained itself to simulate the curve of 

PKC’s optimal behavior. 

 

At the forth graph the values of z are represented 
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It is useful to mention that the sigmoid function that we use is of the following form: 

 

 

S(x) =
1

1 exp( 1* )u 
 

 

 

where α=1, β=1, γ=0 and 

2

1

1 2

( )

( ) ( )

S x
z

S x S x

 
  
 

. We use x1 to represent PKC active 

and x2 for Ca++. 

 

The above neural identification of PKC’s system is essential, if we want to use Neural 

Networks for extended purposes such as regulation. With this term we mean our aim 

to ―drive‖ the final output trajectory to a specified steady state that suits our plans. 
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This task is given to Rhonns which already know how to handle the behavior of our 

studied protein 

 

 

 

 

 

Direct Adaptive Control 
 

Introduction 

This chapter introduces direct adaptive control for affine in the control non-

linear dynamical systems. In adaptive control there is estimation of unknown 

parameters at each instant and a control law is used. The objective is the 

approximation of the actual system by the model system. There are two basic 

approaches: direct and indirect.  

In indirect adaptive method there is on-line estimation of the actual system parameters 

and then the controller parameters are calculated. In direct adaptive method the model 

system’s parameters are estimated according to the controller parameters which are 

estimated directly without estimation of plant parameters.  

In this chapter we use RHONNs. Also destabilizing factors as modelling errors are 

discussed. In this case the appropriate changes to update and control laws guarantee 

robustness and the uniform ultimate boundedness property. We focus on regulation 

issues and consider the more general case where the number of states is different from 

the number of control inputs. 

 
 

 

 

Direct adaptive regulation for PKC (n m) 

 

The PKC model as said is implemented in MATLAB/Simulink simulation 

environment. To describe the system we have the following relationships: 
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Actual system:      
.

( ) ( ) , ,n mx f x G x u x R u R     

Model:        
.

* *

1( ) '( )x Ax W S x W S x u     

Control law:          
.

1

1
'( )

2

T

T Tu ku x W S x   

Update laws:          

1. ( )
2
1

( )
2

T

T

kW xS x

kW xS x
W

 

  





 

         
.

( '( ) )
1

( '( ) )

T

T

x S x u

x S x u P
W 





   

where: 

21 1 || ||
{( ( )) }( )

2

T T

m

W
tr kW xS x W W

w


    

21
1 1

1 || ||
{ ( '( ) ) }( )T T w

P tr x S x u W W
w




  

Filter:          
.

    

         h    

         2 21
(| | | | { })

2

Th x u tr W W    

Results:         1 'W W , u, ξ  L  

         WW, |δ(t)|  |δ(0)|, 

          ξ, χ are u.u.b  

Requirements:        *

1 'W W , 1(0) 'W W , 

        *W W , W(0) W, 

                   0 1 2| ( , ) | | |x u k k x   , δ(0)  0, 

        | |ad  ,  | ( ) |m md t  , 

        
_

1 24( ) 0ms k   
 

 

 

Design of the system for Direct Adaptive Control 
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Our system is composed of four principia: 

 In high-lighted red we have the system. In our case the PKC designed in the 

first chapter was proven to work correctly  

 In high-lighted green we have the three control systems that lead our systems 

inputs to a desired value 

 In high-lighted blue we have the two weights. 

 In high-lighted yellow we have the eleven outputs of our system (only the two 

are visible in our picture because the size of the system is very big to display) 

 

 

 

 

 

 

As mentioned above our system is composed by four basic elements: 

1. Our  PKC model which was designed in previous chapter 
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2. The three control signals that lead our systems inputs to desired values so that 

our output is led to zero. 

Control1 leads our PKC’s input port Ca++ to a desired level 

 
 

Control2 leads our PKC’s input port AA to a desired level 
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Control3 leads our PKC’s input port DAG to a desired level 

 

 
3. The two weights W and W1 that by changing their values help the control 

signals to adjust the inputs.   
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Weight W is being represented                                                                                           
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Weight W1 

 
 

 

 

4. The outputs of the system (we only represent X1 because they all look alike) 

 
 

 

 

 

Simulation Results 

The PKC model represented in previous chapter is used to test the performance of the 

neuroadaptive control algorithm developed to cover the case were the number of  

control inputs is not equal to the number of measurable states (n  m). The initial state 

of the weights W are shown below: 
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The sigmoid used was: S(x)=
1

1 exp( 1* )u 
 where α=1, β=1, γ=0 

 

  

                            and   S’(x)= 
1

1
1 exp( 1* )u


 

 where α=1, β=1, γ=-1 

 

 

 

The evolution of the PKC’s concentration can be seen in the next graph. As we see it 

converges to zero very fast, at about below 9 msec. 

variable Init.  value 

W(1,1) 0.0015 

W(1,2) -0.000834 

W(1,2)1 -0.000834 

W(1,2)2 -0.000834 

W(1,2)3 -0.000834 

W(1,2)4 -0.000834 

W(1,2)5 -0.000834 

W(1,2)6 -0.000834 

W(1,2)7 -0.000834 

W(1,2)8 -0.000834 

W(1,2)9 -0.000834 

variable Init.  value 

W1.1 1 

W1.2 1 

W1.3 1 

constant value 

k 80 

A 0.2 
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A more detailed representation of the oscillatory behavior for the regulated PKCa can 

be seen at the next graph. 
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We notice that the oscillating behavior happens for a time period of almost seven 

seconds which is very small compared with the entire time that is needed for the 

whole regulation to finish. 

 

 

The three graphs below represent the concentration of AA, Ca++ and DAG 

respectively 

 

ΑΑ 

 
 

A more detailed representation of the oscillatory behavior for the regulated AA can be 

seen at the next graph. As we can see it stabilizes at zero. 

 



 83 

 
 

Ca++ 

 
 

A more detailed representation of the oscillatory behavior for the regulated Ca
++

 can 

be seen at the next graph. As we can see it stabilizes at 1.4 uM. 
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DAG

 
 

A more detailed representation of the oscillatory behavior for the regulated DAG can 

be seen at the next graph. As we can see it stabilizes at zero. 
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We notice from the above that all studied species fulfill the requirements we want to 

have for our regulation results. That is, the waveforms are bounded and they reach a 

steady state comfortably fast. Delays that are noticed are due to the complication of 

our system’s ordinary differential equations (odes) which are big enough to justify 

them. Specifically, we have eleven differential equations (odes) with our three inputs 

(AA, CA++, DAG) involving to each one of them .So, it’s logical to have an 

oscillating behavior at first, before the system is stabilized to a steady value.  

 

FINAL CONCLUSIONS & FUTURE WORK 
 

Final Conclusions 

The regulation of enzyme activity is crucial to the regulation of protein interactions 

within signal transduction pathways. The aim of this project was the implementation 

of Direct Adaptive method for regulating enzyme kinetics reactions. For this purpose 

Direct Adaptive Control method using RHONNs for affine in the control non-linear 

dynamical systems with n!=m (n – the number of states, m – the number of control 



 86 

inputs) was implemented. We have also considered the more general case of 

modeling error at zero case, which is a usual instability mechanism. 

 The Direct Adaptive Control method which was implemented produced 

satisfactory results, as presented in the previous Chapter. From these results we infer 

that the state error converged to zero and all signals in the closed loop were uniform 

ultimate bounded, as it was desirable. The appropriate values of parameters, and 

especially the design constant k, played an important role in the performance of the 

closed loop system.  

It is also remarkable the fact that the method showed stable behaviour for both 

of the inputs which were used. 

 

Future Work 

The design of adaptive controllers with certain robustness properties with respect to 

modeling errors or external disturbances can be further improved. In this project we 

have assumed that the modeling error term 0 ( , )x u  satisfies a Lipschitz condition. 

This condition guarantees the existence and uniqueness of solutions of 

.
* *

1 0( ) '( ) ( , )x Ax W S x S x W u x u     , which is necessary according to Theorem 

2.1.1 for the actual system. Furthermore, larger values of k1,k2 cause larger modeling 

error, but we can take small k1,k2 because the approximation error ε can be 

considered arbitrarily small, according to Theorem 2.1.1 

Another future development would be the complete model tracking for the case 

where n  m. In other words when we want the actual system to converge to a value 

different than zero. In our case we regulated the PKC active to zero in order to prove 

that we can lead the final value to any other state. 

Finally this project’s great application could be a pilot for more personalized 

medicine where for each patient the exact amount of a single protein or other 

chemical substance could be injected in order this organism not to have any 

anomalies or side effects. 
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