
Technical University of Crete, Greece

Department of Electronic and Computer Engineering

Dynamic Web Service Mashups

Apostolos K. Nydriotis

Thesis Committee:

Professor Minos Garofalakis

Professor Stavros Christodoulakis

Assistant Professor Antonios Deligiannakis

Chania, Monday 13th December, 2010

http://www.tuc.gr
http://www.ece.tuc.gr

Apostolos K. Nydriotis 2 December, 2010

Abstract

In today’s world, Web services represent a major technology for deploying

interactions between heterogenous applications and for connecting business pro-

cesses. In order to take advantage of the flexibility such services offer, their

dynamic invocation has always been a primary concern. In parallel, the mashup

programming paradigm has recently emerged in the context of the Web, giving

end-users the opportunity to repurpose, combine and use diverse data sources in

a “self-service” way to satisfy their unique needs. This thesis suggests a method-

ology for mashup platforms to support dynamic invocation of any Web service.

Following the mashup concept, we propose on-the-fly creation of a widget to han-

dle the invocation of the particular Web service, without the need for the user to

write code.

Apostolos K. Nydriotis ii December, 2010

Contents

1 Introduction 1

1.1 Thesis Contribution . 2

1.2 Thesis Outline . 2

2 Background and Related Work 3

2.1 Mashups . 3

2.1.1 What are Mashups? . 3

2.1.2 Enterprise Mashups . 5

2.2 Web Service Basics . 6

2.2.1 UDDI . 7

2.2.2 WSDL . 9

2.2.3 SOAP . 10

2.3 Apache Axis2 . 12

2.4 Related Work . 13

3 Mashup Platforms 15

3.1 Current State . 15

3.2 Platform Selection . 16

3.3 Apatar’s Architecture . 17

3.3.1 Core Engine . 18

3.3.2 Connectors . 19

3.3.3 GUI and Data Representation Layer 19

3.3.4 Extensibility . 19

4 The DYNAMO Platform 21

4.1 Google Maps Connector . 21

Apostolos K. Nydriotis iii December, 2010

CONTENTS

4.2 Dynamic Web Service Client Generator 23

4.2.1 Stage One: Plug-in structure and Proxy Generation 24

4.2.2 Stage Two: DYNAMO Connector Architecture Implemen-

tation . 26

4.2.3 Stage Three: Compilation 32

5 Demonstration 33

6 Conclusions and Future Work 37

References 40

Apostolos K. Nydriotis iv December, 2010

List of Figures

2.1 Google Base widget in the Yahoo! pipes mashup platform. 4

2.2 A simple mashup application built in the Yahoo! pipes mashup

platform. 4

2.3 Enterprise application development. 6

2.4 Enterprise mashups. 6

2.5 General process of Engaging a Web Service. 8

2.6 WSDL document structure. 11

2.7 SOAP message example. 12

3.1 Apatar’s architecture. 18

4.1 Google Maps connector’s architecture. 22

4.2 DYNAMO connector architecture. 27

4.3 Example DYNAMO connector. 27

4.4 DYNAMO Execution Flow. 28

4.5 Analysis output for personInfo complex type. 30

5.1 The mashup application. 34

5.2 Transformation between hotelsInfo and Google maps. 35

5.3 Result map. 35

5.4 WSDL snippet of hotelsInfo Web service. 36

Apostolos K. Nydriotis v December, 2010

LIST OF FIGURES

Apostolos K. Nydriotis vi December, 2010

Chapter 1

Introduction

The extensive usage and development of the Internet and related technolo-

gies, have resulted in an interconnected world where we are able to exchange and

process information easily, quickly and collaboratively in order to maximize effi-

ciency and performance. In such a world, Web services are becoming the leading

technology for automating interactions between heterogeneous and distributed

applications and for connecting business processes, since they can provide a dis-

tributed computing infrastructure for both intra- and cross-enterprise application

integration and collaboration [9].

On the other hand, the mashup paradigm has recently emerged, triggered by

the vast amount of Web 2.0 applications created by developers and researchers.

As the word “mashup” implies, the mashup concept suggests the combination of

existing resources with data and Web APIs to create new Web applications, able

to satisfy the continuously growing needs of Web users. The truly revolutionary

characteristic of mashups is that they are meant to be composed quickly and with

as little effort as possible by end-users who have very limited or even programming

expertise.

By augmenting the mashup approach with Web services, we arrive at the Web

service Mashups concept, which aims to design and develop a new generation

of Web applications, based on the composition of Web services. So far, many

different mashup platforms have been created, but they all provide a limited set

of capabilities and, we believe, will soon be followed by more powerful and flexible

successors.

Apostolos K. Nydriotis 1 December, 2010

1. INTRODUCTION

1.1 Thesis Contribution

In this thesis, we move the flexibility that mashup platforms can achieve one

step forward. We present a way for mashup platforms to integrate support for

any SOAP Web service on-the-fly, without the need to write any code. This

way, the platform can be dynamically extended by its user, in response to her

needs, without the interference of experts. DYNAMO – currently integrated in

Apatar mashup platform – analyzes the Web Service description document to

acquire all the necessary information for dynamically creating a client matching

the particular service. Then, using this information, it generates and compiles

code to implement the service client as a platform widget. Hence, all the user has

to do is provide the location of the Web service description document and wait for

a plug-in to be created. After that, she is able to use and share the desired Web

service in the same fashion as any other widget of the platform. We have also

extended Apatar to support some basic geocoding functions which it lacked and

which we consider useful (if not essential) in several mashup application domains.

Finally, we used DYNAMO and our geocoding functions in a mashup application

in order to demonstrate our work.

1.2 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, we present

the background and related work to our project. We introduce the mashup pro-

gramming paradigm as well as its consumer-oriented and enterprise usage and

we discuss the basics of the Web services technology. We also present other pub-

lished projects related to our work. Then, Chapter 3, briefly introduces the most

popular mashup platforms that are used today and explains the reasons behind

our choice of Apatar for integrating our dynamic Web service client generator. In

Chapter 4 we discuss the design and implementation of DYNAMO and in Chap-

ter 5 we demonstrate it by using it in a mashup application. Finally in Chapter

6 we discuss the conclusion and the future work for our project.

Apostolos K. Nydriotis 2 December, 2010

Chapter 2

Background and Related Work

2.1 Mashups

2.1.1 What are Mashups?

As the Web develops rapidly and the number of its users keeps increasing,

the amount of data and services that it provides continuously grows. As a result,

there is an emerging need for users to combine multiple services and data sources

to best serve their goals. Mashups are applications developed specifically for

satisfying this need.

The purpose of mashups is to allow users to control data in a self-service

way, without the interference of experts, so that the result would be perfectly

suited to the individual needs of each user. Therefore, mashups must be easy to

implement and reusable. The first prerequisite comes directly from the need to

avoid the experts’ interference, while the second is necessary for saving time and

effort needed to develop the same mashup multiple times.

One of the dominant approaches for developing mashup applications relies on

connecting and wiring widgets. Widgets – or mashlets – are application frag-

ments, that provide intuitive graphical user interfaces (GUIs) and are responsible

for limited computational tasks. Each widget has one or more inputs as well as

one or more outputs, enabling data to flow into the widget, be processed and then

flow out of it and into the next one. This design allows composing a mashup ap-

plication as of a network of widgets, wired together to produce the desired output.

Apostolos K. Nydriotis 3 December, 2010

2. BACKGROUND AND RELATED WORK

Examples of a widget and a simple mashup application are shown in Figure 2.1

and Figure 2.2, respectively. Once the mashup is assembled, its creator has the

option to either save and reuse it, or share it so that other users may modify and

use it. This, of course, contributes even more to the agility of data manipulation

which is what the mashup concept is all about.

Figure 2.1: Google Base widget in the Yahoo! pipes mashup platform.

Figure 2.2: A simple mashup application built in the Yahoo! pipes mashup

platform.

In order to demonstrate the effectiveness of mashups, we present their use in

a holiday trip planning scenario. Assume that someone wants to visit Athens

for some days. Normally she would spend a lot of time and effort visiting many

web pages to decide which hotel best serves her needs and which airline will

she use, to find information about the archaeological sites she will visit, and so

on. On the other hand, she could use a mashup application to combine data

from a web service providing information and reviews for hotels in the area, an

RSS feed containning ticket rates to Athens airport, another web service to get

information about historical sites in the city and finally a map service (e.g. Google

Apostolos K. Nydriotis 4 December, 2010

2.1 Mashups

Maps) for a visual representation of the results. Using a mashup application

drastically simplifies the whole procedure since all the user has to do is as simple as

“describing” what data she needs and the mashup will deliver it to her. Moreover,

since mashups are reusable, the same application can be used again by the same

or another user when they arrive at a similar situation.

2.1.2 Enterprise Mashups

Although many of the early mashup applications were consumer-focused, re-

cently the enterprise has started to both accept and be interested in the mashup

paradigm. As mashup creation techniques mature, more and more organizations

begin to mash their resources (services and data) together with other existing

resources, internal or external to their organization, to provide new interesting

ways of representing data.

As explained in [7], there is a rising trend for simple applications to be con-

structed on-the-fly to solve some evanescent day-to-day problems. Such situa-

tional applications often need data, such as spreadsheets, presentations and e-

mails, that usually cannot be handled by Enterprise Information Integration (EII)

architectures. Moreover, situational applications usually target only a small com-

munity of users and a specialized business need while, on the contrary, typical

enterprise applications are developed by corporate IT staff for a large number of

generic users and a general purpose. Therefore, situational applications represent

the long-tail of enterprise application development, as shown in Figure 2.3.

Mashup applications are situational in nature, support self-service develop-

ment to meet the user’s unique needs, and have a short implementation cycle.

Furthermore, since mashups are meant to be flexible and personalized, they can

rather simply access and use data residing in local storage, such as files stored

on a personal hard drive. On that ground, enterprise mashup technologies can

help solve business and IT challenges and also can provide new insights through

mashing functionality from different sources. Figure 2.4 illustrates how a mashup

platform can provide an effective data-integration paradigm across several enter-

prise systems.

Apostolos K. Nydriotis 5 December, 2010

2. BACKGROUND AND RELATED WORK

Small IT Systems

Number of applications

N
um
be
r o
f U
se
rs

Large IT Systems

Figure 2.3: Enterprise application development.

Figure 2.4: Enterprise mashups.

2.2 Web Service Basics

The World Wide Web Consortium (W3C), describes a web service as a soft-

ware system that supports interoperable machine-to-machine interaction over a

network [16]. The major stimulus for creating such services is to enable the au-

tomation of business-to-business interaction over the Web. Therefore, the prob-

lem that has to be addressed is the automated execution of distributed appli-

cations which have been developed independently to each other and possibly by

different organisations.

This kind of process in the Web environment is not trivial and faces numerous

challenges, most of which are related to the very nature of the Web. First of

Apostolos K. Nydriotis 6 December, 2010

2.2 Web Service Basics

all, each organization uses its own application semantics that are not necessarily

known to other organizations. Secondly, communication protocols may differ from

application to application while cooperation between organizations is probably

spontaneous and may not be very frequent. Finally, firewalls do not allow tight

coupling of applications. To overcome these difficulties and enable application

integration in the Web, a number of standards and protocols such as SOAP

and REST communication protocols have been developed, along with the WSDL

language and UDDI registries. Each of them will be discussed in the following

sections.

In the process of engaging a Web service, we can identify two participants, a

requester entity and a provider entity. The requester entity may be any entity

that wishes to make use of a Web service; for example, a person or an orga-

nization. The provider entity may be any entity that provides a Web service.

Additionally, we identify the entity’s agent, which is the piece of software that

actually implements the Web service. As illustrated in Figure 2.5, the Web ser-

vice engaging process is generally composed of four steps [14]. In the first step,

the requester and the provider entities have to become known to each other, or

at least one of the entities must become known to the other. In the next step, the

two entities have to agree on the service description and semantics that the agents

will use to interact with each other. The third step consists of the realization of

the description and the semantics by the agents. In the final step, the agents

interact by exchanging messages. The previously mentioned standards play a key

role in successfully completing this process.

2.2.1 UDDI

As noted earlier, the first step in the process of engaging a Web service,

involves the participating entities becoming known to each other, a step also

known as Web service discovery. Of course, this is a very important part of the

procedure since no Web service could be useful if no potential user is able to find

sufficient information, to permit its execution. Web service discovery is meant to

be achieved by UDDI.

Apostolos K. Nydriotis 7 December, 2010

2. BACKGROUND AND RELATED WORK

Figure 2.5: General process of Engaging a Web Service.

UDDI stands for Universal Description Discovery and Integration, and its

purpose is to define a set of services for supporting discovery and description

of businesses, organizations, and other Web service providers, the Web services

they make available and the technical interfaces which may be used to access

such services. UDDI is based on industry standards, such as HTTP, XML, XML

Schema and SOAP to provide interoperable, foundational infrastructure for a

Web service-based software environment for publicly available services, as well as

services exposed only internally within an organization [10]. It is structured by

nodes, which are the basic architectural units, registries, which comprised one or

more nodes, and affiliations of registries which are formed by multiple registries.

A UDDI registry does not provide just technical specifications of Web services

but also focuses on representing more extensive information about them such as

data and metadata. It provides a standard mechanism to classify, catalogue and

manage Web services so that queries can be issued to it – at design or run time

– whose answers will aid in the discovery of the Web service or other relevant

information on the service.

The representation of this information is structured in hierarchical structure

consisting of three levels. The top level of this structure is called businessEn-

Apostolos K. Nydriotis 8 December, 2010

2.2 Web Service Basics

tity and it is used to represent businesses and providers within the UDDI. The

information that is stored on this level describes the business or provider along

with the service it provides. Such information would be names and descriptions,

contact and classification information, and so on. However, this level does not

provide any technical information about the service.

Next in the hierarchy is the businessService level which models logical group-

ings of Web services. The information stored here describes the purpose of the

individual services found in each grouping but, similar to businessEntity, busi-

nessService does not provide technical information about Web services.

Finally, the last level is called bindingTemplate and it represents an individual

Web service. This level provides the technical information needed by applications

to bind to and interact with the described service. This level must store either

the access point for the service or an indirection mechanism pointing to the access

point.

The information model used by UDDI specifications is specially designed to

be as flexible as possible. Therefore, the information that can be accommodated

is not bound to any specific model or technology and, as a result, a UDDI registry

can store information for a diverse set of services. For example, the information

stored at the bindingTemplate level could be describing a Web service based on

WSDL, XML, or other technologies.

2.2.2 WSDL

The second step that has to be followed when engaging a Web service is the

involved parties’ agreement on the semantics and the Web service description.

Therefore, every Web service publishes an interface that is described using a

machine processable format and, more specifically, WSDL. WSDL stands for

Web Service Description Language, and is an XML-based language that describes

Web services and how to access them. It defines an XML grammar for describing

network services as collections of communication endpoints capable of exchanging

messages.

Every WSDL document is written in XML and consists of six basic elements

[15].

Apostolos K. Nydriotis 9 December, 2010

2. BACKGROUND AND RELATED WORK

• The <types> element defines the data types used by the Web service.

WSDL is designed for maximum interoperability and platform neutrality

and therefore is not tied to any specific data typing system. However, it

uses as default the W3C XML Schema specification since this is currently

the most widely used specification for data typing.

• The <message> element defines the messages used for interacting with the

Web service. Every message consists of one or more logical parts, each

of which is associated with a type defined in the <types> container ele-

ment. The parts can refer to message parameters or message return values

and can be compared to the parameters of a function call in a traditional

programming language.

• The <portType> element defines the operations that are supported by the

Web service.

• The <binding> element defines the message format and protocol details for

operations and messages defined by each portType.

• The <port> element defines an individual service endpoint by specifying a

single address for a binding.

• The <service> element groups a set of related ports together.

The WSDL document structure is presented in Figure 2.6.

2.2.3 SOAP

SOAP, formerly defined as Simple Access Object Protocol, is one of the most

significant Web service technologies. It is a lightweight protocol intended to de-

scribe the exchange of structured information between peers in a decentralized,

distributed environment [13]. Using XML technologies, it defines an extensible

messaging framework to provide a message construct that can be exchanged over a

variety of underlying protocols, such as Hypertext Transfer Protocol (HTTP). Al-

though SOAP is fundamentally a stateless, one-way message exchange paradigm,

applications may create more complex interaction patterns.

Apostolos K. Nydriotis 10 December, 2010

2.2 Web Service Basics

<definitions>

<types>

definition of types

</types>

<message>

definition of a message

</message>

<portType>

definition of a portType

</portType>

<binding>

definition of a binding

</binding>

<service>

<port>

definition of a port

</port>

<service>

</definitions>

Figure 2.6: WSDL document structure.

A SOAP message is formally specified as an XML Information Set which

provides an abstract description of its contents. Its structure consists of three

major parts, or blocks. The envelop, the header and the body. The envelope,

which is a required part, marks the beginning and the end of the message and

constitutes the basic communication unit. The header part is optional and may

contain one or more header blocks which enclose the message’s attributes or

define technical details for the message. Headers may contain application-defined

information associated with the message such as security tokens and transaction

identifiers, as well as information related to how the message will be handled by

intermediaries and its final destination. Finally, the body part is required and

consists of one or more body parts which comprise the actual message. Figure

2.7 illustrates an example of a SOAP message, identifying the above mentioned

Apostolos K. Nydriotis 11 December, 2010

2. BACKGROUND AND RELATED WORK

structures and information.

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

<env:Header>

<n:alertcontrol xmlns:n="http://example.org/alertcontrol">

<n:priority>1</n:priority>

<n:expires>2001-06-22T14:00:00-05:00</n:expires>

</n:alertcontrol>

</env:Header>

<env:Body>

<m:alert xmlns:m="http://example.org/alert">

<m:msg>Pick up Mary at school at 2pm</m:msg>

</m:alert>

</env:Body>

</env:Envelope>

Figure 2.7: SOAP message example.

2.3 Apache Axis2

Axis2 is an open source, XML-based Web service framework developed under

the auspices of the Apache Software Foundation and it is basically a successor

to Apache SOAP and the Apache Axis SOAP stack. It consists of a Java and a

C++ implementation of the SOAP protocol, as well as several utilities and APIs

for generating and deploying Web service applications.

The purpose of the Axis2 framework is to conceal details relevant to the

SOAP protocol and WSDL documents from the programmer. When developing

Web services, matters like the implementation of logic for encoding, decoding,

sending or accepting requests and responses have to be considered. However,

by using Axis2, a programmer avoids all this tedious work, and is free to dive

into the really important part of the Web service implementation, which is the

development of the actual service.

Apostolos K. Nydriotis 12 December, 2010

2.4 Related Work

The main feature of Axis2 that we use in this thesis is a utility called WSDL2Code.

This is a code-generating tool that is responsible for parsing a WSDL document

and generating appropriate code to handle Web service requests and responses.

Depending on the parameters passed to the WSDL2Code utility, it generates

client and server stubs for calling or implementing a Web service matching the

WSDL document. As a result, all the programmer needs to do in order to invoke

a Web service, is to make the method calls on the Web service object as if it

were a local object. We use this utility to generate the client proxy which is the

collection of classes that work together to build and process SOAP messages on

the client side.

2.4 Related Work

To our knowledge, there has not been much work on dynamically creating

clients for Web services, especially in mashup environments. The only published

project that we are aware of is the Dynamic RESTful Web Service Client (DR-

WSC) which is described in [17].

DRWSC – is a standalone application which, based on the ability of the WSDL

2.0 language to describe RESTful Web services, uses a WSDL document to invoke

the referring service. To invoke a Web service, the user enters the WSDL 2.0

document’s URI, the document is retrieved and parsed and then the user selects

the desired operation and enters the required input arguments. The service is

invoked and the output is presented to the user.

Although DRWSC seems to have a lot in common with our work, there are

two key differences. First of all, DRWSC is used to invoke RESTful services

which are described by WSDL 2.0 documents. However, even though WSDL 2.0

is a W3C recommendation, it is currently neither widely accepted nor supported

in commercial and academic areas, and therefore very few RESTful services are

exposed by WSDL 2.0 documents. This problem on the other hand does not exist

with SOAP services, since describing a SOAP Web service by WSDL has been

the standard methodology for several years.

The second and very important difference between the two projects lies in the

implementation approach. DRWSC is implemented as a standalone application

Apostolos K. Nydriotis 13 December, 2010

2. BACKGROUND AND RELATED WORK

which means that all it can provide is the actual service invocation, without any

logic integrated. The only way to enter a service’s input is manually and its output

can only be displayed to the user and cannot be used by another application. On

the contrary, we integrated our dynamic Web service client generator in a mashup

environment. In this manner the invocation can actually be usable, since the logic

of the client can be implemented by the mashup application. The service’s input

can be supplied by numerous data sources (including other Web services), and

its output can be processed and used by other parts of the mashup.

Apostolos K. Nydriotis 14 December, 2010

Chapter 3

Mashup Platforms

3.1 Current State

Many mashup tools have been developed to support the creation and execution

both of consumer-focused and enterprise mashup applications. Here, we briefly

introduce some of the most popular tools, which are more extensively analyzed

in [3, 4].

• Yahoo! pipes1 (developed by Yahoo! Inc.) is a Web-based, consumer-

oriented mashup platform. Mashups – here called pipes – are created by

connecting widgets provided by the platform. Currently data from Web

feeds, Web pages and other services, like flickr2, can be mashed. Output

can be accessed by a client as RSS or JSON, or can be visualized on a

Yahoo! Map, or through an HTML page.

• Damia[1, 8], is an enterprise-oriented mashup platform developed by IBM.

It enables users to create mashups by assembling data feeds from Internet

as well as enterprise data sources. It mainly focuses on data feed aggre-

gation and allows additional tools – like feed readers – to be used at the

presentation layer for the data feeds that it provides.

1http://pipes.yahoo.com/pipes/
2http://www.flickr.com

Apostolos K. Nydriotis 15 December, 2010

http://pipes.yahoo.com/pipes/
http://www.flickr.com

3. MASHUP PLATFORMS

• Apatar 1 is a mashup data integration platform developed by Apatar Inc.

It allows users to aggregate and integrate locally-stored data with the Web

by using a visual editor to create mashups. Apatar mainly aims in manip-

ulating data that will be used from other applications and thus its output

can be consumed by external tools.

• Exhibit [2] is a framework for creating web pages with dynamic and rich

visualizations of structured data. It enables its users to aggregate data ob-

tained in various formats, like RDF/XML and Bibtex. Exhibit uses HTML

pages as output but it also provides functionality for exporting its output

to different formats, such as RDF/XML or Exhibit JSON.

• MashMaker [11, 12] is an interactive Web-based tool developed by Intel Cor-

poration for editing, querying, manipulating and visualizing semi-structured

data. It differs from other tools in the sense that it works directly on Web

pages and allows users to create mashups when browsing by combining con-

tent from different Web pages. The final goal of MashMaker is to suggest

mashups or widgets for the visited Web pages, that the user may want to

use.

There are certainly many more mashup tools and platforms currently available,

but describing and analyzing them is beyond the scope of this thesis.

3.2 Platform Selection

The goal of our work is to enable non expert users to dynamically invoke Web

services in mashup applications. Hence, we needed a basis to start building on, so

that we could avoid creating our own mashup platform and, rather, concentrate

on our real goal.

Apatar is a mashup data integration tool that best meets our needs for sev-

eral reasons. First of all, it essentially uses the mashup paradigm to support

data integration. It provides a visual job designer through which the user may

intuitively connect widgets to create a data integration schema by dragging and

1http://www.apatar.com

Apostolos K. Nydriotis 16 December, 2010

http://www.apatar.com

3.3 Apatar’s Architecture

dropping. The absence of the need to write code, enables the platform’s usage by

users with very limited technical knowledge. Apatar also provides mechanisms

– called connectors – for accessing and manipulating data stored locally or data

from corporate resources. Additionally, connectors for accessing content on the

Web, such as RSS feeds and some popular Web 2.0 APIs as Flickr, Salesforce.com

and Amazon Simple Storage Service (Amazon S3) are provided. Therefore, one

can access data stored in spreadsheet documents in a local hard drive and mash

it with data residing in a corporate database or even data stored in the cloud

(e.g, in Amazon S3). This feature also qualifies Apatar as a potential enterprise-

oriented mashup tool. Finally, Apatar supports operators for manipulating data

by performing aggregations, filtering, joins, transformations and so on. Hence,

we concluded that, as far as functionality is concerned, this set of capabilities

makes Apatar a good choice as a base to start building on.

However, there are also some technical aspects that we had to consider. The

most important one is the source code availability. Apatar is open source software,

distributed under the GNU General Public Licence1 (GPL). This is a key feature,

because it allows us to actually use its source code, modify it and extend it to meet

our goals. We must note here, that Apatar is one of the very few options offering

source code availability since the source code of most mashup platforms is not

publicly available. Another significant feature is that Apatar’s source code is very

well structured thus simplifying the procedure of reading and understanding it,

which is necessary in order to modify and extend it. Finally, Apatar is designed

to be extensible, and thus, it provides a standard procedure for the developer

to create new functionality and plug it in the core application engine. These

features, as well as those mentioned in the previous paragraph, make Apatar the

best available choice for a starting point for our work.

3.3 Apatar’s Architecture

Apatar is an open source Extract Transform and Load (ETL) project. As

illustrated in Figure 3.1, it is structured in three basic components: The core

component, the connectors’ component and the user interface component.

1http://www.gnu.org/licences/gpl.html

Apostolos K. Nydriotis 17 December, 2010

http://www.gnu.org/licences/gpl.html

3. MASHUP PLATFORMS

Figure 3.1: Apatar’s architecture.

3.3.1 Core Engine

The core component consists mainly of the application’s ETL engine, which

is where the actual data processing takes place. For every operation, data is

retrieved from one or more data sources through the connectors’ component and

is transformed to tuples in Apatar’s internal database. In this form, data is

processed by the application’s engine, and then loaded again to one or more con-

nectors and probably to the presentation layer. Some of the operations that are

currently available are high level operations, such as joins, selections, aggrega-

tions, filtering and so on, as well as lower level operations, such as transformations

between different data types.

The core component is also responsible for defining fundamental structures

to hold information relevant to the data manipulation, as well as for providing

a mechanism to support and ensure the platform’s consistency and extensibility.

For example, the core component defines structures to represent the platform’s

Apostolos K. Nydriotis 18 December, 2010

3.3 Apatar’s Architecture

internal database, its tables and its records, and also abstractly defines the way

that a connector must be structured in order to be functional.

3.3.2 Connectors

The connectors’ component is used to connect the application’s core engine

with data sources. Every connector provides a connection point for a specific data

source through which data can be read, written, or both. Currently, a large set of

connectors are provided and the supported data sources can vary from corporate

databases and personal files, to e-mails and Web 2.0 APIs.

3.3.3 GUI and Data Representation Layer

Finally, the third component consists of a graphical user interface and a simple

data presentation layer that simplifies both the use of the application and user

control over data. Through the GUI, users interact with Apatar, to create, mod-

ify, publish or run mashup applications, while the data presentation layer enables

data supervision at any stage of the workflow.

The main application window is divided in two areas. The connectors and

functions’ area, where the different connectors and functions are displayed as

widgets, and the work area which is used for creating mashups – called datamaps.

To create a mashup application, the user just needs to drug and drop the necessary

connectors in the work area, configure them and connect them together to form

a datamap.

3.3.4 Extensibility

As stated earlier, Apatar is designed to be an extensible platform, a goal

achieved through the use of the Java Plug-in Framework (JPF). JPF provides

a runtime engine which can dynamically discover and load plug-ins. A plug-in

is considered to be a structured component that describes itself by the use of a

manifest. Plug-ins and the functions they provide are added to a registry at start-

up-time or at run-time, but are not loaded until they are called. In this manner,

Apostolos K. Nydriotis 19 December, 2010

3. MASHUP PLATFORMS

applications using JPF avoid paying any memory or performance penalty for

plug-ins that are installed but not used.

Everything in Apatar is implemented as a plug-in. Every component, from

core components and functions to connectors and GUI, is described by an XML

document called plugin.xml. This document contains all the necessary informa-

tion to describe the plug-in to JPF so that it can be registered in the framework

and loaded upon call. This information would be the plug-in’s identification,

the path of the implementation classes, references to other plug-ins that are re-

quired, and so on. Every time the application starts, a predefined plug-in folder

is scanned for the manifest files, the available plug-ins are registered to JPF, and,

from this point on, they are ready to be used on demand.

Apostolos K. Nydriotis 20 December, 2010

Chapter 4

The DYNAMO Platform

The key contribution of our work is to extend the Apatar platform with

extra functionalities we consider quite important and useful. We developed a

connector for the Google Maps API and implemented a set of functions to support

geographical data representation according to user needs. The second and more

important part of our contribution consists of an effort to give every user the

capability to extend the Apatar mashup platform at will, by providing support

for any available Web service, without the need to write code.

4.1 Google Maps Connector

Apatar lacks a mechanism for providing the user with intuitive presentation

of simple geographical data such as street addresses. Since this is a very use-

ful feature – especially for designing mashups – we had to implement a special

connector that would be able to visualize a given set of street addresses and gen-

erally handle at some level geographical data. To accomplish our goal, we needed

a service that would provide us with the maps and a means to mark locations

on them. Some of the available options were Yahoo! maps by Yahoo! Inc, Bing

Maps by Microsoft Corporation and Google Maps by Google Inc. We decided to

make use of the Google Maps service since a great percentage of Web users are

already familiar with it and it also provides a simple to use API [6].

The main obstacle in the implementation of the connector is that while Apatar

is a desktop Java application, the Google Maps API is based on JavaScript and

Apostolos K. Nydriotis 21 December, 2010

4. THE DYNAMO PLATFORM

designed to be accessed via a Web browser. To resolve this conflict, we need

an external HTML file that implements all the necessary JavaScript and HTML

code. The main idea is to create this file dynamically and then feed its URI to

the system’s Web browser. The code included in the file – called gMaps.html – is

generated at run-time according to the needs of each function of our connector.

The JavaScript part of gMaps.html is responsible for calling the Google Maps

API while the HTML part is responsible for presenting the output to the user.

An address is represented at the output as a marker pinned on a corresponding

position on a map. The connector’s input must be one or more valid street

addresses and may come as the output of any other Apatar connector. If an

address is not valid, it will not be presented and the map’s output will either be

the default Google Maps location or just the remaining valid addresses. Figure

4.1 illustrates the architecture of our connector.

Figure 4.1: Google Maps connector’s architecture.

Currently, three functions are implemented in our Google Maps connector:

pinAddresses(), pinAddressesInRange(), and pinClosestAddress().

pinAddresses() takes as input one or more street addresses and simply dis-

plays them as markers on a map, while pinAddressesInRange() is a little more

complicated: Its input is an origin address, a range distance and a set of ad-

dresses representing points of interest, such as hotels, restaurants, banks and so

on. The output map are depicts only the points of interest whose driving distance

from the origin address respects the limit imposed by the range. To acquire the

driving distances between locations we use the Google Directions API [5]. This

API allows us to obtain an XML document that contains the directions from one

location to another as well as the driving distance between them. Note that the

XML document may contain many alternative routes in which case we consider

only the distance of the shortest one. After acquiring the document for each

Apostolos K. Nydriotis 22 December, 2010

4.2 Dynamic Web Service Client Generator

address, it is only a matter of a simple comparison between each distance and

the specified range to decide which address will be displayed on the output map.

Finally, pinClosestAddress() takes as input a set of reference addresses as well

as a set of addresses of interesting points, and for each reference address displays

the closest interesting point on the output map. For this function we also use

Google Directions API to acquire the driving distances between two addresses.

Our three connector functions also support an extra information presentation

layer by making use of Information Windows, a functionality provided by the

Google Maps API. For every address at the connector’s input, the user may

define an information string, referring to the particular point of interest, to be

displayed on the map. By clicking any marker on the output map an information

window pops up and the corresponding address as well as user defined information

are displayed.

4.2 Dynamic Web Service Client Generator

A main goal of this thesis is to present a simple way for non expert users to

dynamically invoke Web services without the need to implement a client appli-

cation by themselves. Such functionality would enable a mashup platform to be

extended dynamically to support any Web service and not merely a predefined

set. This, obviously, allows for significant agility in data manipulation tasks that

can be achieved by mashup applications, since the available data sources would

be significantly increased, and they could be appropriately customized to each

user’s needs.

Generally, to utilize the data exposed by a Web service, a client application

is required. After the procedure of engaging a Web service, which was presented

earlier, the Requester Agent (client) will interact with the Provider Agent (Web

service implementation) to consume its output. Our goal then, is to automate

the creation of the client application for a given Web service and integrate it with

our mashup platform. Of course, the whole process is concealed from the user

who only interacts with the system through the mashup GUI (e.g widgets). We

currently consider the Web service discovery task as external to our application,

and assume the user already knows the location of the desired Web service’s

Apostolos K. Nydriotis 23 December, 2010

4. THE DYNAMO PLATFORM

WSDL document. This location forms the input to our Dynamic Web Service

Client Generator. However, future versions of DYNAMO will support intuitive

Web service discovery based on UDDI, which will simplify the procedure for the

user.

As discussed earlier, everything in Apatar is implemented as a plug-in. Our

solution in DYNAMO basically works as a meta-plug-in that is able to create

new plug-ins, each of which corresponds to a Web service connector. The main

idea is to analyze the WSDL document provided by the service and generate all

the necessary code that implements a client for the particular service. The client

generation process consists of three stages. The first stage creates the plug-in’s

file structure and generates of the client proxy. The second stage then generates

the necessary source code, and the final stage compiles the whole plug-in. After

these stages, the user has to restart the application in order for the plug-in to be

registered to JPF and be ready for usage. In the remainder of this chapter, we

examine the three stages of the DYNAMO meta-plug-in in more detail.

4.2.1 Stage One: Plug-in structure and Proxy Generation

This first stage of the procedure can be considered as a preparation stage.

Based on the service name we extract from the WSDL document, we create the

necessary folders and the plugin.xml file that is the manifest file of the new

plug-in. Then, we make use of Apache Axis2 framework to generate the client

proxy.

Generally, there are three implementation options for the client proxy. The

first option implements static binding for the Web service. This way, the client

proxy is compiled and bound at development time. This binding is tightly bound

to one and only one service implementation, but also provides the fastest perfor-

mance of the three options. With the second option – dynamic binding – only

the interface to a service type is compiled at development time and the client

can bind to any service implementation that supports the specific <portType>.

However, this approach adds a performance penalty since the WSDL document

has to be retrieved and processed in order to complete a binding. Finally, the

Apostolos K. Nydriotis 24 December, 2010

4.2 Dynamic Web Service Client Generator

third option is dynamic invocation. With dynamic invocation nothing is com-

piled at development time; rather, for every invocation, the application retrieves

and interprets the WSDL document at runtime and dynamically constructs calls.

It obviously supports maximum flexibility, but also carries a large performance

penalty that essentially occurs on every invocation.

For DYNAMO, we choose the static binding option for the client proxy so that

it can achieve maximum performance. We compromise with the least flexibility

that static binding offers, firstly because we consider performance very important

in mashup applications and secondly because it is quite easy for the user to replace

the connector to a service with its updated version when necessary.

To create the client proxy, we use the WSDL2Code utility of Axis2 framework,

which is responsible for generating stub classes matching a given WSDL docu-

ment. Here there are two options with respect to the data binding system. Axis

Data Binding (ADB) and XML Beans. ADB provides good – and growing – sup-

port for code generation from schema and also produces a very simple Java model

for a given schema. Furthermore, ADB supports unwrapped service methods and

automatic attachment handling, which makes it a top choice when working from

existing WSDL service definitions as in our case. XML Beans, on the other hand,

provides the most complete support for modelling schema structures, but also

creates more complex Java models than ADB and does not support unwrapped

service methods. Thus, we chose to use ADB data binding system.

With ADB, WSDL2Code generates (1) a Java class corresponding to every

type element defined in the <types> container element, and, (2) a Java method

corresponding to every operation exposed by the Web service. The mapping

between WSDL types and Java classes as well as WSDL operations and Java

methods is pretty straightforward. Invoking the service is as simple as calling

the method corresponding to the operation the user wants to invoke and passing

as arguments the classes corresponding to the operation’s input. The method’s

output will be a class corresponding to the operation’s output type.

However, even if this procedure appears to be a simple programming task,

performing it dynamically (at execution-time) raises several more complex issues.

Since WSDL uses W3C XML Schema as the default data typing system, we

cannot expect that every type in a WSDL document would be a simple type.

Apostolos K. Nydriotis 25 December, 2010

4. THE DYNAMO PLATFORM

In fact, in real world Web services, the vast majority of the types are complex,

meaning that a type element consists of not only simple data types (integers,

strings, boolean values, etc.), but also other complex or simple types, arrays

of types, enumerations, and so on. To handle such cases, we need to analyze

the WSDL document and the types schema, to decide which classes should be

initialized and used as input to which method. Apart from the technical nature

of the problem, there is also a logical issue due to the fact that semantics are not

standard. For example, a person can b described by their first and last name or by

their name and address. Even if we could technically avoid analyzing the complex

types to simple ones, we would not be able to overcome the logical problem of

semantics mismatch. In our case, the problem would be manifested in the form

of data mapping across two widgets. A DYNAMO user would easily map a text

value to a text field that describes a name, but she would not be able to map

anything to a “person” field. This makes it obvious that every complex data type

must be broken down to simple ones. This complex data type analysis process is

part of the second stage of the plug-in creation in DYNAMO.

4.2.2 Stage Two: DYNAMO Connector Architecture Im-

plementation

4.2.2.1 Conector’s Architecture

This stage includes the implementation of the new data connectors’ architec-

ture. Since we need our new plug-ins to be visible and usable by Apatar, they

must conform to a specific architecture imposed by the platform. Thus, every

connector must be created by a class that implements the NodeFactory1 inter-

face which is declared in the Core Engine of the application. To implement the

NodeFactory interface, we create the ConnectorNodeFactory class. Its task is to

instantiate a ConnectorNode object, which implements the Web service connec-

tor. The ConnectorNode object, among other functionalities, is used to retrieve

data from Apatar’s internal database and pass it to the function of the plug-

in that needs it. We model each operation exposed by the Web service as a

1Any widget can be considered a node in Apatar. So, connectors, functions, operations etc.
can all be considered as nodes.

Apostolos K. Nydriotis 26 December, 2010

4.2 Dynamic Web Service Client Generator

ConnectorTable object, which defines the argument and return types of the op-

eration as well as its name. The ConnectorTable object invokes a method of the

Functions object which implements the operation invocation. The operations are

not directly implemented in the ConnectorTable object so that the generality of

the connector generation process can be preserved. The connector’s UML class

diagram is presented in Figure 4.2. In our implementation, we also use an ex-

tra auxiliary class – called ConnectorUtils – which is not depicted in the class

diagram in order to keep it as simple as possible.

ConnectorNodeFactory ConnectorNode

ConnectorTable

NodeFactory

Functions

instantiates

1
1..*

Figure 4.2: DYNAMO connector architecture.

Figure 4.3: Example DYNAMO connector.

To further clarify the DYNAMO connector architecture, Figure 4.3 illustrates

an example connector for the getPersonInfo Web service that exposes the oper-

ations getAddress, getPhoneNumber and getMobileNumber. At the lower right

Apostolos K. Nydriotis 27 December, 2010

4. THE DYNAMO PLATFORM

corner of the figure, the box depicts three instances of the ConnectorTable object,

one for each service operation.

To implement this architecture, we have to dynamically generate source code

for numerous classes. This process is illustrated in Figure 4.4. We begin with the

ConnectorNodeFactory, ConnectorUtils, and ConnectorTable – step (1) of Figure

4.4 – whose source code is quite generic and more relevant to complying with

the underlying mashup platform’s architecture, rather than to implementing a

specific service client. Consequently, the same code can be used for every Web

service simply by making minor adjustments, such as changing the name of the

Node class or the path to the widget’s icon to suit the different services.

Figure 4.4: DYNAMO Execution Flow.

The next step is to parse the WSDL document to extract information about

the described operations. Currently, DYNAMO supports only the SOAP and

SOAP 1.2 protocols and, thus, extracts a list of all the available operations that

conform to these two protocols – step (2) of Figure 4.4. Based on this information,

we generate the TableList and Functions classes. The TableList class is basically

a data structure that holds the different instances of the ConnectorTable object.

In this class, one instance of the ConnectorTable object is created for every avail-

able operation, and then inserted in TableList. The name of the table stems

directly from the name of the operation, while the argument and return types

Apostolos K. Nydriotis 28 December, 2010

4.2 Dynamic Web Service Client Generator

come as a result of a more complex analysis of the document, which takes place

simultaneously with the generation of the Functions class – step (4) in Figure

4.4. This class contains one method for each service operation and each method

implements the invocation of the related operation. To generate the source code

for each method we must process information referring to the schema of the input

and output types of each operation – step (3) in Figure 4.4.

4.2.2.2 Complex Data Type Analysis

Our approach for this task suggests the use of a tree structure to hold any

complex type. The root would represent the complex element, every level of the

tree would hold the nested elements while the leaves would be occupied just by

simple types. Each node of the analysis tree holds information relevant to the

element it represents such as its name and type, or flags indicating an array or

an enumeration etc. As an example, Figure 4.5 presents a sample complex type

and the output of our analysis for that complex type.

4.2.2.3 Input Data Type Analysis

From the WSDL document we extract a list of the input types corresponding

to the service operation we are currently processing. For every type in the list,

we parse its schema from the <types> element of the document, and we generate

a tree to represent it (as described in the previous paragraph). Then, using

the Depth First Search (DFS) algorithm, we traverse our structure and generate

code to initialize, in a bottom-up way, the classes that represent each node in our

tree. Intuitively, the bottom-up initialization can be considered as “building” a

complex data type from simpler components. After every class that corresponds

to the inputs of the operation has been initialized, we call the method from the

stub class that matches our operation and we pass as arguments the classes we

just initialized. If for instance the personInfo type – depicted in Figure 4.5 –

was referring to the input of a foo() operation, the generated code would be:

String street = user_input_for_street;

String number = user_input_for_number;

String city = user_input_for_city;

Apostolos K. Nydriotis 29 December, 2010

4. THE DYNAMO PLATFORM

<complexType name="streetAddress">

<sequence>

<element name="street" type="string"/>

<element name="number" type="string"/>

<element name="city" type="string"/>

</sequence>

</complexType>

<complexType name="pesronName">

<sequence>

<element name="lastName" type="string"/>

<element name="firstName" type="string"/>

</sequence>

</complexType>

<complexType name="personInfo">

<sequence>

<element name="address" type="streetAddress"/>

<element name="name" type="personName"/>

</sequence>

</complexType>

Figure 4.5: Analysis output for personInfo complex type.

Apostolos K. Nydriotis 30 December, 2010

4.2 Dynamic Web Service Client Generator

StreetAddress address = new StreetAddress(street,number,city);

String lastName = user_input_for_lastName;

String firstName = user_input_for_firstName;

PersonName name = new PersonName(lastName,fisrtName);

PersonInfo info = new PersonInfo(address,name);

OutputType output = stubClass.foo(info); /* Invocation of foo() */

which is the necessary code for invoking the foo() operation. Finally, we register

to the ConnectorTable object the simple types that our analysis returned, so that

they can be treated as inputs for the method that corresponds to the operation

that is currently being processed. In our example, these inputs would be the

variables user_input_for_street, user_input_for_number etc.

4.2.2.4 Output Data Type Analysis

Having invoked an operation we need a way to consume its output. Similar

to the case of the input, the output of an operation is most often a complex data

type and, thus, we need to break it down to simple data types as well. Following

the same procedure as we did for the input types, we create a tree to represent

complex output types. Afterwards, we use again the Depth First Search algorithm

to traverse our tree and generate code to export the simple data types from the

classes representing the complex types. While we initialized the input classes in a

bottom-up way, to extract the simple types we work in a top-down fashion. This

is mandatory because all the simple data types we need are wrapped in the return

complex data type. Therefore we traverse our analysis tree from the root to the

leaves and finally extract the information we need. If the personInfo complex

type was the output type of foo(), the generated code would be the following:

PersonInfo info = stubClass.foo(inputs); /* Invocation of foo() */

StreetAddress address = info.getStreetAddress();

String street = address.getStreet();

Apostolos K. Nydriotis 31 December, 2010

4. THE DYNAMO PLATFORM

String number = address.getNumber();

String city = address.getCity();

PersonName name = info.getPersonName();

String lastName = name.getLastName();

String firstName = name.getFirstName();

The extracted simple types are registered to the ConnectorTable object so that

they can be used as outputs of the service operation we are currently processing

and the output values are transformed into tuples and stored in the Apatar in-

ternal database, in order to be used by other widgets or fed to the presentation

layer to be displayed to the user.

4.2.2.5 Connector’s Generation Completion

The final phase of the stage is to create the ConnectorNode class – step (5) in

Figure 4.4. This class acts as a data entry point for the plug-in, since it retrieves

data from the mashup platform database and passes it to the plug-in’s functions.

ConnectorNode also handles other important matters, such as the connector’s

user interface. A crucial function of this class is to expose the plug-in’s inputs

and outputs as widget endpoints so that the generated widget can be connected

to others. In order to dynamically create this class, we need to know all the data

types that the plug-in’s functions use – this is exactly the information acquired

by the analysis phase of this stage.

4.2.3 Stage Three: Compilation

With stage two, the source code generation for the new plug-in ends. In this

stage, the system’s Java compiler is invoked to compile the generated source code.

If there are errors in the source code, all the generated files are deleted and an

information window pops up to inform the user about the failure. Otherwise, the

user is prompted to restart the application. When restarting, the JPF framework

discovers, identifies and registers the new plug-in. The new connector is displayed

among with the other connectors under the category “Web Services” and the user

may use it as any other available widget.

Apostolos K. Nydriotis 32 December, 2010

Chapter 5

Demonstration

To demonstrate our work we have created a mashup application in Apatar,

that would use both DYNAMO and our geocoding functions. The scenario for

the application is that of a travelling agency that organizes trips to Athens. The

agency stores the addresses of the sights that will be visited in a spreadsheet

file and needs to find information about five-star hotels close to these sights. To

accomplish that, an employee creates a mashup application to combine data from

the spreadsheet with data acquired by a Web service that exposes information

about hotels in Athens. The output of the application is a map showing the

interesting sights, and, for each sight its closest five-star hotel.

However, finding the desired Web service was not easy. In January of 2006

IBM, Microsoft and OASIS discontinued their public UDDI registry, shifting their

interest in private, enterprise versions of UDDI, thus creating problems in finding

public WSDL Web services. To surmount this difficulty we had to create our

own hotel-information Web service. To do that, we extracted information about

hotels in Athens from tripadvisor.com1, and stored them in a private database.

For the data extraction, we used a custom-made Web crawling application and

extracted data on hotel class, address and name, as well as user ratings and

reviews for every available hotel. Afterwards, we used Apache Axis2 framework

and Apache Tomcat Web server to create and deploy a simple hotel Web service

which would expose our data. Our service (hotelsInfo) returns upon request an

1http://www.tripadvisor.com

Apostolos K. Nydriotis 33 December, 2010

http://www.tripadvisor.com

5. DEMONSTRATION

ArrayOfHotel object which obviously is an array of Hotel objects. Figure 5.4

shows a snippet of our service’s WSDL document referring to the return type.

To create the application, the agency employee uses DYNAMO to dynami-

cally create a widget responsible for invoking the hotelsInfo service. The service

returns information about every available hotel in Athens but the user is inter-

ested only in luxury accommodations. Therefore, she filters the results and keeps

only five-star hotels, whose address is then passed in the pinClos/estAddress()

geocoding function of Google Maps connector. The other argument of this func-

tion is the sights’ addresses that are stored in the spreadsheet file which is acquired

by the proper Apatar connector, and the function’s output is the desired map.

The employee can also choose more information to be displayed on the result

map, such as hotel names, user ratings, user reviews etc. Figure 5.1 depicts the

complete mashup application, Figure 5.2 shows the data transformation from the

filtered hotelsInfo results to the Google Maps input and Figure 5.3 illustrates

the result map of our DYNAMO mashup.

Figure 5.1: The mashup application.

Apostolos K. Nydriotis 34 December, 2010

Figure 5.2: Transformation between hotelsInfo and Google maps.

Figure 5.3: Result map.

Apostolos K. Nydriotis 35 December, 2010

5. DEMONSTRATION

<xs:schema attributeFormDefault="qualified"

elementFormDefault="qualified"

targetNamespace="http://hotels/xsd">

<xs:complexType name="ArrayOfHotel">

<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0" name="hotels"

nillable="true" type="ax21:Hotel"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Hotel">

<xs:sequence>

<xs:element name="address" nillable="true" type="xs:string"/>

<xs:element name="cleanRating" type="xs:float"/>

<xs:element name="hID" type="xs:long"/>

<xs:element name="locRating" type="xs:float"/>

<xs:element name="name" nillable="true" type="xs:string"/>

<xs:element name="overRating" type="xs:float"/>

<xs:element name="reviewURL" nillable="true"

type="xs:string"/>

<xs:element name="roomsRating" type="xs:float"/>

<xs:element name="servRating" type="xs:float"/>

<xs:element name="sleepRating" type="xs:float"/>

<xs:element name="stars" type="xs:int"/>

<xs:element name="valRating" type="xs:float"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

Figure 5.4: WSDL snippet of hotelsInfo Web service.

Apostolos K. Nydriotis 36 December, 2010

Chapter 6

Conclusions and Future Work

Starting from the Apatar open-source mashup platform, we designed and

implemented a novel system, DYNAMO, that automatically generates client ap-

plications for Web services and integrates them in a mashup environment. By

extending a mashup platform with such functionality, we enable users to create

custom widgets at run-time to invoke any Web service, without the need to write

code or even understand programming concepts. Furthermore, we added support

for handling and displaying geographical data in a map, which Apatar lacked.

We consider both these features very important and helpful for mashup applica-

tions since the first one significantly extends data availability and agility in data

manipulation as well as application personalization, and the second provides an

intuitive visualization of geographical data which is becoming increasingly promi-

nent in today’s applications.

However, our system is still in a prototype version and apart from debugging

and optimization, we also intend to add further functionality. First of all, as

mentioned previously, WSDL 2.0 is not yet widely accepted and adopted by the

industry and, thus, our application does not currently support it. Nevertheless,

the newer version of WSDL is, for some years now, a W3C recommendation and,

if we want to maximize the amount of the available Web services that can be

used by DYNAMO, we need to support it as well.

Furthermore, considering the large number of RESTful services that are cur-

rently available, it is easy to see that we also have to enable their dynamic invoca-

tion through DYNAMO, in order to meet the needs of as many users as possible.

Apostolos K. Nydriotis 37 December, 2010

6. CONCLUSIONS AND FUTURE WORK

This would definitely be quite a challenge, since REST is an architectural style,

not a protocol like SOAP, and, hence, there is no official standard for RESTful

services. In addition to that, real world RESTful services are not described by

a formal language like WSDL and their APIs are meant to be read by human

beings and not by machines as in the case of SOAP and WSDL services.

Another interesting task is the extension of DYNAMO to also support dy-

namic Web service discovery. Since DYNAMO is intended for non-expert users,

it is rather unrealistic to expect them to be able to provide the WSDL document

URI for the Web service they need to invoke. Therefore, we need to provide

them with a tool that can handle the discovery process, so that the input of the

application would be more intuitive for the user.

Last, but not least, we intend to open-source our system. Since DYNAMO

is based entirely on open-source projects – like Apache Axis2 and Apatar – we

consider it our obligation to offer our work back to the open-source community

so that it can be used or even improved by anyone willing to do so.

Apostolos K. Nydriotis 38 December, 2010

References

[1] D. E. Simmen, M. Altinel, V. Markl, S. Padmanabhan, A. Singh. Damia:

Data Mashups for Intranet Applications. SIGMOD ’08, 2008. 15

[2] D. F. Huynh, D. R. Karger, R. C. Miller. Exhibit: lightweight structured

data publishing. WWW ’07, New York ,USA, pages 737–746, 2007. ACM.

16

[3] G. D. Lorenzo, H. Hacid, H. young Paik. Data Integration in Mashups.

SIGMOD Record, 38(1), March 2009. 15

[4] G. D. Lorenzo, H. Hacid, H. young Paik, B. Benatallah. Mashups for Data

Integration: An analysis. Technical Report UNSW-CSE-TR-0810, 2008. 15

[5] Google Inc. Google Directions API, http://code.google.com/apis/maps/

documentation/directions/. 22

[6] Google Inc. Google Maps JavaScript API V3, http://code.google.com/

apis/maps/documentation/javascript/. 21

[7] J. Anant. Enterprise Information Mashups: Integrating Information Simply.

VLDB ’06, 2006. 5

[8] M. Altinel, P. Brown, S. Cline, R. Kartha, E. Louie, V. Markl, L. Mau, Y.-

H. Ng, D. Simmen, A. Singh. Damia – A Data Mashup Fabric for Intranet

Applications. VLDB ’07, 2007. 15

[9] M.P. Papazoglou and D. Georgakopoulos. Service Oriented Computing.

Comm. ACM, 46(10):24–28, 2003. 1

Apostolos K. Nydriotis 39 December, 2010

http://code.google.com/apis/maps/documentation/directions/
http://code.google.com/apis/maps/documentation/directions/
http://code.google.com/apis/maps/documentation/javascript/
http://code.google.com/apis/maps/documentation/javascript/

REFERENCES

[10] OASIS. UDDI Version 3.0.2 – UDDI Spec Technical Committee Draft, 19

October 2004, http://www.uddi.org/pubs/uddi_v3.htm. 8

[11] R. Ennals, E. Brewer, M. Garofalakis, M. Shadle, P. Gandhi. Intel Mash

Maker: Join the Web. SIGMOD Record, 36(4), December 2007. 16

[12] R. Ennals, M. Garofalakis. MashMaker: Mashups for the Masses. SIG-

MOD’07, June 2007. 16

[13] World Wide Web Consortium. SOAP Version 1.2, 27 april 2007 http://

www.w3.org/TR/soap12-part1/. 10

[14] World Wide Web Consortium. Web services architecture, W3C working

group note, 11 february 2004, http://www.w3.org/TR/ws-arch/. 7

[15] World Wide Web Consortium. Web services description language

(WSDL) 1.1, W3C note, 15 march 2001, http://www.w3.org/TR/2001/

NOTE-wsdl-20010315. 9

[16] World Wide Web Consortium. Web services glossary, W3C working group

note, 11 february 2004, http://www.w3.org/TR/ws-gloss/. 6

[17] Yanguang Chen, Jiehui Li, Yi Lv, Haihuan Qin and Liang Zhang. DR-

WSC – To simplify Dynamic Invocation for RESTful Web services. Software

Engineering and Service Sciences (ICSESS), 2010 IEEE International Con-

ference, August 2010. 13

Apostolos K. Nydriotis 40 December, 2010

http://www.uddi.org/pubs/uddi_v3.htm
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/ws-gloss/

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Outline

	2 Background and Related Work
	2.1 Mashups
	2.1.1 What are Mashups?
	2.1.2 Enterprise Mashups

	2.2 Web Service Basics
	2.2.1 UDDI
	2.2.2 WSDL
	2.2.3 SOAP

	2.3 Apache Axis2
	2.4 Related Work

	3 Mashup Platforms
	3.1 Current State
	3.2 Platform Selection
	3.3 Apatar's Architecture
	3.3.1 Core Engine
	3.3.2 Connectors
	3.3.3 GUI and Data Representation Layer
	3.3.4 Extensibility

	4 The DYNAMO Platform
	4.1 Google Maps Connector
	4.2 Dynamic Web Service Client Generator
	4.2.1 Stage One: Plug-in structure and Proxy Generation
	4.2.2 Stage Two: DYNAMO Connector Architecture Implementation
	4.2.3 Stage Three: Compilation

	5 Demonstration
	6 Conclusions and Future Work
	References

