
Microprocessor and Hardware Laboratory

ECE Department

Technical University of Crete

Diploma Thesis

Design of a real time, 3D stereo vision algorithm and its FPGA-
based implementation

by

Sotiris Thomas

Chania, April 2012

Contents
Acknowledgments..3
Chapter 1: Introduction..5

Abstract..5
Introduction...5
Requirements...9

Chapter 2: Related Work..11
Chapter 3: The Main Algorithm and its Enhancement...25

An overview of stereo algorithms..25
Algorithm matching costs..26
Parameter tuning...37

Chapter 4: Implementation..45
Design overview, parallelism and optimization...45
Block Diagrams...46
Notes on operation..50
Performance..50
Resources analysis...52

Chapter 5: Validation..57
References..60

2

Acknowledgments

I wish to thank, first and foremost, my supervisor Dr. Kyprianos Papadimitriou, who
advised and guided me from the very start of my thesis, as well as my supervisor Professor
Apostollos Dollas who pointed my efforts to the right direction. I also wish to thank
Michalis Zervakis and Ioannis Papaefstathiou for accepting reviewing my work and
participate in the examination committee. Also a thank you to my family and friends for
their understanding and support.

3

4

Chapter 1
Introduction

Abstract

The ability to track objects and people in real time would greatly benefit many
applications that interact with real environments. For example cars could brake
automatically when detecting pedestrians or objects in harms way. Agricultural equipment
could autonomously navigate fields avoiding obstacles. Security systems could track people
moving through buildings or different areas. 3D Vision and its most effective
implementation, stereo vision, could assist these applications. Stereo vision uses two
cameras side by side to produce virtually instantaneous estimates of the distances to
elements in a scene. These distances can provide a primary cue for identifying objects that
stand out from the background and interpreting their shape, thus assisting object
segmentation and identification.

In the present work we describe a 3D stereo vision design and its implementation
that exploits effectively the resources of an FPGA. Our place-and-route design achieved a
high processing rate for large resolutions, while the hardware prototype system was fully
tested and validated over several data sets with medium resolutions.

Introduction

The purpose of all stereo vision algorithms is to construct an accurate depth map
out of two or more images of the same scene, taken under a slightly different
angle/position (Fig 1). In other words, they use the cue of stereopsis to calculate depth
valued pixels. The resulting depth map is usually a grayscale image, where closer points are
brighter.

5

 In its most basic form, stereo vision uses two cameras. A point in space should
correspond to one pixel in each of the two images from the two cameras. If we can find
those pixel pairs that correspond to the same point in the scene, we can extract the
distance of that point through triangulation (Fig 2). The difference in the position of the
two corresponding pixels, which is called disparity, is directly connected to the distance of
the point they correspond to. More specifically, larger disparities are connected to closer
objects, while smaller disparities suggest points farther away from the cameras.

6

Fig 1: Inputs-Output of a stereo vision algorithm. Middlebury 2005 Art dataset.

Fig 2: Point P(X,Y,Z) corresponds to points x1 and x2 in the two cameras. Z is the unknown
distance of the point, f the focal length of the cameras and b the baseline distance

between the two cameras. Using these values and the coordinates of x1 and x2 in the two
images we can extract Z through triangulation. Image courtesy of Stefano Mattoccia [16].

Placing the two cameras one next to the other on the same plane, enforces
corresponding pixels on the same line, called the epipolar line (the white line defined by
Cx1 and Cx2 in Fig 2). In other words, disparity is reduced from a two dimensional
displacement Δx, Δy to just Δx, a displacement on the same horizontal line. However, as
exact camera alignment is not only difficult but also prone to possible future events, such
as mechanical shocks sustained by the system (e.g when the system is used on a moving
platform such as a car), lenses degradation etc, the epipolar line constraint must be
dynamically enforced.

Rectification is the process of applying spatial transformations on the input images
in order to bring them on the same plane, accounting for any imagers misalignment,
difference in focal length and removing any camera induced distortions. This allows us to
satisfy the epipolar line constraint, which, as discussed previously, ensures that the
matching pixel belongs on the same horizontal line (scan-line) as the reference pixel and
only in one specific direction relative to it. The disparity search space is thus reduced from
2D to 1D (see Fig 3).

The basic problem of finding pairs of pixels that correspond to the same point in two
images, known as the correspondence problem, appears not only in stereo vision but also
in other image processing topics such as optical flow calculation1. Although, one would
expect that the reduction of the search space of corresponding pixels from two dimensions
to one through rectification would make finding unique and accurate matches easy, this is
not the case. In practice, many real-world “inconveniences” such as reflections, occlusions,
texture-less areas, noise etc, along with the inherent similarity among nearby pixels, make
this task difficult. Furthermore, real world conditions such as moving objects and poor
weather pose another significant challenge especially for outdoor applications. Rain, snow
and ice can alter the appearance of objects. People or objects can be stationary or moving
in different directions and different speeds.

Many stereo vision algorithms have been developed over the years to tackle the
correspondence problem. A taxonomy of dense stereo correspondence algorithms has
been developed in Scharstein et al. [11]. The algorithm presented here produces dense
depth maps, which unlike sparse depth maps, convey depth information on every pixel. It is

1 Optical flow calculation is the process of estimating the relative speed of an object by locating its position in
consecutive frames of a video stream.

7

Fig 3: Rectification reduces corresponding pixel search space from two dimensions to one, greatly
simplifying the corespondence problem.

also important to note that the stereo vision algorithm that we discuss, is fed with rectified
images. See Fig 4 for an overview of a stereo vision system.

The correspondence problem is made more difficult by the presence of occlusions,
which prevent a pixel from appearing in both images (Fig 5). Occluded areas are areas that
appear only in one of the two images and thus are effectively unmatchable by the
correlation process. For this reason, any matches produced in occluded areas are
statistically false. In order to match occluded areas, some form of propagation of confident
disparities to uncertain areas must be performed. Usually occluded areas are presented
close to object edges.

Reference image Occlusions marked in black

Fig 5: Reference image (Teddy) and occlusions map. Notice how occlusions appear on object
borders and in areas out of the field of view of both images (right bar).

8

Fig 4: General stereo vision system structure.

Requirements

Real time applications depend on stereo censors to deliver adequate frame-rates of
confident depth maps with low latencies. Desirable characteristics of a stereo vision
algorithm are:

a) Robustness in different lighting conditions, where light intensity can be significantly
different from one camera to the other.

b) Robustness in depth discontinuities. Object edges must be accurately and
unambiguously defined.

c) Outliers correction, where algorithm false results must be flagged and handled.
d) Robustness in occlusions, where occluded areas must be detected and dealt with.
e) Robustness in low-texture areas.

The algorithm we present, in its bare-bones form, satisfies many of these constraints, while
supporting easy modular addition of further enhancing features. The algorithm also allows
for a large degree of parallelism, which, along with the need for bit counting used in one of
its steps, makes it a good candidate for FPGA implementation.

Digital cameras usually provide the pixel values in a sequential manner, on the
horizontal or vertical scan line. In order to increase their throughput, some cameras
provide multiple scan lines simultaneously called taps. Many of them implement a
standardized communication protocol, Camera Link. Camera Link uses a dedicated cable
connection to transmit data as LVDS signals at rates 2.04 Gbit/s for the base configuration,
up to 5.44 Gbit/s for the full configuration, at the maximum operating frequency of 85MHz
and over a 10 meter cable. As comparison, a video stream of 640×480 of gray-scale frame
pairs, requires:

 2 x (640×480) pixels/frame x 8 bit/pixel x 30 frames/s = 147.456 Mbit/s

9

10

Chapter 2
Related work

[1] Computer Vision Algorithms on Reconfigurable Logic Arrays

This paper studies systolic hardware architectures for three machine vision
algorithms, each one used in a different image processing task, on a Splash2 CCM (Custom
Computing Machine) platform, with 16+1 FPGAs per board (may expand to more than one
board). Each of these FPGAs in Splash2 constitutes a Processing Element (PE) with its own
memory. The 17th is used to program the connections between the other PEs through a
crossbar.

The first algorithm is employed for the important low level operation of 2d
convolution. The basic idea is to convert the 2d mask into a 1d array and use the PEs to
compute the partial sums. For example if the 1d mask array has k elements, then the k-th
PE will compute the value of partial_sum(k-1) +pixel_value*mask[k] (where partial_sum(k-
1) is already computed by its neighbor). The 1d mask array is extended with zeros and the
PEs assigned to calculate those zero multiplications are simply programmed as shift
registers. Comparing this implementation with others (von Neumann (C), MIMD and SIMD)
it comes as no surprise that the FPGAs and Splash2 are much better (e.g on a 512×512
image with a 3×3 mask execution was completed in 13.89 ms). However no dynamic
reconfiguration of the FPGAs occured during execution.

The second algorithm is about image segmentation (segmenting an image in
"interesting" areas) and more precisely segmenting a document photo in text areas, image
areas, etc. This algorithm has three stages: 1)application of 20, 7×7 filters on the initial
image, 2)classifying the different image areas with a neural network and finally a small
stage of 3)postprocessing to remove noise and place frames around the identified areas.
Between the first and second stage Splash2 is reconfigured to accommodate a more
efficient datapath. The first filtering stage uses the 2d convolution architecture described
above. In the second stage -neural network-, each node-neuron of the network executes 2
basic tasks: It a) multiplies its inputs with weights and aggregates them (inner product) and
b) passes the result to a non-linear function. Regarding the hardware mapping, these two
jobs are assigned to 2 PEs respectively. The first PE computes the inner product of the input
vector (size 20) with the weight vector. It carries out this computation through an
accumulator. The second PE computes the non-linear function result by a Look-up Table
and stores it in its memory. It is important to note that multiplications are also in general
carried out by Look-up Tables because of their cost. When this process is completed for all

11

level-1 neurons, the host machine has the opportunity to access the intermediate results
that are stored in the PEs memories. When the process finishes calculation on the final
neuron level, the stage is complete. The crossbar is used to broadcast intermediate results
to the rest of the neurons. Experimental data shows that this implementation reduced
execution time from 250 seconds on a SPARCstation to just 3.8.

The third algorithm that was examined concerns fingerprint matching. The problem
is formulated as a best match search: We are given a features database1, including features
sets from fingerprints of a population, and a features set of the wanted person. The
hardware architecture is as follows: Each feature f of the wanted fingerprint is mapped to a
PE. Initially a tolerance box for f is calculated and stored in a Lookup Table in the memory
of the PE. This tolerance box is a set of features (xi,yi,θi) that are assumed to match with the
wanted feature (x,y,θ), because the components xi,yi and θi are close to x,y,θ. During run-
time, the database sends feature vectors for each fingerprint. Each vector is broadcasted in
the system, with each vector element reaching each PE. If a PE matches the feature it
received (finds it in its Lookup table), it drives a global OR bus to logical 1. The 17th FPGA,
the one that controls the connections, listens to the Global OR bus and each time it detects
a 1, it increments a counter. When all feature vectors for a specific fingerprint are
transmitted from the database, the host machine reads this counter value (in other words
it reads how many features matched). When this process is finished for all fingerprints in
the database, the host has the number of feature matches for each fingerprint so it can
easily extract the best one. This hardware implementation offers a 4 orders of magnitude
improvement over the SPARCstation.

1 :Human fingerprints are characterized by ridges and valleys, which some times bifurcate or stop. This is what makes
them unique in each person. A feature is defined as the set f(x,y,θ) where x,y is the coordinate of the bifurcation or
ending and θ its angle.

12

[2] Low-Cost Stereo Vision on an FPGA

 In this paper a low cost hardware architecture of stereo vision is discussed. Stereo
vision uses two images taken in a slightly different angle to construct a depth map of a
scene. An alternative to collect accurate depth data is to use a laser (LIDAR). However it is
still very expensive for consumer applications.
 The Census Transform algorithm was implemented in a Xilinx Spartan 3 FPGA. This
algorithm finds the corresponding pixels pairs in two images and outputs their distance as a
measure of depth. These are the steps of the algorithm in more detail: 1) For each pixel in
the reference image (assume right), compute a bit vector of size 13×13=169, where each
bit describes the relative difference in the intensities of the pixels in the 13×13 window
with the central pixel. A bit value of 1 translates into a positive difference. 2) Repeat the
first step for a range of pixels around the position of the reference pixel, in the left image
(in the paper a range of 20 is used). 3) For each bit vector pair (20 pairs) compute the
hamming distance. 4) Find the pair with the minimum hamming distance. The distance in
the position of the two matching pixels (disparity) is inversely proportional to the true
depth in that pixel.
 The system is interfaced with a CMOS camera pair through two 8-bit buses and
processes the incoming data on the fly, without the need of a frame buffer. The top module
receives 2 pixels in every cycle, each one from each camera, and another 1-bit input which
determines a new frame set. Internally, 2 blocks called xFormCensus compute the census
transforms (the first one computes only the census transforms of the reference pixels
whereas the second carries out the computation of all 20 non-reference pixels census
transforms. A delay unit is used to synchronize the 2 blocks). A third block, named
cmpLeftRight, receives the bit vectors, extracts the minimum Hamming distance and
outputs the disparity of the 2 matching pixels, as a 5-bit value (maximum is 20).
 The system reached 40 fps in 320×240 images, utilizing 57% of the FPGA resources
and is oriented towards agricultural datasets (trees, bushes etc). However, lack of post-
processing and the limited upper disparity of 20 come as disadvantages.

13

[3] An FPGA-Based Implementation of Spatio-Temporal Object Segmentation

As the title suggests, this paper discusses image segmentation on video data
streams. The algorithm has 3
distinct stages:
1. Motion detection
2. Thresholding
3. Edge detection
The FPGA of choice is Virtex 2 Pro
XC2VP20.

A series of operations is described
according to the general
algorithm architecture shown on
the right, which result in an image
with highlighted objects. The
general hardware architecture is shown in Fig 2.

Every data transfer passes through the DMA.
Initially a video frame is sent to the DMA which
consecutively broadcasts it on the external DDR
memory and the Motion Detection module. At
the same time, DMA also reads the previous
frame I(n-1) or a background image BK(n) from
the DDR memory and sends it to the Motion
Detection module. Motion Detection module
output, D(n), is routed back to the memory and
is also send to the Spatio-temporal Tresholding
module. Because the Spatio-temporal
Thresholding module requires a full frame time
period to produce a valid threshold, the frame
that is currently being processed is buffered.
While buffering the previous motion-detected

frame is read from the memory and is sent to the last processing

block for morphological edge detection. All these data transfers are handled seamlessly for
the processing modules by the DMA. Each module implements an ad-hoc solution for the
corresponding algorithmic component. The system achieved 7.5ms per 1024×1024 frame
at 133MHz, performance characterized as real-time. It has a total throughput of
133Mpixel/s, using 60% of the FPGA area. Moreover it is very flexible as many of its
parameters can be set at run-time. However, even though it is scalable, the DDR memory
presents a potential bottleneck.

14

[4] Small Vision Systems: Hardware and Implementation

In this case, a stereo vision algorithm was implemented on a DSP platform called
Small Vision Module (SVM). The algorithm uses SAD correlation on images filtered by a
Laplacian of Gaussian (LoG, filtered image has zero crossings on edges). As LoG is an edge
detection filter, it allows for robust lighting independent correlation, as edges remain the
same no matter the lighting conditions. This algorithm was preferred over Census
transform with hamming distances, as it does not require bit-counting hardware which is
usually not available on microprocessors and DSPs.

To further enhance the resulting image, the algorithm incorporates (a) an interest
operator (assigns confidence to textured areas) and b) a left/right check which helps
remove false matches on depth discontinuities. SVM also offers a variable search disparity
range (16,24 or 32 pixels) and automatic camera calibration and rectification of input
images. Auto-calibration is required in order to satisfy the horizontal epipolar line
constraint of the stereo vision algorithm and is done by maximizing the left/right matches
and a disparity smoothness measure through horizontal and vertical offsets. This process
takes a few seconds to complete as it performs a hierarchical search from coarse resolution
to fine resolution at a few image points where the measures mentioned are highest. When
vertical and horizontal offsets are calibrated, the same measures can be used to
compensate for vergence and rotation distortions.

The updated version of SVM, SVM II, using a Texas Instruments DSP (TMS320C60x)
running at 200 MHz, achieved a thirty-fold increase in performance in simulation over its
predecessor, SVM, which run at 8fps with 160×120 images. Cameras with better SNR can
increase matching accuracy. DSPs offer the best performance vs flexibility vs power
consumption tradeoff whereas FPGAs offer the best performance and even
microprocessors with SIMD instructions can achieve real-time performance and offer the
biggest flexibility with the cons of high cost and power consumption.

15

[5] FPGA Based Hardware Implementation of Image Filter With Dynamic Reconfiguration
Architecture

The system implements filtering and noise removal on an image by using a genetic
algorithm. It also uses coarse-timescale reconfiguration as a means to adapt to the slow
changing dynamic conditions (lighting conditions, noise etc) and requirements of the
application (low latency vs high accuracy). Apart from the said slow changing speed of the
variations, another reason for choosing coarse-timescale reconfiguration is the millisecond
order of FPGA reconfiguration times.

As inputs, the filtered and the original images are given. The system stores these two
images on a buffer and then computes the initial population by producing 16 250bit
chromosomes in 16×25 cycles (25 cycles to generate 250 random bits from a 10bit random
number generator). Each chromosome is used to filter the distorted input image, with a
filter size of 3×3. The filtered image is compared to the original image and a fitness
function is evaluated. Based on that fitness function value, the best chromosome is
selected, which will be used to produce the new generation of chromosomes, through
reproduction, crossover and mutation operations. In detail, the new chromosome
population will consist of 15 new mutated children of the fittest chromosome along with
the mutated children from the reproduction of other random chromosomes. The process
continues until the quality constraints are met or the iteration limit is reached.

The platform used includes an FPGA 600K Spartan-IIE, a 4Μx16 data memory and a
ROM 1Μx16, analog input with ADC, DAC for video output and RS232/PCI interfaces.
According to conditions, a less complex hardware design can be swapped into the FPGA to
achieve the same accuracy.

 For Gaussian noise the system achieved better results than the Gaussian filter.
Furthermore the FPGA implementation achieved a 400-fold acceleration compared to a C
implementation.

16

[6] A Real-Time Large Disparity Range Stereo-System Using FPGAs

In this paper the stereo vision algorithm of Local Weighted Phase Correlation (LWPC)
is implemented on an FPGA. This algorithm has the advantage of very large disparity search
ranges, as far as 128 pixels. The key to achieve this is the use of two windows: One that
defines where a pixel is in the current frame, based on the estimation of its position on the
previous frame (uses the assumption that on 30 fps, the disparity of a pixel won't change
dramatically between consecutive frames) (Primary Tracking Window, PTW) and another
that does a random search outside PTW in order to deal with occasions where the disparity
has changed a lot between frames (due to the speed of an object or the insertion of a new
object in the scene) (Secondary Roving Window, SRW). The system also employes pre-
processing (image rectification) and post-processing (left/right check) steps, as well as sub-
pixel estimation through interpolation. The search for a new disparity is done in three
orientations and scales, from which the most confident one is selected.

The block diagram of the system is shown below.

As the position estimation for each pixel is propagated from frame to frame, the
algorithm has the risk of getting stuck to a local minimum. In such a case the STW helps to
recover by replacing the PTW (the confidence for the STW will be greater than that of the
PTW in such a case).

The platform of implementation was Transmogrifier-4, which contains 4 Altera
Stratix S80 FPGAs, suitable video interfaces (eg NTSC and Firewire camera interfaces etc)
and 2GB DDR RAM for each FPGA. Performance wise, the system is rated at 30fps in video
streams of 640×480 pixels.

17

[7] High performance FPGA based Optical Flow calculation using the Census Transformation

The paper examines a variation of the census transform algorithm, adapted for
computation of the Optical Flow from a single video stream. The Optical Flow image
describes object motions, by means of motion vectors. In short, the algorithm finds the
corresponding pixels in two subsequent frames of a video stream, and paints a vector from
the starting position to the ending one. Given that information, a velocity vector can be
extracted. The procedure is the following: For each pixel in frame tk, a signature string is
calculated using the modified census transform. The same thing is repeated for the next
frame tk+1. The pixel identities are then used to match each pixel in tk with its corresponding
one, in the subsequent frame tk+1.

The modified census transform defines a bit string of 0, 1 and 2 (instead of the plain
version, consisting purely of
0 and 1) for each pixel. The
exact formula of this
calculation is described in
the image on the right. The
intensity of the central pixel
i(x,y) is compared to that of
certain pixels in its
neighborhood i(x+i,y+j). If
i(x+i,y+j)>i(x,y)+ε, a two is
written on the bit string. If
i(x+i,y+j)<i(x,y)-ε, a one is written instead. Otherwise a zero is written. The number ε is
given as a parameter to the algorithm. Moreover a sampling distance is also set (dc1, dc2)
which denotes which pixels are compared to the central one. The correlation step demands
that two bit strings are identical and unique in order to have a match (instead of the
minimum hamming distance used in the classic census transform). It is also desirable to
tune the parameters ε and dc in such a way as to have many unique pixel signatures
generated at each frame (in order to have potentially more matches) and at the same time
have a small amount of incorrect matches. It is shown that adjusting these parameters to
produce one effect involves tradeoffs to the other, so they must be carefully set.

An implementation based on software and one based on hardware were described
and compared. The two solutions were not identical, as they were both optimized for their
platform. Their most important common features are 1) that they both use two matrices,
one for the frame tk and the other for frame tk+1 and 2) that they both calculate the census
signatures for all pixels in each of these frames:

In the software implementation (using a Core 2 Duo 1.86 Ghz) the matrices are
indexed by the pixel signatures and each matrix cell contains the coordinates of the pixel
(x,y) along with a counter denoting how many times that specific signature was generated.
The algorithm produces the pixel signatures for the two subsequent frames and fills up two
matrices. At the end, the pixels that match are the ones that have the same signature
which was also generated just once (corresponding rows with both counters set to 1). Thus

18

in regard to the correlation step of this implementation, we can say that it uses a global
matching scheme, meaning that a pixel in tk can match to any pixel in tk+1.

In the hardware implementation (using an XC2VP30 FPGA from Xilinx with two
embedded PowerPC Processor cores) the matrices are indexed by the coordinates of the
pixels (in order to take advantage of burst data transfers). Each matrix cell contains just the
signature of the pixel. Again the algorithm fills up the two matrices and at the matching
step, it searches in the second matrix just the area around the location of each pixel in the
first matrix to find a match. In other words it uses a local matching scheme, so that a
matching pixel in tk+1 is only found in the neighborhood of the reference pixel of frame tk.

The hardware solution uses two modules, the Census Engine and the Matching
Engine, to carry out the tasks of computing a signature given a window of pixels and
matching two pixels from two subsequent frames, given a window of signature values. The
system also contains a DDR SDRAM memory which is used to store intermediate results
(such as the signature values of every pixel in each frame, computed by the Census
Module). The PowerPC processor is used to paint the motion vectors at the end of the
procedure. Everything is connected to each other through the Processor Local Bus.

The hardware platform requires 22.17 ms to process each frame set, so approximately 45
fps is the estimated system’s performance. The results also show a speedup of 1.8 in
execution time from the software implementation, which takes 40.55 ms for each frame
set. If the frequency is taken into account, a speed up factor of 16.15 is obtained from the
HW version. The HW implementation consumes 9200 flip-flops, 13927 4-input LUTs and 50
BRAMs. Furthermore the FPGA platform offers far lower power consumption.

19

[8] FPGA Design and Implementation of a Real-Time Stereo Vision System

The paper presents a complete stereo vision solution, which is implemented on an
FPGA. The system is synchronized with a pixel clock, which is the frequency at which new
pixels are fed into it. The pixel clock is based on the frame rate and the resolution of the in-
put images so the system is flexible in regards to these camera parameters.

The main stages of the system are image rectification, stereo local matching (using
the census transform) and post-processing which enhances the quality of the result and is
consisted of a uniqueness check, a left/right check, a sub-pixel estimation step and a step
of spike removal.

Image rectification uses the matrices generated during the camera calibration, which
is an off line procedure, to map each pixel coordinates of the original image to their coun-
terparts in the rectified one, using reverse mapping. Subsequently, the stereo matching
module undertakes the task of solving the pixel correspondence problem, using the local
method of census. The module is separated in the census transform stage and the correla-
tion stage. The census transform stage generates the census signature of each pixel on
both the right and left images. It simultaneously constructs the bit string of a pixel in the
reference image and all those in the disparity range on the other image. The window size of
11×11 sets the size of the bit strings to 120 bits so when computing the hamming distance,
a maximum of 120 differences can be detected which translates into a 7bit number. The ar-
chitecture of the module is better shown below:

The post processing module consists of the LR-check, the uniqueness test, the spike
removal ad the sub-pixel estimation sub-modules. LR-check is used to remove occlusions,
whereas the uniqueness test is used to determine whether the selected disparity is a
unique minimum or non-unique minimum. If a disparity result passes these two checks, it
is fed to the sub-pixel estimation and the spike removal phases.

The spike removal phase, assigns a label at each disparity pixel, depending on the la-
bel of its neighboring pixels and its disparity value. It then proceeds to eliminate all pixels
of a label L, if they are fewer than a threshold parameter.

The system was implemented on a Xilinx Virtex-4 XC4VLX200-10 FPGA, utilizing 57%
slices and 95% BRAMs. The amount of logic resources consumed by the census transform
and correlation modules are linearly increased as the disparity range and the window size
increase, while the other modules are affected less. A theoretical peak performance of 230
fps can be achieved with an average 17.24% of bad pixels per 640×480 frame.
[10] Towards Hardware Stereoscopic 3D Reconstruction, A Real-Time FPGA Computation of
the Disparity Map

20

In this paper a stereo vision local algorithm is explored and implemented on an
FPGA platform. The system receives a rectified pair of frames and outputs a sparse 3D map
of the scene. The process is divided into two steps: the correspondence step that involves
finding pixels belong to the same point in space in the two frames and the reconstruction
step which extracts the actual distance from the camera.

The correspondence step is the most computational intensive. The system uses a
simple local SAD correlation method but applies it on edge detected images instead of the
original dense pair. This allows for a large reduction on the data being processed and thus
has a positive effect on the overall system performance, measured by frames per second.
By applying a Sobel edge detection filter to both frames, the correspondence step has to
be applied only on reduced 1 bit/pixel images, effectively cutting the data load to 1/8 of
the initial. Aside from faster computation, this also drastically reduces memory require-
ments. However, doing pixel matching on edge detected images has a negative impact on
quality.

The system can be parametrized in terms of correlation window size, disparity range
and input image sizes, as the performance depends also on a combination of these param-
eters in addition to the operating frequency. Correlation window sizes has a negative effect
on FPGA resources.

The FPGA of choice is a Xillinx Virtex2 Pro XC2VP30. For a disparity search range of
31, 320×240 images and a 9×9 correlation window, the system achieved 17,1 frames per
second without the edge detection step and 37 frames per second with it. Below is shown
the system architecture.

21

Comparison between Stereo Vision Implementations

Algorithm
Basic algorithm
description

Features Implementation Resources
Performance
(fps) Clock1 Complexity

1-Most complex

Murphy,
Lindquist,
Rynning
Cecil, Leavitt,
Chang, Olin
2007

Non-parametric, local2:

Census Transform,
Hamming Distance

Basic algorithm
FPGA3:

Xilinx Spartan 3
XC3S2000

• 57% of logic
resources

• 26/40 BRAMs

40 320×240 fps
(limited by
camera,
theoretical 150+
fps)
8-bit gray-scale

26 MHz 4

Konolige
1997

Feature based,
Laplacian of
Gaussian, local:
Absolute
difference
(SRI area
correlation)

• Variable disparity
search

• Post-processing:
Interest operator,
left/right check
x4 range
interpolation

• Automatic calibration

DSP:
ADSP 2181 - 12 320×240 fps

8-bit gray-scale 33 MHz 3

Masrani,
MacLean
2006

Phased based,
Local:
Local Weighted
Phase Correlation,
LWPC

• Can handle very
large disparities

• Pre-processing:
Image Rectification

• Post-processing:
Left/right check
x4 range
interpolation

4-FPGAs Platform:
Transmogrifier-4
4x Altera Stratix S80
FPGAs

Data based on the
predecessor system4

• ≈ 66644 4-input
LUTs

• ≈ 83026 flip-flops
• ≈ 197/640

BRAMs

30 640×480 fps
8-bit gray-scale -

1
10x109
16×16 bit
multiplications/secon
d

S. Jin, J. Cho, X.
D. Pham et al
2010

Non-parametric,
local: Aggregated
Census Transform,
Hamming Distance

• Pre-processing:
Image rectification

• Post-processing:
Left/right check
Confidence check
Sub-pixel estimation

• Use of aggregated
census bit string

FPGA:
Xilinx Virtex-4
XC4VLX200-10

• 51.191 slices
(57% logic
resources)

• 95% BRAMs

Theoretical 230
640×480 fps
8-bit gray-scale

12.2/24.5 MHz
(for 30 and 60 fps
accordingly)

2

1 Due to the parallel nature of the algorithms examined, performance depends more on the size of the FPGAs than their clock frequency.
2 In general, stereo vision algorithms are divided into local and global, depending on the range of their search for matches.
3 Census Transform algorithm is an excellent candidate for FPGA acceleration as it is highly parallel and demands bit-counting units, something that DSPs and μPs lack.
4 Data refer to the previous generation of this system (Transmogrifier-3A), as it is mentioned that there are no major changes.

A more comprehensive comparison

Algorithm
Basic

algorithm
description

Aggregation Rectification Post-
processing

Features Implementation Parameters Resources Performance
(fps) Frequency

Our
approach

AD-Census
on original

image
5×5 No

• Left/Right
check

• Scan-line
belief

propagation

• Disparity/window
size/frame size
agnostic design

Xillinx Virtex5
XC5VLX110T-1

Disparity Range:
0-63

Window Size: 9×9
Aggregation: 5×5

Slices: 82 %
FlipFlops: 60 %

LUTs: 54 %

650 640×480
fps

8-bit
grayscale

201 MHz

Hadjitheo
phanous

et al

2010

SAD on
Sobel edge

detector
output

No No -
• Disparity/window

size/frame size
agnostic design

Xillinx Virtex2
XC2VP30 Pro

Disparity Range:
0-31

Window Size: 9×9
Aggregation: -

Slices: 80,2 %
FlipFlops: 79,9

%
LUTs: 61,1 %

75 320×240
fps

8-bit gray-
scale

-

S. Jin, J.
Cho, X. D.
Pham et

al
2010

Census on
original
image

15×15 Yes

• Left/Right
check

• Sub-pixel
estimation
• Spike

removal

• Disparity/window
size/frame size
agnostic design

Xillinx Virtex4
XC4VLX200-10

Disparity Range:
0-63

Window Size:
11×11

Aggregation:
15×15

Slices: 57 %
FlipFlops: 30 %

LUTs: 34 %

230 640×480
fps

8-bit gray-
scale

93.0907 MHz

S. Hadjitheophanous et al used a novel approach in order to reduce the computational load of a classic local algorithm solving the stereo
correspondence problem. They first applied Sobel edge detection to the image pair and then performed the classic local algorithm steps using SAD
as a matching cost on the edge image pair. Using edge images cuts the data load 35-55% on average, yielding significant gains in performance. This
process however, has irreversible deteriorating effects on the final depth image and the authors report a qualitative 7% drop compared to the sys-
tem running without the edge detector.

S. Jin, J. Cho, X. D. Pham et al implemented a complete stereo vision system. In its heart, there is a local stereo matching algorithm using the
census transform as a matching cost. The coarse algorithmic flow of their solution is image rectification as a pre-processing step, followed by cen -
sus correlation augmented by costs aggregation and finally the appliance of considerable post-processing, consisting of a left/right check, sub-pixel
estimation and spike removal.

Our system follows closely the implementation of S. Jin, J. Cho, X. D. Pham et al. It uses a variation of census transform enhanced by aggre -
gation to supply the bulk of the costs data, which is subsequently fed to post-processing, which includes a left/right consistency check and a basic
scan-line belief propagation solution that propagates most confident disparities to inconsistent matches along the scan-line.

In general the next statements are true for the implementation of all algorithms in one of the following technologies:

FPGAs

+ better performance due to parallelism

+ can be dynamically reconfigured to achieve an optimized task specific architecture

+ can implement any algorithm

+ low power consumption
- difficult programming and reprogramming
- difficult to adapt an existing algorithm to bigger instances of a problem (fixed resources)

DSPs

+ good balance between speed and flexibility

+ low power consumption
+ relatively easy programming (C and assembly)

- limited memory

μProcessors

+ most flexible
+ easiest programming
+ easy to scale the implementation to bigger instances of the problem
+ double precision fp
- need for SIMD instructions to achieve tolerable performance
- low performance
- high power consumption

24

Table 1: Comparison of several stereo vision implementations. Extract from [9]. Mde/s
stands for million disparity evaluations per second.

Chapter 3
The Main Algorithm and its

Enhancement

An overview of stereo algorithms

In general, stereo algorithms are divided in two categories, local and global. All
stereo vision algorithms perform a subset of these steps:

a) Matching cost computation
b) Cost aggregation
c) Disparity computation/optimization
d) Disparity refinement

Local algorithms depend more on cost aggregation to provide quality results while global
algorithms do most of their work in the disparity optimization step to perform a global
minimization of a cost function that is defined over the whole image. In essence, local
algorithms optimize disparity selection for each pixel independently from other pixels while
global methods look to optimize disparity selection for many pixels at once. Local
algorithms match pixels in the image pair corresponding to the same point on the scene, by
doing for each pixel in the reference image an exhaustive search on a restricted search
space in the non-reference image. As disparity optimization is done for each pixel in
isolation, local methods allow for a large degree of parallel operations. Our algorithm falls
under the local category and thus its high intrinsic parallelism makes it an ideal candidate
for custom hardware implementation.

As we have already mentioned, rectification is the pre-processing step that reduces
this search space to one dimension, so its size is fully definable by a max disparity
parameter, Dmax. We assume that this step has already been applied. In order to choose the
best match, a matching cost is computed for each pixel combination. These matching costs
depend only on local information surrounding the pixels in question. The x-axis distance of
the two matched pixels (disparity) is directly connected with the actual distance of the
object from the camera (to find the absolute distance, camera calibration parameters are
required). In general it is a good idea to regard the matching cost as well as the strategy
used to select the best match, as interchangeable and independent components of the
general algorithmic structure.

25

Algorithm matching costs

Matching costs can be window-based or pixel-based. Pixel-based costs depend only
on the pixel values in question, whereas window-based costs define windows around the
pixels and thus also use neighboring pixel values. Several shape and sizes for cost windows
have been proposed in the literature (see 16 for an overview), however simple square
windows of size W x W are still being widely used. Window-based costs make comparisons
between small image blocks and algorithms based on them effectively match spots of the
image pair. The obvious strategy to select the best match using those costs is a Winner-
Take-All scheme (WTA), where for each reference pixel, the pixel with the lowest cost out of
a range of Dmax candidates, wins. An example of a matching cost is the popular Sum of
Absolute Differences (SAD), which can be formally described with the expression:

SAD is a window extension of the simple AD measure:

AD=∣I r(x , y)−I l (x+ d , y)∣ , where I r is the reference image.

SAD is a well-known cost in the field of local stereo vision algorithms and it is widely
used. However it has some drawbacks which prevent it from being embedded as a cost in
state of the art algorithms. For example it tends to blur object borders. SAD performs W 2

comparisons per pixel evaluation whereas AD, performs only 1.
Another example of a matching cost, is census transform [13], robust to depth

discontinuities and different light conditions. As a first step, it transforms the input image
and then uses this transformation to produce a match in the classic WTA cost minimization
manner. Census transform first calculates a bit-string for each pixel and then uses it to
produce a match. It has a cost of W2 – 1 comparisons per pixel.

A pure census transform based stereo algorithm contains two logical tasks. The first
task concerns the creation of the bit-string. The second task uses that bit-string to find the
best match in a search range of pixels in the non-reference image. For each pixel of the
reference frame (assume right):

1. Compute the census bit string for the pixel. The census bit string is defined as
a vector of bits, of size W2 – 1, where each bit declares if the intensity of the
pixel in the respective position of the window is greater/equal or less from
that of the central pixel. For example assume we have the following window:

127 129 130
127 125 128
100 102 103

The bit-string will be: {1,1,1,1,1,0,0,0}. Similarly we produce the census bit
strings of the candidate pixels in the left frame.

26

SAD=∑
i=n

∑
j=m

∣I r(x+ i , y+ j)−I l(x+ i+ d , y+ j)∣

2. Compute the hamming distance between the reference and the Dmax non-
reference candidate bit-strings. This hamming distance is referred to as the
matching cost. Using a WTA strategy we select the pixel with the minimum
hamming distance as our match. For example assume {1,1,1,1,1,0,0,0} the
reference bit string and {1,0,1,0,1,0,1,0}, {0,1,1,1,1,0,0,0}, {1,1,0,0,0,0,0,0},
{0,1,1,1,1,0,0,1} the candidate bit strings. The bit string {0,1,1,1,1,0,0,0} has
the minimum hamming distance. The depth information is extracted from the
x position shift (disparity) between the two matched pixels.

Census transform belongs in the category of non-parametric costs1 and exhibits
resilience to lighting conditions because of its sole dependence on the local image
structure. Moreover it outperforms the also non-parametric rank cost (13), as with the bit-
string it also encodes the spatial distribution of light. Census can be easily extended to
color images but it was shown in [14] to perform only marginally better. However, by
ignoring the pixel intensities completely, it looses an important chance of producing more
diverse matching costs and thus, less false matches.

In order to add light intensity information to the census cost, we have decided to
combine it with AD and SAD into two new matching costs respectively. SAD-Census and AD-
Census are simply the sum of normalized SAD and AD respectively, with census. As we will
see, the new costs are more powerful than their parts alone. We have avoided a weighted
sum, as it would insert scene-dependent weighting parameters which would require fine
tuning.

In order to assess the quality of our system and provide results that can be easily
evaluated by the research community we applied our algorithm on well known datasets
from the Middleburry database2. We selected Art, Books, Dolls, Laundry, Moebius and
Reindeer which are shown in Fig 6. All datasets contain rich depth information. As we will
see in the best/worst case graphs, some datasets are more difficult to process than others.
For example Laundry has a lot of texture-less areas, whereas Dolls has very rich textures.

1 Non-parametric costs are costs that extract information about the pixel, based only on comparisons between
neighboring pixels.

2 http://vision.middlebury.edu/stereo/eval/

27

http://vision.middlebury.edu/stereo/eval/

Art Books

Dolls Laundry

Moebius Reindeer

Fig 6: Datasets used in all our quality comparisons.

All results presented, are produced from a software MATLAB implementation
running on a Core 2 Duo E6400 2.1 Ghz processor.

28

Ground truth Census 9×9

AD-Census 9×9 SAD-Census 9×9

Fig 7: Visual comparison of pure census vs SAD-Census vs AD-Census.

Above (Fig 7), we compare visually Census, SAD-Census and AD-Census on the same
scene. SAD-Census has less false-positives than either of them. More thorough
comparisons are presented in Fig 8 and Fig 9.

We have chosen the percentage of good matches as our quality metric. Results
where calculated for all 6 test image pairs and we present best/worst case and mean value
comparisons. The quality metric was calculated on regions where our algorithm works
optimally: a small frame of (W-1)/2 where we cannot fill in the census windows, as well as
Dmax pixels from the right side, where we must reduce the disparity search range, are
ignored. SAD-Census may appear better by this metric but due to its low-pass filter nature,
it has a tendency to blur edges. Performance was best with Census and worst with SAD-
Census, as was expected (Fig 9a).

29

Fig 8: Best/Worst case quality comparison using the percentage of good matches metric, for
Census, AD-Census and SAD-Census. Window size ranges from 3×3 to 17×17. The Dolls dataset

gives the best results in all three costs and Laundry dataset gives the worst. The reason for this is
easily understood by observing the datasets: Dolls provides much greater variation, whereas

Laundry has many uniform areas.

30

a) Time taken (seconds) b) Percentage of good matches

Fig 9: Quality comparison of Census, AD-Census and SAD-Census using mean values over all the
datasets. SAD-Census is better by the percentage of good matches metric. Window size ranges

from 3×3 to 17×17. Performance refers to a single-threaded unoptimized implementation and is
shown to demonstrate how window size increases algorithmic complexity.

31

The new matching costs improve the results significantly as can be seen in Fig 9b,
especially for small window sizes. However, we can still employ some simple processes for
further gains.

The window aggregation of the matching costs at each disparity level is equivalent
to applying a box filter on the (x,y) dimensions of the DSI1 image ([15]). It smooths out the
costs, based on the assumption that neighboring pixels have similar disparities (box filter
weights each window pixel the same), and allows for a much less noisy disparity map (Fig
10). However, as this assumption is false on disparity discontinuities, it has a negative
impact on object borders, producing an edge thickening effect. Box filter also implicitly
assumes frontal-parallel surfaces which is often violated in practice with slanted surfaces.
Use of edge preserving smoothing filters such as bilateral or guided help alleviate these
problems ([15]) as they place more weight on window pixels that are similar in color to the
central one and thus are more probable to belong to the same depth. Such filters, however,
are computationally expensive. Even with its downsides, box filtering yields an impressive
16% improvement, augmenting our 65% mean percentage of good matches to 77%, when
transitioning from W=9 Wa=1 (no aggregation) to W=9, Wa=5. By using a simple box filter,
we have to compromise with the fact that the size of the aggregation window Wa is a
tradeoff between border accuracy and better matches elsewhere.

Following on our discussion about edge aware filters, we created a cost specifically
designed to guide the aggregation process. The cost is defined as follows:

C p =
1 when ∣pc−pi∣ < τ
0 otherwise

with i∈W a

where Wa is the aggregation window, pc the central value of this window and τ a threshold
given as a parameter. Simply put, the resulting matrix shows the similarity, in terms of
intensity, of the neighboring pixels to the central pixel in a 1/0 format. This matrix can act
as a mask, selecting which values get aggregated in the window. The logic behind this cost
is the simple but effective assumption that pixels with similar intensities probably also lie
on the same disparity. More edge aware smoothing can be seen in Fig 10.

1 DSI (or Disparity Search Image), is a 3D volume of size WxHxDmax containing the matching costs for all Dmax
candidates of any pixel (x,y) in the WxH frame.

32

Reference image

Census without aggregation

Census with 5×5 aggregation

Census with 5×5 guided aggregation

Fig 10: DSI(x,50,d) slices for aggregated and not aggregated versions. Matches appear as black
lines along the horizontal axis. Aggregation smooths out many erroneous matches and produces a

cleaner DSI. The effects of guided aggregation are best seen on disparity discontinuities.

Optimization in regards to τ across all datasets led to a value of 60 (given that
intensity values are in the range [0-255]). We also have to take into account that a very
small τ value could lead to weak aggregation which results in an increase in errors. Guided
aggregation led to a 0,29% improvement on the average percentage of good matches for
W=9 and Wa=3, 0,35% for W=9 and Wa=5 and 0,49% for W=9 and Wa=9.

Another improvement, is the use of sparse instead of dense windows, as was shown
in Humenberger et al. [9]. A way to produce such windows is to reduce the sampling rate
from 1 (every pixel is sampled) to 0,5 (one every two pixels is sampled), both in x and y
axis. Fig 19 shows the positive effect of this process on the quality of the results. It is
important to note that equivalent window sizes were used for our quality comparisons
with sparse and dense windows: the windows used the same number of pixels.

In order to get rid of false matches due to occlusions, we can perform a Left/Right
consistency check (LRC), which allows only disparities that are validated by reversing the
reference image. In other words, LRC performs the correlation step with the opposite

33

image as reference and checks if the new matches found are in accordance with the
previous ones (condition |DispRL(x,y)-DispLR(DispRL(x,y),y)| < LRC Threshold must be true for
some small positive value of LRC Threshold). Being a post-processing step, it is independent
of the matching cost used.

We have implemented a simple scan-line belief propagation solution that fills in the
occluded pixels detected by LRC. Fig 14 shows the flowchart of our belief propagation
algorithm. It works by replacing occluded pixels with the most confident local disparity
along the processing direction on the scan-line. It has the advantages of simplicity, low
memory footprint and online calculation as it doesn't use windows, processing pixels in a
sequential manner instead, in the order given by the LRC step. This procedure fits well with
LRC and doesn't disrupt our workflow at all. Furthermore it has good results as can be
shown in Fig 24.

Using the mean intensity of the window instead of the central pixel for the
comparisons in the census window gives a possible increase in noise robustness as we no
longer depend on a single pixel which can end up being a statistical outlier. Testing however
this method revealed that it led to strong edge fattening which ended up hurting the
overall quality. Furthermore we experimented with a median solution which performed
better than mean, but in the presence of aggregation was outmatched by the simple
central pixel method, as can be seen in the comparison Fig 12.

We have also tried a multilevel census solution, where instead of a simple 1/0
comparison between the central pixel and its window, we have defined multiple levels of
relation (Fig 13). Hamming distance was redefined as the absolute distance between the
new census vectors. This tweak produced small quality improvements for its relatively high
cost.

We also explored the possibility of improvement by weighting differently the Census
or AD part of the AD-Census matching cost. Fig 11 shows that results were best for the
default 50-50 balance.

34

Fig 11: AD-Census analysis for different weigthing values. X-axis
shows the weight of Census, c∈[0,1] . AD weight is defined as 1-c.

Without aggregation With aggregation (Wa=5)

Fig 12: Quality comparison of different census methods with and without aggregation.

A way to quantify the confidence of a match, is to compare the minimum cost with
the runner up. If their difference is small, there is a good chance that the match is a false
positive. A formula to calculate the confidence of a match is the following:

C=min(255,1024∗((min2−min1)/MaxCost)) [9]

Another simple formula is the runner-up costs difference:

C=min1−min2

35

Fig 13: An example of 2*N census levels.

In both cases, a threshold can be applied to cut off uncertain matches detected.

Local methods are especially vulnerable to areas with a lack of texture, producing a
lot of false matches. Local variance is a way to find these areas and take them into account
when computing the confidence of a match.

Objects far away from the cameras, tend to produce disparities that are fractions of
full disparity levels. Sub-pixel accuracy reduces the quantization errors by approximating
fraction disparities through interpolation.

Our implementation will focus on aggregating costs and sparse windows as all those
other processes can be added in a modular way to the algorithm.

36

Fig 14: Flowchart of our belief propagation algorithm. If we encounter foreground
pixels when moving on the background (NConfDA>PConfDA), we propagate the

background confident disparity (PconfDA). The opposite happens when we encounter
background pixels whilst on the foreground (PconfDA>=NConfDA).

Parameter tuning

 The main matching procedure of our algorithm has three parameters that require
tuning: The maximum disparity search range (Dmax), the window size (W) and the
aggregation window size (Wa). We also have to decide whether to use a sparse window
solution or not. LRC depends on a threshold value to decide whether a pixel is occluded or
not. Our belief propagation demands two additional parameters, neighborhood queue size
and confident disparities queue size. Finally we need to select one of the three matching
costs presented above.

As can be shown in Fig 16 and Fig 9, quality doesn't scale linearly with W. A
compromise was settled on W = 9.

The aggregation window size improves the percentage of good matches but large
windows suffer from inaccuracy at object borders, as shown in Fig 15. As can be seen in Fig
16, aggregation window size can be regarded equivalent to window size in terms of effect
on our quality metric. We have chosen, however, to set a reasonable value of 5×5 so that
we won't sustain serious degradation in object borders quality. A visual comparison
between Census, AD-Census and SAD-Census with W = 9 and Wa = 5 can be seen in Fig 20.

Fig 19 shows the effect of different window sizes on the percentage of good matches
for dense and sparse windows, for no aggregation and with a 5×5 aggregation. In both
cases the biggest difference in quality exists for smaller window sizes. When aggregation
was applied, the difference in quality is negligible and thus not justified cost-wise for the
window size we are considering (9×9), so we have decided to use normal (dense) windows.

Ground truth Wa=1 (no aggregation) Wa=5

Wa=15 Wa=31 Wa=51

Fig 15: The blur effect of increasing aggregation window sizes with a 5×5 census.

37

38

Fig 16: Quality comparison of Census, AD-Census and SAD-Census. When no aggregation
is applied (Wa=1), the latter is better, but has significant computational cost, as it

performs approximately 2xW2 operations. Notice how AD-Census outperforms Census and
SAD-Census in the region of W ∈[7,17]∧ W a∈[3,13]

Camera spacing (baseline, b) as well as camera focal length f play an important role
on the range of depth values that can be calculated. More spaced out cameras allows us to
detect points farther in expense of closer areas. More specifically, we can calculate
minimum and maximum detectable depth by the formulas:

Depthmin=
b∗ f

D max∗DPhor
 and Depthmax=

b∗ f
D min∗DP hor

, where DPhor is the pixel horizontal

dot pitch, the horizontal distance between two neighboring pixels and depends also on the
resolution configuration of the camera (active pixel size). For example a camera such as
Aptina MT9D112 (1600×1200@15fps), with an example b=63mm, f=3.79mm,
Dphor≈0.0022mm (for its maximum resolution of 1600×1200) and D∈[0,63] gives
Depthmin=1.723m and Depthmax=108.532m.

All parameters are influenced by the frame size (resolution) and especially Dmax,
which depends heavily on the frame width. This happens because features in the image
become more spaced out with bigger frames. Fig 18 shows the approximate value that Dmax

should be set to, in order for the results to not degrade in quality. Inter-camera distance
also plays an important role on Dmax, as more spaced cameras magnify all disparities and
thus require larger Dmax if we want to keep our minimum range detectability intact . Frame
size also enlarges texture-less regions where census performs poorly and would require
window enlargement to compensate.

Resolutions 100×83 384×320 640×533 1024×853 1600×1333

Dmax 10 40 64 128 160

Fig 18: A rule of thumb would be to set Dmax to approximately 1/10 of the frame width.

39

Fig 17: Discrete disparity space, illustrating the stereo system's range capabilities.
Image courtesy of Stefano Mattoccia.

Census, no aggregation AD-Census, no aggregation SAD-Census, no aggregation

Census, 5×5 aggregation AD-Census, 5×5 aggregation SAD-Census, 5×5 aggregation

Fig 19: Sparse vs normal windows using mean values. Note that equivalent window sizes were used in order to compare both approaches on the same terms: A normal
WxW window corresponds to a (2xW-1)x(2xW-1) sparse window, both containing the same number of pixels. On the first row no aggregation is used and y-axis ranges

from 0.1 to 0.8. On the second row, a 5×5 aggregation is used and the y-axis ranges from 0.6 to 0.85.

Census 9×9, Wa=5 AD-Census 9×9, Wa=5

SAD-Census 9×9, Wa=5

Fig 20: Visual comparison of Census, AD-Census and SAD-Census with W=9 and Wa=5.

Left/Right consistency check is demonstrated in Fig 21 for several values of the LRC
threshold parameter. A high threshold tends to allow erroneous disparities through, while
a low threshold discards too many pixels. A value of 4 was selected as a good compromise
as we have to keep in mind that LRC will also determine which pixels will be processed by
our belief propagation algorithm.

41

Occlusions Ground truth LRC threshold=1

LRC threshold=4 LRC threshold=6

Fig 21: Left/Right Consistency check for several values of the LRC threshold.

Our belief propagation algorithm defines two additional parameters: Neighborhood
queue size (SNQ) and Confident Disparities Queue Size (SCDQ). We will now discuss how these
parameters alter the results.

SNQ sets the size of our neighborhood, which is the size of our “population” of pixels
where the local confident disparity will get propagated. Large values for this parameter
allow the propagation of the local disparity average to more pixels and its positive results
can be observed on regions with “thick” occlusions. For example, notice the black bar on
right side of the occlusion maps in Fig 21: If SNQ is larger than its width W, then the local
confident disparity will get successfully propagated to all of it, eliminating all unknown
disparities on that region. If, on the other hand, it's smaller, then a bar of width W- SNQ of

42

unknown (black) pixels will remain on the left border. A large SNQ has only positive effects
on the quality as our algorithm follows an aggressive propagation policy by instantly
propagating confident disparities only to unknown pixels in the neighborhood queue.
Setting this parameter to around our maximum disparity should be enough.

 SCDQ however, can have both positive and negative effects. SCDQ determines how
many confident disparities are needed to initiate propagation as well as the size of the
confident disparities population which we use to calculate the local confident disparity
average (ConfDA). The fact that we empty the Confident Disparities Queue every time we
stumble upon an occluded pixel, makes it difficult to initiate propagation in the first place.
Thus it is clear, that by setting this parameter high, we will have a problem on areas where
the occlusion map is noisy (e.g top right area on Fig 21) or with objects that appear thin on
our disparity map. On the other hand, setting this parameter low, subtracts from the
confidence of the ConfDA and initiates propagation too often, which appears as noise on
the propagation areas. Fig 23 shows the quality of BP for several values of SCDQ. A value of 4
appears to be best. Fig 22 contains a visual comparison of census vs census with LRC and
belief propagation and Fig 24 presents a more thorough quality comparison based on the
quality metric of percentage of good matches for all the matching costs. As belief
propagation is a post-processing step, results are nearly identical between the different
matching costs tested, with the slight variations explained by the small differences on the
quality of the matching costs.

Census 9×9, Wa=5 Census BP 9×9, Wa=5, SNQ=64, SCDQ=6

Fig 22: Visual comparison of pure census vs census with the proposed belief propagation
procedure. Notice how BP fills in previously occluded pixels on object borders and on the right side

of the image.

43

W=9, Wa=5, SNQ =64, SCDQ=4 Without BP With BP

Census 75,93 % 81,16 %

AD-Census 77,09 % 82,03 %

SAD-Census 77,00 % 81,78 %

Fig 24: Mean percentage of good matches for best configurations of all three matching costs,
aggregated on all six Middleburry datasets.

The maximum disparity search range (Dmax) was set to 64, as this is a common setting
for many current solutions. A low disparity setting limits the minimum detectable distance
while a large one increases considerably the computational load.

Based on all the above data, we have made the decision to use an AD-Census
matching cost, as it appears to perform best with little additional computational cost in
regards to a pure census approach.

44

Fig 23: Mean percentage of good matches metric for several values of the confident
disparities queue size parameter. Census, SAD-Census and AD-Census have minimal

differences.

Chapter 4
Implementation

Design overview, parallelism and optimization

The algorithm offers parallelism in many levels. If we assume no structural hazards
to access pixels from a frame buffer, we can calculate simultaneously any matching cost of
any pixel of any frame. The algorithm offers pixel granularity parallelism. However, such a
scheme would require a prohibitive amount of resources and would introduce very long
delays due to huge gate fan-ins. On the other hand, such degree of freedom, allows us to
construct the system architecture in any way we see fit. The only constraints come from
the format the camera uses to deliver the data and the amount of resources we are willing
to allocate.

Given the sequential manner in which we receive pixels from the cameras, the most
efficient approach to process the data would be in a streaming fashion, which translates to
Dmax disparity evaluations per pixel clock. This constraint can be satisfied either by
performing these evaluations in parallel or by operating the core on a multiple of the pixel
clock and buffering the intermediate results.

It is important to assess the need for flexibility -in regards to algorithm parameters-
and the gains of such a setup. First and foremost, we will build a system that is frame-
agnostic. In other words our system will support a series of frame sizes within a range of
choices. We regard this feature as obligatory. However, a limit on the maximum frame
width was imposed, for reasons that we will explain in the Resources Analysis section. In
addition, all the algorithmic parameters discussed in the Parameter Tuning section are
adjustable. We also chose to structure our system in a modular way, in order to easily
add/remove features. Features such as scanline belief propagation and aggregation can be
turned on or off by the user of our system.

The effects of different window sizes and different aggregation window sizes can be
seen in Fig 16 or in Fig 25 in more detail. There are negligible gains if we choose a larger W
or Wa. The maximum achievable percentage of good matches was 78,36% for AD-Census
(W=7, Wa=13), so there is no real benefit in choosing such a large aggregation window. It is
thus our choice to fixate the window sizes on our implementation. Our design remains
generic in any parameter aspect but it is not reconfigurable during run-time. This decision
simplifies our hardware design. Our system was verified on a Virtex 5 XC5VLX110T as well
as a Spartan 3 1000, setting the parameters accordingly to fit the platform at hand.

45

Constant Wa W=7, Wa=5 W=9, Wa=5 W=11, Wa=5

AD-Census 76,50% 77,09% 77,47%

Constant W W=9, Wa=3 W=9, Wa=5 W=9, Wa=7

AD-Census 75,02% 77,09% 77,89%

Fig 25

Our design's scope is the stereo vision algorithm, not the Input/Output process. We
have implemented a very simple IO solution based on RS232, for verification purposes only.

Block Diagrams

The general block diagram of the main stage datapath of our algorithm (AD-Census
cost initialization and aggregation) is shown in Fig 1.

As input, the system receives two 8-bit pixel values per clock period, each for the
corresponding image in the stereo pair. A window buffer is constructed for each data flow
in two steps. Lines Buffer stores W-1 scanlines of the image, each in a BRAM, conceptually
transforming the single pixel input of our system to a W sized column vector. Window
Buffer acts as a W sized buffer for this vector, essentially turning it into a W2 matrix.

This matrix is subsequently fed into Census Bitstring Generator, which performs
W2-1 comparisons per clock, producing the census bit-string. Central pixels/Bitstrings FIFO
stores 64 non-reference census bit-strings and window central pixels, which, along with the
reference bit-string and central pixel are driven to 64 Compute Cost modules. This
component performs the xor/summing that is required to produce the hamming distance
for the census part of the cost, along with the absolute difference for the AD part and the
necessary normalization and addition of the two. The maximum census cost is 80 as there
are 81 pixels in the window. Likewise, the maximum AD cost is 255 as each pixel is 8 bits
wide. As the two have different ranges, we scale the census part from its 0-80 range to a 0-
255 range turning into an 8-bit value. To produce the final AD-Census cost we add the two
parts together, resulting in a 9-bit cost to account for overflow. Truncating this cost to 6-bits
produces a slight improvement in quality as well as reduced buffering requirements in the
aggregation step, as discussed in the Resources Analysis section.

For the aggregation task, 22 line buffers (Aggregation Lines Buffer) are used for 64
streams of 6-bit costs, each lines buffer allocated to 3 streams. Like the Lines Buffers at the
input, they conceptually transform the stream of data to Wa sized vertical vectors. Each
vector is summed separately in the Vertical Sum components and driven to delay adders
(Horizontal Sum), which output X(t) + X(t-1) + … + X(t-4). At the end of this procedure we
have 64 aggregated costs.

46

Fig 26

Following the aggregation of costs, the LRC component (Fig 27) filters out
mismatches caused by occlusions or otherwise. The architecture of this component is
based on the observation that by computing the right-to-left disparity at reference pixel
p(x,y) (used costs between pixels (p(x,y),p'(x,y)) , (p(x,y),p'(x+1,y)) , … , (p(x,y),p'(x+Dmax-
1))), we have already computed the costs needed to extract the left-to-right disparity at
non-reference pixel p'(x,y) (needs costs (p(x,y),p'(x,y)) , (p(x-1,y),p'(x,y)) , … , (p(x-
Dmax+1,y),p'(x,y))) (see Fig 29). LRC Buffer is a delay in the form of a ladder that outputs the
appropriate left-to-right costs needed to extract the non-reference disparity. The WTA
modules select the match with the best (lowest) cost using comparator trees. The
reference disparity is delayed in order to allow enough time for the non-reference
disparities space to build up in NonReference Disparities Buffer and then it is used to index
said buffer. Finally the thresholded absolute difference of DispRL(x,y) with DispLR(x,y)
indicates the false matches detected.

48

Fig 27

Finally the scan-line belief propagation algorithm discussed earlier was implemented
as shown in the datapath in Fig 28. The function of this component is based on two
queues: the Confident Neighborhood Queue and the Neighborhood Queue. As it is implied
by its name, the Confident Neighborhood Queue places quality constraints on its contents,
meaning that only disparities that pass the LR consistency check are written in it.
Furthermore, at each cycle it calculates the average of the confident disparities, as this
value will ultimately be propagated to unconfident ones in the neighborhood queue. This
average is calculated by a constant multiplier, using fixed point arithmetic and rounding to
reduce any number representation errors.

On the other hand, the Neighborhood Queue simply keeps track of local disparities
and their LR status. When the Propagate signal is asserted (active when a new confident
disparity is calculated and stored in the New Confident Disparity register), the NewDisp is
written to all records with a false LRC flag. NewDisp is selected to be Previous Confident
Disparity when this value is smaller than New Confident Disparity else it is assigned New
Confident Disparity.

49

Fig 28

Notes on operation

• A small frame of unknown disparities is formed around the final disparity image,
where due to the image boundaries, the windows cannot be formed and thus
disparities cannot be computed.

• Searching for matches near the image boundary leads to reduced or trivial disparity
search spaces. In such cases our system finds the best match in the possible range.
Left/Right Consistency check filters out any incorrect matches due to small search
spaces.

• Belief propagation is activated on each end of line regardless of the LRC indication,
in order to fill in the occluded right area of the image.

• In order for high resolutions to work acceptably the user needs to either increase
the Dmax accordingly or to reduce the inter-camera spacing. The second option is
preferable as it has no computational consequences, whereas increasing Dmax has a
cost on FPGA resources. Moreover, as the features of the images are now more
spaced out in pixel distances, the other parameters of the system need also to be
adjusted, if we are to maintain output quality.

Performance

Our system receives one pixel pair per clock and after an initial latency, generates
one disparity per clock. The most computationally heavy part of the main stage of the
algorithm, is the xor/summing that takes place in XOR Sum where we have to compute the
xor/sum of 64 80-bit strings at the same time. A similar situation appears in the WTA

50

Fig 29: At the top row are pixels of the right image, whereas at the bottom are
pixels of the left image. The green pixel on the right image has a search space

denoted by the green shade on the left image. In order to determine the validity
of DispRL(x,y) we need all left-to-right disparities in the green space and thus we

need right-to-left costs up to x+Dmax.

module, where we have to perform 64 11-bit comparisons simultaneously. We cope with
both bottlenecks through fully pipelined adder/comparator trees in order to maximize
throughput.

After the first system implementation we added extra pipeline stages to further
enhance performance. Below we present the differences between our initial unoptimized
design and our final optimized system. Given the maximum achievable frequency of our
system in both variations, we present the theoretical maximum throughput in terms of
frames per second (fps) in Fig 30. We also show the difference in resources utilization
between the two variations in Fig 31.

Resolutions 100×83 384×320 640×533 1024×853 1600×1333 1920×1200

Max Clock for
unoptimized design:

131 MHz
15.783 fps 1.066 fps 384 fps 150 fps 61 fps 56 fps

Max Clock for
optimized design:

201 MHz
24.216 fps 1.635 fps 589 fps 230 fps 94 fps 87 fps

Fig 30: Maximum theoretical throughput of our system for a reference clock of 100Mhz and our
maximum clock for various resolutions.

Variation Parameters Slice Flip-Flops LUTs Slices BRAMs/FIFO Max Clock

Unoptimized W=9, Wa=5,
Dmax=64

39.565
(57%)

37.107
(53%)

13.556
(78%)

59
(39%)

131.458
MHz

Optimized W=9, Wa=5,
Dmax=64

41.792
(60%)

37.986
(54%)

14.239
(82%)

59
(39%)

201.518
MHz

Fig 31: Resource utilization vs frequency for our two design variations.

The resource utilization penalty for the greater performance design is negligible and
thus our choice is clear. According to the tools the critical path lies on a control signal to
the FSM of our aggregation line buffers and is only 16,6% attributed to logic while the rest
83,4% of the delay is caused by routing.

51

Resources analysis

Aggregation of the costs consumes most of our BRAM resources, as we have to
construct Dmax x Wa cost line buffers1. It is important to note that BRAM primitives in Virtex5
FPGAs support certain restricted aspect ratios. These primitives are used by an allocation
algorithm to construct bigger memories. Memories with different widths/depths from
those ratios are mapped to the closest possible solution but may not use the resources
optimally. For example, memories with ratios of 1×16K (16.384 elements of 1 bit), 2×8K,
4×4K, 9×2K, 18×1K, 36×512 are guaranteed to utilize a single 18K primitive and thus use
the resources optimally.

In addition, very large frame sizes causes parameter bloating. Specifically, images of
1800×1500 require Dmax to exceed 180 for quality results (while not altering the current
camera baseline). Keeping the other parameters constant (W=9, Wa=5), such a large Dmax

would require buffering of 180×1800×5 elements in the aggregation stage.

For the reasons discussed above we decided to impose a limit on the images width.
Simply restricting frame width to 1024 pixels allows us to:

1. Pack at least two lines per 18K BRAM using a 9×2K primitive configuration. To each
cost line we allocate 9×1024 bits.

2. Avoid excessive parameter bloating.

Using AD-Census, the costs are 9-bit long as explained earlier. This is something that
benefits our design as BRAM primitives can be used optimally in a 9×2K configuration.
Using pure Census, cost size is reduced to 7 bits. We can maximize BRAM usage by using 9-
bit costs, so we have room to increase window size W up to 21×21, with little additional
cost to resource usage.

If our cost size is less than 9 bits or if our frame width is less than 1024 we can pack
more lines. This aspect of our design is also parametric, as depending on the frame size and
cost size, each BRAM can pack up to 6 lines in a 36×512 BRAM configuration.

In an effort to reduce BRAM consumption even further, we performed a cost size-
accuracy tradeoff analysis which can be seen in Fig 32. AD-Census was redefined as:

ADCensus ' = min(ADCensus , SaturationValue)

Selecting saturation values to be powers of 2, we can reduce cost size and thus fit more
data into the aggregation buffer BRAMs. Our analysis shows that there is even a slight
benefit in doing so: For a saturation value of 63 (cost size is reduced to 6 bits) and for the
default W and Wa values of 9 and 5 respectively, we observe a 0.5% improvement over the
cost without saturation, which puts our quality almost on par with a W=11 and Wa=5
parameter set. This slight improvement is attributed to the reduction of the influence of
outliers within the aggregation window by truncating the cost. With 6-bit costs, we can
pack 3 streams of costs per Aggregation Lines Buffer thus reducing BRAM consumption
even more. Note that FPGA resource utilization figures refer to all optimizations discussed
in place.

1 A total of Dmax x Wa x FRAME_WIDTH x COST_SIZE bits must be buffered.

52

Fig 33 shows the effect of the optimizations discussed above on our BRAM count for
W=9, Wa=5, Dmax=64 and a maximum frame width of 1024 pixels. It is advised to use smaller
frame sizes for optimal algorithm performance.

53

Fig 32: Cost size/accuracy analysis. The peak value shifts to the right as the true maximum cost
increases.

Fig 33: Resource savings with optimized aggregation buffer structure.

BRAM utilization
0

20

40

60

80

100

120

140

160

Without Optimizations

With aggregation BRAM
packing

With aggregation BRAM
packing and cost truncating

In order to conserve resources one could suggest to introduce two clock domains
instead of one, where the core functions at a multiple of the pixel clock. This way the core
could compute two times the data in the same time (e.g xor summing twice the census bit-
strings and thus double the disparity search range). However such a scheme would stumble
at the aggregation unit's architecture. The aggregation line buffers must provide enough
data to construct windows for each disparity, expecting the adjacent pixel's Dmax costs at
each cycle, in order to complete buffering the current scan-line. Providing the full Dmax costs
in multiple cycles instead of one would lead to thrashing the buffers. In order to avoid this
thrashing, we would need to double the size of the aggregation line buffers. Unfortunately
that goes against our initial goal of reducing resource utilization, especially if we take into
account the fact that our design has already high memory requirements.

Applying extensive pipelining has large demands in register resources. Fig 34 and Fig
35 show the resource utilization per subsystem on a Virtex 5 XC5VLX110T. Fig 36 shows the
resource utilization of our system, for various configurations. All values are post place and
route. Parameters are set to W=9, Wa=5 and Dmax=64 unless specified otherwise.

54

Fig 34: LUT utilization denotes logic distribution in our design.

LUT utilization

Cost Computation

Cost Aggregation

Left/Right Check

Belief Propagation

Dmax=64, W=9, Wa=5 LUTs (%) Flip-Flops (%) BRAMs (%)

Available 69.120 69.120 148

Total Consumed 37.986 out of 69.120 (55%) 41.784 out of 69.120 (60%) 59 out of 148 (40%)

AD Census 25.135 out of 37.986 (66%) 29.167 out of 41.784 (70%) 8 out of 59 (14%)

Aggregation 6.547 out of 37.986 (17%) 7.312 out of 41.784 (17%) 51 out of 59 (86%)

Left/Right Check 4.638 out of 37.986 (12%) 4.734 out of 41.784 (11%) 0 out of 59 (0%)

Scanline Belief
Propagation

543 out of 37.986 (1,5%) 634 out of 41.784 (1,5%) 0 out of 59 (0%)

Fig 35: Resources utilization per subsystem.

55

Constant Dmax,
Wa

Slice Flip-
Flops

LUTs Slices BRAMs/FIFO Max Clock

W=5, Wa=5,
Dmax=64

21.866
(31%)

21.637
(31%)

8.204
(47%)

59
(39%) 201.086 MHz

W=7, Wa=5,
Dmax=64

31.840
(46%)

29.813
(43%)

11.222
(63%)

59
(39%)

201.113 MHz

W=9, Wa=5,
Dmax=64

41.784
(60%)

37.986
(55%)

14.239
(82%)

59
(40%) 201.518 MHz

Constant W, Wa
Slice Flip-

Flops
LUTs Slices BRAMs/FIFO Max Clock

W=9, Wa=5,
Dmax=16

12.531
(18%)

10.284
(14%)

4.216
(24%)

30
(20%) 201.207 MHz

W=9, Wa=5,
Dmax=32

22.687
(32%)

19.148
(27%)

8.274
(47%)

30
(20%)

201.045 MHz

W=9, Wa=5,
Dmax=64

41.784
(60%)

37.986
(55%)

14.239
(82%)

59
(40%) 201.518 MHz

Constant W, Dmax
Slice Flip-

Flops
LUTs Slices BRAMs/FIFO Max Clock

W=9, Wa=1(off),
Dmax=64

33.047
(47%)

28.505
(41%)

11.713
(67%)

9
(6%) 201.005 MHz

W=9, Wa=3,
Dmax=64

38.660
(55%)

34.618
(50%)

13.546
(78%)

31
(20%)

201.167 MHz

W=9, Wa=5,
Dmax=64

41.784
(60%)

37.986
(55%)

14.239
(82%)

59
(40%) 201.518 MHz

Fig 36: Resources utilization for the maximum performance implementation of the system for
various configurations. Implemented on a Virtex5 XC5VLX110T, speed grade -1.

56

Chapter 5
Validation

Our system's function was verified using significantly downscaled dataset images to
accelerate simulation. The datasets were converted to pgm format and read into our
testbench through a library. Subsequently the result was also written in a pgm file. Initial
comparison with the software implementation was performed in the testbench, through a
pixelwise absolute difference with the output. A threshold of 1.0 was in place as in [11].
Some variation was detected which was confirmed to be caused by a different format of
inputs (MATLAB processed png images while the implementation was given pgm) and a
small inconsistency in the disparity search range (MATLAB used a 0-64 range while the
implementation used 0-63).

After simulation, the system was also verified on two systems, a Xilinx ML505 Board
equipped with a Virtex 5 XC5VLX110T FPGA as well as a Digilent Spartan 3 1000 platform.
Fig 37 shows what was validated in which platform. BRAMs on the Spartan 3 were limited,
so we were forced to disable aggregation and belief propagation on that platform.

We now discuss the testing methodology we followed. Block RAM resources on the
FPGAs were initialized through coe files with the test datasets. The stereo vision core
processes the data and writes the result in a FIFO. The contents of the FIFO are
subsequently sent through an RS232 connection, with 9600 b/s, to a host computer. In
order not to overwhelm the input buffer of the host computer, which usually has a size of
4096 bytes, we implemented a simple flow control solution. Our system's output was in a
custom encoding instead of ASCII or UTF-8, so we also implemented a small program on
the host computer, which translates and saves the data to a pgm image file. Due to the low
bitrate of RS232 compared to the throughput of our system (three orders of magnitude
slower), the FIFO must be large enough to fit the whole frame.

Our validation setup can be seen in Fig 38. Fig 39 shows a comparison between our
software and hardware implementations.

Implemented (Placed & Routed) Validated on board

Spartan 3 1000 W=9, Wa=1
(off), Dmax=16†

W=9, Wa=3,
Dmax=16

W=5, Wa=5,
Dmax=16

W=9, Wa=1 (off), Dmax=16 †

Virtex 5
XC5VLX110T All configurations in Fig 36 W=9, Wa=5,

Dmax=16
W=9, Wa=5,

Dmax=64
†: Without Belief Propagation

Fig 37: Values of Dmax = 16 correspond to 100×40 frame sizes whereas Dmax = 64 was tested with
400×320 frames.

57

Input image (100×40) Matlab implementation Virtex 5 XC5VLX110T

Moebius

Dolls

Reindeer

Laundry

Books

Art

Fig 39: Comparison between software and hardware implementation. Mean disparity error was
calculated to 0.6/15 => 4%.

58

Fig 38: Validation methodology.

The difference between software and hardware is attributed to variations in the
Winner-Take-All process, where when comparing equal quantities, a different outcome
takes place in the two implementations respectively. Software selects one of the two equal
values randomly while hardware always selects the first value. Fig 40 demonstrates a pixel-
wise comparison between software and hardware, where black pixels represent deviations
larger than 1.

59

Fig 40: Diff map between software and ground truth for the Moebius dataset in 400x320
resolution. Black stands for large variations.

Software Ground Truth

60

Fig 41: Diff map between hardware and ground truth for the Moebius dataset in 400x320
resolution. Black stands for large variations.

Ground TruthHardware

61

Fig 42: Diff map between software and hardware diff maps.

Software errors Hardware errors

References

[1] N. K. Ratha, A. K. Jain, “Computer Vision Algorithms on Reconfigurable Logic Arrays”,
IEEE Transactions on Parallel and Distributed Systems, Jan. 1999, Vol. 10, No. 1, pp. 29-43.

[2] C. Murphy, D. Lindquist, A. M. Rynning, T. Cecil, S. Leavitt and M. L. Chang , “Low-Cost
Stereo Vision on an FPGA”, in IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2007, pp. 333-334.

[3] K. Ratnayake, A. Amer, “An FPGA-Based Implementation of Spatio-Temporal Object
Segmentation”, in IEEE International Conference on Image Processing (ICIP), 2006, pp.
3265-3268.

[4] K. Konolige, “Small Vision Systems: Hardware and Implementation”, in International
Symposium on Robotics Research, 1997, pp. 111-116.

[5] B. Rajan, S.Ravi, “FPGA Based Hardware Implementation of Image Filter With Dynamic
Reconfiguration Architecture”, in IJCSNS International Journal of Computer Science and
Network Security, Dec. 2006, Vol. 6, No. 12, pp. 121-127.

[6] D. K. Masrani, W. J. MacLean, “A Real-Time Large Disparity Range Stereo-System using
FPGAs”, in Proceedings of the IEEE International Conference on Computer Vision Systems,
2006, pp. 42-51.

[7] C. Claus, A. Laikat, L. Jia, W. Stechele, “High performance FPGA based optical flow calcu-
lation using the census transformation”, in IEEE Intelligent Vehicles Symposium, 2009, pp.
1185-1190.

[8] S. Jin, J. Cho, X. D. Pham, K. M. Lee, S. K. Park, M. Kim, J. W. Jeon, “FPGA Design and Im-
plementation of a Real-Time Stereo Vision System”, in IEEE Transactions on Circuits and
Systems for Video Technology, Jan. 2010, Vol. 20, No. 1, pp. 15-26.

[9] M. Humenberger, C. Zinner, M. Weber, W. Kubinger, M. Vincze, “A fast stereo matching
algorithm suitable for embedded real-time systems”, article in Computer Vision and Image
Understanding, Mar. 2010. [Online]. Available: www.elsevier.com/locate/cviu

62

[10] S. Hadjitheophanous, C. Ttofis, A. S. Georghiades, T. Theocharides, “Towards Hardware
Stereoscopic 3D Reconstruction, A Real-Time FPGA Computation of the Disparity Map”, in
Design, Automation & Test in Europe Conference & Exhibition (DATE), Mar 2010, pp. 1743-
1748.

[11] D. Scharstein, R. Szeliski, "A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms", in International Journal of Computer Vision, Apr. 2002, Vol.
47, No. 1-3, pp. 7-42.

[12] J. Salmen, M. Schlipsing, J. Edelbrunner, S. Hegemann, S. LükeReal-Time, “Stereo
Vision: Making more out of Dynamic Programming”, in Computer Analysis of Images and
Patterns, 2009, Vol. 5702/2009, pp. 1096-1103.

[13] R. Zabih, J. Woodfill, “Non-parametric local transforms for computing visual
correspondence”, in Proceedings of the third European conference on Computer Vision
(ECCV), 1994, Secaucus, NJ, USA: Springer-Verlag New York, Inc., pp. 151-158.

[14] G. Xiong, X. Li, H. Chen, D. Lee, “Color Rank and Census Transforms using Perceptual

Color Contrast”, in International Conference on Control, Automation, Robotics and Vision
(ICARCV), Dec. 2010, pp. 1225-1230.

[15] C. Rhemann, A. Hosni, M.Bleyer, C. Rother, M. Gelautz, “Fast Cost-Volume Filtering for
Visual Correspondence and Beyond”, in Proceedings of IEEE Computer Vision and Pattern
Recognition (CVPR), 2011.

[16] Stefano Mattoccia, "Stereo vision: algorithms and applications", VIALAB Bologna,
November 2011. http://www.vision.deis.unibo.it/smatt/stereo.htm

63

http://www.vision.deis.unibo.it/smatt/Seminars/StereoVision.pdf

