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Chapter 1
Introduction

Abstract

The ability  to track  objects  and people  in  real  time would greatly  benefit  many 
applications  that  interact  with  real  environments.  For  example  cars  could  brake 
automatically when detecting pedestrians or objects in harms way. Agricultural equipment 
could autonomously navigate fields avoiding obstacles. Security systems could track people 
moving  through  buildings  or  different  areas.  3D  Vision  and  its  most  effective 
implementation,  stereo  vision,  could  assist  these  applications.  Stereo  vision  uses  two 
cameras  side  by  side  to  produce  virtually  instantaneous  estimates  of  the  distances  to 
elements in a scene. These distances can provide a primary cue for identifying objects that 
stand  out  from  the  background  and  interpreting  their  shape,  thus  assisting  object 
segmentation and identification. 

In the present work we describe a 3D stereo vision design and its implementation 
that exploits effectively the resources of an FPGA. Our place-and-route design achieved a 
high processing rate for large resolutions, while the hardware prototype system was fully 
tested and validated over several data sets with medium resolutions.

Introduction

The purpose of all stereo vision algorithms is to construct an accurate depth map 
out  of  two  or  more  images  of  the  same  scene,  taken  under  a  slightly  different 
angle/position (Fig  1). In other words, they use the cue of stereopsis to calculate depth 
valued pixels. The resulting depth map is usually a grayscale image, where closer points are 
brighter.
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 In its  most  basic  form, stereo vision uses two cameras.  A point  in space should 
correspond to one pixel in each of the two images from the two cameras. If we can find 
those  pixel  pairs  that  correspond  to  the  same point  in  the  scene,  we  can  extract  the 
distance of that point through triangulation (Fig  2). The difference in the position of the 
two corresponding pixels, which is called disparity, is directly connected to the distance of  
the point they correspond to. More specifically, larger disparities are connected to closer 
objects, while smaller disparities suggest points farther away from the cameras.
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Fig 1: Inputs-Output of a stereo vision algorithm. Middlebury 2005 Art dataset.

Fig 2: Point P(X,Y,Z) corresponds to points x1 and x2 in the two cameras. Z is the unknown  
distance of the point, f the focal length of the cameras and b the baseline distance  

between the two cameras. Using these values and the coordinates of x1 and x2 in the two  
images we can extract Z through triangulation. Image courtesy of Stefano Mattoccia [16].



Placing  the  two  cameras  one  next  to  the  other  on  the  same  plane,  enforces 
corresponding pixels on the same line, called the epipolar line (the white line defined by  
Cx1  and  Cx2  in  Fig  2).  In  other  words,  disparity  is  reduced  from  a  two  dimensional 
displacement  Δx,  Δy to just  Δx, a displacement on the same horizontal line. However, as 
exact camera alignment is not only difficult but also prone to possible future events, such 
as mechanical shocks sustained by the system (e.g when the system is used on a moving 
platform  such  as  a  car),  lenses  degradation  etc,  the  epipolar  line  constraint  must  be 
dynamically enforced. 

Rectification is the process of applying spatial transformations on the input images 
in  order  to  bring  them on the  same plane,  accounting  for  any  imagers  misalignment, 
difference in focal length and removing any camera induced distortions. This allows us to 
satisfy  the  epipolar  line  constraint,  which,  as  discussed  previously,  ensures  that  the 
matching pixel belongs on the same horizontal line (scan-line) as the reference pixel and 
only in one specific direction relative to it. The disparity search space is thus reduced from 
2D to 1D (see Fig 3).

The basic problem of finding pairs of pixels that correspond to the same point in two 
images, known as the correspondence problem, appears not only in stereo vision but also 
in other image processing topics such as optical flow calculation1.  Although, one would 
expect that the reduction of the search space of corresponding pixels from two dimensions 
to one through rectification would make finding unique and accurate matches easy, this is 
not the case. In practice, many real-world “inconveniences” such as reflections, occlusions,  
texture-less areas, noise etc, along with the inherent similarity among nearby pixels, make 
this task difficult.  Furthermore, real  world conditions such as moving objects  and poor 
weather pose another significant challenge especially for outdoor applications. Rain, snow 
and ice can alter the appearance of objects. People or objects can be stationary or moving  
in different directions and different speeds.

Many stereo vision algorithms have been developed over the years to tackle the 
correspondence  problem.  A  taxonomy of  dense  stereo  correspondence  algorithms  has 
been developed in Scharstein et al.  [11]. The algorithm presented here produces dense 
depth maps, which unlike sparse depth maps, convey depth information on every pixel. It is 

1 Optical flow calculation is the process of estimating the relative speed of an object by locating its position in 
consecutive frames of a video stream.
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Fig 3: Rectification reduces corresponding pixel search space from two dimensions to one, greatly  
simplifying the corespondence problem.



also important to note that the stereo vision algorithm that we discuss, is fed with rectified 
images. See Fig 4 for an overview of a stereo vision system.

The correspondence problem is made more difficult by the presence of occlusions, 
which prevent a pixel from appearing in both images (Fig 5). Occluded areas are areas that 
appear  only  in  one  of  the  two  images  and  thus  are  effectively  unmatchable  by  the 
correlation  process.  For  this  reason,  any  matches  produced  in  occluded  areas  are 
statistically false. In order to match occluded areas, some form of propagation of confident 
disparities to uncertain areas must be performed. Usually occluded areas are presented 
close to object edges.

Reference image Occlusions marked in black

Fig 5: Reference image (Teddy) and occlusions map. Notice how occlusions appear on object  
borders and in areas out of the field of view of both images (right bar).

8

Fig 4: General stereo vision system structure.



Requirements

Real time applications depend on stereo censors to deliver adequate frame-rates of 
confident  depth  maps  with  low  latencies.  Desirable  characteristics  of  a  stereo  vision 
algorithm are:

a) Robustness in different lighting conditions, where light intensity can be significantly 
different from one camera to the other. 

b) Robustness  in  depth  discontinuities.  Object  edges  must  be  accurately  and 
unambiguously defined.

c) Outliers correction, where algorithm false results must be flagged and handled.
d) Robustness in occlusions, where occluded areas must be detected and dealt with. 
e) Robustness in low-texture areas. 

The algorithm we present, in its bare-bones form, satisfies many of these constraints, while  
supporting easy modular addition of further enhancing features. The algorithm also allows 
for a large degree of parallelism, which, along with the need for bit counting used in one of 
its steps, makes it a good candidate for FPGA implementation. 

Digital  cameras  usually  provide  the  pixel  values  in  a  sequential  manner,  on  the 
horizontal  or  vertical  scan  line.  In  order  to  increase  their  throughput,  some  cameras 
provide  multiple  scan  lines  simultaneously  called  taps.  Many  of  them  implement  a 
standardized communication protocol,  Camera Link.  Camera Link uses a dedicated cable 
connection to transmit data as LVDS signals at rates 2.04 Gbit/s for the base configuration,  
up to 5.44 Gbit/s for the full configuration, at the maximum operating frequency of 85MHz 
and over a 10 meter cable. As comparison, a video stream of 640×480 of gray-scale frame 
pairs, requires:

 2 x (640×480) pixels/frame x 8 bit/pixel x 30 frames/s =  147.456 Mbit/s
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Chapter 2
Related work

[1] Computer Vision Algorithms on Reconfigurable Logic Arrays

This  paper  studies  systolic  hardware  architectures  for  three  machine  vision 
algorithms, each one used in a different image processing task, on a Splash2 CCM (Custom 
Computing Machine) platform, with 16+1 FPGAs per board (may expand to more than one 
board). Each of these FPGAs in Splash2 constitutes a Processing Element (PE) with its own 
memory. The 17th is used to program the connections between the other  PEs  through a 
crossbar. 

The  first  algorithm  is  employed  for  the  important  low  level  operation  of  2d 
convolution. The basic idea is to convert the 2d mask into a 1d array and use the PEs to 
compute the partial sums. For example if the 1d mask array has k elements, then the k-th 
PE will compute the value of partial_sum(k-1) +pixel_value*mask[k] (where partial_sum(k-
1) is already computed by its neighbor). The 1d mask array is extended with zeros and the 
PEs  assigned  to  calculate  those  zero  multiplications  are  simply  programmed  as  shift 
registers. Comparing this implementation with others (von Neumann (C), MIMD and SIMD) 
it comes as no surprise that the FPGAs and Splash2 are much better (e.g on a 512×512 
image  with  a  3×3  mask  execution  was  completed in  13.89  ms).  However  no  dynamic 
reconfiguration of the FPGAs occured during execution.  

The  second  algorithm  is  about  image  segmentation  (segmenting  an  image  in 
"interesting" areas) and more precisely segmenting a document photo in text areas, image 
areas, etc. This algorithm has three stages: 1)application of 20, 7×7 filters on the initial  
image, 2)classifying the different image areas with a neural  network and finally a small 
stage of 3)postprocessing to remove noise and place frames around the identified areas.  
Between  the  first  and  second  stage  Splash2  is  reconfigured  to  accommodate  a  more 
efficient datapath. The first filtering stage uses the 2d convolution architecture described 
above. In the second stage -neural network-, each node-neuron of the network executes 2 
basic tasks: It a) multiplies its inputs with weights and aggregates them (inner product) and 
b) passes the result to a non-linear function. Regarding the hardware mapping, these two 
jobs are assigned to 2 PEs respectively. The first PE computes the inner product of the input 
vector  (size  20)  with  the  weight  vector.  It  carries  out  this  computation  through  an 
accumulator. The second PE computes the non-linear function result by a Look-up Table 
and stores it in its memory. It is important to note that multiplications are also in general 
carried out by Look-up Tables because of their cost. When this process is completed for all 
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level-1 neurons, the host machine has the opportunity to access the intermediate results 
that are stored in the PEs memories. When the process finishes calculation on the final  
neuron level, the stage is complete. The crossbar is used to broadcast intermediate results 
to the rest of the neurons.  Experimental  data shows that this implementation reduced 
execution time from 250 seconds on a SPARCstation to just 3.8. 

The third algorithm that was examined concerns fingerprint matching. The problem 
is formulated as a best match search: We are given a features database1, including features 
sets  from  fingerprints  of  a  population,  and  a features  set of  the  wanted  person.  The 
hardware architecture is as follows: Each feature f of the wanted fingerprint is mapped to a 
PE. Initially a tolerance box for f is calculated and stored in a Lookup Table in the memory 
of the PE. This tolerance box is a set of features (xi,yi,θi) that are assumed to match with the 
wanted feature (x,y,θ),  because the components xi,yi  and θi are close to x,y,θ.  During run-
time, the database sends feature vectors for each fingerprint. Each vector is broadcasted in 
the system,  with each vector element reaching each PE.  If  a PE matches the feature  it 
received (finds it in its Lookup table), it drives a global OR bus to logical 1. The 17th FPGA, 
the one that controls the connections, listens to the Global OR bus and each time it detects 
a  1,  it  increments  a  counter.  When  all  feature  vectors  for  a  specific  fingerprint  are 
transmitted from the database, the host machine reads this counter value (in other words 
it reads how many features matched).  When this process is finished for all fingerprints in 
the database, the host  has the number of feature matches for each fingerprint so it can 
easily extract the best one. This hardware implementation offers a 4 orders of magnitude 
improvement over the SPARCstation.

1 :Human fingerprints are characterized by ridges and valleys, which some times bifurcate or stop. This is what makes 
them unique in each person. A feature is defined as the set f(x,y,θ) where x,y is the coordinate of the bifurcation or 
ending and θ its angle.
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[2]  Low-Cost  Stereo  Vision  on  an  FPGA

 In this paper a low cost hardware architecture of stereo vision is discussed. Stereo 
vision uses two images taken in a slightly different angle to construct a depth map of a  
scene. An alternative to collect accurate depth data is to use a laser (LIDAR). However it is 
still  very  expensive  for  consumer  applications.  
 The Census Transform algorithm was implemented in a Xilinx Spartan 3 FPGA. This 
algorithm finds the corresponding pixels pairs in two images and outputs their distance as a 
measure of depth. These are the steps of the algorithm in more detail: 1) For each pixel in 
the reference image (assume right), compute a bit vector of size 13×13=169, where each 
bit describes the relative difference in the intensities of the pixels in the 13×13 window 
with the central pixel. A bit value of 1 translates into a positive difference. 2) Repeat the 
first step for a range of pixels around the position of the reference pixel, in the left image 
(in the paper a range of 20 is used). 3) For each bit vector pair (20 pairs) compute the  
hamming distance. 4) Find the pair with the minimum hamming distance. The distance in 
the position of the two matching pixels  (disparity)  is  inversely proportional  to the true 
depth  in  that  pixel.
 The system is interfaced with a CMOS camera pair  through two 8-bit  buses and 
processes the incoming data on the fly, without the need of a frame buffer. The top module 
receives 2 pixels in every cycle, each one from each camera, and another 1-bit input which 
determines a new frame set. Internally, 2 blocks called xFormCensus compute the census 
transforms (the  first  one  computes  only  the census  transforms of  the  reference  pixels 
whereas  the second carries  out  the computation of  all  20  non-reference pixels  census 
transforms.  A  delay  unit  is  used  to  synchronize  the  2  blocks).  A  third  block,  named 
cmpLeftRight,  receives  the  bit  vectors,  extracts  the  minimum  Hamming  distance  and 
outputs  the  disparity  of  the  2  matching  pixels,  as  a  5-bit  value  (maximum  is  20).  
 The system reached 40 fps in 320×240 images, utilizing 57% of the FPGA resources 
and is oriented towards agricultural  datasets (trees, bushes etc). However, lack of post-
processing  and  the  limited  upper  disparity  of  20  come  as  disadvantages.

13



[3] An FPGA-Based Implementation of Spatio-Temporal Object Segmentation

As the title suggests, this paper discusses image segmentation on video data 
streams. The algorithm has 3 
distinct stages: 
1. Motion detection
2. Thresholding
3. Edge detection
The FPGA of choice is Virtex 2 Pro 
XC2VP20.

A series of operations is described 
according to the  general 
algorithm architecture shown on 
the right, which result in an image 
with highlighted objects. The 
general hardware architecture is shown in Fig 2. 

Every  data  transfer  passes  through  the  DMA. 
Initially a video frame is sent to the DMA which 
consecutively broadcasts it on the external DDR 
memory and the Motion Detection module. At 
the  same  time,  DMA  also  reads  the  previous 
frame I(n-1) or a background image BK(n) from 
the DDR memory and sends it   to the Motion 
Detection  module. Motion  Detection  module 
output, D(n), is routed back to the memory and 
is also send to the Spatio-temporal Tresholding 
module.  Because  the  Spatio-temporal 
Thresholding module requires a full frame time 
period to produce a valid threshold,  the frame 
that  is  currently  being  processed  is  buffered. 
While buffering the previous motion-detected

frame is read from the memory and is sent to the last processing

block for morphological edge detection. All these data transfers are handled seamlessly for  
the processing modules by the DMA. Each module implements an ad-hoc solution for the 
corresponding algorithmic component. The system achieved 7.5ms per 1024×1024 frame 
at  133MHz,  performance  characterized  as  real-time.  It  has  a  total  throughput  of 
133Mpixel/s,  using  60% of  the  FPGA area.  Moreover  it  is  very  flexible  as  many  of  its  
parameters can be set at run-time. However, even though it is scalable, the DDR memory 
presents  a  potential  bottleneck.
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[4]  Small  Vision  Systems:  Hardware  and  Implementation

In this case, a stereo vision algorithm was implemented on a DSP platform called 
Small Vision Module (SVM). The algorithm uses SAD correlation on images filtered by a 
Laplacian of Gaussian (LoG, filtered image has zero crossings on edges). As LoG is an edge 
detection filter, it allows for robust lighting independent correlation, as edges remain the 
same  no  matter  the  lighting  conditions.  This  algorithm  was  preferred  over  Census 
transform with hamming distances, as it does not require bit-counting hardware which is 
usually  not  available  on  microprocessors  and  DSPs.

To further enhance the resulting image, the algorithm incorporates (a) an interest 
operator  (assigns  confidence  to  textured  areas)  and  b)  a  left/right  check  which  helps 
remove false matches on depth discontinuities. SVM also offers a variable search disparity  
range  (16,24  or  32  pixels)  and  automatic  camera  calibration  and  rectification  of  input  
images.  Auto-calibration  is  required  in  order  to  satisfy  the  horizontal  epipolar  line 
constraint of the stereo vision algorithm and is done by maximizing the left/right matches 
and a disparity smoothness measure through horizontal and vertical offsets. This process 
takes a few seconds to complete as it performs a hierarchical search from coarse resolution 
to fine resolution at a few image points where the measures mentioned are highest. When 
vertical  and  horizontal  offsets  are  calibrated,  the  same  measures  can  be  used  to 
compensate for vergence and rotation distortions.

The updated version of SVM, SVM II, using a Texas Instruments DSP (TMS320C60x) 
running at 200 MHz,  achieved a thirty-fold increase in performance in simulation over its 
predecessor, SVM, which run at 8fps with 160×120 images. Cameras with better SNR can 
increase  matching  accuracy.  DSPs  offer  the  best  performance  vs  flexibility  vs  power 
consumption  tradeoff  whereas  FPGAs  offer  the  best  performance  and  even 
microprocessors with SIMD instructions can achieve real-time performance and offer the 
biggest  flexibility  with  the  cons  of  high  cost  and  power  consumption.  
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[5] FPGA Based Hardware Implementation of Image Filter With Dynamic Reconfiguration 
Architecture

The system implements filtering and noise removal on an image by using a genetic 
algorithm.  It also uses coarse-timescale reconfiguration as a means to adapt to the slow 
changing  dynamic  conditions  (lighting  conditions,  noise  etc)  and  requirements  of  the 
application (low latency vs high accuracy). Apart from the said slow changing speed of the 
variations, another reason for choosing coarse-timescale reconfiguration is the millisecond 
order of FPGA reconfiguration times. 

As inputs, the filtered and the original images are given. The system stores these two 
images on a  buffer  and then computes  the initial  population by  producing   16 250bit  
chromosomes in 16×25 cycles (25 cycles to generate 250 random bits from a 10bit random 
number generator). Each chromosome is used to filter the distorted input image, with a 
filter  size  of  3×3.  The  filtered  image  is  compared  to  the  original  image  and  a  fitness 
function  is  evaluated.  Based  on  that  fitness  function  value,  the  best  chromosome  is 
selected, which will  be used to produce the new generation of chromosomes, through 
reproduction,  crossover  and  mutation  operations.  In  detail,  the  new  chromosome 
population will consist of 15 new mutated children of the fittest chromosome along with  
the mutated children from the reproduction of other random chromosomes. The process 
continues until the quality constraints are met or the iteration limit is reached.

The platform used includes an FPGA 600K Spartan-IIE, a 4Μx16 data memory and a 
ROM 1Μx16,  analog input  with ADC,  DAC for  video  output  and  RS232/PCI interfaces. 
According to conditions, a less complex hardware design can be swapped into the FPGA to 
achieve the same accuracy.

  For Gaussian noise the system achieved better results than the Gaussian filter. 
Furthermore the FPGA implementation achieved a 400-fold acceleration compared to a C 
implementation.
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[6] A Real-Time Large Disparity Range Stereo-System Using FPGAs

In this paper the stereo vision algorithm of Local Weighted Phase Correlation (LWPC) 
is implemented on an FPGA. This algorithm has the advantage of very large disparity search 
ranges,  as far as 128 pixels.  The key to achieve this is the use of two windows:  One that 
defines where a pixel is in the current frame, based on the estimation of its position on the 
previous frame (uses the assumption that on 30 fps, the disparity of a pixel won't change 
dramatically between consecutive frames) (Primary Tracking Window,  PTW)  and another 
that does a random search outside PTW in order to deal with occasions where the disparity  
has changed a lot between frames (due to the speed of an object or the insertion of a new 
object  in the scene)  (Secondary Roving Window,  SRW).  The system also employes  pre-
processing (image rectification) and post-processing (left/right check) steps,  as well as sub-
pixel  estimation through interpolation.  The search for  a new disparity  is  done in three 
orientations and scales, from which the most confident one is selected.

The block diagram of the system is shown below.

As the position estimation for each pixel is propagated from frame to frame, the 
algorithm has the risk of getting stuck to a local minimum. In such a case the  STW helps to 
recover by replacing the PTW (the confidence for the STW will be greater than that of the 
PTW in such a case).

The  platform  of  implementation  was  Transmogrifier-4,  which  contains  4  Altera 
Stratix S80 FPGAs, suitable video interfaces (eg NTSC and Firewire camera interfaces etc) 
and 2GB DDR RAM for each FPGA. Performance wise, the system is rated at 30fps in video 
streams of 640×480 pixels.
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[7] High performance FPGA based Optical Flow calculation using the Census Transformation

The  paper  examines  a  variation  of  the  census  transform algorithm,  adapted  for 
computation  of  the  Optical  Flow  from  a  single  video  stream.  The  Optical  Flow  image 
describes object motions, by means of motion vectors. In short, the algorithm finds the 
corresponding pixels in two subsequent frames of a video stream, and paints a vector from 
the starting position to the ending one. Given that information, a velocity vector can be 
extracted. The procedure is the following: For each pixel in frame tk, a signature string is 
calculated using the modified census transform. The same thing is repeated for the next 
frame tk+1. The pixel identities are then used to match each pixel in tk with its corresponding 
one, in the subsequent frame tk+1. 

The modified census transform defines a bit string of 0, 1 and 2 (instead of the plain  
version, consisting purely of 
0 and 1) for each pixel. The 
exact  formula  of  this 
calculation  is  described  in 
the image on the right. The 
intensity of the central pixel 
i(x,y) is compared to that of 
certain  pixels  in  its 
neighborhood  i(x+i,y+j).  If 
i(x+i,y+j)>i(x,y)+ε,  a  two  is 
written on the bit string. If 
i(x+i,y+j)<i(x,y)-ε, a one is written instead. Otherwise a zero is written. The number  ε is 
given as a parameter to the algorithm. Moreover a sampling distance is also set (dc1, dc2) 
which denotes which pixels are compared to the central one. The correlation step demands 
that  two bit  strings  are identical  and unique in order  to have a match (instead of  the  
minimum hamming distance used in the classic census transform). It is also desirable to 
tune the parameters  ε and dc in  such a  way as  to have many unique pixel  signatures 
generated at each frame (in order to have potentially more matches) and at the same time 
have a small amount of incorrect matches. It is shown that adjusting these parameters to 
produce one effect involves tradeoffs to the other, so they must be carefully set. 

An implementation based on software and one based on hardware were described 
and compared. The two solutions were not identical, as they were both optimized for their  
platform. Their most important common features are 1) that they both use two matrices,  
one for the frame tk and the other for frame tk+1 and 2) that they both calculate the census 
signatures for all pixels in each of these frames: 

In the software implementation (using a Core 2 Duo 1.86 Ghz)  the matrices are 
indexed by the pixel signatures and each matrix cell contains the coordinates of the pixel 
(x,y) along with a counter denoting how many times that specific signature was generated. 
The algorithm produces the pixel signatures for the two subsequent frames and fills up two 
matrices.  At the end, the pixels that match are the ones that  have the same signature 
which was also generated just once (corresponding rows with both counters set to 1). Thus 
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in regard to the correlation step of this implementation, we can say that it uses a global 
matching scheme, meaning that a pixel in tk can match to any pixel in tk+1. 

In  the  hardware  implementation  (using  an  XC2VP30  FPGA from  Xilinx  with  two 
embedded PowerPC Processor cores) the matrices are indexed by the coordinates of the 
pixels (in order to take advantage of burst data transfers). Each matrix cell contains just the 
signature of the pixel. Again the algorithm fills up the two matrices and at the matching 
step, it searches in the second matrix just the area around the location of each pixel in the 
first  matrix to find a match. In other words it  uses a local  matching scheme, so that a 
matching pixel in tk+1 is only found in the neighborhood of the reference pixel of frame tk. 

The  hardware  solution  uses  two modules,  the  Census  Engine  and the  Matching 
Engine,  to  carry  out  the tasks  of  computing  a  signature  given a  window of  pixels  and 
matching two pixels from two subsequent frames, given a window of signature values. The 
system also contains a DDR SDRAM memory which is used to store intermediate results 
(such  as  the  signature  values  of  every  pixel  in  each  frame,  computed  by  the  Census 
Module). The PowerPC processor is used to paint the motion vectors at the end of the 
procedure. Everything is connected to each other through the Processor Local Bus.

The hardware platform requires 22.17 ms to process each frame set, so approximately 45 
fps  is  the estimated system’s  performance.  The  results  also  show a speedup of  1.8  in 
execution time from the software implementation, which takes 40.55 ms for each frame 
set. If the frequency is taken into account, a speed up factor of 16.15 is obtained from the  
HW version. The HW implementation consumes 9200 flip-flops, 13927 4-input LUTs and 50 
BRAMs. Furthermore the FPGA platform offers far lower power consumption. 
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[8] FPGA Design and Implementation of a Real-Time Stereo Vision System

The paper presents a complete stereo vision solution, which is implemented on an 
FPGA. The system is synchronized with a pixel clock, which is the frequency at which new 
pixels are fed into it. The pixel clock is based on the frame rate and the resolution of the in-
put images so the system is flexible in regards to these camera parameters. 

The main stages of the system are image rectification, stereo local matching (using 
the census transform) and post-processing which enhances the quality of the result and is 
consisted of a uniqueness check, a left/right check, a sub-pixel estimation step and a step 
of spike removal.

Image rectification uses the matrices generated during the camera calibration, which 
is an off line procedure, to map each pixel coordinates of the original image to their coun-
terparts in the rectified one, using reverse mapping. Subsequently, the stereo matching 
module undertakes the task of solving the pixel correspondence problem, using the local 
method of census. The module is separated in the census transform stage and the correla-
tion stage. The census transform stage generates the census signature of each pixel on 
both the right and left images. It simultaneously constructs the bit string of a pixel in the 
reference image and all those in the disparity range on the other image. The window size of 
11×11 sets the size of the bit strings to 120 bits so when computing the hamming distance,  
a maximum of 120 differences can be detected which translates into a 7bit number. The ar-
chitecture of the module is better shown below:

The post processing module consists of the LR-check, the uniqueness test, the spike 
removal ad the sub-pixel estimation sub-modules. LR-check is used to remove occlusions,  
whereas  the uniqueness  test  is  used to  determine  whether  the selected disparity  is  a 
unique minimum or non-unique minimum. If a disparity result passes these two checks, it 
is fed to the sub-pixel estimation and the spike removal phases. 

The spike removal phase, assigns a label at each disparity pixel, depending on the la-
bel of its neighboring pixels and its disparity value. It then proceeds to eliminate all pixels 
of a label L, if they are fewer than a threshold parameter.

The system was implemented on a Xilinx Virtex-4 XC4VLX200-10 FPGA, utilizing 57% 
slices and 95% BRAMs. The amount of logic resources consumed by the census transform 
and correlation modules are linearly increased as the disparity range and the window size 
increase, while the other modules are affected less. A theoretical peak performance of 230 
fps can be achieved with an average 17.24% of bad pixels per 640×480 frame.
[10] Towards Hardware Stereoscopic 3D Reconstruction, A Real-Time FPGA Computation of 
the Disparity Map
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In this  paper a stereo vision local  algorithm is  explored and implemented on an 
FPGA platform. The system receives a rectified pair of frames and outputs a sparse 3D map 
of the scene. The process is divided into two steps: the correspondence step that involves 
finding pixels belong to the same point in space in the two frames and the reconstruction 
step which extracts the actual distance from the camera. 

The correspondence step is the most computational intensive. The system uses a 
simple local SAD correlation method but applies it on edge detected images instead of the 
original dense pair. This allows for a large reduction on the data being processed and thus 
has a positive effect on the overall system performance, measured by frames per second. 
By applying a Sobel edge detection filter to both frames, the correspondence step has to 
be applied only on reduced 1 bit/pixel images, effectively cutting the data load to 1/8 of 
the initial.  Aside from faster computation, this also drastically reduces memory require-
ments. However, doing pixel matching on edge detected images has a negative impact on 
quality.

The system can be parametrized in terms of correlation window size, disparity range 
and input image sizes, as the performance depends also on a combination of these param-
eters in addition to the operating frequency. Correlation window sizes has a negative effect  
on FPGA resources. 

The FPGA of choice is a Xillinx Virtex2 Pro XC2VP30. For a disparity search range of 
31, 320×240 images and a 9×9 correlation window, the system achieved 17,1 frames per 
second without the edge detection step and 37 frames per second with it. Below is shown  
the system architecture. 
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Comparison between Stereo Vision Implementations

Algorithm
Basic algorithm 
description

Features Implementation Resources
Performance 
(fps) Clock1 Complexity

1-Most complex

Murphy, 
Lindquist,  
Rynning
Cecil, Leavitt, 
Chang, Olin
2007

Non-parametric, local2:

Census Transform,
Hamming Distance

Basic algorithm
FPGA3:

Xilinx Spartan 3 
XC3S2000

• 57% of logic 
resources

• 26/40 BRAMs

40 320×240 fps
(limited by 
camera, 
theoretical 150+ 
fps)
8-bit gray-scale

26 MHz 4

Konolige
1997

Feature based, 
Laplacian of 
Gaussian, local:
Absolute 
difference
(SRI area 
correlation)

• Variable disparity 
search

• Post-processing: 
Interest operator, 
left/right check
x4 range 
interpolation

• Automatic calibration

DSP:
ADSP 2181 - 12 320×240 fps

8-bit gray-scale 33 MHz 3

Masrani, 
MacLean
2006

Phased based, 
Local:
Local Weighted 
Phase Correlation, 
LWPC

• Can handle very 
large disparities

• Pre-processing: 
Image Rectification

• Post-processing:
Left/right check
x4 range 
interpolation

4-FPGAs Platform:
Transmogrifier-4
4x Altera Stratix S80 
FPGAs

Data based on the 
predecessor system4

• ≈ 66644 4-input 
LUTs

• ≈ 83026 flip-flops
• ≈ 197/640 

BRAMs

30 640×480 fps
8-bit gray-scale -

1
10x109 
16×16 bit
multiplications/secon
d

S. Jin, J. Cho, X. 
D. Pham et al
2010

Non-parametric, 
local: Aggregated 
Census Transform, 
Hamming Distance

• Pre-processing:
Image rectification

• Post-processing:
Left/right check
Confidence check
Sub-pixel estimation

• Use of aggregated 
census bit string

FPGA:
Xilinx Virtex-4 
XC4VLX200-10 

• 51.191 slices 
(57% logic 
resources)

• 95% BRAMs

Theoretical 230  
640×480 fps
8-bit gray-scale

12.2/24.5 MHz
(for 30 and 60 fps 
accordingly)

2

1 Due to the parallel nature of the algorithms examined, performance depends more on the size of the FPGAs than their clock frequency.
2 In general, stereo vision algorithms are divided into local and global, depending on the range of their search for matches.
3 Census Transform algorithm is an excellent candidate for FPGA acceleration as it is highly parallel and demands bit-counting units, something that DSPs and μPs lack.
4 Data refer to the previous generation of this system (Transmogrifier-3A), as it is mentioned that there are no major changes.



A more comprehensive comparison

Algorithm
Basic 

algorithm 
description

Aggregation Rectification Post-
processing

Features Implementation Parameters Resources Performance 
(fps) Frequency

Our 
approach

AD-Census 
on original 

image
5×5 No

• Left/Right 
check

• Scan-line 
belief 

propagation

• Disparity/window 
size/frame size 
agnostic design

Xillinx Virtex5 
XC5VLX110T-1

Disparity Range: 
0-63

Window Size: 9×9
Aggregation: 5×5

Slices: 82 %
FlipFlops: 60 %

LUTs: 54 %

650 640×480 
fps

8-bit 
grayscale

201 MHz

Hadjitheo
phanous  

et al

2010

SAD on 
Sobel edge 

detector 
output

No No -
• Disparity/window 

size/frame size 
agnostic design

Xillinx Virtex2 
XC2VP30 Pro

Disparity Range: 
0-31

Window Size: 9×9
Aggregation: -

Slices: 80,2 %
FlipFlops: 79,9 

%
LUTs: 61,1 %

75 320×240 
fps

8-bit gray-
scale

-

S. Jin, J.  
Cho, X. D.  
Pham et  

al
2010

Census on 
original 
image

15×15 Yes

• Left/Right 
check

• Sub-pixel 
estimation
• Spike 

removal

• Disparity/window 
size/frame size 
agnostic design

Xillinx Virtex4 
XC4VLX200-10

Disparity Range: 
0-63

Window Size: 
11×11

Aggregation: 
15×15

Slices: 57 %
FlipFlops: 30 %

LUTs: 34 %

230 640×480 
fps

8-bit gray-
scale

93.0907 MHz

S. Hadjitheophanous et al used a novel approach in order to reduce the computational load of a classic local algorithm solving the stereo  
correspondence problem. They first applied Sobel edge detection to the image pair and then performed the classic local algorithm steps using SAD 
as a matching cost on the edge image pair. Using edge images cuts the data load 35-55% on average, yielding significant gains in performance. This 
process however, has irreversible deteriorating effects on the final depth image and the authors report a qualitative 7% drop compared to the sys-
tem running without the edge detector.

S. Jin, J. Cho, X. D. Pham et al implemented a complete stereo vision system. In its heart, there is a local stereo matching algorithm using the 
census transform as a matching cost. The coarse algorithmic flow of their solution is image rectification as a pre-processing step, followed by cen -
sus correlation augmented by costs aggregation and finally the appliance of considerable post-processing, consisting of a left/right check, sub-pixel  
estimation and spike removal.

Our system follows closely the implementation of S. Jin, J. Cho, X. D. Pham et al. It uses a variation of census transform enhanced by aggre -
gation to supply the bulk of the costs data, which is subsequently fed to post-processing, which includes a left/right consistency check and a basic  
scan-line belief propagation solution that propagates most confident disparities to inconsistent matches along the scan-line.



In general the next statements are true for the implementation of all algorithms in one of the following technologies:

FPGAs

+ better performance due to parallelism

+ can be dynamically reconfigured to achieve an optimized task specific architecture

+ can implement any algorithm

+ low power consumption
- difficult programming and reprogramming
- difficult to adapt an existing algorithm to bigger instances of a problem (fixed resources)

DSPs

+ good balance between speed and flexibility

+ low power consumption
+ relatively easy programming (C and assembly)

- limited memory

μProcessors

+ most flexible
+ easiest programming
+ easy to scale the implementation to bigger instances of the problem
+ double precision fp
- need for SIMD instructions to achieve tolerable performance
- low performance
- high power consumption
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Table 1: Comparison of several stereo vision implementations. Extract from [9]. Mde/s 
stands for million disparity evaluations per second.



Chapter 3
The Main Algorithm and its 

Enhancement

An overview of stereo algorithms

In  general,  stereo algorithms are  divided in  two categories,  local  and global.  All 
stereo vision algorithms perform a subset of these steps: 

a) Matching cost computation
b) Cost aggregation
c) Disparity computation/optimization
d) Disparity refinement

Local algorithms depend more on cost aggregation to provide quality results while global 
algorithms do most of their work in the disparity optimization step to perform a global  
minimization of a cost function that is defined over the whole image. In essence, local  
algorithms optimize disparity selection for each pixel independently from other pixels while 
global  methods  look  to  optimize  disparity  selection  for  many  pixels  at  once.  Local  
algorithms match pixels in the image pair corresponding to the same point on the scene, by 
doing for each pixel in the reference image an exhaustive search on a restricted search 
space  in  the  non-reference  image.  As  disparity  optimization  is  done  for  each  pixel  in 
isolation, local methods allow for a large degree of parallel operations. Our algorithm falls 
under the local category and thus its high intrinsic parallelism makes it an ideal candidate 
for custom hardware implementation.

As we have already mentioned,  rectification is the pre-processing step that reduces 
this  search  space  to  one  dimension,  so  its  size  is  fully  definable  by  a  max  disparity 
parameter, Dmax. We assume that this step has already been applied. In order to choose the 
best match, a matching cost is computed for each pixel combination. These matching costs  
depend only on local information surrounding the pixels in question. The x-axis distance of 
the two matched pixels (disparity) is  directly connected with the actual distance of the 
object from the camera (to find the absolute distance, camera calibration parameters are 
required). In general it is a good idea to regard the matching cost as well as the strategy 
used to select the best match, as interchangeable and independent components of the 
general algorithmic structure.
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Algorithm matching costs

Matching costs can be window-based or pixel-based. Pixel-based costs depend only 
on the pixel values in question, whereas window-based costs define windows around the 
pixels and thus also use neighboring pixel values. Several shape and sizes for cost windows 
have been proposed in the literature (see  16 for an overview),  however simple square 
windows of size W x W are still being widely used. Window-based costs make comparisons 
between small image blocks and algorithms based on them effectively match spots of the 
image pair. The obvious strategy to select the best match using those costs is a Winner-
Take-All scheme (WTA), where for each reference pixel, the pixel with the lowest cost out of 
a range of  Dmax  candidates, wins. An example of a matching cost is the popular Sum of 
Absolute Differences (SAD), which can be formally described with the expression:

 

SAD is a window extension of the simple AD measure:

AD=∣I r( x , y)−I l (x+ d , y )∣ , where I r is the reference image.

SAD is a well-known cost in the field of local stereo vision algorithms and it is widely 
used. However it has some drawbacks which prevent it from being embedded as a cost in 
state of the art algorithms. For example it tends to blur object borders. SAD performs W 2 

comparisons per pixel evaluation whereas AD, performs only 1.
Another  example  of  a  matching  cost,  is  census  transform  [13],  robust  to  depth 

discontinuities and different light conditions. As a first step, it transforms the input image 
and then uses this transformation to produce a match in the classic WTA cost minimization 
manner. Census transform first calculates a bit-string for each pixel  and then uses it  to 
produce a match. It has a cost of W2 – 1 comparisons per pixel.

A pure census transform based stereo algorithm contains two logical tasks. The first 
task concerns the creation of the bit-string. The second task uses that bit-string to find the 
best match in a search range of pixels in the non-reference image.  For each pixel of the 
reference frame (assume right):

1. Compute the census bit string for the pixel. The census bit string is defined as 
a vector of bits, of size W2 – 1, where each bit declares if the intensity of the 
pixel in the respective position of the window is greater/equal or less from 
that of the central pixel. For example assume we have the following window:

127 129 130
127 125 128
100 102 103

The bit-string will be: {1,1,1,1,1,0,0,0}. Similarly we produce the census bit  
strings of the candidate pixels in the left frame. 
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SAD=∑
i=n

∑
j=m

∣I r( x+ i , y+ j)−I l( x+ i+ d , y+ j)∣



2. Compute the hamming distance between the reference and the Dmax non-
reference candidate bit-strings. This hamming distance is referred to as the 
matching cost. Using a WTA strategy we select the pixel with the minimum 
hamming distance as our match. For example assume {1,1,1,1,1,0,0,0} the 
reference bit string and {1,0,1,0,1,0,1,0}, {0,1,1,1,1,0,0,0}, {1,1,0,0,0,0,0,0}, 
{0,1,1,1,1,0,0,1}  the candidate bit strings. The bit string {0,1,1,1,1,0,0,0} has 
the minimum hamming distance. The depth information is extracted from the 
x position shift (disparity) between the two matched pixels.

Census  transform belongs  in  the  category  of  non-parametric  costs1 and  exhibits 
resilience  to  lighting  conditions  because  of  its  sole  dependence  on  the  local  image 
structure. Moreover it outperforms the also non-parametric rank cost (13), as with the bit-
string it  also encodes the spatial  distribution of light. Census can be easily extended to 
color  images but  it  was  shown in  [14]  to  perform only  marginally  better.  However,  by 
ignoring the pixel intensities completely, it looses an important chance of producing more 
diverse matching costs and thus, less false matches. 

In order to add light intensity information to the census cost, we have decided to 
combine it with AD and SAD into two new matching costs respectively. SAD-Census and AD-
Census are simply the sum of normalized SAD and AD respectively, with census. As we will 
see, the new costs are more powerful than their parts alone. We have avoided a weighted 
sum, as it would insert scene-dependent weighting parameters which would require fine 
tuning.

In order to assess the quality of our system and provide results that can be easily 
evaluated by the research community we applied our algorithm on well known datasets 
from the Middleburry  database2.  We selected Art,  Books,  Dolls,  Laundry,  Moebius  and 
Reindeer which are shown in Fig 6. All datasets contain rich depth information. As we will 
see in the best/worst case graphs, some datasets are more difficult to process than others. 
For example Laundry has a lot of texture-less areas, whereas Dolls has very rich textures.

1 Non-parametric costs are costs that extract information about the pixel, based only on comparisons between 
neighboring pixels. 

2 http://vision.middlebury.edu/stereo/eval/  
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Art Books

Dolls Laundry

Moebius Reindeer

Fig 6: Datasets used in all our quality comparisons.

All  results  presented,  are  produced  from  a  software  MATLAB  implementation 
running on a Core 2 Duo E6400 2.1 Ghz processor.
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Ground truth Census 9×9

AD-Census 9×9 SAD-Census 9×9

Fig 7: Visual comparison of pure census vs SAD-Census vs AD-Census.

Above (Fig 7), we compare visually Census, SAD-Census and AD-Census on the same 
scene.  SAD-Census  has  less  false-positives  than  either  of  them.  More  thorough 
comparisons are presented in Fig 8 and Fig 9. 

We have chosen the percentage of  good matches  as  our  quality  metric.  Results 
where calculated for all 6 test image pairs and we present best/worst case and mean value 
comparisons.  The  quality  metric  was calculated on regions  where our  algorithm works 
optimally: a small frame of (W-1)/2 where we cannot fill in the census windows, as well as 
Dmax pixels  from the  right  side,  where we must  reduce  the  disparity  search  range, are 
ignored. SAD-Census may appear better by this metric but due to its low-pass filter nature, 
it has a tendency to blur edges. Performance was best with Census and worst with SAD-
Census, as was expected (Fig 9a).
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Fig 8: Best/Worst case quality comparison using the percentage of good matches metric, for  
Census, AD-Census and SAD-Census. Window size ranges from 3×3 to 17×17. The Dolls dataset  

gives the best results in all three costs and Laundry dataset gives the worst. The reason for this is  
easily understood by observing the datasets: Dolls provides much greater variation, whereas  

Laundry has many uniform areas.
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a) Time taken (seconds) b) Percentage of good matches

Fig 9: Quality comparison of Census, AD-Census and SAD-Census using mean values over all the  
datasets. SAD-Census is better by the percentage of good matches metric. Window size ranges  

from 3×3 to 17×17. Performance refers to a single-threaded unoptimized implementation and is  
shown to demonstrate how window size increases algorithmic complexity.

31



The new matching costs improve the results significantly as can be seen in  Fig  9b, 
especially for small window sizes. However, we can still employ some simple processes for 
further gains. 

The window aggregation of the matching costs at each disparity level is equivalent 
to applying a box filter on the (x,y) dimensions of the DSI1 image ([15]). It smooths out the 
costs, based on the assumption that neighboring pixels have similar disparities (box filter 
weights each window pixel the same), and allows for a much less noisy disparity map (Fig 
10).  However,  as  this  assumption is  false on disparity  discontinuities,  it  has  a  negative 
impact on object borders, producing an edge thickening effect.  Box filter also implicitly 
assumes frontal-parallel surfaces which is often violated in practice with slanted surfaces. 
Use of edge preserving smoothing filters such as bilateral or guided help alleviate these 
problems ([15]) as they place more weight on window pixels that are similar in color to the 
central one and thus are more probable to belong to the same depth. Such filters, however, 
are computationally expensive.  Even with its downsides, box filtering yields an impressive 
16% improvement, augmenting our 65% mean percentage of good matches to 77%, when 
transitioning from W=9 Wa=1 (no aggregation) to W=9, Wa=5. By using a simple box filter, 
we have to compromise with the fact that the size of the aggregation window Wa is  a 
tradeoff between border accuracy and better matches elsewhere.

Following on our discussion about edge aware filters, we created a cost specifically 
designed to guide the aggregation process. The cost is defined as follows: 

C p =
1 when ∣pc−pi∣ < τ
0 otherwise

with i∈W a

where Wa is the aggregation window, pc the central value of this window and τ a threshold 
given as a parameter.  Simply put,  the resulting matrix shows the similarity, in terms of 
intensity, of the neighboring pixels to the central pixel in a 1/0 format. This matrix can act 
as a mask, selecting which values get aggregated in the window. The logic behind this cost 
is the simple but effective assumption that pixels with similar intensities probably also lie 
on the same disparity. More edge aware smoothing can be seen in Fig 10.

1 DSI (or Disparity Search Image), is a 3D volume of size WxHxDmax containing the matching costs for all Dmax 
candidates of any pixel (x,y) in the WxH frame.
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Reference image

Census without aggregation

Census with 5×5 aggregation

Census with 5×5 guided aggregation

Fig 10: DSI(x,50,d) slices for aggregated and not aggregated versions. Matches appear as black  
lines along the horizontal axis. Aggregation smooths out many erroneous matches and produces a  

cleaner DSI. The effects of guided aggregation are best seen on disparity discontinuities.

Optimization in  regards  to  τ  across  all  datasets  led to  a  value of  60 (given that 
intensity values are in the range [0-255]). We also have to take into account that a very 
small τ value could lead to weak aggregation which results in an increase in errors. Guided 
aggregation led to a 0,29% improvement on the average percentage of good matches for 
W=9 and Wa=3, 0,35% for W=9 and Wa=5 and 0,49% for W=9 and Wa=9. 

Another improvement, is the use of sparse instead of dense windows, as was shown 
in Humenberger et al. [9]. A way to produce such windows is to reduce the sampling rate 
from 1 (every pixel is sampled) to 0,5 (one every two pixels is sampled), both in x and y 
axis.  Fig  19 shows the positive effect of this process on the quality of the results.  It  is  
important to note that equivalent window sizes were used for our quality comparisons 
with sparse and dense windows: the windows used the same number of pixels. 

In order to get rid of false matches due to occlusions, we can perform a Left/Right 
consistency check (LRC), which allows only disparities that are validated by reversing the 
reference image.  In  other  words,  LRC performs  the correlation  step with  the  opposite 
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image  as  reference  and  checks  if  the  new  matches  found  are  in  accordance  with  the 
previous ones (condition |DispRL(x,y)-DispLR(DispRL(x,y),y)| < LRC Threshold must be true for 
some small positive value of LRC Threshold). Being a post-processing step, it is independent 
of the matching cost used.

We have implemented a simple scan-line belief propagation solution that fills in the 
occluded pixels  detected by LRC.  Fig  14 shows the flowchart  of  our belief  propagation 
algorithm. It  works by replacing occluded pixels with the most confident local  disparity 
along the processing direction on the scan-line. It  has the advantages of simplicity, low 
memory footprint and online calculation as it doesn't use windows, processing pixels in a 
sequential manner instead, in the order given by the LRC step. This procedure fits well with 
LRC and doesn't disrupt our workflow at all.  Furthermore it has good results as can be 
shown in Fig 24.

Using  the  mean  intensity  of  the  window  instead  of  the  central  pixel  for  the 
comparisons in the census window gives a possible increase in noise robustness as we no 
longer depend on a single pixel which can end up being a statistical outlier. Testing however 
this  method revealed that  it  led to  strong edge fattening which ended up hurting the 
overall  quality. Furthermore we experimented with a median solution which performed 
better  than  mean,  but  in  the  presence  of  aggregation  was  outmatched by  the  simple 
central pixel method, as can be seen in the comparison Fig 12.

We have  also  tried  a  multilevel  census  solution,  where  instead of  a  simple  1/0 
comparison between the central pixel and its window, we have defined multiple levels of 
relation (Fig  13). Hamming distance was redefined as the absolute distance between the 
new census vectors. This tweak produced small quality improvements for its relatively high 
cost. 

We also explored the possibility of improvement by weighting differently the Census 
or AD part of the AD-Census matching cost. Fig  11 shows that results were best for the 
default 50-50 balance.
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Fig 11: AD-Census analysis for different weigthing values. X-axis  
shows the weight of Census, c∈[0,1] . AD weight is defined as 1-c. 



Without aggregation With aggregation (Wa=5)

Fig 12: Quality comparison of different census methods with and without aggregation.

A way to quantify the confidence of a match, is to compare the minimum cost with 
the runner up. If their difference is small, there is a good chance that the match is a false  
positive. A formula to calculate the confidence of a match is the following:

C=min(255,1024∗((min2−min1)/MaxCost ))  [9]

Another simple formula is the runner-up costs difference: 

C=min1−min2

35
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In both cases, a threshold can be applied to cut off uncertain matches detected.

Local methods are especially vulnerable to areas with a lack of texture, producing a 
lot of false matches. Local variance is a way to find these areas and take them into account  
when computing the confidence of a match.

Objects far away from the cameras, tend to produce disparities that are fractions of 
full disparity levels. Sub-pixel accuracy reduces the quantization errors by approximating 
fraction disparities through interpolation. 

Our implementation will focus on aggregating costs and sparse windows as all those 
other processes can be added in a modular way to the algorithm.
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Fig 14: Flowchart of our belief propagation algorithm. If we encounter foreground  
pixels when moving on the background (NConfDA>PConfDA), we propagate the  

background confident disparity (PconfDA). The opposite happens when we encounter  
background pixels whilst on the foreground (PconfDA>=NConfDA).



Parameter tuning 

 The main matching procedure of our algorithm has three parameters that require 
tuning:  The  maximum  disparity  search  range  (Dmax),  the  window  size  (W)  and the 
aggregation window size (Wa). We also have to decide  whether to use a sparse window 
solution or not. LRC depends on a threshold value to decide whether a pixel is occluded or  
not. Our belief propagation demands two additional parameters, neighborhood queue size 
and confident disparities queue size. Finally we need to select one of the three matching 
costs presented above.

As  can  be  shown  in  Fig  16 and  Fig  9,  quality  doesn't  scale  linearly  with  W.  A 
compromise was settled on W = 9. 

The aggregation window size improves the percentage of good matches but large 
windows suffer from inaccuracy at object borders, as shown in Fig 15. As can be seen in Fig 
16, aggregation window size can be regarded equivalent to window size in terms of effect 
on our quality metric. We have chosen, however, to set a reasonable value of 5×5 so that 
we  won't  sustain  serious  degradation  in  object  borders  quality.  A  visual  comparison 
between Census, AD-Census and SAD-Census with W = 9 and Wa = 5 can be seen in Fig 20.

Fig 19 shows the effect of different window sizes on the percentage of good matches 
for dense and sparse windows, for no aggregation and with a 5×5 aggregation. In both 
cases the biggest difference in quality exists for smaller window sizes. When aggregation 
was applied, the difference in quality is negligible and thus not justified cost-wise for the 
window size we are considering (9×9), so we have decided to use normal (dense) windows. 

Ground truth Wa=1 (no aggregation) Wa=5

Wa=15 Wa=31 Wa=51

Fig 15: The blur effect of increasing aggregation window sizes with a 5×5 census. 
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Fig 16: Quality comparison of Census, AD-Census and SAD-Census. When no aggregation  
is applied (Wa=1), the latter is better, but has significant computational cost, as it  

performs approximately 2xW2 operations. Notice how AD-Census outperforms Census and  
SAD-Census in the region of W ∈[7,17]∧ W a∈[3,13]



Camera spacing (baseline, b) as well as camera focal length f play an important role 
on the range of depth values that can be calculated. More spaced out cameras allows us to 
detect  points  farther  in  expense  of  closer  areas.  More  specifically,  we  can  calculate 
minimum and maximum detectable depth by the formulas:

Depthmin=
b∗ f

D max∗DPhor
 and  Depthmax=

b∗ f
D min∗DP hor

, where DPhor is the pixel horizontal 

dot pitch, the horizontal distance between two neighboring pixels and depends also on the 
resolution configuration of the camera (active pixel size). For example a camera such as 
Aptina  MT9D112  (1600×1200@15fps),  with  an  example  b=63mm,  f=3.79mm, 
Dphor≈0.0022mm  (for  its  maximum  resolution  of  1600×1200)  and  D∈[0,63] gives 
Depthmin=1.723m and Depthmax=108.532m.  

All  parameters  are  influenced by  the frame size  (resolution)  and especially  Dmax, 
which depends heavily on the frame width. This happens because features in the image 
become more spaced out with bigger frames. Fig 18 shows the approximate value that Dmax 

should be set to, in order for the results to not degrade in quality. Inter-camera distance 
also plays an important role on Dmax, as more spaced cameras magnify all disparities and 
thus require larger Dmax  if we want to keep our minimum range detectability intact .  Frame 
size also enlarges texture-less regions where census performs poorly and would require 
window enlargement to compensate.

Resolutions 100×83 384×320 640×533 1024×853 1600×1333

Dmax 10 40 64 128 160

Fig 18: A rule of thumb would be to set Dmax to approximately 1/10 of the frame width. 
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Fig 17: Discrete disparity space, illustrating the stereo system's range capabilities.  
Image courtesy of Stefano Mattoccia.



Census, no aggregation AD-Census, no aggregation SAD-Census, no aggregation

Census, 5×5 aggregation AD-Census, 5×5 aggregation SAD-Census, 5×5 aggregation

Fig 19: Sparse vs normal windows using mean values. Note that equivalent window sizes were used in order to compare both approaches on the same terms: A normal  
WxW window corresponds to a (2xW-1)x(2xW-1) sparse window, both containing the same number of pixels. On the first row no aggregation is used and y-axis ranges  

from 0.1 to 0.8. On the second row, a 5×5 aggregation is used and the y-axis ranges from 0.6 to 0.85.



Census 9×9, Wa=5 AD-Census 9×9, Wa=5

SAD-Census 9×9, Wa=5

Fig 20: Visual comparison of Census, AD-Census and SAD-Census with W=9 and Wa=5.

Left/Right consistency check is demonstrated in Fig 21 for several values of the LRC 
threshold parameter. A high threshold tends to allow erroneous disparities through, while 
a low threshold discards too many pixels. A value of 4 was selected as a good compromise 
as we have to keep in mind that LRC will also determine which pixels will be processed by  
our belief propagation algorithm.
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Occlusions Ground truth LRC threshold=1

LRC threshold=4 LRC threshold=6

Fig 21: Left/Right Consistency check for several values of the LRC threshold.

Our belief propagation algorithm defines two additional parameters: Neighborhood 
queue size (SNQ) and Confident Disparities Queue Size (SCDQ). We will now discuss how these 
parameters alter the results.  

SNQ sets the size of our neighborhood, which is the size of our “population” of pixels 
where the local confident disparity will  get propagated. Large values for this parameter 
allow the propagation of the local disparity average to more pixels and its positive results 
can be observed on regions with “thick” occlusions. For example, notice the black bar on 
right side of the occlusion maps in Fig  21: If SNQ is larger than its width W, then the local 
confident disparity  will  get  successfully  propagated to all  of  it,  eliminating all  unknown 
disparities on that region. If, on the other hand, it's smaller, then a bar of width W- SNQ of 
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unknown (black) pixels will remain on the left border. A large  SNQ has only positive effects 
on  the  quality  as  our  algorithm  follows  an  aggressive  propagation  policy  by  instantly 
propagating  confident  disparities  only  to  unknown  pixels  in  the  neighborhood  queue. 
Setting this parameter to around our maximum disparity should be enough.

 SCDQ however, can have both positive and negative effects.  SCDQ determines how 
many confident disparities are needed to initiate propagation as well as the size of the 
confident disparities  population which we use to calculate the local  confident  disparity 
average (ConfDA). The fact that we empty the Confident Disparities Queue every time we 
stumble upon an occluded pixel, makes it difficult to initiate propagation in the first place. 
Thus it is clear, that by setting this parameter high, we will have a problem on areas where 
the occlusion map is noisy (e.g top right area on Fig 21) or with objects that appear thin on 
our  disparity  map.  On the  other  hand,  setting  this  parameter  low,  subtracts  from the 
confidence of the ConfDA and initiates propagation too often, which appears as noise on 
the propagation areas. Fig 23 shows the quality of BP for several values of SCDQ. A value of 4 
appears to be best. Fig 22 contains a visual comparison of census vs census with LRC and 
belief propagation and Fig 24 presents a more thorough quality comparison based on the 
quality  metric  of  percentage  of  good  matches  for  all  the  matching  costs.  As  belief 
propagation is a post-processing step, results are nearly identical between the different 
matching costs tested, with the slight variations explained by the small differences on the 
quality of the matching costs.

Census 9×9, Wa=5 Census BP 9×9, Wa=5, SNQ=64, SCDQ=6

Fig 22: Visual comparison of pure census vs census with the proposed belief propagation  
procedure. Notice how BP fills in previously occluded pixels on object borders and on the right side  

of the image.
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W=9, Wa=5, SNQ =64, SCDQ=4 Without BP With BP

Census 75,93 % 81,16 %

AD-Census 77,09 % 82,03 %

SAD-Census 77,00 % 81,78 %

Fig 24: Mean percentage of good matches for best configurations of all three matching costs,  
aggregated on all six Middleburry datasets.

The maximum disparity search range (Dmax) was set to 64, as this is a common setting 
for many current solutions. A low disparity setting limits the minimum detectable distance 
while a large one increases considerably the computational load. 

Based  on all  the  above  data,  we  have  made the  decision  to  use  an  AD-Census 
matching cost, as it appears to perform best with little additional computational cost in 
regards to a pure census approach.
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Fig 23: Mean percentage of good matches metric for several values of the confident  
disparities queue size parameter. Census, SAD-Census and AD-Census have minimal  

differences.



Chapter 4
Implementation

Design overview, parallelism and optimization

The algorithm offers parallelism in many levels. If we assume no structural hazards 
to access pixels from a frame buffer, we can calculate simultaneously any matching cost of 
any pixel of any frame. The algorithm offers pixel granularity parallelism. However, such a 
scheme would require a prohibitive amount of resources and would introduce very long 
delays due to huge gate fan-ins. On the other hand, such degree of freedom, allows us to 
construct the system architecture in any way we see fit. The only constraints come from 
the format the camera uses to deliver the data and the amount of resources we are willing  
to allocate. 

Given the sequential manner in which we receive pixels from the cameras, the most 
efficient approach to process the data would be in a streaming fashion, which translates to 
Dmax disparity  evaluations  per  pixel  clock.  This  constraint  can  be  satisfied  either  by 
performing these evaluations in parallel or by operating the core on a multiple of the pixel  
clock and buffering the intermediate results.  

It is important to assess the need for flexibility -in regards to algorithm parameters- 
and the gains of such a setup. First  and foremost, we will build a system that is frame-
agnostic. In other words our system will support a series of frame sizes within a range of  
choices.  We regard this feature as obligatory.  However,  a limit  on the maximum frame 
width was imposed, for reasons that we will explain in the Resources Analysis section. In 
addition,  all  the  algorithmic  parameters  discussed in  the Parameter  Tuning section  are 
adjustable. We also chose to structure our system in a modular way, in order to easily 
add/remove features. Features such as scanline belief propagation and aggregation can be 
turned on or off by the user of our system.

The effects of different window sizes and different aggregation window sizes can be 
seen in Fig 16 or in Fig 25 in more detail. There are negligible gains if we choose a larger W 
or Wa. The maximum achievable percentage of good matches was 78,36% for AD-Census 
(W=7, Wa=13), so there is no real benefit in choosing such a large aggregation window. It is  
thus our choice to fixate the window sizes on our implementation. Our design remains 
generic in any parameter aspect but it is not reconfigurable during run-time. This decision 
simplifies our hardware design. Our system was verified on a Virtex 5 XC5VLX110T as well 
as a Spartan 3 1000, setting the parameters accordingly to fit the platform at hand.
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Constant Wa W=7, Wa=5 W=9, Wa=5 W=11, Wa=5

AD-Census 76,50% 77,09% 77,47%

Constant W W=9, Wa=3 W=9, Wa=5 W=9, Wa=7

AD-Census 75,02% 77,09% 77,89%

Fig 25

Our design's scope is the stereo vision algorithm, not the Input/Output process. We 
have implemented a very simple IO solution based on RS232, for verification purposes only.

Block Diagrams

The general block diagram of the main stage datapath of our algorithm (AD-Census 
cost initialization and aggregation) is shown in Fig 1. 

As input, the system receives two 8-bit pixel values per clock period, each for the 
corresponding image in the stereo pair. A window buffer is constructed for each data flow 
in two steps. Lines Buffer stores W-1 scanlines of the image, each in a BRAM, conceptually 
transforming the single pixel  input of our system to a W sized column vector.  Window 
Buffer acts as a W sized buffer for this vector, essentially turning it into a W2 matrix. 

This  matrix  is  subsequently  fed  into  Census  Bitstring  Generator,  which  performs 
W2-1 comparisons per clock, producing the census bit-string. Central pixels/Bitstrings FIFO 
stores 64 non-reference census bit-strings and window central pixels, which, along with the 
reference  bit-string  and  central  pixel  are  driven  to  64  Compute  Cost  modules.  This 
component performs the xor/summing that is required to produce the  hamming distance 
for the census part of the cost, along with the absolute difference for the AD part and the 
necessary normalization and addition of the two. The maximum census cost is 80 as there 
are 81 pixels in the window. Likewise, the maximum AD cost is 255 as each pixel is 8 bits  
wide. As the two have different ranges, we scale the census part from its 0-80 range to a 0-
255 range turning into an 8-bit value. To produce the final AD-Census cost we add the two 
parts together, resulting in a 9-bit cost to account for overflow. Truncating this cost to 6-bits 
produces a slight improvement in quality as well as reduced buffering requirements in the 
aggregation step, as discussed in the Resources Analysis section.

For the aggregation task, 22 line buffers (Aggregation Lines Buffer) are used for 64 
streams of 6-bit costs, each lines buffer allocated to 3 streams. Like the Lines Buffers at the 
input, they conceptually transform the stream of data to Wa sized vertical vectors. Each 
vector is summed separately in the Vertical Sum components and driven to delay adders 
(Horizontal Sum), which output X(t) + X(t-1) + … + X(t-4). At the end of this procedure we 
have 64 aggregated costs.
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Fig 26



Following  the  aggregation  of  costs,  the  LRC  component  (Fig  27)  filters  out 
mismatches  caused  by  occlusions  or  otherwise.  The  architecture  of  this  component  is  
based on the observation that by computing the right-to-left disparity at reference pixel 
p(x,y) (used costs between pixels (p(x,y),p'(x,y)) , (p(x,y),p'(x+1,y)) ,  … ,  (p(x,y),p'(x+Dmax-
1)) ), we have already computed the costs needed to extract the left-to-right disparity at 
non-reference  pixel  p'(x,y)  (needs  costs  (p(x,y),p'(x,y))  ,  (p(x-1,y),p'(x,y))  ,  …  ,  (p(x-
Dmax+1,y),p'(x,y)) ) (see Fig 29). LRC Buffer is a delay in the form of a ladder that outputs the 
appropriate  left-to-right  costs  needed  to  extract  the  non-reference  disparity.  The  WTA 
modules  select  the  match  with  the  best  (lowest)  cost  using  comparator  trees.  The 
reference  disparity  is  delayed  in  order  to  allow  enough  time  for  the  non-reference 
disparities space to build up in NonReference Disparities Buffer and then it is used to index 
said  buffer.  Finally  the  thresholded  absolute  difference  of  DispRL(x,y)  with  DispLR(x,y) 
indicates the false matches detected.
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Finally the scan-line belief propagation algorithm discussed earlier was implemented 
as  shown in  the  datapath  in  Fig  28.  The  function of  this  component  is  based on two 
queues: the Confident Neighborhood Queue and the Neighborhood Queue. As it is implied 
by its name, the Confident Neighborhood Queue places quality constraints on its contents, 
meaning  that  only  disparities  that  pass  the  LR  consistency  check  are  written  in  it.  
Furthermore, at each cycle it  calculates the average of the confident disparities, as this 
value will ultimately be propagated to unconfident ones in the neighborhood queue. This 
average is calculated by a constant multiplier, using fixed point arithmetic and rounding to 
reduce any number representation errors.

On the other hand, the Neighborhood Queue simply keeps track of local disparities 
and their LR status. When the Propagate signal is asserted (active when a new confident 
disparity is calculated and stored in the New Confident Disparity register), the NewDisp is 
written to all records with a false LRC flag.  NewDisp is selected to be Previous Confident  
Disparity  when this value is smaller than New Confident Disparity else it is assigned New 
Confident Disparity.
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Notes on operation

• A small frame of unknown disparities is formed around the final disparity image, 
where  due  to  the  image  boundaries,  the  windows  cannot  be  formed  and  thus 
disparities cannot be computed.

• Searching for matches near the image boundary leads to reduced or trivial disparity 
search spaces. In such cases our system finds the best match in the possible range.  
Left/Right Consistency check filters out any incorrect matches due to small search 
spaces.

• Belief propagation is activated on each end of line regardless of the LRC indication, 
in order to fill in the occluded right area of the image.

• In order for high resolutions to work acceptably the user needs to either increase 
the Dmax accordingly or to reduce the inter-camera spacing. The second option is 
preferable as it has no computational consequences, whereas increasing Dmax has a 
cost on FPGA resources.  Moreover,  as the features of the images are now more 
spaced out in pixel distances, the other parameters of the system need also to be 
adjusted, if we are to maintain output quality.

Performance

Our system receives one pixel pair per clock and after an initial latency, generates 
one disparity per clock. The most computationally heavy part of the main stage of the 
algorithm, is the xor/summing that takes place in XOR Sum where we have to compute the 
xor/sum of  64 80-bit  strings at  the same time.  A similar situation appears in the  WTA 
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Fig 29: At the top row are pixels of the right image, whereas at the bottom are  
pixels of the left image. The green pixel on the right image has a search space  

denoted by the green shade on the  left image. In order to determine the validity  
of DispRL(x,y) we need all left-to-right disparities in the green space and thus we  

need right-to-left costs up to x+Dmax.



module, where we have to perform 64 11-bit comparisons simultaneously. We cope with 
both  bottlenecks  through fully  pipelined  adder/comparator  trees  in  order  to  maximize 
throughput. 

After the first  system implementation we added extra pipeline  stages  to further 
enhance performance. Below we present the differences between our initial unoptimized 
design and our final optimized system. Given the maximum achievable frequency of our 
system in both variations, we present the theoretical  maximum throughput in terms of 
frames per second (fps)  in Fig  30. We also show the difference in resources utilization 
between the two variations in Fig 31.

Resolutions 100×83 384×320 640×533 1024×853 1600×1333 1920×1200

Max Clock for 
unoptimized design:

131 MHz
15.783 fps 1.066 fps 384 fps 150 fps 61 fps 56 fps

Max Clock for 
optimized design:

201 MHz
24.216 fps 1.635 fps 589 fps 230 fps 94 fps 87 fps

Fig 30: Maximum theoretical throughput of our system for a reference clock of 100Mhz and our  
maximum clock for various resolutions.

Variation Parameters Slice Flip-Flops LUTs Slices BRAMs/FIFO Max Clock

Unoptimized W=9, Wa=5, 
Dmax=64

39.565
(57%)

37.107
(53%)

13.556
(78%)

59
(39%)

131.458 
MHz

Optimized W=9, Wa=5, 
Dmax=64

41.792
(60%)

37.986
(54%)

14.239
(82%)

59
(39%)

201.518 
MHz

Fig 31: Resource utilization vs frequency for our two design variations.

The resource utilization penalty for the greater performance design is negligible and 
thus our choice is clear. According to the tools the critical path lies on a control signal to 
the FSM of our aggregation line buffers and is only 16,6% attributed to logic while the rest  
83,4% of the delay is caused by routing.
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Resources analysis

Aggregation of  the costs consumes most  of our BRAM resources,  as  we have to 
construct Dmax x Wa cost line buffers1. It is important to note that BRAM primitives in Virtex5 
FPGAs support certain restricted aspect ratios. These primitives are used by an allocation 
algorithm  to  construct  bigger  memories.  Memories  with  different  widths/depths  from 
those ratios are mapped to the closest possible solution but may not use the resources 
optimally. For example, memories with ratios of 1×16K (16.384 elements of 1 bit), 2×8K, 
4×4K, 9×2K, 18×1K, 36×512 are guaranteed to utilize a single 18K primitive and thus use 
the resources optimally.

In addition, very large frame sizes causes parameter bloating. Specifically, images of 
1800×1500 require Dmax to exceed 180 for quality results (while not altering the current 
camera baseline). Keeping the other parameters constant (W=9, Wa=5), such a large Dmax 

would require buffering of 180×1800×5 elements in the aggregation stage.  

For the reasons discussed above we decided to impose a limit on the images width.  
Simply restricting frame width to 1024 pixels allows us to:

1. Pack at least two lines per 18K BRAM using a 9×2K primitive configuration. To each 
cost line we allocate 9×1024 bits. 

2. Avoid excessive parameter bloating.

Using AD-Census, the costs are 9-bit long as explained earlier. This is something that 
benefits our design as BRAM primitives can be used optimally in a 9×2K configuration. 
Using pure Census, cost size is reduced to 7 bits. We can maximize BRAM usage by using 9-
bit costs, so we have room to increase window size W up to 21×21, with little additional  
cost to resource usage. 

If our cost size is less than 9 bits or if our frame width is less than 1024 we can pack  
more lines. This aspect of our design is also parametric, as depending on the frame size and 
cost size, each BRAM can pack up to 6 lines in a 36×512 BRAM configuration. 

In an effort to reduce BRAM consumption even further, we performed a cost size-
accuracy tradeoff analysis which can be seen in Fig 32. AD-Census was redefined as:

ADCensus ' = min( ADCensus , SaturationValue)

Selecting saturation values to be powers of 2, we can reduce cost size and thus fit more 
data into the aggregation buffer BRAMs. Our analysis shows that there is  even a slight 
benefit in doing so: For a saturation value of 63 (cost size is reduced to 6 bits) and for the 
default W and Wa values of 9 and 5 respectively, we observe a 0.5% improvement over the 
cost  without saturation,  which puts  our  quality  almost  on par  with a  W=11 and Wa=5 
parameter set. This slight improvement is attributed to the reduction of the influence of  
outliers within the aggregation window by truncating the cost. With 6-bit costs, we can 
pack 3 streams of costs per  Aggregation Lines Buffer thus reducing BRAM consumption 
even more. Note that FPGA resource utilization figures refer to all optimizations discussed 
in place.

1 A total of Dmax x Wa x FRAME_WIDTH x COST_SIZE bits must be buffered.
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Fig 33 shows the effect of the optimizations discussed above on our BRAM count for 
W=9, Wa=5, Dmax=64 and a maximum frame width of 1024 pixels. It is advised to use smaller 
frame sizes for optimal algorithm performance.
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Fig 32: Cost size/accuracy analysis. The peak value shifts to the right as the true maximum cost  
increases.

Fig 33: Resource savings with optimized aggregation buffer structure.
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In order to conserve resources one could suggest to introduce two clock domains 
instead of one, where the core functions at a multiple of the pixel clock. This way the core  
could compute two times the data in the same time (e.g xor summing twice the census bit-
strings and thus double the disparity search range). However such a scheme would stumble 
at the aggregation unit's architecture.  The aggregation line buffers must provide enough 
data to construct windows for each disparity, expecting the adjacent pixel's  Dmax costs at 
each cycle, in order to complete buffering the current scan-line. Providing the full Dmax costs 
in multiple cycles instead of one would lead to thrashing the buffers. In order to avoid this 
thrashing, we would need to double the size of the aggregation line buffers. Unfortunately 
that goes against our initial goal of reducing resource utilization, especially if we take into 
account the fact that our design has already high memory requirements.

Applying extensive pipelining has large demands in register resources. Fig 34 and Fig 
35 show the resource utilization per subsystem on a Virtex 5 XC5VLX110T. Fig 36 shows the 
resource utilization of our system, for various configurations. All values are post place and 
route. Parameters are set to W=9, Wa=5 and Dmax=64 unless specified otherwise.
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Fig 34: LUT utilization denotes logic distribution in our design.

LUT utilization
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Dmax=64, W=9, Wa=5 LUTs (%) Flip-Flops (%) BRAMs (%)

Available 69.120 69.120 148

Total Consumed 37.986 out of 69.120 (55%) 41.784 out of 69.120 (60%) 59 out of 148 (40%)

AD Census 25.135 out of 37.986 (66%) 29.167 out of 41.784 (70%) 8 out of 59 (14%)

Aggregation 6.547 out of 37.986 (17%) 7.312 out of 41.784 (17%) 51 out of 59 (86%)

Left/Right Check 4.638 out of 37.986 (12%) 4.734 out of 41.784 (11%) 0 out of 59 (0%)

Scanline Belief 
Propagation

543 out of 37.986 (1,5%) 634 out of 41.784 (1,5%) 0 out of 59 (0%)

Fig 35: Resources utilization per subsystem.
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Constant Dmax, 
Wa

Slice Flip-
Flops

LUTs Slices BRAMs/FIFO Max Clock

W=5, Wa=5, 
Dmax=64

21.866
(31%)

21.637
(31%)

8.204
(47%)

59
(39%) 201.086 MHz

W=7, Wa=5, 
Dmax=64

31.840
(46%)

29.813
(43%)

11.222
(63%)

59
(39%)

201.113 MHz

W=9, Wa=5, 
Dmax=64

41.784
(60%)

37.986
(55%)

14.239
(82%)

59
(40%) 201.518 MHz

Constant W, Wa
Slice Flip-

Flops
LUTs Slices BRAMs/FIFO Max Clock

W=9, Wa=5, 
Dmax=16

12.531
(18%)

10.284
(14%)

4.216
(24%)

30
(20%) 201.207 MHz

W=9, Wa=5, 
Dmax=32

22.687
(32%)

19.148
(27%)

8.274
(47%)

30
(20%)

201.045 MHz

W=9, Wa=5, 
Dmax=64

41.784
(60%)

37.986
(55%)

14.239
(82%)

59
(40%) 201.518 MHz

Constant W,  Dmax
Slice Flip-

Flops
LUTs Slices BRAMs/FIFO Max Clock

W=9, Wa=1(off), 
Dmax=64

33.047
(47%)

28.505
(41%)

11.713
(67%)

9
(6%) 201.005 MHz

W=9, Wa=3, 
Dmax=64

38.660
(55%)

34.618
(50%)

13.546
(78%)

31
(20%)

201.167 MHz

W=9, Wa=5, 
Dmax=64

41.784
(60%)

37.986
(55%)

14.239
(82%)

59
(40%) 201.518 MHz

Fig 36: Resources utilization for the maximum performance implementation of the system for  
various configurations. Implemented on a Virtex5 XC5VLX110T, speed grade -1.
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Chapter 5
Validation

Our system's function was verified using significantly downscaled dataset images to 
accelerate  simulation.  The  datasets  were  converted  to  pgm  format  and  read  into  our 
testbench through a library. Subsequently the result was also written in a pgm file. Initial  
comparison with the software implementation was performed in the testbench, through a 
pixelwise absolute difference with the output. A threshold of 1.0 was in place as in [11]. 
Some variation was detected which was confirmed to be caused by a different format of 
inputs (MATLAB processed png images while the implementation was given pgm) and a 
small  inconsistency in the disparity search range (MATLAB used a 0-64 range while the 
implementation used 0-63).

After simulation, the system was also verified on two systems, a Xilinx ML505 Board 
equipped with a Virtex 5 XC5VLX110T FPGA as well as a Digilent Spartan 3 1000 platform. 
Fig 37 shows what was validated in which platform. BRAMs on the Spartan 3 were limited, 
so we were forced to disable aggregation and belief propagation on that platform. 

We now discuss the testing methodology we followed. Block RAM resources on the 
FPGAs  were  initialized  through coe  files  with  the  test  datasets.  The  stereo vision  core 
processes  the  data  and  writes  the  result  in  a  FIFO.  The  contents  of  the  FIFO  are  
subsequently sent through an RS232 connection, with 9600 b/s, to a host computer. In 
order not to overwhelm the input buffer of the host computer, which usually has a size of 
4096 bytes, we implemented a simple flow control solution. Our system's output was in a 
custom encoding instead of ASCII or UTF-8, so we also implemented a small program on 
the host computer,  which translates and saves the data to a pgm image file. Due to the low 
bitrate of RS232 compared to the throughput of our system (three orders of magnitude 
slower), the FIFO must be large enough to fit the whole frame. 

Our validation setup can be seen in Fig 38. Fig 39 shows a comparison between our 
software and hardware implementations.

Implemented (Placed & Routed) Validated on board

Spartan 3 1000 W=9, Wa=1 
(off), Dmax=16†

W=9, Wa=3,
Dmax=16

W=5, Wa=5,
Dmax=16

W=9, Wa=1 (off), Dmax=16 †

Virtex 5 
XC5VLX110T All configurations in Fig 36 W=9, Wa=5, 

Dmax=16
W=9, Wa=5, 

Dmax=64
†: Without Belief Propagation

Fig 37: Values of Dmax = 16 correspond to 100×40 frame sizes whereas Dmax = 64 was tested with  
400×320 frames.
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Input image (100×40) Matlab implementation Virtex 5 XC5VLX110T

Moebius

Dolls

Reindeer

Laundry

Books

Art

Fig 39: Comparison between software and hardware implementation. Mean disparity error was  
calculated to 0.6/15 => 4%.
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Fig 38: Validation methodology.



The difference between software and hardware is  attributed to variations in the 
Winner-Take-All  process,  where when comparing  equal  quantities,  a  different  outcome 
takes place in the two implementations respectively. Software selects one of the two equal 
values randomly while hardware always selects the first value. Fig 40 demonstrates a pixel-
wise comparison between software and hardware, where black pixels represent deviations 
larger than 1.
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Fig 40: Diff map between software and ground truth for the Moebius dataset in  400x320  
resolution. Black stands for large variations.

Software Ground Truth
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Fig 41: Diff map between hardware and ground truth for the Moebius dataset in  400x320  
resolution. Black stands for large variations.

Ground TruthHardware
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Fig 42: Diff map between software and hardware diff maps.

Software errors Hardware errors



References

[1] N. K. Ratha, A. K. Jain, “Computer Vision Algorithms on Reconfigurable Logic Arrays”,  
IEEE Transactions on Parallel and Distributed Systems, Jan. 1999, Vol. 10, No. 1, pp. 29-43.

[2] C. Murphy, D. Lindquist, A. M. Rynning, T. Cecil, S. Leavitt and M. L. Chang , “Low-Cost 
Stereo Vision on an FPGA”, in IEEE Symposium on Field-Programmable Custom Computing 
Machines (FCCM), 2007, pp. 333-334.

[3] K. Ratnayake, A. Amer, “An FPGA-Based Implementation of Spatio-Temporal Object 
Segmentation”, in IEEE International Conference on Image Processing (ICIP), 2006, pp. 
3265-3268.

[4] K. Konolige, “Small Vision Systems: Hardware and Implementation”, in International 
Symposium on Robotics Research, 1997, pp. 111-116.

[5] B. Rajan, S.Ravi, “FPGA Based Hardware Implementation of Image Filter With Dynamic 
Reconfiguration Architecture”, in IJCSNS International Journal of Computer Science and 
Network Security, Dec. 2006, Vol. 6, No. 12, pp. 121-127.

[6] D. K. Masrani, W. J. MacLean,  “A Real-Time Large Disparity Range Stereo-System using 
FPGAs”, in Proceedings of the IEEE International Conference on Computer Vision Systems, 
2006, pp. 42-51.

[7] C. Claus, A. Laikat, L. Jia, W. Stechele, “High performance FPGA based optical flow calcu-
lation using the census transformation”, in IEEE Intelligent Vehicles Symposium, 2009, pp. 
1185-1190.

[8] S. Jin, J. Cho, X. D. Pham, K. M. Lee, S. K. Park, M. Kim, J. W. Jeon, “FPGA Design and Im-
plementation of a Real-Time Stereo Vision System”, in IEEE Transactions on Circuits and 
Systems for Video Technology, Jan. 2010, Vol. 20, No. 1, pp. 15-26.

[9] M. Humenberger, C. Zinner, M. Weber, W. Kubinger, M. Vincze, “A fast stereo matching 
algorithm suitable for embedded real-time systems”, article in Computer Vision and Image 
Understanding, Mar. 2010. [Online]. Available: www.elsevier.com/locate/cviu

62



[10] S. Hadjitheophanous, C. Ttofis, A. S. Georghiades, T. Theocharides, “Towards Hardware 
Stereoscopic 3D Reconstruction, A Real-Time FPGA Computation of the Disparity Map”, in 
Design, Automation & Test in Europe Conference & Exhibition (DATE), Mar 2010, pp. 1743-
1748.

[11] D. Scharstein, R. Szeliski, "A taxonomy and evaluation of dense two-frame stereo 
correspondence algorithms", in International Journal of Computer Vision, Apr. 2002, Vol. 
47, No. 1-3, pp. 7-42.

[12] J. Salmen, M. Schlipsing, J. Edelbrunner, S. Hegemann, S. LükeReal-Time, “Stereo 
Vision: Making more out of Dynamic Programming”, in Computer Analysis of Images and 
Patterns, 2009, Vol. 5702/2009,  pp. 1096-1103.

[13] R. Zabih, J. Woodfill, “Non-parametric local transforms for computing visual 
correspondence”, in Proceedings of the third European conference on Computer Vision 
(ECCV), 1994, Secaucus, NJ, USA: Springer-Verlag New York, Inc., pp. 151-158. 

[14] G. Xiong, X. Li, H. Chen, D. Lee, “Color Rank and Census Transforms using Perceptual 

Color Contrast”, in International Conference on Control, Automation, Robotics and Vision 
(ICARCV), Dec. 2010, pp. 1225-1230.

[15] C. Rhemann, A. Hosni, M.Bleyer, C. Rother, M. Gelautz, “Fast Cost-Volume Filtering for 
Visual Correspondence and Beyond”, in Proceedings of IEEE Computer Vision and Pattern 
Recognition (CVPR), 2011.   

[16] Stefano Mattoccia, "Stereo vision: algorithms and applications", VIALAB Bologna, 
November 2011. http://www.vision.deis.unibo.it/smatt/stereo.htm

63

http://www.vision.deis.unibo.it/smatt/Seminars/StereoVision.pdf

