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“I am interested in mathematics only as a creative art.”

- G. H. Hardy
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Abstract

We prove that maximum-likelihood (ML) noncoherent sequence detection of orthogo-

nal space-time block coded signals can be performed in polynomial time with respect to

the sequence length for Rayleigh or Ricean distributed, correlated (in general) channel

coefficients. We consider the case of time-varying Ricean fading and, using recent re-

sults on efficient maximization of rank-deficient quadratic forms over finite alphabets, we

develop a novel algorithm that performs ML noncoherent sequence detection with polyno-

mial complexity. The order of the polynomial complexity of the proposed receiver equals

twice the rank of the covariance matrix of the vectorized channel matrix if the latter is

Rayleigh distributed. Therefore, the lower the Rayleigh channel covariance rank the lower

the receiver complexity. Instead, for Ricean channel distribution, we prove that polyno-

mial complexity is attained through the proposed receiver as long as the mean channel

vector belongs to the range of the covariance matrix of the vectorized channel matrix.

Hence, full-rank channel correlation is desired to guarantee polynomial ML noncoherent

detection complexity for the case of time-invariant Ricean fading.
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1 Introduction

Present and next generation wireless standards aim at high data rates and reliable communi-

cations, features afforded by multiple antenna systems that are proven to attain higher chan-

nel capacity than single antenna setups while lowering the error probability [1]-[7]. Elaborate

information-theoretic results tailored to Rayleigh fading [4] prove that channel capacity actually

grows linearly when the number of receive and transmit antennas (simultaneously) increases.

It is, however, natural that antenna arrays are costly and space demanding, thus being

a more plausible setup at base stations rather than remote terminals. As a result, transmit

diversity techniques have enjoyed primary focus, with the first pioneering work coming from

Alamouti [8] that delivered the first full-diversity, full-rate space-time block code (STBC) for two

transmit antennas. Tarokh, Jafarkhani, and Calderbank generalized the design of the work in [8]

to more than two transmit antennas introducing a paradigm for the construction of space-time

block codes based on orthogonal designs [9]. The so-called orthogonal STBCs (OSTBCs) are

proven to achieve full antenna diversity gain with linear-complexity single-symbol maximum-

likelihood (ML) coherent detection [9], [10]. OSTBCs outperform nonorthogonal designs in

terms of error rate; rate-one full-diversity OSTBCs’ error-rate provides a lower bound on the

one of QSTBCs due to lack of intersymbol interference [11].

Such an error rate is attainable with linear complexity, if the channel state information

(CSI) is available at the receiver. However, the very nature of wireless channels suggests

rapidly varying channel conditions that render channel estimation inadequate and inefficient.

Even when the fading channel coefficients are not fast varying, channel estimation requires

transmission of long pilot symbol sequences especially for the cases where large antenna arrays

are used [3], with the direct implication of reduced effective transmission rate. Interestingly,

the ergodic capacity promised by multiple antenna systems is attained even when CSI is not

available to either transmitter or receiver. The work of Zheng and Tse [12] shows that when CSI

is not available the capacity of multi-antenna systems with full CSI knowledge at the receiver

under Rayleigh fading is approached at the high-SNR regime, if one transmits equal-energy

symbols and utilizes space-time codes that are mutually orthogonal during each coherence time

interval.

Certainly, when OSTBCs are used and the receiver has no CSI, ML noncoherent sequence

detection has to be performed on the entire coherence interval for best performance [5], [10],

[13]-[15]. However, if sequence detection is performed through exhaustive search among all pos-

sible data sequences [5], [10], [13], [15], then exponential computational complexity is required.

The problem of ML noncoherent OSTBC detection under time-invariant independent and iden-

tically distributed (i.i.d.) Rayleigh fading was originally expressed as a trace maximization [5]

and later proven [16]-[19] to also take the form of a binary quadratic form maximization problem

that in the general case is NP-hard [20], [21]. In [17], [19] it was shown that the ML nonco-

herent OSTBC detection problem can be solved optimally by the sphere decoder, certainly an

exponential worst and average case complexity approach at any SNR regime [22]. To avoid the

exponential complexity of the optimal receiver many suboptimal schemes have been proposed
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in the literature such as differential detection schemes [23]-[28], the cyclic ML receiver proposed

in [15] based on alternating optimization, and semidefine relaxation approaches [16]-[19]. To

combat the exponential cost of the optimal noncoherent receiver the aid of pilot symbols was

considered in [29]-[30] at the expense of information rate.

In this work, we consider the case of time-varying Ricean fading and prove that ML non-

coherent OSTBC detection can be performed in polynomial time whose order is completely

determined by the rank of the covariance matrix of the vectorized channel matrix, provided

that the mean channel vector belongs to the range of the channel covariance matrix. Further-

more, motivated by the works in [31]-[36] which treat the problem of rank-deficient quadratic

form maximization, we provide an algorithm that solves the ML noncoherent OSTBC detec-

tion problem in polynomial time. We tailor to our detection problem the algorithm originally

introduced in [33]-[36] and observe that the polynomial in time solution lies in the utilization

of multiple auxiliary spherical variables. The optimal data sequence is proven to belong to a

polynomial in size set of binary vectors that is built in polynomial time, altogether resulting in

an efficient, fixed-complexity algorithm.

Especially for the time-invariant Rayleigh fading channel, the channel mean is zero and the

channel covariance matrix rank is always less than or equal to the product of the numbers of

transmit and receive antennas, hence polynomial-complexity detection is always guaranteed. In

contrast to Rayleigh fading, full-rank channel correlation is desired to guarantee polynomial-

complexity ML noncoherent detection upon time-invariant Ricean fading “channel processing.”

For illustration purposes, we operate the proposed receiver for sequence lengths up to 106 bits

in the context of plain 2 × 2 Alamouti transmissions in unknown Rayleigh or Ricean fading

channel environments. Even for a length-106 bit sequence, the polynomial-complexity feature

of our algorithm allows ML noncoherent detection without a prohibitive computational cost.

2 System Model and Problem Statement

We consider a multiple-input multiple-output (MIMO) system with Mt transmit and Mr receive

antennas that employs orthogonal space-time coded transmission of size Mt × T and rate R =
N
T

, N ≤ T . We assume transmission of binary data that are split into vectors of N bits. Each bit

vector forms a corresponding space-time block (matrix) of size Mt ×T . The Mt ×T space-time

block C(s) ∈ CMt×T that corresponds to the N × 1 data vector s ∈ {±1}N is given by

C(s) =
N∑

n=1

Xnsn (1)

where sn = ±1 denotes the nth element (bit) of s, n = 1, 2, . . . , N , and Xn ∈ CMt×T , n =

1, 2, . . . , N , are orthogonal space-time codes that satisfy the property

C(s)CH(s) = ‖s‖2
IMt = T IMt, (2)

for any s ∈ {±1}N . Eq. (2) denotes orthogonality and leads to maximum spatial diversity gain

[9].
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Let s(p) =
[

s
(p)
1 s

(p)
2 . . . s

(p)
N

]T

denote the data vector contained in the pth transmitted code

block, p = 1, 2, 3, . . . . The downconverted and pulse-matched equivalent pth received block of

size Mr × T is

Y(p) = H(p)C
(
s(p)
)

+ V(p). (3)

In (3), H(p) ∈ CMr×Mt refers to the pth transmission and represents the channel matrix between

the Mt transmit and Mr receive antennas. In general, H(p) consists of correlated coefficients

that are modeled as circular complex Gaussian random variables and account for flat fading.

We assume that all collected energy is absorbed by the channel matrix H(p). In addition,

V(p) ∈ CMr×T denotes zero-mean additive spatially and temporally white circular complex

Gaussian noise with variance σ2
v . The channel and noise matrices H(p) and V(p), respectively,

p = 1, 2, 3, . . ., are independent of each other.

If the receiver has knowledge of the channel matrix, then coherent ML detection simplifies

to one-shot block decisions according to

ŝ(p) = arg min
s(p)∈{±1}N

∥
∥Y(p) − H(p)C

(
s(p)
)∥
∥

2

F
, p = 1, 2, 3, . . . . (4)

Since orthogonal space-time codes are utilized, exhaustive search among the 2N possible bit

vectors s(p) ∈ {±1}N need not be performed because the detector in (4) is equivalent to linear-

complexity single-bit decisions of the form

ŝ(p)
n = sign

(

ℜ
{

tr
{

Y(p)XH
n

(
H(p)

)H
}})

, n = 1, 2, . . . , N, p = 1, 2, 3, . . . . (5)

In this work, we assume that the channel matrices H(p), p = 1, 2, 3, . . ., are not available

to the receiver. Hence, coherent detection in (5) cannot be utilized and the ML receiver takes

the form of a sequence detector. We consider a sequence of P space-time blocks consecutively

transmitted by the source and collected by the receiver, say Y(1), . . . ,Y(P ), and form the

Mr × TP observation matrix

Y
△
=
[
Y(1) . . . Y(P )

]
=
[
H(1)C

(
s(1)
)

. . . H(P )C
(
s(P )

)]
+
[
V(1) . . . V(P )

]
. (6)

In the sequel, based on the observation of P blocks at the receiver we present ML noncoherent

detection developments.

3 Maximum-likelihood Noncoherent Detection

We consider a time-varying Ricean fading MIMO channel, derive an efficient algorithm for the

implementation of the ML noncoherent receiver, and prove that the complexity of the proposed

ML receiver implementation is polynomial in the sequence length P if the mean channel vector

belongs to the range of the channel covariance matrix whose rank is not a function of the

sequence length. Thus, full-rank channel correlation is desired to guarantee polynomial ML

noncoherent detection complexity independently of the mean channel vector for the case of
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time-invariant Ricean fading. Interestingly, the order of the polynomial complexity depends

strictly on the rank of the channel covariance matrix.

We assume that the channel matrix H(p) changes during different transmissions and de-

fine the concatenated channel matrix H
△
=
[
H(1) . . .H(P )

]
∈ CMr×PMt. Due to Ricean fading,

the vectorized1 channel matrix h
△
= vec(H) is a circular complex Gaussian vector of length

MtMrP with mean vector µ ∈ CMtMrP and covariance matrix Ch = E
{

(h − µ) (h − µ)H
}

=

QQH ∈ CMtMrP×MtMrP where Q ∈ CMtMrP×D consists of orthogonal columns and D ≤
MtMrP . Given the Mr × TP observation matrix Y, the ML detector for the bit sequence

s =
[(

s(1)
)T

. . .
(
s(P )

)T
]T

∈ {±1}NP maximizes the conditional probability density function

(pdf) of Y given s. Thus, the optimal decision is given by

ŝopt = arg max
s∈{±1}NP

f(Y|s) = arg max
s∈{±1}NP

f (vec(Y)| s) = arg max
s∈{±1}NP

f(y|s) (7)

where y
△
= vec(Y) ∈ CMrTP and f(·|·) represents the pertinent matrix/vector probability

density function of the channel output conditioned on a bit sequence.

We define the block-diagonal matrix D(s)
△
= diag

([
C
(
s(1)
)
, . . . ,C

(
s(P )

)])
∈ CMtP×TP and

note that it satisfies the orthogonality property, since

D(s)DH(s)=diag
([

C
(
s(1)
)
, . . . ,C

(
s(P )

)])
diag

([
CH
(
s(1)
)
, . . . ,CH

(
s(P )

)])
(8)

=diag
([

C
(
s(1)
)
CH
(
s(1)
)
, . . . ,C

(
s(P )
)
CH
(
s(P )

)])
=diag(T IMt, . . . , T IMt)=T IMtP .

Then, the received matrix in (6) becomes Y = HD(s) + V where V
△
=
[
V(1) . . . V(P )

]
∈

CMr×TP . Due to [37]

vec(ABC) =
(
CT ⊗ A

)
vec(B), (9)

we obtain

y=vec(HD(s)+V)=vec(IMrHD(s))+vec(V)=
(
DT(s) ⊗ IMr

)
h+v (10)

where v = vec(V) ∈ CMrTP and operator ⊗ denotes Kronecker tensor product. Then, it can be

proven that y given s is a complex Gaussian vector with mean E{y|s} = E
{(

DT (s) ⊗ IMr

)
h + v

∣
∣ s
}

=
(
DT (s) ⊗ IMr

)
E{h} + E{v} =

(
DT (s) ⊗ IMr

)
µ and covariance matrix

Cy(s) = E
{((

DT (s) ⊗ IMr

)
(h − µ) + v

) ((
DT (s) ⊗ IMr

)
(h− µ) + v

)H
∣
∣
∣ s
}

= E
{(

DT (s) ⊗ IMr

)
(h − µ)(h− µ)H (D∗(s) ⊗ IMr)

∣
∣ s
}

+ E{vvH |s}
=
(
DT (s) ⊗ IMr

)
Ch (D∗(s) ⊗ IMr) + σ2

vIMrTP

=
(
DT (s) ⊗ IMr

)
QQH (D∗(s) ⊗ IMr) + σ2

vIMrTP . (11)

Therefore, the optimization problem in (7) is rewritten as

ŝopt=arg max
s∈{±1}NP

1

πMrTP |Cy( s)|
exp
{

−
(
y−
(
DT(s)⊗IMr

)
µ
)H

C−1
y (s)

(
y−
(
DT(s)⊗IMr

)
µ
)}

. (12)

1Operator vec(·) accounts for column-by-column vectorization of a matrix.

9



A natural approach to (12) would be an exhaustive search among all 2NP data sequences s ∈
{±1}NP , but such a receiver is impractical even for moderate values of P , since its complexity

grows exponentially with P . In the sequel, we present an efficient algorithm that performs the

maximization in (12) with O(P 2D) calculations if µ belongs to the span of Ch.

Using identities for the determinant and inverse of a rank-deficient update [38], we compute

|Cy(s)|=
∣
∣σ2

vIMrTP

∣
∣

∣
∣
∣
∣
ID+

1

σ2
v

QH(D∗(s) ⊗ IMr)
(
DT(s) ⊗ IMr

)
Q

∣
∣
∣
∣

=σ2MrTP
v

∣
∣
∣
∣
ID+

1

σ2
v

QH
(
D∗(s)DT(s) ⊗ IMr

)
Q

∣
∣
∣
∣

(8)
=σ2MrTP

v

∣
∣
∣
∣
ID+

T

σ2
v

QH(IMtP ⊗ IMr)Q

∣
∣
∣
∣

=σ2MrTP
v

∣
∣
∣
∣
ID+

T

σ2
v

QHQ

∣
∣
∣
∣
=σ2MrTP

v

∣
∣
∣
∣
ID+

T

σ2
v

Σ

∣
∣
∣
∣

(13)

and

C−1
y (s) =

1

σ2
v

IMrTP − 1

σ2
v

(
DT (s) ⊗ IMr

)
Q

(

ID+
1

σ2
v

QH(D∗(s) ⊗ IMr)
(
DT (s) ⊗ IMr

)
Q

)−1

QH(D∗(s) ⊗ IMr)
1

σ2
v

(8)
=

1

σ2
v

IMrTP − 1

σ4
v

(
DT (s) ⊗ IMr

)
Q

(

ID+
T

σ2
v

QH(IMtP ⊗ IMr)Q

)−1

QH(D∗(s) ⊗ IMr)

=
1

σ2
v

IMrTP − 1

σ4
v

(
DT (s) ⊗ IMr

)
Q

(

ID +
T

σ2
v

Σ

)−1

QH (D∗(s) ⊗ IMr) , (14)

where Σ
△
= QH Q is a D × D diagonal matrix with the D positive eigenvalues of Ch on its

diagonal. For notation simplicity, we define

U
△
= Q

(

ID +
T

σ2
v

Σ

)− 1
2

(15)

and observe that

UHU =

(

ID +
T

σ2
v

Σ

)− 1
2

QHQ

(

ID +
T

σ2
v

Σ

)− 1
2

=

(

ID +
T

σ2
v

Σ

)− 1
2

Σ

(

ID +
T

σ2
v

Σ

)− 1
2

=

(

Σ−1 +
T

σ2
v

ID

)−1

.

(16)
We observe that |Cy(s)| is independent of the transmitted sequence s, drop it from the maxi-
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mization in (12), and substitute (15) in (14) and then back in (12) to obtain

ŝopt=argmax
s∈{±1}NP

{

−
(
y−
(
DT(s) ⊗ IMr

)
µ
)H
(

1

σ2
v

IMrTP−
1

σ4
v

(
DT(s)⊗IMr

)
UUH(D∗(s) ⊗ IMr

)

)
(
y−
(
DT(s)⊗IMr

)
µ
)
}

=argmax
s∈{±1}NP

{

− 1
σ2

v

yHy + 1
σ2

v

yH
(
DT(s) ⊗ IMr

)
µ + 1

σ2
v

µH(D∗(s) ⊗ IMr
)y − 1

σ2
v

µH(D∗(s) ⊗ IMr
)
(
DT(s) ⊗ IMr

)
µ

+ 1
σ4

v

yH
(
DT (s) ⊗ IMr

)
UUH (D∗(s) ⊗ IMr

)y

− 1
σ4

v

yH
(
DT (s) ⊗ IMr

)
UUH (D∗(s) ⊗ IMr

)
(
DT (s) ⊗ IMr

)
µ

− 1
σ4

v

µH (D∗(s) ⊗ IMr
)
(
DT (s) ⊗ IMr

)
UUH (D∗(s) ⊗ IMr

)y

+ 1
σ4

v

µH (D∗(s) ⊗ IMr
)
(
DT (s) ⊗ IMr

)
UUH (D∗(s) ⊗ IMr

)
(
DT (s) ⊗ IMr

)
µ

}

(8)
=argmax

s∈{±1}NP

{

1
σ2

v

yH
(
DT (s) ⊗ IMr

)
UUH (D∗(s) ⊗ IMr

)y

+yH
(
DT (s) ⊗ IMr

) (

IMtMrP − T

σ2
v

UUH

)

µ + µH

(

IMtMrP − T

σ2
v

UUH

)

(D∗(s) ⊗ IMr
)y

}

.

(17)

We continue our algorithmic developments by defining the matrices X
△
= [X1 . . .XN ] ∈

CMt×TN , S
△
=
[
s(1) . . . s(P )

]
∈ {±1}N×P , and G(s)

△
=
[
C
(
s(1)
)

. . . C
(
s(P )

)]
∈ CMt×TP . We

observe that s = vec(S), G(s)GH(s) = TP IMt due to (2), and

G(s) =

[
N∑

n=1

Xns
(1)
n . . .

N∑

n=1

Xns(P )
n

]

=
[
[X1 . . .XN ]

(
s(1) ⊗ IT

)
. . . [X1 . . .XN ]

(
s(P ) ⊗ IT

)]

= X
[(

s(1) ⊗ IT

)
. . .
(
s(P ) ⊗ IT

)]
= X

([
s(1) . . . s(P )

]
⊗ IT

)
= X (S⊗ IT ) . (18)

Moreover, we denote by ep the pth column of IP , p = 1, 2, . . . , P , and rewrite D(s) as

D(s) = diag
([

C
(
s(1)
)
, . . . ,C

(
s(P )
)])

=






G(s)
(
e1e

T
1 ⊗ IT

)

...

G(s)
(
ePeT

P ⊗ IT

)




=(IP ⊗G(s))






e1e
T
1 ⊗ IT

...

ePeT
P ⊗ IT






= (IP ⊗ G(s))
(

ĨP ⊗ IT

)
(18)
= (IP ⊗ X (S⊗ IT ))

(

ĨP ⊗ IT

)

(19)

where ĨP
△
=
[
e1e

T
1 · · · ePeT

P

]T ∈ {0, 1}P 2×P . Then, the vector (D∗(s) ⊗ IMr)y that appears

in the maximization problem in (17) is reexpressed as

(D∗(s) ⊗ IMr)y
(19)
=
(

(IP ⊗ X∗ (S ⊗ IT ))
(

ĨP ⊗ IT

)

⊗ IMr

)

vec(Y) (20)

(9)
= vec

(

Y
(

ĨT
P ⊗IT

)(
IP ⊗

(
ST ⊗IT

)
XH
)
IMtP

)
(9)
=
(

IMtP ⊗Y
(

ĨT
P ⊗IT

))

vec
(
IP ⊗

(
ST ⊗IT

)
XH
)
.

We observe that

vec
(
IP ⊗

(
ST ⊗ IT

)
XH
)

= vec
(
[e1 . . . eP ] ⊗

(
ST ⊗ IT

)
XH
)

(21)

= vec
([

e1 ⊗
(
ST ⊗ IT

)
XH . . . eP ⊗

(
ST ⊗ IT

)
XH
])

=




vec
(
e1 ⊗

(
ST ⊗ IT

)
XH
)

...
vec
(
eP ⊗

(
ST ⊗ IT

)
XH
)





11



where, for any p = 1, 2, . . . , P ,

vec
(
ep⊗

(
ST⊗ IT

)
XH
)
=vec

(
ep·1⊗ IPT

(
ST⊗ IT

)
XH
)
=vec

(
(ep ⊗ IPT )

(
1⊗
(
ST⊗ IT

)
XH
))

= vec
(
(ep ⊗ IPT )

(
ST ⊗ IT

)
XHIMt

) (9)
= (IMt ⊗ ep ⊗ IPT )vec

((
ST ⊗ IT

)
XH
)
. (22)

We also denote by X̃m the matrix that contains the mth rows of all N space-time matrices,

that is

X̃m
△
=






[X1]m,:
...

[XN ]m,:




 ∈ C

N×T , m = 1, . . . , Mt, (23)

and observe that

XH =[X1 . . .XN ]H=
[

vec
(

X̃H
1

)

. . . vec
(

X̃H
Mt

)]

. (24)

Then,

vec
((

ST ⊗ IT

)
XH
) (24)

= vec
((

ST ⊗ IT

) [

vec
(

X̃H
1

)

. . . vec
(

X̃H
Mt

)])

(25)

= vec
([(

ST⊗ IT

)
vec
(

X̃H
1

)

. . .
(
ST⊗ IT

)
vec
(

X̃H
Mt

)])
(9)
=vec

([

vec
(

X̃H
1 S
)

. . . vec
(

X̃H
Mt

S
)])

(9)
= vec

([(

IP ⊗ X̃H
1

)

vec(S) . . .
(

IP ⊗ X̃H
Mt

)

vec(S)
])

=vec
([

ZH
1 s . . . ZH

Mt
s
])

=




ZH

1 s
...

ZH
Mt

s



=ZHs

where Zm
△
= IP ⊗ X̃m ∈ CNP×TP , m = 1, . . . , Mt, and Z

△
= [Z1 . . . ZMt ] ∈ CNP×MtTP .

Substituting (25) in (22) and then back in (21), we obtain

vec
(
IP ⊗

(
ST ⊗ IT

)
XH
)
=




(IMt ⊗ e1 ⊗ IPT )ZHs

...
(IMt ⊗ eP ⊗ IPT )ZHs



=








IMt ⊗ e1 ⊗ IP...
IMt ⊗ eP ⊗ IP



⊗ IT



ZHs. (26)

Using (26), eq. (20) becomes

(D∗(s) ⊗ IMr)y = (IMtP ⊗ Y)
(

IMtP ⊗ ĨT
P ⊗ IT

)








IMt ⊗ e1 ⊗ IP...
IMt ⊗ eP ⊗ IP



⊗ IT



ZHs

= (IMtP ⊗ Y)











(

IMt ⊗ ĨT
P

)

(IMt ⊗ e1 ⊗ IP )
...(

IMt ⊗ ĨT
P

)

(IMt ⊗ eP ⊗ IP )




⊗ IT




ZHs = (IMtP ⊗ Y)









IMt ⊗ ĨT
P (e1 ⊗ IP )

...
IMt ⊗ ĨT

P (eP ⊗ IP )



⊗ IT



ZHs

= (IMtP ⊗ Y)








IMt ⊗ e1e

T
1...

IMt ⊗ eP eT
P



⊗ IT



ZHs = (IMtP ⊗ Y)EZHs (27)

where E
△
=




IMt ⊗ e1e

T
1...

IMt ⊗ ePeT
P



⊗ IT ∈ {0, 1}MtP
2T×MtPT . Due to (27), the first, second, and third

12



part of the maximization argument in (17) become

1

σ2
v

sTZET
(
IMtP ⊗YH

)
UUH (IMtP ⊗Y)EZHs, (28)

sTZET
(
IMtP ⊗YH

)
(

IMtMrP − T

σ2
v

UUH

)

µ, and µH

(

IMtMrP − T

σ2
v

UUH

)

(IMtP ⊗Y)EZHs,

(29)

respectively. We append a 1 to the end of the data vector s, define s̃
△
=
[
sT 1

]T
, and obtain

ŝopt =
[

ˆ̃sopt

]

1:NP,1
(30)

where, using (28) and (29) in (17),

ˆ̃sopt=arg max
s̃∈{±1}NP+1

s̃NP+1=1

s̃T





1
σ2

v
ZET

(
IMtP⊗YH

)
UUH(IMtP⊗Y)EZH ZET

(
IMtP⊗YH

)(

IMtMrP− T
σ2

v
UUH

)

µ

µH
(

IMtMrP − T
σ2

v
UUH

)

(IMtP ⊗ Y)EZH 0



s̃.

(31)

In the sequel, we show that (31) is order-2D polynomially solvable when the matrix of interest

-up to diagonal manipulations- has at most D nonzero eigenvalues that are also positive. For

this purpose, we present the following two lemmas.

Lemma 1 Every matrix A ∈ CN×N is binary-quadratic-form-optimization-equivalent (BQFO-

equivalent) to Ȧ = A + diag(x), x ∈ RN×1, i.e. sTAs and sT Ȧs are maximized (minimized)

by the same binary vector s ∈ {±1}N .

Proof: For any s ∈ {±1}N , sT Ȧs = sT (A+diag(x))s = sT As+
∑N

n=1 xns
2
n = sT As+

∑N

n=1 xn

where
∑N

n=1 xn is a real constant that does not affect the maximization (minimization) of the

quadratic form. 2

Lemma 2 Let B ∈ C(N−1)×M , C ∈ CM×D, x ∈ CM×1, and

A
△
=

[
BCCHBH B

(
IM − CCH

)
x

xH
(
IM −CCH

)
BH 0

]

∈ C
N×N . (32)

If x belongs to the range of C, i.e. x = Ca, a ∈ CD×1, then A is BQFO-equivalent to the

positive (semi)definite matrix

Ȧ
△
=

[
BC

aH
(
ID−CHC

)

]
[
CHBH

(
ID−CHC

)
a
]
. (33)

Proof: If x = Ca, a ∈ CD×1, then

A=

[
BCCHBH B

(
IM−CCH

)
Ca

aHCH
(
IM−CCH

)
BH 0

]

=

[
BCCHBH B

(
C−CCHC

)
a

aH
(
CH−CHCCH

)
BH 0

]

=

[
BCCHBH BC

(
ID−CHC

)
a

aH
(
ID−CHC

)
CHBH 0

]

=Ȧ+diag

([

0(N−1)×1

−
∥
∥
(
ID−CHC

)
a
∥
∥

2

])

. (34)

13



Due to Lemma 1, A is BQFO-equivalent to Ȧ. 2

From (15), we observe that Q and U have identical ranges. If µ belongs to the range of
Ch = QQH (equivalently, the range of 1

σv
U, i.e. µ = 1

σv
Ua for some a ∈ CD), then we obtain

a = σv

(
UHU

)−1
UHµ, set B

△
= 1√

T
ZET

(
IMtP ⊗ YH

)
, C

△
=

√
T

σv
U, and x

△
=

√
Tµ in Lemma 2,

and rewrite (31) as

ˆ̃sopt=arg max
s̃∈{±1}NP+1

s̃NP+1=1

s̃T

[
1
σv

ZET
(
IMtP ⊗ YH

)
U

σvµ
HU
(
UHU

)−1
(

ID− T
σ2

v
UHU

)

][
1

σv
UH(IMtP⊗Y)EZH σv

(

ID−
T

σ2
v

UHU

)
(
UHU

)−1
UHµ

]

s̃

=arg max
s̃∈{±1}NP+1

s̃NP+1=1

∥
∥
∥
∥

[
1

σv

UH(IMtP⊗Y)EZH σv

(
(
UHU

)−1− T

σ2
v

ID

)

UHµ

]

s̃

∥
∥
∥
∥

2

(15)
=

(16)
arg max
s̃∈{±1}NP+1

s̃NP+1=1

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

[

1

σv

(

ID+
T

σ2
v

Σ

)− 1
2

QH(IMtP⊗Y)EZH σvΣ
−1

(

ID+
T

σ2
v

Σ

)− 1
2

QHµ

]

︸ ︷︷ ︸

AH

s̃

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

=arg max
s̃∈{±1}NP+1

s̃NP+1=1

s̃TAAH s̃ =arg max
s̃∈{±1}NP+1

s̃NP+1=1

ℜ
{
s̃TAAH s̃

}
=arg max

s̃∈{±1}NP+1

s̃NP+1=1

s̃T
(
ℜ{A}ℜ{A}T + ℑ{A}ℑ{A}T

)
s̃

=arg max
s̃∈{±1}NP+1

s̃NP+1=1

s̃T [ℜ{A} ℑ{A}] [ℜ{A} ℑ{A}]T s̃ =arg max
s̃∈{±1}NP+1

s̃NP+1=1

∥
∥VT s̃

∥
∥ (35)

where

A
△
=

[
1
σv

ZET
(
IMtP ⊗YH

)
Q

σvµ
HQΣ−1

](

ID +
T

σ2
v

Σ

)− 1
2

∈ C
(NP+1)×D (36)

and V
△
= [ℜ{A} ℑ{A}] ∈ R(NP+1)×2D. The computation of ˆ̃sopt in (35) (hence, ŝopt in (30)) can

be implemented with complexity O
(
P 2D

)
if we follow the multiple-auxiliary-angle methodol-

ogy that has been introduced in [33]-[36] for the problem of rank-deficient quadratic form

maximization and is presented below.

We introduce the spherical coordinates φ1 ∈ (−π, π], φ2, . . . , φ2D−1 ∈ (−π
2
, π

2
] and define the

spherical coordinate vector φ
△
= [φ1, φ2, . . . , φ2D−1]

T and the 2D × 1 hyperpolar vector

c(φ)
△
=










sin φ1

cos φ1 sin φ2

...

cos φ1 . . . cos φ2D−2 sin φ2D−1

cos φ1 . . . cos φ2D−2 cos φ2D−1










. (37)

Due to Cauchy-Schwartz Inequality which states that, for any v ∈ R2D, vTc(φ) ≤ ‖v‖‖c(φ)‖
with equality if and only if φ1, . . . , φ2D−1 are the spherical coordinates of v, for the optimization

14



problem in (35) we obtain

max
s̃∈{±1}NP+1

∥
∥VT s̃

∥
∥ = max

s̃∈{±1}NP+1
max

φ1∈[−π,π]
max

φ2,...,φ2D−1∈(−π
2
, π
2
]

{
s̃TVc(φ)

}

= max
φ1∈(−π,π]

max
φ2,...,φ2D−1∈(−π

2
, π
2
]

NP+1∑

n=1

max
s̃n=±1

{s̃nVn,:c(φ)}
(38)

by interchanging the maximizations in (38). Eq. (38) shows that ˆ̃sopt can be obtained by

scanning the hypersphere defined by the auxiliary angles φ1, φ2, . . . , φ2D−1 and determining

the optimal vector ˆ̃s(φ) for every given point φ ∈ (−π, π] ×
(
−π

2
, π

2

]2D−2
. Interestingly, for

any point φ, the maximizing argument of each term of the sum in (38) depends only on the

corresponding row of V and is determined by s̃n = sgn (Vn,: c(φ)) , n = 1, . . . , NP + 1.

s̃(φ) = sgn(Vc(φ)) (39)

s̃(φ) = sgn(Vc(φ)) and the optimal vector ˆ̃sopt in (35) is met if we scan the entire set (−π, π]×
(−π

2
, π

2
]2D−2. Moreover, opposite binary vectors s̃ and −s̃ result in the same metric in (35),

thus, we can ignore the values of φ1 in
(
−π,−π

2

]
∪
(

π
2
, π
]

and rewrite the optimization problem

in (38) as

max
φ∈Φ

NP+1∑

n=1

max
s̃n=±1

{s̃nVn,:c(φ)} (40)

maxφ∈Φ

∑NP+1
n=1 maxs̃n=±1 {s̃nVn,:c(φ)} where Φ

△
= (−π

2
, π

2
]2D−1. Finally, we collect all candi-

date binary vectors into set

S △
=
⋃

φ∈Φ

{s̃(φ)} ⊆ {±1}NP+1 (41)

and observe that arg max
s̃∈{±1}NP+1

∥
∥VT s̃

∥
∥ ∈ S, hence ˆ̃sopt = ˆ̃s′opt ·

[

ˆ̃s′opt

]

NP+1,1
where

ˆ̃s′opt = arg max
s̃∈S

∥
∥VT s̃

∥
∥ . (42)

In [35], it was shown that the decision s̃n = sgn (Vn,: c(φ)) is equivalent to

s̃n =







−sgn(Vn,1), φ1 ∈
(

−π
2
, tan−1

(

−Vn,2:2Dc(φ2:2D−1)

Vn,1

)]

sgn(Vn,1), φ1 ∈
(

tan−1
(

−Vn,2:2Dc(φ2:2D−1)

Vn,1

)

, π
2

]

.
(43)

The function φ = tan−1
(

−Vn,2:2Dc(φ2:2D−1)

Vn,1

)

determines a hypersurface which partitions Φ into

two regions. One region corresponds to s̃n = −1 and the other one corresponds to s̃n = +1.

Therefore, the NP + 1 rows of V are associated with NP + 1 corresponding hypersurfaces

that partition the hypercube Φ into K cells C1, C2, . . . , CK such that
⋃K

k=1 Ck = Φ, Ck ∩
Cj 6= 0 ∀ k 6= j, and each cell Ck corresponds to a distinct vector s̃k ∈ {±1}NP+1. See,

for example, Fig. 1 where we present the cells that are formed by an eight-row three-column
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matrix V and a spherical vector φ = [φ1 φ2]
T .2 In [35], it was shown that K =

∑2D−1
d=0

(
NP

d

)
,

therefore all candidate vectors form set S with cardinality |S| =
∑2D−1

d=0

(
NP

d

)
= O

(
P 2D−1

)
.

The construction of S is of special interest since it determines the overall performance of the

proposed method. An algorithm for the construction of S was developed in [35] and is available

at http://www.telecom.tuc.gr/∼karystinos. Interestingly, the algorithm’s complexity for the

construction of S is O(P 2D) for any given matrix V.

In our developments in this section, V (which is a function of A) has to be computed by the

receiver and subsequently fed to the algorithm of [35]. In (36), it is seen that A is a function of

the received data matrix Y, matrices Z, E, Q, and Σ, vector µ, and scalar σv. We note that

ZET
(
IMtP⊗YH

)
Q=Z

[
IMt⊗e1e

T
1 ⊗IT . . . IMt⊗ePeT

P⊗IT

](
IP⊗IMt⊗YH

)
Q

=Z
[(

IMt⊗e1e
T
1⊗IT

)(
IMt⊗YH

)
. . .
(
IMt⊗ePeT

P⊗IT

)(
IMt⊗YH

)]
Q

=Z
[
IMt⊗

(
e1e

T
1⊗IT

)
YH . . . IMt⊗

(
ePeT

P⊗IT

)
YH
]

[
[Q ]1:MtMr,:

...[Q ](P−1)MtMr+1:PMtMr,:

]

=
P∑

p=1

[Z1 . . . ZMt]
(
IMt ⊗

(
epe

T
p ⊗ IT

)
YH
)
[Q ](p−1)MtMr+1:pMtMr,:

. (44)

For convenience, we define Qp
△
= [Q ](p−1)MtMr+1:pMtMr,:

and observe that, for any p = 1, 2, . . . , P ,

[Z1 . . . ZMt]
(
IMt⊗

(
epe

T
p ⊗IT

)
YH
)
Qp =

[

IP⊗X̃1 . . . IP⊗X̃Mt

](
IMt⊗

(
epe

T
p ⊗IT

)
YH
)
Qp

=
[(

IP⊗X̃1

)(
epe

T
p ⊗IT

)
YH . . .

(

IP⊗X̃Mt

)(
epe

T
p ⊗IT

)
YH
]

Qp (45)

=
[(

epe
T
p ⊗X̃1

)

YH . . .
(

epe
T
p ⊗X̃Mt

)

YH
]

Qp =
Mt∑

m=1

(

epe
T
p ⊗X̃m

)

YH[Qp](m−1)Mr+1:mMr,:

=
Mt∑

m=1






0(p−1)N×Mr

X̃m

[
YH
]

(p−1)T+1:pT,:

0(P−p)N×Mr




[Qp](m−1)Mr+1:mMr,:

=







0(p−1)N×D

Mt∑

m=1

X̃m

[
YH
]

(p−1)T+1:pT,:
[Qp](m−1)Mr+1:mMr,:

0(P−p)N×D






.

Computation of X̃m

[
YH
]

(p−1)T+1:pT,:
[Qp](m−1)Mr+1:mMr,:

, m = 1, . . . , Mt, requires O(NTMr +

NMrD) calculations and the sum in (45) consists of Mt such products resulting in a total

of O(Mt(NTMr + NMrD)) calculations. In addition, (44) contains P such sums, hence the

computational complexity of ZET
(
IMtP ⊗ YH

)
Q is O(PMt(NTMr + NMrD)). Computation

of the row vector σvµ
HQΣ−1 that appears in the bottom row of A requires O (MtMrPD + D)

calculations. Finally, the multiplication of the leftmost matrix in (36) with
(

ID + T
σ2

v
Σ
)− 1

2
costs

O ((NP + 1)D). Therefore, the overall complexity overhead for the computation of V becomes

2We selected an odd number of columns for matrix V and even number of elements for φ just for illustration
purposes. It should be mentioned that V and φ always consist of an even number of columns and odd number
of elements, respectively.
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O(PMt(NTMr +NMrD)+MtMrPD+D +(NP +1)D) which is linear in the sequence length

P for constant values of Mt, Mr, N , T , and D (that is, fixed number of antennas, space-time

coding rate, and channel covariance rank). We conclude that the overall complexity of the

proposed receiver is O
(
P 2D

)
.

As a brief summary, the sequence of calculations of the proposed ML noncoherent receiver is

as follows. The whole data record of TP received vectors is utilized to form the received matrix

Y. Then, matrix V is computed as a function of A in (36) with complexity O(P ). Finally, the

quadratic-form-maximization algorithm of [35] is operated on V to produce the optimal data

bit sequence ˆ̃sopt with complexity O
(
P 2D

)
. Therefore, the overall complexity of the proposed

receiver is O
(
P 2D

)
. We conclude that, for the general case of time-varying Ricean fading,

ML noncoherent OSTBC detection is attained with polynomial complexity if the mean channel

vector belongs to the range of the channel covariance matrix whose rank is not a function of

the sequence length; provided the latter condition, the polynomial complexity of our proposed

optimal receiver depends strictly on the rank of the channel covariance matrix.

4 Special Channel Model Cases

In the previous section we considered a time-varying Ricean fading MIMO channel model and

showed that ML noncoherent OSTBC detection is attained with polynomial complexity if the

mean channel vector belongs to the range of the channel covariance matrix whose rank is not

a function of the sequence length. Since the time-invariant Ricean, time-varying Rayleigh,

and time-invariant Rayleigh channel models are special cases of the general model that we

considered, we immediately conclude that polynomial ML noncoherent detection complexity is

also attained provided the same conditions with the time-varying Ricean channel model case

hold. Especially for (time-varying or time-invariant) Rayleigh fading, the channel mean is

zero which always belongs to the range of the channel covariance matrix, hence polynomial-

complexity ML noncoherent detection is always attained provided that the channel covariance

rank is not a function of the sequence length. In this section, we examine separately the three

special cases of the general model of the previous section, identify conditions for polynomial

solvability of the ML noncoherent detection problem, and report exact complexity requirements

of the proposed polynomial-complexity ML noncoherent detector. An interesting outcome of

our analysis for the time-invariant Rayleigh fading channel is that polynomial-complexity ML

noncoherent detection is always feasible through the proposed algorithm and -in contrast to

Ricean fading- the complexity of the optimal receiver is reduced if the channel covariance rank

is lower.

Case I: Time-varying Rayleigh fading

Due to Rayleigh fading, we have µ = 0, hence the bottom row of A in (36) becomes zero and the

ML detector of (35) simplifies to ŝopt = arg maxs∈{±1}NP

∥
∥VT

1 s
∥
∥ where V1

△
= [ℜ{A1} ℑ{A1}]

and A1
△
= ZET

(
IMtP ⊗YH

)
Q
(

ID + T
σ2

v
Σ
)− 1

2

.
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Case II: Time-invariant Ricean fading

We have h = 1P ⊗ h where h = vec
(
H(1)

)
is a circular complex Gaussian vector with mean

µ and covariance matrix Ch = QQH . Then, the covariance matrix of the channel vector h

equals Ch = 1P1T
P ⊗ Ch = 1P1T

P ⊗QQH = (1P ⊗Q)(1P ⊗ Q)H , therefore Q = 1P ⊗ Q and

QH(IMtP⊗Y)E=
(
1T

P⊗QH
)
(IP⊗IMt⊗Y)

[

IMt⊗e1e
T
1 ⊗IT...IMt⊗ePeT
P⊗IT

]

=
(
1T

P⊗QH(IMt⊗Y)
)

[

IMt⊗e1e
T
1 ⊗IT...IMt⊗ePeT
P⊗IT

]

=
P∑

p=1

QH(IMt ⊗ Y)
(
IMt ⊗ epe

T
p ⊗ IT

)
=QH(IMt ⊗ Y)

(

IMt⊗
(

P∑

p=1

epe
T
p

)

⊗ IT

)

=QH (IMt ⊗Y) (IMt ⊗ IP ⊗ IT ) = QH (IMt ⊗ Y) . (46)

In addition, Σ = QHQ = (1T
P⊗QH)(1P⊗Q) = 1T

P1P⊗QHQ = P⊗Σ = PΣ, where Σ
△
= QHQ,

and µHQΣ−1 =
(
1T

P ⊗ µH
) (

1P ⊗ Q
)

1
P
Σ−1 = 1

P

(
P ⊗ µHQ

)
Σ−1 = µHQΣ−1. Then, the ML

detector in (35) simplifies to ˆ̃sopt = arg max
s̃∈{±1}NP+1

s̃NP+1=1

∥
∥VT

2 s̃
∥
∥ where V2

△
= [ℜ{A2} ℑ{A2}] and

A2
△
=

[
1
σv

Z
(
IMt ⊗ YH

)
Q

σvµ
HQΣ−1

]
(

ID + TP
σ2

v
Σ
)− 1

2

. Of course, such a simplification is possible when

µ belongs to the range of Ch.

Case III: Time-invariant Rayleigh fading

We have µ = 0, hence the ML detector becomes ŝopt = arg maxs∈{±1}NP

∥
∥VT

3 s
∥
∥ where V3

△
=

[ℜ{A3} ℑ{A3}] and A3
△
= Z

(
IMt ⊗ YH

)
Q
(

ID + TP
σ2

v
Σ
)− 1

2

. Note that the latter is always

feasible, since µ = 0 always belongs to the range of Ch.

It is interesting to mention that the ML noncoherent detector in the case of time-invariant

Rayleigh fading (Case III) simplifies to the popular trace detector [5], [10] in the special cases

of i.i.d. channel coefficients or joint channel estimation and data detection due to channel

statistics uncertainty at the receiver. Indeed, if the channel coefficients are i.i.d., then Ch, Q,

and Σ are scaled versions of IMtMr, D = MtMr, and the ML detector in (17) becomes

ŝopt = arg max
s∈{±1}NP

{
yH
(
DT (s) ⊗ IMr

)
(1P ⊗ IMtMr)

(
1T

P ⊗ IMtMr

)
(D∗(s) ⊗ IMr)y

}

= arg max
s∈{±1}NP

{
yH
(
DT (s) (1P ⊗ IMt) ⊗ IMr

) ((
1T

P ⊗ IMt

)
D∗(s) ⊗ IMr

)
y
}

(47)

= arg max
s∈{±1}NP

{
yH
(
GT (s) ⊗ IMr

)
(G∗(s) ⊗ IMr)y

}
= arg max

s∈{±1}NP
‖(G∗(s) ⊗ IMr) vec(Y)‖2

(9)
= arg max

s∈{±1}NP

∥
∥vec

(
YGH(s)

)∥
∥

2
= arg max

s∈{±1}NP

∥
∥YGH(s)

∥
∥

2

F
= arg max

s∈{±1}NP
tr
{
YGH(s)G(s)YH

}
.

In the second special case, the receiver does not have knowledge of the channel statis-

tics, hence joint ML estimation of H and detection of s is performed according to {̂H, s} =

arg min
H∈CMr×Mt

s∈{±1}NP

‖Y − HG(s)‖2
F. Then,
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ŝGLRT = argmin
s∈{±1}NP

{

min
H∈CMr×Mt

‖Y −HG(s)‖2
F

}

(48)

is the generalized-likelihood ratio test (GLRT) detection of s [17], [39]. For any s ∈ {±1}NP ,

the inner minimization in (48) results in

Ĥ(s) = arg min
H∈CMr×Mt

‖Y −HG(s)‖2
F =

1

TP
YGH(s) (49)

which is obtained by setting ∂
∂H

‖Y − HG(s)‖2
F = 0 and solving for H using matrix differenti-

ation [40] that gives

∂

∂H
‖Y −HG(s)‖2

F =
∂

∂H
tr
{
(Y − HG(s))H(Y − HG(s))

}

=
∂

∂H
tr
{
YHY

}
− ∂

∂H
tr
{
G(s)YHH

}
− ∂

∂H
tr
{
YGH(s)HH

}
+

∂

∂H
tr
{
G(s)GH(s)HHH

}

= 0 −Y∗GT (s) + 0 + TPH∗. (50)

Using (49), the GLRT decision in (48) becomes

ŝGLRT = arg min
s∈{±1}NP

tr

{(

Y − 1

TP
YGH(s)G(s)

)(

Y − 1

TP
YGH(s)G(s)

)H
}

= arg min
s∈{±1}NP

{

− 2

TP
tr
{
YGH(s)G(s)YH

}
+

1

(TP )2
tr
{
YGH(s)G(s)GH(s)G(s)YH

}
}

= arg max
s∈{±1}NP

tr
{
YGH(s)G(s)YH

}
. (51)

Apparently, (47) and (51) are identical problems. Both constitute special cases of Case III and

can be solved in polynomial time O(P 2MtMr) if we follow the proposed approach.

We conclude that for time-invariant Rayleigh fading the ML noncoherent detector can always

operate with polynomial complexity in the sequence length P , the order of which is determined

strictly by the rank D of the channel covariance matrix. That is, the lower the Rayleigh channel

covariance rank the lower the receiver complexity. Therefore, the worst-case complexity is

O
(
P 2MtMr

)
and is met, for example, when the channel coefficients are i.i.d. Similar properties

hold for time-varying Rayleigh fading, as long as the rank D of the correlation matrix is not

a function of the sequence length P . Instead, for Ricean channel distribution, polynomial

complexity is attained through the proposed receiver if the mean channel vector belongs to

the range of the channel covariance matrix. Hence, in contrast to Rayleigh fading where low-

rank correlation is desired, full-rank correlation is sufficient to guarantee polynomial detection

complexity in the case of time-invariant Ricean fading. In the following section, we illustrate

our theoretic findings.

5 Simulation Studies

We consider a 2×2 MIMO system that employs Alamouti space-time coding (with rate R = N
T

=

1, since N = T = 2) to transmit binary data in an unknown Rayleigh or Ricean fading channel
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environment. Space-time ambiguity induced by the rotatability of the Alamouti code [41] is

resolved by employing differential space-time modulation [24] due to which the pth transmitted

space-time block is C(p) = C(p−1)X(p) where X(p) =

[

s
(p)
1 0

0 s
(p)
2

]

if s
(p)
1 s

(p)
2 > 0, X(p) =

[

0 s
(p)
2

−s
(p)
1 0

]

if s
(p)
1 s

(p)
2 < 0, and C(0) = [ 1 1

−1 1 ] so that C(p) follows the Alamouti code structure, for any

p = 0, 1, 2, . . .. For the covariance matrix of the vectorized channel matrix we adopt the model

of [42], according to which Ch =

[
1 r t w1
r∗ 1 w2 t
t∗ w∗

2 1 r

w∗

1 t∗ r∗ 1

]

. In our studies we set t = r = 0 and w1 = w2 = 1,

a setup that exhibits higher ergodic capacity in comparison to the one with independent channel

coefficients [42]. Observe that the rank of such a matrix is 2, therefore the overall complexity

of the proposed ML receiver becomes O (P 4). We present results averaged over 1, 000 channel

realizations.

In Fig. 2, we study the Rayleigh fading channel case and present the bit error rate (BER)

of the one-shot coherent MRC receiver and the ML noncoherent receiver implemented with

complexity O (P 4) by the proposed algorithm as a function of the transmitted signal-to-noise

ratio (SNR) for sequence lengths P = 2 and 53. For comparison purposes, we also present

the BER of the pilot-assisted noncoherent receiver [29] implemented with complexity O (P 4)

and the pilot-assisted coherent receiver [30] implemented with linear complexity. We observe

that -as expected- the conventional one-lag (P = 2) noncoherent receiver exhibits a 2 − 3dB

loss in comparison with the coherent MRC receiver. The SNR loss is reduced to 1 − 1.5dB by

ML sequence detection for P = 53, i.e. block detection of 106 bits, which is implemented by

the proposed algorithm with polynomial complexity while the conventional sequence detection

implementation would require an exhaustive search among 2104 vectors of length 106. The

pilot-assisted noncoherent receiver [29] operates with rate P−1
P+1

since it consumes one additional

block for the initial pilot transmission and one additional block for differential encoding and

exhibits similar performance with the proposed ML receiver for P = 2. However, for P = 53

the proposed ML noncoherent receiver outperforms the pilot-assisted noncoherent one when

they operate with the same complexity O (P 4). The proposed receiver is also superior to the

pilot-assisted coherent receiver [30]. For the latter, we used one pilot OSTBC matrix and P −1

information OSTBC matrices to maintain the information rate P−1
P

of the differential encoding

scheme associated with the proposed ML noncoherent receiver.

In Fig. 3, we set the SNR to 6dB and present BER and computational complexity curves

of the proposed ML and pilot-assisted [29] noncoherent receivers versus sequence length P .

We observe that, if the pilot-assisted receiver operates with the same complexity with the

proposed ML receiver, then its performance deteriorates as the sequence length P increases. In

Fig. 3(a), the BER of the coherent MRC receiver is also presented as a performance lower bound.

Fig. 3(b) demonstrates the significant complexity gain offered by the proposed algorithm. We

recall that exhaustive search fails for a sequence length P > 15 while the proposed algorithm

maintains ML performance with polynomial computational complexity. For example, if P = 53

(NP = 106), then the conventional receiver implementation would require an exhaustive search

among 2104 ≈ 2 · 1031 binary vectors of length 106 while the proposed implementation performs
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a search among
(
105
0

)
+
(
105
1

)
+
(
105
2

)
+
(
105
3

)
≈ 2 · 105 binary vectors of length 106. Finally,

to demonstrate the efficiency of our proposed algorithm for the Ricean fading channel case,

relevant performance and complexity results are presented in Figs. 4 and 5 where the mean

channel vector is selected to belong to the range of the channel covariance matrix.

6 Conclusions

We proved that ML noncoherent sequence detection is always polynomially solvable with respect

to the sequence length for OSTBC and correlated (in general) Rayleigh channel coefficients and

developed a novel algorithm that performs ML noncoherent OSTBC detection with polynomial

complexity whose order is completely determined by the channel covariance matrix rank. Our

proposed detector operates in polynomial time for Ricean channels as well, if the mean channel

vector belongs to the range of the channel covariance matrix. Hence, low-rank channel correla-

tion is preferred for Rayleigh channels while full-rank channel correlation is desired for Ricean

channels to guarantee polynomial ML detection complexity. For the the cases of time-varying

Rayleigh or Ricean channel matrices, similar conclusions were drawn.
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Fig. 2. BER versus SNR for ML and pilot-assisted [30] coherent OSTBC receivers and pro-
posed ML and pilot-assisted [29] noncoherent OSTBC receivers with sequence length P = 2
(conventional receiver) and P = 53 (106 bits) upon Rayleigh fading.
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Fig. 3. (a) BER and (b) complexity versus sequence length P for SNR = 6dB and Rayleigh
fading.
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Fig. 4. BER versus SNR for ML coherent OSTBC receiver and ML noncoherent OSTBC
receivers with sequence length P = 2 (conventional receiver), P = 4 (8 bits), and P = 31 (62
bits) upon Ricean fading.
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Fig. 5. (a) BER and (b) complexity versus sequence length P for SNR = 10.7dB and Ricean
fading.

28


