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Abstract

The long term goal of automatic speech recognition (ASR) is to achieve at least

comparable results to human speech recognition. It has been noted, at least a

decade ago, that the performance of ASR is an order of magnitude lower than

human speech recognition. When the quality of captured speech signal gets

degraded (noise, channel variability), then ASR performs even worse.

In this thesis, the current ASR paradigm is shifted towards a novel detection-

based approach, inspired by the human understanding of speech. The main

concepts discussed lie in the areas of low-level acoustic phonetic modeling and

the rapid adaptation of the system to channel and talker-style variability.

Human understanding of speech has been shown to facilitate a bottom up

combination of speech events in order to form a hypothesis. When this approach

is transfered to ASR the detection is usually comprised of low-level acoustic-

phonetic event detection and speaker and environment attributes. An efficient

combinatory scheme is necessary to merge the detected events and form hypoth-

esized transcriptions.

We lean towards a new approach to ASR that is less data driven and more

event driven. This detection based approach uses state of the art model driven

speech technology as basis to detect speech events and attributes and then new

combination techniques to form higher level transcriptions. It uses good practices

from both acoustic-phonetic and statistical-modeling (data-driven) approaches to

speech recognition. It does take into consideration the knowledge that is present

is speech beyond data driven statistical phonetic modeling. But does not ignore

the great advances that have been achieved in data-driven approach.
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Chapter 1

Introduction

The long term goal of automatic speech recognition (ASR) is to achieve at least

comparable results to human speech recognition. It has been noted, at least a

decade ago, that the performance of ASR is an order of magnitude lower than

human speech recognition [36]. When the quality of captured speech signal gets

degraded (noise, channel variability), then ASR performs even worse. One of the

four ASR areas that were deemed as in need of improvement, was the low-level

acoustic-phonetic modeling. Another area was the rapid adaptation of the system

to channel and talker-style variability. The main concepts that are discussed in

this thesis lie in these two areas.

Human understanding of speech has been shown to facilitate a bottom up

combination of speech events in order to form a hypothesis. When this approach

is transfered to ASR the detection is usually comprised of low-level acoustic-

phonetic event detection and speaker and environment attributes [31]. After the

detection process a merging step is necessary to combine the detected events

and form the hypothesized transcription. An efficient combinatory scheme is

necessary to be used in this step. The combined events and attributes are of

different time resolution and quality and have redundant information [42].

Clearly we see that inspired by the human perception and processing of speech

we lean towards a new approach to ASR that is less data driven and more event

driven [30]. This detection based approach uses state of the art model driven

speech technology as a basis to detect speech events and attributes and then new

combination techniques to form higher level transcriptions. It is different from

the previously tested acoustic-phonetic approaches to speech recognition. They

tried to detect phonetic events as binary features and combine them in deter-

ministic non-statistical way [50]. Instead this new approach uses good practices

from both acoustic-phonetic and statistical-modeling (data-driven) approaches to

speech recognition. It does take into consideration the knowledge that is present

9



10 CHAPTER 1. INTRODUCTION

is speech beyond data driven statistical phonetic modeling. But does not ignore

the great advances that have been achieved in this data-driven approach.

This thesis implements a baseline detection-based speech recognition system

and then enhances it by adopting a speech rate adaptation scheme. Finally it

investigates the segmental approach to speech recognition, and sets the basis for

a transition modeling based segmental system.

1.1 Prior Work

In this section we focus on prior work, in the three domains that were stated in

the last paragraph of previous section. Namely, we present classic research and

the state of the art in research technology of speech event detectors, speech rate

variability modeling and segmental speech recognition.

1.1.1 Detection of Speech Events

Detection of speech events is closely related to a detection-based speech recog-

nition system. The current ASR technology paradigm is mostly statistical and

data-driven. It ignores advances in knowledge of linguistic science and other

speech related fields. To overcome these limitations, a new acoustic-phonetic,

event-driven, knowledge-rich, open approach was proposed [30]. An ultimate

component of this new approach is the detection of low level speech events. So

a solid and rigorous event detector bank is necessary as a first step. In a similar

manner to keyword spotting, the detection should detect speech attributes that

are present and reject locally absent speech attributes as proposed in [35]. Also

the detectors can be frame-based or segment-based with the latter giving better

results when detecting manner of articulation events. Further improvement can

be achieved when using discriminative learning criteria in the design of detectors.

Another approach to detection-based speech recognition proposed in [39],

was to detect the words in an utterance using word detectors and then apply

knowledge-based pruning of unlikely words. The pruning methods used were

based on (a) duration constrains, (b) phonetic attributes detection and (c) signal

features. Also this work introduced the very important concept of hypothesis

combination in detection-based ASR.

In [1], various statistical modeling technologies are used to create and test

phonetic attribute detectors. Multi-Layer Perceptron (MLP), Hidden Markov

Model (HMM) and Support Vector Machine (SVM) detectors of acoustic-phonetic

features are implemented and evaluated. Also the combination of these detected

features to form higher level hypothesis is investigated.

Another important work in this area, uses output from MLPs as input to an

ASR system, the so called tandem approach [2]. The novel concept in this work,

is the use of MLPs, trained for articulatory feature detection. Previous tandem
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approaches [66] used MLPs trained for phone classification. In [46], articulatory

feature detectors are implemented using Gaussian Mixture Models (GMM) and

MLP. After the detection process, a combination of these features is done using

another MLP and finally the tandem approach is followed. In [51], hierarchical

systems of articulatory features are evaluated and their failure is reported. Also it

is proposed to use joint modeling of articulatory features instead; that’s because in

hierarchical systems, the error is propagated from parent to child class. Finally a

very important task in detection of speech events, is the creation of transcriptions

of speech at the articulatory feature level. Good practices of manual labeling of

speech at this level are discussed in [37].

1.1.2 Speech Rate Variability

Speech is a dynamic phenomenon that has stationary segments extending to 100

milliseconds in length, but also has segments of a couple of milliseconds with fast

changing spectral content. Also speaker rate variability is a factor affecting the

rate of change of speech content. In [63], parallel, rate-specific acoustic models are

proposed to deal with the variations in rate of speech that affect both spectral fea-

tures and word pronunciations. Two categories of models are used, the fast speech

and the slow speech model. Rate switching is permitted at word boundaries so

within-sentence speech rate variations are modeled. Following another approach

in [3], a multi-rate extension of HMMs is proposed, for joint acoustic modeling

of speech at multiple time scales. The usual short-term, phone-representation of

speech is complemented with wide-context modeling units (syllable and stress).

A similar approach is followed in [11] and [19]; multi-stream HMMs are used

to incorporate multiple time scale information as independent streams. In the

former work, a combination of phone and syllable scale processing is used as pre-

viously described. In the latter, different time scale processing of input features is

used to create multiple streams and then combine them in a multi-stream HMM

framework.

One method is presented in [15], where a typical fixed-rate recognizer is aug-

mented with information from multiple rate spectral models. The appropriate

model for each segment of speech is determined by using the hypotheses gener-

ated by the fixed-rate recognizer. To achieve this, N-Best list rescoring is done

with acoustical models using different temporal windows. Other methods that

don’t need modification in the underlying statistical models have been tested.

In [64], a Variable Frame Rate (VFR) algorithm is introduced that results in an

increased number of frames for rapidly-changing segments with relatively high

energy and less frames for steady-state segments. Finally in [62], an improve-

ment is proposed for the previous VFR algorithm that uses the entropy of the

signal instead of an Euclidean distance measure to compute the frame-rate.
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1.1.3 Segmental Speech Recognition

Recently, new models are researched to overcome the shortcomings of HMMs.

Segmental modeling and processing of speech is widely popular and researched

by many groups. It is an extension to the standard HMM approach using higher

order models and modeling explicitly the duration of segments. Due to the sim-

ilarity with HMMs the same training and decoding algorithms can be used, but

with increased computational cost. It is necessary to include all possible segmen-

tations of the utterance into the search space. A perfect introduction to this area

is available in [47]. In [34], a major problem in segmental recognition, the seg-

mentation, is considered and a probabilistic solution is proposed. A high quality

segmentation is necessary to include as many actual segments as possible. In [55],

segmental acoustic models are trained using discriminative training algorithms.

Another problem of segmental processing, the reduction of possible segments that

are considered during decoding but without losing the clarity of including the en-

tire graph of segments is addressed in [4]. Finally in [44], an extension to HMM is

introduced that can explicitly model the phoneme boundaries using an acoustic

feature set that is associated with state transitions.

1.2 Thesis Objective

Current speech recognition paradigm is mainly statistical-based and data-driven.

It uses statistical models (HMM) to model the speech units and bigram and tri-

gram models for language modeling. More or less, these models work as black

boxes that are trained and used for decoding during recognition. Except for

choosing the number of internal model parameters, there are not many possi-

bilities of altering the model structure. This is considered a hindering factor in

further advancement of ASR technology [1, 30].

This thesis introduces an ASR paradigm that is inspired by current theories on

human perception of speech [58, 53, 7, 23, 6] and by recent advances in statistical

ASR [2, 25, 18, 42]. Human perception of speech works in a bottom-up fashion,

analyzing and processing information from the signal, sup-phonetic, phonetic,

syllable, word and sentence levels. All this work is done in parallel and the

information is integrated forming possible hypotheses. These hypotheses are

constantly being verified until a solid decision is reached [12, 22, 30]. In this

process knowledge available at all levels is extracted and exploited in order to

have as accurate results as possible. We propose an open system that can accept

further improvements that could help the recognition process. Such additions

can be speaker accent, gender, rate of speech etc. and speaking environment

conditions, such as noise.

In figure 1.1 we can see the main components and relations of the proposed sys-

tem. First the speech signal is analyzed and processed to extract useful features.
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Figure 1.1: Main component flowchart of the detection-based ASR paradigm.

Next is the detection of speech events at different levels of speech hierarchy. This

is the main and most important process of the system, so the whole paradigm is

called detection-based ASR. Accurately detection and time-placement of speech

events is necessary to successfully proceed to next step. After this, the combina-

tion of speech events is performed to form hypotheses. Last thing, the verification

of generated hypotheses and final utterance recognition are completed. The sys-

tem presented is an open system in the sense that different implementation can be

used for each component. We test many different implementations and keep the

best combination of features, events, merging and verification techniques. Fur-

thermore, in future when linguistic knowledge and statistical techniques advance,

we can substitute a part of system or add a new component, without changing

the others.

Chapter 2 introduces the state-of-the-art HMM-based ASR methodology.

Also a new type of features is introduced that better describes speech events.

Finally non explicitly HMM-based speech recognition techniques are presented.

Chapter 3 presents Conditional Random Fields (CRF) framework as a pro-

posed event merger and verifier. The framework is a contribution of the Speech

and Language Technology Lab, Computer and Software Engineering Department,

Ohio State University.

Chapter 4 experiments with the idea of adding more temporal resolutions into

the system to catch events of different time-scale and compensate for the speech

rate variability.

Chapter 5 introduces the segmental processing of speech recognition. An

initial approach of inserting segmental processing capabilities into the detection-

based system is presented and discussed. This Chapter was written in close col-

laboration with Chin-Hui Lee, CSIP Lab, Electrical and Computer Engineering,

Georgia Institute of Technology.

Chapter 6 presents the results from the experiments conducted during the
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research of the problems presented in previous chapters.

Chapter 7 presents the conclusions and proposes further improvements.



Chapter 2

Speech Recognition and the

detection-based approach

This chapter introduces state-of-art statistical modeling techniques in speech

recognition. Current ASR paradigm is based in spectral-based feature extrac-

tion and HMM modeling and their corresponding algorithms. Although quite

restrictive, it has been successful so far. Later in the chapter, a new family of

acoustic features is presented, based on acoustic-phonetic events. The last sec-

tion introduces novel modeling approaches that use a combination of statistical

modeling techniques beyond HMMs.

2.1 Spectral features for speech signal representation

In this section, we introduce the standard and most popular transformation of

speech signal into meaningful and useful parameters. This transformation uses

spectral information present in the speech signal, in order to extract spectral-

based features. These feature represent the speech signal in the recognition

process. The representation must be as compact as possible but without los-

ing critical information from the original signal. A trade-off has been reached

to the most appropriate representation and is called Mel-Frequency Cepstrum

Coefficients (MFCC) [60].

The core of the transformation process is based on a filterbank analysis of the

speech signal spectrum. The whole process is shown in Figure 2.1. The processing

of the signal is done in windows, which are usually overlapping. The frame-rate

(FR) and window-size (WS) are important parameters of the process and are

expressed in milliseconds. Pre-processing of speech is necessary to make it ready

for further processing. The pre-processing step usually consists of three tasks:

15
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APPROACH

Figure 2.1: MFCC parameter extraction process from speech signal

DC removal, pre-emphasis and windowing [13]. Analog to Digital Conversion

(ADC) of speech signal can add a DC offset. It is useful to remove this DC offset

from each window before further processing. Also a pre-emphasis of the signal is

common practice by applying the equation:

s′n = sn − αsn−1 (2.1)

where sn are the samples in each window n = {1, ..., N} with N the WS, and α

the pre-emphasis coefficient in the range 0 ≤ α < 1. Final pre-processing step

is to apply a Hamming window to the samples of the window by the following

transformation:

s′n =

{
0.54− 0.46cos

(
2π(n− 1)

N − 1

)}
sn (2.2)

again where sn are the samples in each window n = {1, ..., N} with N the WS.

After pre-processing the signal is transformed in the frequency domain by

applying a Fourier Transform. Next step is to perform a filterbank analysis on

the spectral representation of the speech signal. Filterbank analysis is non-linear

and is based on the assumption that the human ear resolves frequencies in non-

linear fashion. The analysis is done by first creating a set of triangular filters on

the mel-scale which is defined by:

Mel(f) = 2595log10(1 +
f

700
) (2.3)

with f the frequency. Lowest and highest cut-off frequencies can be set to leave

out unwanted spectral regions of the signal. Then the magnitude coefficients from

the Fourier analysis of the signal are multiplied by the corresponding filter gain

and the results are accumulated in bins in each filterbank channel.

Because the filterbank coefficients are highly correlated further processing

is necessary. The filterbank coefficient are logged and then a Discrete Cosine

Transform (DCT) is applied. The DCT is described by the formula:

ci =

√
2

N

N∑
j=1

mjcos(
πi

N
(j − 0.5)) (2.4)
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Figure 2.2: 3-state HMM visual representation

where N is the number of filterbank channels and ci the cepstral coefficients.

The number of filterbank channels and the number of cepstral coefficients are

parameters of the process.

There are other methods of speech signal transformation and feature extrac-

tion, based on Linear Predictive Coding (LPC). A method used in this thesis

is the Perceptual Linear Predictive (PLP) analysis of speech. This a method

is more consistent with human hearing that the simple LPC. It uses an auto-

regressive all-pole model to approximate the audio spectrum. A 5-th order model

is appropriate for speaker-independent speech recognition application because it

suppresses the speaker-dependent details. More details can be found in [20].

2.2 Hidden Markov Model (HMM) recognition system

State-of-the-art speech recognition systems are based on HMMs. These statis-

tical models are used in many applications from image recognition to intrusion

detection and genomic sequence analysis. The underlying philosophy is simple

and is based on Markov process modeling. HMMs are Markov models with hid-

den states. Only the observation is available but not the state in which is the

model. To better understand the HMM philosophy we present a simple 3-state

HMM that is frequently used in speech recognition in Figure 2.2.

The model consists of 3 states which are not directly observable. Between

these states there are possible transitions which are marked by the arrows. We

can see that this type of model used in speech recognition has only left-to-right

transitions. The transitions are probabilistic and use the symbols aij with i the

source state and j the destination state. From every state the outgoing proba-

bilities must sum to 1. This is a requirement of the state transition probabilities

and mathematically is expressed by equation:

N∑
k=1

aik = 1,∀i ∈ N (2.5)
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APPROACH

where N is the total number of states of the HMM. We have also the emission

probabilities bj(Ot) which are associated with each state. This probability ex-

presses how probable is for a state j to have emitted the symbol Ot. Note here

that each time frame is associated with a symbol. Symbols can be vectors and are

directly connected with speech signal parameter vectors that emerge from feature

extraction of Section 2.1. For emission probabilities also holds the requirement

that all possible symbol emission probabilities for a state must sum to 1. The

mathematical formula is:
M∑
k=1

bj(Ok),∀j ∈ N (2.6)

where M is the total number of symbols associated with the HMM and N is the

total number of states of the HMM.

After giving the formulation of the HMM we have to consider the three canon-

ical problems of the HMMs. A summary of each one of the problems is given

below:

Evaluation Given the parameters of the model and the observation sequence,

compute the probability of the sequence.

Estimation Given the observation sequence, find the state sequence that is more

likely to have generated the observation sequence.

Training Given a set of observation sequences, find a set of model parameters

that maximizes the probability of the observation sequence.

The solution to the evaluation problem is given efficiently by the Forward-Backward

algorithm. The estimation problem is efficiently solved by the Viterbi algorithm.

The training problem does not have a known analytical solution, but the Baum-

Welch algorithm finds a Maximum Likelihood (ML) estimate of the unknown

parameters. Detailed description of the algorithms that solve the HMM prob-

lems can be found in [13] and [49].

In order to use the HMM framework (model and algorithms) into the speech

recognition area, we have to map the ASR problems to HMM solutions. At first

we choose the basic speech unit we want to model. According to the application

it can be word, digit, phoneme etc. Then we have to train the parameters of

each HMM using a sequence of observation with already known correspondence

to speech units. This correspondence is given by the transcription of the observed

sequence. This is the training problem of HMM. With the trained models, we

can find the best model describing an isolated-speech segment, in case we have

already correct segmentation of the speech utterance. This is the evaluation

problem of HMM. In case we have an utterance with unknown segmentation, we

concatenate our models forming all possible combinations and consider this as

supermodel. In this model we search for the best state sequence to describe the
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observation sequence, and this is the estimation problem of HMM. With this

mapping we can proceed to use HMMs for speech recognition.

2.3 Features beyond Cepstral Coefficients

Back in the first years of ASR research, an acoustic-phonetic approach to speech

recognition was proposed [50]. It used phonological attributes, described in this

section, as binary features. Binary features were either present or absent. It was

soon abandoned for the statistical data-driven approach that dominates the field

until today. The main problem was the lack of successful detectors at that time.

In the case of a false detection of an attribute, the whole integration process

was mislead. Also the lack of research in combination methods was a hindrance.

Now with the advances in statistical modeling and pattern recognition [5], we

can return to this acoustic-phonetic approach and reconsider it in a new way as

presented in this chapter and Chapter 3.

Speech signal representations are not limited to those described in Section

2.1. Different speech signal analysis methods can be used to extract useful in-

formation. As it will be presented later in Chapter 5 Section 5.2 different signal

processing methods can be applied based on the application (i.e. boundary de-

tection and segmentation).

Also based in already described spectral-based parameters of section 2.1, one

can define acoustic-phonetic representations of speech. They are widely known

as phonological attributes, acoustic-phonetic attributes or articulatory features.

These phonological attributes are based on and supported by linguistic knowl-

edge. Every distinct phonetic unit in speech, is generated by a certain configura-

tion of all the physical organs of the speaking person that are involved in speech

production. The phonological attribute set constitutes an abstract description of

this configuration. Every phonetic unit, phone or phoneme is associated with a

set of phonological attribute values. This set of values represents the configura-

tion state of the generative physical units of the speaker.

It is widely accepted that using phonological attributes in ASR can improve

the performance. This has been either proved by using direct measurements

of the speech production signals by physical measurement from electromagnetic

articulograph [59], or by using phonological attribute values estimated from the

speech signal into an ASR system setup [46, 54, 38].

To use these phonological (acoustic-phonetic) attributes in a recognition sys-

tem, they have to be estimated from the speech signal in lack of another viable

method to detect them; electromagnetic articulograph cannot be considered an

option in normal ASR applications. The detection of phonological attributes is

a process of reverse engineering the creation of speech sounds existing in speech

signal in order to find the original configuration of the speakers physical units
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Figure 2.3: MLP detector of phonological attributes giving posterior probability
of presence given the input speech parameter vector

(tongue, mouth, chords etc.) that created this sound. If this configuration is

known, it can be related to a phonetic unit, according to prior linguistic knowl-

edge about the creation of speech.

At this point, it should be obvious that to implement a successful detection-

based ASR system, first of all effective detectors of lower level phonological at-

tributes have to be designed. Phonological attribute presence can be binary, thus

binary detectors of either presence or absence of an attribute are necessary. Bi-

nary attributes have some complications when trying to combine them and have

proved to be ineffective [50]. A better approach is to compute the probability of

the presence or absence of a phonological attribute and use it as a feature for pho-

netic unit recognition. A multitude of statistical methods to design probabilistic

phonological attribute detectors can be used [1]. Most frequently Artificial Neural

Network (ANN) [38], HMM [35] or GMMs [46] detectors are used. All methods

are data-driven and train the detectors to as many examples of the attribute as

possible. In our experiments we use ANN detectors and more specifically MLPs

[65]. An example of an MLP detector in action is shown in Figure 2.3. It uses

speech signal parameters of Section 2.1 as input and gives phonological attribute

probability presence as output. It has an intermediate hidden layer of M units

and a final output layer of C units. Each layer is connected to the next layer

with a vector w{1,2} of weights that indicate the contribution of each node to

the associated sum. After the sum there is the activation function that triggers

the output of the layer. The hidden layer has a sigmoid activation function and

the output layer has a softmax activation function. Softmax is used to convert

the output to posterior probabilities. A more complete description of ANNs and

their applications can be found in [10].
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In Table 2.1, there are 8 groups of phonological attributes. Each group is an

International Phonetic Association (IPA) class and can take several values. The

total number of attributes is 44 and are estimated using MLPs. One multi-class

MLP (3-9 classes) is created for each group, totaling 8 MLPs. In the output of

the MLPs, a posterior probability estimate for each attribute is generated.

Class Attributes

Sonority Obstruent, Silence, Sonorant, Syllabic, Vowel
Voicing NA, Voiced, Voiceless
Manner Approximant, Flap, Fricative, NA, Nasal, NasalFlap, Stop-Closure, Stop
Place Alveolar, Dental, Glottal, Labial, Lateral, NA, Palatal, Rhotic, Velar
Height High, Low-High, Low, Mid-High, Mid, NA

Backness Back, Back-Front, Central, Front, NA
Roundness NA, NonRound, NonRound-Round, Round-NonRound, Round
Tenseness Lax, NA, Tense

Table 2.1: IPA phonological attributes

To make the detectors speaker independent, an audio database that is com-

prised of different speakers has to be used. Another important aspect of the

database is that it has to contain speech examples transcribed in the phonetic

unit level. A widely used database with these features is the TIMIT database

[16]. Timit uses 61 phonemes to transcribe the utterances. Also a mapping of

phonetic units to phonological attribute sets that are present during the genera-

tion of the phonetic units is necessary. The latter is not an engineering problem

as it is studied and resolved by linguistics. In Appendix A.1 there is a complete

description of the TIMIT database used in this thesis. In Appendix A.2, there

is the complete map associating 48 phoneme labels of TIMIT to 44 phonological

attributes.

Designing effective attribute detectors is a difficult task. It can be compared

with keyword spotting, only that phonological attributes are much shorter in

time and less stable to detect. It is important to detect phonological attribute

positions in time as accurately as possible. Every false detection can be carried

over to the next level of phonetic recognition. Also segmental attribute detectors

have been designed using HMMs and discriminative training, but are not used in

this thesis. [35]

2.4 Hybrid Recognition Techniques

A recognition system that uses more than one statistical method (e.g. HMM

and ANNs) to model the phonetic units is usually called a hybrid system. HMM

systems make unrealistic assumptions about the observation vector statistical

properties. The independence assumption is the most popular and is better

described in Section 3.1.
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Figure 2.4: The tandem connectionist approach

To overcome these obstacles, some proposed the HMM-ANN hybrid approach.

This approach uses ANNs instead of GMMs in the HMM’s states to model the

observation densities [56]. The HMM structure with the transition probabilities

and the associated algorithms already described in Section 2.2 are used. ANNs

are used to learn and estimate the emission probabilities discriminatively.

A more recent approach is the ANN-HMM approach, also known as the tan-

dem approach [21]. Figure 2.4 shows the main process components of the tandem

approach. Between the speech parameter extraction and the HMM recognition

components is inserted an ANN classifier of phonetic units, usually phonemes.

The ANN classifier uses the speech parameters as input and discrminatively learns

the posterior probabilities of phonetic units. Then these posterior probabilities

are linearized using a log functions and used as input features in an HMM recog-

nition setup. This approach has proved to be quite effective in boosting speech

recognition performance. Another variant of the tandem approach is the articu-

latory feature tandem approach. The MLP classifies articulatory features, or else

known phonological attributes, instead of phonemes. Then articulatory feature

posterior probabilities are linearized and used as input features into the HMM

setup.

The detection-based system presented in this thesis, is greatly influenced by

these hybrid methods. It uses a similar architecture to ANN-HMM, but with the

addition of another statistical modeling toolkit, the CRFs. Chapter 3 provides

further information of the CRF framework that does the task of event merging,

shown in Figure 1.1.



Chapter 3

Conditional Random Fields

(CRF) for feature combination

In this chapter, a framework is introduced, that has been applied recently to

the ASR domain. The Conditional Random Fields (CRF) framework is a novel

approach for the combination and effective usage of discriminatively created fea-

tures, highly correlated in general [42].

Unlike HMM that is a generative model, CRF is a discriminative model and

does not suffer from the feature independence restrictions of the former. It can

very well model long-range dependencies between states and observations. It is

based on exponential distribution functions associated with states and transi-

tions. These functions use information from the input feature vectors and train-

able weights to estimate the posterior probability of an output label sequence

given the input feature sequence. Although arbitrary dependencies can be mod-

eled using CRFs, a Markov structure is imposed on state sequence in order to

apply a Viterbi algorithm for decoding. Contrary to HMMs, CRFs do not have

normalized probability distributions for transition and emission probabilities. So

they do not need any special purpose algorithms during training. They can be

trained using direct optimization techniques or stochastic gradient descent [18].

3.1 The feature independence assumption

Speech modeling using HMMs holds a couple of unrealistic assumptions about

observation features. The first assumption is due to the HMM model structure

and definition in general and states that the features of successive frames have

to be independent. This is not true; in contrary, features of successive frames are

correlated. Especially discriminative features of Section 2.3 are highly correlated

23
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Figure 3.1: Observation feature dependencies ignored by HMMs

and pose a serious threat to the correctness of methods such as the tandem

approach. The second assumption is that the features are independent inside the

frame feature vector. This is not true either; but to model this correlation inside

the frame using HMM would require a full covariance matrix and a huge increase

in model parameters [40].

CRF overcomes this unrealistic limitation because it does not use generative

probability densities of observations in each state of the model. It directly com-

putes the posterior probability of an output label sequence. In fact it uses an

exponential distribution function to compute the conditional probability of the

entire output sequence given the full sequence of observations. Thus not requir-

ing any special assumptions about the observation dependencies [18]. In Figure

3.1, the dependencies that hold between observation features are shown. They

are unholily ignored by HMM modeling. The circle on the side of the feature

vector and the arrows from and to all features in a frame mean that all features

are somehow correlated to each other.

3.2 Mathematical foundations

The visual representation of a linear chain CRF used for the purpose of speech

recognition in this thesis is given in Figure 3.2. One can see the linear structure of

this CRF. It allows sequential steps from state t−1 to t. Each state is identically

mapped with an output label. For example state t corresponds to label Yt in the

output label sequence. Also the connection of output labels Yt with a frame of

observation features Xt is shown.

CRF models are exponential models that use functions of the input features

and a trainable weighting scheme of these functions to model the phonetic units
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Figure 3.2: Linear chain CRF visual representation

[40]. State functions are associated with states and state features. These are

used to compute the likelihood of being in a certain state. In addition, transition

functions are associated with transitions between states and transition features.

The posterior probability P (y|x) of a phonetic unit label sequence y given an

input feature sequence x is given by:

P (y|x) ∝ exp
∑
i

(S(x,y, i) + T (x,y, i)) (3.1)

where

S(x,y, i) =
∑
j

λjsj(y,x, i) (3.2)

T (x,y, i) =
∑
k

µktk(yi−1, yi,x, i) (3.3)

and i is over all frames of the input sequence, j over all possible state functions

and k over all possible transition functions of a CRF.

Each state feature function s(y,x, i) is associated with a phonetic unit label

and an input state feature and also has an index pointing to a position in the

feature sequence. For example if we want to establish a state function for output

label /aa/ (phoneme aa) and the 8-th MFCC on frame t we would define:

f/aa/,MFCC8
(y,x, t) =

{
g(MFCC8(t)), if yt=/aa/,

0, otherwise.
(3.4)

where g() is a function transforming the 8-th MFCC value into an appropriate

value for the implementation. Different functions can be used in place of g().

Usually for spectral features like MFCC the identity function is used. For phono-

logical features created with MLPs, the posterior outputs are used [42, 40, 1].
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Similarly, each transition feature function t(yi−1, yi,x, i) is associated with a

phonetic unit transition and a transition input feature and also has an index in the

feature sequence. To define a transition from label /b/ to label /ae/ associated

with input phonological feature of ”voiced” we have:

f/b/,/ae/,voiced(y,x, t) =

{
g(voiced(t)), if yt−1=/b/ and yt=/aa/

0, otherwise.
(3.5)

Again g() function can be chosen according to the implementation as in state

functions.

Trainable weights λ and µ learn the importance of the association of each

phonetic unit label or transition with the state or feature function in the final

probability calculation. In the above examples, the weight of a transition feature

function associating voiced attribute with transition /b/ to /aa/, should learn

that the voiced attribute should be present. In another example, the weight of a

state feature function associating the nasal attribute with the label /k/, should

learn that the nasal attribute must be absent. The training in CRF is done

using quasi-Newton gradient descent or stochastic gradient descent optimization

algorithms [42, 43]. The gradient of the likelihood function must be calculated.

For a set of K label/observation pairs (yk, xk) the gradient is:

∇L =

K∑
k=0

[
F(yk, xk)−

∑
Y

F(Y, xk) · EPλ(Y|xk)

]
(3.6)

where

F(y,x) =

T∑
t=0

f(y,x, t) (3.7)

is a vector of all feature functions of input sequence x and label sequence y

ordered together and

EPλ(y|xj) =
expλ · F(y,xj)

Z(xj)
(3.8)

is the probability of sequence y given xj and λ is the vector of weights corre-

sponding to feature function vector f with

Z(x) =
∑
y

λ · F(y,x) (3.9)

the normalization value. For linear-chain CRF, there is a variation of the forward-

backward algorithm calculating the gradient. More information on the training

process can be found in [57].

Finally the decoding step finds the label sequence y that maximizes Eq. (3.1)

over input sequence x:

ŷ = argmax
y

λ · F(y,x) (3.10)
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Low-level Mid-level High-level

MFCC obstruent /aa/

MFCC delta and acceleration silence /ae/

Degree of Voicing sonorant /ao/

Spectral Centroid syllabic /b/

Spectral Roll-off ... ..

Spectral Flux tense /zh/

Table 3.1: Speech events used in experiments

3.3 The CRF as a discriminative combination method

The primary use of CRFs in this thesis is to merge lower level attributes and

features described in Chapter 2 into forming phonetic unit sequences. The pho-

netic units are the 61 TIMIT phonemes reduced to 48 phonemes as presented in

Appendix A.

Going back to Figure 1.1 which presents the main components of the detection-

based ASR system, the CRF does the job of Event Merging and Verification com-

bined. The event merging is done with the exponential distribution modeling of

the posterior probability of the output label (phoneme) sequence given the input

features. The input features are provided by the two previous components of

Feature Extraction and Attribute Detection. The Verification is partially done

with the training of the CRF weights on a already transcribed set of speech utter-

ances. The weights learn the correspondence of the inputs to the phonetic units.

During decoding the weights are used in the exponential CRF model to find the

most probable output label sequence.

The detection-based system provides speech events to the Event Merging com-

ponent. The interpretation of speech event term is not restrictive and can include

lower level spectral events, to higher level phonetic units presence clues. In this

thesis we decided to include 3 levels of speech events, low-level speech events di-

rectly extracted from speech signal, mid-level phonological attribute events and

high-level phoneme presence events. Low-level events are extracted from the

speech signal using feature extraction algorithms. We have already described the

MFCC and PLP computation process. Other low-level speech events used are

shown in Table 3.1. The signal processing algorithms to compute these features

are given in Appendix B.1. Mid-level phonological attributes were already pre-

sented in Section 2.3. High-level phoneme presence events are computed using

a process similar to tandem approach: MLPs are used to compute the poste-

rior probability of phonetic units (phonemes) given some spectral feature input

(MFCC or PLP).

Different combinations of speech events are used in this thesis. Possible con-

figurations are shown in Figure 3.3. The first configuration in Fig. 3.3a, uses
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phonological attribute posterior probabilities from MLPs as inputs to the CRF.

The second configuration in Fig. 3.3b is a variation of tandem. But instead of

HMMs, CRFs are used in the final combination stage. The third configuration

in Fig. 3.3c, is using all three-level speech events, from low-level spectral-based

events to high-level phoneme presence posterior probabilities. The detection of

low-level events is placed in the feature extraction component of the setup. It

could be placed in the event detection component, but it is basically a low-level

signal processing process and has more common with MFCC or PLP extraction.

Nevertheless, these low-level events (or features) are used in tandem with the

mid- and high-level events detected by the MLPs. Due to the exponential distri-

bution used in the CRF, it is adequate to concatenate the different speech event

cues in a bigger vector. One restriction that must be met is that they must have

a dynamic range that is similar enough. For example to combine posterior prob-

abilities that are in the range of 0 to 1 with MFCCs, the MFCC must be mean

and variance normalized.

The output of the CRF is given after the application of the exponential dis-

tribution model that is trained to give the most probable output label sequence.

Most probable in the sense of highest posterior probability of the sequence - which

is usually comprised of phoneme labels - given the input vector of events.

Various experiments are conducted for this thesis, using different configura-

tions. Chapter 6 is dedicated to the presentation of these experiments and the

discussion of the results.

3.4 Towards a complete recognition toolkit

CRFs alone cannot constitute a complete recognition toolkit. Embedded in the

detection-based system are a successful component for speech event merging and

partial verification. In the output of the CRFs we have a sequence of phonemes

that of course is not adequate in normal ASR systems. Further merging and

verification is necessary to recognize speech units that are higher in the speech

hierarchy, such as words and sentences. There is no solid solution at the moment.

An approach has been proposed recently in [14]. More details are given in Chapter

7.

In this chapter and Chapter 2, the detection-based system used in this thesis,

has been presented in detail. The components of the system including the inputs

and the outputs were given. Each component is based on a technology that

was analyzed and discussed and no black boxes were used. We can now use

the detection-based system as basis and try to achieve recognition performance

improvements. Towards this goal, we will:

(a) try different speech event detectors and combinations
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(a) Phonological mid-level events

(b) Phoneme high-level events

(c) Various level events

Figure 3.3: CRFs combining different speech events
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(b) extend the system to support the modeling of speech rate variability

(c) extend the system to support the inclusion of speech segment information

Goal (a) can be achieved with the already presented detection-based system setup.

Experiment details, results and discussion are presented in Chapter 6. To support

the other two goals, some modifications on the detection-based system will be

needed. Chapter 4 is dedicated to the analysis of the theoretical foundations of

speech rate variability and how it can be addressed. Also the modifications to the

detection-based system are given. Chapter 5 describes the segmental approach

to speech recognition and how we can benefit by including some of its concepts

into the detection-based system.



Chapter 4

Modeling the variability in speech

rate with multi-scale analysis

In this chapter, the detection-based system is modified in order to support mod-

eling of speech rate variability inside the utterance. First the speech rate variabil-

ity is studied in general and a theoretical supportive base is established. Then,

an approach to model the inside the utterance speech rate variability is intro-

duced and discussed. This approach uses multiple temporal scales during various

phases of the recognition system, from speech signal processing to viterbi decod-

ing. The necessary modifications to the detection-based system components are

discussed. Finally, the problem of multiple scales integration to form the final

output hypothesis is discussed and novel approaches developed for this thesis are

introduced.

4.1 Modeling the speech rate variability

Speech production is a dynamic phenomenon and the variability is inherent in

various aspects of the process. The speech rate is such a variable attribute that

must be taken into consideration when designing ASR systems. This variability

can be caused by the different spectral characteristics of speech during different

pronounced phone classes. This means that we can have stationary segments of

speech signal that can reach 100 msecs during some vowels. However, we can

have drastically changing spectral contents in the scale of a couple of millisec-

onds during stop consonants and phoneme transition segments. Another factor

that causes rate variability is the speaking rate variability that is very common

in conversational speech. Speaking rate can change between speakers or inside

the utterance. It affects various aspects of speech such as co-articulation and

31
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reduction, causing even more non-stationary segments and confusion.

Currently, different approaches have been proposed to deal with the vari-

ability of speech rate. Seen from a speaking rate perspective, different acoustic

models are trained for each supported rate of speech [63]. Usually two variants

of models are created: one for slow and the other for fast speech and speakers.

The rate selection can be set at the utterance or word levels. At the utterance

level, a rate of speech (ROS) estimator is used to classify the sentence as slow

or fast speaking. Then a system that uses either slow or fast models is fed with

the corresponding utterances. A more robust method is selecting the rate at the

word level. Each word is given two pronunciations, a slow and a fast one by

using appropriate rate-specific sub-word units (phonemes). Then the selection of

the optimal pronunciation is left to the decoding algorithm. This method does

not need any pre-recognition rate-of-speech classification. Another perspective to

look at the speech rate variability issue is the variability in the spectral contents

in time [15]. During stationary segments we have a slow rate of change. This

fact permits the signal analysis to be made in longer segments, because no sig-

nificant change in spectral content happens. But during transitional segments,

we have fast changing spectral content that needs to be extracted. In this case,

short segments must be used during the analysis of speech in order to conserve

fast changing information. Otherwise the information will be lost, as it will be

smoothed out by the adjacent stationary segment contents. Introducing multi-

ple time scales in the analysis of speech is a proposed solution to the problem

of variability of speech rate of change as described. Recent work on this area

uses various modifications and tweaks in the already developed set of recogni-

tion tools to support the multiple time scale concept. In [19], the multi-stream

HMM framework is utilized to incorporate multiple time scale information as

independent streams. Independence assumption is faulty assumed once again as

described in Section 3.1. In another work [15], the rescoring of N-best lists is done

by a phone-dependent posterior-like score. Phoneme clustering is done in 11 clus-

ters based on the characteristics of each phoneme. Then using the mapping of

phonemes to clusters, a selection of the appropriate rate model of a phoneme for

rescoring is done. In yet another work [64, 62], the selection of the appropriate

rate of analysis is done using rate of change metrics. The weighted Euclidean

distance of consecutive MFCC vectors is used as a metric to select the optimal

rate of analysis from a predetermined set. In practice, the rate of analysis is de-

termined by a frame picking algorithm that is based on hard limits of the metric

value. Another metric, used in the same work, is the entropy of the speech signal.

To determine the speech rate, again hard limits on the entropy value are used.

It is obvious that there are different approaches to model speech rate variabil-

ity, depending on the point of view. In this thesis, we concentrate our efforts into

tackling speech rate variability inside the utterance. More specifically the rate
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of change of speech is estimated using statistical techniques and consequently

the rate of analysis is determined. In the following sections of the chapter, de-

tails of the approach followed are given: from theoretical conception to actual

implementation using the detection-based system.

4.2 The idea of multi-scale analysis

Speech events and phonemes can have shorter or longer duration. In a speech

recognition system, it is necessary to detect as many events as possible and rec-

ognize phonemes of different spectral contents and duration. The analysis front-

end of speech signal was given in Chapter 2. It was shown that the analysis is

performed in window frames. Each window has length that is defined in mil-

liseconds and usually all windows have the same fixed length in a recognition

system. Also another parameter is the frame-rate of analysis, meaning the step

at which windows are applied on the speech signal. These two parameters are

important because they set the time scale at which the speech signal is processed

and thus the potential speech events and attributes that can be successfully de-

tected. Current trade-off sets the window size at 25 msec and the frame-rate at

10 msec.

One can guess that by including in the system multiple time scales, the poten-

tially detectable speech events and recognizable phonemes are increased. Based

in this assumption and the knowledge of the inherent variability of speech events

in time, multiple time scale methods are tested in this thesis. These methods

can be seen as an extension to the current trade-off to include information from

other time scales. In Figure 4.1a, the analysis of a speech utterance with fixed

windowing is shown. Then in Figures 4.1b and 4.1c, two approaches for inclusion

of multi-scale information are shown: first a multi-scale analysis of the speech

signal is run in parallel and second a variable scale analysis is used. The parallel

multi-scale analysis is quite obvious in conception, in the sense that different and

independent front-ends are used to analyze the speech signal. Each front-end

has its own scale of processing the speech signal and the features that are ex-

tracted contain information of events at that scale. The variable scale analysis

task is more complex. Switching between different time-scales is done inside the

utterance at various points in time. The most appropriate scale of analysis for a

certain segment of speech is selected and used. Here emerges the problem of find-

ing the most appropriate scale of analysis, i.e. the time-scale that gives the best

performance when the extracted features are used to either detect speech events

or recognize phonemes. An objective method must be used to for this purpose.

As already described in Section 4.1, the task of selecting the appropriate scale

or rate of analysis has been achieved by using a clustering of phonemes, a spec-

tral distance metric and signal entropy metric. In this thesis, a classifier is used



34
CHAPTER 4. MODELING THE VARIABILITY IN SPEECH RATE WITH

MULTI-SCALE ANALYSIS

(a) Fixed time-scale speech analysis

(b) Parallel multi-scale speech analysis

(c) Variable scale speech analysis

Figure 4.1: Speech front-end processing with speech rate variability awareness
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to select the appropriate time-scale. The process of selecting the most efficient

time-scale for a segment of speech is approached as a multi-scale combination

task. More details are given in Section 4.4.

4.3 Multiple temporal analysis in a detection based sys-

tem

The detection-based system presented in Figure 1.1 and described in Chapters 2

and 3, supports single time-scale analysis of speech and subsequent processing.

The feature extraction component works in a single time-scale and provides the

attribute detectors with single scale features. The attribute detection component

detects events on a fixed time-scale, although the events can expand on multiple

frames in time. The event merger and verification work also in a fixed time

scale, combining and verifying frame-based events. In this section, the necessary

extensions to the implementation of the detection-based system are given, in

order to support multiple time-scale analysis; we can call it multiple time-scale

detection-based speech recognition. In fact, extending the detection-based ASR

into supporting multiple time-scales comes in naturally. Speech events tend to

be unstable and variable in length, so incorporating into the system as much

information as possible is a desirable feature.

Feature extraction component is the first that should be modified. In Figure

4.1 is already shown a speech signal front-end that supports multiple time-scales.

Getting into a detailed description, and having in mind what was presented in

Section 2.1, Figure 4.2 shows an MFCC implementation extracting speech pa-

rameters at multiple time scales. Different FR and WS pair values are used to

create multiple size windows and multiple step sizes. The commonly used trade-

off values are FR = 10msec and WS = 25msec. In this thesis, information from

time-scales that are nearby the trade-off value are used. We want to catch shorter

as well as longer possible speech events, so we use the following pairs:

• FR = 2.5msec, WS = 6.25msec

• FR = 5.0msec, WS = 12.50msec

• FR = 7.5msec, WS = 18.75msec

• FR = 10.0msec, WS = 25.00msec

• FR = 15.0msec, WS = 37.50msec

By processing the speech signal in parallel, we get 5 streams of information that

are highly redundant. The stream using the smaller pair values has fine details

of spectral content, though it is unable to extract longer spectral patterns. As

the pair values increase, the fine details of the spectrum are smoothed out and
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Figure 4.2: Multiple time-scale MFCC feature extraction

longer patterns are extracted. The extracted speech parameters are used as input

features to the next component in the detection-based ASR setup.

Figure 4.3 shows the event detection on multiple time scales. The approach

used in this thesis expects speech events to have presence at different time-scales.

Being not quite sophisticated, does not restrict a speech event to a specific time-

scale. It is assumed that a speech event can be present at any of the available

time scales. Speaking optimistically, this adds considerable effort and redundant

information to the system. The issue is planned to be resolved in the future as

stated in Chapter 7. The actual MLPs, used for detection, don’t need any special

modification and they follow the structure shown in Figure 2.3. The difference

is in the rate of the input vectors, so the transcription labels must use a similar

time scale during training and detection.

The next component of the detection-based system is the event combination.

Multiple time-scale support for this component is a more complex task and is

described in Section 4.4.
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Figure 4.3: Detection of speech events at multiple time-scales

4.4 The problem of multi-scale combination and solutions

Up to this point, a detection-based system which supports speech events at dif-

ferent time-scales has been introduced. These multi-scale events must somehow

be combined and used. In Chapter 3, CRFs have been proposed as a combina-

tion and partial verification toolbox of speech events. In this section, a couple

of methods to combine the multiple time-scale streams will be proposed in con-

junction with the CRF toolbox. The problem in general is shown in Figure 4.4.

In this thesis, the combination is done before giving the speech event lattice to

the CRF toolbox for final integration.

The first method we use is quite straightforward. It takes speech event pres-

ence vectors computed at different time scales and combines them all together.

It is better described in Section 4.4.1. This method does not use any indicator of

the most appropriate time-scale. In contrast, the other method used in this the-

sis, does a selection of a time-scale and ignores the other scales. The information

that are left out are considered either redundant or at best confusing. The worst

case is when useful information that are not present in the time-scale elected as

optimal, are left out. The optimal scale indicator is used to select the optimal

time-scale for a particular speech segment, word or whole utterance. The real-

ization of the optimal scale indicator, an indicator of the time-scale which when
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Figure 4.4: Multiple time-scale combination in general

used gives the best overall performance in the recognizer is a problem studied in

Section 4.4.2.

4.4.1 All-inclusive method

This combination method is quite straightforward in its implementation. It is

mostly a concatenating feature combination method [48]. Every detected event

at any time-scale is considered equally important to any other. In Figure 4.5,

the method is shown as a visual representation of a box of features [9]. This box

includes features from different time-scales and is a concatenation of the latter.

In fact, the box is a feature vector and the sequence of these vectors is given the

frame-rate of the largest time-scale included. By taking the frame-rate of the

largest time-scale, we manage to have a fixed-rate system that includes speech

events from all possible time-scales.

The most important drawback of the box method is the large dimensionality of

the vector created. It adds to the overall complexity of the subsequent recognition

process. Another drawback is the redundancy of the vector components and their

high correlation. A de-correlation and dimensionality reduction step can be used

to compensate for these issues. Also by using CRFs instead of HMMs, we have

shown that these drawbacks are scaled down due to the CRFs ability to efficiently
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integrate highly correlated features [9].

Figure 4.5: The all-inclusive box combination method

4.4.2 Optimal scale selection method

A more sophisticated method does not use events from all time-scales, but selects

an optimal scale in the sense that maximizes the final recognition performance.

Switching time-scales can be done in a speech frame level, segment, word or

utterance. In this thesis, the optimal time-scale selection in a speech segment

level has been investigated. A 3-frame segment has been chosen, and switching

time-scales was allowed when moving from a segment to the next. The main

problem is to find an indicator that would connect the recognition performance

of a time-scale with a metric showing the rate of speech in a segment. This would

enable a selection process to choose the optimal time-scale for a segment. The

method used in this thesis and in [9] is shown in Figure 4.6.

The system works in a closed-loop in order to select the best frame rate for

each temporal segment of speech. The main unit of interest is the Frame-Rate

Selection Unit (FRSU ) which is trained to select the best frame rate for a specific

segment of speech. The training of the FRSU’s parameters is done using ML or

Minimum Classification Error (MCE ) discriminative training method [25, 26, 27].
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Figure 4.6: Variable scale selection method

Spectral Change Metric

First task it to compute a metric for each subspectral region of a segment of

speech signal that indicates the rate of change for that spectral region. By using

spectral regions we include information about the rate of change of different

regions. The combination of these metrics forms a global spectral distance metric

that models the rate of change of speech. The rate of change can be computed

from a Fast Fourier Transformation (FFT) analysis and then taking the first-order

time difference for each region. The combination of these partial spectral change

metrics benefits from a non-linear combination method such as the product rule

with weights that can be trained with a ML or MCE method. Non-linear method

can detect changes in minor spectral regions which indicate a transition segment

compared to a rather smoothed result of a linear combination method. The global

spectral distance is computed by the equation:

D =
∏

dwi
i (4.1)

with wi the trainable weights and di the distance for the i-th spectral region. The

weighting parameters can be trained in a first-pass MCE training of the FRSU

unit.

Mapping to Rate Of Speech

Next is to map the computed distance metric to the optimal time-scale pair values

(FR,WS). The mapping function of choice is a sigmoid with a few parameters

that can be trained in a second-pass MCE training phase:

ROS = a+
c

1 + e−b(D+d)
(4.2)
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with ROS meaning the Rate Of Speech, D the global spectral distance computed

above and a,b,c and d trainable parameters learning the non-linear mapping from

the spectral change distance metric to the optimal rate of speech. After these two

processing steps, we have a continuous function of the rate of change of speech.

This can be used to select the appropriate FR/WS pair for each speech segment.

Training of parameters using an MCE method

Now that we have described the transfer function of the FRSU unit, we can

proceed in describing the learning process that we use to train the free parameters

on Eq. (4.1) and (4.2). An obvious solution to the learning process is the ML

estimation of the parameters. This estimation method is used as a baseline in

this thesis. Given the ML estimated model parameters, MCE training method is

used to improve the parameter estimates.

The task of MCE training can be divided into three main steps:

a) Choose a discriminant function for the description of the classification task.

b) Create a misclassification measure to express the classifier decision process.

c) Form a cost function that would be an indicator of success of the classification.

All the above quantities must be continuous and differentiable with respect to

the estimated parameters. The classifier can be designed to have a simple dis-

criminant function of the form:

gj(X;λ) = |ROSj −ROSX | (4.3)

with ROSj indicating the j-th Rate Of Speech prototype value, and ROSX the

Rate Of Speech Metric computed as shown in Sections 4.4.2 and 4.4.2. With

the previous formulation of the discriminant function, we can state the decision

process of the classifier as:

C(X) = Ci, if gi(X;λ) = minj(gj(X;λ)) (4.4)

The next step in MCE formulation is the definition of a class misclassification

measure, which in fact expresses the decision rule in Eq. (4.4) in a functional

form [25]. We choose the rather frequently used measure:

dj(X;λ) = gj(X;λ)−

 1

M − 1

∑
k,k ̸=j

gk(X;λ)η

 1
η

(4.5)

with η a positive smoothing constant and M the number of classes. When the

misclassification measure is way below zero, this indicates a correct classification.

Instead when it is positive, it indicates an incorrect classification.
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After we have defined the misclassification measure, we create the cost/loss

function. The function must be continuous and indicative of success/error rate

of the classification . We choose the sigmoid mapping function which is bound

between 0 and 1:

lj(X;λ) =
1

1 + exp(−γdj(X;λ))
, γ > 1 (4.6)

with γ the scaling factor of the sigmoid. This loss function is a smooth and

continuous measure of success of the classification task. When sample X is cor-

rectly classified then the misclassification measure decreases way below 0 and the

loss function approaches 0. When it is incorrectly classified the misclassification

measure indicates the level of failure and the loss function approaches 1. Now

we can evaluate the performance of the classifier on an unknown sample X using

the following smooth function:

l(X;λ) =
M∑
i=1

li(X;λ)1(X ∈ Ci) (4.7)

where 1() is the indicator function and is 1 when sample X belongs to class i else

is 0.

The next concern is a minimization method for the expected loss of the clas-

sifier during training, in order to estimate the appropriate values for the free

parameters on Eqs. (4.1) and (4.2). We want to minimize the expected loss

which is:

L(λ) = EX{l(X;λ)} =
M∑
i=1

∫
X∈Ci

li(X;λ)p(X)dX (4.8)

with X summing over all samples of a training set. We use the GPD algorithm

with parameter space transformations in order to impose constrains on the free

parameters [25]. In practice we minimize the empirical loss assigning equal prob-

ability mass to each sample. The empirical loss will converge to the expected

loss if a training set of sufficient size is used. The general update equation of the

parameter set we are training (λ) at a given iteration of the process (t) is:

λt+1 = λt − ε∇l(X;λ)|λ=λt (4.9)

with ϵ the learning coefficient. We can use a 2-pass training procedure. In the

1st pass, keep the parameters of Eq. (4.2) constant and train the parameters of

Eq. (4.1). In the 2nd pass use the values found during 1st pass and train the

parameters on Eq. (4.2). As an example of MCE/GPD iterative update, the

update equation for parameter b on Eq. (4.2), when sample X ∈ Ci, is given:

bt+1 = bt − ε
∂li(X;λ)

∂b
(4.10)
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with
∂li(X;λ)

∂b
=

∂li
∂di

· ∂di
∂gi

· ∂gi
∂ROSX

· ∂ROSX

∂b
(4.11)

A similar partial derivative chain rule can be used in order to derive the update

equations of the other parameters of the FRSU module.





Chapter 5

Segmental Processing of Speech

In this chapter, an introduction to segmental speech recognition is given. The

various problems of this approach are presented and special insight into the seg-

mentation task is given. Although this approach is not fully followed in this

thesis, some important ideas are adopted in the detection-based system.

5.1 Segmental speech recognition

The detection-based ASR system already described, uses frame-based analysis

and observation modeling. Although it departs from the standard HMM frame-

based techniques, still uses states and observations associated with them. Seg-

mental speech recognition models larger units than frames. The start and end

times of a segment would ideally coincide with the boundaries of a phonetic unit.

Thus a segment analysis and feature extraction would give the maximum avail-

able information of a phonetic unit. Subsequent recognizer would benefit from

this rich information in order to identify better the underlying phoneme. The

main advantages of the segmental method over the standard frame-based are:

• Unrealistic assumptions about the independence of the features are unnec-

essary [47],

• The duration of the phonetic unit can be a useful feature in the recognition

process [47],

• Transitions between phonemes contain useful information which can be in-

cluded in segment boundaries [4].

All three issues have been addressed in the HMM frame-based system with some

extensions. We have also seen that the first problem is not relevant in a detection-

45
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based system using CRF modeling. The other two are good candidates for im-

plementation, as extensions, in the detection-based system.

Before moving on to the actual implementation, further details of the seg-

mental approach are necessary. Some major concerns when using segments are:

Segmentation The first and most important step is the segmentation of the ut-

terance into speech segments. It affects all subsequent steps of the process.

The segments must encapsulate the phonetic unit position and duration as

accurately as possible. An effective segmentation reduces the search space

of the decoding step as less paths must be accounted for in the graph of

segments. Usually an acoustic segmentation algorithm is used to define the

segment graph of an utterance. Poor alignment, insertions and deletions of

speech events are a common issue of a segmentation algorithm. These er-

rors cannot be corrected in subsequent steps and lead to recognition errors.

A trade-off between performance and computation must be established [4].

More segments mean less errors of the kind described above, but more dif-

ficult task for the search algorithm. On the other hand, less segments don’t

create much burden during searching on the graph, but increase recogni-

tion errors. Section 5.2 is dedicated to the segmentation process and the

implementation used in this thesis.

Decoding The decoding step is a search on a probabilistic framework for the

best path. Standard dynamic programming techniques are used that were

described in Chapter 2. The difference is that now the sequence of states

and models is substituted by a segment sequence. So the most probable

segment sequence for an input utterance is computed. Each segment has its

own feature vector, so each sequence of segments accounts for a specific set

of vectors. It has been proved that it is necessary that a path in search space

must account for all feature vectors [17]. To overcome this restriction, a

series of extensions have been developed in segmental modeling, Anti-Phone

modeling and the Near-Miss modeling [4]. They create segment models that

include feature vectors of segments that are off the current search path. In

this thesis, we don’t follow the segmental approach in searching. Instead

we use the CRFs ability to process external segmentation information as

transition features. More details are given in Section 5.3.

Modeling Another important issue is the model used to represent the segments.

Although HMMs are allowed in segment modeling, they are not optimized

for segmental processing. Usually models that have more general distribu-

tions are used. They must have the ability to explicitly or implicitly model

the feature dynamics [47]. Also another possibility is to model the transi-

tions between segments, instead of the segment themselves. This approach

creates transition models between probable phonetic units.
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After describing the major issues and hurdles of segmental processing of

speech, we will concentrate on the detection-based system. The segmental ap-

proach is not fully followed in this thesis, but some knowledge is adopted and used

to extend the ability of the detection-based system. The work done in this thesis

is considered an initial approach to implement segmental processing abilities to

the proposed detection-based system.

5.2 Locating the phoneme boundaries: Transition fea-

tures

The first concern is the segmentation. An effective segmentation requires an

accurate detection of the phoneme boundaries. Low quality segmentation leads to

poor alignment, insertion and deletion of speech events. We investigate different

features and implementations in order to achieve a successful segmentation of the

speech utterance.

5.2.1 Spectral and energy domain

A common feature for the task of segmentation is a measure of spectral change.

This feature was already used, as described in Chapter 4, to adapt the detection-

based system to the rate of change of speech signal. In [28], a similar feature

set was used for automatic segmentation in a speech synthesis application. In

this thesis, the Mel-Scale Spectral Magnitude was used to compute the spectral

region differences of 20 filterbank channels. Then these sub-spectral differences

were combined using the product rule with equal weights. The spectral change

metric for a frame of speech i is computed by the equation (average over three

frames):

D(i) =

∑i+1
j=i−1

K∏
dj(k)

3
(5.1)

where dj(k) the distance for j-th frame and k-th spectral region, and K = 20 is

the number of spectral regions used.

A similar feature is the Spectral Flux (Fss) [33]. The Spectral Flux is the

difference between the amplitudes of successive magnitude spectra. This feature

was also used as a speech event in CRF event merging of Section 3.3. Details

about its computation are given in Appendix B. A smoothed flux measure is

derived by averaging over neighboring flux measurements:-

Fss(i) =

∑i+1
j=i−1 F

0
ss(j)

3
(5.2)

Another important group of spectral features is the Spectral Centroid difference,

the Spectral Roll-off difference and the Zero-Crossing Rate difference. The Spec-

tral Centroid and Spectral Roll-off were also used as speech events. The Spectral
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Centroid is the frame-to-frame difference of the center of mass of power spec-

trum. The Spectral Roll-off is the frequency below which the 95% of the power

spectrum is concentrated. Finally, the Zero-Crossing Rate is the rate of sign

changes (positive to negative and back) of a signal and can be computed in the

time-domain. Computation details are given in Appendix B. The (smoothed)

time difference of each of these features was used as follows:

Xssd(i) =

∑
j={1,2}Xss(i+ j)−Xss(i− j)

2
(5.3)

where Xssd() is the difference feature and Xss() one of the previously described

spectral features for frame i.

Finally, the frame-to-frame Energy difference of the signal was also used for

boundary detection. The same regression formula was used as in Eq. (5.3).

To evaluate the proposed features, a linear classifier which worked as a de-

tector/rejector of transition regions was used for each feature. Adjusting the

operation point, for the boundary detector the optimal hits to false positive ratio

is reported, while for the boundary rejector the optimal true negative to miss

ratio is reported in Table 5.1. Overall, spectral change and spectral flux perform

Features Detector Ratio Rejector Ratio
Spectral change 2.56 5.78
Spectral flux 1.31 14.45
Spectral centroid diff 6.72 2.35
Spectral roll-off diff 4.21 2.94
Zero crossing rate diff 10.16 2.03
Energy diff 3.53 1.24

Table 5.1: Spectral and Energy feature evaluation

better as rejectors of frames as possible transitions, especially for frames in the

same phonetic class, e.g., STOP ⇒ STOP. Spectral Centroid difference, Spectral

Roll-off difference, Zero-Crossing Rate difference and Energy difference are bet-

ter detectors. Best results were obtained for transitions between VOW ⇒ {s,z},
{s,z} ⇒ VOW and n ⇒ {s,z}

5.2.2 Phonological and MFCC deltas

Phonological features have long been used to describe whether phonological at-

tributes of segments, such as the consonant manner, place of articulation and

voicing, sonority, or vocalic attributes, are present within a speech frame ([41, 29]

inter alia). These attributes are associated with a group of phonetic units; each

unit can be thought of as a bundle of features. The relationship between seg-

ment boundaries and phonological features can be complex: while some features

can extend across boundaries (as in the nasalization of vowels), many features
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will transition in unison at segment boundaries. The degree to which features

transition in concert depends particularly on the type of segmental transition.

Deltas of phonological features can be used to estimate the rate of change of

the phonological attributes: High values of phonological deltas indicate a phono-

logical attribute transition. We used phonological deltas as transition features,

accepting the risk that we will have a small increase in false positive detection of

boundaries (and consequently in the insertions of the final recognition task). In

Figure

The common MFCC feature vector was computed with a frame-rate of 10

msec and a window size of 25 msec. MFCC deltas is a commonly used group

of features that estimate spectral change in time, in the transformed cepstral

domain. MFCC deltas were also used as transition features.

5.3 Segmentation and Modeling

The segmentation of the speech utterance creates the graph of segments. Two

segmentation families are used, the acoustic segmentation or the probabilistic

segmentation. In an acoustic segmentation, transition features extracted from

the speech signal are used. After having a set of features that give exclusive in-

formation for the phoneme boundaries and thus for the segmentation, one would

proceed to define the actual segmentation algorithm. This would include either a

peak locating algorithm in the transition feature curve, or a phonetic boundary

classifier using these features. This would create a segmentation of the speech

utterance and thus the creation of a graph of segments. Acoustic segmenta-

tion, tends to hypothesize more segments than necessary, although this factor

can be tuned by certain parameters. In a probabilistic segmentation, a first pass

decoding of the utterance, by a frame-based recognizer, is necessary. The seg-

ment boundaries are defined by combining the N-Best path information from

the first pass. This method creates segmentations characterized by good quality,

but suffers from computational burden from the two step recognition. In [34],

some efforts are presented towards creating a real-time probabilistic segmenta-

tion algorithm. In this thesis, there is no need to define an actual segmentation

algorithm, as the transition features are used directly in the CRF model formula-

tion. Due to the ability of the CRF model to accept transition features, tied with

transition functions, the task of finding the most probable segmentation is left to

the recognizer. Also there will be no need to exclusively model the segments for

the same reasons. This can be seen as a segmental processing system combining

frame-based scores and segmentation in one modeling framework. Nevertheless,

some basic segmental modeling techniques will be presented.

The general segment modeling framework is a joint model for a random-

length sequence of observations generated by a phonetic unit. For instance, if the
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(a) Duration histogram for phoneme /aa/

(b) Duration histogram for phoneme /d/

(c) Duration histogram for phoneme /s/

Figure 5.1: Duration histograms in TIMIT dataset
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observation sequence is yl = [y1, ..., yl] and the phonetic unit a then the density

is:

p(y1, ..., yl, l|a) = p(y1, ..., yl, a)p(l|a) = ba,l(y
′
1)p(l|a) (5.4)

where l is the length of the segment The main characteristics of the segment

model are the duration distribution p(l|a) and the family of observation densities

that describe observation sequences of different lengths {ba,l(yl1)}.
The duration distribution is usually modeled by a Poisson distribution or a

Gamma distribution. In Figures 5.1a to 5.1c, histograms of the duration of three

phonemes are presented, /aa/, /d/ and /s/. We have computed the average

duration of a phoneme in the TIMIT database and found it to be 87.9 millisec-

onds. If the segments are phone-sized then any reasonable assumption about the

distribution works well, because the contribution of the duration model is small

relative to the segment observation probability [47].

The segment is divided in separate regions in time. Inside these regions the

distribution parameters of the observation densities remain invariant, making it

look similar to an HMM state. Also a distribution mappings collection associates

each observation with one of the model regions. These two factors constitute

a means of specifying the family of observation densities for a segment. The

mapping can be either static or dynamic. In the first case, the computation is

lower and is adequate for phoneme-sized segments. The dynamic case requires

trajectory sampling and is more sophisticated as it does not assume piecewise

constant dynamics. An example is given on how to compute the probability

of a phoneme sequence, given the observation sequence, using segmental speech

recognition. If the phoneme sequence is aN1 and the observation sequence is yT1
then:

p(yT1 |aN1 ) =
∑
lN1

p(yT1 |lN1 , aN1 )p(lN1 |aN1 ) (5.5)

=
∑
lN1

p(yT1 |lN1 , aN1 )p(lN1 |aN1 ) (5.6)

=
∑
lN1

[

N∏
i=1

p(y
t(i)
t(i−1)+1|li, ai)

N∏
i=1

p(li|ai, li−1, ai−1)] (5.7)

where t(i) is the ending time of the i-th segment, and li = t(i) − t(i − 1) is the

segment length.

The highest benefit when using segmental models compared to the HMMs is

achieved when using a modeling structure to take into account the feature dy-

namics. A variety of distribution families can be used for this purpose. When

using distribution regions inside a segment model, then the model is called con-

strained mean trajectory. The trajectory can be either parametric, so the mean

is specified by a polynomial, or non-parametric, so the distribution parameters
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are estimated separately for each model region. Another type of modeling is done

using a stochastic, linear dynamical system. Without getting into much detail,

the modeling for a multi-region segment model is done by defining a system pa-

rameter set for each region of each model. The assumption that must hold is that

the system parameters are time-invariant within the region of definition.

Other modeling techniques can be used, such as Conditionally Gaussian Mod-

els, Non-Linear Models and Segment-Level mixtures. More details can be found

in [47].

5.4 Segmental processing in the detection-based system

The approach, used in this thesis, is to keep the frame-based CRF model and

augment the system with transition-based modeling through appropriate features

[8]. The benefit of including transition information into the state models has

been recognized in past work. In [45], an acoustic feature set that captures

the dynamics of the speech signal at the phoneme boundaries was introduced

in combination with the traditional acoustic feature set representing the periods

of speech that are assumed to be quasi-stationary. In [52], a extended hidden

Markov model that integrates generalized dynamic feature parameters into the

model structure is developed and evaluated.

Prior work in CRF phonetic recognition has either ignored or used a simpli-

fied approach in the transition function implementation. In [41], the transition

functions were binary, evaluating to 1 when the phonetic unit label pair matched

the values for the defined function and 0 otherwise. This left out any transition

clues that where present in the input and let the Viterbi decoding decide which

transitions maximized the final probability of the sequence. In [14], a feature

set was used for both state and transition features. This feature set was not

optimized for boundary detection, thus allowing only a small increase in overall

recognition performance. Explicit boundary detection (using a single MLP de-

tector to detect segmental boundaries) was found to be mildly effective, but an

expensive transition feature for CRF transitions in [61]. In this work, we examine

a wide range of boundary features, already presented in Section 5.2, which are

designed to detect as many boundaries as possible without adding a considerable

amount of insertions to the system.

In Figure 5.2, the full CRF model structure is given, including the transition

features associated with transitions between states. Transitions are abstract units

and can be either inside the phoneme, connecting states of the same phoneme, or

between phonemes, connecting the last state of the previous phoneme to the first

state of the next phoneme. Interesting transitions are the ones connecting two

adjacent phonemes, because they indicate phoneme boundaries. The segmenta-

tion information present in the transition features can be used to supplement
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Figure 5.2: Full CRF formulation using transition features

the detection-based system. This external source of information about phonetic

unit boundaries is incorporated into the system during the training and decoding

processes. During the training process, the association weights of each transition

feature with every possible transition (inside/between phoneme) are estimated.

Then during decoding, the segmentation information is used to identify better

the possible transitions when searching for the best path. The decoding is still

frame-based, but benefits from clues normally unavailable in standard HMM

recognition, where only state associated features are available. Like the state

features, the transition feature increase their positive contribution when having

high degree of discrimination between different types of transitions (between dif-

ferent phoneme pairs). One can research the best possible transition set for every

type of transition. But even in a bad scenario, where a transition feature can

only discriminate between two events, phonetic boundary or not boundary, it still

provides useful information in the decoding process. In Chapter 6, the results

from different combinations of transition features are given.

Including specialized transition features into the detection-based system, in

no way constitutes an implementation of a segmental speech recognition system.

It is just an initial step to identify possible features for an efficient segmentation

and incorporate this information into the proposed system developed for this

thesis. Towards the goal of full segmental processing capabilities, one can develop

transition models that are placed on the possible boundaries provided either by

an acoustic or a probabilistic segmentation. More details on this in Chapter 7.





Chapter 6

Experimental Setup and Results

In this chapter, the experiments conducted during this thesis are presented. Each

section is dedicated to a detailed explanation of the setup using any figures when

needed. Also the result of each experiment is given together with the analysis of

the result. First a baseline detection-based setup is given that is used throughout

all experiments for comparison. Then other experimental setups are presented,

including extensions and improvements to the baseline system. Different degrees

of sophistication are used in each experiment, thus creating a big set of experimen-

tal results in each case. Next some common characteristics of the experimental

setups are presented. The characteristics that are not shared among all setups,

are presented in each individual section.

For all experiments, the TIMIT speech database is used and is presented in

Appendix A.1. The si and sx utterances are used to form 1 training set and 1

cross validation set and 2 test sets. The rules used for the subdivision of the

dataset are also described in Appendix A.1.

As already presented in Section 2.3, ANN MLPs are used as detectors of

speech events. Various speech events are used in this thesis, so a variability

of MLP outputs is used for speech event presence estimation. Nevertheless, all

MLPs share the same construction properties, morphology and training proce-

dure. For all MLP detectors, the International Computer Science Institute (ICSI)

Quicknet toolbox for ANN is used to implement them. From the developers of

the toolbox, the Quicknet package is a general purpose MLP toolkit and has

been used for tasks other than ASR, including handwriting recognition. It has

been used for both hybrid MLP/HMM ASR, in which only MLPs are used to

model state emission probabilities, and tandem ASR, which uses MLPs as a kind

of nonlinear discriminant analysis prior to Gaussian mixture modeling. In this

thesis our approach is to use the MLPs in tandem with either HMMs or CRFs

in the final level of event merging and verification. More information about the

55



56 CHAPTER 6. EXPERIMENTAL SETUP AND RESULTS

Quicknet software package can be found in [24]. The input features used to feed

the MLPs are PLP coefficients plus first and second-order deltas. A nine-frame

window of features is used in the input thus creating a 351-sized input vector.

The structure of the MLPs contain a 351-node input layer, one hidden layer of

1000 hidden units and the output layer as described in Section 2.3 - dependent

on the speech event detection. The training process of the MLPs uses a random

selection of 416 speakers taken from the training set of all dialect regions and the

convergence is evaluated on a cross-validation set of 46 speakers from the training

set.

In the final step of event merging, the CRF modeling framework is used

extensively. Different implementation of the framework are available online. In

this thesis, a C++ implementation is used, developed in the Ohio State University

Speech and Language Technologies Lab. The speech event outputs are used as

inputs to a CRF modeling framework, that is trained with the TIMIT training

set. The training process is stopped after 50 iterations and the iteration that gives

the best accuracy on the cross validation set is selected. Also the HTK HMM

Toolkit [13] is used when HMM modeling is needed, usually for comparison to

the CRF modeling approach.

The recognition task for all experiments is phoneme recognition on the TIMIT

dataset. The original 61 phoneme labels of TIMIT are reduced to 39 correspond-

ing phoneme labels as proposed in [32]. The conversion is done with finite-state

machines and the rules are presented in Appendix A.3. We measure hits, dele-

tions, substitutions and insertions of phoneme labels in the total labels of the

core test set and the extended test set. To evaluate each setup, two metrics are

used: the correct percentage and the accuracy percentage. The correct percent-

age measure, ignores the insertion errors and is given by:

C =
T −D − S

T
· 100% (6.1)

where T = total number of labels, D = number of deleted labels, S = number of

substituted labels. The accuracy is a more representative measure and is given

by:

A =
T −D − S − I

T
· 100% (6.2)

where T = total number of labels, D = number of deleted labels, S = number of

substituted labels and I = number of inserted labels.

6.1 Baseline detection-based experiments

The first detection-based setup of this thesis uses 44 phonological event detectors

of Table 2.1. The output of the detectors is a frame-based posterior probability

of the presence of each of these events. Each event belongs to one of the 8 groups
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of events. The probability of the events that belong to the same group sum to 1,

as they are mutually exclusive. No transition speech events are used. The results

of the baseline setup are given in Table 6.1.

SETS Correct % Accuracy % Hits Del Subs Ins

C.V. 72.82 69.85 9882 1289 2400 403
Core Test 70.82 67.95 4613 694 1207 187
Ext Test 72.08 68.89 23194 3094 5892 1024

Table 6.1: Baseline detection-based experimental setup

The convergence of the training process was achieved after 30 iterations. For

comparison we can take into consideration an HMM tandem system using the

same phonological speech event detectors. The tandem system uses a 16 Gaus-

sian mixtures per state HMM and 3 states per phoneme. Also The results are

reported in [40] for a Core test set: Correct% = 72.42 and Accuracy% = 66.85.

We can see that the one-state CRF model of 44 phonological event inputs has

comparable results to an 3-state, 16-mix HMM model. To understand better

this comparison, in Table 6.2, the number of parameters of each modeling frame-

work are given. These parameters take values during the training process and

give a direct indication of the complexity and computation time of the method.

CRFs have significantly less parameters to achieve comparable performance to

the HMMs.

Model states per phone number of parameters

Tandem HMM (16-mix) 3 205,350
CRF 1 4464

Table 6.2: Same performance different complexity: CRF and HMM modeling
comparison

6.2 Various level speech event merger experiments

In Table 3.1, we have seen speech events at three levels. Also in Figure 3.3,

different CRF configurations were given, each one combining events of either

one or more levels. In this section, a detection-based experimental setup that

uses speech events from different levels is tested and evaluated. A multitude of

variations of this setup are possible, due to the many combinations of speech

events. Not all of them are successful, so after the comprehensive investigation

done for this thesis, the most successful ones are going to be presented.

First, we are going to include low-level speech signal events that are repre-

sented by MFCC features. Not only MFCCs but also theirs first and second order

time derivatives are included, to catch dynamic properties of the spectral events.
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Also the MFCC squares are important, because we want to include second order

statistic information of the MFCCs. It is important for the two feature families,

the phonological posteriors and the MFCCs, to have a similar dynamic range

of values. The final feature vector is created when the two feature families are

merged. Then this feature vector of combined low and medium level events is

fed to the CRF, to complete the recognition task. To limit the dynamic range

of MFCCs, mean and variance normalization is used. The MFCC squares are

transformed using a 5-th order polynomial transformation function, that limits

the range between 0 and 1. The approximate mean value of squared MFCCs was

estimated around 300 (not every MFCC has the same mean, but the same trans-

form was used for all). The standard deviation was also around 300. The max

value was around 3000, so values approaching max are mapped non-linearly to

1. In Figure 6.1, the fitted transformation function curve is shown, together with

the original and new MFCC squares range. We also compute the first and second

derivatives of the MFCC squares. The size of the speech event vector grows to

122. In the result tables following, we refer to this setup as Exp2-Var1.

Figure 6.1: MFCC Squares transformation function

Going one step further, we add some more low level events to the already

merged phonological and MFCC-based. The new setup also includes the following

events: Degree of Voicing, Spectral Roll-off, Spectral Centroid and Spectral Flux.

Also first and second order derivatives for the new features are used. The size of

the speech event vector grows to 134. We refer to this setup as Exp2-Var2.

Another addition is to include the first and second time derivatives of the

phonological events. This extra information provides an indication of the dynamic

properties of the phonological events. The size of the speech event vector grows

to 222. We refer to this setup as Exp2-Var3.
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Next we want to compare the performance of low-level with mid-level events

in contrast to mid-level with high-level events. So we combine the mid-level

phonological speech events with the high-level phone presence events. The 61

TIMIT phonemes are used as high level events. The final event vector has size

of 105. We refer to this setup as Exp2-Var4. We make the comparison with

the low-mid level event setup, we de-correlate and reduce the size of vector of

the ”Phono∆∆ + MFCC + Spec” setup from 222 to 105. The Karhune-Loeve

Transform (KLT ) is used to find the principal components of the vector and then

105 features were selected. We refer to this setup as Exp2-Var5.

Finally a setup that combines all levels of events into one experiment is con-

structed. Having all three levels of events, is what can someone do to have as

much information as it is available to increase the performance of the phoneme

recognition task. The size of the input vector is blown out to 405. We refer to

this setup as Exp2-Var6.

Codename Short Description Size Params Iters

Exp2-Var1 Phono+MFCC 122 8208 29
Exp2-Var2 Phono+MFCC+Spec 134 8784 34
Exp2-Var3 Phono∆∆+MFCC+Spec 222 13008 43
Exp2-Var4 Phono+Phone 105 7392 25
Exp2-Var5 Phono∆∆+MFCC+Spec+KLT 105 7392 24
Exp2-Var6 Phono∆∆+Phone∆∆+MFCC+Spec 405 21792 43

Table 6.3: Second experimental setup variations

In Table 6.3, a complete summary of all the previously described experimental

variations is presented. For each one the short name that will be used next, and a

description is given. Second the number of speech events that are contained in the

input vector is given. The parameters that are trained during the training step

are given. Last in this table is the number of iterations necessary for convergence

during training.

Codename C.V. set Core Test set Ext Test set
Corr % Acc % Corr % Acc % Corr % Acc %

Baseline 72.82 69.85 70.82 67.95 72.08 68.89
Exp2-Var1 75.74 71.39 73.58 69.42 74.58 70.05
Exp2-Var2 75.85 71.49 73.79 69.79 74.72 70.26
Exp2-Var3 76.62 72.17 74.55 70.37 75.45 70.91
Exp2-Var4 76.12 72.67 74.92 69.94 75.05 70.95
Exp2-Var5 75.77 71.82 74.07 70.08 74.85 70.75
Exp2-Var6 78.00 73.13 75.87 71.71 77.12 72.23

Table 6.4: Second experimental setup phoneme recognition results

Phoneme recognition task results are shown in Table 6.4. The increase in
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accuracy we see when MFCC-based features are implemented to the Posterior

CRF system, is quite good than one would expect (somewhat smaller than 2%

in absolute value percentage). This may happen for a number of reasons:

• Although some of the phoneme discrimination ability of the MFCC features

is already inherent to the system, because the audio features used to derive

the phonetic posteriors are PLPs. But it seems that the introduction of

any extra information that comes directly from the spectral characteristics

are nicely integrated into the system.

• The increase we see is due to the different scale that is used in the MFCC

analysis . We use 25msec frames every 10 msec in contrast with the pos-

teriors that are computed from 105 msec frames every 10 msec. In Section

6.3, more detailed experiments on multi-scale analysis will be presented.

The inclusion of the other low level speech events seems to only increase the per-

formance marginally. The quality of these speech events in phoneme recognition

task, seem to be poor. The information they hold for phoneme discrimination is

very low.

A moderately satisfactory increase in performance comes from the first and

second derivatives of the phonological events. The dynamic information they

hold, provides an important clue to the recognition setup. Unfortunately the

size of the input event vector increases dramatically and so does the number of

parameters and the number of iterations needed in training.

The KLT and dimensionality reduction from 222 to 105 features decreased

a bit the recognition accuracy. Most probably, this happened because some in-

formative features were removed as a trade-off to decrease dimensionality and

complexity of the setup.

The mid- and high-level event merged setup, with the same number of input

event vector, seems to have similar performance compared to the low- to mid-level

event setup.

Finally, when combining all available speech events, from all levels, we have

the best performance. The number of features goes up and so does the number

of parameters that need to be trained. The CRF is a really successful integration

tool, that efficiently combines the highly correlated and redundant speech events.

It takes the most out of every available bit of information included in the event

vector and provides the best performance, only slightly increasing the complexity

of the system.

In Table 6.5, there is statistical significance testing results for pairs of exper-

iments. The significance testing is done using two methods: (a) the paired t-test

and the (b) two-way anova without replication. The measurement variable is the

Percent Phoneme Recognition Accuracy and Correct and the nominal variables
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One-Tailed Two-way Anova
Experimental Pair Paired T-Test w/out Replication

Core Ext. Core Ext.

Baseline & Var1 Y Y Y Y
Baseline & Var2 Y Y Y Y
Baseline & Var3 Y Y Y Y
Baseline & Var4 Y Y Y Y
Baseline & Var5 Y Y Y Y
Baseline & Var6 Y Y Y Y
Var1 & Var2 N N N N
Var1 & Var3 N Y N Y
Var1 & Var4 N Y N Y
Var1 & Var5 N Y N Y
Var1 & Var6 Y Y Y Y
Var2 & Var3 N Y N Y
Var2 & Var4 N Y N Y
Var2 & Var5 N N N N
Var2 & Var6 Y Y Y Y
Var3 & Var4 N N N N
Var3 & Var5 N N N N
Var3 & Var6 Y Y Y Y
Var4 & Var5 N N N N
Var4 & Var6 Y Y Y Y
Var5 & Var6 Y Y Y Y

Table 6.5: Second experimental setup significance testing

are the results for the two experimental variations and the other is the utter-

ances. So with the above status we were able to perform the tests. We tested two

hypotheses: the first was tested with the one-sided paired t-test and we tested

whether the difference in performance was significantly higher than the previous

setup; the second was tested with the two-way anova and we tested whether the

performance difference was significant. The result is a binary value showing if

the performance difference is significant at 0.05 alpha level.

The statistical significance testing results confirm the following conclusions

for the experimental variations:

• All experimental variations are significantly better than the baseline detection-

based system, based only on phonological speech events.

• Variation 1 and Variation 2 are not different, meaning that MFCC-based

features adequately represent the low-level speech events. The addition of

the other low level speech events (Voicing, Spectral Flux, Centroid, ...) is

redundant.

• Variations 3 to 5 are significantly better and different from Variation 1 only

in the Extended Test set. Phonological Deltas and Phone presence events
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need a bigger test set to prove they are important.

• Variation 2 has proved to give statistically the same results to Variation 1,

so we expect about the same significance test results compared to the other

sets. The only difference is that Variation 2 proved to have statistically

insignificant difference from Variation 5 in all sets, Core as well as Ext.

• Variation 3 has statistically insignificant difference from 4 and 5. This

proves that when applying KLT transformation and reduction from 222

to 105 features, the setup remains essentially the same. Also proves the

remark made earlier that low- to mid-level speech event combination gives

similar results to mid- to high-level combination. Also in the same sense,

Variations 4 and 5 give insignificant different results.

• Variation 6 is left for the end. This experimental variation gives significantly

better performance from all previous variations in all measured sets. It gives

the best performance achieved with the combination of different level speech

events. Although the increase in complexity has been already reported.

6.3 Multiple time-scale processing experiments

In Chapter 4, a modeling framework for the speech rate variability was intro-

duced. The idea of multiple time scale analysis was given. Then a functional

system was proposed, in order to support the analysis in the detection-based

system. Different experiments were conducted, in order to evaluate the proposed

solutions.

First multiple FR / WS size speech features were combined and used in a

speech recognition task as described in Section 4.4.1. The all-inclusive method

was achieved by including different temporal analysis features in a constant frame-

rate box. The resulting feature vector was calculated at constant FR, but the

features inside the box were computed at different FRs. Using this method, we

appended the standard single FR / WS method with a number of signal param-

eters from other resolutions. The resulting feature vector is highly correlated, so

a de-correlation step was deemed necessary.

For HMMs we used the HTK Toolbox and trained 48 Context-Independent

(CI) 3-state 16-mixture monophone models on the training set and performed the

multiple rate recognition task on the other sets. For comparison we performed

the same recognition task on CRF using 48 CI 1-state monophone models. Then

a reduction to 39 phonemes on both frameworks was done for comparison.

The features we are using are MFCC with delta and acceleration (MFCC D A)

combined from different FR/WS pairs, shown as MFCC-MFR in the following

tables. We also report results on MFCC D A computed at 10 msec as baseline,

shown as MFCC-10.
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Method Feature Core Set Ext Set
group Acc % Rec % Acc % Rec %

HMM MFCC-10 49.08 52.77 48.98 53.15
HMM MFCC-MFR 48.35 53.55 49.03 54.50
CRF MFCC-10 47.33 51.87 47.22 51.78
CRF MFCC-MFR 50.94 58.11 51.00 58.49

Table 6.6: Multi-Rate Phoneme Recognition Results: All-inclusive Combination
Method

From Table 6.6, we can see that HMMs have better performance when using

plain single-rate MFCC D A parameters. When using multi-scale MFCC D A

features, HMMs cannot integrate efficiently this extra information. In contrast,

the detection-based system improves performance by combining efficiently these

highly correlated parameters.

Next we proceed using the CRF framework and combine 44 phonological event

posteriors with single-rate MFCC D A and also with multirate MFCC D A. We

also include results using exclusively phonological event posteriors as a baseline.

Feature group Core Set Ext Set
Acc % Rec % Acc % Rec %

Posteriors 66.72 68.68 68.16 70.32
Posteriors+MFCC-10 68.25 71.12 69.86 72.86
Posteriors+MFCC-MFR 68.74 72.83 69.86 74.20

Table 6.7: Multi-Rate Phoneme Recognition Results: Using Phonological Poste-
riors - CRF Framework - All-inclusive method

The results in Table 6.7, show the detection-based system’s ability to integrate

features of different quality and time-scale. When Posteriors are merged with

single-rate MFCCs, an improvement is clear. Adding multi-rate MFCCs improves

somewhat the results. The improvement in recognition is significant.

The next important group of experiments was the evaluation of the optimal

scale selection method, presented in Section 4.4.2. A certain procedure was fol-

lowed during the construction of the experimental setup. First we computed the

spectral change metric given in Equation 4.1. The quantity used to compute the

spectral region differences was the Mel-Scale Spectral Magnitude, computed by

20 channel filterbank analysis. We run a first pass recognition task using multiple

FR/WS pairs defined in Section 4.3, on the cross validation set. We segmented

each utterance to 30 msec segments and labeled each segment using the frame

classification results of the first pass. Every segment that was classified correctly

under one FR/WS pair, it was labeled with its corresponding ROS label (ROS=10

for FR/WS=10/25msec, etc.). Then an ML training was done using the spectral
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change metric as input and the ROS label as output. The parameters of Eq.

(4.1) and Eq. (4.2) were trained using ML estimation. We kept this mapping as

a baseline.

Next we implemented an MCE/GPD embedded iterative training algorithm

and done a re-training of the mapping functions. In the first pass, we re-train the

parameters of Eq. (4.1). Lower frequencies are mapped with larger weights and

higher frequencies tend to have smaller weights. In the second pass we re-train

the parameters of Eq. (4.2). To simplify the training procedure we kept the

parameter a to value 5 and parameter c to value 5 in order to have a uniform

dynamic range of frame rates, i.e, we re-train parameters b and d. We use a

maximum of 30 iterations.

The mapping function that emerged, as the result of this iterative procedure,

was used to select the frame-rate on a frame-based classification task and also the

normal recognition task. Frame classification and utterance recognition results

on ML and MCE trained FRSUs were then compared.

Next, the results are presented for the detection-based optimal scale selection

method. We used the classification results from the cross-validation set to train

the FRSU with the MCE method as described earlier. We performed a variable

rate experiment on the Core and Ext sets using the ML trained FRSU as baseline

and also the MCE trained FRSU, in order to select the optimal FR/WS for each

30msec segment. In this experiment, we used MFCC D A features combined from

different rates and windows. We report the results for a frame-based classification

task in Table 6.8. We also have included frame-level results from the baseline

single-rate MFCC system and the multi-rate all-inclusive method, using MFCC

and Posteriors+MFCC. Also phoneme recognition task results are presented in

Table 6.9.

System setup Features Core % Ext %

Const-Rate MFCC-10 50.06 48.93
All-inclusive Method MFCC-MFR 54.54 53.85

Post+MFCC-MFR 70.07 70.70
ML FRSU MFCC 49.81 49.36

Post+MFCC 61.37 61.94
MCE FRSU MFCC 51.70 51.10

Post+MFCC 72.40 73.11

Table 6.8: Variable & Multi-Rate Speech Recognition System: Frame Classifica-
tion Results

From the results in Table 6.8 for the frame-based classification task, we see

that the MCEmethod outperforms the ML method. Also the all-inclusive method

performs well using multi-rate MFCC features. Finally the MCE method is the

best performer when combining Posteriors and MFCCs at different rates. Look-

ing at the phoneme recognition results in Table 6.9, we see the ML method is
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System Features Core Set Ext Set
Acc % Rec % Acc % Rec %

ML MFCC 47.88 51.47 48.76 51.35
FRSU Post+MFCC 62.50 65.61 64.57 68.15
MCE MFCC 46.48 51.14 46.75 51.81
FRSU Post+MFCC 67.49 70.33 68.81 72.41

Table 6.9: Variable-Rate Speech Recognition System: Phoneme Recognition Re-
sults

Setup State features Transition features

Baseline 48 Phonological features No transition features
DPhn 48 Phonological features 48 Phonological Delta (1st order)
BndF 48 Phonological features 6 boundary features
DPhn + BndF 48 Phonological features 48 Phonological Delta (1st order)

+ 6 boundary features
DPhn + BndF + DMFCC 48 Phonological features 48 Phonological Delta (1st order)

+ 13 MFCC delta (1st order)
+ 6 boundary features

Table 6.10: Segmental information experimental setup description

performing better that the MCE method when using MFCCs. MCE performs

better when using Posteriors and MFCCs. Also comparing Table 6.7 and Ta-

ble 6.9, we see that the box method performs better than the best variable rate

method (MCE) during recognition. This indicates again the CRFs ability to

take the most out of highly correlated features and also the variable rate sys-

tem’s weakness of interpreting good frame classification results to equally good

phoneme recognition results. After some experimentation, we have found that by

reducing the FR /WS options of the variable rate system, in fact we can increase

a bit the performance. This happens due to the reduction of the complexity of

the system.

6.4 Segmental information experiments

In Chapter 5, an introduction to the basic concepts of the segmental speech

recognition approach was given. An initial approach into implementing segmen-

tal recognition ideas was proposed in Section 5.4. Transition event detection

support was included into the detection-based system. Experimental setups were

constructed to evaluate if the proposed approach could give solid results. The

transition features described in Section 5.2 were incrementally included into a

baseline setup.

In Table 6.10, the different experimental variations are presented. The base-

line system includes only a combination of phonological and phone event features
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Setup C.V. Set Core Test Set Ext Test Set
Acc % Train Iters Acc % Corr Del Subs Ins Acc %

Baseline 71.4 25 69.11 4597 941 976 95 70.25
DPhn 72.46 11 70.42 4705 772 1037 118 71.46
BndF 72.02 19 69.53 4652 849 1013 123 70.84
DPhn + BndF 73.02 2 70.77 4773 692 1049 163 71.76
DPhn + BndF 73.72 3 71.51 4825 647 1042 167 72.32
+ DMFCC

Table 6.11: Segmental information experimental setup results

as state features. 44 Phonological event and 61 Phone presence posteriors were

combined and transformed using KLT. Then a reduction was done to 48 combined

phonological-phoneme events. No transition features were used in the baseline

setup. First we include the 48 Phonological-Phone deltas as transition region

indicators. The next variation uses 6 explicit boundary features presented in

Table 5.1. Then a variation which uses both deltas and boundary features is con-

structed. Finally, to the previous transition features, MFCC deltas are merged.

Each variation is given a codename which is used in the result tables that follow.

We report two different performance indicators. The first is the phoneme

recognition performance of the setup. This is an indicator of how well our ex-

perimental boundary feature setup has done in recognizing phonetic units. The

second is how well our setup has done in detecting the transition boundaries of

phonetic units.

Recognition results

Our first set of performance indicators are the overall recognition results of dif-

ferent setups. Results for the three sets (Cross Validation, Core Test, Extended

Test) are shown in Table 6.11. By using the phonological deltas (DPhn) we got

a marginally significant improvement in accuracy. In contrast, when we used the

six boundary features alone (BndF), the improvement was not significant. Then

when we used both phonological deltas and boundary features (DPhn + BndF)

we got a better accuracy from the previous two experiments, as expected. Finally

when we used all available transition features - phonological deltas, boundary fea-

tures and MFCC deltas (DPhn + BndF + DMFCC) - we got the best accuracy.

Note that the improvement is due to the significant reduction in deletions (by over

20%). Also by adding more transition features, the training process converges

with only a couple of iterations.
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Boundary detection results

In addition to recognition performance, we can see how well the detection-based

system directly detects segment boundaries. We report the overall boundary de-

tection performance, i.e., the detection ratio for transitions between two phonetic

units in terms of precision and recall for the extended test set. These results in

Table 6.12 offer an overview of the detector performance. Two tolerance levels

in the detection of transition boundaries are reported: 10 msec (strict) and 20

msec (normal). One can see that when using phonological deltas, a slight increase

in recall is achieved with a matching decrease in precision. When using bound-

ary features, we get an increase in recall without any loss in precision. When

using both phonological deltas and boundary features we get a complementary

effect, recall increases significantly with a small decrease in precision. Finally the

addition of MFCC deltas provides a negligible gain in recall.

Tolerance: 10 msec 20 msec
Precision Recall Precision Recall

Baseline 0.89 0.78 0.955 0.855
DPhn 0.875 0.795 0.95 0.88
BndF 0.89 0.795 0.955 0.87
DPhn + BndF 0.88 0.81 0.945 0.89
DPhn + BndF 0.88 0.815 0.945 0.895
+ DMFCC

Table 6.12: Overall boundary detection performance

The detailed performance for transitions between broad phonetic classes (BPC)

are reported in Table 6.12 for the extended test set. The phonetic units are

grouped into 5 classes, namely: vowels and semi-vowels (VOW), fricatives (FRIC),

nasal-flaps (NAS), stops (STOP), silence (SIL). Detection results (precision/recall)

for each experimental setup and transitions between these BPC are reported for

the strict 10 msec window. The first value in each cell of Table 6.13 is the pre-

cision/recall ratio of the transition boundary of the left phonetic class to the

right as presented in the table (while the second value is for the right to left

transition). Overall, by adding transition events into the detection-based system,

boundary detection improves significantly especially among the SIL, STOP and

FRIC phonetic classes. It seems that these phonetic classes transitions get the

highest complementary effect from the different groups of transition features, so

they finally increase their recall without losing precision.

6.5 Summary and Discussion

In this chapter, the detection-based approach was tested thoroughly by a number

of experiments. The first experimental setup was the implementation of the
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Setup NAS ↔ STOP VOW ↔ FRIC VOW↔ STOP
Precision Recall Precision Recall Precision Recall

Baseline 0.70/0.69 0.64/0.86 0.92/0.89 0.94/0.93 0.82/0.92 0.95/0.97
DPhn 0.71/0.74 0.65/0.87 0.92/0.89 0.93/0.93 0.83/0.91 0.95/0.96
BndF 0.71/0.76 0.65/0.86 0.92/0.89 0.94/0.94 0.83/0.91 0.96/0.96
DPhn + BndF 0.72/0.71 0.70/0.96 0.92/0.87 0.94/0.95 0.84/0.91 0.96/0.96
DPhn + BndF 0.74/0.75 0.71/0.88 0.92/0.89 0.94/0.95 0.84/0.91 0.96/0.97
+ DMFCC

Setup FRIC ↔ SIL STOP ↔ SIL
Precision Recall Precision Recall

Baseline 0.79/0.75 0.80/0.75 0.66/0.73 0.52/0.49
DPhn 0.78/0.75 0.80/0.77 0.64/0.70 0.56/0.60
BndF 0.80/0.73 0.81/0.78 0.69/0.76 0.57/0.65
DPhn + BndF 0.79/0.72 0.81/0.78 0.65/0.72 0.58/0.68
DPhn + BndF 0.80/0.72 0.83/0.78 0.68/0.73 0.59/0.70
+ DMFCC

Table 6.13: Broad phonetic class boundary detection performance

detection-based system baseline. As a baseline case we assumed the detection of

phonological speech events. The phonological events appear to be in the middle

level of the speech hierarchy, with the lower level being the spectral events and the

higher level the phoneme presence events. Subsequently, different combinations

of speech events were tested as an extension to the baseline case. The conclusions

drawn were mainly the following: (a) adding low-level spectral events by using

MFCC representation was beneficial, (b) all other low-level speech events gave

negligible improvement, (c) adding dynamic properties of phonological events by

using their deltas was beneficial, (d) low- and mid-level event combination gave

similar performance to mid- and high-level events, (e) combining events from all

levels gave the best performance, but with an increase in system complexity and

training time.

After the event combination experiments, the solutions proposed in Chapter

4 to the speech rate variability were tested. The modeling approach to speech

rate variability was the usage of multiple time scales in speech processing. Multi-

scale analysis support was inserted to the detection-based system throughout

all components, from the initial speech signal analysis to the final merging and

verification steps. Different methods were tested for the merging on multiple

states, an all-inclusive integration and an optimal scale selection method. The

first method gave very good results, proving the CRFs capability as integrator

of correlated speech events. The second method was more sophisticated and

promising, although it suffered complexity issues. After some tweaking on the

number of time-scale parameters and utilizing discriminative training methods,

the optimal scale selection gave satisfactory results.

The final group of experiments was based on concepts from the segmental
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processing of speech. Information that is normally used in the segmentation

task of a segmental recognition system, were incorporated to the detection-based

system by the usage of transition function support of CRFs. Deltas of phonolog-

ical and phone speech events were used as transition region indicators between

phonetic units, increasing the phoneme recognition performance. Also low-level

speech events indicating possible transition regions were incuded with limited

recognition improvement, but giving the best boundary detection results. The

best combination of transition events in terms of phoneme recognition accuracy

was the phonological and MFCC deltas, although in terms of boundary detection

was the phonological deltas and the dedicated low-level transition events. The

broad phonetic classes benefiting the most by the inclusion of transition clues

were the silence, stop and fricative classes.





Chapter 7

Conclusions and Future Work

In this chapter, the most imprortant conclusions drawn during the work on this

master thesis are enumerated. They are grouped in conclusions on the overall

function of the detection-based system, on the multi-rate functionality of the

system and finally on the boundary detection functionality-added system setup.

Finally on the last section of the Chapter, we propose some concepts and

ideas on the future direction of the work presented in this thesis.

7.1 Conclusions

On the detection-based system

1. CRF modeling uses a significantly smaller number of trainable parameters

compared to HMM to achieve comparable performance.

2. Adding spectral information to the detection-based system in the form of

low-level speech events, increases the phone recognition performance by 2%

in accuracy.

3. By including first and second order derivatives of speech events, the perfor-

mance increased, but with a dramatic increase to the speech event vector

and the overall system complexity.

4. Merging speech events from all three available levels (low, mid and high)

gives optima performance but with an increase in system complexity.

5. Nevertheless, CRF is a successful integration toolbox, keeping the train-

ing and testing processes viable, even for large vectors of highly corellated

speech events.
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On the multi-rate system

1. Highly correlated speech parameters, from different time-scales were com-

bined in a feature vector. HMMs showed a decline in performance when

using the multi-rate vector. In contrast, CRFs showed improved perfor-

mance.

2. From a true variable speech rate analysis system, we draw the following

conclusions:

(i) When using MCE training on the optimal per-frame time-scale se-

lector, we have better frame classification and phoneme recognition

results.

(ii) Limiting the available time-scales of the system (2-3 on the current

implementation), reduces complexity and improves accuracy.

On the boundary detection aided system

1. A feature set of phonological and cepstrum feature deltas, was a useful

transition indicator set that increased the overall recognition performance.

2. Phonological and other spectral and energy domain features, were more

important in the boundary detection task. Cepstral feature deltas added

insignificant improvement.

3. The broad phonetic classes that return the most correctly detected bound-

aries are the stop, silence and fricative classes. The final improvement in

recognition accuracy is mostly achieved by reducing the deletions.

7.2 Proposed future work

The main abstract components of the system can be implemented in the future,

by improved versions of the current actual implementations presented in this the-

sis. Moreover, novel and completely different implementation can substitute the

currently proposed, with the only restriction be keeping the main idea of the ab-

stract detection-based system. New speech events can be inserted and old events

substituted or removed, based on the evaluation of the recognition accuracy re-

sults. New ideas and approaches can be included on the main components of the

system, as technology in speech recognition advances. We have already given the

example in this thesis by including the concept of multiple time scale processing

and boundary detection information.

More specifically, on the concept of multiple time-scales, some improvements

are proposed. One is to find a solution in order to interpret good frame classifi-

cation results into phoneme recognition results on the true variable rate system.



7.2. PROPOSED FUTURE WORK 73

In practice one should work towards minimizing the error rate of the recognition

task, by controlling the insertion of the variable rate system and the translation

of variable rate frames to states and phonemes. Also, a variable rate system

based on phonological posterior features computed at different temporal resolu-

tions should be implemented for improved results.
Moving one step further in including phoneme boundary information, one can

use exclusive transition models. Transition models are modeling the dynamics of
sound around detected boundaries. A window of analysis centered at the detected
boundary can be used. The boundaries can be at phoneme transition regions but
also inside phonemes. Because different dynamics exist at transition regions, a
trajectory model is necessary to model the fore-mentioned dynamical content of
speech. This can be achieved by mapping to a N-degree polynomial and taking the
first M-coefficients. The residual also must be taken into account as a normally
distributed random variable (mean, variance). The previous analysis must be
done for every input feature of the modeling scheme. Finally we will have 2
types of models, the between phoneme transition models and the inside phoneme
models. The transition models have been proved to work better than segment
models. Also a combination of both seems to achieve the optimal result.
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Appendix A

Dataset and Labeling

A.1 TIMIT Database

TIMIT database is a joint effort among the Massachusetts Institute of Tech-

nology, Stanford Research Institute, and Texas Instruments under sponsorship

from the Defense Advanced Research Projects Agency - Information Science and

Technology Office (DARPA-ISTO). It has been designed to provide speech data

for the acquisition of acoustic-phonetic knowledge and for the development and

evaluation of automatic speech recognition systems. The recording of speech was

done at Texas Instruments, transcribed at MIT and prepared for production by

the National Institute of Standards and Technology (NIST).

The dataset contains a total of 6300 sentences, 10 sentences spoken by each of

630 speakers from 8 major dialect regions of the United States. Each speaker is

associated with a dialect region based on where he lived during childhood. Each

region contains recognized geographical areas as presented in Language Files from

Ohio State University Linguistics Department. Note that western region does not

have clearly specified boundaries and there is one region for people that moved

around a lot during childhood. In Table A.1, the regions are presented and how

many speakers are associated with each region.

In Table A.2, the speech material of the database is presented. The dialect

sentences (the SA sentences) expose the dialectal variants of the speakers and

were read by all speakers. The phonetically-compact sentences provide coverage

of pairs of phones. Phonetic contexts thought to be either difficult or of particular

interest have extra occurrences. Each speaker read 5 of these sentences (the SX

sentences) and each text was spoken by 7 different speakers. The phonetically-

diverse sentences (the SI sentences) originate from existing sources, the Brown

Corpus and the Playwrights Dialog. Their purpose is do add diversity to the

content. Each speaker read 3 of these sentences, with each sentence being read
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Dialect Region Speakers % in Dataset

dr1 New England 49 8%

dr2 Northern 102 16%

dr3 North Midland 102 16%

dr4 South Midland 100 16%

dr5 Southern 98 16%

dr6 New York City 46 7%

dr7 Western 100 16%

dr8 Moved around 33 5%

Total 630 100%

Table A.1: TIMIT dialect regions and speakers

Sentence Type Sentences Speakers Total Sentences/Speaker

Dialect (SA) 2 630 1260 2

Compact (SX) 450 7 3150 5

Diverse (SI) 1890 1 1890 3

Total 2342 6300 10

Table A.2: TIMIT sentence types and speakers

only by a single speaker.

The training set is selected and differentiated from the other sets based on

the following criteria [16]:

1. Roughly 20 to 30% of the corpus should be used for testing purposes, leaving

the remaining 70 to 80% for training.

2. No speaker should appear in both the training and testing portions.

3. All the dialect regions should be represented in both subsets, with at least

1 male and 1 female speaker from each dialect.

4. The amount of overlap of text material in the two subsets should be mini-

mized; if possible no texts should be identical.

5. All the phonemes should be covered in the test material, preferably each

phoneme should occur multiple times in different contexts.

The Core Test set contains 24 speakers, 2 male and 1 female from each dialect

region. Each speaker read a different set of SX sentences. Thus it contains 192

sentences, 5 SX and 3 SI for each speaker.

The Extended Test set includes the sentences from all speakers that read any

of the SX texts included in the core test set. In addition, no sentence text appears
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Class Attributes

Sonority Obstruent (OBS), Silence (SIL), Sonorant (SON), Syllabic (SYL),
Vowel (VOW)

Voicing NA, Voiced (VCD), Voiceless (VLS)
Manner Approximant (APR), Flap (FLP), Fricative (FRI), NA, Nasal

(NAS), NasalFlap (NF), Stop-Closure (STCL), Stop (STP)
Place Alveolar (ALV), Dental (, Glottal, Labial, Lateral, NA, Palatal,

Rhotic, Velar
Height High, Low-High, Low, Mid-High, Mid, NA

Backness Back, Back-Front, Central, Front, NA
Roundness NA, NonRound, NonRound-Round, Round-NonRound, Round
Tenseness Lax, NA, Tense

Table A.3: Phonological events (IPA attributes)

in both the training and test sets. Thus it contains a total of 168 speakers and

1344 utterances, accounting for about 27% of the total speech material.

The Cross-Validation set contains a selection of 400 sentences from the Ex-

tended Test set.

A.2 Phonetic Units to Phonological Events Mapping

The 61 TIMIT phonemes are associated with specific phonological events. The

8 phonological classes contain in total 44 phonological events as presented in

Table 2.1. In this Section, the detailed mapping of each of the 61 phonemes ot its

corresponding phonological events from each class is presented. The phonological

events are given a codename that acts as a short-name for each event. In Table

A.3, we can see the different phonological classes and events together with their

codenames. Next the actual mapping is presented in Table A.4. Each phoneme

is associated at most with one event from each phonological class. Some event

classes are not applicable for certain phonemes and this is indicated with the

codename ”NA”.

A.3 Phoneme label reduction rules

During the experimental setups in this thesis, the TIMIT phoneme set was modi-

fied according to well established practices in speech recognition. The 61 phoneme

set was reduced to either 48 or 39 phonemes, by using substitution and merging

of existing phonemes and pairs of phonemes. The set consisting of 48 phonemes

were used during the decoding step of the phoneme recognition task. The smaller

set of 39 phonemes was used during the evaluation of the results. The rules to

create each reduced set from the original 61 phoneme set are presented in this

section.
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Phone Sonority Voicing Manner Place Height Backness Roundness Tenseness

aa VOW VCD NA NA LOW BAK NRND TEN

ae VOW VCD NA NA LOW FRT NRND TEN

ah VOW VCD NA NA MID CEN NRND TEN

ao VOW VCD NA NA LOW BAK RND TEN

aw VOW VCD NA NA LOHI BAK NRRD TEN

ax VOW VCD NA NA MID CEN NRND LAX

ax-h VOW VLS NA NA MID CEN NA LAX

axr SYL VCD APR RHO NA BAK RND LAX

ay VOW VCD NA NA LOHI BKFR NRND TEN

b OBS VCD STP LAB NA NA NA NA

bcl OBS VCD STCL LAB NA NA NA NA

ch OBS VLS STP PAL NA NA NA NA

d OBS VCD STP ALV NA NA NA NA

dcl OBS VCD STCL ALV NA NA NA NA

dh OBS VCD FRI DEN NA NA NA NA

dx SON VCD FLP ALV NA NA NA NA

eh VOW VCD NA NA MID FRT NRND LAX

el SYL VCD APR LAT NA BAK NRND NA

em SYL VCD NAS LAB NA NA NA NA

en SYL VCD NAS ALV NA NA NA NA

eng SYL VCD NAS VEL NA NA NA NA

epi SIL NA NA NA NA NA NA NA

er SYL VCD APR RHO NA BAK RND TEN

ey VOW VCD NA NA MID FRT NRND TEN

f OBS VLS FRI LAB NA NA NA NA

g OBS VCD STP VEL NA NA NA NA

gcl OBS VCD STCL VEL NA NA NA NA

h# SIL NA NA NA NA NA NA NA

hh OBS VLS FRI GLT NA NA NA NA

hv OBS VCD FRI GLT NA NA NA NA

ih VOW VCD NA NA HI FRT NRND LAX

ix VOW VCD NA NA HI CEN NRND LAX

iy VOW VCD NA NA HI FRT NRND TEN

jh OBS VCD STP PAL NA NA NA NA

k OBS VLS STP VEL NA NA NA NA

kcl OBS VLS STCL VEL NA NA NA NA

l SON VCD APR LAT NA NA NA NA

m SON VCD NAS LAB NA NA NA NA

n SON VCD NAS ALV NA NA NA NA

ng SON VCD NAS VEL NA NA NA NA

nx SON VCD NF ALV NA NA NA NA

ow VOW VCD NA NA MID BAK RND TEN

oy VOW VCD NA NA MDHI BKFR RDNR TEN

p OBS VLS STP LAB NA NA NA NA

pau SIL NA NA NA NA NA NA NA

Continued on next page
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Table A.4 – continued from previous page

Phone Sonority Voicing Manner Place Height Backness Roundness Tenseness

pcl OBS VLS STCL LAB NA NA NA NA

q OBS VLS STP GLT NA NA NA NA

r SON VCD APR RHO NA NA NA NA

s OBS VLS FRI ALV NA NA NA NA

sh OBS VLS FRI PAL NA NA NA NA

t OBS VLS STP ALV NA NA NA NA

tcl OBS VLS STCL ALV NA NA NA NA

th OBS VLS FRI DEN NA NA NA NA

uh VOW VCD NA NA HI BAK RND LAX

uw VOW VCD NA NA HI BAK RND TEN

ux VOW VCD NA NA HI CEN RND LAX

v OBS VCD FRI LAB NA NA NA NA

w SON VCD APR LAB NA NA NA NA

y SON VCD APR PAL NA NA NA NA

z OBS VCD FRI ALV NA NA NA NA

zh OBS VCD FRI PAL NA NA NA NA

Table A.4: Phoneme to Phonological events mapping

Starting from the 48 phoneme set we have the following rules:

q −→ NULL

pcl −→ cl

tcl −→ cl

kcl −→ cl

qcl −→ cl

bcl −→ vcl

dcl −→ vcl

gcl −→ vcl

h# −→ sil

#h −→ sil

pau −→ sil

The first phoneme in fact is deleted - substitute ”q” with NULL. The unvoiced

closures are substituted by the label for unvoiced closure. Voiced closures are

substituted by the label for voiced closure. Finally all silence labels are substitutes

by a common label.
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The smaller 39 phoneme set is created by the following rules.

q −→ NULL

b bcl −→ b

d dh −→ d

t tcl −→ t

p pcl −→ p

k kcl −→ k

g gcl −→ g

pcl −→ cl

tcl −→ cl

kcl −→ cl

qcl −→ cl

bcl −→ vcl

dcl −→ vcl

gcl −→ vcl

h# −→ sil

#h −→ sil

pau −→ sil

el −→ l

en −→ n

zh −→ sh

ao −→ aa

ix −→ ih

ax −→ ah

ax− h −→ ah

axr −→ er

ux −→ uw

nx −→ n

hv −→ hh

eng −→ ng

em −→ m

The rules are applied in the order they appear. TIMIT breaks stop consonants

to stop closure and stop release. When a stop is met, the two region labels (e.g.

pcl and p) are substituted by a common label, the stop release label. After these

rules are applied, the stop closure to either voiced or unvoiced closure rules are
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applied. This happens when a stop closure label is met, without belonging to a

full stop consonant closure release pair. Then some phonemes are simplified to a

common label. Finally the nasals are simplified.





Appendix B

Signal processing routines

B.1 Low-level speech event computation

Degree of Voicing

The degree of voicing is a score between 0 and 1. To determine the degree of

voicing of a speech frame, a basic voiced / unvoiced routine is used:

1. subtract the mean

2. center-clipping

3. perform scaled autocorrelation

4. searching for the max autocorrelation in the range 50-500 Hz

Short-time zero crossing count

The zero crossing count (ZCC ) gives a measure of the noisiness of the signal by

providing a measure of the weighted average of the spectral energy distribution

of the waveform. However, the ZCC has the advantage of not requiring an FFT

computation. The following formula is used for calculation:

ZCC =

N∑
n=1

(|sgn(x(n))− sgn(x(n− 1)|) (B.1)

Spectral Roll-off Point

The spectral roll-off point is defined as the frequency below which 95% of the

spectral power is concentrated. The formula used for computation is:

Rss∑
k=1

P (k) = 0.95

K∑
k=1

P (k) (B.2)

91
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where P(k) is the power spectrum of the frame at a frequency bin k. Spectral

roll-off point is consistently higher for unvoiced speech than for voiced.

Spectral Centroid

The Spectral Centroid (Css) is the frame-to-frame difference of the center of mass

of power spectrum

Css(i) =

∑K kPi(k)∑K Pi(k)
(B.3)

where Pi(k) is the power spectrum for frame i and frequency k, and K is the

total number of frequency bins.

Spectral Flux

The Spectral Flux is the difference between the amplitudes of successive magni-

tude spectra:

F 0
ss(i) =

K∑
k=0

[Mi(k)−Mi−1(k)]
2. (B.4)

where Mi(k) and Mi−1(k) are the magnitudes of the spectra for frames i and

i− 1. Fss measures the amount of spectral change between successive frames.


