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Abstract

Despite the continuous advances in the fields of control and computing, the design and de-

ployment of an efficient Large-scale Nonlinear Traffic Control System (LNTCS) remains a

significant objective. This is mainly due to the complexity and the strong nonlinearities in-

volved in the modeling of traffic flow processes. Practical control design approaches are often

based on simplified models about the system dynamics, leading to LNTCS with suboptimal

performance, as the use of more complex models of effective LNTCS is virtually unavoidable

in most complex control system applications.

The ultimate performance of a designed or operational LNTCS (e.g. urban signal control,

or ramp metering) depends on two main factors: (a) the exogenous influences, e.g. demand,

weather conditions, incidents, and (b) the values of some design parameters included within

the LNTCS. When a new control algorithm is implemented there is a period of, sometimes

tedious, fine-tuning activity that is needed in order to elevate the control algorithm to its best

achievable performance. Fine-tuning concerns the selection of appropriate (or even optimal)

values for a number of design parameters included in the control strategy.

Moreover, the continuous medium- and long-term variations of the traffic system dynamics

call for a frequent or even continuous maintenance of LNTCSs. When an operational but

“aged” control algorithm needs to be updated the same fine-tuning procedure has to take

place, which – if done properly – is extremely costly. Typically, this fine-tuning procedure

is conducted manually, via trial-and-error, relying on expertise and human judgment and

without the use of a systematic approach. Currently, a considerable amount of human effort

and time is spent for initialization or calibration of operational LNTCSs, which does not

always lead to a desirable outcome. In many cases, the result is that system maintenance is

neglected and the system performance deteriorates year after year.

This thesis introduces and analyzes a new learning/adaptive algorithm that enables au-

tomatic fine-tuning of LNTCS, so as to reach the maximum performance that is achievable

with the utilized control strategy. The proposed Adaptive Fine Tuning (AFT) algorithm is

aiming at replacing the conventional manual optimization practise with a fully automated

online procedure. The thesis provides a detailed analysis of the algorithm as well as a step-

by-step application description. Finally, application results of the algorithm to real-time

fine-tuning problems of general LNTCS are presented.

The efficiency and online feasibility of AFT algorithm is investigated through extensive

simulation experiments for two LNTCS. The first test case is a large-scale ramp metering

control problem. A multivariable ramp metering regulator is applied to the stretch of the
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Monash motorway in Melbourne, Australia. The latter test case corresponds to the appli-

cation of an urban signal control strategy to the road network of Chania, in Greece . In

both simulated cases, AFT is used in order to iteratively fine-tune the design parameters of

the system. The simulation results illustrate the algorithm’s efficiency and real-time appli-

cability. AFT is seen to provide efficient automatic fine-tuning of the design parameters of

general LNTCS, guaranteeing safe and convergent behavior.
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Chapter 1

Introduction

This first chapter introduces the reader to the problem under study. Section 1.1 presents

the motivation of this work and Section 1.2 the thesis goals. In Section 1.3 an outline of

the document is provided. Finally, in Section 1.4 publications related to the research of this

thesis are presented.

1.1 Motivation

Despite the continuous advances in the fields of control and computing, the design and

deployment of an efficient Large-scale Nonlinear Traffic Control System (LNTCS) remains a

significant objective, mainly because of the involved complexity and the strong nonlinearities.

The ultimate performance of a designed or operational LNTCS (e.g. urban signal control, or

ramp metering, or Variable Speed Limit (VSL) control) depends on two main factors: (a)

the exogenous influences, e.g. demand, weather conditions, incidents, and (b) the values of

some design parameters included in the LNTCS.

As a matter of fact, when a new control algorithm is implemented (or an operational but

“aged” control algorithm needs to be updated), there is a period of, sometimes tedious, fine-

tuning activity that is needed in order to elevate the control algorithm to its best achievable

performance. Fine-tuning concerns the selection of appropriate (or even optimal) values

for a number of design parameters included in the control strategy. Typically, this fine-

tuning procedure is conducted manually, via trial-and-error, relying on expertise and human

judgment and without the use of a systematic approach.

Currently, a considerable amount of human effort and time is spent for calibration of

operational LNTCSs. Minor changes in the transport system infrastructure (e.g. installing

a new Variable Message Sign (VMS) in a motorway network, modifying the traffic light

signal phasing at an urban junction, deploying a new bus in a public transport system or

19



Chapter 1. Introduction 20

a new Automated Guided Vehicle (AGV) in a seaport container terminal) may require the

involvement of significant human effort and time in order to re-adjust and re-program the

LNTCS decision making mechanisms.

Moreover, the continuous medium- and long-term variations of the overall transport sys-

tem dynamics (e.g. due to changes of traffic demand or number of passengers using the

particular transport system) call for a frequent or even continuous maintenance of LNTCSs,

which – if done properly – it is extremely costly. In many cases, the result is that system

maintenance is neglected and the system performance deteriorates year after year.

1.2 Thesis objectives

Urban and motorway traffic control systems, LNTCSs for public transport and LNTCSs for

large-scale railway, airport and seaport operations are all specific examples of LNTCSs that

call for calibration while the system is in operation. In all these systems, the maintenance

procedure involves the re-calibration, re-adjustment and re-programming of hundreds of pa-

rameters, rules, operational schedules, decision-making mechanisms, etc., which influence

the transport system operations in a highly complex manner. Moreover, the use of heuris-

tic, trial-and-error, experience-based techniques, while the system is in operation, involves

the risk of poor system performance over a lengthy period of time. This, may lead to poor

quality service problems, delays, severe congestion and increased Green House Gas (GHG)

emissions during this period. It is finally worth noting, that the involvement of the human

factor for the installation, maintenance and renovation of LNTCSs also involves the risk of

unsafe operations. Human mistakes due to lack of expertise, exhaustive working conditions,

etc., may lead to decisions/actions that put safety at stake.

In general, the same process that is required for calibration is also used in the initial fine-

tuning of the control system, during its first installation. Both tasks (initial fine-tuning and

calibration), are performed (if at all) by experienced personnel in the lack of an automated

approach. Thus, there is no guarantee that the overall fine-tuning and/or maintenance pro-

cedure will end up successfully. In some cases, the LNTCS has never achieved a satisfactory

performance in the first place. Such an example, is the reported case of the urban manage-

ment strategy SCOOT (the most popular urban signal management strategy worldwide) in

the city of Nijmegen, in The Netherlands [54], where the SCOOT application was abandoned

completely in the end.

The main contributions of this research include:

• Development and presentation of AFT methodology, which allows for automated adap-

tive fine-tuning of LNTCSs. This methodology aims at replacing the conventional
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manual optimization practise with a fully automated online procedure.

• Mathematical analysis of the proposed algorithm and presentation of its connection to

other famous stochastic approximation methodologies.

• Thorough investigation (via simulation experiments) of the algorithm’s efficiency and

feasibility under different problems and scenarios.

• Provision of general guidelines about the application of AFT to general large-scale

fine-tuning problems.

1.3 Document outline

The thesis is organized in a series of self-contained chapters. This first introductory chapter

presents the motivation and the thesis goals. The outline of the rest of the document is as

following:

• Chapter 2 presents a short overview of automatic control methods. Optimization and

control techniques that provide optimal control strategies are discussed, as well as the

open-loop and closed-loop optimal control regulators. Finally, the need for fine-tuning

in large-scale, complex control systems applications is described.

• Chapter 3 presents the state of the art in parameter estimation/optimization method-

ologies. It provides an analytical presentation of Stochastic Approximation (SA) and

analyzes the general principles of designing SA search algorithms. Also, the popular

SA algorithms FDSA, RDSA and SPSA are thoroughly described.

• Following, Chapter 4 explores the AFT algorithm. Moreover, it presents a comparison

of the use of theoretical/simulation-based methods and adaptive and neural/learning

methods as a solution to the fine-tuning problem. The concept of universal approxima-

tors is also discussed. Finally, the chapter presents efficient techniques about calculating

stepsizes for SA methods.

• Chapter 5 presents the application of AFT algorithm to a large-scale ramp metering

problem. AFT is applied to the Monash motorway in Melbourne, Australia and the

macroscopic simulator METANET is used for the simulation experiments. This chapter

examines and analyzes in details the results of the simulation experiments.

• Chapter 6 presents the application of AFT algorithm to a large-scale urban signal

control problem. AFT is applied for fine-tuning to the urban road network of the city
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of Chania, in Greece and the microscopic simulator AIMSUN is used for the simulation

experiments. This chapter examines and analyzes in details the results of the simulation

experiments.

• The thesis is concluded in Chapter 7, which summarizes its findings and results. Finally,

future perspectives are presented, which can help to the extension of these results.

1.4 Publications related to thesis

The findings of this thesis have contributed to the following publications:

Journals

1. E. Kosmatopoulos and A. Kouvelas. Large-Scale Nonlinear Control System Fine-

Tuning through Learning. IEEE Transactions on Neural Networks, vol. 20, no. 6,

pp. 1009–1023, 2009.

2. A. Kouvelas, K. Aboudolas, E. Kosmatopoulos, M. Papageorgiou. Adaptive Perfor-

mance Optimization for Large-Scale Traffic Control Systems. Under review in IEEE

Transactions on Intelligent Transportation Systems.

Conferences

1. E. Kosmatopoulos, M. Papageorgiou, Y. Wang, I. Papamichail, A. Kouvelas. AFT2:

An Automated Maintenance and Calibration Tool for Traffic Management & Control

Systems. In proceedings of the 11th International IEEE Conference on Intelligent

Transportation Systems, pp. 97–104, Beijing, China, 12–15 October 2008.

2. A. Kouvelas, E. Kosmatopoulos, M. Papageorgiou, K. Aboudolas. Adaptive Perfor-

mance Optimization for Large-Scale Traffic Control Systems. In proceedings of the

12th IFAC Symposium on Control in Transportation Systems, pp. 76–83, Redondo

Beach, California, USA, 2–4 September 2009.

Workshop

1. A. Kouvelas, E. Kosmatopoulos, M. Papageorgiou, K. Aboudolas. Adaptive Optimiza-

tion with Satisfactory Transient Performance for Large-Scale Traffic Control Systems.

2nd NEARCTIS Workshop, University College London, UK, 13 November 2009.



Chapter 2

Automatic control systems

This chapter presents a short overview of the existing automatic control methods. Section 2.1

provides a brief introduction to Automatic Control Systems and Sections 2.2 and 2.3 describe

some general guidelines about the procedure of designing a control strategy. Section 2.4

summarizes the optimization methodologies used for solving optimal control problems and

Section 2.5 discusses the open-loop and closed-loop optimal control regulators. In Sections 2.6

all the necessary procedures for deploying a control system application are presented. Finally,

Section 2.7 describes the need for fine-tuning in large-scale, complex control systems and

Section 2.8 remarks the two traffic control systems considered in this thesis.

2.1 Introduction

Automatic Control comprises those theoretical methods and practical procedures that enable

the development of technical systems capable of accomplishing autonomously certain pre-

specified tasks. Figure 2.1 illustrates the basic elements of an automatic control system. The

process (e.g. traffic flow in an urban network) includes all technical or physical phenomena

that should be influenced according to specific goals. The dynamic process changes depend

upon:

• Some external quantities that are assumed independent of the dynamic evolution of the

process (e.g., in the case of urban traffic, the external quantities may be the traffic lights,

the traffic demand, the origin-destination pattern, the incidents, the environmental

conditions, etc.)

• The proper behavior of the process according to its technical and/or physical nature

(e.g. the travel times or the queue storage of vehicles on an urban link, the flow or

storage capacity, etc.).

23
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Figure 2.1: Basic elements of an automatic control system.

The external quantities may be classified in:

• Inputs, whose values may be selected from an admissible control region (e.g. the traffic

lights, the variable message signs, etc.).

• Disturbances, whose values cannot be manipulated but may possibly be directly mea-

surable via appropriate devices (e.g. traffic demand), or may be estimated or predicted

via appropriate algorithms (e.g. traffic demand, origin-destination pattern, etc.).

The process outputs are the quantities chosen to represent the behavioral aspects of

interest (e.g. the outputs of urban traffic may be the total travel time, the queue lengths,

etc.). The data processing block in Figure 2.1 comprises the estimation and/or prediction

tasks, based on real-time measurements of internal process quantities or disturbances.

The task of the control strategy is to specify in real time the process inputs,

based on available measurements/estimations/predictions, so as to achieve the

pre-specified goals regarding the process outputs, despite the influence of various

disturbances.

If this task is undertaken by a human operator, we have a manual control system. On

the other hand, in an automatic control system, this task is undertaken by an algorithm (the

control strategy). In modern and/or complex systems, the control strategy as well as the

data processing algorithms are typically implemented in a computer.

It is not too difficult to analyze any automatic control system within the frame of Fig-

ure 2.1, even if the corresponding processes may be of very different nature, such as robots,

airplanes, chemical processes, water or gas networks, etc. The specification of inputs and
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measurements for a particular automatic control system is closely related to technological

issues. On the other hand, the data processing and particularly the control strategy blocks

contain the system’s “intelligence”, i.e. its capability to face automatically and efficiently any

situation arising due to the impact of the disturbances.

At this point it is necessary to make a distinction between the notions of control strat-

egy and mathematical model. A mathematical model of a process comprises a number of

equations that describe, with a more or less limited accuracy, the proper (internal) process

behavior in the considered context. Hence, a mathematical model, fed with input and dis-

turbance values, may be employed to calculate (with a certain accuracy) the corresponding

output values or other internal quantities. For example, an urban traffic flow model, fed with

the values of the traffic lights, the traffic demand, the origin-destination pattern, etc., may

be used to calculate the corresponding queue lengths and travel times in all network links.

Dynamic models describe the time development of the process phenomena. For one and the

same process, there may be several useful models with different levels of resolution, accuracy

and complexity. For example, for the urban traffic flow, existing models are microscopic or

macroscopic, static or dynamic, stochastic or deterministic, etc.

On the other hand, a control strategy is an algorithm that makes the decisions regarding

the control actions that should be applied at each instant in time, i.e. it calculates the

input values. As we will see later, a control strategy may be designed on the basis of a

mathematical model, or may even explicitly include a mathematical model, as a mean of

assessing in real time the efficiency of this or that control action. Despite these connections,

it appears important to distinguish clearly between the tool that imitates the process behavior

(mathematical model) and the tool that makes control decisions (control strategy).

2.2 Designing a control strategy

This section discusses the issue of how should one design a control strategy. One possibility

could be to try to imitate (to model) the behavior of a (real or hypothetical) human operator

(expert system approach). Another possibility is to attempt to understand (to model) the

process behavior and then apply systematic methods (automatic control approach) that

lead to an adequate control strategy. The next sections of this chapter provide some basic

information regarding the automatic control approach.

Automatic Control exists as an independent discipline since some 70 years. During this

period in time, automatic control engineers have developed and refined a number of methods

for the systematic design of efficient, reliable and robust control strategies, and they have

applied these methods to a high number of processes (space, defense, robotics, chemical
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processes, traffic, environment, etc.). The basic philosophy and the importance of these

methods are related to their general applicability: they are not particular heuristics valid just

for a specific process, but general methods applicable to any process that can be described by

certain types of mathematical models, regardless the physical process nature (robot, airplane,

traffic, environment, etc.). This general approach reaches its limits, if, for a specific process:

• There is a lack of understanding, i.e. no adequate model available.

• Certain complexity limits are exceeded.

• The process behavior is of a discrete or event-oriented or combinatorial nature.

Under these conditions, that have become more and more frequent in recent years, continuing

efforts for developing general, efficient, and systematic methods do not always reach the

maturity required for successful practical applications.

Before proceeding into more details regarding the automatic control approach, it is useful

to present some features of the basic structure of an automatic control system as represented

in Figure 2.1. The control system is characterized by a closed-loop structure, whereby

the calculation of inputs is effectuated on the basis of measurements of process internal

quantities, which, by their turn, are influenced by the inputs. Albeit, one could use an

alternative structure. Assume availability of a process model of the type

y = f (u, d) (2.1)

where the vectors y, u, and d include the outputs, the inputs, and the disturbances, respec-

tively, while f is a generalized operator, e.g. a number of differential equations. Assume also

availability of desired output values yd. If (2.1) is invertible, one obtains

ud = f−1 (d, yd) (2.2)

which corresponds to an open-loop control strategy (Figure 2.2) that makes no use of process

measurements. The advantage of this structure, compared to the closed-loop, is the rapidity

of control action: the strategy reacts immediately to disturbance variations without waiting

for the disturbance impact to become visible in the internal process variables. Moreover, if the

process itself is stable, there is no risk of obtaining an unstable system as in the closed-loop

case.

Unfortunately, the disadvantages of open-loop control are much more important than

the advantages. In fact, if no real process measurements are utilized, like in the open-loop

structure, the real process state is never known, i.e. there is no way for the control strategy

to know whether the real outputs y are actually close to yd (the desired ones). Hence, the
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Figure 2.2: Open-loop control system.

control strategy will not react if y is far from yd. This uncertainty about the real process

state the may originate from: (a) the limited accuracy of any mathematical model; (b) the

presence of non-measurable disturbances.

Because of this inherent uncertainty, any automatic control system is forced to include

a closed-loop structure. Nevertheless, if measurements/estimates/predictions of some major

disturbances are available, they may be used to ameliorate the control system efficiency as

indicated in the dashed signal line in Figure 2.1.

2.3 The regulation problem

The regulation problem is a special case of the control system of Figure 2.1, whereby the

control goal is to lead and maintain the process output y near pre-specified corresponding

desired values yd that are called set values. Moreover, it is usually assumed that the real

outputs y are measurable in real-time. Regulation problems call for a regulator, i.e. a

formula

u = R(y, d) (2.3)

that guarantees y ≈ yd despite the presence of disturbances. The major performance criteri-

ons for a regulator are:

• Stability (above any other consideration).

• Rapidity of response in case of a change of the set values or the disturbances.

• Stationary accuracy, i.e. y ≈ yd under stationary conditions.

• Robustness, i.e. preservation of the control performance even if the real process be-

havior is not identical to the mathematical model used for the regulator design.

Automatic Control theory offers a number of methods and theoretical results for designing

a regulator in a systematic and efficient way. A necessary condition for application of the

Automatic Control theory to a particular process control problem is the availability of a

mathematical model capable of describing the basic process behavior. In fact, the model to
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be used for regulator design (the design model) may be quite simple, if it includes the major

aspects of the process behavior and if the designed regulator is sufficiently robust. Most

regulators resulting from application of Automatic Control methods are very simple, as they

consist of one single equation (in the form of (2.3)), but their efficiency and reliability are

usually much higher than those of human regulators. It is important to note, that when

designing a regulator, the mathematical process model is only used off-line, i.e. the online

application of (2.3) does not include any model equations.

Most Automatic Control methods are applicable to linear models, while the nonlinear

control theory is less developed. In many cases, it is possible to linearize a nonlinear model

(e.g. around the set values) before the regulator design, which may call for special measures

during control operations in order to avoid practical difficulties.

The regulator design for SISO (Single-Input-Single-Output) processes is relatively simple

(though not trivial). For example, ALINEA (see Chapter 5) is a SISO regulator. The methods

used for linear SISO cases are simple and usually require basic knowledge of Automatic

Control theory. Regarding MIMO (Multiple-Input-Multiple-Output) processes, the regulator

design and the corresponding methods become more elaborated. In both cases, SISO and

MIMO, a good knowledge of the methodology and a certain experience of the designer are

essential, in order to come up with efficient control strategies. The split control module of

TUC strategy (see Chapter 6) is an example of a MIMO regulator. The design methods

for linear MIMO regulators are more difficult and advanced. Such methods are the Linear-

Quadratic (LQ) optimization, pole assignment methods, decentralized control, hierarchical

control, etc. Particular attention should be paid to the robustness properties of the designed

regulators, via recently developed powerful methods and tools.

Further methods for particular classes of regulators are available within Automatic Con-

trol theory, like, for example, nonlinear regulators (for nonlinear processes) and adaptive

regulators, whereby the regulator parameters are adjusted automatically in real-time by

suitable mechanisms, in order to account for process uncertainties or for time-varying pro-

cess behavior.

2.4 Optimization theory

Optimal control problems may be considered as a particular area of the broader Optimization

Theory. The basic problem in optimization theory is to specify, within a given space, an

optimal solution that minimizes a criterion value J ∈ R subject to pre-specified constraints.

According to the nature of the searched space and the constraints, one may distinguish

different classes of optimization problems with corresponding solution methodologies, as for
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example:

• Static optimization (gradient methods are used that lead to local or global minima).

• Dynamic optimization (using variational calculus or dynamic programming).

• Combinatorial optimization (large-scale problems face the so called combinatorial

explosion – NP hard).

• Stochastic optimization (the optimization goal is to minimize the expected value of

a criterion J ∈ R, see Chapter 3).

• Game theory (including two or more (instead of one) decision makers with competing

objective criteria).

• Multicriteria optimization (minimization of more than one (typically conflicting) ob-

jective criteria).

• Heuristics (including general structural heuristics, surveillance and emergency heuris-

tics, specifications heuristics).

For some problem types, the solution may be calculated analytically, which is an advan-

tage for practical implementation of the results. In case of an algorithmical solution by use of

a computer, the issue of the required computational effort becomes important, particularly

for real-time applications. In fact, the application of optimization methodologies typically

hits its limits due to the complexity of the problem and the scalability of the available opti-

mization methodologies.

In conclusion, one may state that, despite the variety of theoretical results and algorithms

offered by Automatic Control and Optimization, it seems almost inevitable to complement

a rigorously designed control strategy by various heuristics, aiming to address particular

practical aspects. For simple systems, the development of these heuristics may be relatively

easy. But for complex systems, including dozens of control inputs, sub-loops, and measure-

ments, it is desirable to tackle this problem in a more systematic, theoretically founded way.

Some concepts and tools in this direction are provided by a special branch within Automatic

Control theory, namely the theory of Discrete Event Dynamic Systems.

2.5 Optimal control strategies

This section addresses the general case of the control system of Figure 2.1 under the as-

sumption that the control goal can be expressed as the minimization (or maximization) of
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a quantity J (the objective function or optimization criterion). This quantity may, for

example, correspond to a system output y that depends on the inputs u and the internal

process variables x

min J (u, x) = y (u, x) . (2.4)

In the case of urban traffic, this criterion typically corresponds to the minimization of total

travel time in the considered network.

The internal variables x depend upon the inputs u and disturbances d according to a

mathematical model. A great part of dynamic processes may be described by a state-space

model, that has the general form

ẋ = f (x, u, d) (2.5)

where the vector x comprises the state variables. Note that if the initial condition, i.e.

the value of x for time t = 0, is known

x(0) = x0 (2.6)

and the time trajectories u(t), d(t), t ∈ [0, T ], are also given, the differential equations (2.5)

may be resolved to deliver the corresponding state trajectory x(t) over the same time period

[0, T ].

The choice of inputs u is usually limited due to physical or technical constraints that

define an admissible control region via a set of inequalities

h (x, u, d, t) ≤ 0,∀t ∈ [0, T ]. (2.7)

In order to obtain a closed-loop solution, that also considers available disturbance

predictions, one should consider the following optimization problem:

Given the disturbance trajectories d(t), t ∈ [0, T ], find a function R

u(t) = R [x(t), t] , t ∈ [0, T ] (2.8)

that minimizes the criterion J subject to the model equations (2.5) and the con-

straints (2.7).

Note that the solution of this optimization problem derives a function R(x, t), called

the control law, that may be executed in real-time by use of state measurements x (closed-

loop solution). This solution, is independent of the initial condition and hence applicable

anywhere in the space (x, t). Albeit, an analytical solution is only feasible for problems of

simple structure (e.g. linear model, quadratic criterion, no constraints) or low dimensions. In
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this case, the function (2.8) will be delivered analytically (e.g. u(t) = −x(t)). But for large-

scale and complex problems, the analytical solution is not always straightforward and they

call for a numerical solution. On the other hand, the computational effort for a numerical

solution (using dynamic programming) increases exponentially with this problem dimension,

something that limits applicability of the procedure to relatively low order problems.

This discussion, of the available optimal control methodology, obviously leads to a dilemma

when considering high dimensional control problems. On the one hand, there is the possi-

bility of an open-loop control structure with its corresponding important drawbacks. If the

model (2.5) or the disturbance predictions are not accurate, the real state variables and the

real process outputs will be accordingly different from the optimization results. Moreover, it

should be noted, that the control output derived by an open-loop regulator, is only optimal

for the particular initial condition considered in (2.6). On the other hand, the generation of

a closed-loop control structure becomes computationally intractable for large-scale control

problems. In order to avoid this dilemma and obtain efficient and feasible solutions, some

suboptimal procedures have been developed for practical applications:

1. Hierarchical multilayer control.

2. Repetitive optimization (with rolling horizon).

3. Combination of methods (1) and (2).

At this point, it should also be noted, that all the procedures described above are also

applicable to discrete-time optimal control problems, which are based on a discrete-time

dynamic model of the type

x(t + 1) = f [x(t), u(t), d(t)] (2.9)

instead of (2.5), where t denotes the discrete-time index. This thesis deals with two discrete-

time traffic control problems that are analytically described in the following chapters.

In conclusion, optimal control theory allows for the direct development of control strate-

gies only for problems of simple structure or low dimension. In more complex application

cases, it is necessary to embed the optimal problem solution in a (possibly hierarchical) con-

trol structure, so as to circumvent the accumulation of unavoidable uncertainties. However,

the quality of decisions delivered via the solution of an optimal control problem is clearly su-

perior to a human operator’s performance. This superiority becomes even more pronounced

for complex problems. In some cases, the decisions delivered by the optimal control problem

solution might even appear strange or inexplicable at first view, calling for a more careful

analysis of the results, so as to understand and appreciate their sensible background and
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express them in human reasoning terms. The origin of this “intelligence”, is a general the-

ory that does not rely on empirical and questionable heuristic rules; rather, it allows for an

exhaustive but efficient search in the space of all feasible decisions and the selection of the

best (optimal) ones.

2.6 Automatic control applications procedures

As already mentioned, Automatic Control became an independent scientific theory only some

70 years ago. Nevertheless, control problems were encountered even before 1940 in several

technical domains. The oldest regulators (integrated in water distribution works) appeared

in ancient Egypt and Greece, but it was only after the Watt vapor engine that regulators

could be physically distinguished from the process under control. It was only in this century,

that the concept and the effect of feedback loops was explicitly studied (e.g. in the context

of electrical circuits), largely understood, and intentionally employed for system regulation.

Until 1940, regulation problems and their respective solutions remained at a low scien-

tific level and addressed only particular application needs. The engineers in charge of water

works, electrical, chemical, and mechanical systems invented independently regulation mech-

anisms based on feedback loops that stabilized, mostly without theoretical justification, the

corresponding quantities, without really understanding how and why these control systems

worked. It is only after 1940, that one begins to realize that the behavior of processes of

completely different nature may be very similar, once expressed in mathematical equations.

As a consequence, the development of regulation methodologies could be based on general

equations like (2.5) for continuous-time systems or (2.9) for discrete-time systems, without

the need to consider the particular properties of individual processes.

This general view leaded to the birth of Automatic Control as an independent discipline,

the results of which are generic enough to be applied to many, apparently different, practical

problems. Nevertheless, the ties of Automatic Control and its application domains remain.

On the one hand, more and more Automatic Control engineers are in charge of developing

practical control systems in different application areas. On the other hand, the practical ap-

plications and the new problems they reveal, indicate the requirements for further theoretical

developments. It should be noted, however, that a notorious gap has always been claimed

between theory and practice of Automatic Control, i.e. a certain inertia of penetration of

theoretical results in various application domains.

The necessary steps when developing a control system for a particular application are

typically the following:

1. Modelling/Identification is the phase of development of a mathematical process
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model. The model may be deduced from according laws of physics, chemistry, etc. (de-

ductive way); or it may be induced from experimental results (inductive way) showing

the processes’ response to selected input signals; or via a combination of both ap-

proaches. Often, it is necessary to derive more than one models for the same process,

e.g. a simple control design model and a more accurate simulation model.

2. Control System Configuration: If not provided by the control problem, one has to

select the variables, their locations, and the corresponding technologies for measure-

ments and actuators. These decisions are neither easy to make nor negligible, as they

may have a major impact on the control system performance, independently of the

employed control strategy, particularly for large-scale processes.

3. Control Strategy Design is effectuated on the basis of the control design model,

using the methodologies mentioned in the three previous sections.

4. Simulation Test: Particularly for complex processes, it is advisable, convenient, and

cost-effective to test the control strategy via simulation experiments (or to compare the

performance of various alternatives) for different scenarios before actual application.

5. Implementation of the control system including the measurement devices, the actu-

ators, the communications and the control strategy. The latter is usually implemented

in an analog or (more frequently) in a digital way (computer) within a decentralized,

centralized, or hierarchical structure.

6. Experimentation/Validation/Evaluation: This phase aims at testing the proper

functioning of the real control system (strategy, software, hardware, equipment), first

in parts and then as a whole, and to evaluate its actual performance before entering

the operational (and completely autonomous) phase.

2.7 The need for fine-tuning in control systems

In most practical cases, the six steps mentioned above must be partly iterated several times

before the final system, with its desired performance characteristics, becomes operational.

Even after this phase, elaboration of further (theoretically or practically based) improvements

is quite common, particularly for complex and large-scale systems. In fact, the development

of efficient control systems in areas like electric power distribution, communication networks,

various military systems, various traffic control problems, requires the control system de-

signer to acquire a profound understanding of the particular process behavior, the relevant
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technologies, the operational objectives and constraints. In many cases, the forming of in-

terdisciplinary development teams may be the most convenient approach.

For relatively simple systems, the mostly methodological steps 1, 3, 4, and partly 2 and 5

may be completed within a few days by experienced and knowledgeable Automatic Control

engineers. On the contrary, for complex and/or large-scale systems, several person-years may

be required for the successful completion of step 6 (experimentation/validation/evaluation).

It is at this stage of the system design and deployment, that the fine-tuning procedure has

to take place, in order to elevate the control algorithm to its best achievable performance.

Fine-tuning concerns the selection of appropriate (or even optimal) values for a

number of design parameters included in the control strategy.

The need for this fine-tuning procedure is essential when a new control algorithm is

implemented (or an operational but “aged” control algorithm needs to be updated) and

has been found to be crucial for the overall system performance [37]. Typically, this fine-

tuning procedure is conducted manually, via trial-and-error, relying on expertise and human

judgment. Experienced engineers (in cooperation with practitioners or system operators)

experiment with different sets of design parameters, trying to achieve an acceptable (close to

optimal) system performance, according to some pre-specified performance metrics.

Finally, the results of the fine-tuning procedure of a well-designed control algorithm (e.g.

urban signal control strategy), which is implemented in two different field applications (ur-

ban road networks), may sometimes lead to quite different sets of design parameters when

compared to each other. A well-conducted system fine-tuning will result in “appropriate”

values for the tunable parameters, minimizing a performance criterion, but these values may

be “appropriate” only for the specific application. They may for example depend on the

topology and/or the special characteristics of the studied urban road network. This is an-

other reason that makes fine-tuning vital, even for a system that has been already fine-tuned

but is going to be implemented in a new field application.

2.8 Examples of traffic control systems

As already mentioned, two fundamental characteristics of virtually any traffic system are the

presence of a network structure and of some kind of flow therein. Based on both character-

istics, it is not difficult to identify other domains of similar character:

• water or gas distribution networks,

• sewer networks,
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• electric power distribution networks,

• communication networks (for telecommunication and/or data transfer),

• other transportation systems (air, maritime, rail traffic networks).

In all these processes with a meshed structure, a partially predictable and geographically

distributed demand has to be satisfied by use of a corresponding large-scale network. In order

to satisfy the demand, different kinds of flow control may be applied within the network, so

as to minimize certain objective criteria subject to capacity and storage constraints. In

communication networks, the capacity reduction during periods of strong demand is due to

buffer overflows leading to the real or assumed loss of corresponding data packets. These

packets are eventually re-sent from their respective origin nodes, leading to further increment

of the demand and hence the buffer overflows, and so forth. In urban, air, rail, and partially

maritime traffic networks, capacity reduction is mostly due to node blocking (junctions,

airports) or due to a blocking of downstream links. Finally, in motorway networks, a self-

blocking phenomenon as an inherent flow characteristic may become apparent, even within

individual overloaded network links (“congestion from nothing”), independently of all other

network links.

Although storage and queue-forming phenomena are common in most of these processes,

the particular phenomenon of flow congestion that reduces the network’s (or particular links’)

capacity and leads to a deteriorated infrastructure utilization, is mostly observed in commu-

nication and traffic flow networks of all kinds. In both cases, a common resource (the network

infrastructure) is used competitively by many users. In this context, the appearance of a con-

gestion that reduces the network’s capacity at the time that it is most urgently needed (rush

hour), is a paradox that has to be faced, reduced or avoided to the benefit of all users.

In urban and motorway traffic networks there are several examples of control procedures

that can be applied:

• Motorway networks: ramp metering, route recommendation via variable message

signs (VMS), driver information via VMS, lane control, surveillance, automatic incident

detection (AID), other kinds of detection.

• Urban networks: signal control, individual route guidance, parking control.

In this thesis we concentrate on the real-time automated fine-tuning of two different

existing traffic control systems. In Chapter 5 the developed adaptive fine-tuning (AFT)

algorithm is applied to a large-scale ramp metering control system of a motorway, whereas in

Chapter 6 the same algorithm is applied to a large-scale signal control fine-tuning problem

of a complex urban road network.
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Chapter 3

State of the art and related

methodologies

This chapter presents the state of the art in parameter estimation/optimization method-

ologies. The content of the chapter is widely based on Spall’s book [72], which provides

a thorough review on this topic. Section 3.1 provides an introduction to the fundamental

problem investigated throughout this thesis and Section 3.2 discusses some aspects about

the general concept of stochastic search and optimization. Following, Section 3.3 provides an

analytical presentation of Stochastic Approximation (SA) and analyzes the general principles

of designing SA search algorithms. In Section 3.4 three popular SA algorithms are thoroughly

described, namely FDSA, RDSA and SPSA. Finally, Section 3.5 concludes the chapter with

some remarks about how to choose the appropriate algorithm for different applications.

3.1 Introduction

This chapter provides a review of algorithms and methodologies which attempt to solve two

general – and closely related – mathematical problems. Let Θ be the domain of allowable

values for a vector θ of dimension nθ. The two main problems of interest are:

Problem 1: Find the values of a vector θ∗ ∈ Θ that minimize a scalar-valued

loss function J(θ).

— or —

Problem 2: Find the values of θ∗ ∈ Θ that solve the equation g(θ∗) = 0 for

some vector-valued function g(θ).

37
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In order for Problem 1 to have a solution we assume that domain Θ is compact and the

loss function J(θ) is continuous in Θ. The vector θ represents a collection of tunable (or

“adjustable”) parameters that one is aiming to pick in the best way. The nonlinear loss

function J(θ) is a scalar measure that summarizes the performance of the system for a given

set of values of the tunable parameters. The domain Θ reflects allowable values (constraints)

on the elements of θ and θ∗ represents the optimal solution. Other common names for the

loss function are performance function, objective function, fitness function, or criterion.

While Problem 1 above refers to minimizing a loss function, a maximization problem (e.g.,

maximizing profit) can be trivially converted to a minimization problem by changing the sign

of the criterion. The nonlinear root-finding function g(θ) (which is generally a vector) often

arises via calculating the gradient (derivative) of the loss function (i.e., g(θ) = ∂J(θ)/∂θ).

More generally, g(θ) may represent a collection of functions that are derived from physical

principles related to the system under study.

Versions of the two problems described above arise in countless areas of practice and

engineering. Mathematical techniques of search and optimization are aimed at providing

a formal means for making the best decisions in problems of the type above. Given the

difficulties in many real-world problems and the inherent uncertainty in information that

may be available for carrying out the task (the analytical form of functions J(θ), g(θ) is not

always available), stochastic search and optimization methods have been playing a rapidly

growing role. In many problems of practical interest, mathematical search algorithms –

iterative procedures usually implemented on a computer – are used to produce a solution.

3.2 Stochastic search and optimization

The focus in this section is stochastic search and optimization. The meaning of “stochastic”

is that the algorithms and methodologies considered here apply where (see Spall’s book [72]

for details):

Property A: There is random noise in the measurements of J(θ).

— and/or —

Property B: There is a random choice made in the search direction as the al-

gorithm iterates toward a solution.

The above two properties contrast with classical deterministic search and optimization,

where it is assumed that one has perfect information about the loss function (and derivatives,
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if relevant), and that this information is used to determine the search direction in a determin-

istic manner at every step of the algorithm. In many practical problems, such information

is not available, indicating that deterministic algorithms are inappropriate. Let θ(k) be the

generic notation for vector θ at the k-th iteration of whatever algorithm is being considered,

k = 0, 1, 2, . . . ,. Throughout this chapter, different mathematical forms for calculating θ(k)

are presented, according to the algorithm being considered. In all these algorithms, it could

be considered that θ(k) always represents a “random” vector, since it is derived from input

under stochastic Properties A and/or B above.

For stochastic Property A, above, the noise is relative to the measurements of J(θ) (or

sometimes even g(θ), if available). Relative to the second defining property of a stochastic

algorithm, Property B above, it is sometimes beneficial to deliberately introduce randomness

into the search process, as a means of speeding convergence and making the algorithm less

sensitive to modeling errors. This “injected” randomness is usually created via computer-

based pseudo-random number generators. Although the introduction of randomness may

seem at first thought counterproductive, it is well known to have beneficial effects in some

settings. One of the roles of “injected” randomness in stochastic search is to allow for “spon-

taneous” movements to unexplored areas of the search space, that may contain unexpectedly

good values for vector θ. The randomness may provide the necessary “kick”. This is es-

pecially relevant in seeking out a global optimum when the search is stalled near a local

solution.

Closely related to this concept, is also the use of randomness in the important class

of algorithms that emulate evolutionary principles of optimization; randomness is a central

part of both physical and simulated evolution, through the introduction of mutations and

through the choice of parents. These mutations may sometimes have a beneficial effect by

allowing unexpected solutions to be evaluated. “Injected” randomness may also be used for

the creation of simple random quantities that act like their deterministic counterparts, but

which are much easier to obtain and more efficient to compute. An example of this, is the

simultaneous perturbation approximation of a gradient vector in Section 3.4.4. This gradient

approximation can be used in place of the true gradient in certain optimization schemes,

yielding similar general performance. Also, the logic of AFT algorithm, presented in this

thesis (see Chapter 4), is based on the same principle of “injected random perturbations”.

Yet another area where “injected” randomness is useful is in numerical integration. Often,

such methods are implementable when analytical methods are impractical or impossible.

Such methods are usually more efficient in high-dimensional problems than deterministic

quadrature approaches, provided that one is willing to tolerate a small probability of achieving

a poor estimate. Markov chain Monte Carlo (see [24] for details), comprises a very popular
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general approach for numerical integration via such “injected” randomness.

Some other principles of stochastic search and optimization, that have to be taken into

account when developing an algorithm are the following:

• Relative efficiency via iterative function evaluations.

• Implications of noisy function measurements.

• “Curse of dimensionality”.

• Near to optimal solutions versus optimal solution.

• Constraints.

• Stopping criteria.

• Time-varying problems.

• Uniqueness versus non-uniqueness of θ∗.

3.3 Stochastic approximation

3.3.1 Introduction

As Spall indicates in [72] a core approach in nonlinear stochastic search and optimization

is stochastic approximation (SA), which corresponds to the problem of nonlinear estimation

for solving nonlinear root-finding problems in the presence of noisy measurements. SA is

a cornerstone of stochastic search and optimization as a generalization of the well-known

deterministic algorithms (steepest descent and Newton-Raphson). The basic approach is

sometimes referred to as the Robbins-Monro algorithm in honor of the two people who

introduced the modern general setting.

SA was introduced in a 1951 article by Robbins and Monro [65], with important gen-

eralizations and extensions following close behind as given in Kiefer and Wolfowitz [32].

Originally conceived as a tool for statistical computation, it has come to thrive in numerous

disciplines of electrical engineering. In control engineering, SA is the main paradigm for

on-line algorithms for system identification and adaptive control. This is not accidental. The

key word in most of these applications is adaptive. SA has several intrinsic characteristics

that make it an attractive framework for adaptive schemes.

• It is designed for uncertain (stochastic) environments, where it allows one to track the

“average” or “typical” behavior of such an environment.
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• It is incremental, i.e., it makes small changes at each step, which ensures a graceful

behavior of the algorithm. This is a highly desirable feature of any adaptive scheme.

• Furthermore, it usually has low computational and memory requirements per iterate,

another desirable feature of adaptive systems.

• Finally, it conforms to our anthropomorphic notion of adaptation: it makes small ad-

justments so as to improve a certain performance criterion based on feedbacks received

from the environment.

For these very reasons, there has been a resurgence of interest in this class of algorithms

in several new areas of engineering. Some of them are communication networks (adaptive

signal processing), artificial intelligence, neural networks, learning models in economics, and

algorithms for reinforcement learning, a popular learning paradigm with applications in e-

commerce, robotics, etc., (see, e.g., [5]). Finally, another major application domain of SA has

provided the basis for many learning or “parameter tuning” algorithms in control engineering

problems [7].

3.3.2 Stochastic steepest descent based methods

The method of steepest descent is one of the oldest formal optimization techniques. Nev-

ertheless, it remains one of the more popular deterministic approaches. For example, it

corresponds to the widely used backpropagation algorithm for neural networks when one is

working with a fixed set of input-output data. Steepest descent is based on the simple prin-

ciple that from a given value θ the best direction to go is the one that produces the largest

local change in the loss function J(θ) (the steepest descent). The gradient vector g(θ) at the

given θ defines this direction. Hence the algorithm is

θ(k + 1) = θ(k) − α(k)g(θ(k)) (3.1)

where k is the iteration count, θ(0) is the initial “guess” about likely values of θ∗, and α(k)

is the stepsize, which may be specified a priori (often as a constant α(k) = α) or picked on

an iteration-to-iteration basis as a solution to

minα(k)≥0 {J(θ(k)) − α(k)g(θ(k))} . (3.2)

This secondary optimization problem is called a line search. So, (3.1) states that the new

estimate of the best value of θ is equal to the previous value minus a term proportional to

the gradient at the current value.

All the stochastic methods that are presented in the following sections are based on the

general principle of the gradient descent method. Based on this simple principle (follow the
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direction of the gradient), different researchers have developed many stochastic analogues

of steepest descent. All these methods, typically have a predetermined decaying sequence

α(k) which plays a critical role in the algorithm, often determining whether the algorithm

converges or diverges. Aside from being called stepsizes, these factors are sometimes referred

to as gains or learning coefficients, depending on the field of application. Conditions guar-

anteeing that the steepest descent iterate converges to θ∗ as k → ∞ are presented in many

places (e.g., [4]).

3.3.3 General principles of stochastic approximation methods

A central aspect of SA is the allowance for noisy input information in the algorithm. In fact,

SA methods presented in this chapter are often better at coping with noisy input information

than other existing search methods. Moreover, the theoretical foundation for SA is deeper

than the theory for other stochastic search methods with noisy measurements. In the case

of root-finding SA, the noise manifests itself in the measurements of g(θ) used in the search

procedure as θ varies. More specifically, suppose that noisy measurements of g(θ) at any θ(k)

are available as

ĝ(θ(k)) = g(θ(k)) + e(k), k = 0, 1, 2, . . . , (3.3)

where g(θ(k)) is the real gradient of function J(θ) at point θ(k), ĝ(θ(k)) the noisy mea-

surement of g(θ(k)) and e(k) is assumed to be some noise term of dimension nθ at the k-th

iteration of the algorithm. So, for a specified θ, a noisy measurement ĝ(θ) of the gradient is

returned. One can show, that there exist g(θ) and e(k) such that measurements of form (3.3)

yield a solution to Problem 2 defined in Section 3.1. For example, if E [e(k)] = 0 (something

that is more general than it appears), then g(θ(k)) = E [ĝ(θ(k))].

Based on the basic steepest descent algorithm, an obvious implementation with noisy

measurements of g(θ) is to average many measurements of the form (3.3) in every iteration k.

Such averaging is used to approximate g(θ(k)) from multiple values of ĝ(θ(k)). A significant

innovation of Robbins and Monro [65] was the recognition that this is a “wasteful” use of

the measurements. Recall that g(θ(k)) is merely an intermediate calculation towards the

ultimate goal of trying to find a root θ∗. There is little interest in g(θ(k)) itself. So, the main

innovation in SA is to do a form of averaging across iterations. At first thought, this type

of averaging may seem dubious, since the underlying evaluation point θ is changing across

iterations. Albeit, as suggested by Robbins and Monro [65], this across-iteration averaging

can lead to a more effective use of the input information, than expending a large amount of

resources in getting accurate estimates for g(θ) at each iteration.

Historically, stochastic approximation started as a scheme for solving the Problem 2
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defined in Section 3.1, given “noisy measurements” ĝ(θ) of the function g(θ). That is, we are

given a black box which on input θ gives as its output ĝ(θ) = g(θ) + e, where e is a random

variable representing noise. The stochastic approximation scheme proposed by Robbins and

Monro [65] was to run the iteration

θ(k + 1) = θ(k) − α(k) [g(θ(k)) + e(k)] (3.4)

where e(k) is the noise sequence and α(k) are positive scalars satisfying certain constraints

(see Subsection 4.7.1). The expression in the square brackets on the right is the noisy

measurement. That is, g(θ(k)) and e(k) are not separately available, only their sum ĝ(θ(k))

is. The above root-finding algorithm is clearly motivated by the steepest descent algorithm.

Since its inception, the scheme (3.4) has been a cornerstone in scientific computation. This

has been so largely because of the following advantages:

• It is designed to handle noisy situations. One may say that it captures the average

behavior in the long run. The noise in practice may not only be from measurement

errors or approximations, but may also be added deliberately as a probing device or a

randomized action, as, e.g., in certain dynamic game situations.

• It is incremental, i.e., it makes small moves at each step. This typically leads to more

graceful behavior of the algorithm at the expense of its speed.

• In typical applications, the computation per iterate is low, making its implementation

easy.

These three features make the scheme (3.4) ideal for applications where the key word is

“adaptive”.

Another major innovation of SA algorithms (that use a scheme similar to (3.4)) is the

specification of precise conditions on the gain coefficients α(k), in order to ensure that the pro-

cess properly invokes the across-iteration averaging and converges to a root θ∗. As expected,

these conditions generally differ from those in the easier deterministic steepest descent setting

(see Subsection 4.7.1). Of course, these conditions also apply in the deterministic steepest

descent algorithm because that is a special case of SA.

3.4 Existing gradient-free methodologies

The previous section introduced the root-finding (Robbins-Monro) SA algorithm as a general

method for nonlinear problems. The aim is to find one or more zeros of the function g(θ) (i.e.,

roots of g(θ) = 0) when only noisy measurements of the function g(θ) are available. There are,
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however, a large number of problems where the direct measurement of g(θ) (which depicts

the gradient ∂J/∂θ), is difficult or impossible to obtain. For this reason, there is considerable

interest in SA algorithms that do not depend on direct gradient measurements. Rather, these

algorithms are based on an approximation of the gradient formed from (generally noisy)

measurements of function J .

This interest has been motivated, for example, by problems in adaptive control, statistical

identification of complex systems, optimization of processes by Monte Carlo simulations,

training of recurrent neural networks, design of complex queuing and discrete-event systems,

and applications of model-free feedback control systems. In contrast to the stochastic gradient

algorithm of Robins and Monro, the methods discussed in this section are gradient-free. The

use of “gradient-free” is associated with the fact that the implementation of the algorithms

does not require any knowledge about the actual gradient g(θ).

Now, let return to the essential optimization problem of minimizing a loss function J(θ),

as defined in Problem 1 of Section 3.1. It is assumed that the stochastic gradient (∂J/∂θ) is

not available and only (generally noisy) measurements of the loss function are available. In

this case, we may express the loss function J(θ) as

J(θ) = E
[
Ĵ (θ, e)

]
(3.5)

where e represents the random effects in the process generating the system output and

Ĵ (θ, e) represents some “observed” cost as a function of the chosen θ and random effects

e. The variable e may represent the amalgamation of many individual random effects. The

expectation in equation (3.5) is with respect to all randomness embodied in e. So J(θ)

represents an average cost over all possible values of e at the specified θ.

Because of the nonlinearity, or possible lack of knowledge of the analytical form of the

loss function (and the probability distribution of e), it is almost never the case that J(θ) can

be computed. However, Ĵ (θ, e) is typically available since it just represents the outcome for

a particular experiment (no expectation involved). Furthermore, for all mathematical proves

of the considered methodologies, it is assumed that Ĵ (θ, e) is a differentiable function (in

θ) for almost all e (i.e., for all values of e except possibly a set of values having probability

zero). The expression ∂Ĵ (θ, e) /∂θ is called a stochastic gradient because it depends on the

random term e.

3.4.1 The Kiefer-Wolfowitz algorithm (FDSA)

The oldest method for gradient approximation is the finite-difference (FD) approximation,

which relies on small one-at-a-time changes applied to each of the individual elements of

θ. After each change, the (possibly noisy) value of J(θ) is measured. When measurements
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of J(θ) have been collected for perturbations in each of the elements of θ, the gradient

approximation may be formed. The FD approach is motivated directly from the definition of

the gradient as a collection of derivatives for each of the components in θ, holding all other

components fixed. In fact, the algorithm has the even weaker requirement of only requiring

measurements of the difference of two values of the loss function, as opposed to measuring

the loss function itself.

Unfortunately, the method can be very costly if the dimension nθ is high, since one must

collect at least one J(θ) measurement for each of the elements in θ. This cost motivates

the Monte Carlo-based approaches discussed in the next two sections. Nevertheless, the FD

method is fundamental in both stochastic and deterministic optimization.

Building on the seminal Robbins and Monro paper [65], an SA algorithm based on the

FD gradient approximation was introduced for scalar θ in Kiefer and Wolfowitz [32] and

multivariate θ in [6]. The FD-based SA (FDSA) algorithm is the oldest SA method using

gradient approximations built only from loss measurements. Because of its relative ease of

use, FDSA is much more widely used in practice than the stochastic gradient-based methods

in at least one important area – simulation-based optimization ([20]). The recursive procedure

used here is in the general SA form

θ(k + 1) = θ(k) − α(k)ĝ(θ(k)) (3.6)

where ĝ(θ(k)) is the estimate of the true gradient g(θ(k)) of the loss function J(θ) at the

iteration k, based on measurements of function J . Hence, (3.6) is analogous to the stochastic

gradient algorithm, with the gradient estimate ĝ(θ(k)) replacing the direct gradient measure-

ment ĝ(θ) ≡ ∂Ĵ/∂θ at θ = θ(k). The gain α(k) ≥ 0 here acts in a way similar to its role in

the stochastic gradient form. Under appropriate conditions, the iteration in (3.6) converges

to θ∗ in some stochastic sense (usually almost surely, a.s.).

The essential part of (3.6) is the gradient approximation ĝ(θ(k)). We discuss below

the oldest and best-known means of forming the approximation – the FD method. Ex-

pression (3.6) with this approximation represents the FDSA algorithm. One-sided gradient

approximations involve measurements Ĵ(θ(k)) and Ĵ(θ(k)+perturbation), while two-sided

approximations involve measurements of the form Ĵ(θ(k)±perturbation). The two-sided FD

approximation for use with (3.6) is

ĝ(θ(k)) =





Ĵ(θ(k)+c(k)∆1)−Ĵ(θ(k)−c(k)∆1)
2c(k)

Ĵ(θ(k)+c(k)∆2)−Ĵ(θ(k)−c(k)∆2)
2c(k)

...
Ĵ(θ(k)+c(k)∆nθ )−Ĵ(θ(k)−c(k)∆nθ )

2c(k)




(3.7)
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where ∆i, denotes a vector with a 1 in the i-th place and O’s elsewhere and c(k) > 0 defines

the difference magnitude. The pair {α(k), c(k)} are the gains (or gain sequences) for the

FDSA algorithm. An obvious analogue to (3.7) holds for the one-sided FD approximation.

In this case, the i-th component of the gradient approximation is

Ĵ (θ(k) + c(k)∆i) − Ĵ(θ(k))

c(k)
. (3.8)

The two-sided form in (3.7), called FDSA algorithm, is the obvious multivariate extension of

the scalar two-sided form in Kiefer and Wolfowitz [32]. The initial multivariate method in

[6] used a one-sided approximation.

3.4.2 Extensions of the FDSA algorithm

References [16], [17] present several methods for accelerating the convergence of FDSA-type

algorithms, analogous to some of the methods for root-finding SA. These methods are based

on taking additional measurements to explore the loss function surface in detail. One such

method in [17] is a stochastic analogue to second-order algorithms of the generic Newton-

Raphson form. This algorithm uses O(n2
θ) measurements of Ĵ(·) per iteration for the gradient

and Hessian estimation. The gradient is estimated in a standard way (e.g., (3.7)) and the

Hessian is estimated using an analogous FD-based double-differencing scheme. Although

this method is intuitively sensible, it demands many extra loss measurements if nθ is even

moderately large and is likely to be numerically unstable with even a small level of noise.

A more systematic approach has been adapted under the rubric of perturbation analysis

(PA). In this approach, one looks for ways to get a gradient estimate, at any θ value, based

on only one or a small number of simulation runs. Given the stochastic nature of the simula-

tion, this gradient estimate is only a stochastic estimate of the true gradient g(θ) = J/∂θ. A

specific form of PA is the infinitesimal perturbation analysis (IPA) approach to generating a

gradient estimate. IPA requires that the probability distribution generating e be independent

of θ, consistent with the standard formulation for the stochastic gradient method discussed

in Section 3.3.3. Thus, the IPA gradient estimate has the generic form ∂Ĵ (θ, e) /∂θ, as

appropriate. The IPA method has a significant potential advantage in efficiency over tra-

ditional methods based on approximating the gradient using finite-difference methods. The

finite-difference methods typically require between nθ + 1 and 2nθ simulation runs to form a

gradient approximation, in contrast to the one run for IPA (or a small number of runs).
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3.4.3 The Random Directions Kiefer-Wolfowitz (RDSA)

“Injected” Monte Carlo randomness – as in Property B in Section 3.2 – can be used in

combination with FDSA-type methods. This is also the essence of the developed algorithm

presented in Chapter 4. Ermoliev [15] was apparently the first to introduce such an idea via

random directions SA (RDSA). The essential idea with RDSA is to use the basic SA recursion

in (3.6), but to replace the FD gradient approximation in (3.7) with a more efficient gradient

approximation, which is generated with the help of a Monte Carlo-generated perturbation

vector. The basic form of this approach requires only two loss measurements to approximate

the gradient vector (for any dimension nθ) and replaces the deterministic perturbations of

FDSA (i.e., the ±c(k)∆i at each k for all i = 1, 2, . . . , nθ) with random perturbations.

Relative to classical two-sided FDSA (equations (3.6) and (3.7)), RDSA provides the

potential for increased efficiency because of the nθ-fold reduction in loss measurements per

iteration (2nθ for FDSA versus 2 for RDSA). Koronacki, [35], also considers the idea of

random perturbations, including some convergence theory. This paper suggests the use of

2m loss measurements, with m usually less than nθ. There is, however, no formal evidence

of improved efficiency over basic FDSA.

The basic form for the i-th component of the RDSA gradient approximation at iteration

k is

ĝi(θ(k)) = πi(k)
Ĵ (θ(k) + c(k)π(k)) − Ĵ (θ(k) − c(k)π(k))

2c(k)
(3.9)

where π(k) = [π1(k), π2(k), . . . , πnθ
(k)]T is a vector of Monte Carlo-generated random vari-

ables satisfying certain regularity conditions (see [72]). Note that the two J(·) values are

reused for all elements of the gradient approximation. The choice of probability distribution

for the Monte Carlo perturbations is important in realizing the desired improvements in ef-

ficiency. Ermoliev, in [15] includes analysis of the bias in the gradient approximation and

considers one specific distribution (uniform) for the πi(k).

In conclusion, one of the main shortcomings of FDSA is its inefficiency in high-dimensional

problems. That is, the number of loss measurements in each gradient approximation grows

directly with the dimension. As a typical implementation for optimization requires many

gradient approximations (one at each iteration), the overall number of loss measurements

in the optimization process may become prohibitive. To tackle this problem, some methods

have been introduced that create gradient approximations via Monte Carlo schemes. By

reducing the number of loss measurements for each gradient approximation, these methods

may offer significant improvements in efficiency.
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3.4.4 Simultaneous Perturbation Stochastic Approximation

Continuing in the spirit where only noisy loss measurements are available, this section dis-

cusses the simultaneous perturbation stochastic approximation (SPSA) algorithm for stochas-

tic optimization of multivariate systems [69]. Relative to the finite-difference-based methods,

the principal benefit of SPSA is a reduction in the number of loss measurements required to

achieve a given level of accuracy in the optimization process. The central focus with SPSA

is the stochastic setting where only measurements of the loss function are available (i.e., no

gradient information).

The basic unconstrained SPSA algorithm is in the general recursive SA form:

θ(k + 1) = θ(k) − α(k)ĝ(θ(k)) (3.10)

where ĝ(θ(k)) is the simultaneous perturbation estimate of the gradient g(θ) = ∂J/∂θ at the

k-th iteration (based on the measurements of the loss function) and α(k) is a nonnegative

scalar gain coefficient.

The essential part of (3.10) is the gradient approximation ĝ(θ(k)). Recall that with FDSA,

this gradient approximation is formed by perturbing the components of θ(k) one-at-a-time

and collecting a loss measurement Ĵ(·) at each of the perturbations (in practical problems,

the loss measurements are sometimes noise-free, i.e., Ĵ(·) = J(·)). This requires 2nθ loss

measurements for a two-sided FD approximation. In contrast, with simultaneous perturba-

tion, all elements in θ(k) are randomly perturbed together to obtain two loss measurements

Ĵ(·). For the two-sided SP gradient approximation, this leads to

ĝ(θ(k)) =





Ĵ(θ(k)+c(k)∆(k))−Ĵ(θ(k)−c(k)∆(k))
2c(k)∆1(k)

Ĵ(θ(k)+c(k)∆(k))−Ĵ(θ(k)−c(k)∆(k))
2c(k)∆2(k)

...
Ĵ(θ(k)+c(k)∆(k))−Ĵ(θ(k)−c(k)∆(k))

2c(k)∆nθ
(k)





=
Ĵ (θ(k) + c(k)∆(k)) − Ĵ (θ(k) − c(k)∆(k))

2c(k)
[∆(k)]−1, (3.11)

where ∆(k) = [∆1(k),∆2(k), . . . ,∆nθ
(k)]T is a zero-mean nθ-dimensional random perturba-

tion vector, which has a user-specified distribution satisfying certain conditions (see [72] for

details), [∆(k)]−1 =
[
∆−1

1 (k),∆−1
2 (k), . . . ,∆−1

nθ
(k)

]T
, and c(k) is a positive scalar. Because

the numerator is the same in all nθ components of ĝ(θ(k)), the number of loss measurements

needed to estimate the gradient in SPSA is two, regardless of the dimension nθ. Recall that

RDSA algorithm uses a similar random directions gradient approximation.

While the number of loss function measurements Ĵ(·) needed in each iteration of FDSA

grows with nθ, the number in SPSA is fixed. This measurement savings per iteration, of
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course, provides only the potential for SPSA to achieve large savings (over FDSA) in the

total number of measurements required to estimate θ∗ when nθ is large. This potential is

realized if the number of iterations required for effective convergence to an optimum θ∗ does

not increase in a way to cancel the measurement savings per gradient approximation at each

iteration. We would expect this potential to be realized if, roughly speaking, the FD and SP

gradient approximations acted the same in some statistical sense relative to their use in the

basic optimization recursion (which is the same basic form in both FDSA and SPSA).

It is clear that the SP approximation above will not act the same as the FD approximation

as an estimate of the gradient. The FD approximation will generally be superior in that

sense. However, the interest is not in the gradient itself. Rather, the interest is in how

the approximations operate when considered in optimization over multiple iterations with a

changing point of evaluation θ. Spall (in [72]) studies the efficiency of both algorithms in

various problems, establishing the fundamental result: under reasonably general conditions

(see [72] for details), the SPSA and FDSA recursions achieve the same level of statistical

accuracy, for a given number of iterations, even though SPSA uses only 1/nθ times the

number of function evaluations of FDSA (since each gradient approximation uses only 1/nθ

the number of function evaluations).

The informal rationale for the strange-looking gradient approximation in (3.11) is quite

simple. It can be shown (see [72] for the mathematical proof), using a simple Taylor ex-

pansion, that this approximation is an “almost unbiased” estimator of the true gradient

(considering that the measurement noise e(k) has mean zero and that J is several times

differentiable).

A one-measurement form of the SP gradient approximation is considered in [71]. The

gradient approximation has the form

ĝ(θ(k)) =





Ĵ(θ(k)+c(k)∆(k))
c(k)∆1(k)

Ĵ(θ(k)+c(k)∆(k))
c(k)∆2(k)

...
Ĵ(θ(k)+c(k)∆(k))

c(k)∆nθ
(k)




. (3.12)

Although the form above may seem strange in that it does not include explicit information

related to the difference of function values, the form shares the nearly unbiased property of

the standard two-measurement form in (3.11). In particular, via a Taylor expansion of

Ĵ (θ(k) + c(k)∆(k)), it is found that E [ĝ(θ(k))] = g
(
θ(k)) + O(c2(k)

)
. Although it is shown

in [71] that the standard two-measurement form is usually more efficient (in terms of the total

number of loss function measurements to obtain a given level of accuracy in the θ iterate),

there may be advantages to the one-measurement form in real-time operations. Such real-
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time applications include target tracking and feedback control, where the underlying system

dynamics may change too rapidly to get a credible gradient estimate with two successive

measurements. In the simulation experiments of Chapter 5 and Chapter 6 a variant version

of the one-measurement SPSA is used, proposed for real-time applications (see equations

(5.9), (5.10) in Subsection 5.6.1 for the formula definition).

The problem of constrained (equality and inequality) optimization with SPSA is consid-

ered in [66] and [19] using a projection approach. The projection algorithm reads

θ(k + 1) = HΘ [θ(k) − α(k)ĝ(θ(k))] , (3.13)

where HΘ[·] is the mapping that projects any point not in the constraint domain Θ to a new

point inside Θ. While the projection approach has an elegant mathematical form, it is quite

restricted in the types of constraints that can be handled in practical problems. Essentially,

the constraints must be represented explicitly in a “nice” way, so as to facilitate the mapping

of a constraint violation in θ to the nearest valid point. A common implementation of

projections is to problems with hypercube constraints, where the individual components of

θ are bounded above and below by user-specified constants.

3.5 Concluding remarks

The stochastic approximation framework introduced in Section 3.3 is a powerful approach for

dealing with nonlinear root-finding and optimization problems, especially problems involving

noisy measurements of the involved functions. The chapter has continued with the SA-

based optimization setting emphasized in Section 3.4, but with the significant difference that

direct measurements of the gradient are not required. Rather, this chapter has considered

methods that build gradient approximations from measurements of the loss function. This

mathematical distinction has profound practical implications (again, Spall’s book [72]

provides a detailed analysis).

In particular, it is often difficult or impossible to calculate the stochastic gradient for the

root-finding methods. We discussed three gradient-free SA search algorithms (FDSA, RDSA,

SPSA) which are fundamentally based on loss function values (no gradients). Although they

require only loss function measurements, gradient-free SA algorithms exhibit convergence

properties similar to the properties of the stochastic gradient methods. All three algorithms

have rigorous mathematical proves for convergence (under certain assumptions). The indi-

rect connection to the gradient usually enhances the convergence when there is not a great

danger of converging to an unacceptable local minimum. Finally, it should be noted, that

although the presented SA search methods have a deep theoretical justification with noisy
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measurements, they are fundamentally local optimizers.

Direct measurements of the gradient J/∂θ do not typically arise naturally in the course

of operating or simulating a system. Hence, one must have detailed knowledge of the under-

lying system input-output relationships in order to calculate the J/∂θ. In contrast, the SA

approaches require only conversion of the basic output measurements to sample values of the

loss function, which does not require full knowledge of the system input-output relationships.

Because of the fundamentally different information needed in implementing the stochastic

gradient-based and gradient-free algorithms, it is difficult to construct meaningful methods

of comparison. As a general rule, however, the stochastic gradient algorithms converge faster

when speed is measured in number of iterations. This is not surprising given the additional

information required for the gradient-based algorithms.

In practical applications, many factors besides the asymptotic rate of convergence must

be considered in determining which algorithm is most appropriate for a given circumstance.

The stochastic gradient algorithms may be either infeasible (if no system model is available)

or undependable (if a poor system model is used). Furthermore, the total cost to achieve

effective convergence depends not only on the number of iterations required, but also on the

cost per iteration, which is typically greater in gradient-based algorithms. This cost may

include greater computational burden, additional human effort required for determining and

writing software for gradients, and experimental costs for model building. Finally, the rates

of convergence are based on asymptotic theory, and may not represent practical convergence

rates in finite-samples. As a general rule, however, if direct (stochastic) gradient information

is conveniently and reliably available, it is generally to one’s advantage to use this informa-

tion in the optimization process. This thesis, however, focuses on the setting where such

information is not readily available.

Another issue of major importance in gradient-free methods is the selection of the gain

sequences α(k) and c(k). In practise, the gains are usually chosen by trial and error on some

small-scale (e.g., reduced number of iterations) version of the full problem. Generally, slowly

decaying gains are preferred in case of noisy measurements. For picking a good stepsize α(k)

one should balance the possibility of avoiding instabilities in the early iterations, in contrast

to the possibility of non convergence in the later iterations (problem that is not easy to solve

in many practical situations).

To cope with noise effects, in some problems is effective to set c(k) at a level approximately

equal to the standard deviation of the measurement noise in J(θ). This helps keep the nθ

elements of the gradient estimation ĝ(θ) from getting excessively large in magnitude, before

α(k) has decreased enough to compensate during the search process (the standard deviation

of the noise can be estimated by collecting several J(θ) values for the same θ). However, if
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the standard deviation changes dramatically with θ, this approach might not be useful. In

the case where one has perfect (noise-free) measurements of J(θ), then c(k) should be chosen

as some small positive number.



Chapter 4

The Adaptive Fine-Tuning (AFT)

algorithm

This chapter explores the AFT algorithm. Section 4.1 is a brief introduction to the relation

of SA algorithms to the fine-tuning of control systems. Section 4.2 provides a definition of

the problem in hand. Section 4.3 discusses the use of theoretical/simulation-based methods

as a solution to this problem and Section 4.4 describes the general perspectives of adaptive

and neural/learning techniques. Section 4.5 focuses on universal approximators and presents

two popular methods about choosing the appropriate approximator for an application. In

Section 4.6 the step-by-step application of AFT algorithm is thoroughly presented. Sec-

tion 4.7 discusses efficient techniques about calculating stepsizes for SA methods. Finally,

Section 4.8 presents some requirements that the studied system should meet, in order for the

AFT algorithm to converge.

4.1 Introduction

The previous chapter discussed the use of stochastic approximation (SA) for problems of

minimizing a loss function J(θ). Both cases where direct unbiased measurements of the

gradient g(θ) are available (root-finding case), and where the optimization is carried out only

with noisy measurements of the loss function J(θ) (gradient-free case) were considered. In

this chapter we formulate the methodologies discussed in Chapter 3 to the problem of fine-

tuning of large-scale nonlinear systems. Fine-tuning is a problem similar to the one defined in

Section 3.1, as one is aiming to pick parameters θ (the system’s design tunable parameters) in

the best way, in order to optimize some scalar performance function J(θ) (the overall control

system performance).

As a matter of fact, parameter estimation and fine-tuning are two closely related problems.

53
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The same family of methods (SA search and optimization algorithms) can be applied to both

problems, as they seek for optimal solution under system uncertainties (noise measurements).

The iterative adaptive scheme of these algorithms plays also a very important role during

the process of trying to adjust the design parameters of a control system. The system’s

performance has to be evaluated under different sets of design parameters and one should

try to optimize this performance based on the noisy (measured) system outputs.

Finally, it should be noted that FDSA and RDSA methodologies are not readily appro-

priate to apply to online control system fine-tuning. For large-scale problems (where the

dimension nθ is high) an inhibited number of simulation runs is needed, in order for these

methodologies to form an estimate of the gradient g(θ). On the other hand, SPSA method

requires only one or two measurements per iteration. This is an important property that

makes SPSA appropriate for application in such control calibration approaches.

4.2 Problem formulation

This section presents the general mathematical formulation for the problem of control systems

fine-tuning. Consider a general discrete-time control system where the underlying dynamics

are described according to the following nonlinear first-order difference equation

z(t + 1) = F (z(t), ui(t), d(t), t) , z(0) = z0 (4.1)

where z(t), ui(t), d(t) are the vectors of system states, control inputs, and exogenous (possibly

measurable) signals, respectively, t denotes the discrete time-index, i denotes the regulator-

index and F (·) is a sufficiently smooth nonlinear vector function. Note that the proposed

methodology can be applied to a system even if the function F is unknown.

Consider also, that one or more control laws are applied to the system (4.1), which are

described as follows:

ui(t) = ̟i (θi, z(t)) (4.2)

where ̟i(·) are known smooth vector functions and θi is the vector of the tunable parameters

for the i-th regulator. Note that we do not impose any restriction neither on the form of the

equation (4.2), nor on the number of the applied control laws. Also, the discrete time-index

t may be different for each control law i.

The overall system performance is evaluated through the following objective function
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(performance index)

J (θ; z(0),DT ) = πT (z(T )) +

I∑

i=1

T−1∑

t=0

πi,t (z(t), ui(t))

= πT (z(T )) +
I∑

i=1

T−1∑

t=0

πi,t (z(t),̟ (θi, z(t))) (4.3)

where θ = vec (θ1, θ2, . . . , θI), πT and πi,t are known non-negative functions, I is the number

of the fine-tuned regulators, T the finite time-horizon over which the control laws (4.2) are

applied and DT
△
= [d(0), d(1), . . . , d(T − 1)] denotes the time-history of the exogenous signals

over the optimization horizon T . By defining x = vec (z(0),DT ), equation (4.3) may be

rewritten as

J (θ; z(0),DT ) = J (θ, x) . (4.4)

Equation (4.4) indicates that the system performance is affected by the vector of the

system’s tunable parameters θ and the exogenous vector x. The problem in hand is to

develop an appropriate iterative algorithm, which will be applied every T and will update

the current control system parameters vector θ, so as to achieve better performance but also

provide safe and efficient behavior. This means, that the algorithm should guarantee the

stable and sustainable system performance.

In every iteration k of the algorithm (fine-tuning experiment) the following are taking

place:

• the LNTCS performance (4.1)–(4.3) is evaluated for θ = θ(k) through the measurement

J(k) ≡ J(θ(k), x(k)) (4.5)

• the current vector with the regulator’s design parameters θ(k) is updated, so that it

converges – as close as possible – to one of the local minima θ∗ of the average value of

J (with respect to the exogenous random vectors x(k)), defined according to

E

[
∂J

∂θ
(θ∗, x(k)) |G(k)

]
= 0 (4.6)

where G(k) is an appropriately defined term referring to the past values of vector θ and

exogenous inputs x.

The requirement for convergence of θ(k) to one of the local minima θ∗ is not sufficient in

most practical situations; additionally to this requirement, the fine-tuning algorithm should

be able to provide with safe and efficient performance during the fine-tuning process. More
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precisely, at each iteration of the fine-tuning algorithm k, the performance index measurement

should satisfy

J(k) ≤ J(k − 1) + ǫ(k) (4.7)

where ǫ(k) is an appropriately defined positive term, whose magnitude is proportional to the

magnitude and variance of the exogenous inputs.

The requirement (4.7) is more than crucial in most practical LNTCS fine-tuning ap-

plications, since violation of such requirement may cause serious performance, safety, etc.,

problems. For instance, in the case of traffic control systems fine-tuning, the violation of

requirement (4.7) may lead to serious problems (e.g., complaints, dangerous driving, etc.)

that may force the traffic operators to cancel the fine-tuning process; similarly, in the case

of LNTCS fine-tuning for mechanical structures, the violation of this requirement may cause

the permanent deformation or even the destruction of the structure. It is worth noting,

that standard AO methodologies such as the SPSA algorithm cannot guarantee that the

requirement (4.7) holds during the fine-tuning process, mainly due to the use of random

perturbations applied to the regulator parameters.

4.3 Theoretical/simulation-based methods

The last decades, attempts have been made in particular LNTCS applications to develop

model-based, i.e., either theoretical-based or simulation-based designs that produce “good”

sets of tunable parameters. Although they have helped in some cases to reduce time and

effort for installation and maintenance, they did not manage to eliminate, or at least re-

duce significantly, the involvement of the human factor. One example in this class is the

implementation of a Variable Speed Limit (VSL) system on the UK motorway M42 [52]. De-

spite the fact that the initial tunable parameters of the system (which correspond to speed

and flow activation/deactivation thresholds) were “optimized” using theoretical tools derived

from traffic flow theory and extensive simulation experiments, it took more than a year of

calibration of the aforementioned thresholds until the system reached an acceptable perfor-

mance. During this initial deployment phase the system performance was sometimes worse

than in the no-control case.

There have also been some attempts to incorporate optimization-based tools within the

maintenance procedure, see e.g. [45], [67], [31], [46] for an indicative list of references. In

these cases, the problem of providing efficient maintenance is formulated as an optimiza-

tion problem, where the tunable LNTCS parameters are chosen so as to optimize a perfor-

mance criterion (e.g. average network speeds in traffic networks, average delays in airborne

or seaborne transport systems, total number of containers loaded/unloaded in seaport con-
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tainer terminals, average deviation from the operational schedules in public transport sys-

tems). However, optimization of such a performance criterion requires perfect or, at least,

very accurate knowledge of the transport system dynamics as well as the demand.

To deal with this problem, optimization-based approaches employ simulation-based or

theoretical models for representing the actual system dynamics. Then, based on the assump-

tion that these models represent quite accurately the actual LNTCS operations, different

optimization algorithms (e.g. gradient-descent, Gauss-Newton, evolutionary programming

or neural network-based optimization algorithms) are applied in order to extract the opti-

mal values of the tunable parameters. However, these approaches (a) require extensive and

continuous calibration of the simulation/theoretical-based models, so as to optimize their

approximation accuracy with respect to the actual transport system operations, and (b) face

the tradeoff between simplicity and accuracy; in most cases, accuracy has to be sacrificed in

order to avoid the use of extreme computational requirements of simulation or mathematical

models that employ detailed modeling of the LNTCS operations.

4.4 Adaptive and neural/learning methods

One possible way to by-pass the above-mentioned problems is to incorporate adaptive or

adaptive-like designs (such as neural, fuzzy, iterative learning, etc., methods) for updating

the design parameters of LNTCS. Such methodologies, render many advantages contrary to

the simulation/theoretical-based techniques. AFT belongs to the family of the so-called AO

methods, such as the SPSA algorithm presented in Section 3.4.4. These methods, provide

probably the most promising approach for the development of a systematic methodology

for automatic, safe, robust and efficient maintenance and renovation of LNTCSs. The basic

functioning procedure for AO methods may be summarized as follows (Figure 4.1):

• The traffic flow process (e.g. urban road network) is controlled in real time by a control

strategy (of any kind) which includes a number of parameters to fine-tune.

• At the end of appropriately defined periods (e.g. at the end of each day), the AFT algo-

rithm receives the value of the real (measured) performance index (e.g. average speed

over space and time for traffic networks, total number of containers loaded/unloaded

for seaport container terminals, etc.), as well as some aggregated values of the most

significant external factors (e.g. demand). Note that the performance index J (θ, x) is

a (generally unknown) function of the external factors x and the tunable parameters

to be adjusted θ.

• Using the measured quantities (the number of which increases iteration by iteration),
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Figure 4.1: Working principle of AO for automatic calibration of LNTCSs.

the AFT algorithm calculates new tunable parameter values to be applied at the next

period (e.g. the next day) in an attempt to improve the system performance.

• This (iterative) procedure is continued over many periods (e.g. days) until a maximum

in performance is reached; then, the AFT algorithm may remain active for continuous

adaptation or can be switched off and re-activated at a later stage (e.g. after few

months).

A key idea behind most AO methodologies is to use two different (but inter-woven) phases

of tunable parameter changes as follows:

1. At the perturbation phase, the performance of the LNTCS is evaluated at one or

more random perturbations of the current set of tunable parameters.

2. At the gradient-descent-like phase, the current tunable parameter values are mod-

ified in a targeted way, so as to increase performance, based on an estimate of the

LNTCS performance gradient. The gradient can be calculated using the values of the

performance index (and of the external factors) at the perturbation phase.

The random perturbations are introduced in the perturbation phase, in order for the

AO mechanisms to sufficiently explore the overall LNTCS state-space (so as to be able to

come up with a suitable decision each time). As it was shown in several research articles

evaluating AO methods, the introduction of random perturbations is necessary and crucial

for the successful operation of the overall scheme ([42], [40], [69]). Different researchers, have

reported very encouraging results – by using simulation experiments – on the application of

the aforementioned AO methods in maintenance and renovation of various LNTCSs. Urban

signal traffic control [70], [9], air traffic management [33], vessel traffic management [8] and
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fleet and transit management [27], [34] are some of the LNTCS maintenance applications

where these methods have been applied and evaluated through extensive simulation studies.

Unfortunately, these designs suffer from two severe drawbacks:

1. The majority of AO methods do not have any mechanism to incorporate the knowledge

captured in the past, regarding the dependence of the LNTCS performance on the tun-

able parameters and the external factors (demand). In cases where such a dependence

is highly nonlinear and complex, the aforementioned algorithms fail to produce any

improvement of the overall LNTCS performance.

2. Most importantly, the use of random perturbations in the AO algorithms may lead

to an unacceptable value of the LNTCS performance; even a small perturbation of a

“good” set of tunable parameters may lead to an unacceptable or, even worse, un-

stable or catastrophic behavior. Hence, AO methods possess the disadvantage of not

guaranteeing efficient and, most importantly, safe performance during the perturbation

phase.

The purpose of this thesis is to introduce and analyze a new AO algorithm which is

capable of overcoming the limitations (1)–(2) above. The developed approach appropriately

combines the nice features of AO algorithms with those of approximation theory and adaptive

mechanisms. The resultant adaptive optimization methodology is capable of rapidly and

efficiently optimizing systems of arbitrary complexity and scale, such as LNTCS and, most

importantly, guaranteeing robust and safe performance while the maintenance operation is

on.

The main components of the employed algorithm are summarized as follows:

• An approximator Ĵ (θ, x) is used (e.g., a neural network or a polynomial-like approxi-

mator) in order to obtain an approximation of the nonlinear mapping Ĵ (θ, x) = J (θ, x).

• An on-line adaptive/learning mechanism is employed for “training” the above approx-

imator. Globally convergent learning algorithms (see e.g., [38], [36]) are required for

such a purpose.

• At each algorithm iteration k, many randomly chosen candidate perturbations (of di-

mension nθ) of vector θ(k) are generated. The effect of each of these perturbations

to the LNTCS performance is estimated by use of the approximator mentioned above.

The perturbation that corresponds to the “best” estimate (i.e., the one that leads to

the best value for Ĵ) is picked to depict the new values for the tunable parameters

θ(k +1). That is, θ(k +1) corresponds to the best estimate of Ĵ , selected to be applied

at the next period (e.g. the next day).
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4.5 Universal approximators

The proposed adaptive/learning algorithm, presented in next section, makes use of a so

called universal approximator, which has the form Ĵ (θ, x, ϑ), with ϑ denoting the vector of

the approximator’s tunable parameters. Universal approximators have very strong functional

capabilities, that is, they have the ability to approximate broad classes of functions to within

any level of accuracy. If properly constructed, they can perform very complex operations and

implement very complex nonlinear mappings (e.g., much more complex than those that can

be implemented by a linear mapping).

To study this idea, let ℑ denote the set of all possible approximator structures of type

Ĵ (θ, x, ϑ). For example, if Ĵ (θ, x, ϑ) is a polynomial-like approximator, then ℑ would contain

an infinite number of approximator structures, each one with different polynomials (nonlinear

activation functions) and different values for the approximator parameters ϑ. If J (θ, x) is

any real valued, bounded, continuous function, and for an arbitrary e > 0 there exists an

approximator structure Ĵ (θ, x, ϑ) ∈ ℑ such that

sup
x∈X,θ∈Θ

∣∣∣J (θ, x) − Ĵ (θ, x, ϑ)
∣∣∣ < e (4.8)

then the approximator structure Ĵ (θ, x, ϑ) is said to satisfy the “universal approximation

property”. Actually, radial basis function neural networks and standard and Takagi-Sugeno

fuzzy systems are known to satisfy the “universal approximation property” [62]. Clearly,

however, the linear approximator structures do not satisfy the universal approximation prop-

erty.

An approximator that satisfies the universal approximation property is flexible

enough to be able to represent many functions; however, this “flexibility” may

require a large approximator structure and extraordinary parameter tuning ca-

pabilities.

Satisfaction of the universal approximation property guarantees that there exists a way

to define the particular approximator structure Ĵ (θ, x, ϑ) and its parameters, in order to

represent the unknown nonlinearity as accurately as you would like. It does not, however,

say how to find the particular Ĵ (θ, x, ϑ), which can, in general, be very difficult (i.e., it does

not say how many neurons should be in the neural network, how many rules should be in

the fuzzy system, or anything about how to pick the approximator’s parameters in order to

get good accuracy). Furthermore, for arbitrary accuracy you may need an arbitrarily large

number of parameters (i.e., you may need to include an arbitrarily large number of regressor

terms in the approximator structure).
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The value of the universal approximation property is simply that it shows, that if you work

hard enough at structure choice, are willing to use a large structure and do good parameter

tuning, you should be able to make the neural networks and fuzzy systems achieve what you

are trying to get done. For estimation, this means that there is great flexibility in working

with the neural and fuzzy approximator structures. If you choose enough neurons or enough

rules and membership functions in a fuzzy system, there is a way to tune the neural or fuzzy

system so that it will perform its estimation task very well. For control, practically speaking,

it means that there is great flexibility in tuning the nonlinear function implemented by, e.g.,

the fuzzy system or a neural network.

To summarize, for a given approximator structure Ĵ (θ, x, ϑ) that satisfies the universal

approximation property, all we know is that there exist a bound W > 0 on the representation

error of the unknown function J (θ, x) with the approximator Ĵ (θ, x, ϑ). We typically do

not know how small it is. The universal approximation property simply says that we may

increase the size of the approximation structure and properly define the parameters of the

approximator to achieve any desired accuracy (i.e., to make W as small as we want); it does

not say how big the approximator must be or if you fix the structure Ĵ (θ, x, ϑ) how small W

is. In the following subsections two different universal approximators are presented. Both of

them where used within the AFT algorithm in order to approximate the performance index

of the control system under study.

4.5.1 Linear-in-the-weights Universal Approximator (LUA)

One of the universal approximators used in this thesis’ experiments in order to approximate

the objective function J (θ, x), is a linear-in-the-weights polynomial-like approximator with

Lg regressor terms, which takes the form

Ĵ (θ, x) = ϑT φ (θ, x) (4.9)

where ϑ denotes the vector of the approximator parameter estimates and

φ (θ, x) =
[
φ1 (θ, x) , φ2 (θ, x) , . . . , φLg (θ, x)

]T
. (4.10)

The non-linear functions φi (θ, x) are given by

φi (θ, x) = Sd1(θm1)·S̄
d2(xm2)·S

d3(θm3), di ∈ {0, 1} (4.11)

where di,mi are randomly chosen at each iteration of the AFT algorithm (with m1,m3 ∈

{1, 2, . . . , nθ}, m2 ∈ {1, 2, . . . , nx} and
∑

i mi ∈ {2, 3}) and S(·), S̄(·) are smooth monotone

nonlinear functions. In the neural networks literature [49], [28] these functions are usually
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chosen to be “sigmoidal”. In the simulation applications presented in Chapters 5, 6 we choose

S(θ) = tanh (λ1θ + λ2) , S̄(x) = tanh (λ3x + λ4) (4.12)

where λi are non-negative real numbers initially defined by the user; after 4–5 iterations of

the algorithm the values of λi are optimized so as to minimize

min

k−1∑

ℓ=1

(
Jℓ − ϑT φ

(k)
ℓ

)2
. (4.13)

The factors ℓi are relevant to the normalization of the values of the approximator inputs θ, x.

4.5.2 Adaptive Neuro-Fuzzy Inference System (ANFIS)

The last decades, fuzzy logic is commonly used in control systems as it provides an easy

way to deal with possible system uncertainties and noisy data. By the use of membership

functions and if-then rules one can form a fuzzy estimate system in order to perform a

nonlinear input-output mapping. Fuzzy inference systems belong to the family of universal

approximators, as they can accurately estimate broad classes of nonlinear functions to within

any level of accuracy. The most famous fuzzy inference systems are Mamdami-type and

Sugeno-type [50], [75], [74].

The second universal approximator that was investigated in this thesis’ experiments is

the MATLAB’s toolbox ANFIS (abbreviation for Adaptive Neuro-Fuzzy Inference System).

In such neuro-fuzzy systems, the theory of neural networks is combined to the nice features of

fuzzy logic in order to provide better performance and powerful approximation capabilities.

In our case, a Sugeno-type FIS with Lg regressor terms is selected, which takes the form

Ĵ (θ, x) = ϑT φ (θ, x) (4.14)

where ϑ denotes the vector of the FIS adjustable parameters and

φ (θ, x) =
[
φ1 (θ, x) , φ2 (θ, x) , . . . , φLg (θ, x)

]T
. (4.15)

The non-linear functions φi (θ, x) correspond to membership functions of arbitrary distribu-

tions. Sugeno-type FIS are appropriate for systems that have many inputs and one scalar

output (like the one we consider in our problem). ANFIS combines the advantages of neural

networks and fuzzy logic in order to fit the input-output data to the created model, usually

using a trial and error method.

The user can choose among a wide variety of distributions for the memberships functions

φi (θ, x). Sugeno-type FIS uses a hybrid learning algorithm [30], that iteratively changes

the values of the adjustable parameters until the fitting error between the data and the
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modeled system in minimized. The learning algorithm combines least squares estimation and

backpropagation method in order to optimally adjust the membership functions’ parameters

ϑ. The iterative process uses a first forward pass (which propagates the data) and a second

pass where the least squares method calculates the approximation error. The calculated error

is then backward to the adjustable parameters using a gradient descent update method.

The aforementioned learning algorithm along with the experience of the user, provide

ANFIS approximators with flexibility and powerful approximation advantages. Thus, they

are appropriate for application to systems like these considered in Chapters 5 and 6.

4.5.3 Bias-variance tradeoff

In the previous subsections two different universal approximators were presented. This sec-

tion discusses the problem of how can one best use data to select an appropriate approximator

about a system (again, this section is widely based on Spall’s book [72]). Choosing a model

for the system approximation is a stochastic search and optimization process itself (“find

the best model”), as no model is “perfect”. The fundamental tradeoff between the bias and

variance, which is discussed in details below, could be used in order to choose a model form.

This tradeoff, provides a structure for balancing the need to have a relatively simple model

that is easy to interpret and the need to have a model sufficiently rich to capture all relevant

linear or nonlinear effects.

The bias-variance tradeoff is a fundamental principle in comparing the quality of

different mathematical models. In Chapters 3 and 4, we have assumed the existence of a

loss function J(θ) and/or a root-finding function g(θ) although they may not be directly

available, corresponding to cases with noisy function measurements. We then described

methods by which θ can be “optimized”. A closely related issue, however, is determining

the mathematical form of the functions J(θ) or g(θ) prior to optimizing θ. In the linear

or nonlinear regression context, this is essentially tantamount to determining the form of an

underlying approximation model describing the input-output relationship of the system of

interest. A typical problem to solve, is the number of terms that should be included in a

polynomial approximator of an unknown function of interest.

One of the most common problems in approximation methodologies is that of over- and

under-fitting. The bias-variance tradeoff provides a formal structure, which states, in essence,

that one should seek simpler models over more complex models. Of course, to achieve optimal

predictive power from a mathematical model, it is also necessary to include sufficient richness

in the model to capture the essential characteristics of the process. Hence, one should not

use a model that is too simple. This formal structure, however, does not lead directly to

implementable algorithms for realizing an optimal tradeoff between the bias and the variance.
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That will await the next section, which considers into the cross-validation method for model

selection.

Let J (θ, x) represent the scalar output for some system based on input vectors θ, x.

Suppose, as in previous sections, that we model this input-output process with a regression

function Ĵ (θ, x) and a noise term. In particular, the model for the actual output J (θ, x) is

the right-hand side of

J (θ, x) = Ĵ (θ, x) + e (4.16)

where e is a noise term that may or may not have mean zero. The model on the right-hand

side above does not generally correspond to the actual mechanism for generating the true

output J (θ, x).

A natural measure of effectiveness of the regression function Ĵ (θ, x) as a predictor of

J (θ, x), given the current values of vectors θ and x, is the mean-squared error (MSE),[
J (θ, x) − Ĵ (θ, x)

]2
, which is directly related to the used model. It is for this model error

that we are interested in a bias-variance analysis.

An analysis of the squared error of the model
[
J (θ, x) − Ĵ (θ, x)

]2
provides direct insight

into the quality of the regression function Ĵ (θ, x) as a predictor of J (θ, x), given θ, x. In order

to estimate the real function J (θ, x) we need different sets of input-output data. Hence, we

must average the squared error over possible values of θ and x, which reflect the input-output

data.

Let {(θ1, x1, J1) , (θ2, x2, J2) , . . . , (θn, xn, Jn)} denote n input-output data that will be

collected to form the estimate of J (θ, x), based on an appropriate search and optimization

algorithm. A useful approach to analyzing the inherent model quality is to take the mean

of the squared model error
[
J (θ, x) − Ĵ (θ, x)

]2
, based on averaging with respect to the

distribution for the fitting data. This is equivalent to averaging with respect to the

resulting distribution for Ĵ (θ, x). It can be shown (see [72] for details) that for any future

θn+1, xn+1 this MSE is

MSE =
[
Ĵ (θn+1, xn+1) − J̄ (θn, xn)

]2
+

[
J (θn+1, xn+1) − Ĵ (θn+1, xn+1)

]2

= (variance at θn+1, xn+1) + (bias at θn+1, xn+1)
2 (4.17)

where J̄ (θn, xn) the average of Ĵ (θ, x) over the first n data sets. An unbiased estimator is

one with Ĵ (θn+1, xn+1) = J (θn+1, xn+1) (implying that the second term on the right-hand

side of (4.17) is zero).

As a final, overall assessment of contributions toward the model MSE, one can average

the squared bias and variance in (4.17) over all possible values of (θ, x), yielding mean values,

say bias2 and variance. Averaging the variance and squared bias terms in (4.17) leads to a
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global measure of the contributions to the MSE that does not depend on a specific set of

values of vectors (θ, x):

MSEoverall = Eθ,x

[
variance at θ, x + (bias at θ, x)2

]

= variance + bias2 (4.18)

where Eθ,x[·] denotes the appropriate average over possible values of (θ, x).

Although unbiasedness is generally considered a desirable property, (4.17) and (4.18)

show that an unbiased estimator can have a large MSEoverall when the variance is large. In

particular, a biased estimator may have a lower MSEoverall than an unbiased one, even better

than unbiased estimators that are best by some criterion (such as an estimator with the lowest

variance among unbiased estimators that are linear combinations of the measurements).

There is generally a tradeoff between the variance and bias contributions to the overall MSE.

Regression functions Ĵ(·) with high variance tend to have low bias and vice versa. More

generally, when Ĵ(·) depends on inputs (θ, x), there is a relationship between the complexity

of the model and the relative bias and variance. In particular, the following relationships

typically hold:

Simple model ⇐⇒ High bias/low variance

Complex model ⇐⇒ Low bias/high variance

The bias-variance tradeoff provides a framework for choosing among candidate models.

Of course, in practice, many factors other than bias, variance, and the resulting MSEoverall

may be relevant. These include cost, development time, historical precedent for particular

model forms, desires of organizational leadership, and so on. Nevertheless, all other factors

being equal, one would wish to pick the function Ĵ(·) with a balanced bias and variance.

This balance in bias and variance results in the minimum overall MSE according to (4.17)

and (4.18).

Unfortunately, the bias-variance tradeoff is largely limited to gaining a conceptual un-

derstanding for comparing different models. Because the probability distributions for the

input-output data are not known (they depend on knowing the unknown true model), the

values of the bias and variance will generally be unknown. It is, however, clear from the

bias-variance tradeoff that there can be no universal best model form. One model form may

provide nicely balanced bias and variance on one class of problems, but be too rigid (high

bias) or flexible (high variance) in another example. For a fixed model form, the variance

contribution to MSE tends to decrease when the sample size used in fitting the model is
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increased. Intuitively, this follows since the model quality improves from the greater infor-

mation available for fitting the model. The variance contribution to MSE decreases with a

greater amount of data, since there is a reduced tendency to fit to the individual data points.

4.5.4 Cross-validation for model selection

There are a great number of methods for approximately addressing the bias-variance tradeoff

in a manner that is feasible for implementation. These methods are variations on the theme

of balancing low- and high-order requirements to produce a model that (implicitly at least)

balances the bias and variance. This section focuses on cross-validation [73], one of the

most popular and flexible means of realizing an optimal tradeoff between bias and variance

(according to Spall’s book [72]). Cross-validation provides a mechanism for choosing between

candidate model forms and it is widely applicable. The basic principle in model selection is

to minimize, implicitly or explicitly, a criterion of the generic form

f1(fitting error from given data) + f2(model complexity), (4.19)

where f1 and f2 are increasing functions of, respectively, some measure of the error in the

model predicting the fitting data (the fitting error) and some measure of the number of terms

in the model (model complexity).

The cross-validation approach is perhaps the most straightforward formal model selection

method to understand and to implement. It is based on manipulations of the fitting (training)

data (i.e., the data assumed available for model estimation). Cross-validation does not require

additional data and/or detailed prior information or detailed analysis beyond sample model

fits. It also has the advantage of applying to candidate models of virtually any form, not

being restricted to specific classes of candidate models (e.g., linear/curvilinear regression

models), as other approaches. Finally, unlike some other approaches, it does not require

that the underlying data be normally distributed. On the other hand, cross-validation is not

necessarily the most powerful or discerning method in any specific problem, nor is it the most

computationally efficient (since it requires repeated “sample” model fits). Cross-validation

is one of the model-selection methods that implicitly optimize the tradeoff criterion (4.19),

as there is no direct construction of a performance metric dependent on f1 and f2.

This section provides just a short description of how cross-validation works in the context

of selecting a model. Suppose that two or more candidate model forms are to be evaluated.

For example, one may have small-, medium-, and large-scale neural networks as candidate

model forms and wishes to know which neural network is likely to produce the best predic-

tions. Cross-validation is a commonsense approach based on sequentially partitioning the

full data set into fitting and test subsets. For each partition, estimates are produced for the
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candidate model forms from the fitting subset. Then, the performance of each candidate

model is measured on the test subset. This procedure is repeated for all partitions of the full

data set.

Let nT denote the size of the test subsets, where, of course, nT < n, with n the size of the

full data set. A common strategy called leave-one-out is to pick nT = 1 and cycle through

all n possible combinations of fitting and test subsets (e.g., [73]). This approach produces n

model fits from the n possible fitting subsets of size n− 1. Each of these model fits generates

a prediction error on the one data point left out (i.e., the difference between the outcome of

the point left out and the predicted value based on the model fit from the remaining n − 1

points). The best model form is the one for which the chosen type of average for these n

prediction errors – say, the sample MSE or mean absolute deviation (MAD) – is lowest.

There are often advantages, however, to choosing nT > 1. The advantages include greater

efficiency (i.e., fewer model fits) for some implementations with nT > 1. When nT > 1, the

test subsets may be chosen deterministically or randomly, with or without replacement. For

test subsets chosen deterministically with replacement (i.e., all possible combinations of test

subsets of size nT are used), there are a potentially huge number of possible fitting/test

subset combinations. In particular, the number of combinations is “n choose nT ”
(

n
nT

)
.

One way of mitigating this explosion is to randomly select (usually with replacement) a

relatively small number of test subsets of size nT (e.g., [68]). Another approach, is to choose

nT such that n is divisible by nT and then choose the test subsets without replacement, so

that all of the data appear once and only once in a test subset. The allocation of the n data

to the n/nT test subsets may be done randomly or deterministically. The “once and only

once” aspect may be viewed as an extension of the leave-one-out strategy. This allocation

reduces the number of model fits from n in leave-one-out and from
(

n
nT

)
in deterministic

replacement selection to n/nT .

4.6 The structure of AFT algorithm

This section presents the AFT algorithm. The general concept of this method is directly

connected to RDSA. Practically, the intuition of AFT can be considered as a combination of

RDSA and SPSA algorithms, as is makes use of many random perturbations of the tunable

parameters θ at every algorithm iteration k; however, it does not require to run the simulation

experiments, as the random vectors are evaluated by the universal approximator Ĵ (θ, x).
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Table 4.1: Variables used within the AFT.

k iteration index

ℓ past performance measurements index

J(ℓ) performance value for the ℓ-th calibration experiment

Ĵ(ℓ) an estimate of J(ℓ) obtained at the ℓ-th iteration

θ(k) the vector of tunable parameters at the k-th calibration experiment

θ∗(k) the “best” set of tunable parameters until the k-th experiment

x(k) the exogenous signals as defined in Section 4.2

x̄(k) an estimate/prediction of the exogenous signals x(k)

∆i(k) zero-mean random sequences (e.g. Gaussian), with i ∈ {1, 2, ..., nθ}

∆θ(k + 1) the perturbation picked by the algorithm

4.6.1 Basic notations

Table 4.1 presents a description of the design parameters and variables used within the AFT

algorithm. For the implementation of AFT, it is assumed that an estimate, or prediction,

x̄(k + 1) of the vector x(k + 1) is available (referring to the estimate of next iteration). In

many applications such an assumption is quite realistic, since the entries of x(k + 1) corre-

spond to system states and exogenous inputs, which are available or measurable. However,

there may be cases where such an assumption is not realistic; in this case x̄(k + 1) can be

estimated/predicted using appropriate estimation algorithms. It should be noted, that the

dimension nx of the estimate vector x̄ should be comparative to the dimension nθ of the

vector of tunable parameters θ.

Contrary to other applications of neural approximators, where the number of neurons L̄g

should be large enough to guarantee efficient approximation over the whole input set, this is

not the case here. In the case of the developed algorithm, it is sufficient, that the approxima-

tor Ĵ has enough regressor terms to come up with an approximation of the unknown function

J over a “small neighborhood”, around different sets of values of vector θ.

4.6.2 Algorithm description

Table 4.2 presents a step-by-step description of AFT algorithm application. It is worth

noting, that similarly to RDSA, the proposed algorithm introduces random perturbations to

the control design parameter vector θ. Besides, the use of random perturbations is crucial for

the efficiency of the proposed algorithm as it provides the so-called persistence of excitation
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Table 4.2: AFT algorithm mathematical description.

Step 1: ∆θ
(j)
i (k + 1) = α(k)∆

(j)
i (k) − θi(k) + θ∗i (k), j ∈ {1, . . . ,K}

Step 2: Lg(k) = min
{
2 (k − 1) , L̄g

}

Step 3: ℓ(k) = max {k − Th, 1}

Step 4: φℓ(k) = φ (θℓ(k), x̄ℓ(k))

Step 5: ϑ(k) 7→ arg minϑ
1
2

∑k
ℓ=ℓ(k) (Jℓ − ϑτφℓ(k))2

Step 6: Ĵ
(
±∆θ(j)(k + 1) + θ∗(k), x̄(k + 1)

)
= ϑ(k)τφ

(
±∆θ(j)(k + 1) + θ∗(k), x̄(k + 1)

)

Step 7: ∆θ(k + 1) = arg max∆θ(±j)(k+1) Ĵ
(
±∆θ(j)(k + 1) + θ∗(k), x̄(k + 1)

)

∆θi(k + 1) = θi(k + 1) − θi(k)

α(k) is a user-defined positive sequence (e.g. constant stepsize α(k) ≡ α ∈ (0, 1))

Th, L̄g,K are user-defined positive integers

θ∗(k) + ∆θ(k + 1) denotes the vector of tunable parameters picked to be applied at

the next experiment k + 1

(PE) property, which is a sufficient and necessary condition for the neural approximator Ĵ

to be able to efficiently learn the unknown function J . However, due to the use of Step 6

(see Table 4.2) the proposed methodology avoids poor performance or instability problems,

and guarantees safe and efficient performance in the sense that requirement (4.7) is fulfilled.

Below, we discuss in details the application steps of the algorithm displayed in Table 4.2,

which are performed at every iteration k:

• Step 1: Calculate K random perturbations. In this step K random perturbations are

calculated (according to e.g. Gaussian distribution). The resulting candidate vectors

θi(k + 1) = θ∗i (k) + ∆θi(k + 1) are then projected in Θ, in order to satisfy the problem

constraints.

• Step 2: Calculate the number of approximator regressor terms. The number of the

approximator’s regressor terms Lg(k) to be used for this iteration is calculated.

• Step 3: Calculate the number of past measurements. The algorithm keeps a window

of past measurements which moves along with the iterations. In this step the starting

point of the window in the past is calculated. The end point of the window is always
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k.

• Step 4: Produce the polynomial-like approximator. After steps 2, 3 the structure of

the universal approximator may be formed and applied to the window of the past

measurements.

• Step 5: Calculate the optimal approximator parameter estimates. The optimal values

of the approximetor’s parameters ϑ are calculated according to the solution of a least

squares estimation method.

• Step 6: Apply the 2K random perturbations ±∆θ(k + 1)(j) to the Ĵ(k). The 2K can-

didate vectors θ∗(k)±∆θ(k + 1)(j) are applied to the approximator Ĵ(k) for evaluation.

• Step 7: Pick the “best” random perturbation (according to the Ĵk). The vector θ(k+1)

with the best estimated performance is selected for application to the next simulation

experiment.

As shown in [39], [40], [41], [42] using strict mathematical arguments, if the structure

of the approximator and its learning mechanism satisfy certain design considerations (that

are independent of the particular application), then the above described process guarantees

rapid convergence of the overall maintenance procedure (in the sense of (4.6)) to the same

performance levels that would have been obtained if efficient non-linear optimization schemes,

such as the steepest descent or Gauss-Newton schemes, could be applied to the particular

problem. Most importantly, the above-mentioned procedure guarantees safe, stable and

efficient transient performance in the sense that the system performance during maintenance

remains within acceptable levels (satisfying inequality (4.7)). This performance, can be, in

the worst case, similar to the system performance before maintenance has started plus some

random term. The magnitude of this term is proportional to the magnitude and variance of

the exogenous inputs (see equation (4.7)).

4.7 Choice of stepsizes for SA methods

The choice of the gain sequence α(k) is critical for the performance of SA methods. In

many applications, a constant stepsize is used (instead of a descending one) as a way of

avoiding gains that are too small for large k. Typical applications with constant stepsizes

involve adaptive tracking or control problems where θ∗ is changing in time. The constant

gain provides enough impetus to the algorithm to keep up with the variation in θ∗, in contrast

to a decaying gain, which provides too little weight to the current input information to allow
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for the algorithm to track the solution. Such constant-gain algorithms are also frequently

used in neural network training even when there is no variation in the underlying θ∗ ([44]).

On the other hand, there is considerable appeal to the idea that the stepsize should depend

on the actual trajectory of the algorithm. When the stepsizes depend on the observations

we say that we are using a stochastic stepsize. Assume that our estimates are consistently

under or consistently over the actual observations. This can easily happen during early

iterations due to either a poor initial starting point or the use of biased estimates, which is

common during the early iterations. For large-scale problems, it is possible that we have to

estimate thousands of parameters. It seems unlikely that all the parameters will approach

their optimal value at the same rate (wide variation in learning rates can occur). Stochastic

stepsizes try to adjust to the data in a way that keeps the stepsize larger while the parameter

being estimated is still changing quickly. Balancing noise against the change in the underlying

signal, particularly when the noise is unknown, is a difficult challenge.

Another common ad hoc “trick” to avoid potentially sluggish behavior is to periodically

restart the algorithm. That is, after starting the search with an initial condition θ(0), α(0),

periodically restart the gain sequence at α(0). Finally, there exist a number of stochastic ana-

logues of the Newton-Raphson search in the context of parameter estimation for particular

(possibly linear) models. The scalar gain α(k) is then replaced by a matrix that approxi-

mates the (unknown) true inverse of the Jacobian (Hessian) matrix. While these methods

provide effective ways to increase convergence speed for special cases, they are restricted in

their range of application.

4.7.1 Convergence properties

The theory for proving convergence of stochastic gradient algorithms was first developed in

the early 1950s and has matured considerably since then [63]. However, all the existing proofs

require three basic conditions about the applied stepsizes

αk ≥ 0, k = 0, 1, ..., (4.20)

∞∑

k=0

αk = ∞, (4.21)

∞∑

k=0

(αk)
2 < ∞. (4.22)

Equation (4.20) obviously requires that the stepsizes be nonnegative. The most important

requirement is (4.21), which states that the infinite sum of stepsizes must be infinite. If this

condition did not hold, the algorithm might stall prematurely. Finally, condition (4.22)
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requires that the infinite sum of the squares of the stepsizes be finite. This condition, in

effect, requires that the stepsize sequence converge “reasonably quickly”. A good intuitive

justification for this condition is that it guarantees that the variance of our estimate of the

optimal solution goes to zero in the limit.

All three above mentioned conditions provide a careful balance in having the gain α(k)

decay neither too fast nor too slow. In particular, the gain should approach zero sufficiently

fast to damp out the noise effects as the iterate gets near the solution θ∗. On the other hand,

it should approach zero at a sufficiently slow rate to avoid premature (false) convergence of

the considered algorithm. All existing proof techniques lead to these three requirements on

the stepsize. Fifty years of research in this area has not been able to relax them.

Arithmetic sequences such as

α(k) =
1

k + 1
, α(k) =

α(0)

α(0) + k
, α(k) =

1

(k + 1)n
, k = 0, 1, . . . ,

satisfy these three conditions. Also, there are several famous formulas about calculating

descending stepsize sequences. Some of them are:

McClain’s formula:

α(k) =
α(k − 1)

1 + α(k − 1) − ā

Kesten’s formula:

α(k) =
α(0)

α(0) + Kk − 1

Belgacem’s formula:

α(k) =
1

Kk+1

with α(0), ā, K being some design parameters. According to the special practical problem one

should try different descending rules to find one that is suitable for the specific application.

Figure 4.2 presents the descending sequence α(k) = α(0)/ (α(0) + k) for k = 1, 2, . . . , 50 and

different values for parameter α(0).

4.7.2 An adaptive technique for the stepsize calculation

For our experiments, we introduce an adaptive technique for the calculation of stepsize α(k),

at each iteration of AFT algorithm k. This technique is based on the signs (±) of the

differences ∆θ(k), ∆θ(k − 1) of the last two iterations. If there are frequent sign changes,

this is an indication that the iterate is near θ∗; if the signs are not changing, this is an

indication that the iterate is far from θ∗. This forms the basis for an adaptive choice of the

gain α(k), where a larger gain is used if there are no sign changes and a smaller gain is used

if the signs change frequently.
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Figure 4.2: A famous descending sequence for stochastic stepsizes α(k).

Given the desirability for a gain sequence that balances algorithm stability in the early

iterations with non-negligible gains in the later iterations, a proposed stepsize form is:

α(k) =
α(0)

α(0) + Ki

. (4.23)

Initially Ki = 1,∀i and then for every iteration k = 2, 3, . . . we have:

Ki =






Ki if ∆θi(k)∆θi(k − 1) > 0

Ki + 1 if ∆θi(k)∆θi(k − 1) < 0.

(4.24)

This form is inspired by the famous learning method RPROP [64] and the arithmetic

sequences mentioned in previous Subsection. This formula takes into account only the sign

of ∆θi and acts independently on each θi. This way, every element of vector θ converges with

a different rate according to the frequency of sign changes.

4.8 Other requirements for convergence

AFT is a direct analogue of RDSA and SPSA algorithms. Although AFT uses a universal

approximator to estimate the outputs of function J (θ, x) it can be easily shown that it

requires the same properties for the underlying system in order to prove convergence. Proves

for RDSA and SPSA can be found in many places in the literature (e.g. [72]) both from the
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“statistical” and the “engineering” point of view. The conditions for an almost sure (a.s.)

convergence are the following:

• The three conditions defined for the stepsize in Section 4.7.1.

• Unique minimum for θ∗.

• Zero-mean and finite variance for the noise in the measurements.

• Smoothness of J (θ, x). J should be two-times continuously differentiable and bounded

for all θ ∈ Rnθ .

• Statistical properties of the random perturbations. The ∆i(k) have to be independent

for all k, i, identically distributed for all i at each k, symmetrically distributed about

zero and uniformly bounded in magnitude for all k, i.

The convergence conditions above provide an abstract ideal. In practice, one will rarely

be able to check all these conditions due to a lack of knowledge about function J . In fact, the

conditions may not be verifiable for the very reason that one is using such a stochastic search

algorithm! Nonetheless, the conditions are important in identifying the types of problems

for which there are guarantees of algorithm convergence. Also, conditions on J that may

be formally unverifiable may be at least intuitively plausible, providing some sense that the

algorithm is appropriate for the problem.



Chapter 5

Application to ramp metering control

This chapter presents the application results the AFT algorithm to a large-scale ramp me-

tering problem. Section 5.1 introduces the reader to the concept of ramp metering and

Section 5.2 describes some well-known existing ramp metering methodologies. In Section 5.3

the macroscopic simulator METANET which is used for the simulation experiments is pre-

sented, while in Section 5.4 a short description of the studied motorway network in Melbourne,

Australia is provided. Section 5.5 discusses the application set-up of the algorithm for this

particular network implementation and Section 5.6 examines and analyzes the results of the

simulation experiments. Finally, Section 5.7 provides some concluding remarks about the

obtained results for the two simulated control scenarios.

5.1 Introduction

Motorways had been originally conceived so as to provide virtually unlimited mobility to

road users, without the annoyance of flow interruptions by traffic lights. The rapid increase

of traffic demand, however, led soon to increasingly severe congestions, both recurrent (oc-

curring daily during rush hours) and nonrecurrent (due to incidents). The increasingly

congested motorways within and around metropolitan areas resemble the urban traffic net-

works before introduction of traffic lights (chaotic conditions at intersections, long queues,

degraded infrastructure utilization, reduced safety). At the present stage, responsible author-

ities have not fully realized that the expensive motorway or motorway-network infrastructure

is strongly underutilized on a daily basis, due to the lack of efficient and comprehensive traffic

control systems. In other words, the expensive infrastructure is intended to deliver a nominal

capacity that is not available (due to congestion), ironically, exactly at the time it is most

urgently needed (during peak hours).

Controlling the motorway traffic flow process is a highly complicated task which may

75
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involve a variety of spatially distributed control measures. The way the control measures

behave and act on the traffic process stems from the specific design of the control strategy

used. The employed control strategy determines the control actions and the specific response

to the prevailing traffic conditions, through the available control actuators, based on its

design and prespecified goals. The control measures that are typically employed in motorway

networks are the following:

• Ramp metering, activated via installation of traffic lights at on-ramps or motorway

interchanges.

• Link control that comprises a number of possibilities including lane control, variable

speed limits (VSL), congestion warning, tidal (reversable) flow, keep-lane instructions,

etc.

• Driver information and guidance systems, either by use of roadside variable mes-

sage signs (VMS) or via vehicle-infrastructure integration (VII) systems with properly

equipped vehicles, provide a promising technological background for efficient traffic

control.

5.2 Ramp metering

Ramp metering is the most direct and efficient way to control and upgrade motorway traffic.

Various positive effects are achievable if ramp metering is appropriately applied:

• increase in mainline throughput due to avoidance or reduction of congestion;

• increase in the served volume due to avoidance of blocked off-ramps or motorway in-

terchanges;

• utilization of possible reserve capacity on parallel arterials;

• efficient incident response;

• improved traffic safety due to reduced congestion and safer merging.

Fixed-time ramp metering strategies are derived off-line for particular times of day, based

on constant historical demands, without use of real-time measurements and are based on

simple static models. Their basic drawback is that they may lead (due to the absence

of real-time measurements) either to overload of the mainstream flow (congestion) or to

underutilization of the motorway. In fact, ramp metering is an efficient but also delicate

control measure. If ramp metering strategies are not accurate enough, then congestion may
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not be prevented from forming, or the mainstream capacity may be underutilized (e.g., due

to groundlessly strong metering). On the other hand, reactive ramp metering strategies are

employed at a tactical level, i.e., in the aim of keeping the motorway traffic conditions close

to prespecified set values, based on real-time measurements.

5.2.1 Local ramp metering

Local ramp metering strategies make use of traffic measurements in the vicinity of a ramp

in order to calculate suitable ramp metering values (independently for each ramp). The

demand-capacity strategy (see [51] for details), which is quite popular in North America

reads

r(t) =

{
qcap − qin(t − 1), if oout(t) ≤ ocr

rmin, else
(5.1)

where t denotes the discrete time index, qcap is the motorway capacity downstream of the

ramp, qin is the motorway flow measurement upstream of the ramp, oout is the motorway

occupancy (similar to density) measurement downstream of the ramp, ocr is the critical

occupancy (at which the motorway flow becomes maximum, see Figure 5.1), and rmin is a

prespecified minimum admissible ramp flow value. Figure 5.1 represents the fundamental

diagram, which shows the relation between occupancy and flow in a motorway. The strategy

(5.1) attempts to add to the last measured upstream flow qin(t−1) as much ramp flow r(t) as

necessary to reach the downstream motorway capacity qcap. If, however, for some reason, the

downstream measured occupancy oout(t) becomes overcritical (i.e. a congestion may form),

the ramp flow r(t) is reduced to the minimum flow rmin in order to avoid or to dissolve the

congestion.

It is clear that the ramp flow r(t) is a control input, the downstream occupancy oout(t) is

an output, while the upstream motorway flow qin(t) is a disturbance. Hence, equation (5.1)

does not really represent a closed-loop strategy but an open-loop disturbance-rejection policy

qcap

qout

ocr oout

Figure 5.1: Fundamental diagram of traffic flow.
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FEEDFORWARD (open-loop)

r

qin oout

qcap

Demand-capacity strategy

Figure 5.2: The demand-capacity local ramp metering strategy.

(Figure 5.2), which is generally known to be quite sensitive to various further nonmeasurable

disturbances. The occupancy strategy (see [51] for details) is based on the same philosophy

as the demand-capacity strategy, but it relies on occupancy-based estimation of the motorway

flow upstream of the ramp qin, which may, under certain conditions, reduce the corresponding

implementation cost.

5.2.2 The ALINEA strategy

An alternative, local closed-loop ramp metering strategy named ALINEA was suggested in

[59] and reads

r(t) = r(t − 1) + KR [ô − oout(t)] (5.2)

where KR > 0 is a regulator parameter and ô is a set (desired) value for the downstream

occupancy (typically, but not necessarily, ô = ocr may be set, in which case the downstream

motorway flow becomes close to qcap, see Figure 5.3). ALINEA is obviously an integral

regulator, hence, it is easily seen that at a stationary state (i.e. if qin is constant), qout(k) = ô

results from equation (5.2), although no measurements of the inflow qin are explicitly used

in the strategy.

Note that the demand-capacity strategy described in the previous Subsection, reacts to

excessive occupancies oout only after a threshold value (ocr) is exceeded, and in a rather

“crude” way. On the other hand, ALINEA reacts smoothly even to slight differences ô−oout,

and thus it may prevent congestion by stabilizing the traffic flow at a high throughput level.

Finally, the set value ô may be changed at any time, and thus ALINEA may be embedded

into a hierarchical control system, with set values of the individual ramps being specified in

real time by a superior coordination level or by an operator.
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ô

Figure 5.3: The ALINEA local ramp metering strategy.

Both aforementioned control strategies calculate suitable ramp volumes r(t). In the case

of traffic-cycle realization of ramp metering, r(t) is converted to a green-phase duration g(t)

by use of

g(t) =
r(t)

rsat
C (5.3)

where C is the fixed cycle time and rsat is the ramps saturation flow. The green-phase dura-

tion is constrained by g(t) ∈ [gmin, gmax], where gmin > 0 to avoid ramp closure, and gmax < C.

In the case of an one-car-per-green realization (quite popular in USA), a constant-duration

green phase permits exactly one vehicle to pass. Thus, the ramp volume is controlled by vary-

ing the red-phase duration between a minimum and a maximum value. Note that ALINEA

is also applicable directly to the green or red-phase duration, by combining equations (5.2)

and (5.3)

g(t) = g(t − 1) + K ′
R [ô − oout(t)] , with K ′

R = KR
C

rsat
(5.4)

Note also, that the values r(t−1) or g(t−1) used on the right-hand side of equation (5.2)

or (5.4), respectively, should be the bounded values of the previous time step (i.e., after

application of the gmin and gmax constraints), in order to avoid the windup phenomenon in

the I-regulator. Finally, if the queue of vehicles on the ramp becomes excessive, interference

with urban street traffic may occur. This may be detected with suitably placed detectors

(on the upstream part of the on-ramp), leading to an override of the regulators decisions to

allow more vehicles to enter the motorway and the ramp queue to diminish.

Comparative field trials have been conducted in various countries to assess and compare

the efficiency of local ramp metering strategies. It has been seen that ALINEA outper-

forms the feedforward-based demand-capacity and occupancy strategies, with respect to all

evaluation criteria (see [60] for details on field applications results).
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5.2.3 Multivariable regulator strategies

Multivariable regulators for ramp metering pursue the same goals as local ramp metering

strategies: they attempt to operate the motorway traffic conditions near some prespecified

set (desired) values. While local ramp metering is performed independently for each ramp,

based on local measurements, multivariable regulators make use of all available mainstream

measurements oi(t), i = 1, . . . , n, on a motorway stretch, to calculate simultaneously the ramp

volume values ri(t), i = 1, . . . ,m, for all controllable ramps included in the same stretch [57].

This provides potential improvements over local ramp metering because of more compre-

hensive information provision and coordinated control actions. Multivariable regulator ap-

proaches to ramp metering have been mostly derived by application of the Linear-Quadratic-

Regulator (LQR) theory ([47], [25], [56], [76]). The multivariable regulator strategy MET-

ALINE may be viewed as a generalization and extension of ALINEA, whereby the metered

on-ramp volumes are calculated from

r(t) = r(t − 1) + K1 [o(t) − o(t − 1)] + K2

[
Ô − O(t)

]
(5.5)

where r = [r1, r2, . . . , rm]T denotes the vector of the m controllable on-ramp volumes,

o = [o1, o2, . . . , on]T denotes the vector of the n measured occupancies on the motorway

stretch, O = [O1, O2, . . . , Om]T is a subset of o that includes m occupancy locations for

which prespecified set values Ô =
[
Ô1, Ô2, . . . , Ôm

]T

may be given. Note that for control-

theoretic reasons, the number of set-valued occupancies cannot be higher than the number

of controlled on-ramps. Typically, one bottleneck location downstream of each controlled

on-ramp is selected for inclusion in the vector O. Finally, K1 and K2 are the regulators

constant gain matrices that must be suitably designed (see [57] for details).

Field trials and simulation results comparing the efficiency of METALINE versus ALINEA

have led to the following conclusions:

• While ALINEA requires hardly any design effort, METALINE application calls for

a rather sophisticated design procedure that is based on advanced control-theoretic

methods (LQR optimal control).

• For urban motorways with a high density of on-ramps, METALINE was found to

provide no advantages over ALINEA (the latter implemented independently at each

controllable on-ramp) under recurrent congestion.

• In the case of nonrecurrent congestion (e.g. due to an incident), METALINE performs

better than ALINEA due to more comprehensive measurement information.
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Some system operators hesitate to apply ramp metering because of the concern that

congestion may be conveyed from the motorway to the adjacent urban road network. In fact,

a ramp metering application designed to avoid or reduce congestion on motorways may have

both positive and negative effects on the adjacent road network traffic. It is easy to see,

based on notions and statements made earlier, that, if an efficient control strategy is applied

for ramp metering the motorway throughput will be generally increased.

More precisely, ramp metering at the beginning of the rush hour may lead to on-ramp

queues in order to prevent congestion to form on the motorway, which may temporarily lead

to diversion toward the urban network. Nevertheless, due to congestion avoidance or reduc-

tion, the motorway will be eventually enabled to accommodate a higher throughput, thus

attracting drivers from urban paths and leading to an improved overall network performance.

This positive impact of ramp metering, on both the motorway and the adjacent road net-

work traffic conditions, was confirmed in a specially designed field evaluation in the Corridor

Périphérique in Paris (see [26]).

5.3 The macroscopic simulator METANET

Modeling of traffic flow on motorway networks is a useful tool for several traffic engineering

tasks such as:

• Development and evaluation of traffic control strategies.

• Short-term prediction and surveillance of traffic state in complex networks.

• Evaluation of the impact of new constructions, comparison of alternatives, etc.

• Evaluation of the impact of capacity reducing events (e.g. roadworks) or increased

demand, etc.

According to the specific task, the use of the model may be either off-line or in real-time.

Macroscopic modeling of motorway traffic flow implies the definition of adequate variables

expressing the aggregate behavior of traffic at certain times and locations. For the macro-

scopic description of traffic flow on a motorway link or a motorway network, the classical

mathematical tools of state differential equations (e.g. ẋ = f [x, u, d]) or difference equations

(e.g. x(t + 1) = f [x(t), u(t), d(t)]) are perfectly suitable.

METANET is a software for motorway network simulation based on a purely macroscopic

modeling approach. A validated macroscopic second-order traffic flow model ([53]) is used for

the simulation of traffic flow. The time and space arguments are discretized. A motorway link

is divided into segments of equal length (typically 500m). The traffic in each segment of the
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link at every discrete-time index is macroscopically characterized via the following variables:

the traffic density (veh/km/lane), the traffic volume or flow (veh/h) and the mean speed

(km/h). This leads to relatively low computational effort, which is independent of the load

(number of vehicles) in the simulated network and allows also for a real-time use of the model.

The overall modeling approach, allows for simulation of all kinds of traffic conditions (free,

dense, congested) and of capacity reducing events (incidents) with prescribed characteristics

(location, intensity, duration).

METANET, may be applied to existing or partially hypothetical, multi-origin, multi-

destination, multi-route motorway networks with arbitrary topology and geometric charac-

teristics including bifurcations, junctions, on-ramps and off-ramps. The motorway network is

represented by a directed graph, whereby the links of the graph represent motorway stretches.

Each stretch has uniform characteristics, i.e. no on-/off-ramps and no major changes in ge-

ometry. The nodes of the graph are placed at locations where a major change in road

geometry occurs, as well as at junctions, on-ramps and off-ramps. By use of a special model-

ing option (store-and-forward links [23]), METANET provides also the possibility to consider

non-motorway links in a simplified way.

METANET considers the application of traffic control measures, such as collective and/or

individual route guidance as well as ramp metering and motorway-to-motorway control, at

arbitrary network locations. Several options are offered for describing or prescribing the

average route choice behavior of drivers groups with particular destinations.

Simulation results are provided in terms of macroscopic traffic variables such as traffic

density, traffic volume, and mean speed at all network locations on a chosen time interval

basis (typically 5 to 20s; although the output interval may be chosen longer). Visualization of

results is provided by time trajectories of selected variables and by graphical representation

of the whole network. Global evaluation indexes such as total travel time, total traveled dis-

tance, total fuel consumption, total waiting time at network origins, etc. are also calculated.

Finally, for displaying traffic data generated or used by METANET in a transparent form,

an extra graphical output program called METAGRAF is available.

5.4 The Monash motorway in Melbourne

The first test case for the simulation experiments is a part of the Monash–CityLink–West Gate

Corridor in Melbourne, Australia, which is operated by VicRoads. Figure 5.4 shows a map of

the motorway stretch extending from Jacksons RD to Warrigal RD. The considered direction

is the westbound which leads to the city centre. The total length of the modeled motorway

stretch is about 17km and contains a total of 8 on-ramps and 7 off-ramps. Congestion usually
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appears right downstream Burke RD and spills back creating severe shockwaves.

The total number of links used to model the motorway is 34. This number includes 17

motorway links, 9 origin links and 8 destination links. The motorway links have been divided

into a total of 38 segments with lengths that range from 300m to 650m. At the present time,

an ALINEA/HERO [61] ramp metering control strategy is implemented at this motorway

stretch.

Figure 5.5 depicts the resulting simulation model of the motorway stretch along with the

positions of the detector stations (bullet points with associated ids). Arrows represent links,

and circles represent nodes. Three types of links are used, namely, motorway links (L1-L17),

origin links (on-ramp names and MONASH FR ORIGIN) and destination links (off-ramp

names and MONASH FR DESTIN). Each motorway link has been divided into a number of

segments bounded in Figure 5.5 with vertical lines.

A node is used mainly whenever there is an origin or a destination that needs to be

connected with the mainstream. Node N13 has been used in order to break the corresponding

long stretch into two links. This is necessary as the main bottleneck of this motorway stretch

is located in the area of L13a, where very intensive lane changes take place and the capacity

appears to be lower than the one on L13. The used model does not explicitly take into

account lane changes. As a result, the only way to enable the creation of congestion in this

area is the use of a different fundamental diagram, i.e. a different capacity value. All links

up to L13a have 3 lanes and all links from L14 and downstream have 4 lanes.

5.5 Application of AFT to ALINEA strategy

In order to evaluate the efficiency of the AFT algorithm, presented in Chapter 4, to the prob-

lem of optimizing the design parameters of a ramp metering system applied to the Monash

motorway, extensive simulation experiments have been conducted using the macroscopic traf-

fic simulation tool METANET. The traffic model parameters assumed in METANET were

obtained by use of nonlinear parameter estimation techniques [61], minimizing the mismatch

between the METANET states and actual traffic data provided by VicRoads.

It has to be emphasized that the problem of computing the “optimal” design parameters

for this particular control system can be formulated as a nonlinear optimization problem, the

solution of which depends on the traffic demand (vehicles entering the motorway network).

As a result, even in the case where the system dynamics are exactly known the computation

of the “optimal” control design parameters is a NP-hard problem, and, moreover, it requires

knowledge of the traffic demand. It is also noted that – after a tedious and time-consuming

fine-tuning – the implementation of the investigated control system in various motorway
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Figure 5.4: The Monash motorway stretch in Melbourne. The considered direction is the westbound.
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Figure 5.5: Representation of the Monash motorway stretch simulation model.
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networks produced very efficient performance (see [58] for details).

In the simulation experiments controlled ramp metering is imposed at all ramps except

ramp ON BURKE (Figure 5.5), since congestion appears upstream that ramp and spills

back due to waving at the end of link 13a (because of the lane changing), creating severe

shockwaves. The purpose of the applied ramp metering control is to take into account

spill-back of congestion from the area of Burke RD and study the effect of the developed

coordination scheme on the traffic conditions in this area. In the next two sections, the

details regarding the particular LNTCS application are presented.

5.5.1 Tunable parameters

The form of the motorway ramp metering regulator applied in the simulation experiments

reads

r(t) = H (r(t − 1) − K1o(t) + K2) , r(0) = rmax. (5.6)

The control input vector r(t) denotes the ramp flows allowed through the implementation of

ramp metering at the discrete time-index t and o(t) denotes the vector of average measured

occupancies at the detector locations downstream the controlled ramps. Vector rmax denotes

the maximum admissible flow for all the ramps. The occupancy measurements of detectors

7980, 7977, 7972, 7848, 7846, 7838 and 7827 are used to form the vector o(t). The nonlinear

(saturation) operator H is used to guarantee that the control decisions satisfy minimum and

maximum admissible ramp flow constraints.

Equation (5.6) is a multivariable feedback regulator and may be considered as a gen-

eralization of the local strategy ALINEA (equation (5.2) presented in Section 5.2.2). It is

worth noting, that (5.6) has exactly the form of (5.2) with the matrix K1 being a diagonal

matrix and the vector K2 depending on the critical densities of the locations downstream

the on-ramps. Also, the strategy METALINE (equation (5.5) in section 5.2.3) and a variety

of other multivariable (network-wide) ramp metering strategies have the form of (5.6), in

which cases matrices K1,K2 are calculated using nonlinear optimization or optimal control

techniques.

The entries of K1 and K2 affect the performance of (5.6), thus were selected for auto-

mated fine-tuning by the AFT algorithm. According to the notations of Chapter 4, for this

application the vector of tunable parameters θ has dimension 7 × 7 + 7 = 56 and is equal to

θ = vec (θ1, θ2), where θ1 a vector with the 49 entries of matrix K1 and θ2 a vector with the

7 entries of matrix K2.

According to the initial values of these parameters, two different control scenarios are

considered which are both described in details in the following section. For all the ramp
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metering experiments the cycle time period t is set equal to 30sec. In order to assess the

overall system performance the criterion J ≡ ms (equation (4.3)) was set to the actual daily

network mean speed. Finally, a projection to the nearest valid point is applied whenever a

vector θ violates the imposed constraints.

5.5.2 Demand scenario and estimation of exogenous signals

Based on actual traffic data measurements provided by VicRoads, a basic daily traffic de-

mand scenario Dz(td) was designed (where Dz(td) denotes the number of vehicles entering

the z-th motorway origin at the td-th interval), with duration equal to 8 hours (only the “peak

hours period”, i.e. the period of high traffic demand within the day was considered in the

simulations). At each fine-tuning experiment (considered as one simulated day), a random

perturbation of the basic scenario was used. More precisely, at each fine-tuning experiment,

the traffic demand was calculated according to

D(k)
z (td) = max{0,Dz(td) + Dz(td)w

(k)
z (td)}, (5.7)

where D
(k)
z (td) denotes the traffic demand at the k-th fine-tuning experiment and w

(k)
z (td)

is a Gaussian zero-mean term with variance equal to 0.1. It is worth noting that the basic

demand scenario corresponded to highly congested traffic conditions. Note also, that due

to the use of the Gaussian random term w
(k)
z (td), the exogenous signal x(k) – whose entries

correspond to the elements of D
(k)
z (td) – is an unbounded signal in the sense that it is not

possible to a priori assess an upper bound for its magnitude.

The average mean speed of the whole traffic network (in km/h) over the 8 hours was used

as the performance metric to be optimized by the fine-tuning algorithm. It is worth noting

that the average mean speed can be calculated based on detector measurements. Note also,

that since the goal of a traffic control system is to maximize mean speed, performance index

maximization (by appropriately modifying the proposed algorithm) instead of minimization

was implemented.

The exogenous vector x(k) in this particular application corresponds to the traffic demand

D
(k)
z (td) (time-history of the number of vehicles entering the network in each of the network

origins). Given the fact that there are 9 origins in the network and a daily demand scenario

corresponds to 8 hours, it would be computationally cumbersome to use vectors with entries

that correspond to estimates at small time-intervals (e.g., if the entries of x(k) correspond to

3-min estimates, the total size of these vectors is equal to 1440 entries). On the other hand,

given that the demand estimate for the next day will be anyway inaccurate (due to a natural

variation of the demand), it does not make sense to use estimates over small time-intervals.
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Moreover, the dimension nx of the estimate vector x̄(k) should be comparative to the

dimension nθ of the vector of tunable parameters θ. In our experiments, we found that it

suffices to use an estimate every 1h (i.e., eight different estimates for the demand of the whole

day). This low-dimension, noisy estimate x̄(k) of the traffic demand was constructed based

on the average number of vehicles entering every particular origin over the 1-h period and

resulted in vectors of dimension nx = 72.

5.6 Simulation results

In order to evaluate the efficiency of the presented AFT algorithm to the problem of optimiz-

ing the design parameters of an ALINEA-based ramp metering system, extensive simulation

experiments have been conducted. The performance of AFT is compared to the base-case

(no AFT case) for two different control scenarios: (1) when the initial values of the tunable

parameters θ(0) are all set equal to 0 (assuming that there is no information available about

the system or the applied regulator), and (2) when the initial values of the tunable parameters

θ(0) are selected according to some empirical rules or any other available information.

5.6.1 Global results for control scenario 1

This section presents the simulation results obtained for the control scenario 1 described

above. The initial values for the vector θ are all set to 0. As a result, the no AFT case

(derived from equation (5.6) for K1,K2 = 0) gives r(t) = r(0) = rmax,∀t, which is similar to

the no control case, as the ramp flows do not change at all. The values of vector rmax are

set big enough, so as to correspond to maximum green times for all the controlled ramps.

Alternatively, AFT changes the values of θ iteration-by-iteration trying to locate a good set

of parameters (according to the simulated daily mean speed of the network).

Because of the daily stochastic fluctuation of the demand scenario, 10 different simulation

runs were carried out for statistical purposes. Figures 5.6–5.10 compare the network-wide

mean speed of the no AFT case (blue line) versus 2 runs of the AFT algorithm (red and

green lines) delivered for control scenario 1. The only difference between two successive runs

of AFT algorithm is the stochasticity of the demand (randomly perturbed ±10% at every

iteration). In all figures, it can be seen that the application of the AFT algorithm leads to

better performance than the no control case. More precisely, the AFT algorithm achieves to

persistently keep the mean speed of the network higher than the no AFT case during the

whole fine-tuning period.
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Figure 5.6: Mean speed for control scenario 1 (no control/AFT–run 1 and 2).
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Figure 5.7: Mean speed for control scenario 1 (no control/AFT–run 3 and 4).
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Figure 5.8: Mean speed for control scenario 1 (no control/AFT–run 5 and 6).
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Figure 5.9: Mean speed for control scenario 1 (no control/AFT–run 7 and 8).
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Figure 5.10: Mean speed for control scenario 1 (no control/AFT–run 9 and 10).

All these simulation experiments were conducted with a constant stepsize α(k) = α = 0.1.

Thus, AFT does’t converge to a “good” set of parameters, albeit, it continues searching

throughout the whole simulation horizon. Accordingly, the trajectories of the system mean

speed (red and green lines in Figures 5.6–5.10) keep fluctuating, sometimes with a higher

rate than the no AFT case (blue line). The blue line fluctuates only because of the demand

changes, the red and green lines, however, because of both the demand changes and the

search process of AFT algorithm.

Table 5.1 displays the mean speed for the no AFT case and the mean speed when using

AFT for the system fine-tuning, for each simulation run. Also, the standard deviation of

the mean speed due to the ±10% daily random perturbations of the demand scenario is
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Table 5.1: Comparison of the average mean speed (MS) with and without the application of

AFT algorithm to ramp metering (control scenario 1).

All 170 days Conv. After convergence day

AFT MS (km/h) Improvement Day MS (km/h) St.Dev. Improvement

1 66.38 16.26% 22 67.67 4.35 18.51%

2 63.98 12.05% 18 64.46 3.26 12.89%

3 64.69 13.29% 12 65.16 2.99 14.12%

4 63.34 10.92% 20 64.15 4.23 12.35%

5 65.09 13.99% 8 65.36 5.79 14.46%

6 62.86 10.08% 17 63.51 5.30 11.22%

7 64.08 12.22% 14 64.63 2.95 13.18%

8 63.24 10.76% 14 63.63 4.18 11.44%

9 64.37 12.73% 23 65.41 6.51 14.56%

10 62.68 9.78% 10 62.92 4.52 10.19%

Average 64.07 12.21% 15.8 64.69 4.41 13.29%

presented. It should be noted, that AFT algorithm is learning the traffic system dynamics

during the first iterations (days) by experimenting with different sets of parameters. This

means, that the results of the first few days of implementation (see Figures 5.6–5.10) do not

derive from a well-defined optimization procedure, because of the lack of data to be used by

the approximator. After the collection of several input-output data sets (after the simulation

of some days) AFT can use the data to converge to a local optimum. Thus, for an assessment

of the algorithm’s convergence we define

ConvDay = arg min
d

J (J(d) ≥ 0.9J∗) (5.8)

where ConvDay is the day that we assume that the algorithm has converged, J∗ denotes the

maximum achievable performance (mean speed) throughout the whole simulation horizon

and J denotes a set with the outputs of all simulations.

The ConvDay is also shown in Table 5.1 for all simulation runs (15.8 days on average) and

the comparison of AFT to the no AFT case is presented for both the whole 170 simulated

days and if the learning period is excluded. The use of AFT algorithm leads to an average

improvement of the system performance of some 12% for this scenario, and if the learning

period is excluded the improvement is some 14%.

For the same control scenario the SPSA algorithm was applied in order to fine-tune the
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systems’s design parameters. The form of the applied iterative algorithm reads

θ(k + 1) =





θ∗(k) + α(k)∆(k), if k odd

θ(k) + β(k)∇̂J(k), otherwise
(5.9)

with

∇̂J(k) =
J(k) − J(k − 1)

∆θ(k)
(5.10)

where ∆θ(k) = θ(k)−θ(k−1) and θ∗(k) the best set of tunable parameters found so far. The

above iterative method applies a random perturbation of the regulator’s parameter vector

every odd day and uses the last two days measurements to obtain an approximation of the

performance index gradient (applying a gradient-ascent modification based on the gradient

estimate).

Table 5.2 displays the obtained results for 6 different simulation runs of SPSA. Different

constant values where applied for the gain sequences α(k), β(k). It is clear that SPSA cannot

increase the mean speed of the network. The scale and complexity of the fine-tuning prob-

lem prevents equation (5.10) from providing a good estimation of the system’s performance

gradient. Thus, the applied sets of parameters by SPSA algorithm can be characterized as

“random”, as they fail to achieve any improvement to the system performance. The average

mean speed for the no AFT case is 57.10 km/h and for SPSA 57.42 km/h. Figures 5.11 and

5.12 present the trajectories of the mean speed for all 6 runs of SPSA algorithm.

Table 5.2: Comparison of the average mean speed (MS) with and without the application of

SPSA algorithm to ramp metering (control scenario 1).

SPSA

No AFT 1 2 3 4 5 6 Average

MS (km/h) 57.10 58.02 57.61 57.36 57.07 57.10 57.36 57.42

St.Dev. 2.01 1.69 1.89 1.98 1.94 2.01 1.98 1.91

Improvement 1.61% 0.90% 0.46% -0.06% 0.00% 0.46% 0.56%
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Figure 5.11: Mean speed for control scenario 1 (no control/SPSA–runs 1, 2 and 3).
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Figure 5.12: Mean speed for control scenario 1 (no control/SPSA–run 4, 5 and 6).

5.6.2 Global results for control scenario 2

This section presents the simulation results obtained for the control scenario 2. The initial

values for the vector θ are selected according to K1 = I7 and K1 = [25, 25, 25, 25, 25, 25, 25]T ,

with I7 denoting the 7x7 unit matrix (recall that θ = vec (θ1, θ2), where θ1 a vector with the

49 entries of matrix K1 and θ2 a vector with the 7 entries of matrix K2). As a result, the no

AFT case (see equation (5.6)) applies 7 local ALINEA strategies to the controlled ramps (with

the critical occupancy equal to 0.25 for all ramps). Alternatively, AFT changes the values of

θ iteration-by-iteration trying to determine a good multivariable regulator (according to the

feedback of the network-wide simulated daily mean speed).
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Figure 5.13: Mean speed for control scenario 2 (ALINEA/AFT–run 1 and 2).
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Figure 5.14: Mean speed for control scenario 2 (ALINEA/AFT–run 3 and 4).

Because of the daily stochastic fluctuation of the demand scenario, 10 different simulation

runs were carried out for statistical purposes. Figures 5.13–5.17 compare the network-wide

mean speed of the no AFT case (blue line) versus 2 runs of AFT algorithm (red and green

lines) delivered for this control scenario. Again, the only difference between two successive

runs of AFT is the stochasticity of the demand (randomly perturbed±10% at every iteration).

In all figures, it can be seen that the application of AFT algorithm leads to better performance

than the application of 7 local ALINEA strategies. More precisely, the AFT algorithm

achieves to optimize the overall system performance within few days (iteration number in

figures), by efficiently fine-tuning the regulator’s design parameters, while avoiding decreasing

the daily mean speed lower than the no AFT case. The trajectories of the mean speed are

persistently increasing in all figures, until they converge to a local maximum value.
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Figure 5.15: Mean speed for control scenario 2 (ALINEA/AFT–run 5 and 6).
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Figure 5.16: Mean speed for control scenario 2 (ALINEA/AFT–run 7 and 8).
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Figure 5.17: Mean speed for control scenario 2 (ALINEA/AFT–run 9 and 10).



Chapter 5. Application to ramp metering control 96

In all simulation runs, equations (4.23)–(4.24) were applied for the stepsize of AFT al-

gorithm, with α(0) = 1. The descending sequence of α(k) leads to a smoother algorithm

convergence compering to the case of constant stepsize (scenario 1). The proposed formula

has the advantage that after some iterations descends to small values for the stepsizes α(k),

providing the algorithm with a solution close to the optimal solution found so far. Again,

there are some fluctuations due to the random demand changing.

Table 5.3 displays the mean speeds and the standard deviations for control scenario 2. It

can be seen that the use of AFT algorithm leads to an average improvement of some 18%

for this demand scenario, which is increased to some 19% if the learning period is excluded

(7 days on average). The variations between different runs are low. The average mean speed

for the original TUC system is 68.11 km/h and after the convergence of AFT this speed is

increased to 81.11 km/h. Finally, it is clear that the descending stepsize sequence helps the

convergence of the algorithm.

Table 5.3: Comparison of the average mean speed (MS) with and without the application of

AFT algorithm to ALINEA strategy (control scenario 2).

All 170 days Conv. After convergence day

AFT MS (km/h) Improvement Day MS (km/h) St.Dev. Improvement

1 81.80 20.10% 6 82.13 1.91 20.59%

2 80.49 18.18% 10 81.04 2.60 18.98%

3 81.96 20.33% 8 82.55 1.15 21.20%

4 80.77 18.59% 3 81.48 3.67 19.63%

5 81.13 19.11% 7 81.54 2.53 19.72%

6 81.03 18.98% 3 81.16 2.20 19.17%

7 80.10 17.61% 6 80.20 2.85 17.76%

8 79.16 16.22% 10 79.85 4.65 17.24%

9 79.76 17.11% 12 80.52 4.31 18.23%

10 80.28 17.87% 5 80.67 4.24 18.44%

Average 80.65 18.41% 7 81.11 3.01 19.09%
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For the same control scenario the SPSA algorithm was applied (as described in equations

(5.9)–(5.10)) in order to fine-tune the systems’s design parameters. Table 5.4 displays the

obtained results for 6 simulation runs with different values of the parameters α(k) and β(k). It

is clear that SPSA cannot increase the mean speed of the network. The scale and complexity

of the fine-tuning problem doesn’t allow for a good estimation of the gradient, considering

only one simultaneous perturbation. Thus, the resulting sets of parameters provided by

SPSA algorithm fail to achieve any improvement to the system performance. The average

mean speed without SPSA is 68.11 km/h and with SPSA 69.42 km/h. Finally, Figures 5.18

and 5.19 present the trajectory of the mean speed for the aforementioned simulation runs.

Table 5.4: Comparison of the average mean speed (MS) with and without the application of

SPSA algorithm to ALINEA strategy (control scenario 2).

SPSA

No AFT 1 2 3 4 5 6 Average

MS (km/h) 68.11 69.86 69.06 70.61 70.05 68.08 68.87 69.42

St.Dev. 4.84 2.66 4.58 3.47 4.14 5.98 4.36 4.20

Improvement 2.57% 1.40% 3.67% 2.85% -0.04% 1.11% 1.93%
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Figure 5.18: Mean speed for control scenario 2 (ALINEA/SPSA–run 1, 2 and 3).



Chapter 5. Application to ramp metering control 98

0 20 40 60 80 100 120 140 160
50

55

60

65

70

75

80

85

90

95

M
e
a
n
 S

p
e
e
d
 (

k
m

/h
)

Iteration Number

SPSA (4)

SPSA (5)

SPSA (6)

Figure 5.19: Mean speed for control scenario 2 (ALINEA/SPSA–run 4, 5 and 6).

5.7 Concluding remarks

This chapter investigated the efficiency of AFT algorithm when applied to the problem of op-

timizing the design parameters of a large-scale ramp metering control system. This adaptive

optimization methodology aims at replacing the conventional manually-based optimization

with a fully-automated procedure. Extensive simulation experiments have been conducted

for the ramp metering control problem of the large-scale traffic network of Monash motor-

way in Australia, where the design parameters of an ALINEA-based multivariable approach

were fine-tuned by AFT algorithm. The simulation results, as well as the comparison to the

base-case, where the aforementioned design parameters were selected manually, demonstrate

the algorithm’s efficiency and feasibility.

Two different control scenarios have been considered for fine-tuning. In the first one,

it was assumed that we have no knowledge about the controlled system at all. All the

initial values of the regulator’s design parameters were set equal to 0, letting AFT algorithm

to provide an efficient multivariable regulator. A comparison to the no control case was

used in order to evaluate the results. Regarding the second scenario, we investigated the

improvement of applying AFT algorithm to 7 local ALINEA regulators, in order to come up

with a network-wide multivariable regulator after the fine-tuning procedure (by appropriately

adjusting the gain matrices of equation (5.6)).

Figure 5.20 illustrates a conclusive remark about this application, based on the average

obtained results. For the selected demand scenario (which is quite realistic, since it is based

on real measurements) the no control case corresponds to an average network mean speed

of 57.10 km/h. When AFT is applied for fine-tuning to a (zero knowledge) multivariable

regulator the mean speed is increased to 64.69 km/h (13.29%), whereas SPSA cannot actually
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Figure 5.20: Conclusive (average) results for the application of AFT algorithm to ramp metering

control.

provide any improvement when applied to the same regulator (just 0.56%, with average

network mean speed 57.42 km/h). When 7 local ALINEA regulators are applied to the 7

controlled ramps, the average mean speed of the network is increased to 68.11 km/h. Note

that this speed is 5.29% higher than the one after the convergence of AFT in the first control

scenario. That is, AFT converges to a local optimal solution which provides a multivariable

regulator that is worse than the 7 local ALINEA regulators. Finally, the fine-tuning of

the regulator of the second control scenario leads to an additional improvement of 19.09%

(network mean speed 81.11 km/h) after the convergence of the algorithm. Again SPSA fails

to produce a notable improvement, resulting in a mean speed of 69.42 km/h on average

(1.93% improvement).

It is worth noting, that the average computational time for every iteration of AFT algo-

rithm is a few seconds, which means that the implementation of the algorithm in an online

real-time large-scale application would be feasible, regardless the type of the operating Traffic

Control System.
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Chapter 6

Application to urban traffic control

This chapter presents the application results of AFT algorithm to a large-scale urban signal

control problem. Section 6.1 introduces the reader to the concept of traffic management

and Urban Traffic Control (UTC) systems. Section 6.2 provides a short review of the most

popular UTC systems worldwide, while Section 6.3 focuses on the UTC strategy TUC and its

control modules. In Section 6.4 the microscopic simulator AIMSUN used for the simulation

experiments is presented, while in Section 6.5 a short description of the studied urban road

network of the city of Chania, in Greece is provided. Following, Section 6.6 discusses the

application set-up of the algorithm for this particular network implementation and Section 6.7

thoroughly examines and analyzes the results of the simulation experiments for two demand

scenarios. Finally, Section 6.8 provides some concluding remarks about the obtained results

of this application.

6.1 Introduction

Optimum management and control of traffic in urban networks is an important requirement

for city authorities, as they for seek efficient, safe and sustainable transport. In addition,

there is an increasingly wide range of demanding objectives for transport policy makers to

achieve, such as public transport priority, improved conditions for vulnerable road users,

real-time traffic information, emergency and incident management, and restraining traffic in

sensitive areas.

As a response to these issues, Urban Traffic Management and Control (UTMC) systems

have been introduced in many cities around the world, in order to provide the tools to

support efficient and effective network management to meet needs of current and future

traffic problems. Fundamentally, UTMC systems are conceived as modular open systems,

that incorporate and build on existing functionalities of existing signal control and other

101
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traffic management systems. An important point to note, is that the Urban Traffic Control

(UTC) systems are often at the heart of UTMC and provide a better migration path so that

improvements in UTC are utilized to the full in UTMC.

UTC refers to the control of traffic in urban areas using traffic signals, which are linked

to operate in a coordinated way. Such linked signal systems may be used to achieve a variety

of policy objectives, which relate to efficiency of traffic operations, improved safety, reduced

atmospheric pollution, priority for specific road user groups, access control to maintain or

enhance urban environments, and to mitigate the effects of irregular events such as accidents

or road closure. UTC systems use historic or (more commonly) real-time knowledge of

network conditions in order to determine the most appropriate control strategy, and signal

infrastructure in order to inform and control the road users.

Early UTC systems in the 1950s and 1960s were based on fixed-time traffic control, pro-

viding signal coordination or progression for traffic on an arterial, through the optimization

of offsets between adjacent sets of signals. UTC, was therefore justified on there being a

sufficient density of traffic signals to make signal coordination worthwhile, compared to the

alternative of operating traffic signals in isolation. Whilst relatively effective for traffic coor-

dination in “predictable” conditions, the inability of fixed-time systems to adjust to changing

traffic conditions has been a drawback in this approach. The desire for traffic signaling to

be more responsive to changing traffic conditions has led to the development of a range of

semi or fully traffic responsive UTC systems. The improved performance of these systems

has generally justified their additional cost (e.g. detection, maintenance, etc.).

A variety of methods for UTC have evolved over the last decades, responding to the needs

of individual cities/countries, the existing research and development base and advances in

detection, communications and control technology. These traffic-responsive UTC systems

are continuously upgraded to meet with current requirements. Quality attributes of a UTC

system play a major role in its architecture. These may include attributes such as the

speed of system response to recurring congestion and incidents (i.e. responsiveness), feedback

philosophy, ability of integration, functional and spatial extendability, wider range of control

strategies, robustness, installation and maintenance costs, etc. Flexibility of the system to

incorporate enhancements as policies/technologies advance is a further key attribute.

Criteria for installing a real-time UTC system are now much wider than the need for

efficient signal coordination for traffic. For example, the UTC communications infrastruc-

ture and processing capabilities give a powerful tool for the network manager, including

such functions as traffic information, automatic incident detection (AID), and congestion

management.
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6.2 Famous UTC systems

UTC systems constitute a scientific field with long-lasting and extensive research and devel-

opment activities. Many methodologies have been proposed so far, but there is still space for

new developments, particularly for saturated traffic conditions. In fact, widely used strate-

gies like SCOOT [29] and SCATS [48], although applicable to large-scale networks, have been

judged to have a limited traffic-responsive behavior during rapidly changing conditions, be-

cause of accordingly limited incremental changes of the signal settings and their decentralized

functional architecture.

On the other hand, more advanced traffic-responsive strategies like OPAC [21], PRODYN

[18], and RHODES [55] use algorithms with exponential complexity, which do not permit

a straightforward central network-wide application. As a consequence, they use heuristic,

hierarchically superior control levels with the aim of network-wide coordination. Finally, most

available strategies face modeling limitations when it comes to saturated traffic conditions

that are frequently observed in modern metropolitan areas.

6.3 The UTC strategy TUC

In contrast to the aforementioned control strategies, TUC (Traffic-responsive Urban Control)

has been developed to provide coordinated, network-wide, traffic-responsive control in large-

scale urban networks, especially in cases of saturated traffic conditions. This objective is

approached by using appropriate methodological tools, that allow efficient application to

large-scale networks and give rise to the following characteristics:

• High efficiency as demonstrated by a variety of results under both simulated and real-

life traffic conditions.

• Robustness with respect to measurement inaccuracies, disturbances, and hardware fail-

ures (detectors, communication links, etc.).

• Generality that leads to easy applicability (via available software tools) in networks of

arbitrary characteristics and dimensions.

• Extreme simplicity of design and implementation code.

• Limited measurement requirements (one detector per link, arbitrary detector location

within links) and communication requirements (measurements or decisions once per

cycle).

• Low computational effort.
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TUC was initially developed as part of an integrated traffic control system for corri-

dor networks within the European Telematics Applications in Transport project TABASCO

(Telematics Applications in BAvaria, SCotland and Others). The first version of TUC was

controlling only the green splits; after the initial development and the first successful field

implementations and evaluations, TUC was expanded to perform real-time cycle and offset

control too. Within the European Information Society Technology project SMART NETS

(Signal MAnagement in Real-time for urban Traffic NETworkS), the cycle and offset control

extensions of TUC have been further investigated, while a new extension was introduced to

allow for public transport priority. The extended strategy was field-implemented and evalu-

ated in three European cities (Southampton, United Kingdom; Munich, Germany; Chania,

Greece; see [37] for details) within the frame of SMART NETS, while several simulation tests

using the microscopic simulator AIMSUN [1] have been conducted in the meantime for parts

of the urban networks of Tel Aviv and Jerusalem in Israel. Quite recently, TUC has been

applied in several Brazilian cities for network-wide centralized control.

The TUC strategy consists of four main parts (see Figure 6.1):

• Split control. This was the first part to be developed. The control objective is

minimization of the risk of oversaturation and queue spillback. This control objective

is approached through the appropriate manipulation of the green splits at signalized

junctions for given cycle times and offsets. The methodology used in this part of TUC

strategy is based on the Linear-Quadratic (LQ) regulator theory of automatic control,

which is applied network-widely.

• Cycle control. It is effectuated through a simple, feedback-based algorithm (P-

regulator) that modifies the network cycle time. The control objective is to adapt

the cycle duration to the currently observed maximum saturation level in the network.

• Offset control. It is effectuated through application of a decentralized feedback con-

trol law. The feedback regulator modifies the offsets of the main stages of successive

junctions along arterials, to create “green waves”, taking into account the possible

existence of vehicle queues.

• Public transport priority. This part of the strategy is aimed at providing priority

to public transport vehicles by modifying locally, in a suitable way, the network-wide

signal settings of the previous modules. It was the last part of TUC to be developed.
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It should be noted, that depending on specific user requirements, any combination of

the four control parts may be selected for application. For example, the user can select to

perform only split control, or split and cycle control, and so forth. Moreover, each part of

TUC may run with a different control interval.

As indicated in Figure 6.1, the available real-time measurements from the network are

fed (once at each cycle) to the cycle, offset, and split control parts of TUC. Based on these

measurements, the cycle and offset control parts perform their control tasks and forward

their decisions to the split control part. Given these control decisions and the measurements,

the split part then performs its own control task and provides complete network-wide, traffic-

responsive signal settings to be forwarded for implementation. If the public transport priority

part is also active, it may modify these signal settings locally, in order to serve priority

requests (public transport data).

The measurements required by the cycle, split, and offset parts of TUC in real-time

are average numbers of vehicles within network links over a cycle. Unless the controlled

network is equipped with a video detection system, such measurements are not available. In

this case, occupancy measurements collected via traditional loop detectors may be used to

estimate numbers of vehicles within links, via suitable nonlinear functions. In addition to the

aforementioned measurements, the public transport priority part of TUC uses data related to

the movement of public transport vehicles within the controlled network. These data include

at least information on the presence of a public transport vehicle within a street.

Finally, a recent extension of TUC strategy [43], uses the real-time flow measurements of

loop detectors in order to provide better performance under undersaturated traffic conditions.

The new extension and the split control module of TUC are combined in a real-time hybrid

control scheme by the implementation of a simple switching logic.

6.3.1 Split control module

The basic methodology used by TUC for split control, is the formulation of the urban traffic

control problem as a LQ optimal control problem, based on a store-and-forward type of

mathematical modeling. This type of modeling of traffic networks was first suggested by

Gazis and Potts in [23] and has since been used in various works, notably for urban traffic

signal control. This modeling philosophy circumvents the inclusion of discrete variables in the

signal control problem formulation, thus allowing the application of polynomial-complexity

solution methods of optimization and control. This part is been described in details elsewhere

([13], [12], [10]), hence, a short summary is provided here.

The control objective is to minimize the risk of oversaturation and the spillback of link

queues by suitably varying, in a coordinated manner, the green-phase durations of all stages at
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all network junctions around some nominal values, without affecting the offsets or cycle times.

The LQ approach leads in a straightforward way to the following multivariable regulator (see

[13], [12], [10] for details):

g(ts) = gN − Lx(ts) (6.1)

where:

• ts = 0, 1, 2, . . . is the discrete time index reflecting corresponding signal cycles.

• g is the vector of the green times of all stages and all junctions in the network; g(ts)

are the green times to be applied during the starting cycle ts.

• gN is the vector of nominal green times for all network stages; these nominal green

times correspond to a prespecified fixed signal plan for the network.

• x is the vector of the vehicle-numbers in all network links; x(ts) are the vehicle-numbers

at the start of cycle ts, i.e. at the end of the previous cycle ts − 1; thus x(ts) represents

a feedback from the network under control, based on which, the new green times are

calculated via equation (6.1) in real-time.

• L is a constant gain matrix (of appropriate dimensions) that is calculated off-line based

on a straightforward procedure according to the LQ regulator methodology. The matrix

depends on the network geometry, the turning rates and the saturation flows, but was

found to be little sensitive to moderate variations of these values [10], [2].

Calculation of L is the straightforward outcome of the LQ problem formulation and is carried

out off-line (at the lab) once per application network, while the online real-time calculations

are limited to the execution of equation (6.1) with a given constant control matrix L and

state measurements x(ts). After the application of equation (6.1), a simple low-cost algorithm

([10]) applies any existing constraints (e.g. cycle constraints and minimum admissible green

times) to the obtained values of g(ts). Given the split decisions of this part of the TUC

strategy, as well as the input this part has received from the cycle and offset control parts,

complete network-wide signal settings including cycle, split, and built-in offsets are available

for implementation at the end of split control.

6.3.2 Cycle control module

One way to influence traffic conditions via traffic lights is by modifying cycle time. Note that

one single cycle time is considered here for the whole network, in order to enable junction

coordination via suitable offsets. Fundamentally, a longer cycle time typically increases the
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junction capacity, because the proportion of the constant lost (intergreen) times becomes

accordingly smaller; on the other hand, a longer cycle time may increase vehicle delays in

undersaturated junctions due to longer waiting times during the red phase.

Considering the aforementioned remarks, the objective of cycle control should be to in-

crease the junctions capacities as much as necessary to limit the maximum observed satu-

ration level in the network. Within TUC, this objective is effectuated by application of a

simple feedback algorithm, that uses as a criterion for the increase or decrease of the cycle

the current maximum saturation level of a prespecified percentage of the network links ([11]).

The feedback algorithm for cycle control comprises three steps:

1. A prespecified percentage of network links with currently maximum load (link load

σz(tc) for link z derives from σz(tc) = xz(tc)/xz,max, with xz(tc) the vehicle-number in

the link and xz,max the capacity of the link) are identified and the corresponding loads

are averaged to provide the average maximum load σ(tc).

2. The network cycle C(tc) is calculated from the feedback control law (P-regulator)

C(tc) = CN + Kc
[
σ(tc) − σN

]
(6.2)

where:

• tc = 0, 1, 2, . . . is the discrete time index for applying cycle control.

• CN a nominal network cycle time (e.g. equal to the minimum admissible cycle

Cmin).

• σN a nominal average load (e.g. equal to zero).

• Kc a tunable control parameter, the value of which affects the intensity of the

control reactions.

After applying equation (6.2), the calculated cycle time is constrained within the range

[Cmin, Cmax], if necessary, to become feasible, where Cmin and Cmax are the minimum

and maximum admissible network cycle times, respectively.

3. If the resulting network cycle time C(tc) is sufficiently high, while all links approaching

specific junctions have sufficiently low saturation levels – that is, their current load

is less than a prespecified threshold – then these undersaturated junctions are double

cycling (i.e. they run cycle times equal to C(tc)/2).

The first two steps described above attempt to adjust the network cycle time to the

observed maximum saturation level, while the third step attempts to reduce the delays that
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would occur at specific undersaturated junctions because of high cycle times. The control-

theoretic justification for the P-regulator of equation (6.2) is in accordance with the mentioned

impact of the cycle time on the junctions capacities. More precisely, a higher cycle time

increases proportionally the junction capacity; the latter, on its turn, leads to a continuous

reduction of the link loads, which corresponds to an integrating impact. In other words, the

process under cycle control includes an integrator; hence, a P-regulator is perfectly suitable

to stabilize the link load around a desired value (zero).

The cycle time specified according to the previously described logic is then forwarded to

the split control part to be used at the next split control interval in determining green splits

for the considered junctions.

6.3.3 Offset control module

Another way to influence the traffic conditions, is by specifying the offset between successive

junctions. This way it is possible to create a “green wave” along an arterial. The specification

of offset, ideally should take into account the possible existence of vehicle queues (particularly

under saturated conditions), and this is in fact attempted by the offset control part within

TUC.

The offset control module of TUC ([11]) is based on the following assumptions:

• Offset is initially specified along one-directional arterials that do not intersect. Note

that arterials are defined here as an arbitrary sequence of links that do not need to

correspond to physical network arterials.

• In the case of two-directional arterials, an offset is specified for each direction and the

offset that finally will be implemented is a weighted mean of the offsets of the two

directions. Alternatively, the most loaded direction may be selected (in real-time) to

determine the arterial offsets.

• In the case of arterials that do intersect, TUC considers a prespecified priority order

according to their relative importance regarding offset specification; then offset control

is implemented to each arterial sequentially, starting from the arterial that has highest

priority.

TUC performs offset control in a decentralized way, that is, for successive couples of junc-

tions along the predefined offset arterials. For each couple of junctions, the offset specification

changes the starting time of a specific main stage of the upstream junction, whereby this

main stage is uniquely determined from the arterial composition. TUC considers the possi-
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Figure 6.2: Offset calculation between two successive junctions j1, j2.

ble existence of vehicle queues while specifying the offset between two successive junctions,

through the application of a simple decentralized feedback control law.

Consider two successive junctions j1 and j2 and the network link z that connects them

leads from j1 to j2 and receives right-of-way during the main stage of junction j2 (Figure 6.2)

with lz the link length and νz the free-flow mean speed on link z. Note that the queue

length of link z (gray part in Figure 6.2) is approximately equal to σz(tc)·lz (recall that

σz(tc) = xz(tc)/xz,max). If there are no vehicles in the link, the offset between the two

intersections should be equal to the travel time under average speed, that is, lz/νz. In other

words, the cycle in j2 should start after the cycle in j1 (positive offset). As the number

of vehicles in link z grows, the offset should decrease correspondingly in order to allow the

partial discharge of the queue in j2. Then, the cycle in the downstream intersection should

begin earlier than in the no-queue case and, in some cases, even before the cycle in the

upstream intersection (negative offset).

More specifically, an ideal offset would be obtained, if the following two traffic flow waves

meet exactly at the tail of the existing queue:

1. Flow wave created due to the switching to green light at the upstream junction j1;

this wave moves downstream with speed νz, hence, it will reach the queue tail at time

[1 − σz(tc)] ·lz/νz after the green switch.

2. Kinematic wave created due to the switching to green light at the downstream junction

j2; this wave moves upstream (along the queue) with speed νc, which generally is

estimated to be about 15 km/h. Hence, the kinematic wave will reach the queue tail

at time σz(tc)·lz/ν
c.

Based on the preceding, the ideal offset tj1,j2(tc) in the direction that leads from j1 to j2

should satisfy
[1 − σz(tc)] lz

νz

= tj1,j2(tc) +
σz(tc)·lz

νc
. (6.3)
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Solving this equation for tj1,j2(tc), one obtains the offset feedback control law

tj1,j2(tc) =
lz
νz

− lzK
o
z

xz(tc)

xz,max
(6.4)

where Ko
z = (νc − νz)/νzν

c is a tunable control parameter. Note that equation (6.4) appar-

ently was derived several times independently, first by Gazis [22], but also in [3] where it

eventually was used in a different way. Generalization of the previously described logic leads

to the relevant formulas which are used at each successive couple of junctions (ji, ji+1) along

an arterial, in order to specify the offset between the two junctions and consequently along

the arterial.

In order to implement the new offset specified in equation (6.4), a transient cycle time

Cj2 is temporarily implemented in junction j2. The transient cycle is implemented one single

time, after which, the junctions are coordinated according to the new offset. The transient

cycle times specified from the offset control part of TUC, as described, are forwarded to the

split control part to be used at the next split control interval for determination of green splits

of the considered junctions. In case the cycle control part of TUC delivers simultaneously a

new cycle, the transient cycle is used first one single time to implement the new offsets, after

which the cycle delivered by the cycle control part is implemented until a new transient cycle

is produced.

6.3.4 Public transport priority control module

There are two approaches through which TUC may provide priority to public transport

vehicles (PTVs):

• Appropriate weighting of the measurements used in the split control law to reflect the

presence of PTVs.

• Implementation of an additional module that modifies locally (i.e. at each junction)

TUCs network-wide decisions to provide priority to PTVs.

The first approach is suitable for networks with many partially crossing public transport

lines and frequent movements of PTVs. Its implementation is easy and it actually forces

the split decision algorithm of TUC to favor the movements of PTVs; it does not provide

priority in the classical sense of the direct (or at least the sooner possible) switching of the

traffic lights to allow a detected PTV to pass. However, it has the advantage over the second

approach that it avoids creating major disturbances to the signal plans. To apply the first

approach, TUC merely needs to know the number of PTVs within the network links. This
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number is used to appropriately weight the measurements used by TUC, thus, forcing the

split decision process to favor the links that have major movements of PTVs.

The second approach provides priority in the classical sense of the direct modification of

the signal state in the presence of PTVs. However, it is not suitable for networks with many,

partially crossing public transport lines and frequent movements of PTVs. This is mainly

because it would be hardly possible to modify the signal state as many times as necessary to

serve frequently received priority requests.

According to the second approach, if a PTV is detected within a link, the state of the

traffic signal is directly modified to allow the vehicle to cross the junction at the earliest

possible time. In general, modifying the normal signal state to provide priority to special

vehicles may include green extension, stage recall, stage reordering, insertion of a special

stage, stage skipping, and so forth. In TUC, priority is provided only by green extension

or stage recall because the other methods are hardly justifiable in the context of providing

priority to PTVs in the case of saturated traffic conditions.

Modifying the signal plans to provide priority to PTVs is based on the estimated time

required for the vehicle to travel from the detection location to the stop-line. In the case of

dedicated (bus or light rail train (LRT)) lanes, this travel time is readily calculated based

on the PTVs nominal speed. In the case of mixed traffic, the estimation is based on the

discharge rate of vehicles that are estimated to be present between the detection location

and the stop-line.

The public transport priority part of TUC executes a sequence of steps that in general

terms include:

1. The strategy checks whether the criteria for granting priority are satisfied. If the criteria

are satisfied, the strategy proceeds to decide whether priority will be provided within

the current or a next cycle or whether a priority will be declined.

2. In the case that a request will be considered, the strategy uses the time that the priority

request was received in combination with the time the priority settings will be delivered

to the junction controller (consideration of transmission delays), to find whether the

reply to this particular request refers to

• a stage that will have been completed,

• a stage that will not have started, or

• the stage that will be active.

3. In each of these three cases, the strategy selects the most appropriate way to reply

between no action, green extension, and stage recall via minimization of all intermediary
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stages.

For further details about the application of TUC’s public transport priority control module

the reader is referred to [11] and [14], as it is not of primary interest for this thesis. The

AFT algorithm described in Chapter 4 is applied for fine-tuning to the split, cycle and offset

control modules of strategy TUC.

6.3.5 Traffic measurements

To apply split, cycle, and offset control as well as provision of public transport priority with

TUC, availability of measurements of numbers of vehicles in all links is required in real-time.

Since the control intervals of TUC are relatively long (e.g. at least equal to the network

cycle), these measurements should reflect the (most recent) average traffic conditions and

not the periodic fluctuations due to e.g. the green/red switching of the traffic lights. To this

end:

1. The numbers of vehicles utilized by the split control part of TUC are the mean values

of the corresponding measurements over the previous split control interval.

2. The numbers of vehicles utilized by the offset control as well as the public transport

priority part of TUC are the numbers of vehicles used by the split control part during

the last control period; however, for the cycle control module the mean values of the

corresponding measurements over the previous cycle control interval are used.

This way, all modules of TUC base their control decisions on the most recently observed

average traffic conditions in the network.

If an advanced video detection system (video sensor) is available, the required numbers

of vehicles within links can be directly collected. Otherwise, the required measurements

are estimated based on local occupancy measurements, collected in real time by traditional

detector loops.

6.4 The microscopic simulator AIMSUN

This section provides a short introduction to the commercial microscopic traffic simulator

AIMSUN. The reader is referenced to [1] for further details.

In general, microscopic modeling of traffic flow considers the movement of individual

vehicles in dependence of the movement of adjacent vehicles. Although the basic kernel of

this description is expressed in form of differential equations (car-following model), there are
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a series of additional actions, like, for example, lane choice, lane change, merging at on-ramp

and off-ramp areas, that can only be described via heuristic rules.

Most micro-simulation models use various algorithms and driver behavior models to sim-

ulate the movement of individual vehicles within a network. Each vehicle that enters the

network is assigned a vehicle type (auto, truck, bus, etc.) and corresponding vehicle per-

formance characteristics (acceleration, deceleration, speed, and turning characteristics). It

is also assigned one of ten driver characteristics (ranging from aggressive to cautious), giv-

ing each vehicle a unique and realistic performance profile that it maintains while traveling

through the network. The position and speed of each vehicle on the network is updated once

per simulation step based on its own performance and driver characteristics, the actions of

vehicles around it, roadway properties, and traffic control devices. Thus, the interaction of

vehicle to vehicle, vehicle to road, and vehicle to control devices are modeled accurately for

each simulation. Default vehicle and driver characteristics can also be modified to better

reflect actual traffic conditions for a given scenario.

Once a vehicle is assigned performance and driver characteristics, its movement through

the network is determined by three primary algorithms: (a) car following algorithm, (b)

lane changing algorithm and (c) gap acceptance algorithm. There are other algorithms

which influence vehicle behavior too, such as those which govern queue discharge and traffic

signal control, but these three are perhaps the most important and are common to all traffic

simulation models.

AIMSUN (Advanced Interactive Micro-Simulation for Urban and non-urban Networks)

is a full function microscopic simulation tool with a broad range of simulation capabilities.

It can simulate surface street networks, motorways, interchanges, weaving sections, pre-

timed and actuated signals, stop controlled intersections, and roundabouts. It also includes

features about full trip distribution capabilities, dynamic traffic assignment, real-time vehicle

guidance, and 3-D animations. AIMSUN is used in conjunction with the traffic network

graphical editor (TEDI) and is part of the Generic Environment for Traffic Analysis and

Modeling (GETRAM) open simulation environment.

Vehicle attributes such as length, width, maximum speed, and normal and maximum

acceleration are assigned when a vehicle enters the network. Users can select from a wide

variety of vehicle types, and within each type there will be some variation in these parameters

based on statistical distributions. Within the vehicle stream there is variation of driver

performance characteristics, such as desired minimum headway, turning speed and speed

acceptance (obedience to the speed limit). AIMSUN establishes mean driver performance

values and varies driver behavior for each vehicle about the mean (within specified minimum

and maximum values).
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Figure 6.3: Schematic representation of the AIMSUN API module.

AIMSUN can function as either a stochastic model, where vehicles travel through the

network based on turn probabilities, or a traffic assignment model using O/D matrices.

It is also capable of providing dynamic traffic assignment, where optimum vehicle paths

between centroids are computed at the beginning of the simulation and then updated based

on feedback from the network. Thus, route choice is based on actual traffic conditions and

may vary at different points during the simulation horizon. Finally, AIMSUN can simulate

the effects of ITS (Intelligent Transportation Systems), providing active vehicle guidance

(either variable message signs or in-vehicle systems) to modify route choice during a simulated

incident.

The evaluation of different UTC strategies is achieved in AIMSUN by the use of API

(Application Programming Interface). The AIMSUN API module extends the functions of

AIMSUN environment including user defined applications, which can exchange information

(e.g. traffic state of the network) and/or modify its state dynamically (e.g. via the change

of traffic signal plans). The AIMSUN API module (Figure 6.3) is placed, in the functional

point of view, between the AIMSUN simulation model and the external application defined

by the user (e.g. real-time UTC strategy).

There are two types of communication processes: on one hand there is the communica-

tion process between AIMSUN and AIMSUN API module and on the other hand between

the AIMSUN API module and the external application. The communication process be-

tween AIMSUN API module and AIMSUN simulation model is provided by the AIMSUN

environment; albeit, the communication between the AIMSUN API module and the external

application has to be implemented by the user, depending on the requirements of the external

application. For the simulation experiments of this thesis, TUC strategy was implemented

as an external application and connected with AIMSUN using the API module.
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6.5 The urban road network of Chania

Chania, located at the north-western part of Crete, is the capital of the prefecture of Chania

and covers 12.5km2. Chania is the second biggest prefecture of Crete in size, population and

development. Figure 6.4 exhibits a satellite view of the trial urban road network (red bullets

correspond to the controlled junctions), which has a total length of approximately 8km and

consists of 16 controlled junctions. Most of the links in that network consist of only one lane,

which means that unexpected events (accidents, double-parking, etc.) may block the link

and therefore deteriorate the traffic conditions, even if their duration is only a few minutes.

Moreover, congestion problems are not limited in the streets with the unexpected events

but they are propagated to many other streets and may sometimes lead to partial grid-

lock situations. Thus, the implemented control strategy should be able to deal with those

problems. During the morning and evening hours there is a frequent bus service in almost

every part of the network. Pedestrian movements are not a problem in the network and there

is no reason for a special treatment. Public transport priority is not a subject in Chania, so

it is not implemented in the experiments.

Congestion problems are encountered every day especially in the central (Chatzimichali

Gianari, Kidonias, Apokoronou) and the northern part (Manousou Koundourou, El. Venizelou)

of the network for about one to two hours in the morning and evening. In most traffic arterials

of the city there is heavy congestion 19:00–21:30 on Tuesday, Thursday and Friday evening,

because of the shopping centre. Another reason for the congestion is the high frequency of

buses, which embark and disembark people at stops frequently blocking one direction of the

street. Other reasons are the lower capacity due to illegal parking on the main streets and

the high usage of vehicles by the residents of the city.

Heavy congestion problems are emerging on the entire network during the rainy days when

there is an excessive inner and outer demand, usually a demand that cannot be sustained

by the network’s infrastructure. Heavy congestion problems are emerging, also, during the

tourist summer season. The heavily loaded urban network of the city is further loaded

by additional private cars and motorbikes, rented cars and bikes, tourist buses, and by

the increased movement of taxis. The aforementioned problems are encountered every day

except Sunday and some rare occasions such as off-days. The city of Chania suffers from

traffic congestion, lack of parking supply and traffic-generated pollution of the natural and

built environment.
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Figure 6.4: Satellite view of the Chania urban road network.

6.6 Application of AFT to TUC strategy

In order to evaluate the efficiency of AFT algorithm presented in Chapter 4 to the problem

of optimizing the design parameters of the split, cycle and offset control modules of TUC,

extensive simulation experiments have been carried out, comparing the performance of AFT

to the base-case (no AFT case). In the base-case, the aforementioned design parameters

of the original TUC system were manually fine-tuned to virtual perfection by the system

operators [37].

6.6.1 Network and simulation setup

Figure 6.5 represents the model of the network developed for the simulation investigations.

It consists of 16 signalized junctions (nodes) and 60 links (arrows). Each network link corre-

sponds to a particular junction phase. Typical loop-detector locations within Chania urban

network links are either around the middle of the link or some 40m upstream of the stop-line.

The traffic network characteristics (turning rates, lost times, staging, and saturation flows)

and the fixed plan gN of equation (6.1) used in AIMSUN and in TUC were provided by the

system operators of the Traffic Control Centre (TCC) of the city. Note that the fixed plan gN

is one of the six fixed predefined network signal plans used by the TCC. Split, cycle and offset

control modules of TUC strategy are applied to the network for all simulation investigations.
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Figure 6.5: Simulation model of the Chania urban road network.

Finally, a simulation step of 0.25s is considered for the microscopic simulation model.

For the application of the TUC strategy the following typical design values were used:

ks = C, kc = 600s, Cmin = 60s, Cmax = 120s, CN = Cmin. Also, for the implementation

of AFT algorithm the following design values were used: Th = 90, L̄g = 150, K = 100 and

initial values to λi according to λ1 = 100, λ3 = 0.1, λ2 = λ4 = 0.

The exogenous vector x(k) in this application corresponds to the traffic demand (time-

history of the number of vehicles entering the network in each of the network origins). Fol-

lowing the same procedure as described in Section 5.5.2, an estimate of the demand x̄(k)

every 1h was constructed (i.e., four different estimates for the demand of the whole day).

This low-dimension, noisy estimate x̄(k) of the traffic demand was again based on the average

number of vehicles entering every particular origin over the 1-h period and resulted in vectors

of dimension nx = 88 (4(hours)x22(network origins)).

6.6.2 Tunable parameters

In this section the design parameters of TUC strategy selected for fine-tuning via AFT

algorithm are thoroughly presented. The next three paragraphs describe the reasoning for the

definition of the set of tunable parameters for the split, cycle and offset control respectively.

In Section 6.3.1 the multivariable regulator of the split control module of TUC was de-

scribed. The aim of this regulator (equation (6.1)) is to balance the relative space occupancies

xz/xz,max in the network links, so as to minimize the risk of queue spillovers which may lead

to a waste of green time and even to gridlocks. LQ regulator may apply an inherent gating,

i.e., reduce the green time of links that feed a saturated road, even if these links are two

or more junctions away. The number of vehicles xz(ts) for link z during the last cycle ts is
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estimated via the following equation:

xz(ts) = xz,maxf (oz(ts),Λz) bz (6.5)

where oz(ts) denotes the measured average time-occupancy (measured by loop-detectors lo-

cated at a certain distance from the stop-line) during the last cycle time; f(·) is an empirical

function [12], [37] constructed from practical investigations; Λz denotes the distance of the

loop-detector from the stop-line divided by the total link length. Finally, bz is a non-negative

design parameter for each link z (so-called “importance factor”) that is introduced, such that

the xz(ts)-values resulting from (6.2) are multiplied with the corresponding bz before being

used by the multivariable regulator (6.1). The default values are bz = 1,∀z, but experienced

system operators may manually select a real value bz ∈ (0, 3] so as to increase or decrease the

importance of specific links, i.e. make them look more or less saturated than the measure-

ments actually reflect. These design parameters are critical for the successful deployment

and operation of the signal control strategy TUC, and hence were selected for automated

fine-tuning by the AFT algorithm.

In Section 6.3.2 the feedback P-type regulator of the cycle control module of TUC was

described. Longer cycle times typically increase the capacity of a junction, but, on the other

hand, may increase vehicle delays in undersaturated junctions, due to longer waiting times

during the red phase, or, even worse, create queue spillovers. Considering the aforementioned

remark, the objective of cycle control module is to increase the junctions’ capacities as much

as necessary to limit the maximum observed saturation level in the network. For this rea-

son, and for this particular application, equation (6.2) presented in Section 6.3.2 is slightly

changed, leading to a new feedback P-type brunch regulator which reads

C(tc) =





CN + K1 [σ(tc) − σN1 ] , if σ(tc) ≤ σcr

CN − K2 [σ(tc) − σN2 ] , if σ(tc) > σcr.
(6.6)

The efficiency of the developed regulator is extensively investigated through simulation

experiments. K1,K2 > 0 are network-wide design parameters, the selection of which affects

the intensity of the cycle control module reactions, and hence may cause a degradation in

the overall performance of TUC strategy if not suitably configured. In other words, high

K1,K2 values force the control law to react strongly even for small differences of σ(tc) from

σNi
, i = 1, 2. For this reason, the design parameters K1,K2, σN1 , σN2 , σcr were selected for

automated fine-tuning by the AFT algorithm.

Finally, the feedback regulator described in Section 6.3.3 is applied for offset coordination

in all simulation experiments. Equation (6.4) is applied to all network links that connect

successive junctions that belong to the main arterials of the network. More specifically, in
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the urban road network of Chania there are 7 main coordinated arterials: (i) 5–12–13, (ii) 13–

14, (iii) 5–4–2–1, (iv) 5–6–3, (v) 14–15–16, (vi) 12–11, (vii) 6–9, which are connected through

12 links: (i) 15–42, (ii) 48, (iii) 13–6–4, (iv) 17–20, (v) 51–56, (vi) 37, (vii) 29 accordingly

(Figure 6.5). As mentioned earlier, in (6.4) νz denotes the free-flow mean speed on link z

and Ko
z a tunable parameter depending on νz and νc (with νc the speed of the kinematic

wave moving upstream, along the queue of the link). The parameters Ko
z and 1/νz (two for

each of the aforementioned links z), which affect the efficiency of the offset control of TUC

were selected for automated fine-tuning by the AFT algorithm.

According to the remarks of the three above paragraphs and the notations used in Chap-

ter 4 for AFT algorithm we get θ = vec (θ1, θ2, θ3); where θ1 = (b1, b2, . . . , b60), θ2 =

(K1,K2, σN1 , σN2 , σcr) and θ3 = (νz,K
o
z ) , z ∈ {4, 6, 13, 15, 17, 20, 29, 37, 42, 48, 51, 56} the

design parameters of the split, cycle and offset control modules of TUC, respectively.

The initial values θ(0) were chosen so as to correspond to values that have been man-

ually fine-tuned in past field implementations of TUC in Chania network. More precisely,

parameters θ were initialized according to θ1 = 1, ∀z, θ2 = (240, 300, 0.15, 0.6, 0.4) and θ3 =

(0.022, 0.04, 0.022, 0.04, 0.033, 0.022, 0.025, 0.022, 0.022, 0.025, 0.028, 0.028, 4.222, 4.933, 4.222,

4.933, 4.666, 4.222, 4.333, 4.222, 4.222, 4.333, 4.476, 4.476). In order to assess the overall sys-

tem performance the criterion J ≡ ms (equation (4.3)) was set to the actual daily network

mean speed. Finally, a projection to the nearest valid point is applied whenever a vector θ

violates the imposed constraints.

6.6.3 Demand scenarios and integration with AIMSUN

In order to investigate the performance of AFT algorithm under different traffic conditions,

two basic traffic demand scenarios (time-history of vehicles entering the network in the net-

work origins during the day) were designed based on actual measurements, each with a

simulation horizon of 4 hours. Scenario 1 comprises medium demand in all network origins,

while scenario 2 comprises high demand and the network faces serious congestion for some

2 hours, with some link queues spilling back into upstream links. For simplicity, we assume

that a demand scenario with a time horizon of 4 hours corresponds to a day. Each day (it-

eration of the AFT algorithm) a randomly perturbed 5%-width version of the basic demand

scenarios is produced and the assessment criterion is gathered from the AIMSUN simulator.

Then, the design parameters of TUC strategy are updated by AFT algorithm according to

the calculated assessment criterion.

The overall closed-loop scheme consists of two main control loops as inner and outer loops.

The inner loop is used by the TUC strategy to produce the traffic signal settings. More

specifically at each cycle C, AIMSUN delivers the (emulated) occupancy measurements at
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the locations where detectors are placed (as in real conditions). These measurements are used

by the control modules of TUC strategy to produce the traffic signal settings (splits, cycle,

and offsets). These signal settings are then forwarded to the micro-simulator for application.

The outer loop is used by AFT algorithm to update the design parameters of TUC strategy.

More specifically, at each day, AIMSUN delivers the mean speed for the whole urban road

network. The mean speed is used by AFT algorithm (together with the average demand

estimation of next day x̄(k), as defined in Section 6.6.1) in order to produce the new values

for the design parameters of split, cycle and offset control modules of TUC strategy (the

vector θ = vec (θ1, θ2, θ3)). The new set of the design parameters is then forwarded to TUC

strategy for application, and so forth.

6.7 Simulation results

In order to evaluate the efficiency of the presented AFT algorithm to the problem of opti-

mizing the design parameters of split, cycle and offset control modules of TUC, extensive

simulation experiments have been conducted. The performance of AFT is compared to

the base-case (no AFT case), where the aforementioned design parameters were manually

fine-tuned to virtual perfection by the system operators for the original TUC system [37].

AIMSUN is based on stochastic distributions in order to calculate all the internal parameters

of the simulations. As a result, two replications of the same simulation are not identical,

unless they are fed with the same random seed. For our experiments, 10 simulation runs

with different random seeds were carried out for each scenario for statistical justification.

6.7.1 Global results for demand scenario 1

This section presents the simulation results obtained for demand scenario 1 described above

(medium demand). Figures 6.6–6.15 compare the network-wide mean speed of the original

TUC system (blue line) versus TUC system combined with AFT algorithm (red line) delivered

for scenario 1. In all figures, it can be seen that the application of AFT algorithm to the signal

control strategy TUC leads to better performance than the original TUC for this demand

scenario. More precisely, AFT algorithm achieves to optimize the overall system performance

within few days (iteration number in figures), by efficiently fine-tuning the design parameters

for all TUC’s control modules, while avoiding decreasing the daily mean speed lower than

the initial point.



Chapter 6. Application to urban traffic control 122

0 5 10 15 20 25 30 35 40 45 50
14

15

16

17

18

19

20

21

22

M
e
a
n
 S

p
e
e
d
 (

k
m

/h
)

Iteration Number

No AFT

AFT

Figure 6.6: Mean speed for demand scenario 1 (TUC/AFT–replication 1).
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Figure 6.7: Mean speed for demand scenario 1 (TUC/AFT–replication 2).

0 5 10 15 20 25 30 35 40 45 50
14

15

16

17

18

19

20

21

22

M
e
a
n
 S

p
e
e
d
 (

k
m

/h
)

Iteration Number

No AFT

AFT

Figure 6.8: Mean speed for demand scenario 1 (TUC/AFT–replication 3).
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Figure 6.9: Mean speed for demand scenario 1 (TUC/AFT–replication 4).
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Figure 6.10: Mean speed for demand scenario 1 (TUC/AFT–replication 5).
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Figure 6.11: Mean speed for demand scenario 1 (TUC/AFT–replication 6).
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Figure 6.12: Mean speed for demand scenario 1 (TUC/AFT–replication 7).
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Figure 6.13: Mean speed for demand scenario 1 (TUC/AFT–replication 8).
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Figure 6.14: Mean speed for demand scenario 1 (TUC/AFT–replication 9).
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Figure 6.15: Mean speed for demand scenario 1 (TUC/AFT–replication 10).

The trajectory of the system performance (mean speed) is persistently increasing until it

converges to a local maximum value. Note that the oscillations appearing in both blue and

red lines of the figures are due to the ±5% daily random perturbations applied to the demand

scenario. In all simulation runs, equations (4.23)–(4.24) were applied for the stepsize of AFT

algorithm, with α(0) = 1.42. The descending sequence of α(k) provided by this formula

has the advantage that after some iterations descends to small values for the stepsize α(k),

providing the algorithm with a solution close to the optimal solution found so far.

Table 6.1 displays the mean speed for the original TUC system and the mean speed when

using AFT for the system fine-tuning, for each replication. Also, the standard deviation of

the mean speed due to the ±5% daily random perturbations of the demand is presented. It

should be noted, that the AFT algorithm is learning the traffic system dynamics during the

first iterations (days) and then converges to a local optimal solution (according to equations

(4.6) and (5.8)). Thus, the results of AFT are presented for both the whole simulation horizon

(column 4 in Table 6.1) and after the convergence of AFT (column 7 in Table 6.1). Finally,

Table 6.1 also displays the number of days needed for AFT to converge and the percentage

improvement over the no AFT case.

It can be seen that the use of AFT algorithm leads to an average improvement of the

system performance of some 17% for this demand scenario; moreover, if the learning period

is excluded (which is 8.4 days on average) the improvement increases to some 20%. The

variations between different replications due to the stochasticity of the simulator and the

random demand perturbations are low. The average mean speed for the original TUC system

is 16.29 km/h and after the convergence of AFT this speed is increased to 19.50 km/h.
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Table 6.1: Comparison of the average mean speed (MS) with and without the application of

AFT algorithm to TUC strategy (demand scenario 1).

No AFT AFT (all 50 days) Conv. AFT (after convergence day)

ID MS St.Dev. MS Improvement Day MS St.Dev. Improvement

1 16.41 0.68 19.48 18.69% 10 20.04 0.83 22.10%

2 16.53 0.80 19.06 15.28% 9 19.51 1.02 18.02%

3 16.09 0.51 19.76 22.85% 4 19.85 0.71 23.43%

4 16.30 0.56 19.21 17.84% 8 19.52 0.90 19.72%

5 16.40 0.66 18.83 14.80% 5 18.95 1.00 15.55%

6 16.29 0.73 18.83 15.59% 9 19.25 0.97 18.18%

7 16.38 0.73 19.03 16.20% 6 19.26 0.91 17.59%

8 16.23 0.86 18.62 14.73% 14 19.32 0.65 19.02%

9 16.07 0.68 19.43 20.90% 8 19.79 0.88 23.15%

10 16.18 0.90 19.07 17.86% 11 19.53 0.73 20.69%

Average 16.29 0.71 19.13 17.46% 8.4 19.50 0.86 19.73%

For the same simulation experiments the SPSA algorithm (as described in equations (5.9),

(5.10)) was applied in order to fine-tune TUC’s design parameters. Table 6.2 displays the

obtained results for all simulation replications. It is clear that SPSA cannot increase the

mean speed of the network. The scale and complexity of the fine-tuning problem prevents

equation (5.10) from providing a good estimation of the system’s performance gradient.

Thus, the applied sets of parameters by SPSA algorithm are “random” and fail to achieve

any improvement to the system performance. The average mean speed for the original TUC

system is 16.29 km/h and for SPSA 16.47 km/h. Figure 6.16 presents the trajectories of the

mean speed for the first 3 replications when SPSA algorithm is applied to TUC strategy.

The trajectories of the rest 7 simulation runs are excluded as they are all quite similar.
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Table 6.2: Comparison of the average mean speed (MS) with and without the application of

SPSA algorithm to TUC strategy (demand scenario 1).

No AFT SPSA

ID MS (km/h) St.Dev. MS (km/h) St.Dev. Improvement

1 16.41 0.68 16.08 0.64 -2.01%

2 16.53 0.80 16.52 0.58 -0.06%

3 16.09 0.51 16.25 0.94 0.99%

4 16.30 0.56 16.73 0.73 2.64%

5 16.40 0.66 16.57 0.80 1.04%

6 16.29 0.73 16.37 0.51 0.49%

7 16.38 0.73 16.41 0.56 0.18%

8 16.23 0.86 16.53 0.66 1.85%

9 16.07 0.68 16.66 0.73 3.67%

10 16.18 0.90 16.56 0.68 2.35%

Average 16.29 0.71 16.47 0.68 1.10%
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Figure 6.16: Mean speed for demand scenario 1 (TUC/SPSA–replications 1, 2 and 3).
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6.7.2 Global results for demand scenario 2

This section presents the simulation results obtained for the demand scenario 2 (high de-

mand). Figures 6.17–6.26 compare the network-wide mean speed of the original TUC system

(blue line) versus TUC system combined with AFT algorithm (red line) delivered for this de-

mand scenario. In all figures, it can be seen that the application of the AFT algorithm leads

to better performance than the original TUC system itself. More precisely, AFT algorithm

achieves to optimize the overall system performance within few days (iteration number in

figures), by efficiently fine-tuning the design parameters for all TUC’s control modules, while

avoiding decreasing the daily mean speed lower than the initial point.

In all figures, the trajectory of the system performance (mean speed) is persistently in-

creasing until it converges to a local maximum value. Note that the oscillations appearing

in the blue lines of the figures (no AFT case), are due to the ±5% daily random perturba-

tions applied to the demand scenario. The same perturbations are also applied to the AFT

case; However, the oscillations of the red lines (after the convergence of the algorithm) are

clearly lower. Finally, the figures depict slight differences between the replications due to

the stochasticity of the simulator and the random demand perturbations. However, all the

simulations experiments demonstrate the superiority of AFT algorithm over the manually

fine-tuned TUC system.
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Figure 6.17: Mean speed for demand scenario 2 (TUC/AFT–replication 1).
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Figure 6.18: Mean speed for demand scenario 2 (TUC/AFT–replication 2).
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Figure 6.19: Mean speed for demand scenario 2 (TUC/AFT–replication 3).
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Figure 6.20: Mean speed for demand scenario 2 (TUC/AFT–replication 4).
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Figure 6.21: Mean speed for demand scenario 2 (TUC/AFT–replication 5).

0 5 10 15 20 25 30 35 40 45 50
4

6

8

10

12

14

16

18

M
e
a
n
 S

p
e
e
d
 (

k
m

/h
)

Iteration Number

No AFT

AFT

Figure 6.22: Mean speed for demand scenario 2 (TUC/AFT–replication 6).
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Figure 6.23: Mean speed for demand scenario 2 (TUC/AFT–replication 7).
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Figure 6.24: Mean speed for demand scenario 2 (TUC/AFT–replication 8).
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Figure 6.25: Mean speed for demand scenario 2 (TUC/AFT–replication 9).
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Figure 6.26: Mean speed for demand scenario 2 (TUC/AFT–replication 10).
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Table 6.3 displays the mean speed for the original TUC system and the mean speed when

using AFT for the system fine-tuning, for each replication. Also, the standard deviation of the

mean speed due to the ±5% daily random perturbations of the demand is presented. Again,

AFT algorithm is learning the traffic system dynamics during the first iterations (days) and

then converges to a local optimal solution. Thus, the results for AFT are presented for both

the whole simulation horizon (column 4 in Table 6.3) and after the convergence of AFT

(column 7 in Table 6.3). Finally, Table 6.3 displays the number of days needed for AFT to

converge as well as the percentage improvement over the no AFT case.

It can be seen that the use of AFT algorithm leads to an average improvement of the

system performance of some 36% for this demand scenario, and, if the learning period is

excluded (which is 7.9 days on average) the improvement increases to some 41%. The average

mean speed for the original TUC system is 9.67 km/h and after the convergence of AFT this

speed is increased to 13.61 km/h. Also, the average standard deviation of the daily mean

speed is decreased to the half (from 1.63 km/h to 0.82 km/h) after the application of AFT,

leading to smaller daily variations after the algorithm’s convergence.

Table 6.3: Comparison of the average mean speed (MS) with and without the application of

AFT algorithm to TUC strategy (demand scenario 2).

No AFT AFT (all 50 days) Conv. AFT (after convergence day)

ID MS St.Dev. MS Improvement Day MS St.Dev. Improvement

1 9.99 1.41 12.63 26.40% 12 13.33 0.44 33.35%

2 10.39 1.36 13.24 27.41% 5 13.41 1.25 29.03%

3 9.87 1.60 13.02 31.94% 8 13.49 0.91 36.67%

4 9.90 1.56 13.27 34.07% 6 13.55 1.18 36.91%

5 9.97 1.79 13.40 34.42% 15 14.37 0.55 44.14%

6 9.19 1.88 13.52 47.06% 6 13.85 0.42 50.61%

7 8.95 1.92 13.00 45.33% 4 13.22 0.77 47.74%

8 9.06 1.56 13.06 44.13% 4 13.14 0.76 44.93%

9 10.04 1.54 12.97 29.27% 13 13.86 0.90 38.09%

10 9.39 1.67 13.79 46.77% 6 13.93 1.06 48.31%

Average 9.67 1.63 13.19 36.33% 7.9 13.61 0.82 40.70%
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Once again, the application of SPSA algorithm to the same replications did not manage

to provide any satisfactory results due to the scale and complexity of the problem. Table 6.4

displays the obtained results for all simulated replications. Although the trajectories seem to

have an increasing tendency (there are actually 3 replications with some 5% improvement),

SPSA fails to increase the mean speed of the network to a desirable level. The average mean

speed for the original TUC system is 9.67 km/h and 9.88 km/h after the implementation of

SPSA. Figure 6.27 presents the mean speed trajectories for the first 3 replications of SPSA

algorithm application to TUC strategy. The trajectories of the rest 7 simulation runs are

excluded as they are all quite similar.

Table 6.4: Comparison of the average mean speed (MS) with and without the application of

SPSA algorithm to TUC strategy (demand scenario 2).

No AFT SPSA

ID MS (km/h) St.Dev. MS (km/h) St.Dev. Improvement

1 9.99 1.41 9.84 1.12 -1.50%

2 10.39 1.36 10.68 1.48 2.79%

3 9.87 1.60 9.93 1.66 0.61%

4 9.90 1.56 9.87 1.36 -0.30%

5 9.97 1.79 10.42 1.14 4.51%

6 9.19 1.88 9.42 1.46 2.50%

7 8.95 1.92 9.08 1.24 1.45%

8 9.06 1.56 9.16 1.77 1.10%

9 10.04 1.54 10.57 1.44 5.28%

10 9.39 1.67 9.77 1.26 4.05%

Average 9.67 1.63 9.88 1.39 2.17%
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Figure 6.27: Mean speed for demand scenario 2 (TUC/SPSA–replications 1, 2 and 3).

6.7.3 Detailed results

Figures 6.28 and 6.29 display the importance factors of the network links according to the

optimal solution of the AFT algorithm for scenarios 1 and 2, respectively. Green color

indicates low importance (bi ≤ 0.7), black color indicates medium importance (0.7 < bi <

1.3), and red color indicates high link importance (bi ≥ 1.3). It can be seen that AFT

algorithm increases the importance factors for network links along the main entrance to and

exit from the city centre (junctions 16, 15, 14, 13, 12, 5, 4), while for others – not so crucial for

the overall system performance – the corresponding weights are decreased. Although there

are links that have the same color for both scenarios, there are others that in scenario 1 are

green and in scenario 2 red and vice versa. An explanation for this, is that AFT converges

to a local optimal solution which fine-tunes the importance factors and optimizes the traffic

control system performance, but which also depends on the special characteristics of each

demand scenario.
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Figure 6.28: Network links importance (green for low, black for medium, red for high) to the split

module of TUC according to AFT algorithm for scenario 1.
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Figure 6.29: Network links importance (green for low, black for medium, red for high) to the split

module of TUC according to AFT algorithm for scenario 2.

In the sequel, we report on some selected results focussing on the city’s main shopping

district (junction 5 in Figure 6.5).

Regarding the split control module of TUC strategy, Figure 6.30 compares the time

evolution of the design parameters b15 and b18 under the use of the AFT algorithm, with

some optimized values for these parameters. The optimized values come from a manual

fine-tuning procedure, performed in the past by human experts in a field evaluation of TUC

strategy in Chania network [37]. The manual tuning of b15 and b18 led to the optimized

weights of 1.8 and 0.6 respectively. This is a quite reasonable link weighting, as link 15 is a

crucial link in the main arterial of the city centre, contrary to link 18 which does not carry
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Figure 6.30: Trajectories of the split parameters b15, b18 and corresponding optimized values (scenario

1 – replication 7).

substantial traffic loads. AFT algorithm starts from the initial weights b15 = b18 = 1 and by

iteratively tuning their values converges to weights that are seen to be close to the roughly

optimized values.

Figure 6.31 displays the aforementioned design parameters for demand scenario 2. The

weights again converge close to the optimized values, although they are slightly different than

in scenario 1 due to different traffic conditions. What is clear from both figures is that link

15 is more important for the network mean speed than link 18. Note that this holds for many

other network links not shown here (see Figures 6.28–6.29 for a general view). The results

of Figures 6.30–6.31 demonstrate clearly that the proposed algorithm is a feasible and viable

solution for automated parameter fine-tuning of such systems.

Continuing, we illustrate the impact of AFT algorithm to the cycle control module of

TUC strategy. The tuning of the design parameters θ2 = (K1,K2, σN1 , σN2 , σcr) by AFT

changes the reaction of the cycle control feedback-regulator (6.6) and achieves to notably

improve the mean speed of the simulated network. Figure 6.32 displays the initial cycle

control regulator and the fine-tuned cycle control regulators after the convergence of AFT

algorithm for scenarios 1 and 2, respectively and for different values of the network load σ(tc).

Recall, that σ(tc) ∈ [0, 1] is the average space occupancy for some pre-specified percentage

of network links over the last cycle control period. Figure 6.32 depicts the three different

regulators for σ(tc) ∈ [0, 0.7].
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2 – replication 3).
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The initial cycle control regulator (see equation (6.6)) consists of one monotonically

increasing function for undersaturated traffic conditions (σcr < 0.4) and one monotoni-

cally decreasing function for saturated traffic conditions (σcr > 0.4). The maximum cycle

Cmax = 120s is applied for the critical occupancy σcr = 0.4. After the convergence of AFT

algorithm, a cycle regulator with three regimes is obtained for both simulated scenarios, that

is, one regime with increasing cycle periods for undersaturated traffic conditions, one regime

with maximum cycle periods Cmax = 120s (for 0.32 ≤ σcr ≤ 0.46 and 0.25 ≤ σcr ≤ 0.36 for

scenarios 1 and 2, respectively) for traffic conditions that require to increase the capacity of

the network, and one regime with decreasing cycle periods for saturated traffic conditions

(see Figure 6.32). For the third regime the network faces severe congestion problems due to

queue spillovers and partial gridlocks that lead to a strong performance deterioration. Again,

there are slight differences between the fine-tuned cycle control regulators of scenario 1 and

2, which depend on the different traffic characteristics.

In general, the derived trapezoidal shape (see Figure 6.32) of the cycle control regula-

tors, over the saturation level of the network, outperforms the initial cycle regulator as it is

shown by the overall system performance. Eventually, three traffic regimes may be identified:

(a) undersaturated traffic conditions, (b) critical traffic conditions, and (c) saturated traffic

conditions. In that way, the cycle control module of TUC applies appropriate cycle times

for each case, that is, smaller cycle times for regimes (a) and (c) and maximum cycle time

for regime (b) so as to maximize the network’s capacity. Note that the starting points of

regimes (b) and (c) occur in different values of σcr for demand scenarios 1 and 2, which means

that the real-time implementation of AFT algorithm could be vital for the overall system

performance.

In order to elaborate on the simulation results, Figure 6.33 presents another simulation

run for demand scenario 2. The blue line represents the actual mean speed of the network

(as provided by the simulator). The red line represents the estimation/prediction that AFT

algorithm does (in the previous iteration) about the mean speed. Based on the approximator

Ĵ (θ, x), AFT picks the best of the random perturbation candidates to be applied for the next

day (according to the estimated performance index). The red line depicts this estimation

about every algorithm iteration and the blue line the actual performance after the set of

parameters has been applied.

It can be seen, that the prediction of AFT for the next day mean speed is quite accurate.

The values of Ĵ (θ(k + 1), x̄(k + 1)) and J (θ(k + 1), x(k + 1)) are not equal but the drift of

the red line follows the drift of the average value of the blue line. This is enough to provide

the algorithm with efficient behavior as the estimation of the exact actual value of the mean

speed is not a prerequisite.
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Figure 6.33: Simulation model of the Chania urban road network.

Finally, Figure 6.34 provides a representation of the input-output mapping of the approx-

imator Ĵ (θ, x) during the iteration number 25 for the same simulation. In order to evaluate

the candidate random perturbations AFT is based on the model that derives by the fitting

of previous data to Ĵ (θ, x). In most algorithm iterations, this fitting provides an unbiased

approximation or has a very small bias practically equal to 0 (Figure 6.34).
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Figure 6.34: Simulation model of the Chania urban road network.

6.8 Concluding remarks

This chapter investigated the efficiency of AFT algorithm to the problem of optimizing the

design parameters of a large-scale traffic control system composed by distinct and mutually-

interacting modules. This adaptive optimization methodology aims at replacing the conven-

tional manually-based optimization with a fully-automated procedure. Extensive simulation

experiments have been conducted for the signal control problem of the large-scale traffic

network of the city of Chania, where the design parameters of three distinct and mutually-

interacting modules of TUC strategy were fine-tuned by AFT algorithm. The simulation

results, as well as the comparison to the base-case, where the aforementioned design param-

eters of TUC system were manually fine-tuned to virtual perfection by the system operators,

demonstrate the algorithm’s efficiency and feasibility.

The design parameters of the split, cycle and offset control modules of TUC have been

considered for fine-tuning. It was demonstrated that the application of AFT algorithm to

the signal control strategy TUC leads to better network performance (in terms of daily mean

speed) compared to the original TUC system. This, underlines the superiority of the fully-

automated optimization procedure, pursued by the AFT algorithm, even in the case that the
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design parameters are already manually fine-tuned by field experts.

Regarding the design parameters of split control module, it was shown that AFT al-

gorithm increases the weight of the importance factors for network links along the main

entrance to and exit from the city centre, while for others, not so crucial, the corresponding

weights are decreased. Furthermore, it was shown that AFT algorithm converges to sets of

quite reasonable design parameters, close to the roughly optimized values provided by the

system operators for the original TUC system. Finally, regarding the design parameters of

the cycle control module, it was shown that AFT algorithm leads to cycle control regulators

with a trapezoidal shape, with three corresponding traffic regimes, which outperform the

initial cycle control regulator.

The average computational time for every iteration of AFT algorithm is again a few

seconds, which means that the implementation of the algorithm in a real-time large-scale

application would be feasible, regardless the type of the operating Traffic Control System.

Finally, it should be stressed that AFT algorithm could be also utilized as an off-line net-

work optimization tool, for calculating optimum sets of design parameters for large-scale

traffic control systems of any type, since its system dynamics and controls (equations (4.1),

(4.2)) and related performance criterion (equation (4.4)) incorporate all necessary network

characteristics.
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Chapter 7

Conclusions and future work

This chapter concludes the thesis, summarizing its findings and results. Section 7.1 highlights

the final remarks and Section 7.2 presents some future perspectives which can help to the

extension of the achieved results.

7.1 Thesis concluding remarks

Despite the continuous advances in the fields of control and computing, the design and

deployment of efficient LNTCSs is often based on simplified models for the system dynamics.

This is mainly a consequence of the complexity and the nonlinearity of the practical traffic

control system applications. As a result, the majority of LNTCSs require a tedious fine-

tuning of their design parameters prior and during the actual system operation. Currently,

the fine-tuning process is performed by experienced personnel, based on field observations

via experimentation with different combinations of design parameters, without the use of a

systematic approach.

This thesis introduced and analyzed a new learning/adaptive algorithm that can provide

with convergent, efficient and safe automatic adaptive fine-tuning of general LNTCS. The

proposed methodology combines the principles of Adaptive Optimization and Stochastic Ap-

proximation methods. The LNTCS fine-tuning problem is formulated as an optimization

problem where the objective function cannot be computed directly (i.e. its analytical form

is not known) but only estimated via observations. An approximator (i.e. neural network

or neuro-fuzzy dynamical system) is used in order to estimate the value of the unknown

objective function, which corresponds to the overall (measurable) system performance. The

algorithm runs iteratively and updates the control parameters vector (according to the objec-

tive function approximation and the adaptive optimization scheme), so as to achieve better

system performance. A detailed analysis of the algorithm as well as a step-by-step application
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description was provided.

The efficiency and online feasibility of AFT algorithm was investigated through extensive

simulation experiments for two LNTCS. The first test case is a large-scale ramp metering

control problem. A multivariable ramp metering regulator is applied to the stretch of the

Monash motorway in Melbourne, Australia. The latter test case corresponds to the appli-

cation of an urban signal control strategy to the road network of Chania, in Greece . In

both simulated cases, the simulation results illustrate that AFT (almost sure) converges to

a (local) maximum of the performance index. This indicates that AFT is an efficient and

feasible algorithm for real-time fine-tuning of the design parameters of general LNTCS.

7.2 Future perspectives

The results of this thesis are quite promising. Two future directions which can help to the

extension of the achieved results are:

• Online field application of the presented algorithm. The performance of AFT could be

evaluated through a real-time LNTCS field implementation.

• Application to other large-scale control problems different than traffic systems.

AFT algorithm is a general straightforward fine-tuning methodology that is not limited

in LNTCS. It could also be applied to other large-scale control systems that call for fine-

tuning, independently of the physical process under control. Of course, every application

domain has its own special characteristics, so a good knowledge of the considered domain is

required for a successful implementation. Nevertheless, AFT can be applied for automated

calibration to control systems of any structure or domain, e.g. chemical, mechanical, robotics,

etc. Further application results and possible field implementation could demonstrate the

algorithm’s feasibility and justify its theoretical convergence properties.
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