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ABSTRACT

Abstract

The accurate representation of groundwater levels in an aquifer is very
important for groundwater modeling and effective groundwater resources
management. However, the number and spatial distribution of monitoring sites in a
given aquifer are not always sufficient to accurately represent the water table.
Predictions of groundwater level at unvisited locations of an aquifer can be obtained
by applying geostatistical methods on the available groundwater level data and thus
the free surface of the aquifer can be reliably mapped. In sparsely monitored basins,
accurate mapping of the spatial variability of groundwater level requires the
interpolation of scattered data. This thesis aims to present new modeling tools that
help to better monitor and predict the groundwater level in sparsely gauged basins.
The specific area of focus is the Mires basin of the Mesara valley in the island of
Crete (Greece). The study area is a sparsely sampled basin that has limited
groundwater resources which are vital for the area’s welfare; spatiotemporal
variations of groundwater level are important for developing management and
monitoring strategies. Efficient groundwater management in the basin is crucial in
light of regional climate change model estimates showing a substantial risk of
desertification for Crete. Our goal is to construct accurate spatial and spatiotemporal
models of the basin’s groundwater level. Therefore, spatial and spatiotemporal models
for the accurate representation of the groundwater level variability in already
vulnerable areas with low groundwater resources, like Mires basin, need to be
developed in order to identify the susceptible locations, to estimate the groundwater
level distribution spatially and spatiotemporally and to provide input for potential
groundwater resources management plans. The main data used in this research consist
of seventy hydraulic head measurements (wet period of 2002-2003 hydrological year)
which are unevenly distributed and mostly concentrated along a temporary river and
time series performance consisting of biannual groundwater level data from ten
boreholes (1981-2003). After the year 2003 observations of a shorter number of wells
are available biannually.

This thesis initially presents a comparison of deterministic interpolation
methods, i.e., Inverse Distance Weight (IDW) and Minimum Curvature (MC), with
stochastic methods, i.e., Ordinary Kriging (OK), Universal Kriging (UK) and Kriging
with Delaunay Triangulation (DK). We evaluate the performance of the interpolation
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methods with respect to different statistical cross validation measures. The Spartan
variogram family is implemented for the first time to hydrological data and is shown
to be optimal with respect to the stochastic interpolation methods such as OK, UK,
DK and Residual Kriging (RK) applied in this dataset. The three stochastic methods
(OK, DK, UK) perform overall better than the deterministic counterparts (IDW, MC).
DK, which is herein for the first time applied to hydrological data, yields the most
accurate cross validation estimate for the lowest value in the dataset. OK and UK lead
to smooth isolevel contours, while DK and IDW generate more edges. The stochastic
methods also deliver estimates of prediction uncertainty.

The present research study also investigates the application of non-linear
normalizing data transformations in conjunction with Ordinary Kriging (OK) for the
accurate prediction of groundwater level spatial variability in a sparsely gauged basin.
We investigate three established normalizing methods, Gaussian Anamorphosis,
Trans-Gaussian Kriging and Box-Cox to improve the estimation accuracy. The first
two are for the first time applied to groundwater level data. All three methods
improve the mean absolute prediction error compared with the application of OK to
the non-transformed data. In addition, a Modified Box-Cox (MBC) transformation is
proposed and applied to normalize the hydraulic heads. MBC in conjunction with OK
is found to be the optimal spatial model based on leave-one-out cross-validation. The
recently established Spartan semivariogram family provides the optimal model fit to
the transformed data.

Trend functions, as previous studies have shown, improve the accuracy of
interpolation. Therefore, we propose that the prediction of the hydraulic head spatial
variability in Mires basin can be improved by incorporating in the trend function local
properties. Firstly the distance of the prediction points from the temporary river
crossing the basin is incorporated in the trend function and secondly a component
based on the generalized Thiem’s equation for multiple wells. Residual Kriging is
performed based on these two spatial trend models as well as using the novel MBC
transformation to normalize the residuals and the flexible Spartan semivariogram
family to optimally determine their spatial correlation. Both proposed spatial models’
improve significantly the cross validation measures compared to the other Kriging-
based methods tested. We also present maps of the groundwater level spatial
variability and the estimation variance in Mires basin obtained by means of the

optimal spatial models.
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We determine that the optimal spatial interpolation approach is based on
Residual Kriging using the non-differentiable Spartan semivariogram model for the
normalized (MBC) fluctuations. Our proposal is supported by the results of cross
validation analysis. The suggested methodology is applicable to other unconfined
aquifers as well. The non-differentiable property of the Spartan semivariogram model
is interpreted herein as the result of a deposition-removal process that leads to a
fractional Brownian motion, fBm-like, behavior of the groundwater level surface.

The overall goal of this dissertation is to use stochastic methods for the
monitoring and prediction of the groundwater level in space and time. Following the
spatial interpolation, first we model the temporal variation of groundwater level with
a discrete time autoregressive exogenous variable model (ARX) model. In this study
pumping data are used in addition to precipitation measurements. The ARX model is
embedded in a discrete-time Kalman filter to estimate the model parameters and
predict the optimal mean annual groundwater level. The ARX model is calibrated for
the years 1981 to 2006 and is then used to predict the mean annual groundwater level
in the basin for recent years (2007-2010). The predictions are validated with the
available annual averages reported by the local authorities.

Secondly, we use a spatiotemporal geostatistical analysis of the groundwater
level using space-time Residual Kriging (STRK). The space-time trend is calculated
using the product function of the estimated temporal trend from a weighted moving
average filter and the spatial trend determined from the closest distance of the
measurement locations from the river bed. A space-time experimental semivariogram
is determined from the biannual (wet and dry period) groundwater level fluctuations
time series between the years 1981 and 2003 at the ten sampling stations. We model
the semivariogram with separable and non-separable theoretical spatiotemporal
semivariogram functions. STRK is used to predict the groundwater level for selected
hydrological periods at each sampling station in the time period (2004-2010)
biannually.

Maps of groundwater level predictions and of prediction accuracy are
desirable and significant in order to assess the groundwater level spatiotemporal
variability, whether observed changes in water-table levels are statistically significant
and finally to identify additional locations where further monitoring is needed to

increase the accuracy of the maps. All the methodologies and tools presented in this
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thesis are implemented by original code developed by the author and run in Matlab®

programming environment (Matlab v.7.5 on Microsoft Windows XP).
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Iepidnyn

H oaxpinc extiunon g otdbung tov vopoeodpov opilovta omoteAel
ONUOVTIKO TOPAYoVTO Yiot €ve OAOKANPOUEVO GYESI0 OLOYEIPIONG TOV VOUTIKMOV
TOp®V oG vOPoroyikng Aekdvng. H otdbun tov vrdysiwv vddtwv oe évav
vopogopéa  eréyxetor ovvnBwg pe Pdon 10 VOpaVAKO Vyog oTlg Béoelg
EYKATESTNUEVOV TECOUETPMOV KOl EVEPYDV YEMTPNOEMV GE KOTAGTOON Mpepiog. Xe
TOAEG TTEPIMTOGELS OV TapakolovBodvial OAEC Ol YEMTPNGES AOY® KOGTOLG M
TOPOAAEWYNG TOV OPUOSIOV QOPEMV, VA CE (GAAEG TEPWTAOCELS O OplOUOg TV
veotpnoewv kol tov melopétpov sivar avemapkng. Emopéveoc o apBuog tov
dwbéoipuav petproemv tvar cuyvd PKpOS Kot opatd KATOVEUNUEVOG GTNV TEPLOYN|
UEAETNG LE OMTOTEAEGLOL VOL LTV OVTITPOCMTEVETAL EXAPKMG 1 GTAOUN TOL VIPOPOPEQ.
Extiunoeig e otdbung oe 0éceig 0mov dev LIAPYOLY TAPATNPNCES UTOPOLV VO
npoypatoromBodv e TNV EQAPUOYN YEOOTATICTIKOV HEBOOwV ota drabéoiua
dedopéva, TPOoKEWEVOD va yaptoypaendel e akpifeio o vdpoedpog opilovtag Tov
vopopopéa. Bondntukéc mAnpopopieg ¥pnoipomolodvtal Guyva Yo vo, EVIGYOGOLV TIG
EKTIUNOELS TG OTABUNG TOV VIOYEIOV VEPDOV, OT®G 1 TAGT TNG PVCIKNG UETAPOANG
TOV €MMEIOL TOV VRLHYEIWV vep®V (1 omoia mpoceyyiletar cuVHBS amd ToAVOVLLLL
pe PBhon Tic ypéG cuvieTaypéveg), N Ppoxdmtwon Ko to vyouetpo. H ypnon
Bondntikdv yopwodv petafAntov €xel amodewyfel OtL PeEATIOVEL TIC EKTIUNGCELS
VIPOVAIKDOV VY DV.

To vmot g Kpnng d1a0étet oprakodg vdyetovg voatikovg Tdpovg, ot omoiot
YPNOUOTOOVVTOL EKTEVAS Y10 YEMPYIKES OpacTnPLOTNTEG Kol VOpevotn. H kothdada
g Mecapdc, n omoia BpioKeTal 6TO VOTIO TUNLLO TOV TEPIPEPELOKOD OLAUEPICUOTOG
Hpaxieiov ot koAdmrer g €ktaon 398 km?, eivon N UEYOADTEPN Ko
TOPAYOYIKOTEPT KOO0 Tov VooV, H vmepekpetdAievon kotd 10 OdpKED TMV
TPONYOOUEVOV TPLAVTO €TV €YEL OONYNOEL OE O OPOUATIKY HEl®OT, TOvVD omd
TpLavto. TEVTE PETPO, OTN otdbun tev vroyelwv vepdv. Ot mbavég PeAAOVTIKEG
KMpatoloyikés aAlayég oty meployn g Meocoyeiov, To cevaplo  mOOVNG
EPNUOTOIMNONG KOl 1] EKTEVIC YEMPYIKY] dPACTNPLOTNTO TPOKAAOVV EVTOVN avnouyia
OYETIKA HE TNV OEWPOPiDL TOV VOATIKOV TOpmV TG Teptoyns. H mapovoa dwatpifn
eotialel oV vOpoAoyiKny Aekdvn Motlpdv g Kothdoag tg Meooapds yu 600

AOyoLG: o) O100ECIUOTNTA VOPOYEMAOYIKAOV Kol DOPOAOYIKAOV dedouévav kot ) dtoTt
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amoteAeiTol KUPIOE amd TPOooY®UATIKEG amobéoelg kATl Tov e€acparilel e peyaro
Babud vOpoYE®AOYIKY| OLOOYEVELOL.

H mopovca dwatpiPfn éxer otoéx0 vo mopovcidost kovotopes pebodoroyieg
YOPIKNG KOL YPOVIKNAG YEMOTOTIOTIKNG OVAALONG OoAAG Kot peBoddovc—epyadeio
OTOCKOTMVTIOAG OTNV EKTIUNCT Kol YOPTOYPAENON NG YWPIKNG KOl YPOVIKNG
petofAntoéttog g otdlung tov vIdyEwwV VEPOV NG AEKAvNg pe T PEATIOM
duvvartn axpifelo Aappdavovtag vaoyw kot v afefatdomnta TV ekTyunoewv. O
KOPlO0g GTOYOC TNG £pevvog gival va avoamtuyfodv Ywpikd HOVTEAL Yo TOV aKpifn
TPOGIOPIGUO TNG GTAOUNG, O VTOAOYIGHOS TOV AVTIGTOLY®V IGOSVVOUKOV KOUTVADY
K0l 0 TPOGOL0PIGUOG TMV TTO EVAAMTMOV TEPLOYDV TOV VOPOPOPEX. Xg dEVTEPO GTAAO,
To. UovTéAo, emekTeivOovTOl OE  OLUVOUIKEG  (Space-time) KOTOOTAGELS 7Yl TN
HOVTEAOTOINGN NG YOPOYPOVIKNG HETOPOANG KOt TN OLVATOTNTA EKTIUNGN TNG
LEALOVTIKTG GTAOUNC.

H yopum e€dpton 1660 TV dedopuévav 6Tdoung 660 Kot TV SIOKLVILAVEEDY
OV TPOKVTTOLV OO TO HOVIEAQ TACMNG MOV AVATTOGGOVTOL GTINV  TOPOVCH
dwoaktopkn  SwtpPny  pEAET®OVIOL  HE TNV TWPOGOPUOYN  EUTEIPIKDOV
nupopoypoppdtov ce yvootd KAUGIKG TPOTLUTE GLVOPTNGE®V, GTO TPOTLTO
ocuvaptioewv Matérn Kot 610 povtélo ZmapTidtikov NUPaploypapLaTos T0 0moio
YPNOOTOIEITAL Y10 TPDTN POPA G€ VOPOLOYIKA dedopéva. Ta poviéda ZmapTidTiKov
tomov ko Matérn mepthapuPavouy TEPICCOTEPEG TMOPAUETPOVS GE CYECT LE TO
KAMOIKA TPOTUTA, YEYOVOG TOL €VVOEL ot BEATIOTN TPOGUPUOYY OTO TEPUUOATIKO
nupapoypoppe. To Emoaptidtiko MUPBAPOYPOLLO KOL 1 OVTIGTOWN OCLVAPTNON
oLVILGTOPAS EXOVV avamTLYOel TPOGEATO KO ATOTEAOVY L0l EMTUYMOG EVOALOKTIKN
TPATACT] GTOV TPOGIOPIGUO TNG YOPIKNG EEAPTNONG TWV OEOOUEVMV.

Apyikd a&loloyeitanr n ¥pioN YVOOTOV Kol EVPEWS EPOUPLOCUEVOV HEBOSWV
YOPIKNG Topepfoing omwg to kavovikd Kriging (ordinary Kriging-OK), 7o
vevikevuévo Kriging (universal Kriging-UK), n uébodoc otabuiopévev avtictpopwv
amootdoswv (inverse distance weight-IDW), n uébodog eAdylomne KopmvuAdTnTog
(minimum curvature-MC) kot n pébodog Kriging pe tpryovoroinon katd Delaunay
(Kriging with Delaunay Triangulation-DK). H tekevtaio digpevvatal yio Tpdtn @opa
o€ VOPoAOYIKE dedopéva. Malota eEetaletanl Kol ToPoLGIALETOL 1] EPOPUOYN TNG
HeBOOOVL YPNGIUOTOIDOVTAG VO SLOPOPETIKEG YEITOVIEG EKTIUNONG TOV TPOKLITTOVV
amd TOV TPOTO EMAOYNG TOV YELTOVIK®V TILAOV TOV EKTILMUEVOV onueiov pe Bdon v

TPOTEHOVGO KOl OEVTEPEVOVGA TPLYMVOTOINGT TV YETOVIKOV Tu®mv. H ovykpion
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TOV GUYKEKPIUEVOV TEVTE LEBOO®V 0TO 1010 delylo TPOYLOTOTOLEITOL Y10 TPMTN POPAL
oopuemvo, pe TN péxpt mpoceartn PipAloypaeio. To amoteAéopato TG CVYKPIONG
VIOdEIKVOOLV 0Tt 01 oToYaoTIKEG péBodot (OK, DK, UK) Asttovpyolv pe peyarvtepn
amoteAeopaTIKOTNTO G oYéon He TS avtiotoyeg mpoodopiotikés (IDW, MCO).
Eniong 10 Zmoptidtiko muPopidypoppo  amodeikvoetol pe PAon  SlopopeTIKG
OTOTIOTIKA UETPO TO PBEATIOTO Yo TNV EPOPUOYN TNG YOOTOTIOTIKNG eKTipunong. Ot
pnébodor OK kot UK odnyodv ce mo opoAég 1c0dvvoapkés o€ ovtifeon pe Tig
nedddovg DK ko IDW. H pébodog DK n omoia ypnotponoteiton yio mpd@Tn @opd o€
VOPOAOYIKA dedopéva vIToAoYilel akpiéotepa TNV A IOTN TN TOV delypaTog Pdon
™¢ nebodov dastavpopévng entfePainong. Ot otoyaotikés péBodot mieovektodv o
oxéon UE TIG TPOGOIoPIoTIKEG KOOMG vIToAoyilovv TV afefatdTnTo TOV EKTIUGEDV
omoio. Kol UmOPEl VO VIWOONAMGEL TEPLOYEG TNG LWO  UEAETN AeKAvVNG OOV
TEPICCOTEPEG UETPNOELS OMOLTOVVIOL Y10 YEMOTOTIOTIKY OVAALGT  UEYOUAVTEPNC
axpifetoc.

H mtpoxatapKTiKny YE®OTOTIGTIKY 0VAAVGT] TOV SES0UEVOV VOPOVAIKAOV VYDV
€0e1Ee OTL awT@ O0ev OKOAOVOOLV TNV KOVOVIKY] KOTOVOUN ®OTOGO Ogv  &ivol
OTOYOPELTIKN M YPNON TOVG GE YPOUUIKY YEMOTATIOTIKY avdivon. [o va
onpovpynBet dpmg éva ympkd povtéro pe TN PEATIOTN SUVATIH OMOTEAEGLATIKOTITO
yio Tta vopovikd Vym  efetdlovior  OAQOpPES  UN  YPOUUIKEG TPOCEYYIOELS
KOVOVIKOTIOINoNG TV ded0UEVOV G GuvOvaouo pe ) uébodo extiunong kriging. H
uébodog Box-Cox wor m pébodog ¢ I'kaovowavng Avapopepoong (Gaussian
Anamorphosis-GA) xpnotomoovvtal Yo T0 LETOGYNUOTIGUO TOV JESOUEVOV GTNV
Kavovikn (ykaovotavn) katavoun mlavomntag. Ilpoteiveton emiong o véa
Tpomonomuévn ekdoyn g uebddov Box-Cox (modified Box-Cox) n omoia Baciletan
OTO GLVTIEAECTN] KUPTMOONG KOU OCVUUETPIOG TNG TOPOTNPOVUEVNG KOTOVOUNG.
Xpnotponoteiton axoun n pébodog Trans-Gaussian Kriging n onoio evoouatovel
OLUVAPTNOT  UETUCYNUOTIOHOD T®V  OEOOUEVOV  OTOV  EKTIUNTH NG  YOPIKNG
napeppornc. H ypnon tov ev A0y® pn YPOUUIKOV HOVIEA®V OmOTEAEL KavoTopio
otnv voporoyio. H pébodog modified Box-Cox oe cvvdvoouod pe t pébodo kriging
Kol T0 Xmaptidtiko muBopoypoppe amotelobv to PEATIOTO YOPIKO LOVTEAO
EKTIUMONG TG 6TABUNG TOL VOPOPOPEa PAcn chyKplong He TG vdromeg nebddovg.
[Tapovsialovror ¥GpTeEC 1GOSVVOUIKOV KOUTVADV Kol ofefaldTNTOG EKTIUNCEOV UE

OAEG TIG OTOYUOTIKEG LEBOOOVE TTOV EEETAGTNKAV.
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Eniong mpoteiveton Ko diepevvaton £va KavoTOpo YOPIKO LOVTELO TAOTC Yol
™ otdfun Tov vroyeiov VATV Tov PacileTol GTO TOMIKA YOPAKTNPIOTIKA TNG
Aekdvng tv Motpdv, Kot GUYKEKPILEVO, GTIV OTOCTOCT TOV YEMTPHGEMV OO TNV
koitn tov motopoV. To poviédo emiong EVOMUOTOVEL TO OVTIGTOL(O VYOUETPO OTN
0¢on g Kabe yedTpnonc. Mia de0TEPN KOUVOTOUN TPATAGT] YOPIKOV LOVTELOL TACTC
amoTEAEL 1] YPNOT TOV TOALATADY TNYOSLDV AVIANGNG GTOV VOPOPOpPEN TV Molpdv.
H epappoyn g e&ioowong Thiem yio molhomdd wnydadwo Gvtinong pmopei va
amodMGEL TNV Tdomn ™S 6TAbung g Aekdvng. H ypnon tov mpotevopeveov pedddwmv
Y. TOV VTOAOYIOUO TNG TAoNG NG GTAOUNS TOL VIPOPOPEN GE GUVOLAGUO WE TN
péBodo Tov vroreppatikov kriging (Residual Kriging) odnyel otn BéAtiom extipnon
TOV VOPAVAKOD VYOLG Ge onpeio TG Aekdvng émov dev VILApPYoLVY Tapatnpnoels. H
néBodoc ocuvvodeveTan amd TN YPNON TNG KOvoTtOHov HeBOIOV  KavOVIKOToinom
dedopévov modified Box-Cox (yuo Tic Sl0KLHAVOELS) Kol TOL N SlQOPIGLUOV
ZropTdTIKov NUPBAPLOYPOLLLATOS Y10 TOV TPOGOLOPIGUO TG XWOPIKNG €EAPTNONG TOV
dwkvpdvoewyv. Ov mpotdoelg pog  vmoompilovror and to  omoteAéouaTo
dwotavpopévng empPePoainonc.

To Zmoptridtiko mupopdypoppo  amotereli 10 PéATIOTO  pOVTIEAO
TPOGIOPIGHOD NG YWPIKNG eEApTNOoNS TV dedopévev yio kdbe pebodoroyia mov
efetdotnke otmv mopovoa dwrpPn. Qotdco n  cvvapnon oavt)  sivor  un
Swpopioyun. H 1010mta avtr] epunveveTton ©C TO OMOTEAEGUO UOG OLOOKOGTOG
EUTAOVTICHOD KOl AVTANOTG TOL VIPOPOPEN M omoia 0dNyel TOV VOPOPOPo opilovta
0€ GLUTEPLPOPA KAAGLATIKNG Kivnong Brown (fractional Brownian motion).

H povtedomoinon g ypovikng petafoing g otdbung tov vdpopopéa
TPOYLOTOTOIEITOL [LE TN YPTON EVOG LOVTEAOV OTOGLGYETIONG TO OTOI0 EVOWUATMOVEL
eEmyevn minpoopia omd petafintég OTmG N PPOYOTTWGCT, 1| TOPOYT OVIANGEMV Kol
n e€atpicodianmvon. To cuykekpipuévo povtéro €xel ypnoonomBel oty apytkny Tov
HOpOY| Y®PIc TNV TapoyN AvIANCE®V. TNV Topovcoa dtpPn depevuvdtor n xprnon
Kol TNG METOPANTIC OVTNG YL TPMTN QOPd pe emTvy amoteAécpota. To pHovtédo
OVTOTAALVOPOUNONG EVOOUATMOVETOL GE £Vl O10KPLTO Ypovikd eidtpo Kalman yio v
EKTIUMON TOV TOPAUETPOV OALG Kol Yoo TV TPpOPAeym g PEATIOTNG 6TAOUNG TOV
VOpPOPOpPEQ.

Ta wOpww oTolEln 7OV  YPNGIUOTOIOVVIOL GTNV  TOPOVCO  OlaTPPn
amoteAlobvtal and efoopnvra (70) LETPNOEIS GTAOUNG TOV APOPOVV TNV LYPN TEPT0O0

10V VOpoAoYKoV étovg 2002-2003 kan and otdbueg 10 yeowTpnoe®mv mOL KOAOTTOLV
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10 yYpovikd dwdotnua 1981-2003 oe vypn kot Enpn mepiodo. Or perphoelg
KOTOVELOVTOL 0VOLLOLOLOPPO. KOl €0TIALOVTAL KATA UNKOG TOV TOTaHoV ['epomodTapon
nov dwooyilet tn Aekavn. And to 2003 Ko petTd, HETPNOELS TPAYUATOTOONKAY LOVO
oe WKPO oplBud emdeypévov yewtpnoewv eved amd to 2003 600 tnAepeTpikol
otafpol Aettovpyohv 6TV TEPLOYN TOPAKOAOLVOMVTOG TN HETABOAN TG 0TAOUNG TV
VIOYEI®V VOATWV.

H akpipng yopikn ektipnon g otdfung 6 GuvOLAGUO LE TN LOVTEAOTOINGN
™G YPOVIKNG UETOPOANG SMUIOLPYOVV TIG OLVONKES Yo €vo  OAOKANPOUEVO
XOPOYPOVIKO LoVTELD TO omoio Ba meprypdpet pe axpifeia T otdOun Tov VOpoPopLa
Kot B pmopet var ekTd Ko T HeAAOVTIKN cvpumeptpopd tov. [a 10 okond avtd ot
TAGELS TNG YPOVIKNG LETAPOANG TNG 6TAOUNG peELeT®@VTOL Kot Tpoodtopilovtal amd Eva
povtélo otabuopévou kwvovpevov pécov Opov (weighted moving average). H
YOPOYPOVIKT TéoT Tpocdtopiletar amd T0 GLVOLAGHO TOV GTAOUIGUEVOD KIVOOLEVOD
HEGOL OPOL KOl TNG OMOGTACT] TOV YEMTPNGEMV Ond TNV KOiTn TOL TOTOUOD. XTN
GULVEYELD 1] YOPOYPOVIKNG EEAPTNOT TV SIOKVUAVOEDY TOV HETPHOEMY VTTOAOYILETOL
pe ™ Pondeia tov ywpoyxpovikol eumelpikod nuPaploypappotos. H povreronoinon
T0V mpaypatomoteiton pe TN xpnon Swyoplldpevov kot pn  doxopllopevev
YOPOYPOVIK®OV cuvaptioewv. H emaAnfevon extipnon xor mpoPreymn otdbung
TPOYLOTOTOLEITOL HE TNV EQUPUOYN TOL YMPOYPOVIKOL vroAsiupatikoy Kriging
(Residual Kriging). H ypnion un dioy@piciumv xmpoypoviKov GUVOPTICE®DY AITOTEAEL
emiong Kowvotopio oty voporoyia.

O1 peBodoroyieg mov avapépoviot Topamdve dHVOTUL VO EPUPLOGTOVY Kol GE
GAAEG VOPOAOYIKES AEKAVEG LE TOPOOL YOPOUKTNPIOTIKA OTTMOG AT TNG AEKAVNG TV
Mowpav. H viomoinon tov mpotewvouevov pedddwv mpaypoatomomOnke amd 10
oLYYPAPEN GE TPOTOTLTTO KMOKO GTO TPOYPUUUOTIOTIKO TeptBdAlov Matlab® evd
aloAdynon TV YE®OTOTIOTIKOV HeBOOV mpayuatomoleitor pe ™ pHEBodo NG
Swotavpopévng  emPePoimons  yPNOLOTOIOVTINS  OlIPOPE  CTOTIOTIKG  UETPO
enidoong. Ihotevovpe 611 M mopoHoa SOAKTOPIKY OTPPT] GLVEIGEEPEL OTNV
EMOTAUN NG YEWOTATICTIKNG OAAL Kol GTNV VOPOAOYIKT OlEPEVVIOT TG TTEPLOYNG
perétng. Ta amoteléopato kot ot péBodor mov mapovoidloviar pmopodv va
xpnoonomBohv ce cLVOVACUO HE GAAEG YEWEMIGTNUEG YO TNV OAOKANPOUEVT
dwyeipion TV VOUTIKOV TOP®V TG AeKAVNC TV MOolpdv Kol TG EVpOTEPTC TEPLOYNG

™¢ Mecoapdg.
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INTRODUCTION

1. Introduction

1.1 Motivations for this research

During the last thirty years geostatistics has been successfully applied in
several environmental and earth sciences disciplines. Geostatistics helps to overcome
field data deficiencies such as, sparse and scarce measurements, uncertainty
estimation and space-time data combination providing space-time predictions for
variables with environmental and economical importance. To date research on space-
time dependent variables and geostatistics continues, in order to develop new more
efficient space-time methodologies.

This thesis is primarily motivated by the need for accurate interpolation
methodologies in order to determine with the highest possible accuracy the
spatiotemporal variability of field data, i.e. hydrological data. Therefore below we
introduce space and time geostatistical methodologies which we believe that have
something new to contribute in geostatistics, e.g.: field data spatial correlation using
the Spartan variogram family, kriging-based spatial models using non-linear
normalizing data transformations, kriging-based spatial trend models capturing local
properties, Kriging with Delaunay triangulation (DK) using second order neighbors
applied for the first time in hydrological data, anisotropy estimation using a recently
established method named covariance Hessian identity also applied for the first time
in hydrological data, spatiotemporal trend calculation using a novel function based on
local basin properties and the exponentially weighted moving average filter,
spatiotemporal interpolation using a non-separable semivariogram function for the
first time in real data, a comparison of well known stochastic and deterministic
interpolation methods that in the same dataset has not been applied before.

Secondly, this thesis is motivated by the dramatic decrease in groundwater
levels during the last decades in many Mediterranean basins due to overexploitation.
Such an example is Mires basin of the Mesara valley in the island of Crete-Greece. In
light of this development and the expected adverse effects of climate change on the
basin’s water resources, accurate spatiotemporal modeling of the groundwater level
variation is significant and is needed for two main reasons: a) to identify “vulnerable”
locations on the basin where an integrated groundwater resources management plan
should focus and b) to provide accurate information for numerical groundwater flow
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models, such as the calibration of equipotentials and the representation of initial

groundwater level conditions.

1.2 Objectives

The main objective of this thesis is to develop and test interpolation
methodologies and geostatistical tools for the accurate mapping of groundwater
level’s spatial variability in sparsely monitored basins. Therefore initially in this thesis
the interpolation performance of OK, UK and of the newly established DK with the
deterministic methods IDW and MC on the same groundwater level data set is
compared. To our knowledge, this is the first application of DK to groundwater level
interpolation. The dataset used involves groundwater levels in a sparsely gauged
basin. Measuring the relative performance of different interpolators is important for
environmental monitoring.

This dissertation investigates the improvement in groundwater level
interpolation with OK using non-linear data normalization methodologies. Well-
known OK based methodologies are applied, most of them for the first time to
groundwater level data. In addition, a novel normalization method based on the Box-
Cox transformation, referred to as Modified Box-Cox (MBC) is established and
implemented in this study. The (MBC) method, Gaussian Anamorphosis (GA)
normalization and Trans-Gaussian Kriging (TGK) are applied for the first time to
groundwater level data.

In addition this dissertation introduces auxiliary trend variables based on local
features (i.e., a temporary river crossing the basin) and physical laws (i.e., Thiem'’s
multiple well equation) to improve the prediction of groundwater level.

Overall, several kriging-based spatial models are investigated, evaluated, and
maps of estimated water table elevation and its associated uncertainty are generated
by means of the optimal model.

Another objective of this dissertation is to introduce some recently developed
geostatistical tools in the hydrological literature. The recently established Spartan
semivariogram family is applied herein along with classical semivariogram models to
calculate the data spatial dependence. More specifically, the flexible Spartan
semivariogram family is applied for the first time to hydrological data and is shown
(based on cross validation) to be the optimal model of spatial variability in Mires. The
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geometric anisotropy is estimated using the newly established Covariance Hessian
Identity.

The final objective of this research work is to use stochastic methods for the
spatiotemporal monitoring and prediction of the groundwater level in sparsely gauged
basins e.g. Mires basin, located on the island of Crete (Greece). First, we model the
temporal variation of groundwater level with a discrete time autoregressive exogenous
variable model (ARX) model and then we perform spatiotemporal geostatistical
analysis of the groundwater level taking account the space time groundwater level

trend using space-time Residual Kriging (STRK).

1.3 Innovation

This research addresses some practical problems of hydrological data
geostatistical analysis and contributes to geostatistics, hydrological theory and
methodology and to factual information about the hydrology of a region.

The Spartan variogram family is tested and applied herein for the first time to
hydrological data. The application and investigation of the variogram’s efficiency on
real field data is one of primary objectives of this thesis. Furthermore a recently
proposed method to estimate Geometric anisotropy is tested in this thesis namely the
Covariance Hessian Identity. This method is also applied for the first time in
hydrology.

It also examines the use of non-linear transformation of groundwater level
data to obtain improved kriging estimates of the water table elevation. The thesis
deals with several original ideas: (i) the Modified Box-Cox, Gaussian Anamorphosis
and Trans-Gaussian Kriging transformations have not been previously applied to
groundwater level data; (ii) the use of the Matern and Spartan models for the
semivariogram is novel to groundwater level data; (iii) the application to real data is
another feature of the thesis.

This thesis introduces two novel kriging based spatial models, for the
groundwater levels accurate representation in sparsely monitored basins. The
proposed spatial models include a trend component where auxiliary variables that
incorporate specific features of the studied watershed are included. The first model
incorporates in the trend the distance of the wells from the river bed in addition to
surface elevation, while the second uses a novel trend approach that involves the
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groundwater level predicted from a groundwater hydraulics’ equation (Thiem'’s)
regarding multiple wells system operation.

New approach is also the application of a discrete time autoregressive
exogenous variable (ARX) model that uses in advance to the original approach the
groundwater abstraction rate in order to model the aquifer’s groundwater level
temporal variability. In addition new approach is the function applied to determine the
groundwater level’s spatiotemporal trend. This function involves a weighted moving
average filter for the temporal trend and the closest distance of the wells from the
river bed for the spatial trend. Moreover the non-separable spatiotemporal function
used to model the experimental spatiotemporal semivariogram of fluctuations is
applied for the first time in real data providing very good estimates better than the
classical spatiotemporal separable product function.

Finally it examines the use of Delaunay triangulation in conjunction with
kriging for interpolation of groundwater level in sparsely monitored basins for the
first time. The application of Delaunay triangulation with second neighbours is for the
first time applied to field data. Moreover it compares IDW, MC, OK, UK and DK in

the same dataset. Such a comparison has not been met in the scientific bibliography.

1.4 Outline of the thesis

The remainder of this thesis is organized as follows. In Section 2 background
and theory of geostatistical methodologies and applications are reviewed. Section 3
presents relevant information for the study area (Mires basin) and an exploratory
statistical analysis of the data set. Section 4 compares stochastic and deterministic
methods for mapping groundwater level spatial variability. In Section 5 we introduce
non-linear normalizing transformations for improving kriging of groundwater level
data. Section 6 focuses on improvement of groundwater level prediction in sparsely
gauged basins using physical laws and local geographic features as auxiliary
variables. Section 7 presents stochastic tools for the space-time modeling of
groundwater level variations. Finally section 8 contains a general discussion of the

results and concluding remarks.
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2. Background and theory

The Mediterranean Sea region is affected by the global climate change. It is
expected, according to recent climatic modeling results, to be further affected in the
future (Intergovernmental Panel on Climate Change 2007, Tsanis et al. 2011). The
Intergovernmental Panel on Climate Change (IPCC) (2007) and a series of climate
change studies (Giorgi and Lionello 2008, Somot et al. 2008, Tsanis et al. 2011)
report that the Mediterranean is highly sensitive and vulnerable to climate change,
with recent simulations estimating substantial drying and warming effects. These
predictions represent a serious threat to water resources in the region. According to
the IPCC, there will be a global surface temperature increase of 1.1 - 6.4 °C until
2100. The Mediterranean is expected to warm significantly, well above the global
average. IPCC projections suggest that annual precipitation throughout most of the
Mediterranean will be significantly reduced (fewer precipitation days, significantly
drier summers and a higher risk of drought). Evaporation rates are also expected to
increase leading to further reduction of aquifer recharge and surface runoff
(Intergovernmental Panel on Climate Change 2007, Bates et al. 2008, Howard 2011).

The analysis of climate model data for the island of Crete indicates that the
extreme events of the last few years will intensify, i.e., precipitation is expected to be
less frequent but more intense, the average temperature will increase, while the
severity and frequency of droughts will also increase in some regions. The
quantitative impact of these changes on water resources can be significant at basin
level (Tsanis et al. 2011). Mires basin in the Mesara valley of Crete has registered
decreasing trends in annual precipitation and groundwater level over the last 30 years
(see section 3.3). At the same time, the water demand is increasing because Mesara
valley is the most productive agricultural valley of Crete.

Groundwater resources are very important to both humans and the
environment. Hence it is essential to understand and control the environmental impact
of groundwater overexploitation. The expansion of irrigated agriculture leads in many
cases to groundwater overexploitation with serious impact on the water resources
budget and the environment. This results in aquifer depletion, water quality
degradation, stream flow reduction, and in major losses of habitat and biodiversity. It
is necessary for the authorities to set safe limits of groundwater availability and

vulnerability and to reconcile the human development with the preservation of nature
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(Sophocleous 2002). Therefore, the accurate representation of the groundwater level
and its spatiotemporal variability in Mires (as well as in basins with similar
characteristics), is an important management tool for identifying vulnerable areas
where pumping needs to be controlled or discontinued. The island of Crete generally
may be characterized as having marginal groundwater resources, which are
extensively used for agricultural activities and for human consumption (Donta et al.
2006, Department of Water Resources Management 2009). A characteristic example
of an area where the groundwater resources are overexploited is Mesara valley.
Groundwater levels in an aquifer are usually monitored by means of hydraulic
head measurements at borehole locations. In many cases, only a subset of the existing
boreholes are monitored due to financial constraints or omission by the responsible
authorities; in other cases, the number of operating boreholes is inadequate for a
global representation of head variability. In both cases, geostatistical methods can
help to more accurately visualize the surface of an aquifer. The geostatistical
approach allows the reproduction of spatial variability, while it also honors the
available observation data. Hence geostatistics is traditionally used to modeling

aquifer properties.

2.1 Mathematical background

Geostatistics has been well established and developed during the last three
decades and is widely applied in environmental research and technology (Journel and
Huijbregts 1978, Isaaks and Srivastava 1989, Christakos 1991b, Deutsch and Journel
1992, Cressie 1993, Goovaerts 1997, Kitanidis 1997, Christakos 2000). Geostatistics
is a sub-discipline of spatial statistics. It includes a set of statistical methods that
concern random variables with spatial and/or temporal variability (random fields).
These variables represent physical quantities with economic or environmental
importance. These methods are based on the assumption that the spatiotemporal
variability includes a random component which has space-time correlation. Therefore
statistical measures such as mean value, variance, standard deviation, spatiotemporal
dependence, e.t.c, are used to extract any useful information from the available data
(Mamassis 2006). Geostatistics deals with distributions in which the spatial and/or
temporal dependence is the primary characteristic. Geostatistical analysis aims to
estimate the statistical parameters that determine the spatial and/or temporal
distribution and dependence of the relevant variables. This procedure is called
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parameter inference. These parameters are used to estimate (interpolate) the variables
at desired spatiotemporal locations where no measurements are available (Hristopulos
2003a).

2.1.1 Random fields

Geostatistics is intrinsically connected and based on the mathematical concept
of Random fields (RF). As RF it can be considered a set of random variables that
describe the spatiotemporal variation of a physical variable size (e.g. hydraulic head,
concentration of a pollutant). Contrary to functions that have a specific mathematical

expression, e.g. f(x) =cos(x), random fields don’t have a specific expression that

represents all possible states. Each state is one sample of the field and is characterized
by a probability determined by the multidimensional Probability Density Function of
the field. Therefore, a random field can be considered as a multidimensional random
variable. Due to the interdependence of the physical characteristics in different points
of the space, random fields have particular mathematical properties that distinguish
them from a set of independent random variables (Hristopulos 2008).

There are various categories of random fields. If the field takes values only
from a finite set of numbers it is called discrete field. If the values of the field belong
to a continuous interval of real numbers, the field is called continuous field. When
variation is defined in a continuous space, such as natural fields, a continuous field is
created. On the contrary, when the positions of a grid are defined the field is called
lattice field.

Lattice fields are wused in computational (e.g. simulation of the
distribution of contaminants in groundwater) but also in theoretical studies,
because grid symmetry allows the use of efficient numerical methods (e.g. fast
Fourier transform). Moreover lattice fields allow benchmarking of different
geostatistical methods (Hristopulos 2008).

In practice the measurements represent a finite number of points, the
distribution of which does not necessarily have the symmetry of a regular grid. In
these cases the network of sampling points is inhomogeneous. The terms
disordered lattice and off lattice can be used as well. On such cases, geostatistical
methods are needed to operate adequately, considering the limitations of each
spatial distribution. If the distribution is off lattice, the evaluation or simulation of
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procedure is realized on a gridded background that covers the area of interest (Hristopulos
2006).

The concept of random fields is based on two key terms: randomness and
interdependence of values of physical quantities at different points of the space.
Randomness characterizes phenomena in which knowledge of a situation with complete
accuracy is impossible due to various constraints. Such constraints originate from the
variability of different physical quantities in space and the uncertainty due to limited
number of measurements. In these cases the result (the value of the phenomenon) is
determined via a probability distribution function, which defines the probability of
occurrence of each state.

Spatial dependence is a particular feature in random fields and describes the
reliance between the values of two different points in the field. The probability
distribution of the field embodies correlations between different points, so the probability
of observing a value at a point depends on the values in adjacent points (Hristopulos
2008).

2.1.2 Basic concepts in random fields
A random field is denoted as Z (s), where s is a position vector s :(x, y).

Z (s) represents all possible states in the field, while z(s) denotes the values that
correspond to a specific state. Probability Density Function (PDF) of the field is

denoted as f,[z(s)]. Index Z indicates the field, while the argument of the function

is the values of the state of the field (e.g. hydraulic head, concentration of pollutants).

An example of PDF, which corresponds to a normal distribution random field, is

, 2
given by: f,[z(s)] :ﬁexp [—(Z(S) ;:22 ) } where m; (s)is the mean value,
Z

z

o> the variance and o, the standard deviation of the random field.

Probability Density Function of a random field includes all values in the space
where the field is defined. Therefore PDF is common for any number of points. One-
dimensional or point PDF describes all possible states in the field, on a specific point. It is
possible that the one-dimensional PDF changes from point to point and that happens when
the field is inhomogeneous. Proportionally, two-dimensional PDF of the field expresses
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the interdependence of possible states of two points, while multidimensional PDF
describes the interdependence of all possible situations for N points (Hristopulos 2008).

Another type of functions that provides information about the properties of a
random field is statistical moments. Statistical moments are deterministic functions
which represent average values in all possible situations. In practice, usually low
order (up to second order) statistical moment, as mean value, dispersion, covariance
functions and semivariogram, is useful (Hristopulos 2008).

Spatial random fields (SRF) are random fields that location plays the primal
role as the property values are spatially correlated. An SRF state can be decomposed

into a deterministic trend m, (s) a correlated fluctuation Z/(s), and an independent
random noise term e(s) so that, Z(s)=Z;(s)+m,(s)+e(s). The fluctuation term

corresponds to ‘fast variations’ that reveal structure at small scales, which nonetheless
exceed a cut-off 4, the trend is often determined from a single available realization.
The random noise represents non-resolved inherent variability due to resolution
limits, purely random additive noise, or non-systematic measurement errors. The
classical approach of SRF’s is based on Gaussian SRF’s (GSRF’s) and various
generalizations for non-Gaussian distributions (Wackernagel 2003). The covariance
matrix therefore is used to determine the spatial structure for the GSRF’s which is
estimated from the distribution of the data in space. Generally SRF’s model spatial
correlations of variables and have various applications e.g., in hydrology (Kitanidis
1997), environmental pollutant mapping and risk assessment (Christakos 1991b),

mining exploration and reserves estimation (Goovaerts 1997).

2.1.3 Mean value

The mean value of a random field is given by:
mz (s)=E[Z(s)]. (2.1)

E[Z(s)] denotes the mean value, calculated in all states of the field, i.e.

E[Z()] :Idzfz(z;s)z, (2.2)
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where z the values that correspond to a given state. The integral limits depend on
the space where field Z is defined. If the field takes all negative and positive
values the integral varies from —oo tooo. If the field takes only positive values the
integral ranges from 0 tooo. If it is known that the values of the field are limited to
a predetermined interval [a,b], the integral is calculated in this interval. In the
latter equation it can be noted that the average value may depend on position, s,
which comes from a possible dependence between the one-dimensional probability
density function and the position. Since PDF is not always known in advance, mean
value is estimated through the sample using statistical methods. This is the average of

N
all values in the sample, (Hristopulos 2008): m; (s) = %Zzi (s). A useful application
i=1

topic of the mean value is to describe the large-scale trends in a random field. Mean
value m; (s) is defined using reference functions. They can be divided in general and

local dependence patterns. In the case of general dependence only one mathematical
equation describes the variance in the entire area. This kind of dependence patterns

are:

e Linear dependence, e.g. m, =m,+bs which expresses the existence of a
constant slope

e Polynomial dependence, e.g. m; (s) =m, +b;s, +b,s,

e Periodic dependence, e.g. m, (s)=m, +ZLA1 cos(k, s+¢,), where variables

k., correspond to spatial frequencies and ¢, in phases

e The overlay of two or more patterns, e.g. a polynomial and a periodic,

m; (s) =(m, +hys, +b232)+(m0 JranzlA1 cos(K, s+¢n)) .

In cases where the general dependence patterns are insufficient for the exact
determination of the trends, the use of local dependence functions is preferable (e.g.
local polynomials). Such type of dependence is used in the model of locally weighed

regression (Hristopulos 2008).
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2.1.4 Variance

Variance in a random field is given by the mean value of the squared

fluctuation according to equation,
oi () =E| {z6)-m,©)} |=E[2°®)]. (23)

In general, it is possible for the variance to vary from point to point while remaining
stable only when the field is statistically homogeneous. The variance fluctuations in a
random field mean that the fluctuations in the field change from point to point (Isaaks
and Srivastava 1989).

2.1.5 Covariance function

Another property which gives useful information for a random field is the

centered covariance function (CCF), which is defined as (Isaaks and Srivastava 1989):
C; (51' Sz) =E I:{Z(Sl) - mé (51)} {Z(Sz) - m'z (Sz)}] : (2-4)

The random field Z(sl) =Z(s;)—m,(s;) corresponds to the fluctuation in field Z(s,)

around the mean value at point s,. The mean value of the fluctuation field is equal to

zero, E|[ Z(s,) | =0. Based on the previous equations it holds:

c,(5,,5,) =E[ Z(s)Z(s,)]. (2.5)

Specifically, CCF describes quantitatively the dependence of the fluctuations
between two different points in the field. When the points of the covariance function

coincide, the value is equal to the variance of the field at that point c, (s,,s,) =o5(s,) -

On the contrary, when the distance between two points grows larger, the dependence
of the fluctuations is reduced. An example of change of the covariance function with

the distance follows: Let the covariance function between two points in a random
. . . r .
field be given by the exponential model, ¢, (s,,s,) :aéexp(—g} where [r| is the
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Euclidian norm of the distance vector between two points and £ is the correlation
length. If |r|=0 then c,(s,,s,) =0, while if |[r|=¢ then c,(s,,s,)=0.3602
(Hristopulos 2008).

In geostatistical analysis the experimentally determined spatial dependence is
fitted to an optimal model selected by a set of accepted theoretical functions (e.g.

exponential, Gaussian, powerlaw e.t.c). A function is a valid covariance function if

and only if it satisfies the following criteria:

iia a;c;(s;—s;)=0, (2.6)

i=1l j=1

for any real weights a, i,j=1...,N and any positive integer N. Acceptance

conditions are also necessary for the covariance function. The acceptance conditions
are set by Bochner’s theorem (Bochner 1959). This is expressed through the power
spectral density of the covariance which is given by the Fourier transformation (Press
et al. 1992) of the covariance function. Power spectral density is defined by the

integral:

&, (K) = j dr exp(—ik -r)c, (r), 2.7)

where r is the distance vector between two points, Idrzfdxjdy and k is the

vector of spatial frequency (wavevector). Function c,(r) is an accepted covariance

function if the three following conditions are applicable:

1) If the power spectral density exists ¢, (k) (i.e. if the Fourier transformation of

the function exists).

2) If ¢, (k) is non-negative throughout the range of frequencies, i.e. €,(k)>0

for everyk .

3) If the integral of €, (k) throughout the range of frequencies is bounded (i.e. if

the variance exists).
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In practice, to determine if a function is an acceptable covariance, the Fourier

transform of the function needs to be calculated (Hristopulos 2008).

2.1.6 Statistical homogeneity

Assumptions that impose constraints on the properties of a random field can
lead to a more efficient geostatistical analysis. The most widely used simplifying
assumption is statistical homogeneity, which is an extension of the classical definition
of homogeneity. A given property is homogenous if the corresponding variable is
constant in space. On the contrary, a random field is statistically homogeneous if the

mean value is constant, m;(s)=m;, covariance function is defined and depended
only on the distance vector r =s, —s, between two points ¢, (s,,s,) =c,(r) and the

variance of the field is also constant. These conditions define also 2" order
stationarity.

These conditions define the statistical homogeneity in a weak sense. A random
field is statistically homogeneous in a strong sense when the multidimensional PDF
for N points (where N is any positive integer number) remains unchanged by
transformations that alter the location of the points without altering the distances
between them. Therefore the concept of statistical homogeneity is that the statistical
properties of a random field does not depend on the spatial coordinates of the points,
hence the reference system. Practically, statistical homogeneity implies that there are
no systematic trends, so the change of the values in the field can be attributed to

fluctuations around a constant level equal to the mean value (Hristopulos 2008).

2.1.7 Statistical isotropy

Another property that can be useful in geostatistical analysis of a random field
is statistical isotropy. A field is statistically isotropic if it is statistically homogenous
and at the same time the covariance function depends on the distance (Euclidean
distance), but not on the direction of the distance vector r. This is important from a
practical point of view because it helps in the identification of spatial dependence. If a
covariance function is statistically isotropic is by definition statistically homogeneous,

but not vice versa.
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In the case of statistically isotropic fields the two most important parameters
that determine very basic features of covariance function is the variance o2=c,(0)

and correlation length & Variance is a measure of the width of the fluctuations in the
field. The correlation length defines the interval in which there is interdependence,
which defines the distance within which the field value at one point affects the value
at another point (Christakos 1991b).

2.1.8 Spatial dependence

There are several ways to measure the spatial dependence. Two of the most
commonly used is the semivariogram and the correlation function. Both functions
describe the dependence between two points in the statistical sense as both functions
refer to pairs of points so their value depends on the distance between these points.
The term, in the statistical sense, means that the described dependence emerges as a
mean value from a large number of pairs and not a single pair of points (Hristopulos

2008). Correlation function for a random field is equal to the ratio of the covariance

function to the variance and is given by the equation, p, (r):CZ (Zr), while the
z
semivariogram of a random field is defined by the equation,
1
7(sn)=E {[Z(s+ r) —Z(s)]z} . (2.8)

The semivariogram is defined in relation to a pair of points, using the mean squared
difference: 6Z(s;r) = Z(s+r)—Z(s) . The difference field 6Z(s;r) is called distance step

r. If the field Z(s) is statistically homogeneous the semivariogram is directly related to the

covariance function by the equation (Deutsch and Journel 1992, Hristopulos 2008):

72(N=03-c,(r). (2.9)

For statistically homogeneous fields, semivariogram contains the same

information as the covariance function. If the difference 6Z(s;r) is statistically
homogeneous, the random field Z(s) is called field with statistically homogeneous

differences. In this case the semivariogram y, (r) depends solely on the distance r
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between the points and this is a result of statistical homogeneity of the field
differences. If the field Z(s) is statistically homogeneous then the same applies for
the differences 6Z(s;r), but the opposite is not necessarily true (Hristopulos 2008).
The parameters of the semivariogram determine the spatial dependence of the field
values at two neighboring points. From the definition of the semivariogram, using the mean
square of the differences, it is shown that the semivariogram is semi-positively defined

7, (r) > 0. But the reverse is not always the case, as a semi-positive defined function is not

necessarily an admissible semivariogram.
In case of a statistically homogeneous field, if the spatial dependence is
isotropic, the semivariogram is determined by two parameters: the sill and the

correlation length. The value of the semivariogram for long distances r tends

asymptotically to a sill equal to the variance o2 of the random field. This property is

based on y,(r)=c3-c,(r) and the fact that at large distance the value of the

covariance function tends towards zero. The presence of important large distance
trends means that the assumption of statistical homogeneity is not valid. Then the
semivariogram does not converge towards a balance value, when the distance tends
towards infinite (Hristopulos 2008).

If correlation characteristics vary in different directions in space then the
dependence is anisotropic. The two main types of anisotropy that are encountered in
practice are geometrical and zone anisotropy. Geometrical anisotropy refers to cases when
the semivariogram sill is independent of the direction, but the velocity approaching the sill,
depends on the direction (Hohn 1999). In this case the semivariogram is expressed as
function y, [rl,--.,rdJof non-dimensional distances i.-,ri, where &,...,&, are

1 égd 1 d
the correlation lengths in the corresponding directions.
Zone anisotropy refers to the case where the sill depends on the spatial direction.

Then the semivariogram can be expressed as the sum of resultant:

72 () =7,.(r)+ 7, ,(F) . In this equation y,,(r), where r =|r||, describes an isotropic
dependence while y, ,(F) describes the anisotropic dependence between the sill and

the direction of the unit vector .
In the case of geometrical anisotropy more than one correlation lengths are required

&h-.-, &y . Some of them, but not all, may be equal to each other. Therefore additional
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parameters are required for the determination of the semivariogram’s anisotropy. In a

two-dimensional system & and¢, , correspond to the correlation lengths along the
main axis, the anisotropy parameters are: (1) the ratio p,,, =&, /§X , Which is called

anisotropy ratio, (2) the orientation angle, which defines the orientation of the main

anisotropy axis, in relation to the Cartesian coordinate system.

Figure 2.1 Presentation of the main axis system (KA1, KA2) in relation to the coordinate system X, y.
The ellipsis corresponds to the semivariogram direction (after (Hristopulos 2008)).

In order to understand the meaning of the orientation angle, the ellipse is

defined as the geometrical location of points (r,,r,), where the value of the

semivariogram is constant. The elliptical shape is used since this happens for different
semivariogram models, such as exponential and Gaussian anisotropic
semivariograms. The orientation angle is the angle between KA 1 axis of the ellipsis
with the horizontal axis of the coordinate system (Figure 2.1), (Hristopulos 2008).

The semivariogram generally increases, but not necessarily linearly, with
the distance between the points, while on the contrary the correlation function
decreases. This is due to the fact that the correlation function describes the
dependence between the field values in two different points in space and their
dependence decreases in larger distances. On the contrary, the semivariogram
measures the difference between field values as a function of their distance.
Therefore, semivariogram values increase when the distance increases (Deutsch
and Journel 1992).
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For statistically homogeneous fields, the two functions are equivalent
which means that they have the same information in different form. However
there are cases of random fields where semivariogram is a function of the
distance between two points only, while the correlation function depends both on
the distance and the specific location of the points in space (Hristopulos 2008).

Widely used semivariogram models, which can be also used in practical
applications, are the exponential, the Gaussian, the spherical, the powerlaw and the nugget
effect. The exponential model characterizes distributions with sharp spatial variations,
opponent to the Gaussian model that characterizes more smooth variations. The powerlaw
model corresponds to dependence with long distance spatial range and the nugget effect to
variations which take place in distances smaller than the resolution that the sample allows.
Another way of determining the spatial dependence of a random field, which is presented

in this thesis, is that of the method of Spartan variogram family (Hristopulos 2008).

2.1.9 Semivariogram estimation

The main mathematical tool in geostatistical modeling is the semivariogram
which expresses the spatial dependence between neighboring observations. In the case
of geographical distributions and distribution of environmental variables, where the
available data are limited to a sole sample, it is attempted to determine an estimation
of the real semivariogram through it. This estimation is called sampled or
experimental semivariogram and is calculated based on the values of the sample.
The Matheron method-of-moments estimator of the semivariogram is given by (Isaaks
and Srivastava 1989, Deutsch and Journel 1992):

R 1 N (r) 2
7200 =353 Z {[Z<si)—2(s,->] }sij(m, (k=1...,N,), (2.10)

Ls,—s; € B(rk)>

0, otherwise

ﬁij(rk):<

e The class function ,;(r,) defines different classes of distance vectors,
choosing the vectors that correspond to a closed region B(r,) (
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e Figure 2.2) around vector r,

e Variable N(r,) is equal to the number of point pairs inside class B(r,)

e The sample semivariogram is defined for a discrete and finite set of distances

r., (k=1...,N,) the number of which is equal to the number of classes N..

48
46} R
a4} .
42t B(r) .

38} r 4
36¢F 1
34F b

32¢ .

3 1 A A
3 35 4 45 S

Ix

Figure 2.2 Schematic figure of the region B(r) around the distance vector (Hristopulos 2008).

The empirical semivariogram, 7, (r,) is defined as the average square difference of
the field values between points separated by the lag vector r, . More precisely, this

calculation determines a value for the sample semivariogram for every r, , based on

the mean value of differences[Z(si)— Z(sj)]2 in all pairs of points, the distance vector

of which belongs in B(r,) region. 7, (r,) is a good estimator of the real y,(r,) when

the mean value of differences in r, class approaches with accuracy, the mean value

E[Z(S)—Z(S+rk)]2 (Hristopulos 2008). The latter is true when the Ergodic

assumption applies, which allows the switch between the stochastic and the sample
mean. In semivariogram calculation the Ergodic property is valid when the following
conditions occur: the field of differences Z(s)-Z(s+r,) is statistically
homogeneous, the number of pairs in each class is large enough so the sample mean
of the square difference is determined with good statistical accuracy and the number
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of classes is large enough so the dense approach of the semivariogram variations as a
function of the distance is allowed. After the sampled semivariogram is calculated, it
is adjusted to a theoretical model which allows the calculation of the semivariogram
in every distance. This can be achieved using e.g., the least square method, from

which the optimal values for parameters ¢ and o> of the theoretical model can be

calculated. The variable & denotes the characteristic (correlation) length and o7 the

variance (sill) (Hristopulos 2008).

The theoretical model is needed for the estimation of field values in points
where measurements are not available. Next, in order to accept the semivariogram
and use it for geostatistical analysis, it is tested according to the semivariogram
acceptance conditions. A semivariogram is acceptable if it is conditionally negative

definite. This means that for any linear coefficients A, that satisfies the equation

Zg:l/la =0 the following inequality must apply,

_Zzzlzzzlllaﬂ’ﬂyz (Sa _Sb) >0 ) (211)

for any positive integer N. For a spatial homogeneous random field is simpler to

check the acceptance of a semivariogram or covariance model using the function

o: —y,(r). If the function y,(r) describes an acceptable semivariogram then the

function c,(r)=oc> —y,(r) is an acceptable covariance function and vice-versa

(Hristopulos 2008).

If anisotropic spatial dependence occurs the semivariogram should be
calculated in different directions is space, in order to determine the main direction of
the anisotropy. This requires the definition of classes not only according to the range
but also according to the direction of the distance vector. Every class has a tolerance

(26r) in terms of the range, as well as (26¢) in terms of the direction angle of the

distance vector, so as every class to include an adequate number of points. The
semivariogram is usually calculated in terms of the directions North-South and East-
West, while for the angular tolerance the values 5° 10° 20° and 45° are used
(Goovaerts 1997). In this thesis except of the latter approach anisotropy is determined
using a newly established method named Covariance Hessian identity (Chorti and

Hristopulos 2008). Figure 2.3 presents the characteristics of a typical semivariogram.
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Figure 2.3 Presentation of typical semivariogram characteristics.

e The nugget effect quantifies the variance of the sampling error, as well as the
small scale variance, e.g. the spatial variance in distances smaller than the
distances between sampling points.

e The sill is the value that approaches asymptotically the experimental
semivariogram.

e Scale is the difference between the sill and the nugget effect, and declares the
variance of the correlated fluctuations.

e The correlation length is the distance in which the semivariogram almost (e.g.
95-97%) reaches the sill value.

e Variance is the mean squared deviation of every value of the sample from the
mean value and is denoted with the horizontal dashed line in the figure.

e The experimental semivariogram represents the classes of pairs along with the

corresponding sampled values of the semivariogram.
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e The theoretical semivariogram model is a continuous theoretical line which is

fitted to the experimental semivariogram.

If there are no distinct anisotropies, the omnidirectional empirical semivariogram

7,(r) ,r=r,, is estimated and then fitted to a theoretical model function y, (r)

(Deutsch and Journel 1992, Kitanidis 1997).

2.1.10 Semivariogram models

Classical theoretical semivariogram models listed below include the spherical,
Gaussian, exponential, power-law and linear functions (Goovaerts 1997, Lantuejoul

2002); o is the variance, |r| is the Euclidean norm of the lag vector r and ¢ is the

z

characteristic length.

Exponential: y,(r)=oc2 {1—exp(—gﬂ (2.12)
Gaussian: y,(r)=oc2 {1— exp[—é—iﬂ (2.13)

72 =02 [15 ]/ £-05()1£) Jo(s-Ir)

Spherical: (2.14)
if £-|r|<0,0=0, elseif &£-|r|>0,6=1

Power-law: 7, (r) = c|r|2H ,0<H<1 (2.15)

cis the coefficient and H the Hurst exponent.

Linear: y, (r)=c|r| (2.16)

Equations above define the isotropic versions of the models. These involve at

most two parameters, i.e., the variance and correlation length for exponential,
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Gaussian and spherical models, ¢ and H for the power-law model and ¢ for the linear
model. Below we review two semivariogram models that offer increased parameter

flexibility.

2.1.11 Matérn model

This covariance family includes, in addition to the variance and correlation
length a smoothness parameter v, which controls the continuity and differentiability of
the random field, and thus also the short-distance behaviour of y(r), which has
greater impact on interpolation than medium to large distance dependence. The
Matérn semivariogram model (Matérn 1960, Stein 1999, Pardo-Iguzquiza and Chica-
Olmo 2008) is defined as:

el 2 (M) (I
7z(r)az{1 r(v)(gJ K[gj} (2.17)

where o> > 0 is the variance, £>0 is the characteristic length, v >0 is the

smoothness parameter, T'(+) is the gamma function, and K (-) is the modified Bessel

function of the second kind of order v, and |r| is the Euclidean norm of vector r. For
v=0.5 the exponential model is recovered, whereas the Gaussian model is obtained at
the limit as v tends to infinity. The case v=1 was introduced by Whittle (1954). The
Matérn model has been applied to different research fields including hydrology e.g.,
(Rodriguez-lturbe and Mejia 1974, Zimmermann et al. 2008).

2.1.12 Spartan model

Spartan Spatial Random Fields (SSRFs) are a recently proposed
geostatistical model (Hristopulos 2002, Hristopulos 2003b) with applications in
environmental risk assessment (Elogne et al. 2008) and atmospheric environment
(Zukovi¢ and Hristopulos 2008). SSRFs are generalized Gibbs random fields,
equipped with a coarse-graining kernel that acts as a low-pass filter for the
fluctuations. The term Spartan indicates parametrically compact model families that
involve a small number of parameters. These random fields are defined by means of

physically motivated spatial interactions between the field values.
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In general, a spatial random field (SRF) Z(s) representing the measurements

can be expressed as:
Z(S)=2'(s)+m,(s)+e(s), (2.18)

where e(s) is a zero-mean measurement noise process, assumed to be homogeneous
over the domain of interest, Z'(s) is a correlated fluctuation SRF, and m,(s) is a

deterministic trend function. The trend is a non-stationary component representing
large-scale, deterministic variations, which presumably correspond to the ensemble

average of the SRF,
m, (s)=E[Z'(5)]. (2.19)

SSRFs are determined from a probability density function in terms of a spatial

random field (SRF) Z'(s) . The probability density function contains information for

spatial dependence. In general, the probability density function SSRF can be

expressed with the following equation:

f.[Z'($)]= 2" exp{-H[Z'(5)]}, (2.20)
Z=Y, . p{-HIZ'G)]}, (2.21)

is a normalization constant which ensures the basic theorem of probability, (i.e. that

the sum of probabilities of a SRF is equal to 1). H[Z'(s)] is an energy functional of
spatial dependence which expresses the interdependence of SRF data values Z'(s)
between different locations. Therefore, SSRFs belong in the family of Gibbs random
fields (Hristopulos 2003b). The Gibbs property stems from the fact that the joint
probability density function of SSRFs is expressed in terms of an energy functional
i.e. H[Z'(s)]. Use of an energy functional containing terms with a clear physical
interpretation permits inference of the model parameters based on matching respective
sample constraints with their ensemble values (Hristopulos and Elogne 2007). Thus,
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the spatial continuity properties can be determined without estimation of the
experimental variogram.

The SSRFs provide a new class of generalized covariance functions, which are
by construction positive definite for an explicitly specified range of parameter values
(Hristopulos 2003b, Hristopulos and Elogne 2007). Fluctuation-gradient-curvature
(FGC) SSRFs model have an energy functional that involves the squares of the
fluctuations, the gradient and the curvature of the field, see Eq. (2.22) below. This
class provides covariance functions with four parameters that give considerable
flexibility. The SSRF covariance functions can be used for spatial interpolation with
the classical kriging estimators as well as with new spatial predictors (Elogne et al.
2008, Hristopulos and Elogne 2009).

Herein we use this new class of covariance function for the first time in
groundwater hydrology in association with kriging for spatial interpolation of the
groundwater level. For kriging applications, the estimation of the spatial dependence
structure (semivariogram or covariance function) is a crucial step.

The isotropic FGC-SSRF functional is given by the following equation:

1

H[Z'(s)] = 27

[ds[{Z' @F +m&qVZ O +E4VZ' )Y . (2.22)

The FGC model involves the parameters 7,, n,, £ and k. The scale coefficient 7,
determines the overall scale of the variance; the scale factor is proportional to the
square of the regionalized variable, i.e. the groundwater level, and assumes the
variable’s units. The shape coefficient 7, is dimensionless and determines the shape
of the covariance function in connection with £ and k. The characteristic length &
has dimensions of length and determines the range of spatial dependence. Finally, the
wavevector k. has units of inverse length and determines the bandwidth of the
covariance spectral density. If the latter is band-limited, k, represents the band cutoff
and is related to the resolution length scale by means of k 1 ~1.

The SSRF covariance models derived from the above energy functional are
determined by the parameters 8=(r,,7,<,K,,). Spartan (SP) covariance and
semivariogram functions were introduced in (Hristopulos 2003b) and have been
applied to various environmental data sets (Elogne et al. 2008, Elogne and
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Hristopulos 2008, Hristopulos and Elogne 2009). Herein, we apply this family of
functions for the first time in hydrological data.

The SSRF family includes four-parameter functions (Hristopulos 2003b,
Hristopulos and Elogne 2007). The Spartan covariance in any dimension d is

expressed using the spectral representation as follows

PN il DO P T

@n)" 5 lem(@d) +(wd)

(2.23)

where J,,,,(X) is the Bessel function of the first kind of order zero and
0= (n,,m,&,k,) are the model parameters. The Spartan semivariogram is given by
7, (r;0) =C, (0;0) —C, (r;0) . The scale parameter 7, determines the variance, ¢ is the
characteristic length, k, represents the wavenumber cutoff (band limit in Fourier
space), and the dimensionless stiffness coefficient 7, determines the shape of the
covariance function in connection with ky, and ¢ (Elogne et al. 2008). In d =1,3
explicit expressions for the Spartan covariance are possible at the asymptotic limit
k,, — o (Hristopulos and Elogne 2007).

The Spartan covariance function of Eq. (2.23) in d =3 dimensions are
expressed as follows:

-hg, H
n, € [Sln(h[’ﬁ)}’ for|771|<2, O_Zz _ o
27\ |n2 -4l hA 270\ |t — 4]
—h
C,(h:0)=11%  forp =2 2= | (2.24)
87 87
~ho, _ -hae,
o (8 ¢ 2) , form, >2, o2 :—'702
4”(a)2_a71)h |771 _4| 4r |771 _4|
_ 12
w, =(mF4/2)", (2.25)
1/
B, =25 m[" /2. (2.26)
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In the above A=‘77f—4‘1/2, @, and B, are dimensionless damping coefficients, f, is
a dimensionless wave-number, ¢ is a characteristic length, |h|=|r||/¢ is the
normalized lag vector, h=/h| its Euclidean norm and o’ is the variance. The

exponential covariance is recovered for 7,= 2, while for |5,| < 2 the product of the

exponential and hole-effect model is obtained. A covariance function that is
permissible in three spatial dimensions is also permissible in two dimensions
(Christakos 1991). Hence, (2.24) can be used in two dimensions, albeit it does not
correspond to the FGC-SSRF two-dimensional covariance (Hristopulos and Elogne
2007).

2.1.13 Parameters inference

The Spartan parameters can be estimated by fitting the SSRF semivariogram
to the empirical semivariogram estimator. A different approach is based on the
modified method of moments, in which stochastic constraints are matched with
corresponding sample constraints (Elogne et al. 2008, Zukovi¢ and Hristopulos 2008,
Zukovi¢ and Hristopulos 2009). The constraints are motivated by the terms in the
energy functional (2.22); the square of the fluctuations, the square gradient, and the
square curvature are used to construct both the sample and the stochastic constraints.
The latter approach is not investigated herein, because the focus of this thesis is on
kriging interpolation techniques.

There is no universally accepted method for fitting the empirical
semivariogram to a theoretical model. For each of the above theoretical models
discussed above, we determine the optimal semivariogram parameters using the least
squares method. Methods used include least-squares fits, weighted least squares,
generalized least squares, maximum likelihood, and even empirical ‘‘fitting by eye’’
(Wackernagel 2003, Olea 2006). We implemented least-squares fiting by means of
the «fminsearch» Matlab® function which is based on the Nelder-Mead minimization
algorithm (Press et al. 1992). The selection of the “optimal semivariogram model” is

based on the results of leave-one-out cross validation (see section 2.5).
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2.1.14 Spatial estimation

The determination of the spatial dependence, as well as of the trend and the
fluctuations of the field values leads in two basic procedures of geostatistics; the
spatial estimation and the simulation. Both procedures help in the representation of
a random field in points where not exact values exist, based on available
information (e.g. measurements in neighboring points, hydrogeological data). The
available information is used in order to impose statistical limitations. Using
statistical spatial dependence patterns (semivariograms) the unknown values are
defined based on their correlation. The repetitiveness of this procedure in all points
of the computational grid allows the mapping of an entire area (Hristopulos 2008).

The simulation process aims to create many of the possible states of the field,
which are in accordance with existing statistical restrictions derived by the
experimental sample e.g. simulated states with the same mean value, standard
deviation and semivariogram with the one calculated using samples. Therefore, the
simulation’s aims in the creation of many alternative scenarios, which are possible
based on existing measurements (Hristopulos 2008).

The term spatial and/or temporal estimate includes all the mathematical
procedures that allow the calculation of field values where measurements of a
property do not exist. The estimate can be local, if it is referred to a point in space-
time or global, if it aims to calculate a characteristic value that describes an entire
region. The spatial and/or temporal estimate of a field presupposes the existence of
spatial and/or temporal dependence, so that the field value at each point is
“influenced” by the neighboring field values. This interdependence allows estimation
of a variable where measurements do not exist based on the neighboring measured
points. In many cases, the final objective is to estimate the field over a set of points
instead of a single one. Various methods of spatial estimation (interpolation) exist that
are based on similar principles. The main idea is that the value at the estimation point
is given by a linear or nonlinear combination, of the neighboring values. The estimate
results from the optimization of a statistical measure, e.g. maximization of probability
or minimization of the mean square estimation error. The most popular methods are
based on linear interpolation in conjunction with the minimization of the mean square
estimate error. This set of methods is known as “kriging” (Goovaerts 1997, Kitanidis
1997, Hristopulos 2003a).
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The need of variables estimation at points where no measurements are
available is not new. Statistical scientists, mining engineers, oil engineers,
hydrologists and geologists who dealt with the problem developed the science of
geostatistics. Application areas of geostatistics nowadays include: the analysis of ore
deposits (e.g. estimate of extent, depth and quantification of total content) e.g.,
(Journel and Huijbregts 1978, De-Vitry et al. 2010), oceanography (mapping of ocean
bed, waves height analysis) e.g., (Ozger and Sen 2007), the morphological analysis of
natural and technological non-homogeneous (e.g. porous) materials e.g., (Sahimi
2011), the mapping of pollutant concentrations in various environmental means (air,
subsoil, surface-underground water resources) e.g., (Goovaerts 1997, Webster and
Oliver 2001), the topographic analysis and the geographic information systems (GIS)
e.g., (Burrough 2001), the spatiotemporal analysis of rainfall data and of rainfalls in
regions with insufficient monitoring stations e.g., (Ly et al. 2011), the determination
of geological and hydrogeological variables (e.g. subsoil type, hydraulic conductivity,
porosity, storativity, evapo-transpiration) e.g., (Kitanidis 1997, Hengl 2007), the
environmental and human health risk assessment (e.g. estimate of pollutant
concentration, determination of probabilities of exceeding the critical limits) e.g.,
(Goovaerts 1997, Christakos and Hristopulos 1998), the spatial and/or temporal
estimation of hydraulic head of aquifers e.g., (Ahmed 2007).

2.2 Spatial interpolation

Geostatistics is based on the work of Kolmogorov (1941) in atmospheric
turbulence. He used the structure function (equivalent to the variogram) to represent
spatial correlations and to develop optimal interpolation. Later, Matérn developed the
family of spatial covariance functions that bear his name (Matérn 1960). His functions
are equivalent with those developed by Jowett (1955). The geostatistical method
called kriging, the most applied geostatistical method to date, was introduced and
established by Krige (Krige 1951, Krige 1966) and Matheron (Matheron 1963) for
applications in mining engineering. Since then, kriging has been applied to several
other fields of research, such as geology (Davis 1973, Journel and Huijbregts 1978),
petroleum engineering (Hohn 1999), hydrogeology (Kitanidis 1997), hydrology,
meteorology and soil science (Webster and Oliver 2001, Atkinson and Lloyd 2010).
The first application of kriging in groundwater hydrology was by Delhomme (1974).
Since then, many studies applied kriging to the interpolation of groundwater levels,
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e.g. (Delhomme 1978, Gambolati and Volpi 1979a, b, Sophocleous et al. 1982,
Aboufirassi and Marino 1983, Pucci and Murashige 1987, Hoeksema et al. 1989,
Desbarats et al. 2002, Ahmadi and Sedghamiz 2007, Kumar 2007, Ahmadi and
Sedghamiz 2008, Rivest et al. 2008, Nikroo et al. 2009).

In general interpolation methods routinely used for groundwater level
mapping include deterministic methods such as inverse distance weighting (IDW)
(Gambolati and Volpi 1979b, Philip and Watson 1986, Rouhani 1986, Buchanan and
Triantafilis 2009, Sun et al. 2009) and stochastic methods such as Ordinary kriging
(OK) and Universal kriging (UK). Such methods are incorporated in various
commercial software packages e.g., mapping software: Arc-View (GIS), Surfer
mapping system (Golden software), groundwater modeling software: Visual
Modflow, Princeton transport code (PTC), Feflow subsurface flow model.

Deterministic interpolation methods use closed-form mathematical formulas
(IDW) or the solution of a linear system of equations (Minimum Curvature) to
interpolate the data. The weights assigned to each sample value depend only on the
distance between the sample point and the location of the interpolated point.
Deterministic methods are categorized as global and local: Global methods use the
entire dataset for prediction at each point, while local methods use data in a
neighborhood around the interpolation point. Deterministic methods can be either
exact or inexact interpolators (Webster and Oliver 2001). Finally, they do not generate
measures of estimate uncertainty.

Stochastic methods employ the spatial correlations between values at
neighboring points. The most widely used stochastic method is kriging (Krige 1951,
Matheron 1963, 1971). The kriging methodology comprises a family of interpolators.
The interpolators most commonly used in hydrosciences are Ordinary Kriging (OK)
and Universal Kriging (UK). A recently proposed variation of the kriging algorithm is
kriging with Delaunay triangulation (DK) (Hessami et al. 2001).

Kriging is characterized as the best linear unbiased estimator (BLUE). The
kriging estimator is a weighted linear function of the data. The linear weights follow
from the unbiasedness constraint (i.e., zero mean estimation error) and the minimum
square error condition. The resulting system of linear equations is solved to determine
the estimator’s weights. The coefficients of the equations depend on the model
semivariogram, which is obtained by fitting the empirical semivariogram to

theoretical models or by means of the maximum likelihood estimation method
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(Kitanidis 1997, Ahmed 2007). The semivariogram measures the degree of spatial
correlation as a function of distance and/or direction between data points. The
semivariogram determines the kriging weights and therefore controls the quality of
the estimates (Mouser et al. 2005, Ahmed 2007). If the semivariogram is perfectly
known, kriging is the best linear unbiased estimator (BLUE). An advantage of kriging
compared to deterministic approaches is that it allows the estimation of the
interpolation error at unmeasured points (Deutsch and Journel 1992). In addition, in
the absence of a nugget (e.g., measurement error), kriging is an exact interpolator at
measurement points (Delhomme 1974, Ahmed 2007). Optimal kriging results are
obtained if the probability distribution of the data is normal and stationary in space
(spatially homogeneous). Kriging is computationally intensive when applied to large
data sets (Webster and Oliver 2001), but the computational complexity is not a
problem for sparsely sampled areas.

Ordinary Kriging (OK) bases its estimates at unsampled locations only on the
sampled primary variable. OK interpolation is widely used to determine the spatial
variability of groundwater levels in hydrological basins e.g., (Olea and Davis 1999,
Prakash and Singh 2000, Desbarats et al. 2002, Theodossiou and Latinopoulos 2006,
Ahmadi and Sedghamiz 2007, Abedini et al. 2008, Ahmadi and Sedghamiz 2008,
Yang et al. 2008, Kholghi and Hosseini 2009, Nikroo et al. 2009, Sun et al. 2009,
Taany et al. 2009, Dash et al. 2010). OK was also used to predict the piezometric
head in West Texas and New Mexico based on implementing clustered piezometric
data (Abedini et al. 2008). In addition, the design, evaluation and optimization of
groundwater level monitoring networks were performed by applying OK (Olea and
Davis 1999, Prakash and Singh 2000, Theodossiou and Latinopoulos 2006, Yang et
al. 2008). Evaluation of the performance and interpolation errors of OK in the
estimation of water level elevation can be achieved by means of leave-one-out cross
validation (Olea 1999).

OK is not optimal for non-stationary data. The use of a linear drift term
improves the accuracy of the interpolated head field if a regional gradient is present
(Delhomme 1978, Aboufirassi and Marino 1983). Universal Kriging (UK) also has
been used to estimate the groundwater level e.g., (Delhnomme 1978, Sophocleous et
al. 1982, Aboufirassi and Marino 1983, Sophocleous 1983, Pucci and Murashige
1987, Kumar et al. 2005, Ahmadi and Sedghamiz 2007, Brus and Heuvelink 2007,
Gundogdu and Guney 2007, Kumar 2007, Sun et al. 2009). Near extracting or
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injecting wells a point logarithmic component is added to the drift to account for the
drawdown caused by the pumping well. This approach is applicable if analytical
solutions for the aquifer response are available (Tonkin and Larson 2002, Rivest et al.
2008).

Auxiliary information can be included in the interpolation as a drift term,
usually modeled by polynomial functions of the space coordinates, rainfall, or surface
elevation based on a Digital Elevation Model (DEM). The use of auxiliary variables
in general improves the accuracy of kriging estimation. Easily measurable secondary
variables can also reduce the number of “expensive” observations (Knotters et al.
1995). The auxiliary information can be incorporated using the co-Kriging (CoK)
method, which utilizes secondary variables in the covariance structure. Various
researchers (Hoeksema et al. 1989, Deutsch and Journel 1992, Goovaerts 1997) used
CoK with ground surface elevation as a secondary variable to construct groundwater
level maps that improved the OK predictions. The main disadvantage of CoK is the
need to model coregionalisation, which requires the inference of direct and cross
covariance functions (Journel and Huijbregts 1978). CoK also becomes cumbersome
and time-consuming if many secondary variables are involved (Deutsch and Journel
1992).

Alternatively, Residual Kriging (RK) and Kriging with External Drift (KED),
originally described and applied in hydrological problems (Delhomme 1978, Volpi
and Gambolati 1978, Gambolati and Volpi 1979a, b), embody secondary information
in the drift term. KED and RK are practically equivalent but differ in the
methodological steps used (Hengl et al. 2003, Hengl 2007). Residual Kriging is also
known as Regression Kriging and it was developed and applied in the hydrosciences
by Delhomme (1974, 1978) and (Ahmed and De Marsily 1987). Odeh et al. (1994,
1995) named it “Regression Kriging”, while (Goovaerts 1999) uses the term Kriging
after detrending (Hengl et al. 2003).

KED assumes that the expectation of the primary variable is a linear
combination of secondary variables (Deutsch and Journel 1992, Wackernagel 2003),
while OK assumes the expectation to be constant (Rivest et al. 2008). In the case of
KED (it has similar methodology to UK), the Kriging covariance matrix of residuals
is extended with the auxiliary predictors (Kitanidis 1997, Webster and Oliver 2001).
KED was applied for the interpolation of water table elevation by various researchers.

Beven and Kirkby (1979) expressed the water table depth as a linear function of the
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topographic index. Desbarats et al. (2002) applied KED to the interpolation of water
table elevation using two deterministic trend models that include: a) the topographic
elevation and b) the topographic index. Rivest et al. (2008) approximated the external
drift using numerical solutions for the hydraulic head field obtained by means of finite
elements based on a conceptual model that included hydrogeological parameters
estimates, geology and boundary conditions. KED and collocated CoK incorporated
topography as secondary information in Boezio et al. (2006a, b). Both methodologies
improved the quality of the water table elevation maps compared to OK. Another
approach combines KED with the regionalized autoregressive exogenous variable
(RARX) model with precipitation surplus as the exogenous variable, and with DEM
data as secondary variables (Knotters and Bierkens 2002).

Neuman and Jacobsen (Neuman and Jacobson 1984) used RK to estimate the
hydraulic head in a catchment by approximating the trend function with space
polynomials. RK with rainfall data as secondary variable was also applied to examine
the influence of land use/cover change on the temporal and spatial variability of
groundwater levels (Moukana and Koike 2008). Nikroo et al. (2009) predicted water
table elevation by different (SK, OK and RK) kriging methods and trend functions,
including auxiliary information from ground surface elevation and slope as well as
draining rates.

Other researches that include kriging interpolation techniques in extended
comparison studies regarding different interpolation methods applied to groundwater
level data along with other hydrological variables e.g., (Subyani and Sen 1989,
Kholghi and Hosseini 2009, Sun et al. 2009).

It can be proved mathematically that KED and RK are practically equivalent,
although the methodological steps differ (Hengl et al. 2003, Hengl et al. 2007). The
KED estimator is analyzed into a generalized regression of the primary variable with
the secondary variables, followed by SK or OK of the regression de-trended residuals;
in the Kriging equation system the covariance matrix is extended with the auxiliary
predictors. A limitation of KED is the potential instability of the extended matrix if
the covariate varies irregularly in space (Goovaerts 1997). In RK the drift model
coefficients are first determined by regression, and the residuals are then interpolated
using OK and finally added to the drift model. The main advantage of RK over KED
is that it explicitly separates the trend estimation from the interpolation of the

residuals, thus enabling the use of advanced regression methods (Hengl et al. 2003,
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Hengl 2007). In addition, RK permits separate interpretation of the interpolated
components and straightforward inclusion of multiple sources of external information
that may compensate for small sample sizes (Alsamamra et al. 2009). For the reasons
explained previously, RK is chosen over KED in this thesis.

2.3 Overview of geostatistical methodology

In the following, we will assume that the hydraulic head is represented by a
spatial random field (SRF), which herein will be in generally denoted by Z(s,w),
where @ is the state index used to denote that Z(s,w) is a realization from an

ensemble of possible states (to be omitted for brevity). The sampled field at the

measurement points will be denoted by Z(seS), where S is the set of sampling
points with cardinal number N. The values of the SRF in a given state will be denoted
by lower-case letters. The target is to derive estimates, Z(se P) of the head at the
prediction set points, P that lie on a rectangular grid that covers the basin. Therefore
s,,i=1...,N denote the sampling points, z(s,) are the head values (in masl) at these

points, and s, denotes an estimation point, which is assumed to lie inside the convex

hull of the sampling network. For mapping purposes, it is assumed that s, moves
sequentially through all the nodes of the mapping grid.
We examine linear interpolation methods for mapping spatial and/or temporal

groundwater level variability. In spatial linear interpolation methods, it holds that
2(sy) = Z{i:SiESO}/% 2(s;) (2.27)

where S, is the set of sampling points in the search neighborhood of s,. The

neighborhood is empirically chosen so as to optimize the cross validation measures.
For spatial interpolation we initially use two deterministic (IDW, MC) and

three stochastic (OK, UK, DK) methods (chapter 4). Then, we use OK (chapter 5) and

RK (chapter 6) methods in combination with non-linear normalizing transformations.

In the first approach, we apply a normalizing transformation g(-) to the data. Then,
we use OK to predict the transformed field Y (s) = g(Z(s)), and we back-transform

the predictions to obtain head estimates. Several methods can be used to handle non-
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Gaussianity in the data. We applied the Box-Cox transformation, TGK, GA, and a
MBC transform. We review these methods in the following chapters.

In the second approach, we introduce a trend model m, (s) that captures local
features and physical laws. Since the fluctuation SRF, Z'(s)=Z(s)—m,(s), is non-
Gaussian, we apply a transformation g(-) to obtain a normalized SRF,

Y(s)=9(Z'(s)), estimate its experimental semivariogram and fit it to theoretical

models. Next, we estimate the Gaussian field Y (s e P) at the prediction points using

OK. Finally, we retrieve head estimates from Y(seP) by applying the back-

transformation and adding the trend. We use leave-one-out cross-validation analysis
to determine the optimal spatial model and to assess the accuracy of the interpolated
head field (Ahmed 2007).

Chapters 4, 5 and 6 are based on the above overview and focus on the spatial
interpolation of groundwater level. The overview of spatiotemporal geostatistical
methodology is presented in section 7.

In the thesis we opt to keep the interpolation estimates within the convex hull
of the sampling points. In principle we can estimate maps over the entire study
domain (Figure 3.10); however, this is equivalent to extrapolation. Kriging can be
used for extrapolation but the results outside the quadrilateral, determined from the
sampling locations boundaries, are often less accurate and subject to higher
uncertainty. In addition the semivariogram is determined by the measurements and
expresses the spatial dependence of the measured points. In performing extrapolation,
we accept that the semivariogram is valid outside the range of measurements.
Therefore the estimates inside the quadrilateral are more accurate and precise than
those outside.

2.4 Interpolation materials and methods

Interpolation is the process of estimating the data values in unvisited locations
using known measured data values from neighbor points. The interpolation methods
are divided in deterministic and stochastic. Deterministic methods provide no
information regarding the possible estimation errors while stochastic methods provide
probabilistic estimates (i.e. provide the variance of the estimates). Deterministic
interpolation methods assign weights to each sample value depending only on the
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distance between the sample point and the location of the interpolated point. On the
other hand stochastic or geostatistical methods treat the observations dataset as an
arbitrary realization of a stochastic process and employ the spatial correlations
between the values at neighboring points in order to distribute the weights. In this
section the theoretical background of the deterministic and stochastic interpolation
methods used for the groundwater level spatial variability prediction in Mires basin, is

explicitly presented.

2.4.1 Inverse Distance Weight

The estimation with the IDW method is given by means of the equation

, dio
2(s,) = Z{.;sieso}[ﬁ] 2(s1). (2.28)

{issieSp} 110

where d,, is the distance between the estimation point and the sampling points, and
n>0 is the power exponent; usually n=2 is used. IDW assigns larger weights to
data closer to the estimation point s, than to more distant points. Higher values of n

increase the impact of values near the interpolated point, while lower values of n
imply more uniform weights. As it follows from (2.28) the weights add up to one.
IDW is an exact and convex interpolation method (Hengl et al. 2007). In addition it is

very fast, straightforward and computationally non-intensive (Webster and Oliver
2001). According to (2.28), as the distance of s, from s, increases, the respective

weight is reduced. IDW’s disadvantages are the arbitrary choice of the weighting

function and the lack of an uncertainty measure (Webster and Oliver 2001).

2.4.2 Minimum Curvature
MC interpolation is based on the minimization of the total square curvature of
the surface z(s), i.e., _[ds[vzz(s)]2 subject to the data constraints. In MC, the

interpolated surface can be viewed as a thin linear elastic plate pinned to the data
values at the sampling points. The estimate is obtained by solving the biharmonic
partial differential equation (Briggs 1974, Sandwell 1987), i.e.,
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(azz .\ azzj(62228)+622(28)J:O’ (2.29)
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conditioned by the data values z(s;). The interpolating function z(s) honours the
observed data and tends to a planar surface as the distance between the interpolation
point and the observations increases. Typical applications of MC include interpolating
hydrocarbon (oil) depths (Cooke et al. 1993), interpolation of gravitometric and
magnetometric geophysical data for mineral exploration (Mendonca and Silva 1995,
Kay and Dimitrakopoulos 2000) and mapping the earth surface (Yilmaz 2007).

The MC method often suffers from oscillations due to the presence of outliers
in the data or due to very large gradients. This problem can become important if the
dataset is relatively small. The MC interpolation is based on the Green’s function gn
of the biharmonic equation, which satisfies V*g, (s—s')=35(s—s') where 5(s—s') is
the Dirac delta function. The two dimensional (2D) Green’s function iS given by

d,(d)=d?(Ind—1) (Sandwell 1987, Wessel 2009). The MC estimate is then

expressed as follows:

N
2\(So) = ZW| gm(di,o) . (2-30)

The weights w; are determined by solving the following linear system at the N data

locations.

N

Z(Si)ZZWj gm(di,j)v (2.31)
=l

where j=1...,N and d,  the distances between the sample points d, ; =|s; —s;|.

2.4.3 Ordinary kriging interpolation

The term kriging is used for a suite of interpolation methods that are based on

the principles of zero bias and minimum mean square error. Kriging estimates the
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value of a process over an entire domain, over a finite-volume block or at a specific

point s,. The estimates are formed by means of a linear combination of the data

values. The summation is over the entire area or a restricted neighborhood centered at
the estimation point. Kriging interpolation method also quantifies the estimation
variance, and thus, the precision of the resulting estimates. The commonly used OK
method is based on the following equations (Goovaerts 1997, Kitanidis 1997).

The OK method assumes that z(s) is a random function with a constant but
unknown mean. The OK estimate Z(s,) at s, is calculated based on a weighted sum

of the data

2(sy) :Z{i:siego}ﬂ'l z,(s;) - (2.32)

The weights 4, in (2.32) are obtained by minimizing the mean square estimation error

conditionally on the zero-bias constraint (Cressie 1993), and they depend on the

semivariogram model y,(r) (Deutsch and Journel 1992).
The kriging weights 4, follow from the minimization of the mean square error

and are given by the following (N, +1) x(N, +1) linear system of equations

Z{i:sieSo}Ai ’yl (Si’sj)_'—'u’ :,)/Z (Sj 180)’ J :11-'-1 No (233)

Z{i:sieso}/l' =1, (2.34)

where N, is the number of points within the search neighborhood of s, ,~,(s;,s;) is
the semivariogram between two sampled points s; and s;, ~,(s;,s,) the
semivariogram between s; and the estimation point s;, and p is the Lagrange
multiplier enforcing the no-bias constraint. N,+1 j=j,N,+1=1 for j=1...,N,,
while N,+1, N,+1=0. Equation (2.34) enforces the zero-bias condition.

Kriging provides not only an estimation of the variable z(s,) but also the

corresponding estimation’s error variance (associated uncertainty). For ordinary

kriging the error variance 1) depends on the semivariogram model; the estimation
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precision depend on the complexity of the spatial variability of random field Z as
modeled by the semivariogram, 2) depends on the data configuration and their
distances to the location z(s,) being estimated, 3) is independent of data values; for a
given semivariogram model, two identical data configurations yield the same variance
no matter their values and 4) the error variance is zero at data locations and increases
away from the data while reaches a maximum value for extrapolation situation.

The OK estimation variance is defined by,
A 2
ot(s)=E| {2(s)- 26} |

and is given by the following equation, with the Lagrange coefficient . compensating
for the uncertainty of the mean value:

oz (So) ZZ{i:SiESo}/li ACHNESE (2.35)

Overall OK variance is termed as the weighted average of semivariograms from the

new point s, to all calibration points s, plus the Lagrange multiplier.

2.4.4 Universal kriging interpolation

In certain cases, the data exhibit a global trend over the study area. It is
possible to incorporate in kriging a trend (drift function) modeling the global
behavior. The resulting estimation algorithm is known as “Universal kriging” (UK)

and was proposed by (Matheron 1969). UK requires the drift function m,(s) and the
semivariogram of the residuals e,(s) (Goovaerts 1997). The trend is usually

approximated by linear or higher order polynomials of the space coordinates (Ahmed
2007). The drift function is given by

K
mz (S) = Zak fk (S) ' (236)
k=1
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where f,(s) are basis functions and a, are the drift coefficients (Goovaerts 1997).
The UK estimator of the hydraulic head is expressed as follows:

Z(SO)=mZ(SO)+Z A e(si):mz(so)+z

{i:sjeSp} !

Alz(s)-m,(s)]. (2.37)

{i:sjeSp}

where )\, (i=1...,N,) are the UK weights, e(s,) is the residual at s, and m,(s,) is
the driftat s,.

The kriging weights are determined by the solution of the following

(N, +K)x(N, +K) linear system of equations, where N, is the number of points

within the search neighborhood of s, ,

K
Z{i:sieso}Ai V2 (Si’sj)—i_;fk(sj):uk =72 (Sj’SO)' I=1...N, (2.38)
Z{i:sﬁso}ﬂ,, f.(s)=f.(s,) k=1...,K, (2.39)

where v, (s;,s;) is the semivariogram of the residuals between two sampled points s;
and s; , 7,(s;,S,) the semivariogram of the residuals between a sampled point s; and

the estimation point s,, and s, are the Lagrange multipliers for each basis function.

The kriging variance is given by the following equation (Goovaerts 1997),
K

O'é (So) = Z{i;Si ESO}Zi ACTEY +Z fi (So) 4 - (2.40)
k=1

2.4.5 Kriging with Delaunay triangulation

Kriging with Delaunay triangulation (DK) uses the Delaunay triangles to
determine the search neighborhood S, around the estimation point. The kriging
equations in DK are identical to OK (Hessami et al. 2001). DK reduces the

computational cost of kriging and ensures that the estimate depends only on data in

each point’s immediate neighborhood.
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Figure 2.4 Delaunay Triangulation of monitoring sites in Mires Basin. The vertices of the enclosing
triangle (dark color) that contains the estimation point S, are the first-order neighbors of S ; the
vertices of the three adjacent triangles (grey color) that do not belong to the enclosing triangle provide
the second-order neighbors of S .

The Delaunay triangulation (e.g., Figure 2.4) is the dual graph of the Voronoi

diagram for the sampling locations s, i=1,...,N . The latter is a set of polygons P,,
each of which is centered at s, and contains all the points that are closer to s, than to

any other data point. The Delaunay triangulation is formed by drawing line segments
between Voronoi vertices if their respective polygons have a common edge (Okabe et
al. 1992, Mulchrone 2003, Ling et al. 2005). The Delaunay triangle containing the

estimation point s, is located using the «T-search'» function of Matlab® (Matlab
v.7.5). The vertices of the triangle T, containing s, are the first-order neighbors of
s, . Second-order neighbors are determined from the vertices of the triangles adjacent
to T, that do not belong to T, (Hessami et al. 2001) (see Figure 2.4). The number of

second-order neighbors ranges between one and three. If the search neighborhood
only includes the first-order neighbors, the CPU time is reduced but the precision of

the estimates is lower (Hessami et al. 2001).

2.4.6 Residual Kriging

Residual Kriging (RK) combines a trend function with interpolation of the

residuals. In RK the estimate is expressed as:

2(5,) = M, (5) + 2'(5,) (2.41)

! The tsearch function will be replaced in future Matlab® releases by DelaunayTri class
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where m,(s,) is the trend function, and Z'(s,) is the interpolated residual by means

of OK (Rivoirard 2002). Typically, the trend function is modeled as:
P
m, (S,) :Zﬁk 0 (So) 5 Gk (So) =1, (2.42)
k=0

where q,(s,) are the values of auxiliary variables at s,, g, are the estimated

regression coefficients and p is the number of auxiliary variables (Draper and H.
Smith 1981, Hengl 2007, Hengl et al. 2007). Auxiliary variables could include
polynomials of the data coordinates (X,y). The regression coefficients are estimated
from the sample using ordinary least squares (OLS) or generalized least squares
(GLS). However, it has been shown (Kitanidis 1993) that GLS does not confer any
significant benefit if the sampling locations are not clustered. The variance of the

estimates follows from the equations (Hengl et al. 2003, Hengl et al. 2007):

o (So) =O'§ (o) +O—$ (So) (2.43)
o2 (5)=ay (4" 77" q) " d, (2.44)
O-f (So) :Z{i:siego}ﬂ’l 72 (8i:S0) + 444 (2.45)

where o2 (s,) is the drift prediction variance, q, is the vector of (p+1)><1 predictors
at the unvisited location, g is the matrix of (N0+1)><(p+1) predictors at the
sampling points in the search neighborhood, y,. is the semivariogram matrix of the

(Ng +1)x(N, +1) residuals at the measured locations (neighborhood) and o7 (s,) is

the kriging (OK) variance of residuals. The terms involved in the drift variance

prediction are presented below in vector and matrix form as appropriate:
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44(s,) |
G2 (o)
do=| :
q,(So)
L l .
[ay(s) - d,(8y) 1]
a,(8,) -+ - Q,(sy) 1
q=| : Do : :
Ay(Sng) -+ -+ Gp(Sng) 1
1 1 1]
(7,(08) o o 7u(50Sy,) 1]
7,(5,,8) .. ... 7,(5.,S,) 1
Y, = : : :
Vo (ngiSt) oo oo 72(SngiSng) 1
1 1 0]

2.5 Spatial Model Validation

The groundwater level in Mires basin is investigated using the methods that
are described above. All the methods are implemented by original code developed and
run in the Matlab® programming environment (Matlab v.7.5 on Microsoft Windows
XP). This approach allows control of the model parameters and straightforward
comparison of the results. To avoid numerical instabilities, we normalize the
coordinates of the study area in the interval [0, 1].

Given the small size of the Mires data set, we use leave-one-out cross-
validation to compare different spatial models. This procedure consists of removing
one datum at a time from S and estimating its value based on the remaining N -1
data. Interpolated values are compared with their measured counterparts using the
global performance measures listed below. The “optimal” spatial model is determined
based on the performance of statistical metrics that quantify differences between the
estimated and true values (Isaaks and Srivastava 1989, Goovaerts 1997, Leuangthong

et al. 2004, Ahmadi and Sedghamiz 2008). The validation measures defined below

are used, where z'(s;) and z(s;) are, respectively, the estimated and true head values
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at point s,. The estimates are obtained by removing z(s;) from the dataset and

interpolating the remaining data; z(s,) denotes the spatial average of the data and

Z'(s,) the spatial average of the estimates, while N is the number of observations.

Mean absolute error (MAE):

1 N«
Fua = 2ia (2.46)
Bias:

i g 2.47
Eaias _WZi:l z (s)—2(s), (2.47)
Mean absolute relative error (MARE):

N |Z (s) z(s;)

_= , 2.48
EMAR Z 2(5)) ( )
Root mean square error (RMSE):

_JEsrry 2 2.49
Saws =y 2oL 2 €)= 2] (2:49)

Linear Correlation Coefficient:

ZiN:1|:Z(Si) _Tsi)][Z*(Si) _Tsu)}

R = , (2.50)

i[z(si)—Tsi)]z Jz[ﬂsi)—m]z

=2

2.6 Comparison of interpolation methods

There is not a universally optimum interpolation method that can be used for
all kind of datasets. Two spatial interpolation comparison exercises have been
organized by the Radioactivity Environmental Monitoring (REM) Group of the Joint

Research Centre of the European Commission (Dubois 1998, Dubois and Galmarini
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2005). These exercises focused on radioactivity monitoring in the European continent
and in particular on automatic (i.e., without user involvement) mapping.

Cornford (2005) emphasized the problems of interpreting comparative
interpolation studies. First, their results do not admit generalization and are often
contradictory. In addition, for a single dataset several or all assessed methods may
exhibit similar performance. Hence, the choice of the “optimal” interpolation method
is dictated by other factors, such as computational speed, implementation cost, scaling
with data size and the ability to make probabilistic predictions (estimates of the
prediction error). Van den Boogaart (2005) agrees that comparative studies based on
one or two datasets can be misleading, and that a uniformly optimal method for all
kinds of datasets does not exist. He points out that the performance and utility of the
methods should be assessed in terms of decision making requirements (e.g.
concerning outliers, estimation variances) and its adaptability to the complexity of the
specific dataset (e.g. sparse data, presence of trends) and not only in terms of mean
square errors. Myers (2005) emphasizes the use of clear software standards, common
hardware configurations and an extensive set of performance measures to allow the
duplication of reported results by others.

In light of the above remarks, we use the same programming environment for
all the methods tested so that results are directly comparable. The methods are
described in detail including the values of user-defined parameters to allow
reproduction of our results by others. The performance of the interpolation methods
for the Mires basin dataset is based on cross-validation measures, uncertainty
estimation  ability, methodological specifications (search  neighbourhood,
differentiability, contour map effects) and adaptability to the data set statistics (size of
data, outliers). The results obtained in this work are useful for mapping groundwater
level spatial variability in basins with similar characteristics, and more generally in
environmental monitoring applications that involve spatially distributed data (e.qg., air

pollutants, groundwater quality, soil contaminants, etc.).

2.7 Spatiotemporal interpolation

Space-time analysis and prediction of groundwater level variability in a basin
is more important than purely spatial analysis. In scarce and sparsely monitored
basins, analysis and prediction becomes more difficult because of limited data
availability. In case of temporal-only estimation it is desirable to formulate a
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predictive model of groundwater table depth that can incorporate the various physical
parameters that determine the groundwater level, such as meteorological data (e.g.
precipitation), evapotranspiration, runoff, and water usage. A stochastic model is
required due to the considerable uncertainty of certain parameters (e.g.,
evapotranspiration), the spatial variability of conditions within the basin, the sparse
nature of sampling in space-time, and the inadequacy of available measurements (e.g.,
water usage is estimated based on data from the official boreholes; however, an
unspecified number of unregulated boreholes operate in the area). We propose to
model the variation of water table depth with a discrete time autoregressive
exogenous variable (ARX) model (Knotters and Bierkens 2001, Knotters and
Bierkens 2002). The autoregressive discrete-time model will account for the time
variability based on the time series of groundwater level, precipitation measurements
and abstraction rates. The term exogenous denotes that the model equations
incorporate information from other (than the water table depth) variables. The ARX
model is embedded in a Kalman filter in order to determine the ARX model
parameters according to the system identification procedure (Ljung 1999). This is
typically based on the maximum likelihood algorithm to determine the “optimal”
parameters. A similar approach using differently trained Artificial Neural Network
models was applied to a specific well in the Mesara valley to model the groundwater
level temporal variability and then to estimate it during the period 1997-2002
(Daliakopoulos et al. 2005, Tsanis et al. 2008).

Space-time geostatistical approaches can be used to model the groundwater
level variability. In areas with limited spatial and temporal data availability,
application of space-time approaches can improve the reliability of predictions by
incorporating space-time correlations instead of purely spatial ones; therefore the
former approaches involve more parameters (Lee et al. 2010).

In Christakos (1991a, b) a theory of spatiotemporal random fields is developed
and properties of the most important classes of spatiotemporal fields are examined.
The theory is used to describe the correlation structure of space non-
homogeneous/time non-stationary processes and to derive optimal estimators for data
dispersed simultaneously in space and time. Christakos and Hristopulos (1998)
presented a completed review and new material on Bayesian maximum entropy
estimation techniques and space-time random field estimation methods. Later

Kolovos et al. (2004) presented various methods for constructing space-time
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covariance models. These include non-separable (in space and time) covariance
models derived from physical laws (i.e., differential equations and dynamic rules),
spectral functions, and generalized random fields. It is also shown that non-
separability is often a direct result of the physical laws that govern the process. The
proposed methods can generate covariance models for homogeneous/stationary as
well as for non-homogeneous/non-stationary environmental processes across space
and time.

Kyriakidis and Journel (1999) presented an extensive review for space-time
geostatistical techniques. The initial approach for space-time geostatistical analysis
was to add time as an additional dimension of space (Rouhani and Myers 1990,
Kyriakidis and Journel 1999). This approach was implemented using kriging
technique developing space-time kriging. Advanced space-time geostatistical
approaches were also developed by (Christakos 1991b, Christakos 2000) and
(Kyriakidis and Journel 1999) to account for fundamental dependencies in the
combined space-time metric (Lee et al. 2010).

Bayesian approaches as an alternative to non-Bayesian i.e. kriging were
introduced by Christakos (1990, 2000). The Bayesian Maximum Entropy (BME) is a
non-linear method that relies on a two-steps procedure that first involves a Maximum
Entropy step (the ME part of BME) to obtain a prior distribution and on a Bayesian
conditioning rule for the assimilation of secondary information (possibly soft data).
BME provides a flexible framework that accounts for the wide variety of available
knowledge bases and leads, in general, to optimal non linear space/time estimators.
Applications include soil science e.g., (Brus et al. 2008), water consumption (Lee and
Wentz 2008), environmental health studies e.g., (Christakos and Hristopulos 1998, Yu
et al. 2009, Kolovos et al. 2012), atmospheric environment e.g., (Vyas and Christakos
1997, Christakos and Serre 2000, Yu et al. 2011).

A framework for stochastic spatiotemporal modeling has also been presented
by Kyriakidis (2001a, b). A data set that is more densely sampled in time than in
space can be modeled via a set of spatially correlated time series (Rouhani and T.J.
Hall 1989). The time series at each sampled location can be decomposed into a non-
stationary deterministic or stochastic trend component and a stationary residual
component. The residual time series is then fitted with a covariance model. It is
possible to apply this approach to perform spatial interpolation or extrapolation;

extending it to a continuous spatial domain by determining temporal covariance
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models or time series independently at each fixed location and then regionalising
them in space. Time series regionalization involves simulation of the spatiotemporal
residual field by generating simulated realizations at any unmonitored location;
sequential Gaussian simulation, i.e., autoregression (Kyriakidis and Journel 2001a).
Simple kriging (SK) is used for the covariance parameters regionalization. This
allows temporal covariance models or time series to be determined at unsampled
locations and reduce the computational effort associated with the number of
(temporal) covariances. A simulation procedure is also used for the trend
regionalization which is typically approximated by periodic and sine and cosine
functions in conjunction with multiple regression. The independently simulated trend
and residual realizations are then added to produce realizations for the spatiotemporal
field. An estimate of the standard deviation of the unknown residual profile at any
unmonitored location is also derived via SK. Although this framework has been
characterized as powerful, it requires multiple regionalisations, thus time and
computational load (Kyriakidis and Journel 2001b).

Space-time Kriging has been applied in geohydrology by Rouhani and T.J.
Hall (1989) where intrinsic random functions (polynomial spatiotemporal covariance)
for space-time kriging of piezometric data were used. In Rouhani and Myers (1990)
potential drawbacks of space-time geostatistical analysis on geohydrological data
(piezometric data) are discussed. More recently space-time kriging was applied by
Mendoza-Cazares and Herrera-Zamarron (2010) for the estimation of the water level
of the Queretaro-Obrajuelo aquifer and Hoogland et al. (2010), where the goal of the
study was to map the seasonal fluctuation of water-table depths in Dutch nature
conservation areas. Furthermore space-time Kriging was used for the design of
rainfall networks in time and space (Rodriguez-lturbe and Mejia 1974) and in a
comparison study for estimating runoff time series in ungauged locations (Skeien and
Bléschl 2007).

In addition, space-time Kriging has also been used in a wide range of scientific
fields and topics such as agriculture (Stein 1998, Heuvelink and Egmond 2010)
atmospheric data (De laco et al. 2002b, Myers 2002, Nunes and Soares 2005), soil
science-water content (Snepvangers et al. 2003, Jost et al. 2005), surface temperature
data (Hengl et al. 2011) wind data (Gneiting 2002), gama radiation data (Heuvelink
and Griffith 2010), epidemiology (Gething et al. 2007) and forecasting municipal
water demand (Lee et al. 2010).
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Space-time geostatistical analysis is based on the joint spatial and temporal
dependence between observations. There are two ways to represent space-time

random variables (Christakos 1991b), a) the full space-time models using separable or
non-separable space-time covariance functions; Z(s,t ), (s,t) €e D x T, Dc R% is
the spatial domain (d is the dimensions) and T < R is the temporal domain; and b)
vectors of temporally correlated spatial random fields Z(s,t ) =Z,(s), t=1...T , where

T is the number of temporally correlated SRF or vectors of spatially correlated time

series Z(s,t )=Z,(t),s=1...n, where n is the number of locations. The

representation depends on the domain density (space or time).

The space-time kriging method employs the first model. The two main tasks
of space-time analysis are interpolation and extrapolation. The first refers to
estimation of variable values at unmeasured locations inside the spatial extend of the
study area, while the latter extends the estimations ahead of the boundaries of the
observations in space or time. The main assumption used in interpolation and
extrapolation is that the specific patterns extracted from the available data analysis
delivers sufficient information to capture the spatiotemporal dynamics of the observed
data (Lee et al. 2010).

The application of space-time kriging to space-time field data entails practical
difficulties, especially for geohydrological data. The most important problem is the
construction of valid covariance or semivariogram models in space-time; valid
covariance or semivariogram models constructed in the spatial or temporal context are
not, in general valid when a valid temporal model with a valid spatial model are
combined to produce a spatiotemporal model. Geohydrological data are usually dense
in time and sparse in space. This feature is significant since covariances or
semivariograms can lead to significantly different levels of reliability in space and
time. The kriging estimator is inferior if the data is collected during the wet season
and the estimates refer to the dry season. Finally, in space-time kriging applications
computational problems may arise for specific sampling patterns with the coefficient
matrix in the kriging system. These problems are due, e.g. to insufficient number of
sample locations compared to the order of a drift function applied to the data, or

scarcity and clustering of sampling locations (Rouhani and Myers 1990).
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3. Study area and data exploratory statistical analysis

3.1 Physical setting and information

The study area is located on the island of Crete (Greece). Crete has a dry sub-
humid Mediterranean climate with long hot and dry summers and relatively humid
and cold winters. The island’s marginal groundwater resources are extensively used
for agricultural activities and human consumption. Although Crete’s temperature lies
between the 18.5 and 19.0 °C isotherms, it shows considerable variability throughout
the island. During the winter period the temperature decreases with increasing
altitude, but during the summer period it increases from the coast to the inland areas.
The presence of mountains, mainly at the center and the south of the island,
significantly affects the climate of different areas. Precipitation is higher in the
Northwestern coastal areas and lower in the Southeastern part of the island. The total
hours of sunshine in the Southeastern part are more than in the Northwestern part.
These differences in climatic parameters create local, quite different microclimates
(Department of Water Resources Management 2000, Chartzoulakis and Psarras
2005).

The Mesara valley catchment covers an area of 398 km? in the south of the
Heraklion prefecture, and it is the largest and most productive valley of the island
(Figure 3.1). About 250 km? of the total valley area are cultivated. The distribution of
the cultivated crops is olives 75%, 10% vines, 2% citrus and 13% vegetables (mostly
open field and some greenhouses). Olive trees occupy most areas of flat land while
vines are less widespread located mainly to the south east of Mires and in the north
east of the catchment. An extensive network of pumping stations has been installed
since 1984, turning the dry cultivation of olive trees to drip-irrigated (Donta et al.
2006). As a result, productivity has risen at the cost of an alarming drop of the water
table. Over-exploitation during the past thirty years has led to a dramatic decrease, in
excess of 35 meters, in the groundwater level. Potential future climatic changes in the
Mediterranean region, population increase, and extensive agricultural activity
generate concern over the sustainability of the water resources. The accurate

estimation of the spatial variability of the hydraulic head is important for integrated
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groundwater resources management plans that will help reduce the risk of
desertification.

The Mesara Valley catchment comprises an east-west plain. Along the north
side of the plain, the mountain altitude varies from 2200 m to 600 m from west to
east. Along the southern side, the Asterousia mountain chain rises from 600 m in the
west to 1200 m in the east. At the Phaistos constriction in the west, the catchment
outlet of the Geropotamos River is at 30 meters above sea level. The catchment area
of the northern slopes is 160 km? while the southern slopes comprise a catchment area
of 126 km? Mainly quaternary alluvial clays, silts, sands and gravels with thickness
from a few meters to 100 m or more, cover the plain. The inhomogeneities of the
plain deposits give rise to great variations in the hydrogeological conditions even over
small distances. The northern slopes are mainly silty-marly Neogene formations while
the southern slopes are mainly schist and limestone Mesozoic formations (Donta et al.
2006, Kritsotakis and Tsanis 2009, Tsanis and Apostolaki 2009, Kritsotakis 2010).
The outlet of the catchment is narrow, confined to a channel cut into an impermeable
barrier of lower Tertiary near Phaistos. Topographically, the Mesara catchment is
characterized by a flat basin morphology modified by river terraces and alluvial fans.
(Peterek and Schwarze 2004). The alluvium basin of Mesara catchment is not a
uniform hydrogeological unit, and therefore it is divided into two sub-basins with
different hydrogeological properties: the Mires and the Vayionia basins (Kritsotakis
and Tsanis 2009), (Figure 3.1). A detailed hydrogeological description of the Mesara
valley can be found in Vardavas et al. (1996) and Kritsotakis (2010).

- : Mesara Catchment

\/a‘yiohia Basin

v "~ 4 \ D) Mires Basin

Figure 3.1 Map of Greece and the schematic representation of the Mesara valley and the Mires basin
locations on the island of Crete.
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3.2 Hydrogeological setting

This thesis focuses on the Mires basin of the Mesara valley for two reasons.
The first is hydrogeological data availability, and the second that the basin consists
mainly of alluvial sediments, providing to a large extent a hydro-geologically uniform
study area. The basin has been consistently monitored over the last thirty (30) years
for groundwater level variations, rainfall and surface runoff by the Department of
Water Resources Management (DWRM) of the region of Crete. The Mires basin is a
down-faulted trough with an area of 50.3 km?, roughly 14 km long and on average 3
km wide. The trough is filled mainly with Quaternary alluvial sediments which form
an inter-bedded sequence of gravels, gravely sands, sands, silts, silty sands and clays
(Kilili-Polychronaki 2001, Donta et al. 2006, Kritsotakis 2010). The geological
composition of the basin is presented in Figure 3.2.
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Figure 3.2 Geological representation of Mires basin

GEOSTATISTICAL ANALYSIS AND SPACE-TIME MODELS OF AQUIFER LEVELS: APPLICATION TO MIRES 51
HYDROLOGICAL BASIN IN THE PREFECTURE OF CRETE




STUDY AREA AND DATA EXPLORATORY STATISTICAL ANALYSIS

The alluvium aquifer of Mires basin is the most significant of Mesara
catchment. Its thickness decreases from the centre of the basin to the south and north.
The thickest part is located at the eastern part where Lithaios river crosses
Geropotamos river (near Houstouliana). The trough is covered in geological terms
mainly with conglomerates, sands and clays of fluvial origin (Figure 3.2). These
formations are favor aquifers of high capacity especially at the locations where mainly
conglomerates occur.

Borehole logs at the eastern and central part of the basin denote that the
conglomerate thickness varies from 75 to 180m (Figure 3.3). The alluvial basin
constitution changes from East to West (Figure 3.4). At the Eastern part the deposits
are coarser with layers of clay and silt of less than 5m thickness. The surface layer is
mainly composed of gravel and sand allowing high infiltration. At the downstream
part, west of Mires, the thickness of clay and silt layers increases with the surface
layer comprising mainly of clay deposits (Vardavas et al. 1996, Kritsotakis and Tsanis
2009).

Geophysical surveys have revealed that the flanks of the Mires basin are steep-
sided, which may reflect the presence of East-West fractures, or the bank of an
erosion channel cut into the underlying lower Pleistocene sediments. Whatever the
true nature of the trough boundaries are, extensive fractures parallel to and across the
valley are present and have caused the variable thickness of the alluvium throughout
the basin. The elevation of the base of the alluvium-lower Pleistocene aquifer ranges
from —50 to +100 m, taking the mean sea level (MSL) as reference datum; the lowest
points of the elongated trough being to the northeast of Petrokefali and north of
Houstouliana. This surface is based on the elevation of the lowest permeable unit
identified from borehole logs. Saturated thickness ranges from less than 20 m to over
100 m in the lowest part of the trough (Donta et al. 2006).

The aquifer capacity cannot be accurately estimated, as it is part of the unified
Mesara catchment hydrological system. The Food and Agriculture organization of
United Nations (FAO 1972) estimated the capacity of the aquifer equal to around 86
Mm? based on boreholes log data taken that year. The present aquifer capacity is
smaller (due to the significant groundwater depletion) and is estimated equal to
around 55 Mm?® (Kritsotakis and Tsanis 2009). The aquifer is supplied during the
winter period from the main river that crosses the basin, Geropotamos, and from a

secondary, Lithaios, in the eastern part. Surface runoff from the northern and southern
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sides of the basin ends up in the basin where a significant percentage supplies the
aquifer. Lateral groundwater inflow in the basin occur from Vayionia basin in the
eastern part of the basin, while groundwater inflow is likely to also occur from the
neogenic formations at the north-northwest part (Kilili-Polychronaki 2001).
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Figure 3.3 E-W cross-section alog the Geropotamos river showing simplified geolgic formation of
the Mire basin (Fytolakis et al. 2005).
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Figure 3.4 Simplified geological structure of the Mires basin, modified after (Vardavas et al. 1996).

Groundwater levels in Mesara valley are maximized during March or April
with long dropdowns until recharge occurs in winter. The aquifers of Mires and
Vayionia basins yielded high discharge rates, as high as 300 m*hr, in the early
seventies but they are now reduced to about one tenth of that figure. Based on
pumping tests, the specific yield mainly ranges between 0.05 and 0.15, but in Mires
basin locally it reaches 0.2. The horizontal transmissivity whereas ranges between 0.1
and 0.01 m%sec from east to west, while it takes the highest value along the
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Geropotamos river bed. At the center of the alluvial aquifer and across the river bed
the wells specific discharge is determined 40-100m*/h per meter of groundwater level
drop. In the eastern part of the basin the rate decreases to 15-40m°h. Lateral
groundwater outflow from the valley is small compared with the vertical groundwater
outflow. The higher values of hydraulic conductivity are concentrated in the Mires
basin, where it varies between 10 and 120 m/day reflecting the presence of several
gravel and sand horizons in the alluvial sequence. The least permeable areas are in the
Vayionia block, where the scarcity of gravel and sand implies that values are reduced
to an average of only 1 m/d. Lower values also occur in the northern side of the Mires
basin, where lower Pleistocene rocks similar to those of the Vayionia block are
present. The hydraulic properties of the Plio-Pleistocene aquifer are of a magnitude
less than that of the alluvial deposits (Donta et al. 2006, Kritsotakis 2010).

R

N T

Geropotamos river
[ ] impermeable deposits of low to very low hydraulic conductivity

[ ] impermeable or selectively permeable deposits of low to very
low hydraulic conductivity

[ ] karst formations of medium to low hydraulic contuctivity

[ granular mainly alluvial deposits of variable hydraulic conductivity

[ miocene and pliocene deposits of medium to low hydraulic contuctivity
P granular non alluvial deposits of low to very low hydraulic contuctivity
] gypsum

Figure 3.5 Hydro-geological representation of Mires basin.
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The porosity decreases with depth below surface in a range of 0.05 to 0.12
(Croke et al. 2000) while the effective porosity which is the percentage of pores
(interconnected) that are available for fluid flow (Bear 1979) is determined in Mires
basin equal to 0.085 (Kilili-Polychronaki 2001). The rapid groundwater level drop
(>35 masl) has affected the hydraulic characteristics of the aquifer. An assessment of
the groundwater level depletion impact on the hydraulic properties of the aquifer has
shown a decrease of the tranmissivity mainly because the thickness of the saturated
zone has changed (Kilili-Polychronaki 2001).

The basin’s aquifer is characterized in hydro-geological reports as unconfined
(Kilili-Polychronaki 2001, Donta et al. 2006), and it is sparsely monitored regarding
the groundwater level. Aquifer storage coefficients, obtained from FAO pumping
tests, in conjunction with the behavior of the water table (free surface existence)
suggests, that although heterogeneous and locally confined, the aquifer behaves at the

regional scale as an unconfined unit (Donta et al. 2006).

3.3 Hydrological setting

The mean annual rainfall in the Mesara catchment is around 650 mm. About
65% of the rainfall is lost to evapotranspiration and 10% as runoff to the sea, leaving
only 25% to recharge the groundwater store (Croke et al. 2000). Rainfall increases
with the elevation from about 500 mm in the Mesara plain to about 800 mm in the
valley slopes, 1100 mm in the Asterousian Mountains and up to 2000 mm in the Idi
mountain (Tsanis and Apostolaki 2009). Figure 3.6 presents the mean annual rainfall
in Messara for the hydrological years 1981 to 2010. About 40% of the precipitation
occurs in the months of December and January, while there is negligible rainfall from
June to August (Figure 3.7).

The mean winter temperature is 12°C while the mean summer temperature is
28°C. The relative humidity in the winter is about 70%, while it is about 60% in the
summer (Tsanis et al. 2011). Pan evaporation is estimated at 1500300 mm per year
while western winds prevail. The potential evaporation is estimated at 1300 mm per
year setting the ratio of mean annual rainfall to potential evaporation at about 0.5
implying a dry sub-humid classification according to the (UNCED 1994) definitions
(Croke et al. 2000, Tsanis and Apostolaki 2009). The plain altitude in Mires is less

than 300m although the mean annual rainfall is similar to the catchment average.
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Specifically for Mires basin the most recent hydro-geological study (Kilili-
Polychronaki 2001) estimates the evapotraspiration at 82%, the infiltration 18% and

the surface runoff as negligible.
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Figure 3.6 Annual rainfall in Mesara valley (data provided by the Administration of Land Reclamation
of the Prefecture of Crete and the Department of Water Resources Management of the Prefecture of
Crete.
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Figure 3.7 Monthly rainfall in Mesara valley (data provided by the Administration of Land
Reclamation of the Prefecture of Crete and the Department of Water Resources Management of the
Prefecture of Crete.

The main outlet of the catchment, as mentioned above, is Geropotamos river at
the Phaistos constriction in the west. In its natural state, the Geropotamos River of the
Mesara Valley flowed continuously, and sustained a wetland located near the
catchment outlet. The drop in the groundwater level has resulted in the wetland drying
up and no flow in the river so during the dry season of the 1989-90 hydrological year
as during the whole 1992-1993. Additionally during the hydrological year 1992-1993
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there was no river flow out of the valley, while very low flow was measured during
the years 1999-2000 and 2004 to 2007 (Figure 3.8).

Groundwater abstraction rates in Mires basin varied from 20-400 m%h before
the extensive exploitation of the aquifer, while the pumping rates were correlated with
the hydrogeological formation (higher in the alluvial formations). The number of
boreholes operated at that time in the entire valley was 26. The average pumping rate
at the center of the basin across the Geropotamos root was 200 m*h and the
groundwater level was less than 10 meters below surface. At the eastern part, near
Lithaios, the pumping rates were similar but the depth of the water table varied from
20-40 m*/h from south to north.
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Figure 3.8 Annual runoff of Geropotamos of Mesara catchment (data provided by the Administration
of Land Reclamation of the Prefecture of Crete and the Department of Water Resources Management
of the Prefecture of Crete.

An extensive network of pumping stations was installed on 1984. It is
estimated that after the installation of the network around 40Mm?® (22Mm?® in Mires
basin) on average are being pumped per year. The temporal variability of the annual
pumping volume in Mires basin is presented in Figure 3.9. Before the installation of
the groundwater irrigation system, less than 10Mm?® were pumped per vyear, the
average discharge out of the valley was about 20 Mm?®/yr corresponding to 50 mm of
the annual rainfall lost as runoff to the sea. It is estimated that the annual recharge of
the groundwater store was about 60 Mm?®*yr (150 mm) and the evapotranspiration
losses were about 160 Mm?®/yr (400 mm). Nowadays, the surface runoff and the
groundwater supplies are decreasing rapidly (Donta et al. 2006, Kritsotakis 2010).
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The large number of operating boreholes and overexploitation are responsible for this
trend. A recent publication cites that 1400 wells were operated on 2007 in whole
Mesara valley (Kritsotakis 2009). In Mires basin, the Greek Institute of Geology and
Mineral Exploration (IGME) has registered more than 80, although data are not

available for all of them.
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Figure 3.9 Annual abstraction rate in Mires basin (data provided by the Administration of Land
Reclamation of the Prefecture of Crete, the Department of Water Resources Management of the
Prefecture of Crete and by Kritsotakis (2010).

3.4 Groundwater level Data availability

The groundwater level monitoring locations in the basin are presented in
Figure 3.10, while the groundwater level drop since 1981 has exceeded 35m (Figure
3.11). Our overall goal is to use stochastic methods for the spatiotemporal monitoring
and prediction of the groundwater level in the basin. The data used in this thesis
comprise seventy (70) hydraulic head measurements, from wells located in Mires
basin, for the wet period of the hydrological year 2002-2003 (October — April is the
wet period of the hydrological year). This is the only period for which a full set of
recorded head values exists. The data have been provided by the Administration of
Land Reclamation of the Prefecture of Crete. The measurements are unevenly
distributed and mostly concentrated along Geropotamos, a temporary river that
crosses the basin (Figure 3.10). The range of hydraulic heads varies from an
extremely low value of 9.4 meters above sea level (masl) to 62 masl for the wet

period of the year. The head values are even lower during the dry period.
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Figure 3.10 Topographic map showing the locations of groundwater head measurement in Mires basin
along with the corresponding surface elevation and the temporary river (Geropotamos) path.

Ten wells (Figure 3.12) were monitored between the years 1981 and 2003,
while others were monitored for shorter periods. Since 2003, the regular biannual
monitoring of the operating boreholes has been replaced by the continuous monitoring
of two telemetric stations placed in two boreholes selected by the DWRM. It has to be
mentioned that selective measurements occur at specific wells in the basin on 2003-
2006 period biannually at four of the ten set boreholes (leading to six monitored
locations). The groundwater level increase during the period 2003-2005 is due to the
increased rainfall and the low pumping activity during that period (Figures 3.6 and
3.9). On the other hand the groundwater level trend since 2006 is mainly affected

from the small number of the available observations.
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Figure 3.11 Mean bi-annual groundwater level in Mires basin. An average of 10 wells until 2002-03 is
considered, 6 wells until 2005-06 and 2 wells until 2009-10.
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Average pumping rates for the 70 wells operated in the basin have been also
provided from the Administration of Land Reclamation of the Prefecture of Crete.
The correlation of the pumping rates with the corresponding groundwater levels is
characterized important as it is 68%. The pumping rates vary from 10-170 m*/h.
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Figure 3.12 Topographic map showing the locations of monitored wells (triangles) in Mires basin
along with the corresponding surface elevation and the temporary river path. Green color is used to
mark the wells monitored for the period 1981-2003.

3.5 Exploratory statistics

The results of exploratory analysis for the hydraulic head data are shown in

Table 3.1. The head data have skewness and kurtosis coefficients equal to § =0.81

z

and IZZ = 2.58 respectively, implying a mild deviation from Gaussian statistics (S, =0

and Kk, =3 respectively).

Table 3.1 Statistical measures of the hydraulic head data. Z_;,: minimum value; Z,,first quartile;

Zys, Median; M, mean; Z,,. third quartile; Z,, maximum value; &, standard deviation; §,

skewness coefficient; K, kurtosis coefficient.

A

Z in 2425 Zys50 m, Zy 75 Z nax o, S, K,
9.40 20.50 24.25 32.05 40.2 62.00 12.4
0.81 2.58
masl| masl masl masl masl masl masl
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The Skewness coefficient S, is estimated based on the third central moment

z

according to the equation below:

s — NS | (3.1)

o

where m the sample mean and N the number of sampling points. The skewnes

z

coefficient of the normal distribution is equal to zero (Nist/Sematech 2009).
The Kurtosis coefficient is specified from the fourth central moment and

defined by the following equation:

Ii-lz (Z i n,>]z)4
= . (3.2)

z ~4
g,

>
|

The Kurtosis coefficient of the normal distribution is equal to three (Nist/Sematech
2009).

Another way to test if the hydraulic head data follows the normal distribution
is the Kolmogorov-Smirnov test (Massey Jr 1951, Kitanidis 1997). The Kolmogorov—
Smirnov test is a nonparametric test for the equality of continuous, one-dimensional
probability distributions that can be used to compare a sample with a reference
probability distribution (one-sample K-S test), or to compare two samples (two-
sample K-S test). The Kolmogorov-Smirnov statistic quantifies a distance between
the empirical distribution function of the sample and the cumulative distribution
function of the reference distribution for the one-sample K-S test. The null
distribution of this statistic is calculated under the null hypothesis that the sample is
drawn from the reference distribution (in the one-sample case); the distributions
considered under the null hypothesis are continuous distributions. The null hypothesis
for the Kolmogorov-Smirnov test is that data follows the standard normal distribution.
The test is applied comparing the normalized data values according to:
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’ (3.3)

o

with a normal distribution having mean rh, =0 and standard deviation o, =1. The test
statistic is: D = max |F(z)—G(z)| , Where F(z) is the empirical cumulative
distribution function (cdf) and G(z) is the standard normal cdf. If the sample comes

from distribution F(z), then D converges to O almost surely. The test is

implemented in Matlab® environment using the function «kstest». For this dataset the
null hypothesis is rejected at significant levels 5% and of 10%.

This is also confirmed by the normal probability plot presented in Figure 3.13.
The purpose of a normal probability plot is to graphically assess whether the data
could come from the normal distribution. If the data are normal the graph is linear;
otherwise, the graph is curved as herein. In light of OK, it is known to be the optimal
estimator if the data follow a multivariate normal distribution (Deutsch and Journel
1992). Therefore a series of normalizing methodologies are assessed in this thesis in

order to transform the data closer to the normal distribution.
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Figure 3.13 Normal probability plot of the basin’s groundwater level data for the hydrological year
2002-2003.

GEOSTATISTICAL ANALYSIS AND SPACE-TIME MODELS OF AQUIFER LEVELS: APPLICATION TO MIRES 62
HYDROLOGICAL BASIN IN THE PREFECTURE OF CRETE



http://en.wikipedia.org/wiki/Almost_surely

STUDY AREA AND DATA EXPLORATORY STATISTICAL ANALYSIS

3.6 Anisotropy estimation

In the present study a test for geometric anisotropy is performed by comparing
directional semivariograms in four main directions (Goovaerts 1997) using an angle
tolerance of 40° for the semivariogram estimation. As shown in Figure 3.14, there are
no distinct differences among the directional semivariograms. Therefore, the spatial
variation of groundwater level is considered to be isotropic (Ahmadi and Sedghamiz
2007).

We also performed a test of geometric anisotropy based on the method of
Covariance Hessian Identity (Hristopulos 2002, Chorti and Hristopulos 2008). This
method is non-parametric, in the sense that it provides an estimate of the aspect ratio
(i.e. the ratio of the two principal correlation lengths) and the orientation of the
principal axes, without requiring semivariogram estimation and modeling. The aspect
ratio is thus estimated at 0.806, while the short principal axis is rotated by 6° with
respect to the E-W direction. The value of 0.806 does not differ significantly from
unity. Indeed, the isotropic hypothesis cannot be rejected with 95% confidence for
ratios in the range [0.73 — 1.37] using the anisotropy test given in (Spiliopoulos et al.
2011, Petrakis and Hristopulos 2012).
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Figure 3.14 Experimental directional semivariograms of groundwater level in Mires basin along the
four main geographical directions, E-W, N-S, NE and NW.
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4. Comparison of stochastic and deterministic methods for
mapping groundwater level spatial variability in sparsely

monitored basins-Application to Mires basin®

4.1 Introduction

The accurate mapping of groundwater levels in an aquifer is important for
effective management and monitoring decisions. However, the number and spatial
distribution of hydraulic head measurements are not always sufficient to accurately
represent the groundwater levels in a given aquifer. Estimates at unsampled locations
can be obtained by applying geostatistical and deterministic interpolation methods to
the available data. This study aims to compare the performance of stochastic versus
deterministic methods for mapping groundwater level in areas with sparsely
distributed measurements and to specify additional observation locations where
denser sampling is needed.

This chapter compares the interpolation performance of OK, UK and DK with
the deterministic methods IDW and MC. The dataset used involves groundwater
levels in a sparsely gauged basin. Measuring the relative performance of different

interpolators is important for environmental monitoring.

4.2 Semivariogram estimation

The omnidirectional empirical semivariogram of the hydraulic head
fluctuations (after trend removal in UK) is determined using the method of moments.
Anisotropy is not modeled since the directional semivariograms (not shown here) do
not exhibit significant anisotropic dependence. The empirical semivariogram is fitted
with isotropic classical models such as the exponential, Gaussian, spherical, power-
law, and linear models (Deutsch and Journel 1992), the Matérn model (Matérn 1960,
Stein 1999, Pardo-Iguzquiza and Chica-Olmo 2008), and the new family of Spartan
variograms (Hristopulos 2003b, Hristopulos and Elogne 2007). For each of the above

% This chapter is an adaptation of a paper published in Environmental Monitoring and Assessment Journal

(Varouchakis and Hristopulos, 2012), please see page 179 for details.
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theoretical models, we determine the optimal semivariogram parameters that
correspond to the stochastic methods tested (Table 4.1and Table 4.2).

Table 4.1 Optimal estimates of semivariogram model parameters obtained by a least squares fit to the
experimental semivariogram of the data (Columns 2-4). The search radius defines the neighborhood
used in the OK predictor (Column 5). The number of first- and second-order neighbors used by DK at
each estimation point.

Model Sill & Other OK search radius DK No
parameters (normalized units)  of neighbors
Exponential 133  0.30 NA 0.38 4t06
Gaussian 160 0.28 NA 0.38 4106
Spherical 150 0.63 NA 0.59 4106
Power-law 538 NA 2H =131 0.59 4t06
Linear 331 NA NA 0.38 4106
Matérn 440 0.94 v=0.92 0.59 4t06
Spartan 184 0.46 n =112 0.46 4106

Table 4.2 Optimal estimates of semivariogram model parameters obtained by a least squares fit to the
experimental semivariogram of the residuals (Columns 2-4). The search radius defines the
neighborhood used in the UK predictor (Column 5).

Model Sill & Other UK search radius
parameters  (normalized units)
Exponential 142 0.34 NA 0.38
Gaussian 211 0.35 NA 0.38
Spherical 137 0.69 NA 0.59
Power-law 500 NA 2H =1.39 0.59
Linear 300 NA NA 0.38
Matérn 236 0.66 v=0.87 0.59
Spartan 169 0.75 n, =1.07 0.59

4.3 Results and Discussion

4.3.1 Global cross validation measures

Table 4.3 presents the results for the cross-validation measures previously
defined for each of the interpolation methods studied. IDW is applied using inverse
square distance weights (n=2). This exponent value is widely used in geohydrology

and also provides more accurate results for the Mires basin than other values. The
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optimum search neighborhood consists of the four closest observation points to the
estimation location. The MC method, implemented based on equations (2.30) and
(2.31), uses the entire dataset for prediction.

Figure 4.1 shows the empirical semivariogram and its fit with the optimal
Spartan and power-law models that provide similar cross validation results for the OK
and DK methods. The empirical semivariogram does not approach a sill, which is
interpreted as lack of stationarity within the study area. The power-law model is non-
stationary, while the Spartan model is stationary but approaches the sill outside the
study area. The cross validation measures obtained with the above semivariogram
models and with the best-fit Matérn model, which gives slightly inferior results, are
shown in Table 4.3. The results obtained with UK using the same semivariogram

models are also shown in Table 4.3.

Table 4.3 Cross validation measures (section 2.5) for the stochastic and deterministic interpolation
methods investigated. Results obtained with the three “optimal” (in terms of cross validation measures)
semivariogram models are presented. The following abbreviations are used: IDW: Inverse distance
weighted. MC: minimum curvature. DK: kriging with Delaunay triangulation. OK: Ordinary kriging.
UK: Universal kriging. SP: Spartan semivariogram. P: Power-law semivariogram. M: Matérn
semivariogram. MAE: Mean absolute error. MARE: Mean absolute relative error. RMSE: Root mean
square error. R: Linear correlation coefficient. Optimal values are emphasized

Method MAE BIAS MARE RMSE R
(masl) (masl) (masl)

IDW 3.45 -0.17 0.15 5.58 0.89
MC 4.01 0.10 0.17 6.18 0.87
DK-SP 3.48 0.10 0.15 5.47 0.89
DK-P 3.48 0.14 0.15 5.52 0.87
DK-M 3.63 -0.08 0.15 5.74 0.89
OK-SP 3.37 0.02 0.14 5.15 0.91
OK-P 3.58 0.07 0.15 5.46 0.90
OK-M 3.80 0.02 0.16 5.84 0.89
UK-SP 3.40 0.13 0.14 5.23 0.91
UK-P 3.50 0.09 0.15 5.54 0.89
UK-M 3.8 0.09 0.15 5.78 0.89

In OK the Spartan semivariogram model (Figure 4.1) gives the most accurate
estimates in terms of mean absolute error (MAE), i.e., 3.37 masl, compared to the
power-law model which is a close second with 3.58 masl. The Spartan model is also
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superior with respect to the other estimation measures (Table 4.3). DK has a MAE of
3.48 masl respectively, for both the Spartan and power-law semivariograms.
However, as shown in Table 4.3 the validation measures obtained with the Spartan
model are overall slightly better. The Spartan semivariogram is thus used in OK and
DK interpolation. For OK a search radius equal to the characteristic length (0.46 in
normalized units) yields the best cross validation results (Table 4.1). DK is applied
using the first and second-order neighbors of the estimation point (Table 4.1),
resulting in higher accuracy.
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Figure 4.1 Plot of omnidirectional experimental semivariogram of groundwater level data (stars), the
optimal Spartan model (parameter estimates: variance 6%=184, characteristic length
5:0.46(normalized units), stiffness coefficient ﬁ1:1.12), and the optimal power-law model ( € =538,

2H =1.31). Numbers of pairs used at each lag distance are also shown on the plot.

For the application of UK, the drift is approximated by m,(s) =k x+k,y+Kk,
where k, =29.83, k, =—11.14, k =23.13 are the drift coefficients (constants) and
s=(x,y) are the space coordinates of the data. This is followed by a calculation of
the semivariogram of the residuals. Leave-one-out cross validation (Table 4.3) shows
that the Spartan model (Figure 4.2) delivers the most accurate results with respect to
MAE, i.e., 3.40 masl, and performs overall better than the other “near-optimal”
semivariogram models; the power-law model comes second with 3.50 masl.
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Therefore, the Spartan semivariogram is applied in UK interpolation. The optimum
search radius used with the Spartan model is equal to 0.59 (normalized units), which
IS somewhat shorter than the estimated characteristic length (Table 4.2).The power-
law model in both OK and UK is also applied using an optimum search radius equal
to 0.59 (Table 4.1, Table 4.2).

The cross validation measures (Table 4.3) show that no method performs
significantly better than the others. OK gives uniformly the best results for the mean
errors and the correlation coefficient followed, for most measures, by UK, DK and
IDW in the order mentioned here. OK has clearly the lowest bias, very close to zero.
MC generates a bias similar to DK and UK but lower than IDW; however, its

performance is inferior with respect to other validation measures.
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Figure 4.2 Plot of omnidirectional semivariogram of residuals (stars) and optimal Spartan model

(parameter estimates: variance 67 =169, characteristic length £=0.75 (normalized units), stiffness

coefficient ﬁ1:1.07). Residuals are derived by removing a linear drift. Numbers of pairs used at each
lag distance are also shown on the plot.

The Spartan semivariogram model provides the most accurate cross validation
estimates for the three stochastic methods investigated. In terms of MAE, OK-SP
gives the most accurate estimate followed by UK-SP and DK-SP. The bias of OK-SP
is very close to zero, while it is worse for DK-SP and UK-SP in the order stated.
MARE and R are similar for OK-SP and UK-SP but slightly lower for DK-SP.
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Finally, OK-SP vyields the lowest RMSE followed by UK-SP and DK-SP. Overall,
OK-SP provides the most accurate estimation measures compared to the other

stochastic and deterministic methods.

4.3.2 Lowest-value estimation

In addition to the global cross-validation results investigated above a statistic
of interest is the estimation accuracy of the lowest groundwater level, i.e., 9.4 masl.
DK-SP gives the most accurate estimate, i.e., 29 masl. DK estimates the lowest level
17% more accurately than OK-SP and UK-SP which yield 33 masl, and 17.6% more
accurately than IDW, which yields 33.15 masl. In contrast, the highest level of 62
masl is accurately estimated by both the stochastic and deterministic interpolation
methods. The superior performance of DK with respect to the lowest-value estimation
is due to the local averaging property of DK.

DK is herein applied using both the first-order and second-order neighbors of
the estimation point. At the location of the minimum, up to six neighbors are used in
DK. The maximum distance from the neighbors (0.11 normalized units) is shorter
than the estimated optimal radius for OK-SP and UK-SP interpolation (0.46, 0.59
normalized units, respectively). In order for OK-SP and UK-SP to approach the DK-
SP optimal estimate (29 masl), they should be applied with a smaller estimation
neighborhood. Using circular neighborhoods, the OK-SP and UK-SP neighbors of the
minimum value location do not coincide with the DK-SP neighbors (see Figure 4.3).
So, the optimal local neighborhood used by DK-SP is not feasible for OK-SP and
UK-SP. IDW Yyields optimal global cross-validation results if applied with a circular
neighborhood that encloses the four nearest neighbors but delivers an estimate of
33.15 masl for the lowest value.

In light of the above, we compare the minimum value estimation by means of
OK-SP, UK-SP, and IDW with the same radii (0.05 to 0.13 normalized units, see
Table 4.4). Leave-one-out cross validation results are shown in Table 4.4 using the
Spartan semivariogram, which provides the most accurate estimates of the minimum
compared to the other models tested, for all the methods (DK, OK and UK) and all
search radii used (OK and UK). Most of the estimates in Table 4.4 are better than
those obtained using “globally optimal” interpolation radii, which are derived by

minimizing the mean absoluter error over all the points.
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Figure 4.3 First- and second-order neighbors (full black circles) of extreme low value (at location
marked by star) of the dataset located using Delaunay triangulation. The circles centered on the
estimation point enclose the neighboring points for specific search radius (0.05 to 0.11 corresponding
to normalized units) used for OK, DK and IDW for the extreme low value calculation.

Table 4.4 OK-SP, UK-SP (SP: Spartan semivariogram) and IDW estimates (masl) of the extreme low
value in the dataset using search radii (normalized units). The radius 0.11 leads to a neighborhood
similar to DK which generates the most accurate estimate, 29 masl, of the extreme low value). The
numbers in parentheses denote the number of Delaunay neighbors present inside the corresponding
search radius, while (+) denotes the presence of other neighbors as well (see Figure 4.3). Delaunay
neighbors (symbolized with full black circles in Figure 4.3) are the vertices of the enclosing triangle
(dark color) and of the three adjacent triangles (grey color).

Search 0.05 0.06 0.09 0.11 0.13
radius ) 3) (4+) (5,6+) (5,6+)
neighbors neighbors neighbors neighbors neighbors
OK-SP 32.61 31.93 32.36 31.50 33.23
UK-SP 32.25 31.71 32.31 31.34 33.15
IDW 33.80 33.23 32.87 31.98 32.27

DK-SP estimation based on the first-order neighbors (i.e., the vertices of the
triangle enclosing the lowest-value location), provides the same accuracy (31.93 masl)
as OK-SP, but inferior than UK-SP (see Table 4.4). By increasing the search radius of
OK-SP, UK-SP and IDW the second-order neighbors are progressively included (see
Figure 4.3). The cross validation performance of OK-SP, UK-SP and IDW improves
(see Table 4.4) approaching the optimal of DK-SP (29 masl) as the neighborhood of
the latter is closely matched (i.e., for search radius of 0.11 normalized units). The best
estimate is obtained with UK-SP (31.34 masl).

The optimal radius for the lowest value estimation is not generally suitable for
OK, UK and IDW interpolation, because it generates search neighborhoods that do

not include any neighbors around some of the data points. The smallest search radius
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that leads to at least one neighbor for each data point is equal to 0.13 (normalized
units). However, this value delivers inferior cross validation measures for OK-SP,
UK-SP and IDW compared to the respective optimal radii. A radius of 0.13
(normalized units) provides a better IDW estimate (32.27 masl) of the minimum than
the optimal neighborhood (33.15 masl). In contrast, the OK-SP and UK-SP estimates
(33.23 and 33.15 masl respectively) are inferior to those obtained with the “globally

optimal” interpolation radii (33 masl).

4.3.3 Isolevel contour maps of hydraulic head

Next, we generate isolevel contour maps of the groundwater surface in the
basin. We use interpolated values of the hydraulic head on a 100x100 grid (actual
cell size: 114x47 m). Only grid points inside the convex hull (7317 grid points) of the
sampling network are given numerical values, to ensure that the interpolated field is
based on sufficient information. The contour maps generated are shown in Figure 4.4
to Figure 4.11.
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Figure 4.4 Isolevel contour map of estimated groundwater level in Mires basin using IDW.
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Figure 4.5 Isolevel contour map of estimated groundwater level in Mires basin using MC.
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Figure 4.6 Isolevel contour map of estimated groundwater level in Mires basin using DK with the

Spartan semivariogram model.
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Figure 4.7 Isolevel contour map of kriging standard deviation for groundwater level in Mires basin
using DK with the Spartan semivariogram model.
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Figure 4.8 Isolevel contour map of estimated groundwater level in Mires basin using OK with the
Spartan semivariogram model.
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Figure 4.9 Isolevel contour map of kriging standard deviation for groundwater level in Mires basin

using OK with the Spartan semivariogram model.
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Figure 4.10 Isolevel contour map of estimated groundwater level in Mires basin using UK with the

Spartan semivariogram model.
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Figure 4.11 Isolevel contour map of kriging standard deviation for groundwater level in Mires basin
using UK with the Spartan semivariogram model.

IDW and DK contours are rougher than those estimated by means of the other
methods. This is due to the fact that both methods use a small number of neighbors,
leading to considerable variation of the estimates. MC, OK and UK lead to smoother
contours. The smoothness of MC contours is due to the assumption of an underlying
differentiable function. OK and UK vyield very smooth contours, because their
estimates are based on observations within a neighborhood defined by the large
characteristic length (50% - 75% of the area’s extent in normalized units).

OK, DK and UK interpolation maps are derived using the non-differentiable
Spartan model. The power-law semivariogram, which is also non-differentiable, gives
similar results to the Spartan model. Third best is a non-differentiable Matérn model
with smoothness coefficient v<1. (0.92 and 0.87 for original data and residuals
respectively). Similarly, a non-differentiable semivariogram (spherical model), was
used for the hydraulic head in a different study (Fasbender et al. 2008). We propose
an explanation for the non-differentiability of the groundwater level surface. The data
reflect the surface formed by the upper boundary of the saturated zone. We suggest

that the height of this zone is determined by a deposition-removal process: locally
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varying increments of water are added (e.g., due to precipitation) and removed (e.g.,
due to pumping and evapotranspiration) from the aquifer. Hence, the height at any
given time results from the superposition of (both positive and negative) random
increments. If the increments are approximately Gaussian, this process is expected to
generate a non-stationary fractional Brownian motion (fBm) pattern (Mandelbrot and
Van Ness 1968). In surface hydrology, fBm processes have been used to model the
level of water reservoirs (Feder 1988). Hence, it is not coincidental that the fBm
power-law semivariograms are very close to the best performing model in the OK,
DK and UK cross validation procedure. Of course, for a finite-size basin the purely
power-law fBm dependence should be truncated by the domain size. The non-
differentiability of the groundwater level explains the poor performance of MC, which
assumes a differentiable hydraulic head function, in comparison to the other methods.

4.3.4 Estimation variance

Stochastic interpolation methods quantify the kriging (error) variance, which
determines the precision of the estimates. The map of kriging standard deviation
(kriging error) can be used to identify locations where the estimates have high
uncertainty and further sampling is needed (Prakash and Singh 2000, Fatima 2006,
Theodossiou and Latinopoulos 2006, Yang et al. 2008).

The error maps (Figure 4.7, Figure 4.9, Figure 4.11) identify the locations of
the Mires basin with the largest kriging standard deviation. The south and east borders
of the basin can benefit from further sampling according to OK (standard deviation
6—7.5 masl) and UK (standard deviation 5—6.5 masl). DK shows a standard
deviation range approximately between 6 and 8 masl at the same locations, but also
similar values along the west border. The fact that DK is based only on three to six
neighboring points often results in higher kriging variances than OK or UK. In Mires
basin, most estimation points have more than six neighbors in their UK and OK
search neighborhoods, thus reducing the OK and UK variances with respect to DK.
UK delivers the lowest standard deviation, as it includes a linear trend function that
reduces variability compared to OK. Interpolation with the Spartan semivariogram
model delivers the lowest standard deviation for all three (OK, UK, DK) interpolation

methods tested.
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4.3.5 Semivariogram validation

Cross validation studies mostly focus on univariate measures of performance,
such as the ones described above. Stochastic interpolation methods also allow
comparison of the empirical semivariogram with that obtained from the interpolated
values, thus testing the accurate reproduction of spatial continuity by interpolation
(Kitanidis 1997, Olea 1999).

In Figure 4.12 and Figure 4.13, we compare (i) the experimental
semivariogram of the observations (ii) the optimal theoretical model (iii) the
experimental semivariograms obtained from OK- (Figure 4.12) and DK- (Figure 4.13)
interpolation estimates and (iv) the respective optimal models. Figure 4.14 presents
the experimental semivariograms of the observations and the UK interpolation
estimates. Optimal theoretical models are not presented, because the semivariogram
fit is performed for the residuals. In all cases, the semivariogram of the estimates
shows very similar structure as that of the data. However, the former exhibit overall
lower variability tending to have lower values than the empirical semivariogram of

the data. This behaviour reflects the smoothing effect of interpolation.
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Figure 4.12 Comparison of groundwater level semivariograms: data (stars), OK estimates using
Spartan (SP) semivariogram (circles), along with optimal SP model fits to data (dashed line) and to OK
estimates (continuous line).
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Figure 4.13 Comparison of groundwater level semivariograms: data (stars), DK estimates using
Spartan (SP) semivariogram (circles), along with optimal SP model fits to data (dashed line) and to DK
estimates (continuous line).
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Figure 4.14 Comparison of omnidirectional groundwater level semivariograms of data (stars) and UK
estimates (circles).
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4.3.6 General remarks

Stochastic and deterministic methods for the interpolation of groundwater
levels have been used in other studies before. Below we briefly describe how this
study differs from previous ones.

To our knowledge, this is the first application of DK to groundwater level
interpolation. First- and second-order neighbors are used in DK to improve estimation
accuracy. In contrast with studies that employ only first-order neighbors, we clearly
present and apply the methodology for locating second-order neighbors. This paper
also presents the recently developed Spartan semivariogram model for environmental
applications. In the present study, this model is shown to be optimal for interpolation.
The OK-SP and UK-SP methods employed in this manuscript apply the Spartan
semivariogram model for the first time to hydrological data.

We compare three stochastic versus two deterministic methods for mapping
groundwater level that have not heretofore been compared on the same data set. The
case study in our manuscript investigates the performance of well-known methods
with respect to interpolation in a sparsely gauged basin (Mires basin). To our
knowledge, the groundwater level in Mires basin has not been modeled with
geostatistical methods.

According to the five statistical measures assessed, no method performs
extremely better than the others, with OK-SP to lead. The statistical measures can be
also assessed by categories. Best absolute error method, lowest bias method, best
statistical accuracy (MARE, RMSE) method and method with the higher cross
validation correlation coefficient (R). However, the conclusion is the same; the results
are not significantly different. Therefore, except of the estimation accuracy the choice
of the best performing interpolation method should be also based on the prediction
uncertainty, that is an advantage only of the stochastic methods.

The method comparison is based on cross validation measures, which include
global statistical quantities, the accuracy of the minimum value estimate, estimation
variance and semivariogram reproduction. The impact of search neighborhood effects
on the validation results is analyzed in detail. The comparison is conducted in the
Matlab® programming environment, using code developed by the author, as opposed
to commercial software packages. This approach provides increased flexibility and

common ground for comparison.
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5. Improving kriging of groundwater level data using non-
linear normalizing transformations-Application to Mires

basin®

5.1 Introduction

Skewed or erratic data can often be made more suitable for geostatistical
modeling by appropriate transformation. Such applications can lead to the reliable
mapping of the free surface of an aquifer. A normal distribution for the variable under
study is desirable in linear geostatistics (Clark and Harper 2000). Even though mild
deviations from normality do not cause problems, significant deviations, e.g. due to
high skewness and outliers, have an undesirable impact on the semivariogram
structure and the kriging estimates (Gringarten and Deutsch 2001, Ouyang et al.
2006). OK is well-known to be optimal when the data have a multivariate normal
distribution and the true semivariogram is known. Therefore, transformation of data
may be required before kriging to normalize the data distribution, suppress outliers,
and improve data stationarity (Deutsch and Journel 1992, Armstrong 1998). Then the
estimation is performed in the Gaussian domain, before back-transforming the
estimates to the original domain. An advantage of the Gaussian distribution is that
spatial variability is easier to be modeled, because it reduces effects of extreme values
providing more stable semivariograms (Goovaerts 1997, Armstrong 1998, Pardo-
Iguzquiza and Dowd 2005). Kriging represents variability only up to the second order
moment (covariance), therefore the random field of the transformed variable must be
Gaussian to derive unbiased estimates at non-sampled locations (Deutsch and Journel
1992, Goovaerts et al. 2005). In practice, multi-normality is invoked as a working
hypothesis.

The aim of this work is to investigate the improvement in groundwater level
interpolation with OK using non-linear data normalization methodologies. Well-
known OK based methodologies are applied and most of them for the first time to

groundwater level data. In addition, a novel normalization method based on the Box-

® This chapter is an adaptation of a paper accepted for publication in Hydrological Sciences Journal

(Varouchakis et al. 2012), please see page 179 for details.
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Cox transformation, termed Modified Box-Cox is established and implemented in this
article. Furthermore, the recently established Spartan semivariogram family is applied
herein along with classical semivariogram models. The Modified Box-Cox (MBC)
method, the Gaussian Anamorphosis (GA) normalization method and the Trans-
Gaussian Kriging (TGK) method are implemented for the first time to groundwater
level data. Overall, several kriging-based spatial models are investigated, evaluated,
and maps of estimated water table elevation and its associated uncertainty are
generated by means of the optimal model.

5.2 Box-Cox transformation method

The Box-Cox (BC) method (Box and Cox 1964) is widely used to transform
hydrological data into approximately Gaussian distributions (Chander et al. 1978,
Hirsch 1979, Jain and Singh 1986, Salas 1993, Thyer et al. 2002). The transform is
defined only for positive data values and is defined by means of

(-1
y=ge @k =1 k0 <70 (5.1)
log(z), k=0

Given the vector of data observations z' =(z,,...,z,), the optimal value of the power
exponent k, which leads to the best agreement of y' =(g,(z),...,09,(zy)) with the

Gaussian distribution, can be determined by means of the maximum likelihood
estimation method (De Oliveira et al. 1997). The power exponent k is estimated by

maximizing the logarithm of the likelihood function:

N Z:K)— 0, (z;k ? N
t k) = Nin| 3 (95 7::K) = Gsc (1K) +(k-1YIn(z,), (5.2)
2 i=1 N i=1
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N
where T (z;K) =%{Z ch(zi;k)} is the arithmetic mean of the transformed data

i=1

i(ch(zi;k)_ch(Zi;k)

whilst the sum of squares { N
i=1

2
) ] denotes the transformed data

variance.

5.3 Trans-Gaussian Kriging (TGK)

Trans-Gaussian Kriging is more general than the Box-Cox transformation
(Cressie 1993, Kozintseva 1999, Schabenberger and Gotway 2005). For a nonlinear

normalizing transformation, Y(s)zg(Z(s)), where Y(s) follows the multivariate

Gaussian distribution, assume that Z(s) = ¢(Y (s)), where ¢()=g™() is a one-to-

one, twice-differentiable function. It is also assumed that Y (s) is an intrinsically

stationary SRF with mean m, and semivariogram y, (r). For an unknown m, , the
OK predictor, \fOK (sy), is used to predict Y(s,). An estimate of Z(s,) is then given
by Z(s,) = go(\fOK (so)), where ¢(-)is the inverse of the transformation function.

However, this results in a biased predictor if ¢(-) is a nonlinear transformation. A

bias-correcting approximation is the trans-Gaussian predictor (Cressie 1993):
2(50) = (Yo 500 + £ [ (50) 201 ] 63)

where m, is the OK estimate of my, g, is the Lagrange multiplier of the OK system,
¢"(-) is the second-order derivative of the inverse transformation function, and
af)K;Y (s,) is the OK variance. If the Box-Cox normalizing transformation (5.1) is

used, as herein, the functions ¢(:) and ¢"(-) have the following form:

o(y)=(Kky+D)", (5.4)
1,

@"(m) =(1-k) (M, k+D* . (5.5)
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5.4 Gaussian Anamorphosis (GA)

This method is based on the transformation of a Gaussian variable Y into a

new variable Z with an arbitrary distribution by means of Z = ®g,(Y), where

®, () is the Gaussian anamorphosis transformation. The transformation used in GA

involves the following polynomial expansion (Chiles and Delfiner 1999):

K
(DGA(Y) = Zizo‘{li H;i(Y), (5.6)
where the functions H,(Y), i=0,...,K are Hermite Polynomials and ‘V'; denote the

coefficients of the expansion. The Hermite polynomials are defined in terms of the

derivatives of the Gaussian density function:

H 0 =90 (5.7)
900

where g(x)is the zero-mean and unit variance Gaussian density function, i.e.,

XZ
e 2 and g®(x) is the ith-order derivative of g(x). The Hermite

g(X)=%

polynomials are calculated by means of the following recurrence relation:
Hi,(X) =—xH;(x)—i1H, ,(x), 1=0. (5.8)

Typically, a high polynomial order (K=30-100) is used. Model fitting consists

of estimating the coefficients ;. The normalization of a non-Gaussian variable
requires the inversion of the anamorphosis function, by means of Y =<D;31A (Z) The

geostatistical analysis is performed on the transformed variable Y, and the estimates
are finally back-transformed to the original values through the anamorphosis function
(Olea 1999, Wackernagel 2003, Casa and Castrignano 2008).
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Practically any function of Y which is square integrable with respect to the
Gaussian density can be expanded in terms of Hermite polynomials. The coefficients
of the expansion are given by the following equation (Journel and Huijbregts 1978,
Wackernagel 2003):

¥, = [ Da(OH; (x)g(x)x. (5.9)

For the field application studied in this thesis the expansion coefficients ¥,

are estimated for the linear, polynomial and exponential functions. The function @,

that gives the best fit to the data is the quadratic function ®g,(x)=x* . For the
quadratic, the integral (5.9) used to estimate V', is solved analytically for any Hermite

polynomial using integration by parts. As an example, for the second-order Hermite

polynomial, equation (5.9) becomes:

2 2

0 X 0 X
‘I’Z:L Ix“e 2dx—J‘xze 2dx [=2. (5.10)

Vx| =,

In general, the solution of the integral is:

2

a, = T x”e_%dx=\/Z(n—l)!!:M(n—l)(n—s)--gxl , (5.11)

for neven, while a, =0 for odd n. Hence, the corresponding expansion coefficients

¥, vanish for Hermite polynomials of odd order.

5.5 Modified Box-Cox (MBC)

This new method focuses on normalizing the skewness and kurtosis
coefficients of the data, but it neglects higher-order moments. It is defined by the

following function:
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(2= 2 + kzz)kl -1

" K= (kg k), (5.12)

Y=0yec (Z¥) =

where k; is the power exponent and k, is an offset parameter. Use of the latter allows
negative z values and so the transformation (5.12) can be applied to fluctuations as
well. Parameters (k,,k,) are estimated from the numerical solution of the equations
§, =0,k =3, where §, and k, are the sample skewness and kurtosis coefficients

respectively,

(mz—mz J2+(122_3)2=o, (5.13)

where m, is the sample’s median. The minimization is performed using the Nelder-

Mead simplex optimization method (Nelder and Mead 1965, Press et al. 1992).

5.6 Results and discussion

Three general approaches are tested for interpolation. The first approach
applies OK with the optimal semivariogram function to the original data. The second
approach first applies a normalizing transformation (Box-Cox, MBC, GA), then
applies OK on the transformed variable, and finally it back-transforms the predictions.
The third one employs TGK using the Box-Cox transform. The application of

transformation methods improves the data normality as can be seen in Table 5.1.

Table 5.1 Normalization results using Box-Cox, Modified Box-Cox (MBC) and Gaussian
Anamorphosis (GA) transformations: skewness coefficient §Z ; kurtosis coefficient kZ .

~

Method S, K,

Box-Cox 0.01 2.70
MBC 0.13 2.99
GA 0.10 2.87

The results of leave-one-out cross-validation are shown in Table 5.2, which
shows that no transformation method is significantly superior. The best

semivariogram fit, in terms of cross-validation results, is obtained by means of the
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Spartan model for all the kriging-based methodologies assessed (Table 5.2). The
power-law semivariogram gives similar results to the Spartan model. Third best is the
Matérn model.

The Box-Cox transformation with k =-0.22 and the GA transformation in
combination with OK improve the mean absolute prediction error (3.30 masl)
compared to OK (3.37 masl). TGK using the Box-Cox transform and the Spartan
semivariogram performs best in terms of the Mean Absolute Error (MAE), yielding a
value of 3.28 masl. All three methodologies have greater (in absolute value) bias than
OK (0.02 masl), and similar value for the other estimation measures. Although MBC-

OK (k, =0.51,k, =—-0.0001) with the Spartan semivariogram model (shown in Figure
5.1) has a slightly larger MAE (3.30 masl) than TGK, MBC-OK provides overall the

most accurate cross-validation results (Table 5.2). The parameters of the Spartan
semivariogram are 6>=13.4, 49:0.42 (in normalized units), and 7,=0.97. The MBC-

OK method with the above parameters improves the MAE and the Root Mean Square
Error (RMSE) compared to OK while its bias, Mean Absolute Relative Error (MARE)

and correlation coefficient R are identical to OK.
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Figure 5.1 Plot of omnidirectional experimental semivariogram of transformed (MBC) groundwater
level data (stars) and optimal Spartan model fit (SP), (parameter estimates: variance 6%=134,
characteristic length 5:0.42(n0rmalized units), stiffness coefficient ﬁl =0.97). Numbers of pairs used
at each lag distance are also shown.
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The scale factor 7, of the Spartan semivariogram is equal to 147.20
(dimensionless). This is obtained by equating the semivariogram sill with &?; the

latter is given by (2.24) for || < 2, based on the estimate 7,=0.97. The scale factor of

the transformed data is dimensionless, because the initial data are rendered
dimensionless by dividing with an arbitrary constant that has the same units as the
data (one meter in the present case study). In the back-transform stage the hydraulic
head estimates are multiplied by this constant. If we use a unit constant (as we do
herein), these operations have no impact on the number values, they just ensure that

the final estimates are in the correct units.

Table 5.2 Cross-validation results of the spatial models with the optimal semivariograms based on the
measures listed in section 2.5. OK: Ordinary Kriging. Box-Cox-OK: Box-Cox transformation
followed by OK and back-transformation. MBC-OK: Modified Box-Cox transformation followed by
OK and back-transformation. GA-OK: Gaussian Anamorphosis in combination with OK. TGK: Trans-
Gaussian Kriging using the Box-Cox transform. SP: Spartan semivariogram. P: Power-law
semivariogram. M: Matérn semivariogram. MAE: Mean Absolute Error. MARE: Mean Absolute
Relative Error. RMSE: Root Mean Square Error. R: Linear correlation coefficient. Optimal values are

emphasized.

NT Method Semi- MAE BIAS MARE RMSE R
variogram  (masl) (masl) (masl)

OK SP 3.37 0.02 0.14 5.15 0.91
P 3.58 0.07 0.15 5.46 0.90
M 3.80 0.02 0.16 5.84 0.89

Box-Cox-OK SP 3.30 0.10 0.14 5.14 0.91
P 341 0.09 0.14 5.31 0.90
M 3.60 -0.30 0.15 5.65 0.89

MBC-OK SP 3.30 0.02 0.14 5.12 0.91
P 3.39 0.05 0.14 5.17 0.90
M 3.60 0.03 0.15 5.54 0.89

GA-OK SP 3.30 -0.3 0.14 5.14 0.90
P 3.32 -04 0.14 5.21 0.89
M 3.48 -0.59 0.14 5.54 0.89

TGK SP 3.28 -0.1 0.14 5.14 0.91
P 3.35 -0.13 0.14 5.19 0.90
M 3.43 -0.2 0.14 5.48 0.90
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Therefore, the MBC-OK method is optimal for interpolating groundwater
levels in the Mires basin. To further support this choice, a series of specialized
statistical measures are investigated. The correlation coefficient of the estimates vs.
the true values is equal to 0.91 (Table 5.2), while the distribution of errors is
symmetric with a low bias equal to 0.02 masl (Figure 5.2 a). The plot of errors vs.
estimates (Figure 5.2 b) is centered about zero error, satisfying the “conditional
unbiasedness” property. According to (Leuangthong et al. 2004), cross-validation that
yields such results satisfies the conditions for a model with “good” parameters.
Histogram reproduction is another measure for evaluating the spatial model
performance (Leuangthong et al. 2004).

Figure 5.3 shows that the histograms of the measurements and the cross-
validated values are overall in good agreement. In general, the spatial model tends to
overestimate the lower values while the opposite is true for the higher values. MBC-
OK (with the Spartan model) gives the most accurate estimate, i.e., 29.7 masl for the
extreme low level in the data set (9.4 masl). Thus it determines the low level with
~6% higher accuracy than the second best Box-Cox-OK and TGK, which yield =31
masl and ~17% higher accuracy than the OK and GA-OK, which yield 33 masl. In
contrast, the highest level of 62 masl is estimated with higher accuracy = 60 masl by

all interpolation methodologies tested.
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Figure 5.2 a Distribution of MBC-OK cross-validation errors.
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Figure 5.2 b MBC-OK cross-validation estimates and their corresponding errors.
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Figure 5.3 Histograms of measured values and MBC-OK cross-validation estimates using seven
classes of width 10 masl each, centered at 5, 15, 25, 35, 45, 55, and 65 masl respectively.

The extreme values in this dataset include the global minimum (9.4 masl), as

well as three local extremes that differ significantly from their measured neighbors.

These values are estimated with relatively large errors (see Figure 5.2 a,b) due to the

significant deviations of the measurements from the values of their nearest

neighbours. These errors may be due to the presence of fractures near the

measurement-well (in the case of the minimum) or to locally different inter-bedded
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sequence of alluvial sediments that can affect the water table head. The highest
estimation error (Figure 5.2 a,b) is associated with the minimum value of 9.4 masl,
which differs from its neighbors by at least 10 masl.

As shown in the histogram of Figure 5.3, the tails of the measured histogram
are wider than those of the estimates. The discrepancy in the lower tail has been
explained above. The underestimation of the high values (i.e., the values exceeding 60
masl) is due to the smoothing effect of kriging and the fact that only two such values
exist in the dataset. The impact of the extreme values is mostly noticeable in the
cross-validation analysis, because the values in question are removed and then
estimated from their neighbors. The generated maps, however, are based on all the
measurements and thus not affected by the removal of local extreme values.

A series of statistical metrics are used to compare the performance of different
interpolation methods. MAE is a linear score, meaning that the errors at all points are
equally weighted in the average. On the other hand, RMSE is a quadratic scoring rule,
i.e., the errors are squared before averaging, thus leading to relatively higher
contributions of larger errors. The difference between the RMSE and MAE increases
with the variance of the errors. Herein the difference between the two metrics is small
(Table 5.2). The slightly better RMSE obtained with MBC-OK is due to the more
accurate estimation of the extreme low value by this method. The bias is the
difference between the estimated and the true values at a single point; hence, it can be
positive or negative or zero. Unbiased estimation corresponds to zero bias. The sign
of the average bias shows if the specific method underestimates (negative bias) or
overestimates (positive bias) the data. Low bias errors mean more accurate
estimations.

The MARE measures the accuracy of the estimates relatively to the respective
measured values; MARE is independent of the units of measurement. The magnitude
of MARE for all the normalization methods presented herein is similar and
approximately equal to 14%. This estimate is partly due to the overestimation of the
minimum value (9.4 masl) by all the methods (see above). The linear correlation
coefficient (R) measures the strength of the association between the estimates and the
measured values. Values of the coefficient close to 1 imply high association strength
between the estimates and the measurements. In the present study, for all the methods

the correlation coefficient has high values (ranging from 0.89 to 0.91).
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All the error metrics are significant for evaluating the methods’ performance,
and they are typically used in geostatistical studies (Goovaerts 1997). We give
priority to MAE, bias and RMSE which are able to differentiate between the
methodology and the semivariogram model used, in contrast with MARE and R that
are similar for the majority of methodologies. Since the bias is the most sensitive
evaluator of method performance, we use it to select the optimal transformation
method (MBC-OK).

The validation metrics presented in Table 5.2 show that the studied methods
are practically insensitive to the methodology used to normalize the data. This occurs
because the transformation methods used lead to similar values for the skewness and
kurtosis of the transformed data (Table 5.1). In addition, the differences between the
transformation methods and classical OK are not significant. This is due to the fact
that the original dataset has a mild deviation from the normal distribution, and the OK
estimator is used for all cases tested following the normalizing transformation. For all
the methods tested, however, there are differences in the validation metrics between
different semivariogram models. Nevertheless, the validation metrics obtained with
different normalizing methods but with the same semivariogram model are similar.
This chapter shows that non-linear normalization methods help to improve the
performance of kriging estimations (Table 5.2), even for datasets that has mild
deviations from the normal distribution.

The optimal interpolation map is derived using the MBC-OK with the Spartan
model approach on a 100x 100 grid defined in normalized coordinate space (actual
cell size: 114m x 47m). Estimates are obtained only at points inside the convex hull
of the measurement locations (7317 grid points). The contour map in physical space is
shown in Figure 5.4. The kriging standard deviation, which represents the uncertainty
of the estimates, is shown in Figure 5.5. The optimum search radius used with the
Spartan model (determined from leave-one-out cross-validation) is equal to 0.39
(normalized units), which is a little shorter than the determined characteristic length.

Interpolation and error maps for all the normalization methods investigated
and for classical OK are constructed with the optimal semivariogram (Spartan); the
maps are compared in Figure 5.6 to Figure 5.13. For the specific dataset there are no
significant differences between the generated groundwater level maps. This is
expected since the estimation measures are similar for all the methods, and especially
for those that use a normalization process (Table 5.2). According to the interpolation
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results, MBC-OK delivers a slightly more accurate groundwater level interpolation
map compared to the other methods. Specifically, on the grid nodes close to the
minimum value, MBC-OK method provides estimates closer to 9.4 masl (9.44 masl)
than the other methods (which give estimates larger than 9.6 masl). Another feature
observed in the maps is the smoothness of TGK contours compared to the other
normalization methods. In advance the standard deviation maps of the methodologies
tested (MBC-OK, GA-OK, TGK, Box-Cox-OK) present similar results due to the
normalization methods similar performance and of the more efficient semivariogram
parameters calculation, but significantly lower of the OK method. MBC-OK method
provides the estimates with the lowest standard deviation. This shows that non-linear
normalization methods improve in addition to kriging estimations their standard

deviation results.

Northing (m)

5.74 5.76 5.78 5.8 5.82 5.84

Figure 5.4 Isolevel contour map of estimated groundwater level in the Mires basin using MBC-OK
(red circles denote location of wells and solid black line the temporary river path).
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Figure 5.5 Isolevel contour map of kriging standard deviation for groundwater level in the Mires basin
using MBC-OK (red circles denote location of wells and solid black line the temporary river path).
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Figure 5.6 Isolevel contour map of estimated groundwater level in the Mires basin using GA-OK (red
circles denote location of wells and solid black line the temporary river path).
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Figure 5.7 Isolevel contour map of kriging standard deviation for groundwater level in the Mires basin
using GA-OK (red circles denote location of wells and solid black line the temporary river path).
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Figure 5.8 Isolevel contour map of estimated groundwater level in the Mires basin using TGK (red
circles denote location of wells and solid black line the temporary river path).
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Figure 5.9 Isolevel contour map of kriging standard deviation for groundwater level in the Mires basin
using TGK (red circles denote location of wells and solid black line the temporary river path).
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Figure 5.10 Isolevel contour map of estimated groundwater level in the Mires basin using Box-Cox-
OK (red circles denote location of wells and solid black line the temporary river path).
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Figure 5.11 Isolevel contour map of kriging standard deviation for groundwater level in the Mires
basin using Box-Cox-OK (red circles denote location of wells and solid black line the temporary river
path).
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Figure 5.12 Isolevel contour map of estimated groundwater level in the Mires basin using OK (red
circles denote location of wells and solid black line the temporary river path).
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Figure 5.13 Isolevel contour map of kriging standard deviation for groundwater level in the Mires
basin using Box-Cox-OK (blue circles denote location of wells and solid black line the temporary river
path).

Stochastic interpolation methods such as kriging allow the comparison of the
empirical semivariogram of the data with that obtained from the interpolation results,
in order to test for the accurate reproduction of the spatial continuity. In Figure 5.14
we compare the experimental semivariogram of the observations and the experimental
semivariogram obtained from the MBC-OK interpolation estimates. The
semivariogram of the estimates shows very similar structure to that of the data.
However, the former exhibits overall lower variability that reflects the smoothing
effect of interpolation. The MBC-OK method is optimal with respect to the statistical
metrics investigated above, and thus we used it for the interpolation of groundwater
levels in the basin. Experience from previous studies has shown that a generally
optimal interpolation method does not exist. Therefore, MBC-OK is optimal with
respect to the specific case study and no general conclusions for the method’s
efficiency can be drawn. Hence, the optimal method should be determined for each

case individually.
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6. Improvement of groundwater level prediction in sparsely
gauged basins using physical laws and local geographic

features as auxiliary variables*

6.1 Introduction

In Stochastic hydrology physical laws and analytical solutions are
incorporated in stochastic processes in order to predict the value of some variable at
non-observed times or at non-observed locations. A physical law is a generalization
obtained from the scientific study of the facts of observations. Physical laws are
expressed by mathematical equations and govern the evolution of natural processes in
space/time. They provide an important source of general knowledge that can interpret
the natural process derived from the available data. Any physically based model
becomes a stochastic model once its inputs, parameters or outputs are treated as
random (Christakos 2000). A series of characteristic examples in stochastic hydrology
that incorporated physical laws are presented for completeness below.

A physical law used in hydrology is the Perturbation-based spectral theory,
which presumes local statistical homogeneity, and provides generic theoretical results
for the head variance, effective conductivity tensor, and macrodispersivity tensor in a
field (Gelhar 1986). Another stochastic approach based on the physical law of
hydrological balance of an aquifer achieves water table elevations estimation using a
regionalised autoregressive exogenous variable (RARX) model with precipitation
surplus as the input variable. Classical geostatistics were applied as regionalisation
functions (Knotters and Bierkens 2001). In addition a stochastic rainfall-runoff model
based on the mass balance of a watershed was constructed with the rainfall excess
input to the model to be treated as a stochastic process with a unit-step function. A
stochastic differential equation described the relationship between the mean rainfall
excess and the mean direct runoff (Lee et al. 2001). Finally eco-hydrological
processes in water-limited ecosystems are described by simplified, vertically averaged

soil moisture models. The principal aim of these models is to understand how the

* This chapter is an adaptation of a paper accepted for publication in Advances in Water Resources Journal

(Varouchakis and Hristopulos, 2012), please see page 179 for details.
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main physical processes linking soil, vegetation, and climate impact on the statistical
properties of soil moisture. A key component of these models is the stochastic nature
of daily rainfall, which is mathematically described as a compound Poisson process
with daily rainfall amounts drawn from an exponential distribution (Verma et al.
2011).

Classical geostatistics (e.g., kriging estimators) were primarily designed to use
hard data (i.e., sets of measurements). These methods according to Christakos (2000)
lack to account for important sources of physical knowledge (including physical laws,
empirical models, higher-order space/time moments, and uncertain information). A
framework that is incorporating various physical knowledge bases into spatiotemporal
analysis and mapping is BME introduced by Christakos (1990, 1991b, 2000). The
spatiotemporal distribution of most natural variables can be expressed through
physical laws which, thus, constitute important aspects of the mapping process.
Incorporation of general knowledge in the mapping process can lead to considerable
gains in the estimation accuracy. For example an advection model provides valuable
information for managing uncertainty in an air quality study. In the BME framework,
physical laws are incorporated in the general knowledge by means of an appropriate
set of moment equations (Christakos 2000). Another example is the incorporation of
the Darcy law in the mapping of water table elevations that leads to predictions that
are physically meaningful and more accurate than those provided by classical data
analysis. (Serre and Christakos 1999).

Physical laws however have found applications in classical geostatistical
modeling, e.g. for the definition of space only or spatiotemporal distance metrics, for
the development of covariance functions in order to model the spatiotemporal data
dependence and in the approximation of the trend term for spatial geostatistical
models.

Metrics are mathematical expressions that define the concept of distance in the
space-time continuum. Distance cannot always be defined explicitly in space-time. It
is possible to decide using additional information, about the distance between two
pairs of points by considering the outcome of a natural process. For example, the
distance between two pairs of points in an aquifer regarding a pollutant transport is
defined not purely form a geometric property of space-time, but it also depends on the
medium's properties. Measuring distance by means of fluid tracer dispersion
(dynamics of transport) can lead to very different results than measuring distance by
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means of Euclidean distance. If a physical law is known for a natural (e.g. hydrologic)
process it can also play a fundamental role in determining the appropriate space/time
metric (Christakos and Hristopulos 1998, Christakos et al. 2000).

Covariance models are inherently connected to the physical laws governing a
process. Natural processes are involved in the transport of water and pollutants from a
source through different media. The evolution of natural processes is governed by
differential equations that describe the motion of concentrations and fluxes in space
and time. The coefficients of these equations represent properties of the media within
which the processes take place. Usually, a complete characterization of the
coefficients variability is impossible due to measurement errors that lead to
uncertainty and because of limited sampling points in space-time. Such processes are
represented by means of stochastic partial differential equations (SPDE). Exact
solutions of SPDE are not in general available in explicit form. Two approaches are
commonly used for the solution of SPDE: The first focuses on obtaining solutions that
are valid for specific realizations of the coefficients of the spatiotemporal random
field (S/TRF), the second approach focuses on the estimation of stochastic moments.
The latter is of interest in this thesis as the integration of physical processes in the
covariance function is researched. Moment-based approaches (obtain the mean and
the covariance from monitoring data and physical modeling) focus on solving the
deterministic equations that govern the stochastic moments of the natural processes
represented by the SPDEs. The moment equations are solved explicitly only if the
correlation functions of the coefficients satisfy certain symmetry requirements such as
homogeneity and isotropy. As moment equations may suffer from the well-known
closure problem; it is achieved using truncated perturbation series or non-perturbative
approximations (Christakos and Hristopulos 1998).

Covariance models except of describing how the correlations behave in space
and time, they can be intrinsically connected to the physical laws governing the
process. For example power law correlation indicates the existence of scaling in the
system i.e. due to different physical causes which denotes that the system may exhibit
critical behavior. Percolation type models of flow and transport in porous media is an
example of systems that exhibit critical behavior. Certain processes also, such as
fractional Brownian motions (Mandelbrot and Van Ness 1968) are characterized by
power law correlations. The apparent irregularity of such processes was shown to

derive from the long range nature of the power law correlations among individual
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events (Christakos and Hristopulos 1998). Generally power law correlations have
been observed in environmental processes (Webster and Oliver 2001).

In addition physically motivated space-time random fields covariance models
can be developed inspired by natural models such as the diffusion equation and the
invasion percolation model. Invasion percolation describes the displacement of a
defending viscous fluid in a porous medium (e.g., oil) by an invading fluid of lower
viscosity (e.g., water). Spatiotemporal covariance models are derived so from a
physical differential equation such as the diffusion equation as from the invasion
percolation model in order to be applied in geostatistical modeling (Christakos and
Hristopulos 1998, Kolovos et al. 2004).

Furthermore Heuvelink et al. (1996) suggested the inclusion of more process-
oriented information into the interpolation, thus to incorporate physical laws about the
transport of water in the soil, such as the law of continuity and Darcy's law. Therefore
(Tonkin and Larson 2002) suggested the following approach. They use a linear drift
term to approximate the hydraulic head field trend. However near extracting or
injecting wells a point logarithmic component is added to the drift to account for the
drawdown caused by the pumping well. This approach is applicable if analytical
solutions for the aquifer response are available such as application of Theis method
which is based on pumping tests. The above propositions gave the idea of using a
physical law that could describe the aquifer behavior and used as the trend term in a
spatial trend model for the groundwater level of the Mires basin.

Auxiliary information is often included as a drift term in spatial models in
order to improve the accuracy of the estimations by capturing local properties.
Usually polynomial functions of space coordinates, rainfall, or surface elevation from
a Digital Elevation Map (DEM) are used as secondary information.

We propose therefore that the prediction of the hydraulic head spatial
variability in Mires basin can be improved by incorporating in the trend a) the
distance from a temporary river crossing the basin and b) a component based on the
generalized Thiem’s equation for multiple wells. In addition we use the flexible
Spartan semivariogram family to perform Residual Kriging. Our proposal is
supported by the results of cross validation analysis. Our results can be generalized to

other unconfined aquifers.
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6.2 Normalizing transformations

A nonlinear transformation g(-) is applied to the data if there is deviation

from the normal distribution. Normality is desirable for the application of OK (Clark
and Harper 2000). OK is the optimal estimator if the data follow a multivariate
normal distribution and the true semivariogram is known. Significant deviations from
normality, e.g., excessive skewness or presence of outliers, impair the estimation of
the semivariogram structure and OK performance (Gringarten and Deutsch 2001,
Ouyang et al. 2006). Application of a normalizing transformation on the univariate
distribution of the data can suppress outliers, improve stationarity and semivariogram
stability and reduce the impact of extremes (Deutsch and Journel 1992, Armstrong
1998). In practice, multi-normality is invoked as a working hypothesis.

On the non-detrended head data we applied the Box-Cox transformation
(section 5.2) and the new normalization method presented in this thesis; modified
Box-Cox transform (section 5.5). On the de-trended head data we applied the

modified Box-Cox transform, which can handle negative values.

6.3 Trend Modeling of Hydraulic Head in Mires Basin

Below we present the trend models for Mires basin. Following other studies,
we first include secondary information in the trend from a Digital Elevation Model
(DEM) of the area (Hoeksema et al. 1989, Deutsch and Journel 1992, Goovaerts
1997, Desbarats et al. 2002, Rivest et al. 2008, Nikroo et al. 2009). The correlation
coefficient of the groundwater level and the ground surface elevation in Mires basin is
calculated at 0.65, a value that is characterized as important (Tichy 1993). We also
include information about the distance of the estimation point from the temporary
river crossing the basin. This is an important auxiliary variable as it is observed that
the groundwater level at the measured locations have an increasing trend moving
away from the river bed. Finally, the hydraulic head trend is approximated by a term
that is based on the multiple well extension of Thiem’s equation. The motivation of
using such a term corresponding to a physical law came from the idea to use an
analytical solution that could describe the water table level under pumping conditions.

A data set with information about the basin’s hydraulic conductivity, the pumping
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activity, the aquifer’s saturation thickness and the wells radius of influence were used

in order to solve locally the proposed analytical equation.

6.3.1 Topographic variables component

We introduce in the trend an external variable that represents the closest
distance between the sampling locations and the temporary river that crosses Mires
basin. The correlation coefficient between the groundwater level and the closest
distance from the river is equal to 0.68. This means that the groundwater level is
higher away from the river bed than closer to it. The dependence is reasonable
considering that the agricultural activity in the area is concentrated along the
temporary river. The following expression for the trend of the hydraulic head (in

masl) is proposed:

m, (s)=ad(s)+ f DEM(s) +c, (6.1)

where a, f,c are linear coefficients, d(s) is the minimum distance of point s from
the curve that follows the river bed, and DEM (s) is the local DEM value. We also
use the linear approximation mgg, (S)=g-s+c,, where mg, (S) is the smoothed
topographic elevation, g is the uniform gradient, and c, the reference elevation at the

origin of the coordinate system.

The river bed can be modeled in two dimensions as a curve. Herein we

represent the curve by a second-order polynomial, y(x)=w, +Ww, x+Ww, x*. The
coefficients w,, w,, w, are determined by a least-squares fit of y(x) to “anchor points”

along the river bed (see Figure 6.1).
As it is well-known, the closest distance of any given point from a curve is the
perpendicular distance between the point and the tangent at a unique point of the

curve. The slope of the straight line with the closest distance from a curve, which is

perpendicular to the tangent, is given by a=— , Where ((s;,,) denotes the

(smin,o
tangent’s slope. The perpendicular line has a form of y=«a-x+b. The initial point

coordinates x,,Y, belong to that line as well as the closest to it point of the curve
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Xmino+ Ymino - Substituting these two pairs of coordinates and the « factor in the

perpendicular line equation after elimination of the factor b an equation of the
perpendicular line that contains the two desired pairs of coordinates is produced,

L(S1in0) " Ymino — L (Smino) * Yo + Xmino — % =0. The tangent’s slope is equal to the first

derivative of the curve.
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Figure 6.1 Locations of “anchor points” along the river bed (stars), second-order polynomial model of
the river (continuous line), well locations (circles) and their projections (crosses) on the model curve of
the temporary river.

In general, the distance of a point s, =(x,,Y,) from the river curve is given

byl
d°(S0) = (Krino = %6)" + (Yimino = Yo (6.2)
where s o = (Xnino» Ymino) 1S the closest point to s, on the river curve. This is

determined by solving the following system of equations:
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Yimino = Wo + Wi Xin o + W, Xim,o , (6.3)
é(smin,o) (ymin,o - yO) + Xmin,O - X0 =0 ) (64)
where £(S,0) =W, +2W, X, is the slope of the line tangent to the river curve at s,.

The solution of the nonlinear system (6.3)-(6.4) with respect t0 (X, 0+ Yimino) » fOr

every X, Y, depends on the roots of a third order (cubic) function after the

substitution of (6.3) into (6.4):

2 3 2 2
2W2 X min,0 +3W1W2 X min,0 + (2W2Wo W - 2W2 Yo +1) Xmin,o +WWo =W, Yo — Xy = 0. (6-5)
a b c d

Every cubic equation with real coefficients has at least one solution among the real

numbers however several possible cases can be distinguished using the discriminant,

A =18abcd —4b3d +b’c? —4ac® —27a%d°. (6.6)

Hence if A > 0, the equation has three distinct real roots, if A = 0, the equation has a
multiple root and all its roots are real and if A < 0, the equation has one real root and
two non-real complex conjugate roots. The real roots of equation (6.5) with respect to

(Xmino) are then substituted in equation (6.3) to calculate the corresponded (Y,,.o) -

The point s is then determined by the root, with respect to (x Ymino) » OF the

min,0 min,0?

nonlinear system (6.3)-(6.4) that minimizes d(s,) given by (6.2).

6.3.2 Multiple-well hydraulic head component

Physical laws incorporation in stochastic hydrology aspects and in classical
geostatistical modelling reviewed previously gave the idea to introduce a spatial trend
model that could incorporate in the trend a physical law that describes the Mires basin
aquifer behavior with respect to groundwater level and pumping activity.

Therefore we include in the trend modeling the analytical solution for a system
of multiple wells in an unconfined aquifer. This component of the trend is based on
Thiem’s equation for an unconfined aquifer. The equation describes the relationship
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between the steady-state radial inflow into a pumping well and the drawdown (Todd
1959, Charbeneau 2000). It is commonly used to estimate aquifer properties, i.e.,
hydraulic conductivity or transmissivity (Bear 1979, Butler Jr. 1988, Silliman and
Caswell 1998, Balkhair 2006, Altunkaynak 2007) but also for calculating the
hydraulic head (Yeo and Lee 2003, Pinder and Celia 2006, Steward and Jin 2006).
Thiem’s equation assumes that the aquifer is homogeneous (Thiem 1906) and in
steady-state (Todd 1959, Bear 1979). As it was previously mentioned (section 3.2) to
a large extent Mires basin is considered as a hydro-geologically uniform study area,
therefore the basin is assumed geologically homogeneous. Steady-state conditions are
also assumed as according to observations there is not temporal short term variation
of hydraulic head.

Thiem’s equation for a single pumping well in an unconfined aquifer is

provided by the following function:
2 2 1 r
H°(s)=H,"(s)+—Q In[—J, r<R. (6.7)
7K R

However it can be generalized to include the influence of a number of pumping wells
as follows (Todd 1959, Bear 1979):

R

2(5) = H.2(s) 4 S s i -
H%(s)=H, (s)+ﬁKiZl:Qiln( J r<R, i=1.,n. (6.8)

In the above, H(s) is the estimated hydraulic head, H,(s) the initial hydraulic head
before abstraction, K is the hydraulic conductivity, n is the number of wells
(i=1...,n), Qis the pumping rate, r. =|s—s, || is the distance of the estimation point
from the ith well, and R; is the radius of influence of the i-th well. The pumping wells

contributing in Eq. (6.8) are those whose distance from the estimation point does not
exceed their radius of influence.
The average pumping rates (m*h) at the 70 wells of the study are used in

order to determine the variable Q,. As initial values before abstraction we use the

hydraulic head profile of the preceding hydrological year for the same period (April).
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Readings from 10 piezometers in the basin are available for that month. The initial

hydraulic head is assumed to follow the linear trend H,(s) =J,x+J,y+D, where
J,,J,,D are linear coefficients obtained by a least squares fit to the 10 available

measurements. The hydraulic conductivity in the basin varies from 0.0014 to 0.00014
m/sec with the value 10 considered to be typical for the basin (Donta et al. 2006,
Kritsotakis 2010).

Since pumping tests are not available, we determine the radius of influence
using empirical equations (Bear 1979, Sen and Al-Somayien 1991, Prakash 2004),

subject to available hydrogeological field data, i.e.,
R =3000s,,; /K , (6.9)
R =575s,; Ho; K;, (6.10)

where s, is the drawdown at the well face (m), K. is the hydraulic conductivity
around the pumping well and Hg; (m) is the initial saturated thickness, i.e., the initial

hydraulic head before the abstraction. Since the drawdown and hydraulic conductivity
are not known at every well, an effective uniform value is used based on the
sensitivity analysis described below. Hence, Eg. (6.9) provides a common radius of

influence for all the wells, while Eq. (6.10) leads to R. values that depend on the

initial saturated thickness of the aquifer.

Linear regression analysis of the mean annual groundwater levels (Figure 6.2)
estimates the rate of mean annual level decrease at 1.85m/yr with the 95% confidence
interval at [1.60 - 2.10]. The correlation coefficient of the fit to the data is R= -0.96,
implying a strong negative correlation. Analysis based on a groundwater balance
model leads to a drop similar with that predicted by the regression. The mean annual
recharge in the basin is 14.2 Mm®/yr, as reported by the Department of Agriculture of
the Regional Council of Crete, while the mean annual abstraction rate is 22 Mm?®/yr.
Therefore, the mean absolute volumetric consumption is calculated at 7.8 Mm?®/yr.
Dividing this value by the surface area of Mires basin (50.3 km?), the loss of
groundwater content is estimated at 0.156m/yr. Further, dividing this figure with the

average porosity of the basin (8.5%), the annual decrease of groundwater level is
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estimated at 1.83 m/yr, in close agreement with the estimate from linear regression
(1.85 m/yr). A similar balance analysis (Croke et al. 2000) estimated a groundwater

level drop of 1.5m/yr for the time period from 1985 until 1995.
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Figure 6.2 Annual average groundwater level variation in Mires basin for the period covering the years
1981-2003 (circles) and fitted linear trend (broken line).

We estimate an optimal “effective” hydraulic conductivity using sensitivity
analysis that focuses on the reproduction of the measured head values by means of
leave-one-out cross validation and RK. The mean absolute error (MAE) is used as the
criterion of performance. In the analysis we use drawdown values in the 95%
confidence interval [1.60 — 2.10]. Values of the hydraulic conductivity between the
reported minimum and maximum are investigated to determine an effective K value
for the basin. We found that the MAE is primarily sensitive to the hydraulic
conductivity. Figure 6.3 shows the dependence of the MAE on the hydraulic
conductivity; a clear minimum is obtained for K = 0.00015 m/sec. This value

minimizes the MAE for all values of s, tested (e.g., Figure 6.3). The lowest MAE is
obtained by using s, equal to 1.85m. Based on the above estimates and

H,(s)=J,x+J,y+D, the minimum radius of influence in Eq. (6.10) is
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approximately 80 m and the maximum 150 m. Equation (6.9) leads to a uniform value
of =70 m.
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Figure 6.3 Sensitivity analysis to determine the optimal hydraulic conductivity (K) value used for the
calculation of the radius of influence R in (6.9) or (6.10) and subsequently for the hydraulic head
(trend), in (6.8). The cross validation measure MAE, is calculated based on RK methodology. Different

values of K between the two extremes are investigated while S, is set equal to 1.85m.

6.4 Interpolation of Hydraulic Head in Mires Basin: Models and

Results

6.4.1 Exploratory statistics

The main statistics of the head data are shown in Table 3.1. The skewness and

A

kurtosis coefficients are equal to §, =0.81 and IZZ =2.58 respectively, implying a

z

mild deviation from Gaussian statistics (S, =0, IZZ:S respectively). Data

transformations are used to improve normality as shown in Table 6.1. The residuals of
the trend models also display deviations from normality that are reduced by means of
the MBC transformation (Table 6.1).
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Table 6.1 Skewness S, and kurtosis kAz coefficients of head data and of trend models residuals

following Box-Cox normalization (for non-negative values) and modified Box-Cox (MBC). T-DEM
model uses the surface elevation as an external variable, the T-DEM-UGA uses the uniform-gradient
approximation of the DEM, the T-RD uses the distance from the river curve, the T-RD-DEM-UGA
uses a linear combination of the distance from the river curve and the uniform-gradient approximation
of the surface elevation and T-MW approximates the trend using Thiem s equation, Eq. (6.8).

Method No Trend T-DEM T-DEM- T-RD T-DEM- T-MW

approximation UGA UGA-
RD
3 0.81 - - - - -
H t
ead data I2 558 - - - - -
4
3 - 123 0.9 0.7 0.61 0.81
Residuals ‘ - 51 44 407 417 247
7
g 0.01 N/A N/A N/A N/A N/A
B _ Z
ox-Cox 0 2.70 N/A N/A N/A N/A N/A
4
3 013 0.6 0.54 0.21 0.19 0.20
MBC 2z
0 2.99 354 3.47 3.23 3.19 201

6.4.2 Geostatistical head models

As reported in Section 2.5, for interpolation we use both models with trend
function, to which we refer as (T), and models without trend (NT). Normalizing
transformations are used in both cases. For models with trend, the transforms act on
the residuals, while for the non-trend models they act on the original data. In the T-
case we investigate various trend options: the T-DEM model uses the surface
elevation as an external variable, the T-DEM-UGA uses the uniform-gradient
approximation of the DEM, the T-RD uses the distance from the river curve, the T-
RD-DEM-UGA uses a linear combination of the distance from the river curve and the
uniform-gradient approximation of the surface elevation and T-MW approximates the
trend using Eq. (6.8).

6.4.3 Head models without trend

Two general approaches are used for interpolation: the first one applies OK
with the optimal semivariogram function to the original data. The second applies a
normalizing transformation (Table 6.1) followed by OK on the transformed variable,
and it finally back-transforms the predictions.

The parameters of the theoretical semivariogram models (Gaussian,

Exponential, Linear, Spartan, Matérn, Spherical, and Power-law) obtained by least
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squares fitting to the experimental omnidirectional semivariogram of the original
hydraulic head data are shown in Table 6.2. The Spartan model gives the best fit in
terms of cross validation results of all the NT models tested (Table 6.3).
Normalization methods improve OK estimation measures, with the MBC method

performing overall slightly better than Box-Cox.

Table 6.2 Optimal estimates of semivariogram model parameters obtained by least squares fit to
experimental semivariogram. Sill and characteristic length & are in normalized units.

Semivariogram sill & Other
model parameters
Matérn 440 0.94 v =0.92
Exponential 133 0.30 NA
Spherical 150 0.63 NA
Spartan 184 0.46 n =112
Gaussian 160 0.28 NA
Power Law 538 NA 2H =131
Linear 331 NA NA

Table 6.3 Cross validation results of spatial models with optimal semivariograms, based on measures
listed in section 2.5. OK: Ordinary Kriging. Box-Cox & OK: Box-Cox transformation followed by OK
and back-transformation. MBC & OK: Modified Box-Cox transformation followed by OK and back-
transformation. SP: Spartan semivariogram. P: Power-law semivariogram. M: Matérn semivariogram.

NT Method Semi- MAE BIAS MARE RMSE R
variogram  (masl) (masl) (masl)
SP 3.37 0.02 0.14 5.15 0.91
OK P 3.58 0.07 0.15 5.46 0.9
M 3.80 0.02 0.16 5.84 0.89
SP 3.30 0.10 0.14 5.14 0.91
Box-Cox & OK P 341 0.09 0.14 5.31 0.90
M 3.60 -0.30 0.15 5.65 0.89
SP 3.30 0.02 0.14 5.12 0.91
MBC & OK P 3.39 0.05 0.14 5.17 0.90
M 3.60 0.03 0.15 5.54 0.89
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Note that the Spartan semivariogram is continuous but non-differentiable,
implying that the water table level is a non-differentiable function. Similarly, a study
focusing on an aquifer in Belgium (Fasbender et al. 2008), proposed the spherical
semivariogram. The superior performance of non-differential semivariograms versus
differentiable models is surprising at first, since the hydraulic head is assumed to be a
differentiable function in the saturated zone. However, the water table level
corresponds to the surface defining the upper boundary of the saturated zone. One can
model the elevation as the result of a deposition-removal process that adds (e.g., due
to precipitation) and removes (e.g., due to pumping and evapotranspiration) locally
varying increments of water. Such an idealized process is expected to yield a
fractional Brownian motion (fBm) (Mandelbrot and Van Ness 1968). In surface
hydrology fBm processes have been used as models of reservoir water levels (Feder

1988). The fBm models have power-law semivariograms of the form y,(r)ocr?"

with 0<H <1. As shown in Table 6.3, the power-law semivariogram with H =~ 0.65
performs closely to the Spartan model. H > 0.5 implies persistent correlations of the

water table level values in the basin.

6.4.4 Head models with trend

In the case of spatial models with trend components RK is applied. RK
combines a trend function with interpolation of the residuals. The omnidirectional
experimental semivariogram is calculated by applying the method of moments (2.10)
to the transformed residuals. The MBC transformation is used to normalize the
residuals (Table 6.1). The Spartan semivariogram model gives overall the most
accurate cross validation results in all cases, while the power-law and the Matérn

semivariogram come close (Table 6.4 to Table 6.8).

Table 6.4 Cross validation measures (cf. section 2.5) for spatial T-DEM model with optimal
semivariograms: trend using DEM surface elevation with a=0, f =0.37,c=3.75 in (6.1). MBC &
RK: Residual Kriging with modified Box-Cox transformation of residuals and back-transformation.
SP: Spartan semivariogram. P: Power-law semivariogram. M: Matérn semivariogram.

Method Semi- MAE BIAS MARE RMSE R
variogram (masl) (masl) (masl)
SP 3.32 0.07 0.15 5.20 0.90
MBC &
RK P 3.31 0.03 0.15 5.23 0.90
M 3.65 0.04 0.16 5.70 0.88
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Table 6.5 Cross validation measures (cf. section 2.5) for the spatial T-DEM-UGA model with the
optimal semivariograms: trend using the uniform gradient approximation of the surface elevation with
a=0,f =028,c=1043 in (6.1). MBC & RK: Residual Kriging with modified Box-Cox
transformation of the residuals and back-transformation. SP: Spartan semivariogram. P: Power-law
semivariogram. M: Matérn semivariogram.

Method Semi- MAE BIAS MARE RMSE R
variogram  (masl) (masl) (masl)
SP 3.21 0.03 0.14 5.08 0.90

MBC &

RK P 3.22 0.09 0.14 5.10 0.90
M 3.51 0.04 0.15 5.40 0.88

Table 6.6 Cross validation measures (cf. section 2.5) for spatial T-RD model with optimal
semivariograms: trend using distance from the river curve with a=52.90, f =0,c =20.90 in (6.1).

MBC & RK: Residual Kriging with modified Box-Cox transformation of residuals and back-
transformation. SP: Spartan semivariogram. P: Power-law semivariogram. M: Matérn semivariogram.

Method Semi- MAE BIAS MARE RMSE R
variogram  (masl) (masl) (masl)
SP 3.11 0.08 0.12 4.86 0.92

MBC &

RK P 3.11 0.11 0.12 4.88 0.91
M 3.11 -0.08 0.12 4.90 0.92

Table 6.7 Cross validation measures (cf. section 2.5) for T-DEM-UGA-RD model with optimal
semivariograms: trend using gradient approximation to ground surface elevation and distance from
river curve with a=52.07, f =0.27,c =2.22in (6.1). MBC & RK: Residual Kriging with modified
Box-Cox transformation of residuals and back-transformation. SP: Spartan semivariogram. P: Power-
law semivariogram. M: Matérn semivariogram.

Method Semi- MAE BIAS MARE RMSE R
variogram  (masl) (masl) (masl)
SP 3.02 0.07 0.12 4.79 0.92

MBC &

RK P 3.02 -0.09 0.12 4.81 0.92
M 3.01 -0.13 0.12 4.82 0.92

The cross validation results are compared in Table 6.4 to Table 6.8 with the
respective ones for the NT models (Table 6.3). Similar performance measures are
obtained with the T-DEM model that uses the surface elevation, and the results are
improved by the T-DEM-UGA model using the uniform-gradient approximation. The
validation measures overall improve by adding the distance from the river curve to the
trend model (Table 6.6). Incorporation of the smoothed surface elevation (Table 6.7)
can further improve certain validation measures, e.g., the MAE drops from 3.11 masl
to 3.02 masl and the RMSE from 4.86 to 4.79 masl. Nevertheless, the bias is similar
(0.08 and 0.07 respectively), while the MARE and R remains unchanged.

GEOSTATISTICAL ANALYSIS AND SPACE-TIME MODELS OF AQUIFER LEVELS: APPLICATION TO MIRES 116
HYDROLOGICAL BASIN IN THE PREFECTURE OF CRETE




PHYSICAL LAWS AND LOCAL GEOGRAPHIC FEATURES

The T-MW model uses Eq. (6.8) for the trend. Equation (6.10) is used for the
calculation of the wells’ radius of influence. We use the model coefficients
determined in Section 6.4.2. RK combines the trend with the fluctuation estimate

based on OK. Table 6.8 presents the cross validation results for different s, values

and the three “optimal” semivariogram functions for the transformed residuals. As
shown in Table 6.8, the Spartan semivariogram gives overall the most accurate
estimates followed closely by the power-law model. The validation measures are
further improved, i.e., the MAE drops to 2.75 masl, the RMSE to 4.57 masl, the
MARE to 0.11, and R increases to 0.93. Such a trend determination does not include
variance in its estimations, as the coefficients of basis functions, (6.8), r, R are known.

Therefore the variance of estimations is only due to the interpolation of the residuals.

Table 6.8 Cross validation measures (cf. section 2.5) for T-MW model with optimal semivariograms:
trend using hydraulic head obtained from multiple wells system operation. MBC & RK: Residual

Kriging with modified Box-Cox transformation of residuals and back-transformation. S, : the

drawdown at the well face. SP: Spartan semivariogram. P: Power-law semivariogram. M: Matérn
semivariogram.

Method Semi- MAE BIAS MARE RMSE R
variogram  (masl) (masl) (masl)
SP 2.75 0.07 0.11 4.57 0.93

MBC & RK

s,, =1.85 (masl) P 2.75 0.11 0.11 4.63 0.90
M 3.00 -0.14 0.12 4.76 0.89
SP 2.77 0.13 0.11 4.67 0.91

MBC & RK

s, =2.10 (masl) P 2.81 0.09 0.11 4.7 0.90
M 3.04 -0.2 0.12 4.8 0.89
SP 2.80 0.16 0.11 4.72 0.91

MBC & RK

s, =1.60 (masl) P 2.80 0.12 0.11 4.71 0.90
M 3.10 -0.13 0.12 4.84 0.89

Based on the analysis above and the cross-validation results, we rank the
“optimal spatial models” (that perform similarly) as follows: (1) T-MW, (2) T-DEM-
UGA-RD, and (3) T-RD. The semivariograms (experimental and modeled) of the
transformed residuals for the T-DEM-UGA-RD and T-MW models are shown in
Figure 6.4, Figure 6.5 and the model predictions are based on RK.
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Figure 6.4 Plots of the omnidirectional semivariogram of the residuals (after applying MBC
normalization) and the best-fit Spartan semivariogram (SP) model fit (62 =0.62, £=0.38, 17, = 1.51).

The residuals are derived in the framework of the T-DEM-UGA-RD model, i.e., by subtracting a trend
that accounts for distance from the river curve and surface elevation (in the uniform-gradient
approximation). The numbers of pairs used at each lag distance are also shown on the plot.
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Figure 6.5 Plots of the omnidirectional semivariogram of the residuals (after applying MBC
normalization) and the best-fit Spartan semivariogram (SP) model fit (62 =9.9, £=0.28, 1, =0.52).

The residuals are derived in the framework of the T-MW model, i.e., by subtracting a trend that
accounts for the groundwater level calculated from a multiple wells system operation analytical
equation. The numbers of pairs used at each lag distance are also shown on the plot.
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Figure 6.6 and Figure 6.7 show the experimental omnidirectional
semivariogram of the measurements along with the semivariograms obtained from the
leave-one-out estimates of the three top performance models. All four plots show very
similar structure of spatial continuity. The semivariograms of the estimates exhibit

lower variability reflecting the smoothing effect of the interpolation.
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Figure 6.6 Comparison of omnidirectional experimental semivariograms of the groundwater level
measurements and of leave-one-out estimates for T-RD and T-RD-DEM-UGA spatial models.
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Figure 6.7 Comparison of omnidirectional experimental semivariograms of the groundwater level
measurements and of leave-one-out estimates for the T-MW spatial model.
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6.4.5 Mapping of Groundwater Level for the Optimal Model

We use the T-DEM-UGA-RD and T-MW models with RK to estimate the
groundwater level on a 100x100 grid defined in normalized coordinate space (actual
cell size: 114x47 m). Estimates are obtained only at points that lie inside the convex
hull of the measurement locations (7317 grid points). The contour maps in physical
space are shown in Figure 6.8 and Figure 6.10. The residuals of the T-DEM-UGA-RD

model are interpolated using the Spartan semivariogram model (see Figure 6.4) with
the following optimal parameter values: o°=0.62, £=0.38, 7, =1.51. The residuals
of the T-MW model are interpolated with the Spartan semivariogram model (see
Figure 6.5) with 6°=9.9, £=0.28, 7, =0.52. The optimum search radius used with

the Spartan model (determined by the leave-one-out cross validation test) is equal to
0.38 (normalized units) for both models, identical to the estimated & by T-DEM-

UGA-RD and slightly greater than the & of T-MW.
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Figure 6.8 Map of estimated groundwater level in the Mires basin using RK-T-RD-DEM-UGA spatial
model, adapted on the real basin coordinates and location in the valley.
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Figure 6.9 Map of estimated groundwater level standard deviation in the Mires basin using RK-T-RD-
DEM-UGA spatial model, adapted on the real basin coordinates and location in the valley.
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Figure 6.10 Map of estimated groundwater level in the Mires basin using RK-T-MW spatial model,
adapted on the real basin coordinates and location in the valley.
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Figure 6.11 Map of estimated groundwater level standard deviation in the Mires basin using RK-T-
MW spatial model, adapted on the real basin coordinates and location in the valley.

Low groundwater levels (20 masl or less) are observed over a significant
fraction of the basin, with the lowest values observed near the northwest end. The
kriging standard deviation, which represents the uncertainty of the estimates, is shown
in Figure 6.9 and Figure 6.11. The highest values, around 0.8 masl for T-DEM-UGA-
RD model and around 2.8 masl for T-MW model are obtained near the boundaries of

the basin, and especially at distant points from the measurement stations.

6.5 Discussion

Changes in precipitation and temperature due to predicted climate changes in
Crete will substantially affect the island’s water resources due to declining recharge
rates and increasing abstraction rates. Spatial models for the accurate representation of
groundwater level variability in vulnerable areas with low groundwater resources,
such as the Mires basin, will help the identification of susceptible locations and
potential groundwater resources management plans. In addition, accurate on-grid
representation of the basin’s groundwater level can be used in numerical models to
calibrate the estimated hydraulic head field by providing suitable initial conditions.

The calibrated model combined with an optimization method can lead to improved
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planning of the abstraction rates that will aim to maintain sustainable groundwater
levels in the basin (Garg and Ali 2000, Karterakis et al. 2007, Ahlfeld and Hoque
2008).

In this work we assess kriging-based methods for groundwater level
interpolation (Table 6.3 to Table 6.8) using cross-validation metrics (section 2.7). The
most accurate results are obtained with the RK method. We introduce two new trend
components that improve the RK performance. The first one combines the closest
distance of the sampling stations from the river and a uniform-gradient approximation
to ground surface elevation (T-RD-DEM-UGA). The residuals are then normalized
using the MBC method. Figure 6.12 and Figure 6.13 present the interpolated residuals

and the determined trend distribution in physical space.
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Figure 6.12 Map of estimated groundwater level residuals in the Mires basin using RK-T-RD-DEM-
UGA spatial model (interpolation of the residuals obtained from the subtraction of the measured values
minus the trend determined from the approximation to ground surface elevation and the distance from
the river curve), adapted on the real basin coordinates and location in the valley.

Using only the distance from the river (T-RD) model reduces the mean
absolute error (MAE) to 3.11 masl compared to 3.30 masl and higher for the OK-
based models. Using the full T-RD-DEM-UGA further reduces the MAE to
approximately 3.00 masl. We obtain the most accurate results based on the second

trend model that uses the hydraulic head distribution for a system of multiple
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operating wells (T-MW). This leads to an MAE of 2.75 masl. On the other hand, the
T-MW spatial model leads to higher standard deviation (=2.80 masl) compared T-
RD-DEM-UGA (around 0.8 masl). We believe that this is due to the uncertainty in the

estimation of the s,, and R parameters for the aquifer’s wells.
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Figure 6.13 Map of estimated groundwater level trend in the Mires basin using RK-T-RD-DEM-UGA
spatial model (trend using the gradient approximation to ground surface elevation and the distance
from the river curve), adapted on the real basin coordinates and location in the valley.

T-RD, T-RD-DEM-UGA and T-MW (with the Spartan model) also give the
most accurate leave-one-out cross-validation estimate, i.e., =29.0 (T-RD, T-RD-
DEM-UGA) and 27.7 masl (T-MW) at the extreme low level location (9.4 masl)
compared to OK which yields 33 masl. In contrast, the highest level of 62 masl is
accurately estimated by all interpolation methodologies tested.

The Spartan semivariogram function provides the optimal fit with the
empirical semivariogram, with the power-law and the Matérn (with v=0.92 for
original data, v =0.46 for residuals of T-RD, v =0.34 for residuals of T-RD-DEM-
UGA and v =0.48 for residuals of T-MW) models following closely. The Spartan
model is used for interpolation, because it gives slightly better cross validation
measures for all methods tested. All of the above semivariogram models are non-

differentiable. Fasbender et al. (Fasbender et al. 2008) also used the non-differentiable
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spherical model for water table elevation. As we mention in section 4.4.3 we attribute
the non-differentiability to the water table level being the result of a deposition-
removal process. An idealized such process generates an fBm-like random field that
has a power-law semivariogram function. The power-law semivariogram is
unbounded, while the Spartan and Matérn models reach a finite sill. This difference is
not important on the short and intermediate distances that are important for
interpolation. From a practical viewpoint, the size of the basin and the deposition-
removal increments is finite; hence, it makes sense that the semivariogram reach a sill

at some large distance.
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7. Stochastic space-time modeling of groundwater level

variations in a Mediterranean basin

7.1 Introduction

Classical geostatistical analysis deals with spatial data variability.
Geostatistical modeling however often needs to address variables that change in space
as well as in time, such as groundwater level or pollution transport in air or porous
media. When data is distributed through time and space, a major advantage is that
higher number of data support parameter estimation and prediction. In a statistical
context, these data can be considered as random fields spread out in space and
evolving in time (space-time random fields-S/TRF). Usually spatiotemporal
interpolation is performed by applying the standard kriging algorithms extended in a
space-time frame. A historic review of space-time methodology is provided in section
2.3.

In this chapter we use stochastic methods for the spatiotemporal monitoring
and prediction of the groundwater level in sparsely gauged basins. Sparsely monitored
watersheds are not regularly monitored through space and time and therefore the data
availability is not always appropriate for purely spatial or temporal analysis.
Nevertheless the combination of the measured data can create a very useful dataset for
spatiotemporal modeling and analysis by incorporating spatiotemporal correlations.

Time series of mean annual groundwater level data is available from ten
boreholes that were monitored usually biannually in Mires basin (wet (April) and dry
(September) period) between the years 1981 and 2003. Since then (2003-2010), data
are available from two telemetric stations, (one of which belongs in the set of the 10
boreholes) that operate in the basin. For the time span 2003-2006 biannual
measurements at four of the ten boreholes are available (wet period only for 2006).
Annual precipitation measurements and pumping rate data are also available for the
time period 1981-2010.

First, we model the temporal variation of the mean annual groundwater level
in order to assess the aquifer’s behavior during the last thirty years with respect to
parameters that affect the water table fluctuations (e.g. precipitation, pumping). We

use a discrete time autoregressive exogenous variable model (ARX) based on physical
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motivation. The term “exogenous” denotes that the model equations incorporate
information from auxiliary variables in addition to groundwater level. In this study
precipitation measurements and pumping data are used. The ARX model is embedded
in a discrete-time Kalman filter to estimate the model parameters and predict the
optimal mean annual groundwater level. The ARX model is calibrated for the years
1981 to 2006 and is then used to predict the mean annual groundwater level in the
basin for the recent years (2007-2010). The ARX model is calibrated with data up to
the year 2006 in order to include the extremes of the aquifer behavior, i.e. the
groundwater level increase during 2002-2003 and the decrease in 2005-2006. The
predictions are validated with the available annual averages reported by the local
authorities.

Secondly, we conduct a spatiotemporal geostatistical analysis of the
groundwater level using space-time Residual Kriging (STRK). A space-time
experimental semivariogram is determined from the biannual groundwater level time
series between the years 1981 and 2003 at the ten sampling stations. We model the
empirical semivariogram with separable and non-separable theoretical spatiotemporal
semivariogram functions. STRK is used to predict the groundwater level for selected
hydrological periods at each sampling station (every six months in the time period
2004-2010). The predictions are validated for the years up to 2006 (wet period). The
average of the estimates is compared, for similar periods (2007-2010), to the
groundwater level in the basin predicted by ARX and to the values reported by the
local authorities based on the average of the two remotely sensed holes.

The ARX estimates are initially characterized by considerable initial
fluctuations, o, =9.6 m for 1981-1995, which are then reduced to o, =5.8 m for
1996-2006 (according to equation (7.1)). The optimal non-separable semivariogram
function, based on the diffusion equation, delivers significantly more accurate STRK
predictions than the separable function (product model). Both ARX and STRK
provide satisfactory predictions, but in contrast with ARX STRK also provides

spatially distributed estimates.

7.2 Purely temporal variation analysis

Groundwater has an important role in the water resources balance of hydrological

basins as it replenishes streams or wetlands and is a primary source of drinking and
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agricultural water. Groundwater level reduction has implications for the water cycle,
because groundwater supplies the base flow in many rivers and supports
evapotranspiration in high water table regions (Famiglietti 2008). Examination and
modelling of temporal trends of groundwater monitoring wells or of basin averages
provide useful information about the aquifer temporal response to different
meteorological (e.g. precipitation extremes) or anthropogenic effects (groundwater
over-exploitation). Therefore the temporal variation modelling of the groundwater
level in sparsely monitored basins provide a useful management tool of the basin’s

groundwater level that helps to assess the future trends.

7.2.1 Background of Regionalized ARX model of groundwater level

A regionalized discrete time auto-regressive exogenous variable model
(RARX) model that relates explicitly the precipitation surplus with water table depth
was introduced by Bierkens et al. (2001) and Knotters and Bierkens (2001). The
RARX-based approach is useful if the data are dense in time and sparse in space; for
example, if sufficiently long time series of the water table depth are available at a
limited number of locations. The RARX model is a linear time series model, the
parameters of which depend on the location (this spatial dependence is referred to as
regionalization). At locations where time series of water table depths are available, the
RARX parameters are obtained from the model calibration process; which minimizes
the error between the measured and the modeled value by adapting the parameter
values. The parameters of RARX model are physically motivated. The spatial
variability can be handled with classical geostatistics, such as kriging methods (OK,
UK). The model parameters can also be estimated at other locations using auxiliary
physical information, such as rainfall data and topography. Then, classical
geostatistics approaches that incorporate auxiliary information can be used for
regionalization (KED, RK) (Knotters and Bierkens 2001).

The RARX model can be combined with the Kalman filter algorithm (Ljung
1999, Knotters and Bierkens 2001). This approach permits (1) recursively
determining the model parameters from the available data and (2) predicting water
table depths in space and time conditionally on observed water table depths.
Optionally, auxiliary information, such as meteorological variables and water usage
can be incorporated in the model. The predictions are updated as new measurements

of the water table depth are added to the time series. Updating is based on Bayes
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theorem. This Bayesian updating property makes the Kalman filter attractive for water
management purposes. The method also permits estimating the statistics of water
table fluctuations. The accuracy of the estimates of the water table depth forward in
time is evaluated as follows: expected depths are estimated for time periods with
available observations, by also incorporating meteorological conditions (e.g.
precipitation rates) during the monitoring period. The precipitation surplus is
originally used as an exogenous variable in the RARX model. The parameters of the
geostatistical model are estimated by treating the RARX model as an equation of state
within the Kalman filter, and subsequently minimizing the mean square error of the
filter innovations (i.e., the difference between the measured and predicted values).

The root mean square prediction error is given by the following equation, i.e.,

Gr = \/%Zil[zs(t) SAIR (7.1)

where Zs(t) Is the predicted water table depth, Z_(t)is the corresponding measured

value, and N is the length of the time series.

7.2.2 ARX Model for groundwater level in Mires basin

The regionalization approach is not applied for Mires basin due to the
insufficient number of groundwater level monitoring wells (see section 7.1) that does
not allow a reliable estimation of the model spatial variability at unmeasured
locations. We therefore model the temporal variation of the mean annual groundwater
level of the basin in order to simulate the historic groundwater level annual
fluctuation that is determined from data reported by the regional department of water
recourses management in Crete and Administration of Land Reclamation of the
Prefecture of Crete for the basin (Figure 3.6).

We model the variation with a recursive discrete time auto-regressive
exogenous variable model, (ARX) model. The ARX model is embedded in a discrete-
time Kalman filter to estimate the model parameters and predict the optimal mean
annual groundwater level. The model is defined by equation (7.2), where precipitation
surplus was used only as an exogenous variable, proposed by Knotters and Bierkens
(2001):
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Z(t)-c=a(Z(t 1) —c)+bP(t) +&(t), s =t —At, (7.2)

where Z(t ) is the average groundwater level at time t,, At is the time step i.e.

At=t, —t,_, and P(t,) is the precipitation surplus over At. P(t,) is defined in terms

of the annual precipitation P"(t,) averaged over the nearby rainfall stations over the

respective time interval minus the mean annual actual evapotranspiration, E[P*(tk)],

(see section 7.4.1) i.e.

P(t)=P"(t)—E[P"(t))] (7.3)
where,
P(t,)= tj dt P(t"), (7.9

and P(t") is the average daily precipitation.
The parameters a, b determine the dynamic response of the water table, and ¢

is a parameter that determines the average water table depth if P(t,) =0. The variable

& IS a discrete white noise process with the following properties (where E[-] denotes

the expectation operator):

E[e(t,)]=0, (7.5)

E[g(tk )E(Ue)] = O_f 5(tk ! ue) ! (76)

where o is the error variance and S(t,,u,) is the Kronecker delta defined by
o(t,u,)=1if u, =t and o(t,,u,)=0if u, =t,.

Herein we propose and apply an extension of the original model (7.2) in order

to model the temporal variation of the mean annual groundwater level,

Z(t) - =a(Z () —c)+bP(t) +dA) + £(t), (7.7)
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where A(t,) is an estimate of the annual abstraction rate over At and d an additional

parameters that determine with a, b and ¢ the dynamic response of the water table.

The order of the ARX model is defined by the triplet (1,0,0). The first entry
denotes that equation (7.7), involves values of the water table depth with a maximum
delay equal to one time step. The second and the third entry denote that the inputs,
i.e., the precipitation surplus and the abstraction rate contain only one term with no
delay.

The equation (7.2) has physical background. It describes the water table
fluctuation for discrete time steps if zero surface runoff is assumed and a linear
relation between water table depth and drainage from the groundwater zone to the
surface water. Other variables that can be considered as exogenous (as the
groundwater withdrawal rates herein or varying surface water levels) can also be
incorporated in the model in a straightforward manner (Bierkens et al. 2001, Knotters

and Bierkens 2001). It is assumed that the precipitation surplus P(t,) is a global

variable, that is, space invariant. This assumption is reasonable for relatively small

areas, such as the Mires basin.

E[ = ':f;-,}] Precilgitatiml Pt Al

lEvap otranspiration T

saturated zone

Figure 7.1 Simplified demonstration of equation (7.7) inputs and output variables.

7.2.3 Kalman filter identification of ARX model

A Kalman filter comprises two sets of equations: one set predicts the state at
the next time step, and the other set updates the predictions using available state

measurements. The filter can be applied to any system described by a linear discrete-
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time state-space equation given by the following general formulation (Van Geer and
Van Der Kloet 1985, Eigbe et al. 1998, Ljung 1999):

2(t,) = F(t)z(t,_,) + Bt )p(t,) +w(t,), (7.8)

where Z(t,) is the vector of system state variables at time t,, F(t,) is the state
transition matrix from time moment t,_, to time t,, B(t,) is the control matrix that
represents the impact of external inputs p(t,) on the state of the system at time t,,

while w(t,) is a Gaussian noise vector that accounts for random noise (Bierkens et al.

2001). The noise properties are defined by,

E[w(t,)]=0, (7.9)

E[w(t, )w(u,) "1= Q)5 u.), (7.10)

where oS(t,,u,) is the Kronecker delta defined above in section 7.2.2. Q(t,) is the
covariance matrix of estimation errors. For any vector w; multiplied by w; it holds
that (w;-w; =Q, ;).

The measurement equation relating the observed state variables and the true

state of the system is expressed as (Van Geer and Van Der Kloet 1985, Eigbe et al.
1998, Ljung 1999):

z(t,) =M(t)z(t,) +Vv(t), (7.11)

where z(t,) is the vector of observed state variables, M(t,) is the observation matrix
and v(t,) is the observation noise vector that accounts for measurement errors. If the
element in row i of the vector z(t,) is the observation of the state variable 2(t,)
located in row j, then the element (i,j) of M(t,) is set to ““1’’; all other elements of

the row M(t,) are set to “0’’. The noise process v(t,) is assumed to be multi-
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dimensional Gaussian white random processes. The following equations define the

statistical properties of v(t,):

E[v(t,)]=0, (7.12)

EV(tL)V(U,) 1= Rt u,), (7.13)

where R(t,) is the covariance matrix of the observation errors. It is usually assumed
that the observation errors are independent, which means that R(t,) is a diagonal

matrix whose elements equal the variances of the corresponding observation errors.

The observation errors are also independent of the system noise, i.e.:

E[W(t V() 1=0 V(t.u,). (7.14)

To execute the estimation procedure the matrices F, B, M, Q and R must be
known. The calculations can be divided into two steps. First, a prediction is made for

the state at time t,, based on measurements up to time t,_,. Secondly at time t, as the

new measurement becomes available the prediction is corrected. This yields the
optimal linear estimate for the state at time t, based on measurements up to time t, .
The matrices F and B are functions of the system parameters, which are not known a
priori. Therefore the Kalman filter cannot be directly applied. The following set of
equations describes the Kalman filter adaptation algorithm that estimates recursively
the parameters and the state equation output of an ARX model (Ljung 1999).

7.2.4 Kalman filter adaptation algorithm of ARX model

Linear model structures such as ARX that are equivalent to linear

regressions can be expressed as (Ljung 1999, Lanzi et al. 2006):

z(t, ) = x(t, )T ot ) +v(t,) - (7.15)
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In the above equation, y(t,) is the gradient of the predicted model output z(t,) with
respect to the parameter vector and represents the model’s regression vector, 0(t,)
represents the vector of the true parameters (true description of the system) and v(t,)

is the measurement error innovation. The predicted output is given by:
2(t,) = x(t)" 6(t, ;) (7.16)

where Z(t,) is the prediction of z,(t, ) based on parameters up to t,_, and y(t,) is a
(nx 1) vector of gradient values (regression vector) that represents the gradient of the
predicted model output Z(t,) with respect to the parameters é(tkfl). Since the true
parameters of the system are unknown it is assumed that B(tk):ﬁ(tkfl). The

estimation algorithm minimize the mean square prediction-error term

E[(z(tk)—i(tk))z] which means that equation (7.16) is solved for all time steps

using the parameters O(t, ,).

The general recursive parameter identification equation is:
é(tk) :é(tkfl)_‘_K(tk) z(t,) —2(t,) (7.17)

where O(t) is a vector of the parameter estimates (nx 1) at time t., z(t) is the
observed output at time t, and Z(t,) is the prediction of z(t,) based on observations
up to time t,_,. K(t,) is the Kalman gain, a (nx1) vector, that determines how much
the current prediction error z(t, ) —Z(t,) affects the update of the parameters estimate.

The above formulation assumes that the true system parameters 0(t,) are

described by a random walk:

0(t,) =0(t, ;) +w,(t), (7.18)
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where  w,(t,) is a Gaussian white noise with covariance matrix
E[we(tk)we(tk)T]: R,(t.). R,(t) is the covariance matrix (nxn) of the parameter
changes (error) for each time step t, .

The Kalman gain K(t,) is derived based on the Least Mean Square (LMS)

parameter estimation algorithm and it has the following general form (Ljung 1999,
Lanzi et al. 2006),

K(t)=It)x(t) (7.19)

where J(t,) is given by,

Pt ,)
J = 7.20
= R ) ) P n) (720
and
S(t) =R, () +x(t, )T P(t, )x(). (7.21)

In the above equations J(t,) is a (nxn) covariance matrix, the (nxn) covariance
matrix P(t, ,) corresponds to parameters estimation error at t,_,, S(t,) is the residual
(innovation) covariance during the parameters update process and R,(t,) is the
variance of the innovations v(t, ) in equation (7.15): R,(t,) = E[v2 (tk)] (a scalar).

The (nxn) covariance matrix P(t,) represents the parameter error covariance

and is updated as follows:

P(tk_1)X(tk)X(tk )T P(tk—l) (7.22)

P(t)=P(t._,)+R,(t)— R, (t,) +x(t, )T P(t, . )x(t) .

The Kalman filter algorithm is entirely specified by the sequence of data z,,
the gradient y(t,), the covariance matrix R,, the variance of the innovations R,, the
true parameters 0(t,) or an initial guess and the parameter error covariance matrix

P, (t,). The recursive estimate of the parameters and of the output of an auto-
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regressive exogenous variable model, (ARX) model, is implemented in Matlab®
programming environment using the “‘rarx’’ function after the appropriate coding of

the state and measurement equations.

For this application ﬁ(t) is the vector of the parameter estimates (4x1) ( a, b,
c and d of the state equation (7.7)) at time t,, K(t,) is a (4x1) vector, x(t,) is a
(4x1) vector of gradient values (regression vector) corresponding to each variable
input involved in the state equation (7.7) (m, P(t.), Alt,), unit value for
parameter c), J(t,) a (4x4) covariance matrix and P(t,) a (4x4) covariance matrix

that corresponds to parameters estimation error.

7.3 Spatiotemporal geostatistics

Spatiotemporal geostatistical models provide a probabilistic framework for
data analysis and predictions which is based on the joint spatial and temporal
dependence between observations (Kyriakidis and Journel 1999, Fischer and Getis
2010). Initial approaches to spatiotemporal data modeling were based on separable
covariance functions, obtained by combining separate spatial and temporal covariance
models (Rodriguez-lturbe and Mejia 1974, Rouhani and Myers 1990, Cressie 1993,
Dimitrakopoulos and Luo 1994). The last two decades there is significant
development of non-separable covariance functions. These models aim to improve
spatiotemporal data modeling and prediction (Cressie and Huang 1999, De laco et al.
2001, Gneiting 2002, Kolovos et al. 2004) by extracting in some case the covariance
functions from physical laws such as differential equations and dynamic rules
(Christakos and Hristopulos 1998, Christakos 2000, Gneiting 2002, Kolovos et al.
2004).

The main goal of space-time analysis is to model multiple time series of data
at spatial locations where a distinct time series is allocated. The time variable is
considered as an additional dimension in geostatistical prediction. A spatiotemporal

stochastic process can be represented by Z(s,t) where the variable of interest of
random field Z is observed at N space-time coordinates (S;,t;),...,(Sy,ty), While the
optimal prediction of the variable in space and time is based on Z(s;,t;),...,Z(Sy,ty)

(Cressie and Huang 1999, Giraldo Henao 2009). S/ITRF Z(s,t) can be decomposed
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into a mean component m, (s,t) modeling the trend and a residual S/TRF component

Z'(s,t) modeling fluctuations around that trend in both space and time according to

the following equation:
Z(s,t)=m,(s,t) +2Z'(s,1). (7.23)

The trend can be calculated either deterministically and the fluctuation using
a stochastic framework such as space-time kriging (Christakos 1991b,
Kyriakidis and Journel 1999).

7.3.1 Spatiotemporal two point function

Set Z(s,t), (s,t) € D x T, a second-order stationary space—time random
field. D< RY is the spatial domain (d is the space dimensions) and T = R is the
temporal domain, with expected value (Myers et al. 2002): E[Z(s,t)] = 0,

V(s,t) € D x T and covariance function:

Cor () =E| Z(s; +1,, t; +1) Z(s.8) |-E[ Z(s; +15, t;+1) |[E[Z(s,8)], (7.24)

where T :(si—sj), rtz(ti—tj), i, j=1...,N. The covariance function depends

only on the lag vector r :(rs, rt) and not on location or time, while it must satisfy the
positive-definiteness condition in order to be a valid covariance function. Hence, for
any (s;,t;) € D x T, any real a;, i=1,...,N and any positive integer N, Cs; must

satisfy the following inequality:

N N i
ZzaiajCST (si—s;.ti—t;)>0"

i=1 j=1

If E[Z(s,t)] is constant and Cg;(r,,r;) depends only on the lag vector

r=(r,n):

> positive-definiteness condition is often presented also as non-negative definiteness condition, i.e. > 0
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Cov(Z(s;,s5:t,1))) =Cor (8 =S, —t;) =Cgr (1. 1) - (7.25)
the S/TRF Z(s,t) is characterized as second-order stationary. Spatial and

spatiotemporal geostatistical prediction methodologies generally rely on stationarity
(stationary mean and covariance or semivariogram).

In addition the field is isotropic if ,
Csr (15, ) =Csr (||rs|||rt|)’ (7.26)

meaning that the covariance function depends only on the length of the lag.

Under the weaker intrinsic stationarity assumption the increment
(Z(sj +rg, 4 +q)—Z(si,ti)) is second order stationary for every lag vector r,,r,
instead of the random field. Then Z(s,t) is called an intrinsic random function and is

characterized by:

E(Z(s;+r tj+1)—Z(s,1)) =0, (7.27)
and
Vst (F, 1) :%var(Z(sj +r5, +rt)—Z(si,ti)) (7.28)

where the term var denotes the variance. The function yg; (r,,1;) only depends on the
lag vector r=(r,r,). The quantity %var(Z(sj +r, 1 +rt)—Z(si,ti)) is called the

semi-variance at lagr =(r;, 1, ).
The random field Z(s,t) has an intrinsically stationary semivariogram if it is

intrinsically stationary with respect to both the space and the time dimensions. The

Z(s,t) has a spatially intrinsically stationary semivariogram if the semivariogram
depends only on the spatial separation vector r, for every pairs of time instants t;,t;

and it has temporally intrinsically stationary semivariogram if depends only on the

temporal lag r,. Equation (7.28) provides the space-time stationary semivariogram
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function (Gneiting et al. 2007). Under the stronger assumption of second-order

stationarity, the semi-variance is defined as:

7st (5, 1) = Cs1(0,0) —Cgr (1, 1) (7.29)

The primary concerns when modeling space—time structures, is to ensure that
the chosen model is valid and that the model is suitable for the data. The space-time
kriging estimator can be applied if the space-time covariance function satisfies the

positive definiteness condition, Cy; >0 explained above (Cressie and Huang 1999).

The model’s suitability is ensured by testing a series of available structures on the
data. The semivariogram function must be conditionally negative definite to ensure
that the space-time kriging equations have a valid unique solution (Myers et al. 2002,
De laco 2010).

Space-time kriging is a well-established method for space-time interpolation
(Christakos et al. 2001, De Cesare et al. 2001). It is however complicated, as the
kriging system of equations needs to be solved at the same time for spatial and
temporal weights (Skeien and Bloschl 2007). In addition, space-time kriging is data
demanding, while often the number of locations where time series of groundwater
level data are available is very limited. Also according to Bierkens (2001), space-time
kriging may not be appropriate to analyze the change in groundwater level if climate
change effects (rainfall shortage, intense rainfall periods, droughts) affect the area of
study or changes of land use and surface water management occur. The kriging
estimator and the kriging equations have the same form for spatiotemporal problems
as for spatial problems. The difference from spatial-only kriging is the covariance
modeling. This is because the time component is not an extra dimension that can be
used to form a single Euclidean space-time metric. The time axis is by nature different
and not necessarily orthogonal to the three spatial axes. The time component has been
proved to cause both theoretical and practical problems if it is treated as an additional
space dimension (Rouhani and Myers 1990). Hence, in space-time variography the
spatial lag, r,, and the temporal lag, r,, are treated as independent arguments y(r; ; 1; ).
Space-time and purely spatial kriging methods were analytically presented and

compared on simulated data by Bogaert (1996). He concludes that in the space-time

context ordinary space-time kriging (OSTK) is preferable; nevertheless, it requires the
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hypothesis of mean and variance homogeneity and is limited to second order
stationary random fields.

Two categories of models are used for semivariogram or covariance modeling.
The first includes separable models whose covariance function is a combination of a
spatial and a temporal covariance function; the second includes non-separable models
in which a single function models the spatiotemporal data dependence. Separable
models however, suffer from unrealistic assumptions and properties (Snepvangers et
al. 2003, Hengl et al. 2011). Both space-time covariance models are valid according
to (De laco et al. 2001, 2002b) and (Cressie and Huang 1999).

Separable and non-separable covariance functions can describe the random
field’s spatiotemporal continuity. Separable covariance functions are used if separate
spatial and separate temporal covariance functions exist for the data (Gneiting et al.
2007),

Cov(Z(s;,s;:t,t;)) =Cor (rs’rt)zcrs (si,8;) G (6. 5). (7.30)

Separability provides many advantages, such as the simplified representation of the
covariance matrix and consequently important computational benefits (Park and
Fuentes 2008). The separable covariance models however, in spite of their simplicity
are not usually physically motivated. Correlations that have separable spatial and
temporal components are particularly useful when the correlations are inferred on the
basis of existing data and not when they follow from a physical model (Christakos
and Hristopulos 1998). When data (e.g. hydrologic, atmospheric, oceanographic) are
influenced by dynamic processes spatiotemporal dependency structures are difficult to
be modeled by a separable covariance function. Physically meaningful covariance
models can be derived instead, based on environmental data dynamic processes
(Christakos 1991b, Christakos and Hristopulos 1998, Gneiting 2002, Kolovos et al.
2004). Covariance structures such these are non-separable. Modeling non-separable
covariance functions is one of the keys for more reliable prediction in the
environmental research fields (Gneiting et al. 2007).

The random field Z(s,t ) has fully symmetric separable covariance if

(Gneiting et al. 2007, De laco 2010):
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Cov(Z(s;, ), Z(s5,t;)) =Cov(Z(s; ), Z(s;.1)) (7.31)

for all (s;,t), (s;,t;). Non-separable covariance structures that are not fully

symmetric have been proposed by Gneiting et al. (2007) e.g.:
Cer (T, rt)=(1+rt)*1exp[rs /(1+rt)/”2] 0< A<l (7.32)

A significant part in the space-time process is the choice of the semivariogram
or covariance model and the estimation of its parameters. Contrary to purely spatial
prediction, where a well established set of semivariogram models exists, several
spatiotemporal models have been developed for modeling space-time structures
(Christakos and Hristopulos 1998, Kyriakidis and Journel 1999, De Cesare et al.
2001, Gething et al. 2007). These models involve the product model (Rodriguez-
Iturbe and Mejia 1974), the sum model (Rouhani and T.J. Hall 1989), the metric
model (Dimitrakopoulos and Luo 1994), the integrated product model (Cressie and
Huang 1999, De laco et al. 2002a), the product-sum model (De Cesare et al. 2001,
De Cesare et al. 2002), the integrated product—sum model (De laco et al. 2002a, b),
Gneiting’s non-separable models (Gneiting 2002, Gneiting et al. 2007), a series of
non-separable models reviewed in (Kolovos et al. 2004) and non-separable models
expressed through the spectrum density function instead of the direct covariance
function (Porcu et al. 2008).

7.3.2 Spatiotemporal covariance or semivariogram models

A comprehensive description of some widely used spatiotemporal covariance
or semivariogram models follows.

The metric model is given by the following equation (Dimitrakopoulos and
Luo 1994):

Cor (roi) =C @[ +e|rf ). (7.33)

or
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Vst (rsvrt):?/(al”rsnz+a2|rt|2)’ (7.34)

where |r|| is the Euclidean norm of the spatial lag vector and as, a, coefficients that

weigh relatively the space and time contributions. For this model the spatial and
temporal covariances used are of the same type.

Another separable space-time covariance model is the sum model, in which

spatial Cq(r;) and temporal C; (r,) covariance functions are added (Rouhani and

T.J. Hall 1989):

CST (rs’rt):CS(rs)"'CT(rt)’ (7-35)
or

Vst (rs7rt):7/3 (rs)+7T(rt)- (7.36)

In the above Cg; is the spatiotemporal covariance and yg; is the spatiotemporal

semivariogram respectively. According to Rouhani and Myers (1990), covariance

matrices Cg; (r,, 1) of certain configurations of space-time data can be singular. In
this case the covariance function is only positive semi-definite Ci; >0 (De laco

2010). The sum expression therefore is nearly an acceptable model as it only fails the
strict definiteness condition. The resulting spatial-temporal form of covariance or
semivariogram does not satisfy the strict definiteness conditions for the separate
spatial and temporal covariances and the strict conditional negative definiteness
condition for the separate spatial and temporal semivariograms (Myers and Journel
1990, Rouhani and Myers 1990, Dimitrakopoulos and Luo 1994). Thus this model is
unsatisfactory for optimal prediction (De laco 2010).

The product model (Rodriguez-Iturbe and Mejia 1974) belongs to the separate
space-time model category and is one of the simplest ways to model a covariance or
semivariogram in space-time. The product of a space semivariogram and a time
semivariogram is generally not a valid semivariogram; on the other hand, the product
of a space covariance and a time covariance leads to a valid model. A semivariogram

structure can then be determined by the product covariance model. Valid spatial and
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temporal covariance models can be used in the product form below to create

spatiotemporal models,
Cor (Fs 1) =Cs (1) Cr (1) (7.37)

If both components Cg(r,),C; (r;) are strictly positive definite then Cq; (r,,1) is

strictly positive definite on RY xT . The covariance equation can be expressed in

terms of the semivariogram as:

Vst (Fo %) =Cr (0) 75 (1) +Cs (0) 71 (1) =75 (1) 71 (1) - (7.38)

The product-sum space-time model (De Cesare et al. 2001, De Cesare et al.
2002) is a generalization of the product and the sum model, while it constitutes the

starting point for its integrated product sum versions. It is defined as:
Cor (Fe 1) =kiCs (1) Cr (1) +KoCs (15 ) +KeCr (1) - (7.39)

Cg,C; are purely spatial and temporal covariance models with k; >0, k, >0,
ky>0. If Cs(r;) and C; (1) are strictly positive definite, then Cgy (r,, 1) is strictly

positive definite on RYxT . In terms of the semivariogram, the above equation is
expressed as:

Vst (rs’ rt):(leS (0)+k3)7T (rt)+(k1CT (O)+k2)75 (rs)_k17s (rs)VT (rt) ,  (7.40)

where g,y are purely spatial and temporal semivariogram models. C4(0) and
C; (0) are the sills of the spatial and temporal semivariograms respectively. Each

space-time model (sum, product) separately have limitations which their combination
does not have. The semivariogram structure can be expressed alternatively as follows
(De laco et al. 2001):

Vst (rs’ rt)ZVST (rs'0)+7ST (O'rt)_KVST (rs’O)J/ST (0' rt) ; (7.41)
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where 0 < K <1/max(sill g (r,,0) , sill 5 (0,1,)).

The Cressie-Huang models (Cressie and Huang 1999) are non-separable

spatiotemporal stationary covariance functions defined by,
Cor (rs,rt):jeirg“’p(m,l‘t)k(m)dm, (7.42)

where p(w,*) is a continuous auto correlation function Ve» e R? and k(+) a positive

function with k(®)>0 and jk(co)dco <oo. Bochner’s theorem is used to derive non-

separable space-time covariance functions of this type.
Gneiting (2002) proposed a wide class of non-separable covariances derived
from the following equation:

2 2
CST(rS,ri): (e (0[ ||r5|| J, (rs,ﬁ)GRd XT, (743)

[y (D) " | w ()

where d is the number of spatial dimensions, ¢(z), >0, is a completely monotone
function and w(r), >0, is a positive function (i.e. Bernstein function or

equivalently a variogram) with a completely monotone derivative. A real and positive

function f :[0,c0] > [0,0] is called completely monotone if and only if,

()N N () >0, for any positive integer N (Porcu et al. 2006). Examples of such

functions are given in Gneiting (2002). The spatial and temporal structures are
determined by ¢ and v respectively. However, contrary to the Cressie-Huang models
the Gneiting models do not recall the Bochner’s theorem.

A similar approach to the Cressie-Huang models can be formulated for the
product (7.37) and product-sum (7.39) constructions. Their integration also gives

valid spatiotemporal models (De laco et al. 2002a, Myers et al. 2002) as follows:

Csr (rs,rt):jv kCs (15;a)Cr (r;a)du(a), (7.44)
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where k>0, u(a)is a positive measure on U =R, C4(r;a),C;(r;a) are valid

covariance functions in DcRY and T <R respectively for each aeV cU, and
Cs (rs;a)Cr (r;@) is integrable with respect to the measure x on V for all r,,r,. The

integrated product model generates non-separable and non-integrable models.

In terms of the semivariogram structure the above equation is rewritten as:

ysr (1) = | K[Cr (0:2) 75 (r:2) +Cs (0;2) 77 (1) |

(7.45)
75 (ra)rr (r:a) |du(a)
Similarly for the product-sum model one obtain:
Cqr (15, rt):jv [ K,Cs (r;@)Cr (1;a) +koCs (1i:@) +keCr (1:a) Jdu(a), (7.46)

where k,Cq (r;;a)Cr (1;a)+k,Cs (1;2)+ksCr (1;@) is integrable with respect to the
measure ¢ on V for all r,r, given k; >0, k, >0, k; >0. Separate structures in space

and time are used to generate the product-sum model and integrated product-sum
models. In addition, the integrated product-sum model (7.46) and the product-sum

model (7.39) are non-integrable with respect to r, and r, and non-separable. Equation

(7.46) can be written in terms of a semivariogram structure as:

Vst (1) = J.V [(klcS (0;a)+kg) 7y (:2)+(KCr (0:@)+k, ) 75 (r:)

, (7.47)
—Ki7s (rs;a)VT (rt;a)]dﬂ(a)

where Cg(0;a) and C;(0;a) are the corresponding sill values of the spatial and

temporal semivariograms. Both space-time semivariogram structures are valid if

7s(r;a) and ¢ (r;a) are valid spatial and temporal semivariogram models.
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7.3.3 Spatiotemporal models’ summary of characteristics

The metric model in spite of its nice asymptotic features has restrictive
assumptions. As previously mentioned the same type of covariances describe the
spatial and temporal correlation, they have the same sill (if the model is bounded) and
it can be used only for processes, whose space—time correlation is described by a
model with geometric anisotropy. Finally, it is the only model that requires a space—
time metric (De laco 2010).

The product model, the product-sum model, their integrated versions and the
sum model are produced by separate space and time functions. The main advantage of
such models is their ease of use in modeling and estimation. Because the sum model
is separable, anisotropy can be incorporated in the spatial component. The product
model is separable and integrable; its integrated version can generate non-separable
and non-integrable models. In contrast the product-sum model is non-integrable with

respect to r, and r,, and it is non-separable as the integrated version of the product-

sum model. On the other hand, the Cressie-Huang and Gneiting models are
alternative choices to the separable models. However the ¢ and y functions in the
Gneiting model can be chosen so that separable models are obtained. Finally,
anisotropic covariance or semivariogram versions of the functions described can be
constructed by inserting anisotropy in the spatial component of the semivariogram
function (Myers et al. 2002, De laco 2010).

The space-time semivariogram models described above, except for the metric
function, are typically used to model the space-time experimental semivariogram
because an arbitrary space-time metric is not required and the fitting process is similar
to that for spatial semivariograms (Gething et al. 2007, De laco 2010).

7.3.4 A Spatiotemporal covariance function derived from a physical law

An alternative covariance function suitable for space-time semivariogram
modeling is proposed by (Christakos and Hristopulos 1998, Kolovos et al. 2004). It is
an extension of a non-separable spatiotemporal covariance inspired from the diffusion
equation. A covariance model derived from a physical differential equation, such as
the diffusion equation is of the form (Christakos 2000):

GEOSTATISTICAL ANALYSIS AND SPACE-TIME MODELS OF AQUIFER LEVELS: APPLICATION TO MIRES 147
HYDROLOGICAL BASIN IN THE PREFECTURE OF CRETE




STOCHASTIC SPACE-TIME MODELING OF GROUNDWATER LEVEL VARIATIONS

Cor (I 1) = (4om|rt|)7n/2 exp(—rs2 /4a|rt|) , 0>0. (7.48)

An extension of this equation can be obtained following Gneiting’s proposition to add
constants after the time lag in space-time formulations. (Hristopulos 2002) proposed a

similar approach for the spatial-only case. Therefore the equation can be modified to:

-n

Cor (1 1) =(Br7 +1) 2 exp(—rsz 1( B +1)), 0<B<10<y<1, (7.49)

where £, y are the function’s parameters and n are the dimensions. This covariance

class has been used in the area of fluid mechanics (Monin and Yaglom 1975).

7.3.5 Spatiotemporal geostatistical analysis and prediction

Under the second-order stationarity hypothesis, the semivariogram and the
covariance function are equivalent. For reasons of convenience the semivariogram
structure is preferred. The appropriate semivariogram structure (separable or non-

separable) is fitted to the experimental spatiotemporal model given by:

1 2
AN () O 2E 0] (7:50)

792 (rsa rt) =
where r,= ||si —sjll, = [ti — g, and N(r,,r,) is the number of pairs in N(r,,r,). The
space-time experimental semivariogram is estimated as half the mean squared
difference between data separated by a given spatial and temporal lag (r, ;).

Geostatistical prediction is then achieved using space-time Ordinary Kriging
(STOK) (Christakos 1991b, Goovaerts 1997). The STOK estimator with respect to

residual data notation is given below:

ZA'(So'to):z{i;si,tiego}ﬂi Z'(spt;), (7.51)
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2’(so,t0) is the unsampled location-time, Z'(s;,t;) are the sampled location-time

neighbors and A; are the corresponding space-time kriging weights.
z{i:si,tieSo}/ii 7/2'(SI’SJ’tI’tJ)+/’l:72'(Sj’so’tj7t0)’ j:].,...,NO, (752)

Z{i:si i eSo}/li = 1 ! (753)

where N, is the number of points within the search neighborhood of s,
72 (51,8534, t;) is the semivariogram between two sampled points s; and s; at times
tand t;, 7, (S;,S0:tj,t) the semivariogram between s;,t; and the estimation point
S,.t, and x is the Lagrange multiplier enforcing the zero bias constraint.

The STOK estimation variance is given by the following equation, with the

Lagrange coefficient x compensating for the uncertainty of the mean value:
2 _ .
O-E (SO’tO) - Z{i:si ,tieSo}/li 7/2' (S] ’ So1tj ato) + ,Ll . (754)

The prediction is also described in matrix notation below where the system

I' A =c is solved to estimate the spatiotemporal weights A :

V(81 =8p—1) e Jp(Bsyi—ty,) L
r=| . '
V2 (Sng —Sutng —t) o 72 (Sng —Sng ity —tng) 1
1 1 0
A= /1 , (7.55)
No
U
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V2 (So —Sptg —t)

c=| . '
}/Z'(SO _SNO ,to _tNO)

1

where I' is the matrix of the spatiotemporal semivariogram between the observed
space-time data locations, A are the spatiotemporal weights and ¢ the matrix of the
spatiotemporal semivariogram between the observed space-time data locations and
the space-time estimation location.

Space-time predictions are usually based on a space-time neighborhood which
encloses observations inside a search radius in space and in time; the search radii

depend on the space and time correlation lengths ¢&,& estimated from the

semivariogram fitting process. For small datasets the entire dataset is used for

predictions. Figure 7.2 presents a schematic representation of the space-time domain

and the space-time search neighborhood.

=
©
=
S
ge;
N

Figure 7.2 Representation of the space-time domain and of the space-time search neighborhood (after
(Hengl 2007))

In STRK the estimate of the head, groundwater level, is expressed as:
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ZA(So’to): mz(so’to)+2/(so'to)’ (7.56)

where m, (s,,t,) is the estimated trend function, and Z'(s,,t,) is the interpolated

residual by means of STOK (Hengl 2007). The trend function herein is modeled based
on equation (7.59).

7.3.6 Spatiotemporal prediction of groundwater level data in Mires basin

Mires basin of the Mesara valley is a sparsely monitored basin. Since 1981
where a rapid increase of drip irrigation and increased pumping were started, only 10
wells were consistently monitored biannually until the year 2003. Since then a
telemetric network is operating in the area consisting of two monitoring wells while
some selected measurements were taken in specific boreholes. The basin is
consistently overexploited and the result is a great drawdown of the water table; more
than 35m since 1981. The water resources availability in the area and especially the
groundwater are encountering great shortage. Therefore the area is of spatially and
temporally groundwater analyses need. Using spatiotemporal geostatistics the limited
groundwater level dataset can be usefully exploited in order to identify the historic
spatiotemporal behavior of the aquifer and to take useful information regarding the
space-time data correlations for future predictions.

Space-time geostatistical analysis and predictions are made following the steps
denoted below: 1) approximation of the spatio-temporal trend, 2) Space-time
semivariogram calculation of the residuals, 3) application of space-time residual
kriging (STRK) - STOK for prediction of fluctuations adding the predicted trend at
the desired locations and 4) estimation of prediction accuracy. In the following, the
above steps are addressed in detail.

As it was stated in section 7.3 (Eq.(7.23)) the random field can be decomposed
in trend and fluctuations. Therefore, the initial geostatistical analysis step is to
approximate the spatiotemporal trend of the field data. The spatiotemporal trend
approximation involves the separate temporal and spatial trend removal. For the first
the exponentially weighted moving average filter (Roberts 1959, Pham 2006,
Nist/Sematech 2009) is used on the mean bi-annual groundwater level of the 10

available wells. This model is selected because it can provide discrete estimates of
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future biannual groundwater level trends based on the previous period trend value and
the groundwater level value of the desired estimation time. The equation that

describes the model follows:

M, (t)=az(t)+1-a)m, (), M, (t)=z(t). (7.57)

where h, is temporal trend and z the groundwater level measurement and 0 <o <1

is the weight of the temporal model.

The spatial trend approximation is based on the closest distance of the wells
from the river traversing the basin (see section 6.3.1). This approach using closest
distance from the river root as auxiliary information is a new geostatistical tool that
proved effective for the purely spatial analysis (section 6.4.4). The river bed can be

seen as a curve, therefore we model the river by means of a river curve, herein

represented by a second-order polynomial, y(x)=w, +w, x+Ww, x*. As it is well-

known and analytically presented in section 6.3.1, the closest distance of any given
point from a curve is the perpendicular distance between the point and the tangent at a
unique point of the curve. The shortest distance of the wells is first calculated and

then the function (7.58) is applied to obtain the spatial trend. The spatial trend

obtained for the time t~, wet period of the hydrological year 2002-2003, when the

most reliable measurements were taken is given by,

m,(s,t")=f d(s)+g, (7.58)

and is adopted as the reference year period spatial trend. In the above equation m, is

the trend, d is the well’s distance from the river bed, f and g are coefficients of the

linear spatial model.

We present a model for spatiotemporal trend m, (s,t) which is obtained by

multiplying the spatial with the temporal trend and dividing by the reference temporal

trend:
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(7.59)

2

The first component of the numerator i, (t) is the temporal trend, which is
approximated by applying an exponentially weighted moving average filter (7.57) as

discussed above (Roberts 1959). The second term, m, (s,t*), is the spatial trend

model. The denominator m, (t*) denotes the temporal trend for the reference year

period of the most reliable measurements (wet period of the hydrological year 2002-
2003). This period is the basin’s last regularly monitored period. The temporal trend
values are divided with the temporal trend of the reference year period, obtained from
the same function, to produce coefficients without units. This is necessary in order the
spatiotemporal trend to retain units in meters.

Based on Eq. (7.59) it follows that,

m, (s,t*) =m, (s,t*), (7.60)

confirming that Eq. (7.59) yields the spatial trend model at t*. Another property of

Eqg. (7.59) is that the average spatiotemporal trend m, (s,t) for a given time span t is

equal to the average spatial trend of the reference year period m, (s,t*) multiplied by

the ratio of temporal trend at time t over the reference temporal trend.

m, (s,t)=m, (s,t*)x m (1) : (7.61)

The spatiotemporal residuals are calculated simply by subtracting the
groundwater level of each well at a specific time step from the corresponding
spatiotemporal trend. The temporal trend remains constant for every time step while
the spatial changes with the distance of each well from the river bed. Then, the space-
time Residual Kriging (RK) method (7.56) is applied as it combines a trend function

for the data, obtained by an appropriate model, with the interpolation of the residuals.
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First, we need to determine the experimental semivariogram of the residuals.
Then we model the experimental semivariogram with separable and non-separable
theoretical spatiotemporal semivariogram functions. The simplest permissible space-
time covariance function is the product model, where the separate spatial and
temporal covariances models are simply multiplied while the semivariogram is
obtained from the spatiotemporal covariance (7.37). The product space-time
semivariogram model does not require the calculation of other parameters than only
of the chosen spatial and temporal models (7.38). The product model which can be
considered a special case of the product sum model is characteristic, as the whole
class, for it’s flexibility in modeling and in estimation (Gething et al. 2007, De laco
2010). The Matérn semivariogram model is chosen to simulate the spatial and
temporal continuity of the data with the separable product space-time model. The
purely spatial geostatistical analysis of groundwater level data in preceding chapters
shows that the Matérn describes well the spatial correlation of the observed data. In
particular it delivers similar cross validation estimates as the Power-law and the
Spartan semivariogram (Hristopulos 2002, Hristopulos and Elogne 2007). Preliminary
tests showed that spatiotemporal prediction results with the Power-law model are

inferior to those with the Matérn.

7.3.6.1 Separable product space-time semivariogram using Matérn model

The separable spatial and temporal Matérn semivariograms are presented

below (Matérn 1960):

o[ 2 () (I
7, ()=07|1- = K, | =] (7.62)
rm) & &
o2 (|| r
7, () =03 |1~ [Mj K, I : (7.63)
L(vy)\ & &
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o 2>0 is the variance, ¢ is the range parameter, v >0 is the smoothness parameter, I"is

the gamma function, K is the modified Bessel function of the second kind of order v,

r, is the space lag vector and r, is the time lag. These are inserted in the product

space-time semivariogram, (7.38).

7.3.6.2 Non-separable space-time semivariogram

The non-separable covariance model obtained from the diffusion equation is
also used herein because a) it is a covariance structure that has not been used before in
geo-hydrological data and b) it is similar in concept to Gneiting’s model that has
successfully been applied to wind data in the past. The space-time covariance
structure presented in equation (7.49) is used. According to equation (7.29), the

resulting semivariogram is:
2 2 A\2 2 2y
7, (rn)=03 1—(,8rt +1) exp(—rs /(,Brt +1)) : (7.64)

where 0< <1, 0<y <1 and n the number of spatial dimensions.

7.4 Results

7.4.1 Purely temporal analysis

Temporal groundwater level fluctuations modeling and analysis for the Mires
basin is aiming on the representation of the aquifer behavior locally or as a unit
through time in conjunction with physical quantities (precipitation, pumping) that
affects the aquifer’s water table level. Useful information therefore can be extracted
regarding correlations of mean annual groundwater level, annual precipitation and
annual pumping for future predictions.

The input data for the Mires basin include the time series of mean annual
groundwater level, the annual abstraction and the annual precipitation surplus. The
mean annual groundwater level is obtained from a spatial average over 10 boreholes
in the Mires basin from 1981 to 2003. At each location, usually bi-annual and often

bi-monthly data of groundwater level are averaged over each hydrological year (from
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October to October). Since 2003 the mean annual groundwater level is derived from
two telemetric stations that operate in the basin, while for the period 2003-2006° the
average also includes biannual measurements of four of the ten set boreholes (leading
to an average over six locations) due to selective measurements for this time period.
The data used for the model calibration span the interval from the hydrological year
1980-1981 to 2005-2006. The annual average of the groundwater level is used,
because only annual reliable values of the precipitation were available at this point.

The ARX model was used by (Bierkens et al. 2001) with a time step equal to
one day. Here we use a considerably larger time step (one year). Hence we use a
coarse-grained version of the original model based on the linearity of the equation. As
we show below, the model predictions are in good agreement with the data after the
initial period of parameter adaptation.

The groundwater level is predicted consecutively for the hydrological years
2006-2007, 2007-2008, 2008-2009 and 2009-2010. The model is ran separately to
predict the groundwater level for each year period as the number of time steps is small
(25) for optimal parameters prediction that represent the process accurately. Therefore
each time the model is ran; the optimal parameters of the system at the last time step
are calculated. Based on these parameters the next period prediction regarding
precipitation surplus and pumping estimate is provided. For every validated period the
groundwater level is added consecutively in the model in order to test the next
period’s prediction accuracy. Therefore the system for each tested time period is
updating the optimal parameters.

We have added as opposed to the initial model that the precipitation surplus is
only used as an exogenous variable (Bierkens et al. 2001), a term proportional to the
annual abstraction rate (7.7). The model parameters determined using the Kalman
filter without and with pumping terms are presented in Table 7.1 and Table 7.2. The
average groundwater levels and the annual precipitation and abstraction rates for the
above time periods are known. Therefore, the groundwater levels predicted by the
model can be validated against the real values as shown in Table 7.3 and Table 7.4.
As shown in Figure 7.3 and Figure 7.4 the agreement between predictions and
measurements improves as more data are processed. The parameters of the last

validation period are considered optimal for the process based on the available data

® wet period (October to April) only for the hydrological year 2005-2006)
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and can be used for future predictions. In order to test their efficiency they are
inserted as initial parameters in the ARX model. From Figure 7.5 it can be observed
that the model’s adaption is faster and better.

The actual evapotranspiration is a key variable for the model, because it enters
in the calculation of the precipitation surplus. According to the regional department of

water recourses management (Department of Water Resources Management 2000),
the mean annual actual evapotranspiration E[P*(tk)] on the island of Crete is 70% of

the mean annual precipitation, while in low elevation areas, less than 300 meters
above sea level, it is 75%. The mean annual actual evapotranspiration of the Mesara
valley is estimated at 65% of the mean annual precipitation (Croke et al. 2000).
However the Mires basin is only a part of the Mesara catchment, and its elevation is
less than 300 meters above sea level. Therefore we consider three different values of
mean annual actual evapotranspiration in the model, for which we compare the
predicted groundwater levels. The 75% evapotranspiration level leads to the most

accurate prediction.

Table 7.1 ARX parameters, determined from Kalman filter approach, with Precipitation Surplus data
input for each consecutive run.

Year a b c
2006-2007 0.3846 0.0181 0.0049
2007-2008 0.3735 0.0328 0.0050
2008-2009 0.3704 0.0458 0.0049
2009-2010 0.3704 0.0490 0.0049

Table 7.2 ARX parameters, determined from Kalman filter approach, with Precipitation Surplus &
Pumping data inputs for each consecutive run.

Year a b d c
2006-2007 0.3900 0.0216 -0.0182 0.0049
2007-2008 0.3766 0.0360 -0.0153 0.0050
2008-2009 0.3754 0.0479 -0.0197 0.0049
2009-2010 0.3756 0.0503 -0.0205 0.0049
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Figure 7.3 ARX model results using precipitation surplus as exogenous variable. Red crosses denote
the predicted values.
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Figure 7.4 ARX model results using precipitation surplus and pumping rate as exogenous variables.
Red crosses denote the predicted values.
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Figure 7.5 ARX model results using precipitation surplus and pumping rate as exogenous variables.
Red circles denote the calibration results using as initial parameters the optimal calculated from the last
step during the validation process, Figure 7.4 (a=0.3756, b=0.0503, d-0.0205, ¢=0.0049).

Table 7.3 Temporal Validation Results-Absolute Error (AE), Absolute Relative Error (ARE) - ARX
with Precipitation Surplus for each consecutive run.

Year 2006-2007 2007-2008 2008-2009 2009-2010
AE (m) 1.25 175 0.51 0.40
ARE 0.125 0.16 0.04 0.02

Table 7.4 Temporal Validation Results-Absolute Error (AE), Absolute Relative Error (ARE) - ARX
with Precipitation Surplus & Pumping for each consecutive run.

Year 2006-2007 2007-2008 2008-2009 2009-2010
AE (m) 1.25 1.62 0.37 0.40
ARE 0.125 0.157 0.03 0.02

7.4.2 Spatiotemporal analysis

Spatiotemporal geostatistical analysis of Mires basin groundwater level data is
applied in order to identify the spatiotemporal behavior of the aquifer since 1981 and
to undertake future predictions based on the space-time data correlations.

A spatiotemporal trend model is developed to approximate the S/TRF
spatiotemporal trend. Fitting of a spatiotemporal trend provides “trend-free” data

(residuals) which yield more stable semivariograms as the semivariogram is reaching
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easier a sill and the intrinsic hypothesis is satisfied (stationary mean value and
semivariance) (Journel and Huijbregts 1978).

The spatiotemporal trend approximation (7.59) involves the separate
estimation of temporal and spatial trend component. For the first the exponentially
weighted moving average filter (7.57) is used on the mean bi-annual groundwater
level from the 10 available wells. This trend model can provide bi-annual estimates of
future groundwater level trends based on the previous period trend value and the
groundwater level of the desired period. The trend fit is presented in Figure 7.6 and
the optimal weight 0 <« <1 of the temporal model is calculated equal to 0.6. This
value was determined from the temporal trend fitting process and it is the one that
under STRK prediction provided the most accurate results. Then the trend values are
divided with the temporal trend of the reference year, obtained from the same
function, to produce coefficients without units. This is necessary in order the
spatiotemporal trend to retain units in meters. The spatial groundwater level trend
approximation involves the closest distance of the wells from the river traversing the

basin.
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Figure 7.6 Exponentially weighted moving average filter fit on mean bi-annual groundwater level
measurements.

The space-time experimental semivariogram is determined from the biannual

(wet and dry period) groundwater level residuals (after trend removal) time series
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between the years 1981 and 2003 at the ten sampling stations. Validation of the STRK
estimates is performed for six wells, Figure 7.7, where biannual observations (wet and
dry period) are available for the period 2003-2004 to 2005-2006 (wet period). The
period after the hydrological year 2002-2003 is characterized by significant
groundwater level increase in the wet period of 2003-2004 and by considerable
groundwater level drop in the dry period of 2004-2005. Therefore we decided to
assess the reliability of the space-time model (STRK) and estimated space-time
semivariograms at these periods.

The theoretical space-time semivariogram model fitting on the experimental
space-time semivariogram obtained from the observed data residuals is presented in

Figure 7.8 and Figure 7.9. The respective parameters for the two semiovariogram

types are azz =397, = 0.0334 and y = 0.0452 for the non-separable space-time
semivariogram type and azz =46.57, &= 0.25 (= 3km), v;=0.7103, &, =0.1570 (= 2
months), v, = 1.5138 and nugget nariance ¢ = 1.8336 for the separable type (product

model) using the Matérn function. For the latter, the nugget terms is inserted in order

to better fit to the experimental semivariogram.
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Figure 7.7 Topographic map showing the locations of the 10 monitored wells (triangles) in Mires basin
along with the corresponding surface elevation and the temporary river path. With green color the wells
monitored for the period 2003-2006 are presented.
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Figure 7.8 Space time non-separable semivariogram fit. The upper space limit in real units is equal to
4Km and the time limit 6.5 years.
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Figure 7.9 Space-time product semivariogram fit using the Matérn structure. The upper space limit in
real units is equal to 4Km and the time limit 6.5 years.
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The prediction (extrapolation) involves STRK application using the
appropriate semivariogram to estimate the residuals at the specified location and time.
The corresponding trend is calculated from equation (7.59) where the spatial trend in
a new location involves the calculation of its closest distance and the application of
function (7.58). The temporal trend is determined using the adequate period’s mean
groundwater level applying function (7.57) and dividing over the temporal trend of
the reference year. The product of these functions delivers the spatiotemporal trend at
the desired location-time, which is then added to the predicted residual to provide the
groundwater level estimate.

The validation results for the absolute estimation error (AE)’ are presented in
Table 7.5 and Table 7.6. The first table presents the groundwater levels’ estimation
error for the wet period of hydrological year 2003-2004 using separable and non-
separable semivariogram while the second for the dry period of hydrological year
2004-2005. As it can be seen the non-separable semivariogram delivers more accurate
estimates compared to the separable.

Table 7.5 Absolute Error (AE) of STRK estimates for the wet period of highest groundwater level
increase after 2003 (i.e. the wet period 2003-2004).

a) using the non-separable semivariogram model (7.64)

Well No AE (m)
Gl 3.56
G2 4.02
G3 2.72
G4 2.21
G5 2.32
G6 4.32

b) using the separable semivariogram model type (product model) with the Matérn function

Well No AE (m)
Gl 5.95
G2 5.80
G3 6.14
G4 4.87
G5 3.00
G6 5.27

" AE error is only used as validation metric because we intent to present the physical quantity of the

error regarding predictions.
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Table 7.6 Absolute Error (AE) of STRK estimations for the dry period of highest groundwater level
drop (i.e. the dry period 2004-2005).

a) using the non-separable semivariogram model (7.64)

Well No AE (m)
Gl 3.69
G2 6.26
G3 3.57
G4 2.88
G5 3.11
G6 4.90

¢) using the separable semivariogram model type (product model) with the Matérn function

Well No AE (m)
Gl 6.35
G2 7.87
G3 7.07
G4 2.59
G5 3.76
G6 5.83

After the hydrological year 2005-2006, the average of the biannual estimates
(i.e. the estimated mean annual groundwater level) is compared with the groundwater
level in the basin reported by the local authorities (based on the average of the two
remotely sensed holes) and with the ARX predictions. The temporal model, as shown
above gives very good agreement with the reported values (period 2007-2010). The
AE of the estimates obtained with the optimal® non-separable space-time
semivariogram is presented in Table 7.7.

Interpolation maps are derived using STRK with the optimal non-separable
spatiotemporal semivariogram structure for the wet period of 2003-2004 and the dry
period of 2004-2005. For these periods, the accuracy of separable and non-separable
semivariograms is tested (Table 7.5 and Table 7.6). The contour maps of groundwater
level spatial variability in physical space are shown in Figure 7.10 and Figure 7.11.
The maps are constructed using estimates only at points inside the convex hull of the

measurement locations.

& The semivariogram model that delivers the most accurate estimations
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Figure 7.10 Map of estimated groundwater level in the Mires basin using STRK (7.56), the non-
separable space-time semivariogram (7.64) on the residuals and spatiotemporal trend removal (7.59)
(wet period of 2003-2004 hydrological year).
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Figure 7.11 Map of estimated groundwater level in the Mires basin using STRK (7.56), the non-
separable space-time semivariogram (7.64) on the residuals and spatiotemporal trend removal (7.59)
(dry period of 2004-2005 hydrological year).
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Table 7.7 Absolute Error (AE) of STRK estimation error of prediction average using the non-separable
semivariogram model (7.64)

Year AE (m)
2005-2006 7.35
2006-2007 4.55
2007-2008 6.75
2008-2009 8.60
2009-2010 9.00

7.5 Discussion

The scope of this thesis’s chapter is to model spatiotemporally the Mires basin
aquifer response since 1981. Reliable modeling provides the ground for
spatiotemporal future groundwater level fluctuations prediction with the highest
possible accuracy.

The ARX model (7.7) used for the purely temporal mean annual groundwater
level modeling delivers satisfactory predictions with low validation errors (Table 7.3,
Table 7.4). We include in the ARX model training period the recent extreme
groundwater level fluctuations in order to train the model more efficiently. As
observed in Figure 7.3 and Figure 7.4 the accuracy of the estimates improves as more
data are processed by the method while the recent extremes are captured reasonably
by the model. The model is trained for the period 1981-2006 while the period 2007-
2010 is used as the validating period. The ARX model is embedded in a discrete-time
Kalman filter, trained gradually until the previous year of prediction, calculating

reliable model parameters and producing the reliable ARX estimations presented.

According to equation (7.7) the mean annual groundwater level value Z(t,)

estimation at time t, depends on the previous year measured groundwater level value

Z(t,_,) reliable estimations of rainfall and/or abstraction volume for the specified
prediction year period t, and the estimated parameters that describe the aquifer

dynamic response and are calculated during the calibration process. For each value
added in the data set the optimal parameters are gradually updated. The validation

results show that the predicted value of each year forward form 2006 is very well
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estimated and it can be substituted to the dataset as Z(t,_;) in order to predict the

parameters and the next year’s level.

ARX estimates are reliable only for one year forward, as long term or even
short term predictions of rainfall intensity involve high uncertainty. In addition the
abstraction volume rate is also uncertain, because it depends on anthropogenic
activities that cannot be predicted accurately for longer than a year. The tables of
results (Table 7.3, Table 7.4) and the figures (Figure 7.3, Figure 7.4) show that the
incorporation of the abstraction rate in equation (7.7) improves the estimates;
however, the improvement is not significant meaning that the driving variable for
accurate estimation is the precipitation surplus. Nevertheless, so Figure 7.3 and Figure
7.4 as mean square prediction error (7.1) show that after initial fluctuations the
adaptation of the ARX model that includes in addition to precipitation surplus the

abstraction rate is better, o

el

. =7.83 m, than the one including the precipitation

surplus only o, =8.06 m. Thus, the abstraction rate is significant for the modeling of

the groundwater level temporal variability.

A novel goal of this study is to assess the use of a recently proposed
covariance function extracted from a physical differential equation such as the
diffusion equation in real data; the aim of this test is more efficient spatiotemporal
interpolation results. The non-separable space-time covariance structure tested herein
delivers better estimates than the classic space-time product covariance function. The
space-time semivariogram is calculated for the years 1981 to 2003, from the
calculated residuals of the biannual groundwater level data of 10 wells. STRK
estimates with non-separable semivariogram model are significantly more accurate
for the year of highest groundwater level increase (74%) and for the year of the
highest drop (44%). Similarly, the mean annual groundwater level (average of the
biannual estimations) for 2006 to 2010 is more accurate using the non-separable
space-time semivariogram in the STRK model.

For the hydrological year 2005-2006 only wet period measurements are
available. However, because of the unprecedented average level decline in this
hydrological year a high estimation error is obtained for this period and for the
hydrological year average. A common observation for the prediction averages after
2005-2006 is that beyond the temporal limit (wet period of 2003) of the space-time
semivariogram the estimation accuracy decreases consecutively (Table 7.7). This
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means that the semivariogram is reliable only for short-time periodical estimations.
The spatial correlation length is determined after the semivariogram fitting equal to
almost 3km and the temporal length equal to almost 2 months. As shown herein the
predictions of the wet period 2003-2004 which is the closer prediction period so to
that temporal correlation length as to semivariogram temporal limit were the most
accurate compared to the other periods tested. To predict future values reliably more
temporal and spatial data are required. However the selected spatiotemporal trend
simulation model in conjunction with the non-separable semivariogram function and
STRK estimator provide reliable predictions, even for the two periods with the most
intense fluctuations, wet period of 2003-2004 and dry period of 2004-2005
respectively. The potential expansion of the data set will increase the model’s
reliability and credibility. Tests with more space-time semivariogram structures can
also provide a more general comparison of non-separable models and separable ones.
The ARX model can be used in combination with a spatiotemporal
geostatistical model to provide short-term (bi-annual) future predictions of the
groundwater level spatial variability. A seasonal extension of the ARX annual average
model can yield reliable estimates of the seasonal groundwater level that can be used
in the exponentially weighted average filter to calculate the temporal trend value at a
specific future time. Then, after applying equation (7.59), the spatiotemporal trend is
determined for the desired location and time. Residuals are estimated for the same
location and time using STOK and then added to the trend estimation. Reliable ARX
predictions involve mainly reliable future rainfall estimations from a climate model or
from a statistical approach. Improvement of both ARX and STRK models predictions
should involve more spatiotemporal data on shorter time scales and knowledge of the

pumping activity of the unauthorized wells operating in the basin.
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8. Conclusions and future work

8.1 Conclusions

This thesis presents an integrated approach of interpolating groundwater level spatial
and/or temporal variability in sparsely monitored basins. The performed research
intergrades initial data exploratory analysis, anisotropy estimation methodologies,
common and new data normalization transformation techniques, spatial data
interpolation using well known and newly established geostatistical methods based on
kriging essence, purely temporal groundwater level fluctuations modeling and
spatiotemporal geostatistical analysis and interpolation of groundwater level data.

Innovative geostatistical tools and methodologies developed in this thesis
improve the accuracy of spatiotemporal interpolation of groundwater level data. The
accurate representation of groundwater spatiotemporal variability in a basin is
important for management purposes and for sound groundwater modeling. The
analytical methodologies and tools introduced in this thesis contribute to applied
geostatistical research. We apply these methods and tools to real data. In addition our
analyses support the statement that there is not a globally best interpolation method.
The performance, efficiency and suitability of the methods depend on the statistical
properties of the dataset (e.g. skewness, kurtosis, trends, outliers) and on the specific
validation measures discussed in chapter 2.6.

This thesis was initially motivated by the dramatic decrease of groundwater
levels in Mesara valley in recent years due to overexploitation. In light of this
development and the expected adverse effects of climate change on the basin’s water
resources, accurate spatial modeling of the groundwater level variation is needed for
two reasons: a) to identify “vulnerable” locations where an integrated groundwater
resources management plan should focus and b) to provide accurate information for
the calibration of numerical groundwater flow models for the basin, e.g. for the
representation of initial groundwater level conditions. Modflow code interfaces
(Visual, GMS, Groundwater Vistas) for groundwater level modeling integrate in the
process geostatistical approaches for data interpolation but without providing a sense

of quality of the geostatistical methods interpolation accuracy. For example transient
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flow modeling requires accurate initial groundwater level conditions for efficient
modeling results.

This thesis present a comparison of stochastic (Ordinary Kriging-OK,
Universal Kriging-UK, Delaunay Kriging-DK) and deterministic (Inverse Distance
Weight-IDW, Minimum Curvature-MC) interpolation methods for groundwater level
monitoring in sparsely gauged areas. For the hydraulic head data from Mires basin
(Crete, Grecce), we established that the OK and UK interpolation methods overall
perform better with respect to various cross validation measures, while DK and IDW
show similar performance. However, no method is significantly superior to the others
as the estimation error metrics are similar Table 4.3. The isolevel contours generated
by DK and especially by IDW are rough contrary to smooth representations from OK,
UK and MC. The stochastic methods provide guidance for the location of additional
monitoring sites, based on the values of the kriging variance. Since the size of the
Mires basin dataset is relatively small, computational limitations are irrelevant. For
large datasets, computational time and memory usage for each method should also be
investigated.

The advantages of the stochastic interpolation methods performance
corresponds to the assessment of the specific dataset. However as it has also been
shown in previous works, the stochastic methods perform generally better than the
deterministic. Rough contours are a characteristic of the IDW method as also are the
smooth contours delivered by the MC method. DK is expected to have rough contours
because it is based on a small number of neighbors. OK and UK generally convey
smooth contours. This happens because the estimates are based on correlated
observations within a neighborhood.

The three-parameter Spartan semivariogram model is herein applied for the
first time to hydrological data and yields the optimal cross validation performance
among the investigated models. In addition, it delivers the estimates with the lowest
standard deviation. The Spartan model is non-differentiable. We interpret this
property as the result of a deposition-removal process that leads to an fBm-like
behavior of the groundwater level surface. We also show that DK provides the best
cross-validation estimate for the extreme low value, due to the localized nature of DK
interpolation.

Subsequently this thesis presents non-linear data normalizing methods for the

improvement of kriging groundwater levels. The application field is the Mires basin
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on the island of Crete (Greece). TGK®, GA™-OK, Box-Cox-OK and MBC:-OK,
using the Spartan semivariogram model improve the mean absolute estimation error
(MAE) compared to OK. For the first three methodologies the other estimation
measures considered (RMSE, bias, MARE, R) are similar to those of OK, except for
their inferior bias error. However, the MBC-OK also improves the RMSE, delivers
the same low bias error and identical MARE and R. Overall, they deliver the most
accurate estimation measures compared to the other methodologies tested and overall
better than those of OK. The MBC method is applicable to both positive and negative
values in contrast to the Box-Cox method that can be applied only to positive values.
Normalization methods in general show that they can improve the effectiveness of the
kriging interpolation method by reducing the estimation error compared to OK, thus
leading to more accurate predictions. In this study, the normalization method (MBC)
and the recently proposed spatial semivariogram structure (Spartan) are applied with
OK for groundwater level interpolation. They obtain overall the most accurate cross-
validation results while; cross-validation estimates and interpolation estimates satisfy
a wide range of statistical criteria. The correlation coefficient of the cross-validation
estimates vs. the true values is equal to 0.91, the distribution of errors is symmetric
with a low bias equal to 0.02 masl, the plot of cross-validation errors vs. estimates is
centered about zero error, satisfying the ‘“conditional unbiasedness” property,
measurements histogram reproduction from cross validation estimates and
experimental semivariogram reproduction from the interpolation estimates.

As this thesis focuses on the spatial analysis of groundwater level in sparsely
monitored basins, two novel spatial trend models are proposed for groundwater level
interpolation. In addition the Covariance Hessian ldentity method for anisotropy
estimation is for the first time applied to hydrological data. We establish that besides
the interpolation methodologies tested previously two optimal approaches based on
Residual Kriging-RK significantly improves groundwater level interpolation. The first
method uses a novel trend model that incorporates, in addition to smoothed surface
elevation, the shortest distance of the monitoring locations from the temporary river

traversing the basin. The second trend model uses an analytical equation specifying

® Trans-Gaussian Kriging
1% Gaussian Anamorphosis
! Modified Box-Cox
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the head for a system of multiple pumping wells. The combination of the proposed
trend models and RK implemented with the non-differentiable Spartan semivariogram
and the new MBC data normalization method leads to optimal cross validation results.
The optimal spatial models significantly improve the cross validation measures
compared to other models tested. In particular, RK interpolation with the trend models
T-RD-DEM-UGA and T-MW reduces the prediction error of the lowest value (9.4
masl) by 20% and 29%, respectively, compared to the standard OK prediction. At the
same time, the highest level of 62 masl is accurately estimated. The Spartan
semivariogram provides the most accurate results from all the spatial models
investigated in this thesis, while the stochastic methods overall perform better than the

deterministic ones. An outline of the methods performance is presented in Table 8.1.

Table 8.1 Cross validation measures for the stochastic and deterministic interpolation methods
investigated. Results obtained with the “optimal” (in terms of cross validation measures)
semivariogram model are presented. Optimal values are emphasized.

Method Semi- MAE BIAS MARE RMSE R
variogram (masl) (masl) (masl)
MC 4.01 0.10 0.17 6.18 0.87
IDW 3.45 -0.17 0.15 5.58 0.89
DK-SP SP 3.48 0.10 0.15 5.47 0.89
UK-SP SP 3.40 0.13 0.14 5.23 0.91
OK-SP SP 3.37 0.02 0.14 5.15 0.91
Box-Cox-OK SP 3.30 0.10 0.14 5.14 0.91
MBC-OK SP 3.30 0.02 0.14 5.12 0.91
GA-OK SP 3.30 -0.3 0.14 5.14 0.90
TGK SP 3.28 -0.1 0.14 5.14 0.91
T-DEM SP 3.32 0.07 0.15 5.20 0.90
MBC & RK
T-DEM-UGA SP 3.21 0.03 0.14 5.08 0.90
MBC & RK
T-RD SP 3.11 0.08 0.12 4.86 0.92
MBC & RK
T-DEM-UGA-RD SP 3.02 0.07 0.12 4.79 0.92
MBC & RK
T-MW SP 2.75 0.07 0.11 4.57 0.93
MBC & RK

S,, =1.85 (masl)

Low Bias and the highest possible statistical accuracy (MARE, RMSE) are the
objectives in comparing different methods performance apart from the MAE.
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Comparing the deterministic with the stochastic methods the results can be
characterized statistically different. The most efficient deterministic method (IDW),
delivers clearly inferior statistical measures compared to the most efficient stochastic
method (RK-T-MW). Comparing the stochastic methods efficiency from the least
accurate to the most accurate consecutively, the results are not clearly statistically
different for this sample. Most of the spatial models deliver overall close results.
However, an important difference exists between the most accurate stochastic
interpolation method (OK) and the most accurate spatial model (RK-T-MW) for this
dataset. An accuracy improvement of around 60 cm in MAE, 3% in MARE, around
60 cm in RMSE, similar bias and slightly improved correlation coefficient can be
characterized statistically different and significant for groundwater modeling
approaches or water resources management plans.

The optimal approach of all the spatial methods tested is based on RK,
includes a trend component based on the generalized Thiem’s equation for multiple
wells, and employ as well as two newly established geostatistical tools: a) the flexible
Spartan semivariogram family and b) the MBC data normalization transformation.
Figure 8.1 presents the most accurate groundwater level spatial variability according
to the statistical metrics evaluated.

Finally this thesis also instigates the spatiotemporal and temporal-only
modeling of groundwater level in a sparsely monitored basin. We use the ARX time-
series model to relate the groundwater level to precipitation surplus and/or the
abstraction rate. The ARX temporal model for the groundwater level is embedded in a
Kalman filter to estimate the model parameters. After initial considerable fluctuations,
the model adapts well with the level’s temporal evolution and provides very accurate
estimates. Based on the results of the predicted groundwater level, the ARX model
estimates become progressively more accurate, as more data are incorporated and the
model parameters are recursively refined during each update. The recursive nature of
the parameter inference procedure implies that the model becomes more accurate as
the length of the time series increases. As shown in Figure 7.3 and Figure 7.4, the
groundwater level in the Mires basin has a definite declining trend. The model
captures this trend, adapts well with the extremes and accurately predicts the
groundwater level for the time periods 2007-2010. A reliable prediction of future
groundwater levels for the Mires basin can lead to a scientifically sound management
plan for the exploitation of the groundwater resources in the area. Meaning that
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different scenarios can be examined regarding pumping activity and precipitation
trends and also by taking account the real water needs of the area to control the

pumping rates especially in years that groundwater level is expected to drop.

15 20 25 30
Figure 8.1 Map of estimated groundwater level in the Mires basin using RK-T-MW spatial model,
adapted on the real basin coordinates and location in the valley.

The spatiotemporal groundwater level modeling involves the spatiotemporal
trend approximation using an innovative approach. The temporal and the spatial trend
are separately determined and then are combined to determine the spatiotemporal
trend of the time series data. The combination involves first the multiplication of the
temporal and of the spatial trend. Then the trend values are divided with the temporal
trend of the reference year to produce coefficients without units which is necessary in
order spatiotemporal trend to retain the assessed data units (meters). The product of
temporal and spatial trend components is not new; however the use of the
exponentially weighted moving average filter for the temporal trend and the use of a
spatial component based on the distance from the riverbed are new elements. In
addition the spatiotemporal approach involves the application of a spatiotemporal
covariance function that is based on the diffusion equation. The non-separable
spatiotemporal semivariogram structure obtained fits very well the experimental
space-time semivariogram of the residuals. The STRK estimates based on this
semivariogram are more accurate than those based on separable, product-type

semivariograms. Figure 8.2 and Figure 8.3 present the groundwater level spatial
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variability, obtained with the non-separable spatiotemporal semivariogram model, in
Mires basin for the hydrological periods 2003-2004 (wet) and 2004-2005 (dry)
adapted on the real basin coordinates and topographical location. These two periods
are characteristic of the dataset as significant groundwater level increase occurs in the
wet period of 2003-2004 and considerable groundwater level drop in the dry period of
2004-2005.

The non-separable semivariogram is shown to provide a reliable alternative in
spatiotemporal semivariogram modeling. Another advantage is that it has fewer
parameters (three) compared to the product of Matérn functions. Reliable STRK
estimates are crucial for groundwater recourses management as they provide
information for groundwater level spatiotemporal variability. The potential
combination with the ARX model can lead to an integrated approach for stochastic

spatiotemporal modeling and prediction of groundwater level in the basin.
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Figure 8.2 Map of estimated groundwater level in the Mires basin using STRK and the non-separable
space-time semivariogram (wet period of 2003-2004 hydrological year) adapted on the real basin
coordinates and location in the valley.
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Figure 8.3 Map of estimated groundwater level in the Mires basin using STRK and the non-separable
space-time semivariogram (dry period of 2004-2005 hydrological year) adapted on the real basin
coordinates and location in the valley.

8.2 Future work and perspectives

This thesis introduces new geostatistical tools and ideas for space-time
mapping which contribute in applied geostatistics. In this section some ideas for
future research are presented that emerged after the conclusion of the thesis.

A software tool can be developed based on the code written for this thesis.
This is a Graphical User Interface (GUI) in Matlab® that can give easy access to all
the methodologies introduced and applied in this thesis. A GUI for isotropic and
anisotropic semivariogram fitting and parameters calculation has been already
developed (Figure 8.4). Thus the application of the complex space-time models could
become user friendly and straightforward for non-expert users.

The MBC data normalization method introduced in this thesis is optimal for
the specific case study. Application of the method in association with kriging
methodology to a wide range of datasets will lead to safer general conclusions for the
suggested method’s efficiency. Further investigation of GA normalization method on

the hydraulic head fluctuations derived by the spatial trend models presented in
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chapter 6 may lead to interesting conclusions for the method’s efficiency on residuals

data that deal with negative values.

} Semivariogram Parameters GUI -0 x|

Ilgas num ber
ag range

tolerance

number of directions

pnes st

direction tolerance

initial direction

ps

(] 8 | Cancel |

Figure 8.4 Graphical User Interface (GUI) in Matlab® for isotropic and anisotropic semivariogram
fitting.

Further investigation is needed for the spatiotemporal trend variance due to the
complex nature of its calculation. The variance of the spatial trend component is
based on the predictors at the prediction location (i.e. shorter distance from the river)
but the variance of the exponential weighted moving average filter for the temporal
trend and the total trend variance of the spatiotemporal trend function need further
investigation. This is necessary in order to calculate STRK estimations variance.

A more extensive comparison of separable and non-separable spatiotemporal
semivariograms interpolation efficiency is also necessary. Application of additional
separable and non-separable space-time semivariogram functions (Kolovos et al.
2004) should be tested. In addition new models based on SSRF’s (Hristopulos 2003b)
can be developed and verified.

Incorporation of a climate change or statistical stochastic (gamma distribution)
model for the precipitation estimations in the ARX model, can lead to improved
temporal groundwater level predictions depending on the models’ reliability. If
groundwater level time series become available for individual wells of the basin, then

the ARX model application can be extended for local predictions.
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Finally, enrichment of the available dataset with more space-time groundwater
level data (additional measurements locations as well as more frequent and recent
measurements) could lead to more representative spatiotemporal semivariograms.
Consequently, more accurate estimates and reliable predictions of the spatial and
temporal distribution of the basin’s groundwater level or fluctuations (residuals) can
be expected. Additionally, a seasonal extension of the ARX model could provide the
spatiotemporal trend model with information on the seasonal average of groundwater

level and therefore to spatiotemporal trend predictions.
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