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Abstract

Mission critical applications rely on both hardware- and software-approaches for fault-

tolerance. With the adoption of multiprocessor systems on chip (MPSoCs), processor fault-

tolerance with modular redundancy has become a major issue, cost and performance wise.

In this thesis first , we augment a task-parallel runtime system with support for transparent

checkpoints of task data that may be written during task execution and seamlessly rerun

failed tasks. The system can recover from transient errors during task execution within a

single core by rerunning the failed task, as well as from permanent errors that disable a

worker core by redistributing work among remaining cores. We have evaluated our im-

plementation using six benchmarks and found that checkpointing incurs a performance

overhead of 8% on average, mainly due to the cost of memory copies, and only a negligi-

ble space overhead due to the recycling of checkpoint memory. Then, in order to protect

the workers runtime system beyond the execution stage, we present ASGUARDIAN, a

lightweight hardware mechanism based on a task-oriented model for general programma-

bility. The ASGUARDIAN features both store-and-forward and cut-through capabilities

to reliably transfer task descriptions and arguments between main memory and available

worker cores. It also isolates the workers from accessing the main memory. A hardware

prototype has been implemented on a Xilinx ML605 FPGA board using the widely-used

ARM AMBA protocol. Introducing the ASGUARDIAN reliability features results in a

8% average overhead on hardware resources for a configuration with four Microblaze

cores. The performance overhead for the store-and-forward and cut-through implemen-

tations were 2.3x and 1.2x respectively against an unprotected, shared memory system.

When compared against an -unprotected- scratchpad-based memory system, the store-

and-forward version showed an overhead of 1.7x, while the cut-through version showed

a speedup of 6% on average.
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Chapter 1

Introduction

System robustness and graceful degradation are becoming increasingly challenging with

the explosive adoption of multi- and many-core systems in embedded and mission-critical

applications. In addition, failure probabilities are bound to increase with the added cores

and complexity of embedded systems [43]. Task-based programming models are becom-

ing popular in the scientific community with the rise of OpenMP v4.0 [8, 12] and similar

runtime systems [48], [17], [30], because of their ability to express parallelism at a higher

abstraction level than thread programming.Tasks are defined as units of work that perform

specific operations and typically they are able to run in parallel. With the use of tasks,

programmers are able to utilize hardware resources with greater efficiency but without the

need to hardwire threads or develop the specifics of the runtime. The runtime system and

the compiler are responsible for mapping tasks to the hardware resources and perform the

required synchronization and dependency detection. Although these systems have been

developed with performance in mind, reliability remains an outstanding issue in embedded

multi-core platforms.

Traditional fault-tolerance methods are based on software or hardware modular redun-

dancy, which introduce overheads in terms of complexity and energy consumption [18].

Many proposed software solutions rely on costly thread or process duplication. Numerous
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software- and hardware-based reliability approaches have been proposed [24, 25, 54, 50,

40, 52, 41, 36, 11, 4, 35]. Checkpointing provides fault tolerance by creating snapshots of

a systems state so in case of failure the system is able to recover. It is not straightforward,

however, when a parallel system is at a consistent state, as all threads must synchronize to

ensure the whole system is safe to checkpoint. This reduces the available parallelism, as

all threads must wait for a global checkpoint. Perthread checkpointing solves this problem,

but it may require the programmer to reason about thread-local and thread-shared data, rea-

son about the invariants of the program data structures and keep track of thread-changes

transactionally. This makes the checkpointing of thread programs tedious and error prone.

Algorithm 1 Example unprotected pseudocode of the runtime of the workers.
1: while workload 6= finished do
2: localTaskID ← findNextTaskID()
3: localTask ← transferTask(localTaskID)
4: compute(localTask)
5: transferCompletedTask(localTask)
6: updateRuntime()
7: end while

Algorithm 2 Example pseudocode of the runtime of the workers with RelyBDT.
while workload 6= finished do

localTaskID ← findNextTaskID()
localTask ← transferTask(localTaskID)
checkpointInOutArgs(localTask)
compute(localTask)
while errorDetected do

restoreCheckpoint(localTask)
compute(localTask)

end while
transferBackCompletedTask(localTask)
updateRuntime()

end while

Algorithm 1 presents an example pseudocode of an unprotected runtime system with

each worker executing its workload. As long as there are still tasks to be computed the

worker will identify the next available task, compute the result and transfer it back updating
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the runtime. We separate the operations of the worker in two phases. The execution phase

where the worker performs the computation of the task and the runtime phase where the

worker transfers tasks and updates the shared structures. The worker may fail during the

execution of each phase causing a computation to fail, compute the wrong result, corrupt

shared structures or render the system unable to perform any operation.

This thesis presents RelyBDT and ASGUARDIAN; combined provide a complete reli-

able solution for task based programs protecting both the runtime stages and the execution

stages of the system.

First we introduce RelyBDT, a fault-tolerant runtime system for the reliable execution

of task-parallel programs. RelyBDT abstracts over checkpointing for the programmer by

performing transparent checkpointing of parallel tasks. RelyBDT recovers from transient

task faults by recomputing the faulted task, and from permanent core faults by rescheduling

the failed cores tasks to different cores. We have implemented RelyBDT as an extension of

BDDT [48], a deterministic task-parallel runtime system. Our evaluation of the RelyBDT

using six benchmarks found that checkpointing incurs a performance overhead of 7.93% on

average mainly due to the cost of memory copies, and only a negligible space overhead due

to the recycling of checkpoint memory. The pseudocode of the runtime system augmented

with RelyBDT is presented in algorithm 2. RelyBDT protects the computation stage by

creating local checkpoints of the arguments to be altered during the computation of the

task. In case of an error detection the checkpoint is restored and the task is recomputed.

Although RelyBDT provides sufficient coverage on a multi-core environment during

the execution stage, the worker runtime system remains vulnerable to errors. As a conse-

quence, there can be cases where, due to the transient and permanent errors occurrence,

an unreliable worker core may access prohibited memory areas and corrupt vital system

and runtime data. Hence, to establish reliable runtime transactions, it is very important

to employ a protected mechanism that provides memory address isolation (similar to the
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sandbox [34] protection mechanism found in many contemporary operating systems), by

allowing each worker to access only pre-specified memory areas.

Algorithm 3 Example pseudocode of the runtime of the workers with ASGUARDIAN.
while workload 6= finished do

localTask ← task request()
compute(localTask)
task complete()

end while

Algorithm 4 Example pseudocode of the runtime of the workers with RelyBDT and AS-
GUARDIAN.

while workload 6= finished do
localTask ← task request()
checkpointInOutArgs(localTask)
compute(localTask)
while errorDetected do

restoreCheckpoint(localTask)
compute(localTask)

end while
task complete()

end while

Towards this goal, we propose the ASGUARDIAN, a hardware mechanism that is able

to reliably handle the memory management and transfers needs of the runtime system. In

addition to protection, it imposes a minimal hardware resources overhead of 7.86% on av-

erage, and provides an average speedup of 6% when compared to an unreliable scratchpad-

based system. The pseudocode of the runtime system augmented with the ASGUARDIAN

is presented in algorithm 3. The ASGUARDIAN is responsible to identify the next task and

transfer it to the local memory of the worker. After the task computation is complete the

task is transfered back and the runtime gets updated from the ASGUARDIAN. Algorithm

4 highlights the pseudocode of runtime system with both RelyBDT and ASGUARDIAN.

The contributions of this thesis are the following:
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• We introduce RelyBDT, a fault-tolerant runtime system as an extention of the BDDT.

RelyBDT creates task checkpoints at runtime on a per worker fashion and is able to

recover from transient and permanent faults.

• We present the ASGUARDIAN and its microarchitecture; a novel hardware mech-

anism that abstracts away memory management and transfer needs of a task-based

runtime system, by providing accelerated and reliable transfer capabilities of task

descriptors and arguments (metadata) to worker cores with cut-through or store-and-

forward approaches.

• We describe the design and implementation of an Application Programming Interface

(API) that enhances the programmability and ease of use of the ASGUARDIAN.

• We evaluate RelyBDT on server-grade system using six benchmarks and multiple

workloads targeting different application requirements like options pricing, Fourier

transformations, linear algebra kernels and parallel sorting.

• We evaluate the ASGUARDIAN with a synthetic benchmark and a range of work-

loads on a bare-metal task based runtime system with multiple reliable and unreliable

task-transfer capabilities. Our experiments have been executed on FPGA-based MP-

SoC that integrates an ASGUARDIAN module with one master and three worker

cores.

The rest of this thesis is organized as follows. Chapter 2 presents traditional types

of errors and fault tolerance techniques. Chapter 3 describes related work. Chapter 4

introduces RelyBDT and its evaluation and Chapter 5 presents ASGUARDIAN and its

evaluation. Chapter 6 presents the Verification & Validation steps and features of RelyBDT

and the ASGUARDIAN, and Chapter 7 concludes this thesis.
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Chapter 2

Fault Tolerance

2.1 Outline

This chapter presents the traditional errors, fault tolerance methods, and models. Section

2.2 provides an overview of type of Errors and Data Corruption, Section 2.3 presents the

Fault Tolerance and Error Recovery on a system level, Section 2.4 describes Modular

Redundancy approaches, Section 2.5 presents Error Detection and Correction techniques

and Section 2.6 provides an overview of memory protection.

2.2 Errors and Data Corruption

Single Event Upsets (SEUs) are defined as the state change caused by radiation exposure,

cosmic rays (most common soft errors in DRAM cells), electrostatic discharge or other fac-

tors. The change of the systems state, from the transistor level to the application level, may

disrupt the correct operation of the system. Faults are separated in two basic categories,

(i) Transient faults that cause a computation to fail or compute the wrong result, while

the hardware remains operational and it suffices to restart the computation. (ii) Permanent

faults that cause hardware to fail and be unable to perform any computations.
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Data corruption is the category of errors relevant to the system’s data and may occur

during the reading, writing or processing stages. Data corruption is separated into two

types, undetected and detected errors. Detected errors are either permanent and cause ir-

reversible loss of data or are temporary and several mechanisms are able to detect and

recover/correct the dataset. Silent or undetected errors represent the worst case of errors

because of the inability of the system to perform any kind of operations to protect the data

or notify the user. As result, silent errors go unnoticed and may have devastating results.

In both cases the masking of errors, in the electrical, logical, or temporal level may

result in the error to not alter the output of the system. In the electrical level, the masking

occurs when the electrical disruption or noise does not alter the state of the transistor.

Logical masking occurs when the output of a logic gate is not altered from the error, e.g

when the inputs of a logic OR gate are both ’1’ and an SEU turns one of the two signal to

’0’ the output of the gate remains ’1’. In this case the error does not propagate to the output

of the system and the error is considered masked. Finally an error is temporally masked

when an error occurs in specific time frame which does not end up disrupting the result of

the system (e.g the output was used before the SEU).

2.3 Fault Tolerance and Error Recovery

Fault-tolerance is a characteristic of the system and represents the ability of the system

to handle disastrous events. The main goal of fault-tolerance is the graceful degradation

of the system where the system continues to operate without any loss in the quality-of-

service(QoS) or with reasonable loss of quality depending on the severity of the fault.

Error recovery represents the steps that a system has to perform in order to continue

operating correctly in case of an error. Roll-forward and roll-back are the two possible

methods to recover the system when an error is detected. Roll-forward tries to correct the

error without altering the state of the system. Roll-back transfers the system back to a
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Module A

Module B

Module C

Input
Voter

Output

Figure 2.1: Triple Modular Redundancy: By passing the input through three different mod-
ules that perform the same operation on the input and by passing the outputs to a voter; the
system is able to detect the correct output by choosing the most frequent output.

safe/correct state by using checkpoints. The main overhead of checkpointing is that the

system has to store enough information at different intervals in order to be able to recover

in case of errors. Finding such intervals may prove a difficult task especially when it comes

to parallel programs. Depending on the fault-tolerance level of the system both methods

can be utilized for different kind of errors.

2.4 Modular Redundancy

Modular redundancy is based on the assumption that the probability of the occurrence

of the same error in the same time in different modules is extremely low and as a result

the error will be detected. Dual Modular Redundancy (DMR) provides fault tolerance by

duplicating components. One way to use DMR is to have the extra component as a backup

and use it when the main component fails. A different approach is to use both components

in parallel in order to detect error and correct errors. Lockstep systems execute the same

operation in parallel and compare the results. The main drawback of DMR is that when an

error is detected the operation that caused the error has to be re-executed in order for the

system to correct the error. Triple Modular Redundancy alleviates this problem by using
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Module A

Module B
Input

Comparator
Error Detection

Figure 2.2: Dual Modular Redundancy: By passing the input through two different modules
that perform the same operation on the input and comparing the results the system is able
to detect when an error occurred but is not able to decide which of the two outputs is the
correct one.

three independent modules in parallel and a voting system. In that way the system is able to

compare the results and choose the correct outcome. While these methods provide a vital

solution to the issue of fault-tolerance the come a the cost of extra resources. Figures 2.1

and 2.2 provide an example of a TMR and a DMR system respectively.

A different approach is to use redundancy in time by executing the same set of instruc-

tions on the same hardware resources multiple times and compare the results. This method

eliminates the resources overhead and provides fault coverage for transient errors. Perma-

nent faults cannot be covered through redundancy in time because in case of a permanently

faulty unit, the results of each run will always be the same (with the same error) and as a

result the comparison cannot be trusted.

2.5 Error Detection and Correction

Interconnect and communication error detection utilizes information and coding theory to

detect and correct errors that occur during the transfer of data. Repetition codes, Check-

sums, Parity bits and CRCs are the most common techniques [16, 31, 32, 33]. Repetition

codes are based upon a predetermined coding scheme that sends the same block of data a

specified number of times. The received blocks are then compared against each other to
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1 0 0 1 0

1 1 0 1 1

0 0 0 0 1

1 0 0 1 0

1 0 0 1 1

Detected 

Error

Parity Check Fails

Parity 

Check 

Fails

Figure 2.3: Parity:In this table parity bits are inserted for each row and each column. Bits
in green boxes represent data bits and bits in gray boxes represent parity bits. The parity
bit is ’0’ for even number of ’0’ and odd otherwise. In the third row and second column an
example of error detection is presented where both parity checks fail.

detect errors. While repetition codes are simple to use are extremely inefficient. Checksum

is the arithmetic sum of a fixed word length and may include multiple other Error Detec-

tion and Correction techniques. Depending on the complexity of the checksum different

trade-offs between performance and protection arise. Parity bits are a simple method that

adds a parity bit to a fixed number of source bits based on the number of ’1’ or ’0’ in the

source bits. Parity bits can detect only single or odd number of errors. Advanced parity

bit techniques like horizontal redundancy checks add an extra layer of protection. An ex-

ample of the parity bit is shown in Figure 2.3. A commonly used hardware technique is

the Cyclic Redundancy Checks (CRCs) which is the combination of a single-burst-error-

detecting cyclic code and a non-secure hash function. CRCs are useful in detecting burst

errors because of their cyclic properties and are very easy to implement in hardware be-

cause of the shifting operations that take place.
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2.6 Memory Access Protection

Memory protection provides control over memory accesses and usually is part of the op-

erating system (OS). The main insight of the memory access protection mechanisms is to

protect memory locations to be accessed from processes that do not have the proper rights

and to not allow processes to access un-allocated memory sections. The result of these

mechanisms is to usually terminate the violating process. The most common memory pro-

tection methods are memory segmentation and paged virtual memory. Protection keys are

used in more advanced systems, like the Intel’s Itanium [27] and IBM’s System/360 archi-

tectures [3]. Memory segmentation is based upon dividing the memory into segments. A

memory location is characterized by a value that identifies the segment and an offset value

that identifies the offset within the segment. Paged virtual memory divides the memory

address space into blocks of equal size which are called pages. Special hardware, like the

Translation Lookaside Buffer, helps the the operating system in managing the pages and

the memory of the system. An application is unable to access pages that has not been ex-

plicitly allocated to it and a page fault is generated. Protection keys allocate a specified key

to a block of memory. In addition protection keys are given to each application, when a

memory access occurs the memory block key and the application key are validated in oder

to protect the memory of the system.
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Chapter 3

Related Work

3.1 Outline

This chapter provides an overview of the related work and is organizes as follows. Section

3.2 presents related work in Task Parallelism, Section 3.3 highligts related work in Soft-

ware Reliability and Checkpointing while Section 3.4 presents related work in Hardware

Reliability and Checkpointing. Finally Section 3.5 provides related work in Transactional

Memory.

3.2 Task Parallelism

Traditional task-parallel programming models try to abstract over threads and offer a

higher-level abstraction for expressing parallelism. Cilk [7] is a task based, shared mem-

ory, programming model that allows the programmer to specify recursively spawned

tasks, which are efficiently scheduled on threads using continuations. Sequoia [39] is

a programming language used in development of parallel, hierarchy-aware and portable

applications. In these models the programmer is responsible for synchronizing parallel

tasks to avoid address space aliasing and races. Figure 3.1 highlights an example of the

task based execution model.
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Figure 3.1: Task Model: Parallel Task I, II, III present example tasks with different blocks
of code to be executed. The master thread forks over multiple threads where each threads
executes a block of code.

Dependence analysis in task-based programming models has been shown to improve

performance of general purpose programs [49]. In these systems tasks define their effect

input, output or both (inout) on their arguments. The runtime then uses versioned hyper-

objects to track task argument dependencies and versioning of objects in order to increase

parallelism. To break anti-dependence and output dependencies a versioning mechanism

determines the view of an object for each thread.

3.3 Software Approaches

RAFT [53] is a speculative runtime fault tolerance mechanism designed for single-threaded

applications with deterministic output. It duplicates the original application and executes

both versions in parallel, using double the amount of registers and memory. RAFT specu-

lates the return values of system calls, avoiding synchronization barriers and only verifies

values that escape the user space.
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Shoestring [21] is a symptom-based instruction duplication technique that provides op-

portunistic soft error reliability. A compiler analysis is utilized to find vulnerable code,

based on a specific set of symptoms (e.g., memory access exceptions). The instruction du-

plication mechanism selects a tree of instructions to duplicate. Checker nodes are injected

along the code to compare the results of the leaf nodes from the original and the duplicated

tree.

ReVive [35] is a rollback recovery mechanism based on shared memory multiproces-

sors with a special hardware mechanism that performs logging and parity updates. The pro-

posed mechanism creates checkpoints at three different consistency levels. Global check-

points that require all processors in the system to synchronize. On the processor level where

each processor creates a checkpoint of its local state but in the same time forcing any com-

municating processor to create its own checkpoint and finally periodical processor-local

checkpoints without interactions with other processors. In addition to the different types

of checkpoints, checkpoint separation takes place based on on how the working data are

separated from the checkpoint data. Finally checkpoints are grouped in three categories

based on the storage type, external, safe internal and unsafe internal. Based on the error

detected, different level of checkpoints are used to restore the system.

SWIFT [38] is a single-threaded, compiler-based fault tolerant technique which injects

duplicate and comparison instructions at compile time to detect faults. The memory system

is protected through the use of error correcting code (ECC). SWIFT uses an optimized

control-flow checking mechanism which utilize control blocks with dynamic signatures, to

avoid the cost of branch validation code.

ASSURE [42] provides a fault tolerance technique for server applications by imple-

menting rescue points with a moderate performance overhead. Rescue points are locations

in the application where error handling takes place and can be found offline. When a “live”

error occurs for the first time,a new personal copy of the application is used to search for

rescue points that are able to handle the error. Once a suitable point is found, a patch is
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applied trough binary injection to the online application. The patched version of the ap-

plication is able to take checkpoints at the rescue point, so when the same error occurs a

rollback can take place and recover from the fault automatically.

Static techniques have also been used in the past to identify idempotent regions of code

that can be re-executed without checkpointing [10]. Such analyses are orthogonal to our

work and can be used complementarily to identify and optimize unnecessary checkpoints,

further reducing overhead.

3.4 Hardware Approaches

Hardware based reliability is also a vital solution for task based programs. In [45] the

authors present a runtime system for MPSoCs with a master and multiple worker cores.

Task-based code annotations in combination with a Java C-to-C compiler that generates

the master and worker source codes, provide a complete task-oriented solution for FPGA-

based MPSoCs. Moreover, an extension of this work is presented in [46] with fault-tolerant

application execution features; the system is protected against transient and permanent

faults by creating checkpoints at runtime, similarly to RelyBDT. In addition, it introduces a

new set of pragma-based annotations to developers that allows them to provide alternative

task implementations, which do not utilize certain worker submodules. This feature allows

the runtime to utilize partially damaged workers with undamaged subsystems.

The MADNESS Project [11] presents a system level approach for reliability in NOC-

based MPSoCs. In order to increase the fault tolerance of the system a hardware layer

that cooperates with the runtime manager is able to migrate the process on a faulty core to

working ones.

Interconnect error detection is usually based on link errors. Parity, CRC and

SECDED [16, 31, 32, 33] are common ways to protect the network from such faults.
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In [9] a hardware mechanism is proposed to accelerate the management of tasks of the

StarsSs [30] programming model. While this hardware mechanism increases the perfor-

mance and scalability of the system, it does not provide fault tolerance.

Masubuchi et al. propose a hardware fault recovery mechanism (FRM) in [28]. The

proposed FRM targets server application where checkpoints are acquired and managed by

the hardware periodically and the hardware mechanism is able to record the recovery data

by using a special Before Image Buffer scheme. The main drawbacks of the proposed

system is that all the processors in the system have to synchronize to start the recovery

operation, the main memory is rolled back and the cashes are invalidated. While the FRM

is able to recover from a number of faults, our system can be combined with a software task-

based checkpoint mechanism (like RelyBDT and the mechanism presented in [46]), hence

the whole system can be protected without main memory rollbacks, cache invalidations and

core synchronization.

Fault tolerance for MPSoCs through dynamic task scheduling has been proposed in [4].

In order to detect errors each task is scheduled two times in different processing elements,

and in case of an error detection the task is computed a third time and a voting process takes

place. In addition global errors are detected when a processing element fails to complete

the computation of a task in a predetermined time frame.

A main difference of the proposed system is that the hardware mechanism that is re-

sponsible for the scheduling of the tasks and the global error detection is considered fault-

free and that the system requires extra processing elements, one for error detection and two

for correction. Hence, restricting the graceful degradation and performance of the system

while increasing the hardware resources required, especially for systems with a small num-

ber of cores. On the other hand, the ASGUARDIAN is augmented with extra modules in a

TMR fashion and is able to protect the main memory of the system when the worker cores

fails permanently or transiently while greatly reducing the required hardware resources

independently of the number of cores in the system.

16



Moreover, the proposed mechanism considers faults during the computation of tasks

and not during the memory access operations, as a result the main memory may be cor-

rupted during these steps. This scenario is covered from the ASGUARDIAN because the

memory accesses are performed in compliance to the the tasks footprint and TMR mod-

ules. In addition, RelyBDT is a checkpoint software solution that provided an error detec-

tion mechanism is able to recover from transient computation and permanent worker faults

without the use of extra hardware resources and thread synchronization. Finally, profiling

of the tasks is not required, hence the ASGUARDIAN and RelyBDT are able to support

dynamic workloads without alterations.

A difference of our system from other proposals [11, 47] and typical memory protection

mechanisms like virtual memory and the MMU, is that our system does not require interrupt

support neither requires a real-time OS like [5, 2, 23], which significantly reduces the

workers required resources and the complexity of the system.

3.5 Transactional Memory and Memory Management

The notion of rollback and retrying execution is inherent in Transactional Memory (TM)

models [22]. Several software transactional memory runtimes use checkpointing or simi-

lar techniques to save and restore the state of transactional variables to consistent points.

TM, however, is a lower-level model than task-parallelism; TM programs use threads to ex-

press parallelism and TM to enforce synchronization. Moreover, TM most often enforces

a mutual exclusion semantics of synchronization, whereas runtime dependence analysis

in task-parallel models enforces a dataflow semantics that deterministically produces the

same result as the sequential program.

Epoch-based cache management (ECM) in collaboration with an explicit bulk

prefetcher has been proposed in [29]. The runtime is able to use information pro-

vided from the hardware in order to prefetch tasks accordingly. The prefetcher is similar to
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an RDMA engine but with the capability to allow software to explicitly transfer memory

ranges that correspond to tasks. This work is orthogonal to our proposal and can work as a

performance extension to the ASGUARDIAN in order for the system to prefetch tasks in a

fault-tolerant mode.

18



Chapter 4

RelyBDT

4.1 Outline

This chapter presents RelyBDT, a software checkpointing mechanism at the thread-level,

build around a task-based runtime system. The rest of this chapter is organized as follows.

Section 4.2 provides an overview of the fault model and our assumptions, Section 4.3

presents the design of the checkpoint mechanism and Section 4.4 presents the evalution of

RelyBDT.

4.2 Assumptions and Fault Model

The semantics of task-parallel programming models make checkpointing easier and

more efficient than in previous approaches targeting thread programs. Namely, a task is

a computation that can run in isolation (usually a function call), has clearly defined input

and output arguments, and is restricted to only access those. For example, the code spawn

f(input A, output B) executes function f(A,B) in parallel to the rest of the pro-

gram, taking into account that f reads its first and writes its second argument. Figure 5

demonstrates the spawn function where different parts of the Fibonacci function are calcu-
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Algorithm 5 Example Fibonacci calculation with the spawn function. Each spawn is a
thread which calculates the next Fibonacci value. Finally, the threads are synced and the
final result is calculated.
Fib(n)
if n < 2 then

returnn
else

x← spawnfib(n− 1)
y ← spawnfib(n− 2)
sync;
return(x+ y)

end if

lated with different threads, then the threads are synced and the final result is calculated.

Arguments can be either read-only (input), write-only (output) or read-write (inout). In

implicitly synchronized task-parallel models like BDDT, moreover, tasks are guaranteed to

have exclusive access to their output and inout arguments, because the runtime system

automatically detects dependencies between tasks that access the same memory and sched-

ules them correctly to avoid races. In BDDT, a “master” thread executes the main program

and spawns parallel tasks, while a set of “worker” threads execute these tasks when all their

dependencies are satisfied.

We take advantage of the task semantics and assume that tasks will respect their mem-

ory footprint (input and output arguments) even in the presence of faults. That is, we

assume that the hardware can either detect faults as soon as they occur [37] or use memory

protection mechanisms [38] to detect and stop a faulty task from corrupting any part of

memory other than its arguments. This assumption greatly simplifies checkpointing, be-

cause the system need only restore task argument memory before retrying the task. More-

over, task arguments are accessed only by the task during its execution, meaning that both

checkpointing and restoring from a checkpoint become thread-local operations, without

requiring synchronization with other threads. In contrast, checkpointing a multithreaded

application requires all threads to stop as any thread can access any memory address.
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Figure 4.1: Master-Worker model: The master threads spawns tasks to different workers.

We assume two kinds of faults: (i) Transient faults that cause a computation to fail or

compute the wrong result, while the hardware remains operational and it suffices to restart

the computation. (ii) Permanent faults that cause hardware to fail and be unable to perform

any computations. In both cases, we assume that the faults will occur during the execution

of tasks, meaning that no faults can happen at the “master” core, nor when a “worker”

is running the runtime system between tasks. In future work, we plan to extend the fault

model and checkpointing implementation to support these cases.

4.3 Design

The BDDT runtime system uses a ”master” thread to spawn tasks and a pool of

”worker” threads to execute them. Figure 4.1 highlits this model. Under the assumptions

described above, all checkpoint operations are run by the worker-threads. It is safe to

checkpoint task data in parallel without synchronization, because of the semantics of

tasks, namely that a task will never be scheduled concurrently with other tasks accessing

the same data. Balancing the checkpointing, fault detection and fault-recovery workload

across many threads gives scalability to our design and does not introduce bottlenecks.
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4.3.1 Transient Faults

Worker threads checkpoint a task’s arguments just before executing it. Each worker thread

uses a checkpoint buffer into which it copies the task arguments. We recycle the check-

point buffer when possible, to avoid the overhead of allocating and deallocating checkpoint

memory. The checkpoint only contains the contents of inout arguments, because input-

only arguments can not get corrupted/altered during execution and output-only arguments

are always rewritten during execution.

We assume that transient faults can be detected as they occur, so that task execution

stops and the runtime system resumes control of the core. We simulated transient faults

using a “coin-flip” test after every task to decide whether the task is faulty and needs to

be re-run. We used a uniform-distribution pseudo-random number generator to generate

faults with various probabilities. When a transient fault is detected, the runtime system

restores the checkpoint by copying the contents of inout arguments from the checkpoint

buffer to the original locations and retries the task. Note that in reality, a fault may be

detected before the end of a task, causing it to be restarted earlier; our fault emulation thus

overapproximates the overhead because it always allows the faulty task to terminate before

retrying.

4.3.2 Permanent Faults

We assume permanent faults may completely disable a core while a task is running. We

simulate permanent faults in the same way, using a “coin-flip” function based on uniform

distribution to create various probabilities of failure. Recovery from permanent faults is

more complex than for transient faults, because it involves different worker cores detecting

the error and redistributing all work scheduled to the faulty worker core.

To detect permanent faults in worker cores we have the runtime in each worker core

periodically check for permanent faults in other workers. Upon detection of a permanent

fault, one of the live workers will take over recovery: disable the task queue of the faulty
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worker core so that no new tasks are scheduled there and redistribute all tasks in that queue

to the remaining workers via task-stealing. The recovery worker also takes over the task

that was running when the permanent fault occurred, restores its data from the checkpoint

buffer of the disabled worker and executes the task locally.

4.4 Experimental Evaluation

We evaluate our implementation using six task-parallel benchmarksrunning on a

3.3GHz, 4-core i5-2500 CPU with 4GB RAM running Ubuntu 12.04 Server. All reported

times are averages of 5 runs. We used the following benchmarks because of their argument

characteristics, as they represent all the different scenarios and because they have already

been used to evaluate the performance and scalability of BDDT.

Black-Scholes is a mathematical model for financial markets, taken from the PAR-

SEC [6] benchmark suite. We used 12,800,000 options and a 292MB dataset, resulting

in 100,000 (dynamic) tasks. This application does not have any inout arguments, so it

requires no checkpointing. The overhead shown only corresponds to the re-execution of

tasks.

GMRES computes the generalized minimal residual method for solving non-symmetric

systems of linear equations. We used 13,107 nodes and a block size of 128MB, which

amounts to 249,717 tasks. This application models the worst case checkpointing scenario,

where all tasks use inout arguments and memory copy operations become a bottleneck.

Moreover, each task uses a small part of memory, requiring lots of small checkpoints. The

overhead is the combination of the checkpoint functions and the re-execution of tasks.
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FFT is a kernel with Blocking Transpose taken from the SPLASH-2 [51] benchmark

suite. We used 16,777,216 Complex Doubles resulting in 28,864 tasks that have strided

inout arguments that correspond to array tiles, causing overhead due to multiple memory

copies per argument.

Cholesky is a linear algebra kernel uses 128×128 matrices, resulting in 5,984 tasks. The

tasks have strided inout arguments corresponding to tiles of the total array, resulting in

several copying operations per argument. Moreover, the tiles are large, and so the check-

points have a large memory and time overheads due to copying.

Jacobi is a kernel using the Jacobian method for solving linear equation systems. We

used a 7168×7168 matrix tiled into 128×128 blocks for 30 iterations, resulting into 94,080

tasks. Jacobi uses two matrices to avoid in-place computation; its tasks read from one and

write to the other array, swapping the arrays for the subsequent iterations of tasks. Even

though Jacobi uses strided arguments to describe array tiles it incurs no checkpointing

overhead, because there are no inout arguments that require copying.

Multisort is a task-parallel version of Mergesort similar to Cilksort [7]. We used 20MB

of data for 836 tasks. Multisort does not have inout arguments, each task uses read-only

inputs and a write-only buffer to output its results. Effectively there are no checkpoints for

Multisort tasks, and the only overhead corresponds to retrying failed tasks.

4.4.1 Time Overhead

To compute the overhead of checkpointing, we measure the running time of each bench-

mark using the original BDDT runtime without any support for fault tolerance and check-

pointing. We also measure running time using RelyBDT for zero permanent faults, while

varying the probability of transient faults.
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Figure 4.2: Time overhead percentage over no-checkpointing with transient error probabil-
ity ranging from 0.0 to 0.4 and no permanent errors.

Figure 4.2 shows the overhead incurred by checkpointing as a percentage over the base-

line run. Note that the leftmost data points correspond to a transient error probability of

zero, in effect measuring the “protection” cost of checkpointing all inout arguments in

an application, even in the case where no checkpoint is ever used. Benchmark performance

varies depending on the cost of allocating space and creating the checkpoint, relative to

the cost of the task. As expected, benchmarks that do not require checkpoints (have no

inout arguments) do not show any checkpointing overhead. The overhead is similarly

low on computationally-heavy benchmarks like FFT and Cholesky, because the cost of al-

locating the checkpoint and copying the data is dwarfed by the time spent in the actual

task. On the other hand, applications like GMRES that have small, fast tasks operating on

large data footprints suffer significant overhead, because creating the checkpoint takes time

comparable to the actual task execution.

Figure 4.2 also shows three other data points per application, for executions with prob-

ability of transient error being 0.1, 0.2, 0.3 and 0.4 (10% to 40% error rate). Note that
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Figure 4.3: Time overheads due to retrying failed tasks: comparison of total execution time
overhead for various probabilities of failure with total execution time of checkpointing
without failure.

a probability of 0.1 for transient errors means that 10% of all tasks will fail and rerun,

whereupon 10% of the reruns will also fail, etc.

In theory, a probability of 0 ≤ x ≤ 1 of failure and rerun will execute a total number of

tasks equal to
∞∑
k=0

xk =
1

1− x

meaning that at probability of failure 0.1, 0.2, 0.3 and 0.4 we expect to perform respectively

11.11%, 25%, 42.86% and 66.67% more work due to retrying failed tasks. To test this

hypothesis, we use a different configuration comparing the total execution time for these

probabilities of failure, with the execution time using zero probability, to avoid counting the

cost of checkpointing together with the cost of retrying failed tasks. Figure 4.3 presents the

results, along with a curve showing the theoretically expected overhead just by rerunning

the failed tasks. Note that in all benchmarks the cost is considerably lower than expected.

We believe this to be because each worker core that detects a task failure immediately

repeats the task execution, thereby taking advantage of warmed caches and locality. Al-
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(a) Total overhead over BDDT (b) Overhead of a permanent fault

Figure 4.4: Permanent faults

most consistently, the second time a worker core executes a task it is faster, as tasks are

sufficiently small to fit in the processor cache.

We measure the overhead of permanent faults on total execution time similarly. As a

baseline, we measure the total execution time of each benchmark using (vanilla) BDDT

with three worker threads. We compare this to a RelyBDT execution with four worker

threads, in which the first task always causes a permanent fault, causing one of the worker

threads to stop. We set the probability of transient faults to zero. Note that even at a zero

probability of transient faults, RelyBDT still entails the overhead of creating checkpoints.

Figure 4.4a presents the overhead in total execution time. This includes the cost of check-

pointing plus the cost of recovery from exactly one permanent fault. Note that this overhead

is not directly comparable with the overhead of checkpointing reported in Figure 4.2 as it

refers to executions with three worker threads, whereas Figure 4.2 refers to four worker

threads.

To estimate the actual cost of a permanent fault, we perform another set of measure-

ments. We measure the total running time for each benchmark executed using RelyBDT

with three worker threads and zero probability of either transient or permanent faults; this

baseline includes only the application time plus the overhead of creating checkpoints. We
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Benchmark RelyBDT 3 Workers RelyBDT 1 Permanent Recovery Time Overhead
Black-Scholes 605.27 606.4 1.12

Cholesky 980.56 983.77 3.21
FFT 669.2 671.41 2.21

GMRES 261.07 263.16 2.08
Jacobi 2492.87 2496.04 3.16

Multisort 162.24 163.08 0.84

Table 4.1: Permanent fault recovery time overhead in ms. Comparisson of RelyBDT with
three starting workers vs RelyBDT with four starting workers and one permanent fault in
the first task.

compare this against the total execution time using RelyBDT with four starting worker

threads that immediately become three due to a permanent fault at the first task. Fig-

ure 4.4b shows that the overhead of recovering from one permanent fault is negligible, at

worst 0.8% of execution time. In addition, to further demonstrate the performance over-

head of permanent faults, Table 4.1 shows the timings of the above configuration and the

required permanent fault recovery time, which on average is 2.1 ms. The recovery time

can be dwarfed in comparison to the total execution time, hence we used the same config-

uration of the benchmarks as described before to minimize this effect. Again, GMRES has

a higher percentage overhead mainly because it creates a lot of small tasks, meaning that

recovering from a permanent fault introduces more task-steals from the faulty core to the

remaining workers.

4.4.2 Space Overhead

Task-based checkpointing incurs little space overhead overall: only one task can run per

worker at any given time and task semantics allow the system to only maintain checkpoints

for the arguments of running tasks. We measure the space overhead of checkpoints for

each application per worker, that is, the maximum space used by any given worker at

any given time to store a checkpoint. Figure 4.5 shows the maximum space required to

checkpoint a task in each benchmark. Note that although GMRES creates many tasks, each
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Figure 4.5: Worst case space overhead per application for each worker.

malloc() memcpy() KBytes Restored / Probability
Benchmark Tasks Calls KBytes Calls 10% 20% 30% 40%

Black-Scholes 100,000 0 0 0 0 0 0 0
Cholesky 5,984 4,459 566,467 570,726 65,851 142,475 223,085 339,706

FFT 28,864 46,679 1,104,229 1,397,305 123,529 268,415 45,381 674,288
GMRES 249,724 39,442 39,372 39,442 4,444 9,817 16,539 24,842
Jacobi 94,080 0 0 0 0 0 0 0

Multisort 836 0 0 0 0 0 0 0

Table 4.2: Space overhead and checkpoint memory operations.

task has a very small memory footprint (1 KByte), resulting in minimal space overhead for

checkpointing all running tasks at any given time. On the other hand, FFT and Cholesky

spawn tasks that operate on large tiles of large arrays, requiring a lot of space to store their

checkpoints.

Table 4.2 shows the memory operations performed by checkpointing for each applica-

tion. The second column shows the number of tasks per application. The third and fourth

columns show the number of calls to malloc() and total size of allocated memory that

stores checkpoints. The fifth column shows the number of memcpy calls needed to create

the checkpoints. Note that this may be higher than the number of allocated checkpoints,

due to strided arguments like array tiles that require multiple copies per task argument. The

last four columns show the amount of memory that had to be copied back before rerunning

a failed task, for four probabilities of fault.
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Benchmark Runtime Space Data Checkpoints Overhead% Total
Black-Scholes 404,111,456 358,400,000 0 0.00% 762,511,456

Cholesky 404,111,456 134,217,728 +524,288 0.39% 538,460,256
FFT 404,111,456 805,437,512 +524,288 0.07% 1,209,680,040

GMRES 404,111,456 73,453,000 +4,096 0.01% 477,565,480
Jacobi 404,111,456 881,852,416 0 0.00% 1,285,963,872

Multisort 404,111,456 167,772,160 0 0.00% 571,883,616

Table 4.3: Memory footprint (bytes) and overhead per application. The runtime space is
always the same because the runtime reserves a fixed amount of space, regardless of the
application.

Table 4.3 shows the memory footprint of the application and runtime, as well as the

overheads due to keeping checkpoints. In cases where the memory footprint changes

throughout execution, we present the high watermark: the maximum space required at any

given point during execution. The first column shows the benchmark name. The second

column shows the amount of memory reserved by the runtime system to contain task de-

scriptors, the dependency graph, etc. The runtime takes a fixed amount of space, regardless

of the application requirements. This is because it reserves a predefined maximum amount

of memory that depends on the available hardware resources. The third column shows the

amount of memory allocated by the application to store data processed by its tasks and the

fourth column shows the maximum amount of memory used to store checkpoints at any

given point during the execution. This amount is sensitive to the number of worker threads

used. The number shown corresponds to four worker threads, meaning that, for instance,

each worker thread in FFT needs 131072 bytes of memory to checkpoint the arguments of

the task with the largest footprint. The fifth column presents the required checkpoint state

as an overhead over the application data size. For all benchmarks it is much less than 1%.

The last column shows the total maximum space required for checkpoints and corresponds

to instances of the largest task running on all worker threads.
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Chapter 5

ASGUARDIAN

5.1 Outline

This chapter presents ASGUARDIAN, a lightweight hardware mechanism that is able to

reliably manage the memory transfer needs of the runtime system. The rest of this Chapter

is organized as follows. Section 5.2 presents the architecture of the proposed mechanism

and Section 5.3 covers the evaluation of our system.

Table 5.1: Task Structure

Task Descriptor Functionality
ID Identifies the current task

Input A Pointer to the starting address of argument A
Input B Pointer to the starting address of argument B

Output C Pointer to the starting address of argument C
Size Arguments size
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Figure 5.1: System Global Access/Memcpy: In this setup the the ASGUARDIAN is not in-
cluded in the system. In the Global Access case the worker core accesses the main memory
directly through the available interconnection module. In the Memcpy case each worker
transfers all task descriptors and arguments to its local memory (hence keeps a task copy),
executes all assigned tasks, and then commits back all results to the main memory.

5.2 System architecture

Fault Model: A basic multi-core setup is presented in Figure 5.1. Each worker accesses

the main memory directly, in order to read all task descriptors and arguments (and store

them to its local memory if available), and as soon as processing is done, write back all

task outputs. However, an important issue that arises is that an unreliable worker core may

corrupt vital memory contents, hence even cause an entire system breakdown.

Nowadays, there are many chip-hardening techniques [19] that can selectively protect

vital hardware components (instead of the entire chip), thus leading to lower production

costs. Hence, in the context of our work we take as granted any mechanisms to detect

transient and permanent faults; we assume that each worker has integrated reliable modules

that are capable to detect such errors. As we also describe in the next sections, when a

permanent error occurs, the ASGUARDIAN tries to recover the system. When a transient
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Figure 5.2: ASGUARDIAN Microarchitecture

worker fault is detected, it protects data corruption by utilizing memory address isolation

(based on the task descriptors and TMR modules), and also migrates all pending tasks from

the faulty worker to others.

The ASGUARDIAN overview: In our work we focus on MPSoCs that utilize a master

processor interconnected with a set of worker cores, and a shared memory space. The main

purpose of the ASGUARDIAN is to support reliable memory transfers of task descriptors

and arguments. As an example, Table 5.1 shows the descriptor of a task with two input and

one output arguments, which all have the same size. Two modes of operation are available,

namely cut-through and store-and-forward. In both modes the transfers are split into two
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steps, (a) read the task descriptors and (b) fetch all task input data from the memory to the

workers, and once processing is done, store all task outputs back.

During the first step, the ASGUARDIAN keeps a copy of the descriptors, in order to

initiate the transfers of all task arguments. During the application execution, when a new

task is identified, the runtime notifies the ASGUARDIAN. During the second step, in the

cut-through mode (illustrated in Figure 5.3) the ASGUARDIAN transfers all task data from

the main memory to the worker local memory in sort bursts, while it also snoops neces-

sary task metadata and stores them locally. However, in a store-and-forward configuration

(shown in Figure 5.4), the ASGUARDIAN does not have access to the local memories of

the processors. Hence, it first stores all task inputs data from the main memory to address-

able registers, which are accessible by the worker cores. In case the task inputs size is large,

all addressable registers can be switched to normal on-chip BRAM blocks.

Figure 5.2 presents an overview of the ASGUARDIAN microarchitecture. The basic

components are (1) the Master and Worker interfaces, (2) the Snooping and Guardian logic

and the (3) the Task Request and Register Handlers. The task descriptors and addressable

registers are simple memory units. In the next paragraphs, we discuss these components in

more detail.

Master and Worker Interfaces: Each worker communicates with the ASGUARDIAN

by sending requests to the slave interface. In order to minimize the communication over-

head between the two units, and most importantly to ensure the protection of the system,

any interactions of the unreliable worker core with the runtime system had to be reduced to

a bare minimum. The available API requests (implemented in C) are presented in Table 5.2.

The worker interface is responsible for identifying an incoming request and pass it along

to the appropriate Task Request or Register handler (described in the next paragraph). The

runtime issues requests to the worker cores via a dedicated pattern register. All requests

can be grouped in two major categories, namely task requests and register requests. The

worker interface detects detects the category of the request and notifies the Task Request
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Figure 5.3: System cut-through: In this setup the ASGUARDIAN communicates with the
cores through ”BUS Lite” and is connected to the local memories of the cores through
”BUS”. Memory transfers from/to the external memory to/from the local memories are
performed in a cut-through fashion.

handler for task requests and the Register handler for register read/write requests. The

worker communication interface between the worker cores and the ASGUARDIAN is very

simple, hence does not impose any overheads.

The master interface provides the memory transfer operations of the ASGUARDIAN.

Towards supporting both cut-through and store-and-forward modes, this interface is able to

transfer both task descriptors/data between memories and between registers and a memory

location. When the cut-through mode is enabled, data are transferred in bursts between

the local memory of a worker and main memory. In the store-and-forward mode, the mas-

ter interface transfers data between the local registers and the main memory. The address

boundaries of the master interface are verified by the Guardian Logic (described in the

next paragraph), in order to successfully avoid erroneous memory accesses from unreliable

workers. Finally, the master communicates with the Snooping Logic and the Register Han-

dler (described in the next paragraph), so the ASGUARDIAN can store all incoming data
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Figure 5.4: System store-and-forward: In this setup the ASGUARDIAN communicates
with the cores only through ”BUS Lite” and the ASGUARDIAN does not have direct access
to worker local memories. Memory transfers from/to the main memory to/from the local
memories are performed in a store-and-forward fashion.

from the main memory to the registers. During a data transfer in the cut-through mode, the

guardian logic provides both the source and destination addresses; in the store-and-forward

mode the guardian provides the memory address to be accessed, while and the Register

Handler designates the correct register. To enhance memory access time, we consider that

memory transfers are committed on an interconnection module with burst mode support.

Snooping and Guarding Tasks: The Snooping Logic is a module specifically designed

to allow the ASGUARDIAN to steal data from the Master Interface. In both store-and-

forward and cut-through modes, the ASGUARDIAN keeps a copy of the task descriptors

and stores it on the Task Descriptors unit. The dash-dot line in Figure 5.2 represents the

path of the task descriptors, from the Snooping Logic to the Task Descriptors unit. The task

descriptors are required from the ASGUARDIAN in order to transfer the required task ar-

guments to the worker cores. During the runtime initialization phase, the master processor

notifies the ASGUARDIAN of the tasks starting address, the number of arguments in the

tasks and the size of each argument. As a result, the Snooping Logic is able to know when
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to store the task descriptors in the requesting workers memory space in the Task Descriptors

unit.

On the store-and-forward mode the Snooping Logic is also responsible for forwarding

incoming data to the Register Handler, which stores them in the Addressable Registers. As

soon as a task execution is complete, the Snooping Logic forwards all task outputs to the

Master Interface. The dashed line in Figure 5.2 represents the path of the task descriptors

and arguments from/to the Snooping Logic to/from the Addressable Registers and to/from

the Slave Interface. The main insight of the Snooping Logic is that by tracking the traffic

on the Master Interface is able to identify incoming tasks descriptors or task data, which

provide to the ASGUARDIAN the required task information to complete memory transfers

reliably.

The Guardian Logic is a simple but vital unit of the ASGUARDIAN; its main purpose

is to enforce the address space isolation of each task by checking the accessed memory

addresses in each step.The doted line in Figure 5.2 highlights the path of the required

task descriptors from the Task Descriptors Unit to the Guardian Logic and to the Master

Interface. By using the information already stored in the Task Descriptors, the Guardian

Logic provides the allowed address space to be accessed by the master interface during

each memory transfer. In addition to the Task Descriptors, the Guardian Logic offers fault-

coverage on operations by calculating the addressing of memories in a TMR fashion [31,

32, 1, 26].

Task Request and Register Handlers: The Task Request Handler is responsible for

identifying all task requests. When a task request arrives, it notifies the Guardian and/or

Snooping Logic units that a task transfer operation is on the fly, hence ensuring that mem-

ory accesses will be valid. The Snooping Logic is not required on the Cut-Through mode

when the task arguments are transferred back to the main memory. In addition the unit

passes information of the state of the ASGUARDIAN to the worker interface through the

addressable registers, in order to acknowledge the worker cores that data transfers are com-
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plete. The lines in Figure 5.2 highlight the control and data signals between the Handlers,

the Interfaces and the Logic Units. Figure 5.6 gives an example of the task request control

flow. In order to keep the guardian as lightweight as possible and the processor require-

ments to a bare minimum, the completion of events is performed in a busy-wait fashion

rather than supporting interrupts. Consequently, the Task Request Handler needs to only

write a specified register through the Register Handler, which is continuously checked by

the master processor, in order to know the state of the current operation.

The Register Handler is responsible for providing access to the addressable registers.

It can perform multiple writes in a single cycle, hence accommodate possible writes from

different units, while also perform serial access to the registers, in order to support the store-

and-forward ASGUARDIAN mode. For example, the Register Handler is able to provide

a series of registers to the master interface to write incoming data of one task argument. At

the same time, it can also give access to a set of registers to the worker interface, hence the

worker can directly read another task argument.

5.2.1 Stand-alone Guardian Logic

An extended version of the Guardian Logic is able to provide a stand-alone protection

mechanism for task-based runtime systems because of the ability of the Guardian logic to

utilize task descriptors for fault tolerance purposes. Similar protection mechanisms exist

in modern processors, like the paged virtual memory. Figure 5.5 highlights a simple paged

virtual memory architecture where a page table maps virtual address to physical ones.

Paged virtual memory restricts an application to access only virtual pages that have been

explicitly allocated to it. In a similar way, the main insight behind a stand-alone version

of the Guardian Logic is that this module would verify that each worker core is allowed to

access a specified memory location by comparing the requested address and the addressing

provided from the current task descriptor. The Guardian Logic would not allow worker

cores to access memory locations outside the current task descriptor hence, isolating the
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Figure 5.5: Virtual Memory Architecture: When a virtual address arives, the page table is
used to map the virtual address to a physical address.

worker inside the allowed address space. The main benefit behind the Guardian Logic is

that it requires minimum hardware resources and it does not require OS support because

of the characteristcs of the task based programming model; making it an ideal stand-alone

memory protection mechanism for an embedded task-based multicore enviroment.

5.3 Experimental Results

5.3.1 Runtime system

To evaluate the ASGUARDIAN module, we have developed a simple runtime system with

basic task-distribution functionalities. In our current testing platform, we consider one

master and three worker cores with shared (main) memory, however each worker has also

its own local space. The master core initializes the system, creates tasks, initializes all

runtime data structures and finally dispatches tasks to all workers. Each worker core is
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Table 5.2: ASGUARDIAN API

Function ASGUARDIAN Operation
Cut-Through Mode

task request() Transfer the next task, descriptor and data,
to a predetermined workers memory location

task complete() Transfer the output arguments from the workers memory,
back to the main memory. This function is called
after the calculation of the output arguments.

Store-and-Forward Mode
task request des() Store the next task descriptor in the ASGUARDIAN

and make it addressable
task request data() Store the task arguments in the ASGUARDIAN

and make it addressable
task complete ready() Transfer the output arguments from the ASGUARDIAN,

back to the main memory. This function is called after the
worker writes the output arguments on the addressable registers.

Both Modes
read reg(uint16 sel) Read the data of the selected register
write reg(uint16 sel, uint32 val) Write the value on the selected register

responsible for a specified number of tasks which are identified from a unique ID. Without

loss of generality, for demonstrative purposes we consider simple tasks with two input and

one output arguments. As shown in Table 5.1, each task description is composed by five

values; the task ID, the starting addresses of input arguments A and B, the starting address

of output argument C, and finally the size of all arguments.

During the runtime initialization phase, the ASGUARDIAN receives all task descrip-

tions, in order to know where the first task is and the memory patterns for accessing the

tasks metadata and arguments. To investigate the ASGUARDIAN performance overhead,

we implemented four different strategies when accessing the main memory to fetch task

data, namely global-access, memcpy, cut-through and store-and-forward. The first two

do not utilize any ASGUARDIAN protection mechanisms. In global-access, each worker

accesses directly the main memory to find the task descriptors and execute the tasks, i.e.

in other words, data are not copied to scratchpad memories. The memcpy version first

creates a copy of the task descriptors and data to the local worker memory of and then

starts the task execution. Once processing is done, the worker transfers back the results
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Figure 5.6: Task Request Handler Flowchart: The steps of the control logic behind the
Task Request Handler is defined in 7 steps. The first steps require the identification of a
new request, the current memory transfer mode and the request type by pattern recognition.
The second part is the notification of the required units, based on the request and the update
of the status register. The latter is continuously checked by the worker core, in order to
know the transfer state.

to the main memory. As it can be observed, these two approaches are unreliable, since

anytime a worker may corrupt the main memory contents. The last two strategies employ

the ASGUARDIAN modes described in Section 5.2.

Table 5.2 presents the basic API of the ASGUARDIAN utilized by the runtime. In the

cut-through mode, a worker requests a task by calling the task request() function, which

writes a specified pattern to the request register, and waits until the ASGUARDIAN is done

by updating its status register. When all data transfers are complete, the worker cores reads

the task descriptors from a predetermined location in his local memory and starts the task

execution. As soon as the task processing is done, the worker calls the task complete()

function. This procedure is repeated by all workers until all tasks are executed.

In the store-and-forward mode, the worker core first calls the task request des(), which

asks the ASGUARDIAN to begin transferring the task descriptors and task arguments.

Once all task data are transferred, they are addressable to the worker core. After the

busy-wait loop, the worker reads the task descriptors by calling the read reg(uint16 se-

lect) function which reads the data from the specified register of the ASGUARDIAN. As
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it was mentioned, in our current configuration, each task requires five descriptors, which

are stored in the first five addressable registers. When this step is completed the worker

calls the task request data(), which enables the ASGUARDIAN to re-use the addressable

registers holding the task descriptors for task arguments if needed. Finally the worker reads

all task data from the registers in the same fashion as before. The number of registers to

be read is defined from the size of the task. In order to reduce the latency of the store-

and-forward method, registers reading is overlapped with the data transfer from the main

memory. After the task processing is complete the worker writes the results back to the

addressable registers and notifies the ASGUARDIAN by calling the task complete ready()

function.

5.3.2 ASGUARDIAN evaluation

We performed various experiments, in order to evaluate the ASGUARIDAN overhead in

terms of performance and hardware resources utilization. Moreover, we implemented a

hardware prototype of the ASGUARDIAN on a Xilinx ML605 FGA board using the ARM

AMBA-based AXI and AXI-Lite protocols. In our experiments we used the runtime system

described in the beginning of this section, and mapped it on a testing platform with one

master and three Micrboblazes as workers. The Microblazes instruction and data caches

were set at 8KB and the local memories at 32K. The main memory of the system was set at

64MB, and the operating frequency was 100MHz. Finally the operating frequency of the

ASGUARDIAN was set at 150MHz in order for the module to be ahead of requests and to

be able to operate in a TMR fashion in the cases described in 5.2.

Hardware Resources: Regarding the hardware resources utilization, we used the Xil-

inx Design Suite 14.7 to get the total system resources after placing and routing the design

to the FPGA, which are shown in Table 5.3. Apart from the four Microblaze cores and the

ASGUARDIAN module, the system also contains other necessary units like the SDRAM

memory and its controller, hardware timers, an RS232 module, bus interconnects and other
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Table 5.3: FPGA Resources Utilization

Unit Flip Flops LUTs BRAMs
System 17947 23259 70

ASGUARDIAN 1870 2764 1
Reference Microblaze 2632 2843 14

Reference DMA engine 1177 1192 1

peripherals. Hence, according to Table 5.3, the ASGUARDIAN requires only 10.4% of

the total FFs, 11.8% of the total LUTs and 1.4% of the BRAMs, yielding an average of

8% of the overall system resources. Moreover, the ASGUARDIAN utilizes 58.4% on av-

erage of the resources when compared to a typical Microblaze configuration. Finally, we

also provide the resources required from a very simple DMA engine, in order to define a

baseline for supporting burst memory transfers. As we can observe, the ASGUARDIAN

yields an overhead of 47% of the resources required from the DMA engine, at the expense

of offering task-management capabilities and fault-tolerance.

Performance: The performance evaluation of the ASGUARDIAN was based on the

four previously described memory access strategies (global-access, memcpy, cut-through,

store-and-forward). In order to measure the performance of each one under various condi-

tions, we created simple tasks, which add two arrays under a varying number of input sizes,

ranging from 300 to 12000 elements. Each task performs addition on 20 elements, hence

the total number of tasks ranges from 30 to 1200 tasks, while each of the three workers is

responsible for a workload of 10 to 400 tasks. Table 5.4 and Figure 5.7 present the timings

of one worker, while Table 5.5 and Figure 5.8 show the total runtime timings.

As we can observe from the results, the store-and-forward ASGUARDIAN configura-

tion yields an execution time slowdown of 1.7x and 2.3x on average, when compared to an

unprotected scratchpad-based and global-access runtime system respectively. On the other

hand, the cut-through mode shows a minimum slowdown of 1.2x on average in comparison

to the unprotected global-access system, and a speedup of 6% on average when compared

to the unprotected memcpy-based runtime, while providing sufficient fault-tolerance to the
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Table 5.4: Worker Timings (msec)

Input Size - Elements Store-and-Forward Cut-through Memcy Global Access
600 0.424 0.159 0.209 0.077

1200 0.818 0.298 0.327 0.152
1800 1.212 0.436 0.482 0.221
6000 3.971 1.406 1.578 0.702
12000 7.913 2.792 3.147 1.395
18000 11.855 4.178 4.712 2.101
24000 15.797 5.564 6.296 2.806

Table 5.5: Total Timings (msec)

Input Size - Elements Store-and-Forward Cut-through Memcy Global Access
600 0.597 0.332 0.383 0.250

1200 1.157 0.637 0.666 0.492
1800 1.718 0.942 0.989 0.727
6000 5.641 3.076 3.248 2.371
12000 11.245 6.124 6.478 4.727
18000 16.849 9.172 9.706 7.095
24000 22.453 12.220 12.951 9.462

tasks management and graceful degradation of the system in case of permanent errors. The

slowdown of the system in the store-and-forward mode comes from the fact that the task

descriptors and arguments have to transfered from the main memory to the worker cores

in two steps. On the other hand, the speedup of the Cut-Through mode when compared to

the memcpy version of the system comes from the fact that memory transfer operations of

the ASGUARDIAN utilized dedicated hardware with burst support to perform the transfers

without the execution of instructions that the worker cores has to rely on for the transfer.

Permanent Faults Recovery: While the ASGUARDIAN ensures secured memory

transfers by the Guardian Logic unit, which utilizes Finite State Machines in a TMR mode,

we have integrated extra mechanisms, so the system can recover from detected permanent

core faults. We have considered the following two scenarios where permanent faults can

occur, before a task request and during a task request. In the first case, the worker core

fails before requesting a new task, hence independently of the ASGUARDIAN transfer

mode (cut-through or store-and-forward), the system continues uninterrupted because the
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Figure 5.7: Worker Timings: Worker timings are presented here for different workload in-
put sizes. The workload input size ranges from 600 to 24000 elements. Each bar represents
a different memory transfer method, with the store-and-forward and cut-through being the
reliable ones, and the memcpy and global access the unreliable ones.

Guardian Logic will continue servicing task requests to all remaining cores until all tasks

are executed.

If an error is detected during a task request, the ASGUARDIAN tries to recover the

system based on its current configuration. In the cut-through mode, the ASGUARDIAN

transfers both task descriptors and arguments to the local memory of the worker core and

then continues servicing requests. If a worker is detected as faulty, the ASGUARDIAN,

may change the ownership of its task descriptors to another one, using a specific pattern

written to the fault register. During this operation, the takeover worker will get the remain-

ing task of the failed one, while the ASGUARDIAN will seamlessly re-execute the failed

task transfer to to the local memory of the takeover worker.

In case of failure after a task-complete request, the ASGUARDIAN operates normally,

because the unit is able to operate autonomously without further communications with the
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Figure 5.8: Total Timings: Total timings are presented here for different workload input
sizes. The master timings is only dependant to the workload input size, hence the total
timings are similar to the worker ones. The workload input size ranges from 600 to 24000
elements. Each bar represents a different memory transfer method; the store-and-forward
and cut-through are the reliable ones, and the memcpy and global access the unreliable
ones.

failed core and continues from this point serving the rest of the workers. The scheduling

policy of tasks to available worker cores can be defined in the runtime, hence the AS-

GUARDIAN can support different scheduling policies.

In the store-and-forward configuration, when a worker fails after a task descriptor or a

task arguments request, the ASGUARDIAN will react in the same way as in the cut-through

mode where the worker fails after a task request. More specifically, the ASGUARDIAN

will transfer the task descriptors, make them addressable to the workers and then proceed

to the task input data transfers. After each transfer, the ASGUARDIAN writes a specified

pattern to the status register to signal a status update, which is acknowledged by the worker

core. Once all data are transferred, the ASGUARDIAN waits either for confirmation that

the worker has successfully read all arguments, or a notification from a possibly takeover
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worker that the original worker failed. In the second case, the next task-descriptor request

from a new worker will directly receive the task descriptors and the arguments without

extra transfers. In other words, permanent faults do not require task description transfers to

be re-executed.

The ASGUARDIAN blocking mode serves two main purposes; to make sure that all

workers have successfully received their tasks’ arguments, and because it serves as a indi-

cation to the worker cores that another worker may have failed. The detection is possible

because the status of the ASGUARDIAN will remain busy when a worker tries to com-

municate with the ASGUARDIAN. In case a worker fault is detected after a notification

has been sent to ASGUARDIAN, all task descriptors of the faulty worker will become ad-

dressable to the one that will resume its pending tasks. However, all pending task input

data need to be loaded again, since the ASGUARDIAN will overwrite the original registers

with new task data due to the ”fake” received notification.

In addition, if a fault is detected after a task-complete request, the ASGUARDIAN

operates as in the cut-through configuration. Figure 5.9 highlights a case were the first

worker fails permanently at 50% of the workload and the remaining workers continue.

The lines demonstrate the timings required for 3 workers. The results indicate that the AS-

GUARDIAN does not further impede the performance of the system in case of a permanent

fault. This is also verified by Figure 5.9, where the extra time required from the remaining

workers to complete all tasks, is almost the same as the time required from the system with

three workers, plus the time required from the fault-free workers to compute the remaining

50% (25% each in the demonstrated case) of the faulty core workload.
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Figure 5.9: Total Timings with One Permanent Fault at 50%: The graph presents the total
timing results when one worker core has a permanent fault at 50% of its workload. In
addition, the lines present the total timings for three worker cores. The remaining 50% of
the workload is distributed among the remaining workers evenly. The available memory
transfer modes are store-and-forward and cut-through, since the unreliable versions would
have failed.
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Chapter 6

Validation and Features

6.1 Outline

This Chapter presents the features and, the verification and validation methods utilized to

test and confirm the proper operation of both RelyBDT and the ASGUARDIAN. The rest

of this Chapter is organizes as follows, Section 6.2 presents a general overview of the

verification and validation process, Section 6.3 presents the Verification methods, Section

6.4 describes the Validation steps and finally Section 6.5 presents the implemented features

of RelyBDT and the ASGUARDIAN.

6.2 V&V Overview

Modern systems have to pass multiple steps of Verification and Validation in order to con-

firm the quality of the product [20]. While the validation is as simple as confirming the

required specifications of the system, verification is based upon verifying the design and

the code. Both RelyBDT and the software part of the ASGUARDIAN passed through the

same validation methods, extra steps had to be taken in order to verify the hardware part of

the ASGUARDIAN.
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6.3 Verification

Formal Verification of the system through formal methods of mathematics is a very difficult

process especially for systems with great complexity like the ones presented in this thesis.

As a result, as part of the Verification process of the RelyBDT and the ASGUARDIAN

we used the features described in Section 6.5 as the formal specification of the system and

verified the correctness of each function for a number of runs. In addition, for the hardware

part of the ASGUARDIAN we verified the logic and FSM modules of the ASGUARDIAN

with extended simulations.

6.4 Validation

The first step taken towards confirming the correctness of both RelyBDT and the AS-

GUARDIAN was to validate the results of our implementations. In RelyBDT because

of the x86 architecture the validation was easier and was based on comparing the output

dataset of the RelyBDT against the original results of the runtime without any modifica-

tions. In addition by using basic C functions like memcmp and assert [44] we were able to

verify the correctness of our design during different steps of the runtime.

The FPGA implementation of the ASGUARDIAN required a number of extra steps in

the validation process because of the time required to access the on and off chip memories

and transfer their data. In addition to basic C functions and their Microblaze equivalents,

we used the Xilinx Design suite Tools [13, 15, 14] in order to verify the output datasets

by accessing the DDR memory and the BRAMs on the FPGA and comparing them to

the original outputs. The memory accessing process takes place at different steps of the

runtime after certain operations are complete, like task transfers. In order to automate

the process, a validation script was implemented that first executes the original runtime

without the ASGUARDIAN on the four Microblaze cores. By the end of the execution the

script access a number of on- and off-chip memories and performs a checksum function
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on the contents. A version of the runtime with the ASGUARDIAN is then executed and

a new checksum is generated. The two results are compared against each other to verify

the correctness of the results. While the checksum function is not ideal and may prove

error prone, it provides a lightweight solution to be used during the development stages.

Memory dumping of the results from the off-chip memory was used in order to verify

the correctness of the augmented system after the aggressive development phase of the

ASGUARDIAN mechanism. The main reason behind using memory dumping at later

stages of the development was because of the time required to transfer the whole data set

from the off-chip memory of the FPGA to the workstation, especially for large datasets.

6.5 Features

The basic specifications of RelyBDT are the following:

• Workers threads are able to create checkpoints based upon the task descriptor.

• The creation of checkpoints take place after acquiring the task from the workers

personal task-queue and

• before the execution of task function.

• Checkpoints are created only for inout arguments.

• Checkpoints are not created for input or output arguments.

• Inout arguments may be array- or stride-based.

• Faults both permanent and transient are simulated with a coin-toss like function based

on a uniform distribution and a specified fault probability.

• If the probability is set at zero no faults occur. If the probability is set at one faults

will occur all the time and the program will not terminate.
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• Transient faults are only detected after the execution of a task and before the submis-

sion of the results.

• Permanent faults are detected after acquiring a task and before the submission of the

results.

• Permanent faults disable the worker thread.

• In case of a permanent fault the rest of the workers finish the remaining tasks in the

workers task-queue through task stealing.

• One worker and one master must be operational for the successful completion of the

program.

The basic specifications of the ASGUARDIAN are the following:

The ASGUARDIAN:

• Transfers task descriptors and data from one memory location to an other memory

location based on addressing provided from the core.

• Transfers task descriptors and data from one memory location to an other memory

location based on addressing provided from worker dedicated registers.

• Transfers task descriptors and data from one memory location to local addressable

registers based on addressing provided from the core.

• Transfers task descriptors and data from one memory location to local addressable

registers based on addressing provided from worker dedicated registers.

• Transfers data from addressable registers to a memory location based on addressing

provided from the core.

• Transfers data from addressable registers to a memory location based on addressing

provided from worker dedicated registers.
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• Supports burst-mode transfers.

• Allows cores to write on addressable registers.

• Allows cores to read addressable registers.

• Identifies requests based on pattern recognition on specified registers.

• Identifies the current phase of a transaction.

• Enfornces memory access addressing based on data stored on local registers.

• Calculates addressing locations with a starting address, a step, and a size.

• Stores task descriptors on worker dedicated registers.

• Transfer task descriptors between worker dedicated registers.

The ASGUARDIANs Runtime Master core:

• Initializes the runtime system.

• Initializes the task descriptors.

• Initializes the task data.

• Initializes mutexes.

• Initializes mailboxes.

• Initializes the ASGUARDIAN.

• Notifies the worker cores.

The ASGUARDIANs Runtime Worker core:

• Requests task descriptors from the ASGUARDIAN.

• Request task data from the ASGUARDIAN.
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• Write on addressable registers of the ASGUARDIAN.

• Read from addressable registers of the ASGUARDIAN.

• Request the completion of a task from the ASGUARDIAN.

• Access the main memory for task descriptors and data.

• Copy from the main memory to the local memory task descriptors and data.

• Copy to the main memory from the local memory task descriptors and data.

• Execute the task function.
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Chapter 7

Conclusion

In this thesis we have presented RelyBDT and the ASGUARDIAN, a software checkpoint-

ing mechanism for the fault-tolerant execution of programs and a leightweight hardware

mechanism that provides fault-tolerance at hardware level for reliable task data transfers to

all available worker cores in MPSoC. Our proposed checkpointing mechanism can trans-

parently re-execute failed tasks and achieve correct execution of the application at runtime.

We found that for our benchmarks, saving enough program state to re-execute the tasks

requires almost negligible storage space, while the performance overhead depends strongly

on the benchmark behavior. Regarding the ASGUARDIAN, to enchance its programma-

bility and ease of use, we have developed a simple API that abstracts away from the user

memory management and transfer needs of the task-based runtime system. To evaluate

our proposal we implemented a hardware prototype on a Xilinx ML605 FPGA board and

attached it to a MPSoC with 1 master Microblaze and 3 Microblazes as workers. Using

a lightweight runtime system we performed experiments with a varying number of tasks

assigned to workers. Results suggest that the ASGUARDIAN reliability features offer an

additional level of protection on memory transfers at a minor cost in terms of resources and

performance degradation.
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